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ing. One of the key challenges of SAS systems is the design of con-
tinuous waveforms that enable high-quality imaging under practical
constraints (e.g., unimodular constraint). This thesis addresses the
design of such waveforms and observes that waveform design for a SAS
system over a short time window can be approximated as a wideband
ambiguity function shaping problem. To tackle this, we formulate the
wideband ambiguity function shaping problem as a non-convex opti-
mization problem and propose four methods to solve it. Among the
proposed methods, the wideband gradient descent method is proven to
be the most efficient and effective in minimizing the average sidelobe
energy in the region of interest of the wideband ambiguity function.
Simulation and field trial results show that, although waveform de-
sign for SAS systems is not strictly equivalent to wideband ambiguity
function shaping, the waveform obtained through this approach still
yields good SAS imaging performance compared to conventional sonar
waveforms, such as the random Binary Phase-Shift Keying (BPSK)
waveform. These findings provide a direction for the waveform design
of future SAS systems. Beyond SAS, the proposed wideband ambigu-
ity function shaping methods also show potential for other wideband
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Abstract

Synthetic Aperture Sonar (SAS) is an advanced sonar imaging technique that uses
multiple pulses or high duty cycle waveforms from a moving surface vehicle to create
a synthetic aperture array for imaging. One of the key challenges of SAS systems is
the design of continuous waveforms that enable high-quality imaging under practical
constraints (e.g., unimodular constraint). This thesis addresses the design of such wave-
forms and observes that waveform design for a SAS system over a short time window can
be approximated as a wideband ambiguity function shaping problem. To tackle this,
we formulate the wideband ambiguity function shaping problem as a non-convex opti-
mization problem and propose four methods to solve it. Among the proposed methods,
the wideband gradient descent method is proven to be the most efficient and effective in
minimizing the average sidelobe energy in the region of interest of the wideband ambi-
guity function. Simulation and field trial results show that, although waveform design
for SAS systems is not strictly equivalent to wideband ambiguity function shaping, the
waveform obtained through this approach still yields good SAS imaging performance
compared to conventional sonar waveforms, such as the random Binary Phase-Shift
Keying (BPSK) waveform. These findings provide a direction for the waveform design
of future SAS systems. Beyond SAS, the proposed wideband ambiguity function shap-
ing methods also show potential for other wideband applications, such as waveform
design for underwater target tracking.
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Introduction 1
Active sonar detects and tracks underwater targets, by transmitting continuous1 or
pulsed acoustic signals and listening to the reflections of the transmitted signals. The
distance and velocity of the target can be determined by measuring the delay and the
Doppler effect of the received signal using the matched filter. The principle of active
sonar is similar to active radar. However, due to the high absorption and high atten-
uation of electromagnetic waves in water, radar systems are not suitable for detection
and tracking of underwater targets.

Sonar systems can also be used for imaging targets, such as cables, pipelines, ship-
wrecks, and boulders. If the target is exposed in the incident field of an underwater
acoustic source, it can be imaged by analyzing the scatter field. Typically, sonar imag-
ing systems can be categorized into three categories [2]: sectorscan sonar, sidescan
sonar, and Synthetic Aperture Sonar (SAS). The schematic diagram of the three cat-
egories is shown in Figure 1.1. Sectorscan sonar usually uses a multibeam array for
imaging, which allows it to directly produce a 2-dimensional image for each transmitted
pulse. Sidescan sonar only uses a single beam or a few beams for each pulse. With the
motion of the vessel to obtain coverage of different areas in the imaging domain, the full
image can be derived from combining single pulse images at different areas. SAS can
be seen as an advanced imaging technique that combines sectorscan sonar and sidescan
sonar, which uses multiple pulses from a moving vehicle to create a synthetic aperture
array for imaging. In a SAS system, the intensity of voxels in the imaging domain can
be obtained by synthetically integrating over multiple pulses that are reflected by the
voxels along a known trajectory. Consequently, SAS normally has a higher imaging
resolution compared with other conventional sonar imaging system.

Figure 1.1: Categories of sonar imaging systems: sectorscan sonar, sidescan sonar, and syn-
thetic aperture sonar [2].

A conventional SAS system usually uses high frequency pulses with a carrier fre-
quency around 60-300 kHz [2, 3], which allows the imaging system to achieve cm-level
imaging resolution. However, since the high-frequency acoustic wave has higher at-

1Continuous signal/wave refers to a signal/wave with 100% duty-cycle in the thesis
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tenuation and higher absorption in an underwater environment compared to the low
frequency wave, the high-frequency SAS system needs either a high transmit power or
to be deployed near the target of interest to overcome the path loss over a long dis-
tance. Moreover, to ensure that the SAS system can integrate over a known trajectory,
the navigation accuracy should be higher than at least of a fraction of the wavelength
[2, 3]. For example, for a high-frequency SAS system with a carrier frequency of 100
kHz, the navigation accuracy should be at least higher than λ/4 ≈ 3.5 mm. This
problem becomes more critical when the SAS system is fully deployed underwater, as
the Global Navigation Satellite System (GNSS) is not available in such environment.
In the absence of GNSS, the system depends on Inertial Navigation System (INS) and
micro-navigation [2, 3] for positioning, which can lead to accumulated positioning errors
over a long trajectory. Due to these limitations, high-frequency SAS systems usually
cannot integrate over a very long trajectory for imaging.

Recently, Fugro has developed a SAS system, called SASV, a contraction of the
Synthetic Aperture Sonar (SAS) and Autonomous Surface Vehicle (ASV), which uses
low-frequency2 continuous or high-duty cycle waves from a moving surface vessel for
sonar imaging and bathymetry [1]. The schematic diagram of SASV is shown in Figure
1.2a, where the transmitters and receivers are mounted on the hull of the vessel. The
utilization of low-frequency band signals enables the SASV system to image the sea floor
a few kilometers beneath the water surface from a surface vehicle. Because of the use of
the SAS technique and a high resolution (cm-level accuracy) GNSS system, SASV can
achieve a high imaging resolution by integrating over a large synthetic aperture. On
the other hand, with the same imaging resolution, the traditional multibeam systems
can only image a water depth of around one kilometer and thus have to be deployed
using underwater vehicles or towed systems to achieve the same imaging depth, which is
more expensive and complicated to deploy. Moreover, for surface-deployed multibeam
systems, the imaging resolution depends on the angular resolution of the array. Even
a small angular beamwidth can translate into a very large footprint at kilometers of
depth. As a result, these systems usually need a very large array to maintain a good
angular resolution, which also potentially introduces complexity for the system design.

Additionally, the idea of SASV has been used in another sub-bottom SAS imaging
system, called Compact Low-frequency Acoustic Mapping System (CLAMS), which is
capable of imaging the boulders 5-10 m below the seafloor using low-frequency contin-
uous waves from a surface vehicle. The schematic of CLAMS is shown in Figure 1.2b.
Compared with the conventional sub-bottom profilers which do not use the SAS tech-
nique, CLAMS has the potential to provide higher imaging resolution for sub-bottom
targets. Another solution for the sub-bottom imaging is the parametric sonar array,
which uses directive pulses with high Sound Pressure Level (SPL). The parametric sonar
array requires a high instantaneous power for transmitting the pulses and might poten-
tially be harmful to marine life. CLAMS, on the other hand, uses continuous waves for
imaging, which spreads the transmit power through the time domain and therefore has
lower impact on marine life and imposes lower requirements on transducers and other
electronic components.

To improve power efficiency, sonar systems typically use a unimodular signal, which

2carrier frequency ranges from 500 Hz to 20 kHz
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(a) SASV (b) CLAMS

Figure 1.2: Schematic of SAS imaging systems made by Fugro, (a) SASV (b) CLAMS.

has a nearly constant amplitude over the entire transmit duration. In the current SAS
system of Fugro, conventional unimodular waveforms, such as random Binary Phase-
Shift Keying (random BPSK) signal and Hyperbolic Frequency Modulated (HFM) sig-
nal, have been implemented, but their imaging performance is suboptimal [1]. Examples
of SAS imaging of a point reflector using random BPSK and HFM are shown in Figure
1.3, where a point reflector at (0 m, 0 m, -1 m) is imaged using a circular trajectory
at the z = 0 m plane with a radius of 0.5 m. The Point Spread Function (PSF)
shows that both these two signals identify the point reflector and circle-shaped ghost
artifact around the point reflector caused by the circular trajectory. The sidelobe of
random BPSK is constantly high over the entire imaging domain, whereas the sidelobe
of HFM is much higher within the circle-shaped ghost artifacts but seems to be lower
outside the circle artifacts. If a strong reflector is present, the sidelobe caused by the
strong reflector will hide the mainlobe of other small reflectors, which may even result
in failed detection. Therefore, waveform design is an important problem for improving
the image quality of the SAS system.

The goal of the thesis is to design an optimized waveform that can improve the
imaging performance of the SAS system. Due to the use of matched filter techniques in
Fugro’s SAS system, we have found a high correlation between the ambiguity function
property of the waveform and the imaging PSF. That means, the ambiguity function
shaping problem plays an important role for the waveform design problem of a SAS
system. The ambiguity function shaping is a well-studied problem in radar, but the
problem still remains underexplored in the context of sonar because the ambiguity
function can no longer be approximated as a narrowband ambiguity function in a
wideband sonar scenario. In the thesis, we will design the optimized sequence from the
perspective of wideband ambiguity function shaping and then verify the performance of
the designed sequence through SAS imaging. The main research question of the thesis
can be summarized as:

• To what extent, can ambiguity function shaping improve the imaging performance
of a SAS system?
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(a) PSF for random BPSK (dB) (b) PSF for HFM (dB)

Figure 1.3: The Point Spread Function (PSF) for continuous (a) random BPSK and (b) HFM
signals with an Integration time of 5 s [1]. The Pulse Repetition Interval (PRI) of the HFM
signal is 50 ms. The bandwidth and the carrier frequency of these two signals are B = 8000
Hz and fc = 8000 Hz, respectively. The imaging trajectory is a circle at z = 0 m plane with
a radius of 0.5 m. The experiments were conducted in air with a speed of sound c ≈ 340 m/s.

The main research question can be broken down into the following two sub-problems:

• What is the relationship between the ambiguity properties of a waveform and its
corresponding SAS imaging performance? Is ambiguity function shaping equiva-
lent to waveform design for a SAS system?

• What is the optimal way to shape the wideband ambiguity function of a sequence
for SAS imaging?

The structure of the thesis is as follows. Firstly, in Chapter 2, the background of the
thesis is introduced, including Fugro’s SAS imaging systems, the ambiguity function,
the conventional sonar waveforms, and a literature review of ambiguity function shap-
ing methods. Here, we also theoretically show the connection between the wideband
ambiguity function shaping and the waveform design for a SAS system. Then, four
methods for the wideband ambiguity function shaping are proposed in Chapter 3, aim-
ing to determine the optimal approach to shape the ambiguity function of a sequence
for SAS imaging. The performance of these methods are evaluated through a series
of simulations. Following that, the SAS imaging performance of different waveforms is
evaluated through simulations and field trials in Chapter 4. Here, we aim to validate
our theoretical conclusion of the relationship between the wideband ambiguity function
shaping and waveform design for SAS systems. Finally, in Chapter 5, the main contri-
butions of the thesis are summarized, and suggestions for future work on the waveform
design for a SAS system are also provided.
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Background 2
In this chapter, we aim to address the first sub-problem of the main research question:

• What is the relationship between the ambiguity properties of a waveform and its
corresponding SAS imaging performance? Is ambiguity function shaping equiva-
lent to the waveform design for a SAS system?

To partially answer this question, the working principle of the SAS system of Fugro
is reviewed in Section 2.1. Here, we show that when the processing interval of a SAS
imaging is short enough (e.g., a PRI of the transmit signal), the waveform design
problem for the short processing interval can be approximately seen as a wideband
ambiguity problem. The relationship between the ambiguity properties and the SAS
imaging performance will be further analyzed through simulations and field trials in
later chapters. Next, the ambiguity function and its properties are introduced in Section
2.2. Then, the conventional sonar waveforms and their ambiguity function properties
are discussed in Section 2.3. Here, the desired ambiguity function properties of a
SAS imaging waveform are also mentioned. Finally, a literature review of the current
ambiguity function shaping methods is given in Section 2.4.

2.1 SAS imaging system

The SAS imaging systems of Fugro are similar to other conventional SAS systems, but
have some differences on the signal processing techniques due to the use of continuous
waveforms. To figure out the criteria of a good imaging waveform, the detailed working
principle of the SAS system is illustrated in this section.

As shown in Figure 2.1, unlike other SAS systems that process over every trans-
mitted pulse, Fugro’s SAS systems implement a technique called Short-Time Matched
Filtering (STMF) [1], which segments the continuous transmit signal into short-time
windows with a length of Tw and then uses every short-time window as the matched
filter to correlate with short segments of the received signal for imaging. To make sure
that the time-scaling effect caused by the Doppler effect within the short-time window
is negligible, the length of the short-time window Tw is selected such that it satisfies
Tw ≪ | c

2Bv
| [1], where c represents the speed of sound in water, and v represents the

speed of the vessel.
Another important aspect of the SAS system is the delay estimation. Let us consider

a SAS imaging scenario as shown in Figure 2.2, where a pair of transmitter and receiver
are surveying along a line trajectory with a velocity of v for imaging an area beneath
the trajectory. The imaging domain is discretized into a grid of voxels, where each voxel
can be seen as a perfect point reflector with a reflection coefficient if the grid resolution
is high enough. Assume a short-time window is transmitted at t = 0, the transmitted
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Figure 2.1: Schematic of the short-time matched filtering (STMF) process of the SAS system.
The transmit signal is segmented into short-time windows with a window length of Tw. For
each short-time window, once the delay corresponding to a certain pixel is found (e.g., t =
τTx + τRx), the reflection coefficient of the pixel can be estimated by computing the cross-
correlation between the short-time window of the transmit signal and the short-time window
of the received signal at the given delay.

short-time window is received at t = τTx + τRx after it is reflected by a voxel. Clearly,
the delay of the received short-time window consists of two parts: the travel time from
the transmitter to the voxel τTx and the travel time from the voxel to the receiver
τRx. Suppose the position of the transmitter at t = 0 is ρTx = (xTx, yTx, zTx), the
position of the receiver at t = 0 is ρRx = (xRx, yRx, zRx), and the position of the voxel
is ρv = (xv, yv, zv), the first part of the delay can be easily calculated as

τTx =
∥ρv − ρTx∥2

c
(2.1)

Since the vessel is moving with a constant velocity v, the position of the receiver will
not stay at ρRx when the short-time window is received. Using the law of cosines in
trigonometry, the second part of the delay can be expressed in a quadratic equation as:

(cτRx)
2 = ∥ρRx − ρv∥22 + ∥v(τTx + τRx)∥22 − 2(ρRx − ρv) · (v(τTx + τRx)) (2.2)

Then, the second part of the delay can be calculated by solving the above quadratic
equation. When the speed of the vessel is much smaller than the speed of sound in water
∥v∥2 ≪ c, the displacement of the receiver within the delay (τTx + τRx) will become
negligible. Then, in this case, the second part of the delay can be approximately
calculated as

τRx ≈
∥ρRx − ρv∥2

c
(2.3)

Another approach to approximate the delay is called the Phase Centre Approximation
(PCA), the details of the approach are mentioned in [1, 4].

Once the delay corresponding to a voxel of a short-time window is derived, the
reflection coefficient of the voxel can be estimated by using the short-time window to
correlate with the short-time segment of the received signal at the delay, as shown
in Figure 2.1. By integrating the correlation result for every voxel in the imaging
domain for every short-time window, the full SAS image is obtained. The SAS imaging
algorithm can be summarized in pseudocode, shown in Algorithm 1. It is important to
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Figure 2.2: Schematic of the delay estimation of a pixel in the imaging domain for a short-time
window. Assuming a pair of transmitter and receiver are surveying along a line trajectory with
a velocity of v to image a discretized area that is beneath the trajectory. The initial positions
of the transmitter and the receiver are marked with blue star and red triangle, respectively.
At t = 0, the transmitter sends a short-time window of the continuous signal. After the
short-time window is reflected by a certain voxel, it is then received by the transmitter at the
position marked with triangle in light red at t = τTx + τRx.

note that due to the computation complexity, the current version of the SAS imaging
algorithm only uses the matched filter to recover the reflection coefficients. The SAS
imaging performance can be further improved by the least squares method (e.g, LSQR
[5]).

Algorithm 1 SAS imaging algorithm

1: for each short-time window of the transmit signal do
2: for each voxel in the imaging domain do
3: Estimate the delay τ of the voxel for the short-time window
4: Estimate the reflection coefficient of the voxel by calculating the correlation be-

tween the short-time window and the short-time segment of the received signal at the
delay τ

5: end for
6: Coherently integrate the reflection coefficient in the imaging domain for each short-

time window of the transmit signal
7: end for

Suppose the imaging domain is discretized into a total of Nv voxels, the reflection
coefficients of voxels can be represented using a vector v = [v1, . . . , vNv ]

T ∈ RNv×1.
Then, the received signal vector y ∈ CNTx×1 can be described as a linear system [1]:

y = Hv (2.4)

with

H =

 | | |
h1 h2 . . . hNv

| | |

 ∈ CNTx×Nv (2.5)
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where each column of H can be seen as the signal that is reflected by the corresponding
voxel. Here, NTx, denotes the total number of time-domain samples measured by
the receiver, which is determined by the product of the sampling frequency and the
duration of the received signal. Due to the relative motion and the change of distance
between the vessel and voxels in the imaging domain, each column of H also represents
a copy of the transmit signal that is affected by multiple delays and Doppler effects
over each short segment of the signal. Because of the use of STMF for SAS imaging as
shown in Algorithm 1, the reflection coefficient vector in the linear system model can
be approximately recovered as follows

v̂ = HHy = HHHv (2.6)

where HHH determines the imaging performance of the SAS system. The element at
mth row and nth column of HHH illustrates the correlation (inner product) of hm and
hn. Therefore, to guarantee the optimal imaging performance, the waveform for the
SAS system needs to be designed in a way such that any two signals reflected by two
different voxels will have a low correlation. In other words, the designed transmit signal
needs to satisfy HHH ≈ INv .

However, since the survey trajectory of the SAS system is usually unknown before
the survey is complete, the delays and the Doppler effects on the entire transmit signal
are also unknown during the waveform design phase. Thus, designing the waveform
for the entire transmit signal might be a difficult problem. One way to alleviate the
problem complexity is to only focus on the waveform design within a short duration
(PRI), and then repeat the designed waveform in time to generate the transmit signal.
In this case, the received signal vector for a PRI of the transmit signal yPRI ∈ CNPRI×1

(NPRI ≪ NTx) can be modeled as

yPRI = HPRIv (2.7)

with

HPRI =

 | | |
hPRI,1 hPRI,2 . . . hPRI,Nv

| | |

 ∈ CNPRI×Nv (2.8)

Since NPRI ≪ NTx, each column of the matrix HPRI can be assumed to be a copy
of the designed waveform that is affected by a single delay and a single Doppler shift.
Similar to Equation 2.6, the reflection coefficient for a single PRI can be restored as

v̂PRI = HH
PRIyPRI = HH

PRIHPRIvPRI (2.9)

Therefore, the waveform design problem for one PRI of the transmit signal can be
seen as designing the repeated waveform such that it satisfies HH

PRIHPRI ≈ INv . Since
each element of the matrix HH

PRIHPRI illustrates the cross-correlation of two designed
waveforms with two sets of delay and Doppler indices, the waveform design problem
for the SAS imaging system can be approximately considered as a wideband ambiguity
function shaping problem. As the entire SAS imaging process can be approximately
regarded as an integration of multiple repeated waveforms from the moving vehicle, we
believe that shaping the ambiguity function of the repeated waveform can improve the
SAS imaging performance.
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2.2 Ambiguity function

Ambiguity Function (AF) χ(τ, α) is a two-dimensional function that describes the
cross-correlation between a signal and a copy of the signal that is affected by a delay
τ and a Doppler α. It has been widely used in radar and sonar systems to analyze
the matched filtering performance of a waveform. In this section, the expression of
the (wideband) ambiguity function is obtained from a simple moving target detection
problem as discussed in Section 2.2.1. Then, under the narrowband condition, the ex-
pression of the narrowband ambiguity function is derived in Section 2.2.2. Finally, the
properties of the wideband ambiguity function and the narrowband ambiguity function
are introduced and evaluated in Section 2.2.3. It is important to note that the narrow-
band ambiguity function introduced in this section is meant to support the narrowband
approximation method for the wideband ambiguity function shaping in Section 3.3.4.

2.2.1 Derivation of the (wideband) ambiguity function

Let us consider the moving target detection task shown in Figure 2.3, where a transducer
is placed at the origin and an object is moving towards the transducer with a constant
radial velocity of v. The distance between the transducer and the target is R0 at t = 0.
Then, the distance between the transducer and the target is given by

R(t) = R0 − vt (2.10)

Figure 2.3: Schematic of a moving target detection task with a transducer

Suppose the transducer uses a passband signal x(t) for range detection, and the
propagation speed of the signal in the medium is c. After the transmit signal is re-
flected by the target, the transducer will receive a copy of the transmit signal with an
instantaneous delay τ(t):

y0(t) = x(t− τ(t)) (2.11)

Since the signal received at t is reflected by the target at t0 = t− τ(t)
2
, we obtain [6]

τ(t) =
2R(t0)

c
=

2(R0 − vt0)

c
=

2(R0 − vt+ vτ(t)/2)

c
(2.12)

Solving Equation 2.12 gives us the function for the instantaneous delay with respect to
time:

τ(t) =
2R0 − 2vt

c− v
(2.13)
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By substituting Equation 2.13 into the received signal (Equation 2.11), we get

y(t) = x((
c+ v

c− v
)(t− 2R0

c+ v
)) (2.14)

where c+v
c−v

can be seen as a time-scaling factor on the received signal due to the Doppler

effect of the velocity of the moving target, and 2R0

c+v
can be seen as a global delay

corresponding to the initial distance between the transducer and the target. Let α = c+v
c−v

and τ = 2R0

c+v
. The received signal can then be modeled as the transmit signal that is

affected by a delay τ ∈ (−∞,∞) and a Doppler α ∈ (0,∞):

y(t) =
√
αx(α(t− τ)) (2.15)

where
√
α is a normalization factor [6] that ensures the received signal has the same

energy as the transmit signal. Then the expression of the AF can be obtained by
calculating the cross-correlation between the transmit signal and the received signal:

χ(τ, α) =
√
α

∫ ∞

−∞
x(t)x∗(α(t− τ))dt (2.16)

Since Equation 2.16 can be applied to the waveform analysis in wideband scenarios,
such as wideband radar or sonar, it is also referred to as the Wideband Ambiguity
Function (WAF).

Suppose the transmit signal x̃(t) is periodic in time with a PRI of TPRI , its period-
icity can be expressed as

x̃(t) = x̃(t+ nTPRI), n = 0,±1,±2, . . . (2.17)

Then, the periodic Wideband Ambiguity Function (periodic WAF) can be
defined as

χP (τ, α) =
√
α

∫ TPRI

0

x̃(t)x̃∗(α(t− τ))dt (2.18)

2.2.2 Derivation of the narrowband ambiguity function

Suppose the passband signal x(t) is composed of its complex baseband signal xbb(t) and
a complex carrier with a carrier frequency of fc:

x(t) = xbb(t)e
j2πfct (2.19)

The WAF can then be expanded as

χ(τ, α) =
√
α

∫ ∞

−∞
xbb(t)e

j2πfctx∗
bb(α(t− τ))e−j2πfcα(t−τ)dt (2.20)

=
√
αej2πfcατ

∫ ∞

−∞
xbb(t)x

∗
bb(α(t− τ))ej2πfc(1−α)tdt (2.21)
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When the speed of the target is much lower than the speed of the wave and the band-
width to the carrier frequency ratio is much smaller than 1 (the narrowband condition
[7, 8])

|v| ≪ c,
B

fc
≪ 1 (2.22)

we have

α =
c+ v

c− v
≈ 1 (2.23)

x∗
bb(α(t− τ)) ≈ x∗

bb(t− τ) (2.24)

In this case, the time scaling caused by the Doppler effect can be ignored, and then the
WAF can be approximated as

χ(τ, α) ≈ ej2πfcτ
∫ ∞

−∞
xbb(t)x

∗
bb(t− τ)ej2πfc(1−α)tdt (2.25)

The integral part of Equation 2.25 is known as the narrowband ambiguity function
(NAF):

χN(τ, fD) =

∫ ∞

−∞
xbb(t)x

∗
bb(t− τ)ej2πfDtdt (2.26)

where fD = fc(1 − α) = −fc 2v
c−v
≈ −fc 2vc represents the Doppler shift. The NAF

can be seen as a simplified version of the WAF under the narrowband condition, and
it is widely used in narrowband radar, but generally not applicable for sonar systems
because the propagation speed of a sound wave in water is around 1,500 m/s, which is
much lower compared to the speed of an electromagnetic wave in air of approximately
3× 108 m/s.

2.2.3 Properties of the ambiguity function

The NAF has the following three prominent properties [9]:

• Maximum value property: the maximum value of a NAF locates at the origin
(τ, fD) = (0, 0) and is equal to the energy of the transmit signal:

|χN(τ, fD)| ≤ |χN(0, 0)| = ∥x(t)∥2, ∀(τ, fD) (2.27)

• Symmetric property: the NAF is symmetric about the origin:

|χN(τ, fD)| = |χN(−τ,−fD)| (2.28)

• Volume invariance property: the volume under the surface of a NAF is a
constant equal to the square of the energy of the transmit signal:

VNAF =

∫ ∞

−∞

∫ ∞

−∞
|χN(τ, fD)|2dτdfD = |χN(0, 0)|2 = (∥x(t)∥2)2 (2.29)
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The maximum value property and the symmetric property of the NAF can be easily
observed from the formula of the NAF (Equation 2.26). Since the derivation of the
volume invariance property is not straightforward, a comprehensive proof is given in
Appendix A.1.

For a WAF, the maximum value property still holds:

|χ(τ, α)| ≤ |χ(0, 1)| = ∥x(t)∥2, ∀(τ, α) (2.30)

where the maximum value locates at (τ, α) = (0, 1) and is equal to the energy of the
transmit signal. However, because the Doppler effect is modeled as a time stretch or
compression in the WAF, the symmetric property and the volume invariance property
of the WAF do not hold anymore. As shown in [10], the volume of a WAF can be even
infinite in some specific cases.

Luckily, for a band-limited signal with its Fourier transform decreasing to 0 as the
frequency approaches 0, the volume of its WAF is still asymptomatically conserved and
has a lower bound equal to the volume of the NAF of the signal [11]. The relationship
between the volume of a WAF and the fractional bandwidth is shown in Figure 2.4, if
the spectrum is assumed to be a rectangular function. For example, for a band-limited
sonar signal with a bandwidth of 2000 Hz and a carrier frequency of 2000 Hz, the
volume of its WAF is approximately 1.1 times the volume of its NAF. Therefore, the
WAF of a band-limited signal has the asymptotic volume invariance property.

Figure 2.4: Volume of a WAF versus fractional bandwidth (β/ω0) for a rectangular spectrum,
where β represents half of the total bandwidth and ω0 represents the center frequency [11].
The volume of a NAF is assumed to be 1 in this figure. The volume of a WAF approaches 1,
as the fractional bandwidth approaches 0.

The maximum value property and the (asymptotic) volume invariance property are
two essential properties for the idea of AF shaping. The maximum value property limits
the height of the mainlobe of AF, which cannot be higher than the transmit energy.
The volume invariance property implies the trade-off between the size of the sidelobe
minimization region and the performance of sidelobe minimization in that region. As
the volume under the sidelobe of an AF is also a constant, it is impossible to reduce
the total sidelobe energy of the entire region of an AF. Generally, a larger sidelobe
minimization region will lead to worse sidelobe minimization performance, and vice
versa.
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2.3 Review of conventional waveforms

The general formula for the complex envelope of a unimodular waveform is given by

x(t) = ej(2πfct+φi(t)), 0 ≤ t < T (2.31)

where φi(t) is the instantaneous phase of the waveform, and T represents the duration
of the waveform. The instantaneous frequency of the unimodular waveform is then
obtained by calculating the derivative of the phase with respect to time:

fi(t) = fc +
1

2π

∂φi(t)

∂t
(2.32)

The unimodular property means the absolute value of the complex envelope of the
waveform equals to 1 over the waveform duration:

|x(t)| = 1, 0 ≤ t < T (2.33)

In sonar and radar systems, unimodular waveforms, such as the frequency modulated
waveform or the phase modulated waveform, are implemented to improve the energy
efficiency and reduce the requirement for the peak transmit power.

In this section, some conventional unimodular waveforms and their AF properties
are reviewed. Following that, the ideal AF properties for the SAS imaging waveform
are discussed.

2.3.1 Frequency modulated waveform

Frequency modulation modulates the instantaneous frequency of a waveform. One of
the most common frequency modulated waveforms is the linear frequency modulated
(LFM, also known as chirp) waveform, whose instantaneous frequency is as follows

fi,LFM(t) = (fc −
B

2
) +

B

T
t, 0 ≤ t < T (2.34)

Another popular frequency modulated waveform is the HFM waveform, whose instan-
taneous frequency is given by

fi,HFM(t) =
(f 2

c − B2

4
)T

fc +
B
2
−Bt

, 0 ≤ t < T (2.35)

The HFM waveform is very similar to the LFM waveform. As shown in Figure 2.5, the
instantaneous frequency of the HFM has the same trend as that of the LFM, but the
shape of fi,HFM(t) is a hyperbolic curve instead of a straight line.

Both the LFM and HFM waveforms are known for their Doppler invariance property
[12], which means LFM and HFM waveforms will have strong correlation output for
the matched filter even if the Doppler is present. Examples of the WAF for the LFM
and HFM waveforms are shown in Figure 2.6a and 2.6b, where we see that the LFM
and HFM signals have a ridge-shaped mainlobe and low sidelobes on two sides of the
mainlobe. The ridge-shaped mainlobe provides good range detection for targets with

13



Figure 2.5: Instantaneous frequency versus time plot of LFM and HFM signals with B = 2000
Hz, fc = 2000 Hz, and T = 0.5 s.

any velocity but introduces ambiguity for the velocity estimation. Generally, the LFM
and HFM waveforms are not ideal for SAS imaging, because their ridge shape mainlobe
in the WAF domain may cause mainlobe interference (extra artifacts) in the imaging
domain, as shown in Figure 1.3b.

(a) LFM (b) HFM (c) random BPSK

Figure 2.6: WAF for (a) LFM, (b) HFM, and (c) random BPSK signal with B = 2000 Hz,
fc = 2000 Hz, and a signal duration of T = 0.5 s. The y-axis of the WAF (α, Doppler-axis) is
converted into the velocity-axis [m/s]. The value of the WAF is normalized by the maximum
value in the WAF, and the color bar is set to a dB scale (20 log10(·)).

2.3.2 Phase modulated waveform

Phase modulation modulates the instantaneous phase of a waveform. Compared with
the frequency modulated waveforms whose instantaneous frequency is a continuous
function, the instantaneous phase of the phase modulated waveforms is usually discrete.
The general formula of a phase modulated waveform with a discrete phase can be
expressed as

xPM(t) =
N∑

n=1

sng(t− (n− 1)∆T )ej2πfct, 0 ≤ t < N∆T (2.36)
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with

g(t− (n− 1)∆T ) =

{
1, (n− 1)∆T ≤ t < n∆T

0, otherwise
(2.37)

where ∆T = 1
B

represents the duration of each phase code, g(t − (n − 1)∆T ) is a

rectangular pulse shaping function, and sn = ejϕn , n ∈ {1, . . . , N} represents the
nth phase code of the phase modulated waveform. One of the most common phase
modulated waveforms is the random BPSK waveform, whose phase code is randomly
selected from {−1, 1}:

sBPSK [n] ∈ {−1, 1}, n = 1, . . . , N (2.38)

An example of the WAF of a random-BPSK signal is shown in Figure 2.6c. The sidelobe
of the random-BPSK signal is higher than that of chirp signals, but the mainlobe of the
random-BPSK signal has a thumbtack shape, which provides unambiguous detection
of both the range and velocity of the target of interest.

Some phase modulated waveforms, such as Golomb sequence [13], and m-sequence or
Maximal Length Sequence (MLS) [14], have a perfect periodic autocorrelation property,
which means the periodic autocorrelation of these sequences is 0. The m-sequence is a
periodic code sequence generated by maximal linear-feedback shift registers. To ensure
its perfect autocorrelation property, the phase code of the m-sequence needs to satisfy

sMLS[n] ∈ {ej tan
−1(

√
N), e−j tan−1(

√
N)}, n = 1, . . . , N (2.39)

The length of the m-sequence is N = 2l−1, where l ∈ Z and l ≥ 2. When N approaches
infinity, tan−1(

√
N) approaches π/2 and the phase code of the m-sequence approaches

sMLS[n] ∈ {j,−j}, n = 1, . . . , N (2.40)

where the phase difference of two codes is π, which is the same as that of the random
BPSK signal. Generally, the m-sequence can be approximately regarded as a BPSK
signal with a fixed sequence order.

The Golomb sequence can be generated by

sGolomb[n] = ejπ
n(n−1)

N , n = 1, . . . , N (2.41)

where the length of the Golomb sequence N has to be an odd number. The derivative
of the phase of sGolomb[n] with respect to n gives the instantaneous frequency of the
Golomb sequence:

fGolomb[n] =
∂φGolomb[n]

2π∂n
=

∂(jπ n(n−1)
N

)

2π∂n
=

j

N
(n− 1

2
) (2.42)

where the frequency sweep is linear with n. Therefore, the Golomb sequence can be
considered as the discrete version of an LFM signal.

The periodic autocorrelation of the m-sequence and the Golomb sequence is shown
in Figure 2.7, which shows that both of these two waveforms have a periodic “zero”
sidelobe. Due to the floating point error, the sidelobe of the periodic autocorrelation
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(a) m-sequence (b) Golomb sequence

Figure 2.7: Periodic autocorrelation of (a) m-sequence and (b) Golomb sequence with N =
1023, B = 2000 Hz, and Fc = 2000 Hz. The mainlobe of the periodic autocorrelations is
periodic in time, with a period of N/B = 0.5115 s.

(a) periodic WAF of m-sequence (b) periodic WAF of Golomb se-
quence

Figure 2.8: Periodic WAF for (a) m-sequence and (b) Golomb sequence with N = 1023,
B = 2000 Hz, and Fc = 2000 Hz. The mainlobe of the periodic WAF is periodic in time,
with a period of N/B = 0.5115 s.

is not exactly equal to 0. An example of periodic WAF of the m-sequence and the
Golomb sequence is shown in Figure 2.8. The periodic WAF can be considered as a
combination of multiple periodically delayed WAFs. Because of the perfect periodic
autocorrelation property, a zero sidelobe region can be found at v = 0 m/s of the
periodic WAF of the m-sequence and the Golomb sequence. The periodic WAF of the
m-sequence has the same thumbtack-shaped mainlobe and uniform high sidelobe as the
WAF of the random BPSK. Similarly, the periodic WAF of the Golomb sequence has
the same ridge-shaped mainlobe and low sidelobe on two sides of the mainlobe as the
WAF of the LFM and HFM.

2.3.3 Other waveforms and ideal properties for the SAS imaging waveform

Apart from the random BPSK signal and m-sequence, another popular thumbtack-
shaped waveform is the Costas code [15], which can be generated by segmenting and
permuting an LFM waveform. Examples of the application of the Costas code in con-
tinuous active sonar are shown in [16, 17], where the idea of the Costas code is used to
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create a non-recurrent continuous waveform for joint range and velocity detection for
underwater targets. Recently, the family of Generalized Sinusoidal Frequency Modu-
lated (GSFM) waveforms is gradually gaining traction because it offers high spectral
efficiency and an optimal peak-to-average power ratio [18, 19]. The GSFM waveform
can be seen as a frequency-modulated waveform with a sinusoidal-shaped instantaneous
frequency, and the WAF of a GSFM waveform can have a thumbtack shape under some
parameter settings. Recent Research on the GSFM waveform focuses on the design of
a pulse train of GSFM pulses with a low cross-correlation between any two pulses us-
ing the genetic algorithm [20, 21] such that the WAF of the pulse train can have a
thumbtack shape.

Ideally, we want the waveform for the SAS imaging to have a thumbtack-shaped
WAF, so that the waveform is unambiguous in both range and velocity in the WAF do-
main. The aforementioned waveforms with a thumbtack shape WAF are unambiguous
in the WAF domain, but have a uniform high sidelobe across the entire WAF domain.
Consequently, the uniform high sidelobe in the WAF domain will result in the high
sidelobe of the PSF in the imaging domain, as shown in Figure 1.3a. Therefore, it is
also essential to reduce the sidelobe of the WAF.

As shown in Section 2.2.3, since the WAF has the maximum value property and the
asymptotic volume invariance property, it is impossible to reduce the entire region of
the sidelobe of a WAF. An alternative way to bypass the constraints is to only reduce
the sidelobe in a region that is close to the mainlobe in the WAF domain, as illustrated
in Figure 2.9. In this way, the sidelobe is reduced with a cost of high sidelobe in other
regions. If the region of interest (RoI) in the WAF domain covers all the possible delays
and Dopplers in the imaging domain of a SAS survey, the high sidelobe outside the RoI
will not lead to a degraded imaging performance. Usually, the RoI is set to a rectangular
area around the mainlobe but does not include the mainlobe. In a SAS scenario, the
maximum distance of the RoI can be set to the maximum distance between the clutter
and the voxels in the imaging domain. Because the voxels in the imaging domain are
assumed to be static with respect to the background, the radial velocity of voxels with
respect to the vessel cannot be higher than the speed of the vessel. Thus, the maximum
velocity of the RoI can be set to the surveying speed of the vessel. In general, to design
a waveform with minimized sidelobe level in a customized region in the AF domain,
generalized ambiguity function shaping methods are required.

2.4 Literature review of ambiguity function shaping methods

The ambiguity function shaping methods generally aim to formulate the waveform de-
sign problem with AF properties into an optimization problem, which can then be
solved with iterative algorithms. The maximum sidelobe level or the average sidelobe
level in the RoI of the AF domain can be used as the objective function of the op-
timization problem. These ambiguity function shaping methods usually focus on the
design of a phase code sequence with a unimodular constraint and then convert the
sequence into a signal using Equations 2.36 and 2.37 with the given bandwidth and
carrier frequency.

Since direct ambiguity function shaping is usually hard to solve, early research, such
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Figure 2.9: Ideal WAF for SAS imaging. The delay-axis and the Doppler-axis of the WAF
are converted into the Distance-axis [m] and the Velocity-axis [m/s], respectively. The z-axis
represents the value of the WAF at the given distance and velocity on a dB scale.

as cyclic algorithms (CAs) (e.g., [22]), has primarily focused on shaping the autocorre-
lation function rather than the entire ambiguity function. Sequences generated by CAs
exhibit much better autocorrelation properties compared with the traditional sequences
such as Golomb sequence and Frank sequence. However, since only the sidelobe at the
zero-Doppler (v = 0 m/s) region is optimized, these sequences usually do not have
desired ambiguity properties. As a follow-up, [23, 24] introduced how a variation of
CAs can be applied to shape the NAF. Since the CA-based NAF shaping algorithm
relies on iterative computing of the singular value decomposition (SVD) of a matrix
with its dimension linearly scaled with the length of the sequence, it is not efficient to
use the algorithm to generate a long sequence (N ∼ 103). Following that, [25] proposed
a gradient descent based method to update the phases of the designed sequence, which
greatly reduces the computational complexity for NAF shaping. It has been shown in
[26, 27] that the NAF shaping problem can be formulated into a unimodular quadratic
program (UQP), which can be solved by the randomization method illustrated in [28] or
the Power method-like algorithm shown in [26]. Following [26], [29] introduced the Ac-
celerated Iterative Sequential Optimization (AISO) algorithm that can efficiently solve
the NAF shaping problem and has better sidelobe minimization performance compared
to the gradient descent method. Further, [30] proposed a NAF synthesizing method,
which greatly suppresses the sidelobe of ambiguity regions by designing a train of uni-
modular sequences. Recently, [31] presented a majorization-minimization (MM) based
algorithm to jointly design the unimodular sequence and the receiving filter for NAF
shaping, which achieves a lower sidelobe level in the RoI with a cost of lower SNR.

It is important to note that the aforementioned NAF shaping methods predomi-
nately rely on the symmetric property of the NAF. This symmetric property signifi-
cantly simplifies the computational complexity associated with the NAF shaping prob-
lem. However, due to the lack of a symmetry property in the WAF, the WAF shaping is
usually hard to solve. The paper [32] introduced the Unimodular Signal Synthesis via
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Minimization (USSM) algorithm that minimizes the maximum sidelobe in the RoI of
the WAF of the designed sequence through iterative optimization. For each iteration of
the USSM algorithm, a Semidefinite Programming (SDP) problem with numerous con-
straints is solved by a convex optimization solver to obtain the update of the sequence.
Even though [32] also introduced methods to reduce the computational complexity by
solving the SDP problem with only a small portion of the total constraints for each
iteration, the USSM algorithm is still computationally expensive and does not scale
well with the length of the sequence.

In general, current literature on the AF shaping methods mostly focuses on the NAF
shaping. Due to the complex structure of the WAF, only few papers cover this topic
and the WAF shaping methods are all computationally expensive. Future research
on reducing the computational complexity and improving the optimality of the WAF
shaping methods may help to fill this gap.

2.5 Conclusion

In this chapter, we partially answered the first sub-problem of the main research ques-
tion: “What is the relationship between the ambiguity properties of a waveform and its
corresponding SAS imaging performance? Is ambiguity function shaping equivalent to
waveform design for a SAS system?”. In Section 2.1, we introduced the working princi-
ple of Fugro’s SAS system and theoretically showed that the waveform design problem
of a SAS system for a short integration time (e.g., a PRI) can be considered as a WAF
shaping problem. Within a short time window, the waveform reflected by a voxel in
the imaging domain can be seen as the transmit waveform affected by a single delay
and a single Doppler shift. If we can reduce the cross-correlation between waveforms
reflected by any two different voxels, the SAS imaging performance with a short inte-
gration time can be significantly improved. However, with a full integration trajectory,
the SAS imaging performance of the waveform obtained from the WAF shaping is still
unknown and requires further investigations.

The subsequence sections provided the necessary background for the WAF and
the WAF shaping. In Section 2.2, we discussed the AF and its properties, including
the derivation of the wideband and narrowband ambiguity functions. Here, we also
highlighted the important properties of the WAF, such as the maximum value property
and the asymptotic volume invariance property, which are essential for the idea of WAF
shaping. In Section 2.3, we reviewed conventional waveforms used in sonar systems and
their WAF properties. Here, we also briefly mentioned the importance of a thumbtack-
shaped mainlobe in the WAF of a waveform and discussed the ideal WAF properties
for SAS imaging. In Section 2.4, we provided a literature review of current ambiguity
function shaping methods. Here, we found that most of the research targets the NAF
shaping and only a few papers mentioned the WAF shaping.

In conclusion, this chapter established a theoretical connection between the wave-
form design and the WAF shaping. The next step is to explore how to effectively shape
the WAF to improve the SAS imaging performance. In Chapter 3, we will formulate
the WAF shaping problem as a non-convex problem and propose several algorithms
to solve it. In Chapter 4, we will validate the SAS imaging performance of sequences
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obtained from the WAF shaping through simulations and field trials, aiming to fully
answer the first sub-problem of the main research question.
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Wideband Ambiguity Function
Shaping 3
In this chapter, we focus on the second sub-problem of the main research question:

• What is the optimal way to shape the wideband ambiguity function of a sequence
for SAS imaging?

To address this question, the WAF shaping problem is formulated into a non-convex
optimization problem in Section 3.1. The periodic case of the WAF shaping problem
is considered in Section 3.2. Then, in Section 3.3, four algorithms are proposed to
handle the non-convex problems introduced in Sections 3.1 and 3.2. To evaluate the
performance of the proposed algorithms, we use the proposed algorithms to generate
sequences with minimized sidelobe in the RoI under different settings.

3.1 Non-convex formulation of the wideband ambiguity func-
tion problem

Suppose we want to design a unimodular sequence with a length of N , the vector of
the sequence is represented as follows:

s = [s1, s2, . . . , sN ] (3.1)

with
sn = ejθn , n = 1, . . . , N (3.2)

where the phase code of the sequence is a complex number with a unit amplitude and
a phase of θn ∈ [0, 2π). Once the unimodular sequence is obtained, we can convert
the sequence into a waveform through phase modulation (Equations 2.36 and 2.37).
The schematic of the process is shown in Figure 3.1. Then, the waveform of the given

Figure 3.1: Schematic demonstrating how to convert a unimodular sequence into the wave-
form. g(t) is a rectangular pulse shaping function in baseband.

sequence is written as

x(t) =
N∑

n=1

sng(t− (n− 1)∆T )ej2πfct, 0 ≤ t < N∆T (3.3)
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where ∆T = 1
B

represents the duration of each phase code and g(t) is assumed to
be a rectangular pulse shaping function as shown in Equation 2.37. By substituting
Equation 3.3 into the WAF (Equation 2.16), we obtain

χ(τ, α) =
√
α

∫ ∞

−∞

N∑
n=1

sng(t− (n− 1)∆T )ej2πfct

N∑
m=1

s∗mg
∗(α(t− τ)− (m− 1)∆T )e−j2πfcα(t−τ)dt

=
√
αej2πfcατ

N∑
n=1

N∑
m=1

sns
∗
m

∫ N∆T

0

g(t− (n− 1)∆T )

g∗(α(t− τ)− (m− 1)∆T )ej2πfc(1−α)tdt

(3.4)

Since the energy of the waveform is ∥x(t)∥22 = N∆T , the above WAF can be normalized
as follows

χ̄(τ, α) =

√
αej2πfcατ

N∆T

N∑
n=1

N∑
m=1

sns
∗
m

∫ N∆T

0

g(t− (n− 1)∆T )

g∗(α(t− τ)− (m− 1)∆T )ej2πfc(1−α)tdt

(3.5)

To simplify the above expression, we introduce a complex matrix A(τ,α) ∈ CN×N . The
entry at the nth row and mth column of the matrix is defined as

A(τ,α)[m,n] =

√
αej2πfcατ

N∆T

∫ N∆T

0

g(t− (n− 1)∆T )

g∗(α(t− τ)− (m− 1)∆T )ej2πfc(1−α)tdt

(3.6)

The above integral can be expanded as

A(τ,α)[m,n] =


j
√
αej2πfcατ

2πfc(α−1)N∆T
(ej2πfc(1−α)t2 − ej2πfc(1−α)t1) t1 < t2, α ̸= 1

ej2πfcτ

N∆T
(t2 − t1) t1 < t2, α = 1

0 otherwise

(3.7)

where

t1 = max(0, (n− 1)∆T, (m− 1)∆T/α+ τ) (3.8)

t2 = min(N∆T, n∆T,m∆T/α+ τ) (3.9)

Examples of the matrix A(τ,α) with different sets of the delay and Doppler are
shown in Figure 3.2, which shows that A(τ,α) is a sparse matrix and only has values
on a “diagonal” line. When the Doppler is nonzero, the matrix A(τ,α) is not Toeplitz,
because the “diagonal” line is not perfectly diagonal. Under the narrowband condition,
it is easy to show that the matrix A(τ,α) is Toeplitz even when the Doppler is present.
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(a) (τ, v)=(0,0) (b) (τ, v)=(0,-5) (c) (τ, v)=( 10
B
,-5) (d) (τ, v)=(− 10

B
,5)

Figure 3.2: 2D image of the matrix |A(τ,α)| with different sets of delays and Dopplers. The
length of the designed sequence is N = 63. The bandwidth and the carrier frequency of the
waveform are B = 2000 Hz and fc = 2000 Hz, respectively.

With the help of Equation 3.7, the normalized WAF can be written in a quadratic
form as

χ̄(τ, α) =
N∑

n=1

N∑
m=1

sns
∗
mA(τ,α)[m,n] = sHA(τ,α)s (3.10)

Suppose the RoI is represented by a set of delay and Doppler pairs Q. The objective
function for the WAF shaping problem can then be defined as the average of the square
of the sidelobes in the RoI of the WAF:

Favg(s) =
1

|Q|
∑

(τ,α)∈Q

w(τ,α)|χ̄(τ, α)|2 =
1

|Q|
∑

(τ,α)∈Q

w(τ,α)|sHA(τ,α)s|2 (3.11)

where w(τ,α) is a weight for the sidelobe at (τ, α). With the unimodular constraint
on the sequence we aim to design, the corresponding optimization problem is given as
follows:

min
s∈CN

1

|Q|
∑

(τ,α)∈Q

w(τ,α)|sHA(τ,α)s|2 (3.12)

s.t. |sn| = 1 ∀n ∈ {1, . . . , N}

Since A(τ,α) is not positive semidefinite and the objective function is not in a standard
quadratic form, the objective function is not convex. Since the unimodular constraint
is equivalent to a set of points on a unit circle in the complex plane, its constraint is
also not convex.

In the USSM algorithm [32], the maximum sidelobe in the RoI is used as the objec-
tive function:

Fmax(s) = max
(τ,α)∈Q

|χ̄(τ, α)| = max
(τ,α)∈Q

|sHA(τ,α)s| (3.13)

The non-convex optimization problem of the USSM algorithm can be expressed as

min
s∈CN

max
(τ,α)∈Q

|sHA(τ,α)s| (3.14)

s.t. |sn| = 1 ∀n ∈ {1, . . . , N}
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Both the average sidelobe energy and the maximum sidelobe objective functions
facilitate lower sidelobe level in the RoI, but the optimization outcomes of these two
objective functions are quite different, as shown in Section 3.4.2.1. Using the maximum
sidelobe objective function prevents a high peak sidelobe in the RoI, but does not
guarantee an optimal total sidelobe in the RoI. On the other hand, using the average
sidelobe objective function minimizes the total sidelobe level in the RoI, but may lead
to an undesirable high peak sidelobe in the RoI. From the perspective of the WAF
shaping for a SAS waveform, since we wish to minimize the sidelobe energy produced
by the strong clutter, the average sidelobe energy might be a better choice for the
optimization formulation.

3.2 Non-convex formulation of the periodic wideband ambi-
guity function problem

Since the designed waveform is transmitted repeatedly with a 100% duty-cycle during
a SAS imaging survey, it would be more realistic to consider the shaping of the periodic
WAF. Suppose the periodic version of the designed sequence is represented by a vector
s̃ with an infinite length. The entries of the periodic sequence s̃ are obtained as

s̃n = sn mod N , n = −∞, . . . ,−1, 0, 1, . . . ,∞ (3.15)

Then, the periodic waveform of the periodic sequence is derived as

x̃(t) =
∞∑

n=−∞

s̃ng(t− (n− 1)∆T )ej2πfct, −∞ ≤ t <∞ (3.16)

The normalized periodic ambiguity function is obtained by calculating the inner product
of the periodic transmit signal and the periodic received signal that is affected by the
delay and Doppler within a duration of N∆T :

χ̄P (τ, α) =

√
α

N∆T

∫ N∆T

0

∞∑
n=−∞

s̃ng(t− (n− 1)∆T )ej2πfct

∞∑
m=−∞

s̃∗mg
∗(α(t− τ)− (m− 1)∆T )e−j2πfcα(t−τ)dt

=

√
αej2πfcατ

N∆T

∞∑
n=−∞

∞∑
m=−∞

s̃ns̃
∗
m

∫ N∆T

0

g(t− (n− 1)∆T )

g∗(α(t− τ)− (m− 1)∆T )ej2πfc(1−α)tdt

(3.17)
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Using Equation 3.7, the normalized periodic WAF can be simplified as [32]

χ̄P (τ, α) =
∞∑

n=−∞

∞∑
m=−∞

s̃ns̃
∗
mA(τ,α)[m,n]

=
∞∑

p=−∞

∞∑
q=−∞

N∑
n=1

N∑
m=1

sns
∗
mA(τ,α)[m+ qN, n+ pN ]

=
N∑

n=1

N∑
m=1

sns
∗
m

(
∞∑

p=−∞

∞∑
q=−∞

A(τ,α)[m+ qN, n+ pN ]

) (3.18)

It is important to note that here we treat A(τ,α)[m+ qN, n+ pN ] as a function of two
inputs rather than as an entry of an N × N matrix, since the indices m + qN and
n+ pN may fall outside the matrix’s index range. Let

Ã(τ,α)[m,n] =
∞∑

p=−∞

∞∑
q=−∞

A(τ,α)[m+ qN, n+ pN ] (3.19)

then the normalized periodic WAF can be rewritten as a quadratic form:

χ̄PWAF (τ, α) =
N∑

n=1

N∑
m=1

sns
∗
mÃ(τ,α)[m,n] = sHÃ(τ,α)s (3.20)

Since the Doppler is relatively small in practical scenario, it is safe to assume that [32]

Ã(τ,α)[m,n] =
1∑

p=−1

1∑
q=−1

A(τ,α)[m+ qN, n+ pN ] (3.21)

Therefore, the non-convex formulation for the periodic WAF shaping problem with
an average sidelobe objective function is represented by

min
s∈CN

1

|Q|
∑

(τ,α)∈Q

w(τ,α)|sHÃ(τ,α)s|2 (3.22)

s.t. |sn| = 1 ∀n ∈ {1, . . . , N}

which is exactly the same as the non-convex formulation of Equation 3.12 in Section
3.1 except for the matrix Ã(τ,α). Similarly, the non-convex formulation of the USSM
algorithm for the periodic WAF shaping problem can be easily obtained by replacing
A(τ,α) in the WAF shaping formulation of Equation 3.14 with Ã(τ,α):

min
s∈CN

max
(τ,α)∈Q

|sHÃ(τ,α)s| (3.23)

s.t. |sn| = 1 ∀n ∈ {1, . . . , N}

Examples of the matrix Ã(τ,α) with different sets of the delay and Doppler are shown
in Figure 3.3. These matrices are still sparse and similar to the matrices shown in Figure
3.2. Due to the sum operation shown in Equation 3.21, small diagonal segments can be
found at the corners of Figures 3.3c and 3.3d. It is also easy to show that the matrix
Ã(τ,α) is always a Toeplitz matrix under the narrowband condition.
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Figure 3.3: 2D image of the matrix |Ã(τ,α)| with different sets of delays and Dopplers. The
length of the designed sequence is N = 63. The bandwidth and the carrier frequency of the
waveform are B = 2000 Hz and fc = 2000 Hz, respectively.

3.3 Algorithms for the wideband ambiguity function shaping

In Sections 3.1 and 3.2, we formulated the WAF and periodic WAF shaping problems
as non-convex optimization problems. In this section, four methods for solving these
non-convex optimization problems are proposed.

3.3.1 USSM-avg algorithm

The USSM algorithm [32] uses the maximum sidelobe inside the RoI as the objective
function for WAF shaping. Instead of using the maximum sidelobe as the objective
function for the optimization, another possible choice would be the average sidelobe
in the RoI, as the average sidelobe provides a better representation of the sidelobe
level in the RoI. The first algorithm we introduced is called the USSM-avg, because
the algorithm mostly follows the relaxation methods mentioned in the original USSM
algorithm [32] and its objective function is changed to the average sidelobe in the RoI.

The initial non-convex optimization formulation of the USSM-avg algorithm is
shown in Equation 3.12. To convert the complex variables s ∈ CN into real variables,
we introduce a real vector x ∈ R2N that contains the real and imaginary components
of s:

x = [x1 . . . x2N ]
T

= [ℜ(s1)ℑ(s1) . . .ℜ(sN)ℑ(sN)]T
(3.24)

The quadratic term in the objective function of Equation 3.12 can then be expanded
as

sHA(τ,α)s = xT Â(τ,α)x+ jxT Ǎ(τ,α)x (3.25)

where Â(τ,α) ∈ R2N×2N and Ǎ(τ,α) ∈ R2N×2N are obtained by expanding the real and
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imaginary components of A(τ,α). The expressions of Â(τ,α) and Ǎ(τ,α) are given by

Â(τ,α) =


ℜ(A(τ,α)[1, 1]) −ℑ(A(τ,α)[1, 1]) ℜ(A(τ,α)[1, 2]) −ℑ(A(τ,α)[1, 2]) . . .
ℑ(A(τ,α)[1, 1]) ℜ(A(τ,α)[1, 1]) ℑ(A(τ,α)[1, 2]) ℜ(A(τ,α)[1, 2]) . . .
ℜ(A(τ,α)[2, 1]) −ℑ(A(τ,α)[2, 1]) ℜ(A(τ,α)[2, 2]) −ℑ(A(τ,α)[2, 2]) . . .
ℑ(A(τ,α)[2, 1]) ℜ(A(τ,α)[2, 1]) ℑ(A(τ,α)[2, 2]) ℜ(A(τ,α)[2, 2]) . . .

...
...

...
...

. . .


(3.26)

Ǎ(τ,α) =


ℑ(A(τ,α)[1, 1]) ℜ(A(τ,α)[1, 1]) ℑ(A(τ,α)[1, 2]) ℜ(A(τ,α)[1, 2]) . . .
−ℜ(A(τ,α)[1, 1]) ℑ(A(τ,α)[1, 1]) −ℜ(A(τ,α)[1, 2]) ℑ(A(τ,α)[1, 2]) . . .
ℑ(A(τ,α)[2, 1]) ℜ(A(τ,α)[2, 1]) ℑ(A(τ,α)[2, 2]) ℜ(A(τ,α)[2, 2]) . . .
−ℜ(A(τ,α)[2, 1]) ℑ(A(τ,α)[2, 1]) −ℜ(A(τ,α)[2, 2]) ℑ(A(τ,α)[2, 2]) . . .

...
...

...
...

. . .


(3.27)

By substituting Equation 3.25 into the average sidelobe formulation of Equation 3.12,
we obtain the following optimization problem with only real variables:

min
x∈R2N

1

|Q|
∑

(τ,α)∈Q

w(τ,α)

(
(xT Â(τ,α)x)

2 + (xT Ǎ(τ,α)x)
2
)

(3.28)

s.t. x2
2n−1 + x2

2n = 1 ∀n ∈ {1, . . . , N}

We can further simplify the optimization problem by introducing a positive semidefinite
matrix X ∈ S2N

+ , where

X = xxT (3.29)

Since we have

xTAx = Tr(xTAx) = Tr(xxTAT ) = Tr(XAT ) = ⟨A,X⟩ (3.30)

the optimization problem can then be rewritten in an equivalent form as

min
X∈S2N+

1

|Q|
∑

(τ,α)∈Q

w(τ,α)

(
⟨Â(τ,α),X⟩2 + ⟨Ǎ(τ,α),X⟩2

)
(3.31)

s.t. X[2n− 1, 2n− 1] +X[2n, 2n] = 1 ∀n ∈ {1, . . . , N},
rank(X) = 1

where the rank-1 constraint is introduced to ensure that X = xxT . It is important to
note that the above optimization problem is an SDP problem with a rank-1 constraint.

To resolve the rank-1 constraint on X, we use a rank reduction method mentioned
in [33, 32], which relaxes the SDP problem with a rank constraint as an alternating
minimization of two sub-problems. The first sub-problem of the relaxation is given by

min
X∈S2N+

ζ

 1

|Q|
∑

(τ,α)∈Q

w(τ,α)

(
⟨Â(τ,α),X⟩2 + ⟨Ǎ(τ,α),X⟩2

)+ ⟨Wopt,X⟩ (3.32)

s.t. X[2n− 1, 2n− 1] +X[2n, 2n] = 1 ∀n ∈ {1, . . . , N}
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where Wopt ∈ S2N
+ is a search direction matrix that can be obtained from the optimal

solution of the second sub-problem, and ζ is a regularization parameter that regularizes
the rank-1 constraint on X. The second sub-problem minimizes the inner product of
W and Xopt with respect to W:

min
W∈S2N+

⟨W,Xopt⟩ (3.33)

s.t. 0 ⪯W ⪯ I

Tr(W) = 2N − 1

where Xopt represents the optimal solution of the first sub-problem. The second sub-
problem ensures that the direction matrix W aligns with the eigenspace of Xopt corre-
sponding to all eigenvalues except the largest one. SupposeXopt has the diagonalization:

Xopt = QΛQT (3.34)

It has been proven in [33, 32] that the second sub-problem has an analytical solution,

Wopt = Q[:, 2 : 2N ]Q[:, 2 : 2N ]T (3.35)

whereQ[:, 2 : 2N ] represents the second to the last columns ofQ. The first sub-problem
of the alternating minimization is an SDP problem and can be solved by SDP solvers.

The objective function of the first sub-problem is a weighted sum of the average
sidelobe level in the RoI and the inner product of the matrices X and Wopt. The
inner product of the matrices X and Wopt represents the sum of all eigenvalues of X
except for the largest eigenvalue. By minimizing the inner product, the rank-1 solution
of X is promoted. The choice of the regularization parameter, ζ, affects whether the
optimization focuses more on the sidelobe minimization or keeping the rank-1 constraint
of X. A higher value of ζ will lead to a lower sidelobe level, but it may break the rank-1
constraint. On the other hand, a lower value of ζ will lead to a rank-1 X but it may not
guarantee a minimized sidelobe level in the RoI. Thus, the choice of ζ is crucial while
using the USSM-avg algorithm for the sequence design. Usually, we need to initialize
the algorithm with a set of ζ to find the unimodular sequence with the optimal sidelobe
level.

As shown in [32], the alternating minimization in the USSM-avg algorithm can be
initialized by letting Wopt = 02N . In this way, the first iteration of the USSM-avg
can be seen as solving the optimization problem of Equation 3.31 without the rank-
1 constraint, and its optimized solution Xopt ensures the average sidelobe energy is
minimized. Even if Xopt is not likely to be rank-1 after the first iteration, the rank of
Xopt can be reduced through the alternating minimization of X and W. Once Xopt

has a rank close to 1, the vector xopt can be approximately derived from the principal
eigenvector of Xopt. Then, the designed sequence sopt can be easily obtained from xopt

by reversing the process in Equation 3.24. The USSM-avg algorithm is summarized in
Algorithm 2. Because an eigenvalue decomposition problem and an SDP problem are
required in each iteration of the USSM-avg algorithm, the computational complexity
for each iteration of the USSM-avg algorithm is approximately O(N3).
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During the optimization process, the average sidelobe in the RoI,

F̂avg(Xopt) =
1

|Q|
∑

(τ,α)∈Q

w(τ,α)

(
⟨Â(τ,α),Xopt⟩2 + ⟨Ǎ(τ,α),Xopt⟩2

)
(3.36)

and the eigenvalue residual of Xopt,

rλ =
2N∑
i=2

λi(Xopt) (3.37)

can be used as the evaluation metrics for the USSM-avg algorithm. It is worth noting
that F̂avg(Xopt) in Equation 3.36 is not equal to Favg(s) in Equation 3.11, unless Xopt

has a rank of 1. When rλ < 10−3, Xopt can be approximately seen as a rank-1 matrix.

Algorithm 2 USSM-avg algorithm for the wideband ambiguity function shaping

1: Define the bandwidth B, the carrier frequency fc, and the sequence length N
2: Initialize the regularization parameter ζ, and define the RoI Q
3: Generate Â(τ,α) and Ǎ(τ,α) ∀(τ, α) ∈ Q using Equations 3.7, 3.26, and 3.27
4: while convergence conditions are not satisfied do
5: if this is the first iteration then
6: Let Wopt = 02N
7: else
8: Solve Wopt from the second sub-problem (Equation 3.33) using Equations 3.34 and

3.35
9: end if

10: Solve Xopt from the first sub-problem (Equation 3.32)
11: end while
12: Derive xopt from the principle eigenvector of Xopt

13: Derive the optimal sequence sopt from xopt by reversing the process in Equation 3.24

3.3.2 Randomization-based method

In Section 3.3.1, we have shown that the WAF shaping problem can be rewritten as
an SDP problem with a rank-1 constraint (Equation 3.31). The relaxation method
mentioned in [32, 33] requires the USSM-avg algorithm to solve an SDP problem for
each iteration until convergence in order to obtain the rank-1 solution of X, which can
be computationally expensive when the convergence is slow. Another way to handle
the rank-1 constraint is the randomization method depicted in [28]. The randomization
method [28] is originally designed to solve the non-convex quadratically constrained
quadratic program (QCQP), and it has been shown in some literature (e.g., [34, 35])
that the method can obtain the solution with a high approximation accuracy for both
the minimization and maximization versions of the QCQP problems. However, as the
initial non-convex formulation for the WAF shaping (Equation 3.12) is not a QCQP
problem, the optimality of the randomization method is not guaranteed.
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The first step of the randomization method is to directly solve the SDP problem
with a rank-1 constraint (Equation 3.31) by dropping the rank-1 constraint:

min
X∈S2N+

1

|Q|
∑

(τ,α)∈Q

w(τ,α)

(
⟨Â(τ,α),X⟩2 + ⟨Ǎ(τ,α),X⟩2

)
(3.38)

s.t. X[2n− 1, 2n− 1] +X[2n, 2n] = 1 ∀n ∈ {1, . . . , N}

which is the same as the optimization problem solved in the first iteration of the USSM-
avg algorithm. Suppose the optimal solution of the above optimization problem is
Xopt,R. A multivariate normal distribution with zero mean and covariance matrixXopt,R

is then considered:
N (0,Xopt,R) (3.39)

Finally, the optimal sequence sopt,R can be approximated by taking random samples ξk
from the above distribution and selecting the sample that has the smallest objective.
In this way, we only need to solve an SDP problem once at the start of the algorithm.
The randomization method for WAF shaping is summarized in Algorithm 3.

Algorithm 3 Randomization method for the wideband ambiguity function shaping

1: Define the bandwidth B, the carrier frequency fc, and the sequence length N
2: Define the RoI Q
3: Generate Â(τ,α) and Ǎ(τ,α) ∀(τ, α) ∈ Q using Equations 3.7, 3.26, and 3.27
4: Solve Xopt,R from the SDP problem of Equation 3.38
5: Define the number of samples K
6: for k = 1, . . . ,K do
7: Generate ξk from the distribution N (0,Xopt,R)
8: Derive sk from ξk by reversing the process in Equation 3.24
9: Project sk to the unimodular space, sk ← ejsk

10: end for
11: Derive the optimal sequence sopt,R by finding the sk, ∀k ∈ {1, . . . ,K} that minimizes the

average sidelobe energy in the RoI Q (Equation 3.11)

3.3.3 Wideband gradient descent method

The idea of the wideband gradient descent method originates from the narrowband
gradient descent method [25], which uses the gradient descent to update the phase of a
sequence for the NAF shaping. The initial optimization problem for the WAF shaping
is shown in Equation 3.12, where the objective function is the average sidelobe energy in
the RoI (Favg(s), Equation 3.11), subject to a unimodular constraint on the sequence
s. Since the direct gradient descent update on phases of the sequence bypasses the
unimodular constraint, the main challenge of the wideband gradient descent method
is to derive the expression for the partial derivative of the average sidelobe objective
function with respect to phases.

Suppose the phase vector of the sequence s is represented by

θ = [θ1, . . . , θN ]
H (3.40)
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By using the chain rule [36], the partial derivative of Favg(s) with respect to θn can be
written as [25]

∂Favg(s)

∂θn
=

∂Favg(s)

∂ℜ(sn)
∂ℜ(sn)
∂θn

+
∂Favg(s)

∂ℑ(sn)
∂ℑ(sn)
∂θn

= −ℑ(sn)
∂Favg(s)

∂ℜ(sn)
+ ℜ(sn)

∂Favg(s)

∂ℑ(sn)
(3.41)

Then, the vector form of Equation 3.41 can be expressed as

∂Favg(s)

∂θ
= −ℑ(s)⊙ ∂Favg(s)

∂ℜ(s)
+ ℜ(s)⊙ ∂Favg(s)

∂ℑ(s)
(3.42)

Since |z|2 = ℜ(z)2 + ℑ(z)2, the partial derivatives of Favg(s) with respect to ℜ(s) and
ℑ(s) can also be obtained by applying the chain rule [36],

∂F (s)

∂(·)
=

1

|Q|
∑

(τ,α)∈Q

w(τ,α)

∂|sHA(τ,α)s|2

∂(·)

=
2

|Q|
∑

(τ,α)∈Q

w(τ,α)

(
ℜ(sHA(τ,α)s)

∂ℜ(sHA(τ,α)s)

∂(·)

+ ℑ(sHA(τ,α)s)
∂ℑ(sHA(τ,α)s)

∂(·)

) (3.43)

where

∂(·) =

{
∂ℜ(s)
∂ℑ(s)

(3.44)

The complex vector s can be separated into its real part and imaginary part:

s = ℜ(s) + jℑ(s) (3.45)

Similarly, the matrix A(τ,α) can also be rewritten as

A(τ,α) = ℜ(A(τ,α)) + jℑ(A(τ,α)) (3.46)

By substituting Equations 3.45 and 3.46 into sHA(τ,α)s, we obtain

sHA(τ,α)s =(ℜ(s)− jℑ(s))T (ℜ(A(τ,α)) + jℑ(A(τ,α)))(ℜ(s) + jℑ(s))
=ℜ(s)T (ℜ(A(τ,α)) + jℑ(A(τ,α)))ℜ(s)
+ jℜ(s)T (ℜ(A(τ,α)) + jℑ(A(τ,α)))ℑ(s)
− jℑ(s)T (ℜ(A(τ,α)) + jℑ(A(τ,α)))ℜ(s)
+ ℑ(s)T (ℜ(A(τ,α)) + jℑ(A(τ,α)))ℑ(s)

=ℜ(s)Tℜ(A(τ,α))ℜ(s) + jℜ(s)Tℑ(A(τ,α))ℜ(s)
+ jℜ(s)Tℜ(A(τ,α))ℑ(s)−ℜ(s)Tℑ(A(τ,α))ℑ(s)
− jℑ(s)Tℜ(A(τ,α))ℜ(s) + ℑ(s)Tℑ(A(τ,α))ℜ(s)
+ ℑ(s)Tℜ(A(τ,α))ℑ(s) + jℑ(s)Tℑ(A(τ,α))ℑ(s)

(3.47)
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Then, the real part of sHA(τ,α)s is given by

ℜ(sHA(τ,α)s) =ℜ(s)Tℜ(A(τ,α))ℜ(s)−ℜ(s)Tℑ(A(τ,α))ℑ(s)
+ ℑ(s)Tℑ(A(τ,α))ℜ(s) + ℑ(s)Tℜ(A(τ,α))ℑ(s)

(3.48)

and the imaginary part of sHA(τ,α)s is given by

ℑ(sHA(τ,α)s) =ℜ(s)Tℑ(A(τ,α))ℜ(s) + ℜ(s)Tℜ(A(τ,α))ℑ(s)
−ℑ(s)Tℜ(A(τ,α))ℜ(s) + ℑ(s)Tℑ(A(τ,α))ℑ(s)

(3.49)

Since we have [36]

∂xTa

∂x
=

∂aTx

∂x
= a (3.50)

∂xTAx

∂x
= (A+AT )x (3.51)

the corresponding partial derivatives of ℜ(sHA(τ,α)s) and ℑ(sHA(τ,α)s) can then be
calculated as follows

∂ℜ(sHA(τ,α)s)

∂ℜ(s)
= (ℜ(A(τ,α))+ℜ(A(τ,α))

T )ℜ(s)−ℑ(A(τ,α))ℑ(s)+ℑ(A(τ,α))
Tℑ(s) (3.52)

∂ℜ(sHA(τ,α)s)

∂ℑ(s)
= −ℑ(A(τ,α))

Tℜ(s) + ℑ(A(τ,α))ℜ(s) + (ℜ(A(τ,α)) + ℜ(A(τ,α))
T )ℑ(s)

(3.53)
∂ℑ(sHA(τ,α)s)

∂ℜ(s)
= (ℑ(A(τ,α))+ℑ(A(τ,α))

T )ℜ(s)+ℜ(A(τ,α))ℑ(s)−ℜ(A(τ,α))
Tℑ(s) (3.54)

∂ℑ(sHA(τ,α)s)

∂ℑ(s)
= ℜ(A(τ,α))

Tℜ(s)−ℜ(A(τ,α))ℜ(s)+(ℑ(A(τ,α))+ℑ(A(τ,α))
T )ℑ(s) (3.55)

Because A(τ,α) is sparse as shown in Figures 3.2 and 3.3, the product operation in
the above partial derivatives can be computed with a complexity of O(N) instead of
O(N2). By substituting Equations 3.52, 3.53, 3.54, and 3.55 into Equation 3.43, the
partial derivatives of Favg(s) with respect to ℜ(s) and ℑ(s) are obtained. Finally,
the partial derivative of the average sidelobe with respect to the phases is derived by
substituting the obtained partial derivatives into Equation 3.42. Because of the sum
operation in Equation 3.43, the computational complexity for each iteration of the
wideband gradient descent method is approximately O(|Q|N). Since the set size of
the RoI scales linearly with the sequence length, the computational complexity of the
algorithm can be approximated as O(N2).

The gradient descent method for the WAF shaping is summarized in Algorithm 4.
The Adam optimizer [37] is used to determine the step size of the gradient descent
for each iteration. It is important to note that, since the original optimization prob-
lem is non-convex, the gradient descent method does not guarantee convergence to a
global minimum. The optimality of the gradient descent method may depend on the
initialization of the sequence s. For simplicity, a randomly generated BPSK sequence
is used to initialize the algorithm. Alternative initialization strategies will be discussed
in Section 3.4.3.3.
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Algorithm 4 Gradient descent method for wideband ambiguity function shaping

1: Define the bandwidth B, the carrier frequency fc, and the sequence length N
2: Initialize the unimodular sequence s, and define the RoI Q
3: Generate A(τ,α) ∀(τ, α) ∈ Q using Equations 3.7
4: while convergence conditions are not satisfied do

5: Derive the gradient δ :=
∂Favg(s)

∂θ using Equations 3.42, 3.43, 3.52, 3.53, 3.54, and 3.55
6: Use Adam optimizer [37] to update the phases θ of the unimodular sequence
7: Derive the update of the sequence s by projecting the phase vector to the unimodular

space: s← ejθ

8: end while

3.3.4 Narrowband approximation method

Since the actual moving speed in the current implementation of Fugro’s SAS systems
is usually less than 1-2 m/s, the velocity range for the RoI of the WAF shaping can be
selected to be a small range (e.g., v ∈ [−1, 1] m/s). In this case, the difference between
the WAF and the NAF may become negligible. Therefore, we may use the NAF shaping
algorithms for the WAF shaping with an acceptable error. In this section, we aim to
figure out when the NAF algorithms can be used to generate wideband sequences
(waveforms).

The WAF of the baseband signal xbb(t) with a carrier frequency of fc is given by

χ(τ, α) =
√
α

∫ ∞

−∞
xbb(t)e

j2πfctx∗
bb(α(t− τ))e−j2πfcα(t−τ)dt (3.56)

The above expression can be expressed using convolution as follows

χ(τ, α) =
(
xbb(τ)e

j2πfcτ
)
∗
(√

αx∗
bb(−ατ)ej2πfcατ

)
(3.57)

For a fixed Doppler time-scaling factor α, the Fourier transform of the WAF on the
delay axis is given by

F(χ(τ, α)) = F(xbb(τ)e
j2πfcτ )F(

√
αx∗

bb(−ατ)ej2πfcατ ) (3.58)

Under the narrowband condition (Equation 2.22), the WAF can be approximated as
the NAF. The NAF of the baseband signal xbb(t) with a carrier frequency of fc is given
by,

χN(τ, v) =

∫ ∞

−∞
xbb(t)e

j2πfctx∗
bb(t− τ)e−j2πfc

c+v
c−v

(t−τ)dt (3.59)

which can be expressed using convolution as

χN(τ, v) =
(
xbb(τ)e

j2πfcτ
)
∗
(
x∗
bb(−τ)e

j2πfc
c+v
c−v

τ
)

(3.60)

For a fixed target velocity v, the Fourier transform of the NAF on the delay axis is
given by

F(χN(τ, v)) = F(xbb(τ)e
j2πfcτ )F(x∗

bb(−τ)e
j2πfc

c+v
c−v

τ ) (3.61)
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In the frequency domain, the error because of using the narrowband condition can be
written as

ϵ =

∫ ∞

−∞
|F(χ(τ, α))−F(χN(τ, v))|df

=

∫ ∞

−∞
|F(xbb(τ)e

j2πfcτ )(F(
√
αx∗

bb(−ατ)ej2πfcατ )−F(x∗
bb(−τ)ej2πfcατ ))|df

(3.62)

Assuming the Fourier transform of x∗
bb(τ) is given by

F(xbb(τ)) =

∫ ∞

−∞
xbb(τ)e

−j2πfτdτ = Xbb(f) (3.63)

the Fourier transform of x∗
bb(−ατ)ej2πfcατ can be expressed as

F(x∗
bb(−ατ)ej2πfcατ ) =

∫ ∞

−∞
x∗
bb(−ατ)ej2πfcατe−j2πfτdτ

=

∫ ∞

−∞
x∗
bb(−ατ)e−j2π(f−fcα)τdτ

(3.64)

Defining τ ′ = −ατ , we obtain

τ = −τ ′

α
(3.65)

dτ = − 1

α
dτ ′ (3.66)

By substituting Equations 3.65 and 3.66 into Equation 3.64, the Fourier transform of
x∗
bb(−ατ)ej2πfcατ is derived as

F(x∗
bb(−ατ)ej2πfcατ ) =

1

α

∫ ∞

−∞
x∗
bb(τ

′)e−j2π(fc−f/α)τ ′dτ ′

=

(
1

α

∫ ∞

−∞
xbb(τ

′)e−j2π(f/α−fc)τ ′dτ ′
)∗

=
1

α
X∗

bb(f/α− fc)

(3.67)

Similarly, the Fourier transforms of xbb(τ)e
j2πfcτ and x∗

bb(−τ)ej2πfcατ are given by

F(xbb(τ)e
j2πfcτ ) = Xbb(f − fc) (3.68)

F(x∗
bb(−τ)ej2πfcατ ) = X∗

bb(f − fcα) (3.69)

Therefore, the absolute error between the WAF and the NAF in the frequency domain
is written as

ϵ =

∫ ∞

−∞
|Xbb(f − fc)

(
1√
α
X∗

bb(
f

α
− fc)−X∗

bb(f − fcα)

)
|df (3.70)

Clearly, when α = c+v
c−v

= 1, the absolute error between the WAF and the NAF is 0.
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To easily numerically evaluate the absolute error, we assume that the spectrum
Xbb(f) is uniform in the frequency domain and can be represented by

Xbb(f) =

{
1, −B

2
≤ f < B

2

0, otherwise
(3.71)

Suppose fc, B. and α are given, the error between the WAF and the NAF can be
calculated through the integral shown in Equation 3.70. When fc = 2000 Hz and
c = 1500 m/s, the error between the WAF and the NAF for different sets of B and v
(α is converted into v) is shown in Figure 3.4. The error map result generally matches
with the narrowband condition (Equation 2.22). Lower |v| and B/fc will reduce the
absolute error between the WAF and the NAF. It is also worth noting that when
the speed of the target is small enough (e.g., less than 1 m/s), the absolute error
will be low even for B/fc ≥ 1. Therefore, the NAF shaping algorithms described in
[23, 24, 26, 27, 25, 29, 31] might be used as a good approximation for the WAF shaping
algorithms when the velocity range of the RoI is small enough. In this thesis, the
narrowband gradient descent method [25] and the AISO algorithm [29] are used as the
approximation for the shaping of the WAF, because of their good sidelobe minimization
performance.

Figure 3.4: Error map illustrating the difference between the WAF and the NAF with different
bandwidths and velocities. The carrier frequency was set to 2000 Hz, and the propagation
speed of the wave was assumed to be 1500 m/s. The bandwidth ranges from 100 to 3000 Hz.
The velocity ranges from -30 to 30 m/s. The absolute error is presented on a dB scale. The
red dashed line represents the 0 dB contour line.

3.4 Evaluation and comparison of the proposed algorithms

In this section, we aim to evaluate the sidelobe minimization performance of the four
proposed algorithms by using them to generate sequences with desired WAF properties.
The simulation settings and evaluation metrics are described in Section 3.4.1. Then,
the simulation results are presented in Section 3.4.2. Finally, the results are discussed
and evaluated in Section 3.4.3.
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3.4.1 Simulation settings and evaluation metrics

Since WAF shaping algorithms are generally not as efficient as NAF shaping algorithms
due to the complexity of the WAF shaping problem, the length of the sequences we
aimed to design was set to N = 63 in the first simulation. The bandwidth and the
carrier frequency were set to B = 2000 Hz and fc = 2000 Hz, respectively. The
propagation speed of the sound wave was assumed to be c = 1500 m/s in all simulations.
We considered a normal WAF shaping problem with a RoI

Q1 = QA1 \ QB1 (3.72)

with

QA1 = {(τ, v)| − 8/B ≤ τ ≤ 8/B and − 3vn ≤ v ≤ 3vn} (3.73)

QB1 = {(τ, v)| − 1/B < τ < 1/B and − vn ≤ v ≤ vn} (3.74)

where

vn =
cB

2fcN
(3.75)

vn represents the normalized velocity and is the first zero crossing point on the velocity-
axis of the NAF of a rectangular pulse, as proven in [9]. Thus, it can also be considered
as the velocity resolution of a waveform whose AF has a thumbtack shape. The RoI
was selected to be a rectangular region around the mainlobe, but did not include the
region corresponding to the mainlobe, QB1. To ensure that the sidelobe in the RoI is
minimized without missing any significant sidelobe, the sampling rate for the velocity
v and the delay τ in the RoI was set to vn/4 and 1/B, respectively. The weight w(τ,α)

in Algorithms 2, 3, and 4 is defined as

w(τ, α) =

{
1, (τ, α) ∈ Q1

0, otherwise
(3.76)

The RoI Q1 is shown in Figure 3.5a, where the delay-axis is converted into the
distance-axis. In the first simulation, all algorithms proposed in Section 3.3 were
evaluated. At the same time, the original USSM algorithm was simulated in the
same setting for comparison. Following the selection of the parameter ζ in [32], we
set ζ = {100, 150, 200} in the USSM algorithm. Because of the extra normalization
term 1/|Q| in the objective function of the USSM-avg formulation (Equation 3.31), we
chose ζ = {2500, 5000, 7500, 10000} for the USSM-avg algorithm. Additionally, ran-
dom BPSK sequences were used for the initialization of the wideband gradient descent
method, unless otherwise specified.

In the second simulation, we considered a WAF shaping problem for a sequence
with a length of N = 127. The settings for B, fc, and w(τ,α) were the same as that of
the first simulation. The RoI of the second simulation was defined as

Q2 = QA2 \ QB2 (3.77)

with

QA2 = {(τ, v)| − 16/B ≤ τ ≤ 16/B and − 3vn ≤ v ≤ 3vn} (3.78)

QB2 = {(τ, v)| − 1/B < τ < 1/B and − vn ≤ v ≤ vn} (3.79)
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(a) RoI Q1 (N = 63) (b) RoI Q2 (N = 127) (c) RoI Q3 (N = 1023)

Figure 3.5: RoI of the simulations for evaluating the sidelobe minimization performance of
the proposed algorithms in Section 3.3. The delay axis is converted into the distance axis
using R = cτ/2.

The RoI Q2 is shown in Figure 3.5b. In the second simulation, all algorithms proposed
in Section 3.3 were simulated. The ζ in the USSM-avg algorithm was set to ζ =
{10000, 15000, 20000, 25000} for the second simulation.

In the third simulation, a more realistic waveform design scenario is considered,
where we considered the design of the periodic WAF of a periodic sequence with a
length of N = 1023. The RoI of the third simulation was defined as

Q3 = QA3 \ QB3 (3.80)

with

QA3 = {(τ, v)| − 128/B ≤ τ ≤ 128/B and − 3vn ≤ v ≤ 3vn} (3.81)

QB3 = {(τ, v)| − 1/B < τ < 1/B and − vn ≤ v ≤ vn} (3.82)

The RoI of the third simulation is shown in Figure 3.5c. It is worth noting that since
the periodic sequence was considered in the third simulation, the actual RoI in the
periodic WAF can be approximately seen as a periodic region on the delay-axis with
a PRI of 1023/B. The settings for B, fc, and w(τ,α) were the same as that of the first
two simulations. In the third simulation, only the wideband gradient descent method
and the narrowband approximation method (with the narrowband gradient descent
method) were evaluated, because these two algorithms are relatively more efficient
compared with the rest of the algorithms for the WAF shaping. For a sequence length
of N = 1023, it became computationally prohibitive to run the other algorithms within
a reasonable amount of time.

The maximum sidelobe (Equation 3.13), the average sidelobe (Equation 3.11), and
the algorithm running time were used as the evaluation metrics for different algorithms.
The SCS solver [38, 39] was used to solve the SDP problems in the USSM-avg algorithm,
randomization-based method, and original USSM algorithm [32].
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3.4.2 Simulation results

3.4.2.1 Results of WAF shaping of sequences with N = 63

Table 3.1 illustrates the running time, the maximum sidelobe, and the average sidelobe
of different algorithms in the first simulation. Among all algorithms in the first simula-
tion, the wideband gradient descent method has the best average sidelobe minimization
performance, achieving an average sidelobe of -60.15 dB. Since the original USSM al-
gorithm aims to minimize the maximum sidelobe in the RoI, sequences generated by
USSM algorithms generally have lower maximum sidelobe in the RoI compared with
sequences generated by other algorithms. Among the three values for the parameter ζ
of the USSM, the USSM with ζ = 200 generated the sequence with the lowest maximum
sidelobe in the RoI. For a proper selection of ζ, the average sidelobe minimization per-
formance of the USSM-avg algorithm is close to that of the wideband gradient descent
method, but the USSM-avg is not computationally efficient and requires much longer
running time. When ζ = {7500, 10000}, we failed to obtain unimodular sequences from
the USSM-avg, since the eigenvalue residuals of Xopt are larger than 10−3. Narrowband
approximation methods using the narrowband gradient descent method [25] and the
AISO algorithm [29] require the least running time of all methods, but introduce an ex-
tra error because of using the narrowband assumption in the wideband scenario, which
makes the sidelobe minimization suboptimal. The randomization-based method has a
similar running time as that of the narrowband approximation method, but its sidelobe
minimization performance is the worst of the four proposed methods. Additionally, in
algorithms where the average sidelobe is used as the objective function, there is a gen-
eral correlation between the maximum sidelobe level and the average sidelobe level.
Minimizing the average sidelobe in the RoI during optimization simultaneously reduces
the maximum sidelobe in the RoI.

The WAF of sequences generated by different algorithms in the first simulation
are shown in Figure 3.6. Among all generated sequences, sequences generated by the
USSM-avg (ζ = 5000) and wideband gradient descent have the best sidelobe minimiza-
tion performance in the designed RoI of their WAF. The WAF of sequences generated
by the USSM (ζ = 200) and the randomization-based method is similar to that of
a random BPSK signal with a thumbtack shape mainlobe as shown in Figure 2.6c.
It is even difficult to determine the designed RoI from their WAFs. Narrowband ap-
proximation methods using the narrowband gradient descent method and the AISO
algorithm managed to reduce the average sidelobe, but their RoI is distorted because
of the approximation error.

3.4.2.2 Results of WAF shaping of sequences with N = 127

The running time, the maximum sidelobe, and the average sidelobe of different algo-
rithms in the second simulation are shown in Table 3.2. The wideband gradient descent
method still has the best average sidelobe minimization performance, and the sequence
generated by the algorithm achieves an average sidelobe of -65.04 dB in the RoI of its
WAF. The USSM-avg algorithm can generate sequences with a similar average side-
lobe level, but requires much longer computation time. Additionally, the USSM-avg
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Table 3.1: Running time, maximum sidelobe, and average sidelobe in the RoI of WAF shaping
algorithms in the first simulation (N = 63, fc = 2000 Hz, and B = 2000 Hz)

WAF shaping algorithm Running time (minutes:seconds) Maximum sidelobe (dB) Average sidelobe (dB)

USSM [32] (ζ = 100) 13:32.3 -21.11 -48.31
USSM (ζ = 150) 13:51.4 -21.23 -47.71
USSM (ζ = 200) 17:47.7 -21.26 -47.66

USSM-avg (ζ = 2500) 02:03.2 -16.09 -57.93
USSM-avg (ζ = 5000) 01:31.7 -16.10 -58.07
USSM-avg (ζ = 7500) 01:40.1 - -
USSM-avg (ζ = 10000) 01:47.9 - -
Randomization-based 00:13.3 -15.40 -48.07

Wideband gradient descent 00:25.4 -17.10 -60.15
Narrowband gradient descent [25] 00:08.5 -15.88 -53.23

Narrowband AISO [29] 00:05.5 -12.64 -50.32

(a) USSM (ζ = 200) (b) USSM-avg (ζ = 5000) (c) Randomization-based

(d) Wideband gradient descent (e) Narrowband gradient descent (f) Narrowband AISO

Figure 3.6: WAF for sequences (N = 63, fc = 2000 Hz, and B = 2000 Hz) generated by
different algorithms in the first simulation. The Doppler-axis and delay-axis of the WAF were
converted into the velocity-axis and the range-axis, respectively. The value of the WAF is
presented on a dB scale.

algorithm failed to generate the sequence, when ζ = 25000. Among the algorithms sim-
ulated in the second simulation, narrowband approximation methods require the least
running time, but still have the suboptimal sidelobe minimization performance be-
cause of the approximation error. The sequence generated by the randomization-based
method has the worst performance on the minimization of the maximum sidelobe and
the average sidelobe. The reason for the poor performance of the randomization-based
method will be discussed in Section 3.4.3.2. The WAF of sequences generated by dif-
ferent algorithms in the second simulation is shown in Figure 3.7. These WAF results
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are generally similar to the results shown in Figure 3.6.

Table 3.2: Running time, maximum sidelobe, and average sidelobe in the RoI of WAF shaping
algorithms in the second simulation (N = 127, fc = 2000 Hz, and B = 2000 Hz)

WAF shaping algorithm Running time (minutes:seconds) Maximum sidelobe (dB) Average sidelobe (dB)

USSM-avg (ζ = 10000) 11:56.2 -16.67 -64.38
USSM-avg (ζ = 15000) 11:51.3 -16.46 -63.90
USSM-avg (ζ = 20000) 12:10.6 -16.47 -64.40
USSM-avg (ζ = 25000) 13:40.6 - -
Randomization-based 01:31.6 -16.03 -53.56

Wideband gradient descent 01:31.4 -17.05 -65.04
Narrowband gradient descent 00:11.0 -13.88 -58.49

Narrowband AISO 00:10.3 -13.22 -59.01

(a) USSM-avg (ζ = 20000) (b) Randomization-based (c) Wideband gradient descent

(d) Narrowband gradient descent (e) Narrowband AISO

Figure 3.7: WAF for sequences (N = 127, fc = 2000 Hz, and B = 2000 Hz) generated by
different algorithms in the second simulation.

3.4.2.3 Results of periodic WAF shaping of periodic sequences with N = 1023

The running time, the maximum sidelobe, and the average sidelobe of different algo-
rithms in the third simulation are shown in Table 3.3. It is important to note that
the narrowband gradient descent method [25] is the only approach that has considered
the shaping of the periodic AF in its original paper. Therefore, only the narrowband
gradient descent method was used for the narrowband approximation. The sequence
generated by the wideband gradient descent method still has the minimum average
sidelobe in the RoI. The sidelobe minimization performance of the wideband gradient
descent method might be slightly improved by a warm start (initializing the algorithm
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with the sequence generated by the narrowband gradient descent method). The warm
start technique for the wideband gradient descent method will be discussed in detail
in Section 3.4.3.3. The narrowband gradient descent method only used 40.5 seconds
to generate the sequence with a length of N = 1023, because it has a computational
complexity of O(N logN). On the other hand, the wideband gradient descent method
is less efficient and used approximately 60 minutes to generate sequences with the same
length.

The periodic WAF of sequences generated by different algorithms in the third sim-
ulation is shown in Figure 3.8. Since the periodic WAF shaping is considered in the
third simulation, the low sidelobe region is approximately periodic on the delay-axis.
Due to the choice of a smaller velocity range in the RoI in the third simulation, the
approximation error of the narrowband gradient descent method is reduced. However,
as shown in Figure 3.8b, the distortion caused by using the narrowband assumption in
the wideband scenario can still be found on the upper and the lower edges of the RoI.

Table 3.3: Running time, maximum sidelobe, and average sidelobe in the RoI of WAF shaping
algorithms in the third simulation (N = 1023, fc = 2000 Hz, and B = 2000 Hz)

WAF shaping algorithm Running time (minutes:seconds) Maximum sidelobe (dB) Average sidelobe (dB)

Wideband gradient descent 61:31.4 -16.79 -82.68
Narrowband gradient descent 00:40.5 -13.80 -76.12

Wideband gradient descent with a warm start1 64:15.3 -16.98 -83.04

(a) Wideband gradient descent (b) Narrowband gradient descent(c) Wideband gradient descent
with a warm start

Figure 3.8: Periodic WAF for sequences (N = 1023, fc = 2000 Hz, and B = 2000 Hz)
generated by different algorithms in the third simulation.

3.4.3 Discussions and conclusion

3.4.3.1 Effects of the parameter ζ in the USSM-avg algorithm

The convergence of the average sidelobe F̂avg and the eigenvalue residual rλ of the
USSM-avg algorithm in the first and second simulation are shown in Figures 3.9 and
3.10. Due to the initialization with Wopt = 02N , the first iteration of the USSM-avg

1The wideband gradient descent method was initialized with the sequence generated by the narrowband
gradient descent method
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algorithm is the same for all ζ. The difference of the convergence with different ζ can
be observed starting from the second iteration. Since the first iteration only focuses
on the minimization of the averages sidelobe and ignores the rank minimization, an
increase on F̂avg is observed for the first few iterations of the USSM-avg, as shown

in Figures 3.9a and 3.10a. Following that, the average sidelobe F̂avg decreases as the
iteration number increases until the convergence. As shown in Figures 3.9b and 3.10b,
the eigenvalue residual generally decreases as the iteration number increases, but may
have some fluctuations.

In the first and second simulation, the effects of ζ in the USSM-avg algorithm
generally match with our analysis in Section 3.3.1. That is, a higher value of ζ usually
results in a lower average sidelobe F̂avg but may lead to a non-rank-1 solution of Xopt.
On the other hand, a lower value of ζ ensures the rank-1 constraint on Xopt, but does
not necessarily guarantee the average sidelobe minimization performance. However,
one exception to these properties can also be found in the second simulation. As shown
in Figure 3.10, after approximately 80 iterations, the USSM-avg with ζ = 10000 has
the same average sidelobe minimization performance as the USSM-avg with ζ = 20000.
Therefore, we suggest using a grid search to find the optimal parameter ζ when applying
the USSM-avg algorithm for the WAF shaping.

(a) F̂avg vs. iteration (b) rλ vs. iteration

Figure 3.9: Convergence of the average sidelobe F̂avg and the eigenvalue residual rλ of the
USSM-avg for ζ = {2500, 5000, 7500, 10000} in the first simulation (N = 63, fc = 2000
Hz, and B = 2000 Hz). The maximum allowed eigenvalue residual was set to 10−3. After
projectingXopt to a unimodular sequence, the USSM-avg with ζ = 5000 leads to the waveform
with the lowest average sidelobe.

3.4.3.2 Discussion on the randomization-based method

In this section, we aim to determine the reason for the poor sidelobe minimization
performance of the randomization-based method, and then we want to improve the
performance of this method. The first step of the randomization-based method is to
solve Xopt,R from the convex optimization problem 3.38. The eigenvalue distributions
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(a) F̂avg vs. iteration (b) rλ vs. iteration

Figure 3.10: Convergence of the average sidelobe F̂avg and the eigenvalue residual rλ of the
USSM-avg for ζ = {10000, 15000, 20000, 25000} in the second simulation (N = 127, fc = 2000
Hz, and B = 2000 Hz). After projecting Xopt to a unimodular sequence, the USSM-avg with
ζ = 20000 leads to the waveform with the lowest average sidelobe.

of Xopt,R in the first and second simulation are shown in Figures 3.11a and 3.12a. Then,
Xopt,R is used to generate a multivariate normal distribution N (0,Xopt,R) for generat-
ing random sequences. The distribution of the average sidelobe of random sequences
generated from the distribution N (0,Xopt,R) are shown in the blue histogram of Figures
3.11b and 3.12b. Compared with random sequences generated from N (0, I2N), random
sequences generated from N (0,Xopt,R) are likely to have a lower average sidelobe level
in the RoI, but their average sidelobe level is not as good as of sequences generated
by other methods. That means that the randomization-based method can generate
sequences with a lower average sidelobe level to some extent, but its average sidelobe
minimization performance is limited. As we discussed in Section 3.3.2, one reason for
underperformance in sidelobe minimization of the randomization-based method is that
its initial optimization problem is not a QPCP problem.

The performance of the randomization-based method is directly determined by the
property of the matrix Xopt,R. In the original randomization-based method, the deriva-
tion of Xopt,R can be seen as solving Xopt from the first iteration of the USSM-avg algo-
rithm. Since the rank and the average sidelobe of the matrix Xopt is gradually reduced
through iterative alternating minimization, the optimality of the randomization-based
method might be improved by using the matrix Xopt obtained from a few iterations of
the USSM-avg algorithm as the covariance matrix for the randomization. To verify the
feasibility of this idea, the same simulation scenario described in the first simulation was
used. Suppose the matrixXopt obtained from n iterations of the USSM-avg (ζ = 10000)
is denoted as Xopt,Rn. We used the matrices Xopt,R2, Xopt,R5, Xopt,R10, Xopt,R20 as the
covariance matrix to construct multivariate distributions for the randomization.

The eigenvalue distribution of these matrices is shown in Figure 3.13. The rank
of the matrix Xopt,Rn decreases as the number of iterations increases, which matches
with the eigenvalue residual vs. iteration plot for the USSM-avg (ζ = 10000) shown
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(a) Eigenvalues of Xopt,R (b) Distribution of the average sidelobe
Favg(s)

Figure 3.11: (a) Eigenvalues ofXopt,R, and (b) distribution of the average sidelobe of sequences
generated by the randomization-based method in the first simulation (N = 63, fc = 2000 Hz,
and B = 2000 Hz). A total of 10000 sequences were generated for the given distribution using
the randomization-based method.

(a) Eigenvalues of Xopt,R (b) Distribution of the average sidelobe
Favg(s)

Figure 3.12: (a) Eigenvalues ofXopt,R, and (b) distribution of the average sidelobe of sequences
generated by the randomization-based method in the second simulation (N = 127, fc = 2000
Hz, and B = 2000 Hz). A total of 10000 sequences were generated for the given distribution
using the randomization-based method.

in Figure 3.9b. The distribution of the average sidelobe of sequences generated by the
different multivariate distributions is shown in Figure 3.14. As we increase the number
of iterations, the distribution of the random samples becomes more concentrated and
deterministic, which might be due to the decrease on the rank of the matrix Xopt,R.
At the same time, the mean value of the distribution is gradually decreasing as the
number of iterations increases. It is also easy to see that the average sidelobe of
sequences obtained from the modified randomization-based method has a lower bound
equal to the minimum average sidelobe of the USSM-avg sequence. The WAF of the
sequence with the minimum average sidelobe obtained from 10000 random samples of
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(a) Xopt,R2 (b) Xopt,R5 (c) Xopt,R10 (d) Xopt,R20

Figure 3.13: Eigenvalue distribution of Xopt,R2, Xopt,R5, Xopt,R10, and Xopt,R20.

Figure 3.14: Histogram showing the distribution of the average sidelobe Favg(s) of sequences
generated by multivariate distributions with different covariance matrices. A total of 10000
sequences (N = 63, fc = 2000 Hz, and B = 2000 Hz) were generated for each multivariate
distribution using the randomization-based method.

N (0,Xopt,R20) is shown in Figure 3.15. The maximum sidelobe and the average sidelobe
in the RoI of the sequence are -15.53 dB and -56.82 dB respectively, which are close
to the sidelobe level of USSM-avg sequences. Therefore, instead of directly solving
the optimization problem of Equation 3.38 to obtain the covariance matrix, we can
improve the sidelobe minimization performance of the randomization-based method by
using the covariance matrix Xopt derived from the first few iterations of the USSM-avg
algorithm.

3.4.3.3 Warm start for the wideband gradient descent method

Since the optimization problem for the WAF shaping is non-convex, the gradient de-
scent method does not guarantee finding the global minimum of the optimization prob-
lem. One way to improve the optimality of the gradient descent for a non-convex
optimization is by using the warm start technique. Warm start refers to initializing the
optimization problem with a solution that is close to the optimal point, which can help
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Figure 3.15: WAF for the sequence (N = 63, fc = 2000 Hz, and B = 2000 Hz) with the
minimum average sidelobe obtained from 10000 random samples of N (0,Xopt,R20).

the convergence of the gradient descent method and potentially improve the solution’s
optimality. In this section, we aimed to determine whether the warm start can improve
the optimality of the wideband gradient descent method.

In terms of the warm start for the wideband gradient descent method, we can
initialize the gradient descent with sequences with a low average sidelobe level in the
RoI. For example, the sequence generated by the narrowband gradient descent method
was used as a warm start, as shown in Table 3.3. Since the narrowband gradient descent
method is much more efficient compared to the wideband gradient descent method, the
warm start process only used approximately 1% of the total running time. To evaluate
the performance of the warm start technique, we used the same simulation setup as in
the second simulation. In the simulation setup, a sequence with B = 2000 Hz, fc = 2000
Hz, and N = 127 was designed to minimize its average sidelobe level in a RoI, as shown
in Figure 3.5b. The wideband gradient descent method with different initializations
was used to generate sequences. The sequences generated by the narrowband gradient
descent method [25] and the narrowband AISO algorithm [29] were used for the warm
start. For comparison, we also used random BPSK sequences for the initialization of
the wideband gradient descent method.

Table 3.4: Maximum sidelobe, and average sidelobe in the RoI of sequences generated by the
wideband gradient descent method with different initializations

Initialization Maximum sidelobe (dB) Average sidelobe (dB)

Random BPSK (average of 30 trials) -16.85 -65.11
Narrowband gradient descent sequence -16.78 -65.50

Narrowband AISO sequence -16.90 -64.76

The maximum sidelobe, and the average sidelobe in the RoI of sequences generated
by the wideband gradient descent method with different initializations are shown in
Table 3.4. Compared to initializing with random BPSK sequences, warm starts using
narrowband gradient descent sequences and AISO sequences do not significantly im-
prove the maximum sidelobe level or the average sidelobe level of sequences generated
by the wideband gradient descent method. In fact, using the narrowband AISO se-
quence as a warm start even results in a higher average sidelobe level than the mean
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Figure 3.16: Convergence of the average sidelobe of the wideband gradient descent method
with different initializations.

obtained from random BPSK initializations. However, as shown in Figure 3.16, the
warm start technique still improves the convergence of the wideband gradient descent
method. When warm-started, the wideband gradient descent method generally con-
verges faster than when initialized with random BPSK sequences. In general, even if
the warm start technique may not improve the optimality of the average sidelobe min-
imization performance, it still effectively reduces the number of iterations required for
convergence. Therefore, we suggest using a warm start when applying the wideband
gradient descent method for the WAF shaping.

3.4.3.4 Conclusion

In this chapter, four methods are proposed to handle the WAF and the periodic WAF
shaping problem. In contrast to the USSM algorithm [32] that aims to minimize the
maximum sidelobe, these four methods focus on the minimization of the average side-
lobe in the RoI of the WAF. In the first simulation, we have shown that the proposed
methods that focus on minimizing the average sidelobe generally have more significant
sidelobe minimization performance in the RoI, compared to the USSM algorithm.

Among the four proposed methods, the wideband gradient descent method has the
optimal average sidelobe minimization performance. For each iteration, the compu-
tational complexity of this method is O(N2). Even if the narrowband approximation
method is more efficient and generally has a computational complexity of O(N logN)
for the entire algorithm, it will underperform by approximately 6 dB to 10 dB on the
average sidelobe in the RoI, compared to the wideband gradient descent method. As
we discussed in Section 3.4.3.3, the convergence of the gradient descent method can be
improved using a warm start (initializing the algorithm with sequences generated by
the narrowband approximation method).

The USSM-avg algorithm has the second-best performance on the average sidelobe
minimization. For a proper selection of the parameter ζ, the USSM-avg algorithm
can have a sidelobe minimization performance close to that of the wideband gradient
descent method. For each iteration, the computation complexity of this method is
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O(N3), which is also worse than that of the wideband gradient descent method. When
using the USSM-avg algorithm, a grid search for the parameter ζ is suggested for
improving the optimality of the algorithm, which is another fundamental drawback of
the USSM algorithms.

The randomization-based method was proposed to alleviate the heavy computa-
tional complexity of the USSM-avg algorithm. However, the average sidelobe mini-
mization performance of this method is not good, as shown in the results of the first
and second simulation. In Section 3.4.3.2, we proposed a method that can improve
the optimality of the randomization-based method by using the solution Xopt obtained
from the first few iterations of the USSM-avg algorithm as the covariance matrix for
the randomization. The optimality of the randomization-based method is improved as
the number of iterations for the USSM-avg algorithm increases. In this way, a trade-off
between the optimality and the running time is introduced. Additionally, it is also
worth noting that the performance of the modified randomization-based method is
upper bounded by that of the USSM-avg algorithm.

The narrowband approximation method refers to directly using the narrowband
algorithms, such as the narrowband gradient descent algorithm [25] and the AISO al-
gorithm [29], for the shaping of the WAF. The results in the first, second, and third
simulations show that when the velocity range of the RoI is small, the narrowband
approximation method can obtain good sidelobe minimization performance with a rel-
ative low error. Among the four proposed methods, the narrowband approximation
method is the most efficient. However, the sidelobe minimization performance of this
method is not as good as that of the USSM-avg algorithm and the wideband gradient
descent method.

In general, among the algorithms for the WAF shaping, the wideband gradient
descent method with a warm start has the best performance, considering both the
optimality of the average sidelobe minimization and the computational complexity.
Therefore, we decided to use the wideband gradient descent method to shape the peri-
odic WAF of sequences for SAS imaging in the subsequent chapter.
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Waveform Design for SAS
imaging 4
In Chapter 2, we theoretically demonstrated that the waveform design problem for SAS
systems can be approximately assumed to be a WAF shaping problem. However, it
remains unclear how effective this approximation is in practice. In this chapter, we
aim to validate the effectiveness of this approach through both simulations and real-
world experiments. Specifically, we revisit the first sub-question of the main research
question:

• What is the relationship between the ambiguity properties of a waveform and its
corresponding SAS imaging performance? Is ambiguity function shaping equiva-
lent to waveform design for a SAS system?

To answer this, we conduct a series of SAS imaging simulations using different wave-
forms, as described in Section 4.1. In addition, we also carry out field trials to further
evaluate the real-world performance of waveforms obtained through WAF shaping. De-
tails of the trials are provided in Section 4.2.

4.1 SAS imaging simulation

4.1.1 Simulation settings

To verify the relationship between the ambiguity properties and the SAS imaging per-
formance, we considered the SAS imaging scenario shown in Figure 4.1. We aimed
to image a point reflector placed at (0 m, 0 m, -30 m) with a transmitter and a re-
ceiver. The transmitter and the receiver are co-located with a spacing of 0.3 m. The
transmitter-receiver pair was moving along a circular trajectory with a radius of 30
m at z = 0 m for SAS imaging. Unless otherwise stated, the vessel speed was set to
approximately 1.05 m/s, such that the total integration time of the full circle trajectory
is 180 s. While they were moving, a continuous waveform was transmitted and received
simultaneously for imaging. The imaging domain is shown in the purple area in Figure
4.1a, which is a 120× 120 m2 square area centered at z = −30 m plane. The imaging
resolution was set to 0.2 m. The bandwidth and the carrier frequency of waveforms were
B = 2000 Hz and fc = 2000 Hz, respectively. The algorithm mentioned in Algorithm
1 was used for SAS imaging.

For the first simulation, the travel trajectory of the first 1 s of the transmitter-
receiver pair was integrated to image the point reflector with different waveforms (100%
duty cycle), including the wideband gradient descent sequence (N = 1023) generated
in the last chapter and other conventional waveforms. Here, we aim to show whether
the waveform design for a short synetic aperture of the SAS imaging is equivalent to
the WAF shaping. For the second simulation, the full circle trajectory was integrated
to image the point reflector, using the same waveforms used in the first simulation.
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Here, we aim to test the imaging performance of different waveforms in a more realistic
scenario.

(a) 3D view (b) Top view

Figure 4.1: Simulation setup for the SAS imaging of a point reflector. The transmitter and the
receiver were co-located with a spacing of 0.3 m. They were moving along a circle trajectory
with a radius of 30 m at z = 0 m plane to image a point reflect placed at (0 m, 0 m, -30 m).
The moving speed was set to approximately 1.05 m/s, such that the total integration time of
the full circle trajectory is 180 s. At t = 0 s, the positions of the transmitter and the receiver
are (30 m, 0 m,0 m) and (30.3, 0 m, 0 m), respectively.

4.1.2 Simulation results

4.1.2.1 SAS imaging of a point reflector over a short trajectory

The SAS imaging results of a point reflector using different waveforms with an inte-
gration time of 1 s are shown in Figure 4.2. Here, the PRI of all waveforms was set to
N/B = 0.5115 s, except for that of the non-repeating Random BPSK waveform. To an-
alyze the relationship between WAF properties of waveforms and SAS imaging results,
the WAF computed from approximately 1 s of corresponding waveforms is presented
in Figure 4.3.

Because we consider a SAS imaging system with a single receiver, it can only esti-
mate the range of the target in one dimension for a short integration time, and thus
we observed a circular ambiguity of the point reflector in all SAS imaging results. This
circular ambiguity is unavoidable for SAS systems with one receiver, and can only
be resolved with an array of receivers or advanced imaging algorithms (e.g., the least
squares methods). It is important to note that the actual ambiguity is a sphere with
a radius corresponding to the distance between the transmitter-receiver pair and the
point reflector. The circular ambiguity in the imaging domain is a cross-section of the
sphere ambiguity.

Since the chirp-like waveforms, LFM, HFM, and Golomb sequences, have similar
ambiguity function properties, their SAS imaging results are similar, as shown in Fig-
ures 4.2b, 4.2c, and 4.2e. Because of their ridge-shaped mainlobe in the WAF as shown
in Figures 4.3b, 4.3c, and 4.3e, these waveforms are insensitive to Doppler shifts, only
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(a) random BPSK (non-repeating) (b) LFM (PRI = 0.5115 s) (c) HFM (PRI = 0.5115 s)

(d) m-sequence (N = 1023) (e) Golomb sequence (N = 1023) (f) Wideband gradient descent se-
quence (N = 1023)

Figure 4.2: SAS imaging reconstructions of a point reflector using different waveforms, with
an integration time of 1 s. At t = 0, the positions of the transmitter and the receiver are (30
m, 0 m, 0 m) and (30.3 m, 0 m, 0 m) respectively. Apart from the non-repeating random
BPSK sequence, the other waveforms are periodic in time with a PRI of N/B = 0.5115 s.
The image intensity is presented in a dB scale.

causing a slight displacement of the main lobe location. Consequently, the circular
ambiguity of the point reflector of these waveforms has a higher intensity than that of
other waveforms with a thumbtack-shaped mainlobe in the WAF. On the other hand,
since the chirp-like waveforms have much lower sidelobes on two sides of the ridge-
shaped mainlobe of their WAFs, these waveforms provide a relatively lower imaging
sidelobe elsewhere as shown in their SAS imaging results, compared to m-sequence and
random BPSK.

For waveforms with a thumbtack-shaped mainlobe in the WAF, their SAS imaging
results have lower intensity on parts of the circular ambiguity of the point reflector, be-
cause of their Doppler sensitivity. Among these waveforms, the non-repeating random
BPSK sequence has the worst imaging sidelobe performance, because of the uniform
high sidelobes in its WAF as shown in Figure 4.3a. In Figure 4.2d, the SAS imaging
result of the m-sequence has a lower sidelobe in a fan-shaped region at the center of
the imaging domain, because of the perfect autocorrelation property of m-sequence. As
shown in Figure 4.3d, the m-sequence has a low sidelobe in the ambiguity domain when
|v| < 0.4 m/s. At t = 0 s, the absolute radial velocity map of voxels in the imaging
domain is shown in Figure 4.4, where we see that the region corresponding to |v| < 0.4
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(a) random BPSK (non-repeating) (b) LFM (PRI = 0.5115 s) (c) HFM (PRI = 0.5115 s)

(d) m-sequence (N = 1023) (e) Golomb sequence (N = 1023) (f) Wideband gradient descent se-
quence (N = 1023)

Figure 4.3: WAF for approximately 1 s of different waveforms. Apart from the non-repeating
random BPSK sequence, the other waveforms are periodic in time with a PRI ofN/B = 0.5115
s. Within a duration of 1 s, waveforms with a PRI of 0.5115 s have approximately two periods.

m/s happens to have the same shape as the low imaging sidelobe region we observed
in Figure 4.3d.

Figure 4.4: Absolute radial velocity of voxels in the imaging domain at t = 0 s. The red
dashed line represents the 0.4 m/s contour line of the absolute radial velocity map. The value
of the radial velocity is presented on a linear scale.

Among the waveforms with a PRI of 0.5115 s, the wideband gradient descent se-
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quence (N = 1023) has the best SAS imaging performance. Not only does it have
a narrower and low-intensity circular ambiguity of the point reflector because of its
thumbtack mainlobe in the WAF, the imaging sidelobe of the wideband gradient de-
scent sequence is even better than that of the chirp-like waveforms. However, a high
imaging sidelobe region corresponding to the high sidelobe region in its WAF can also
be observed at the upper corners of its SAS image. When the imaging domain increases
from 120×120 m2 to 240×240 m2, we find that the low sidelobe region is within a large
circle with a radius of approximately 85 m, as shown in Figure 4.5. Because the radial
velocity in the imaging domain is less than the maximum velocity of the RoI of the
wideband gradient descent sequence, the size of the low sidelobe region in the imaging
domain should be determined by the maximum range of the RoI, which is around 48
m. For a short integration time, the low average sidelobe in the RoI will translate
into a low imaging sidelobe region around the point reflector with a radius of 48 m.
Because of the ambiguity of the point reflector in the imaging domain, the low imaging
sidelobe region can be approximately seen as a region within a sphere with a radius of
48+30

√
2 m, as shown in Figure 4.6. Thus, the cross-section of the sphere region with

the imaging domain at z = −30 m is a circle region, and the radius of the low sidelobe
region in the imaging domain is 85.3 m, which matches with our observations in Figure
4.5.

Figure 4.5: SAS imaging reconstruction of a point reflector using wideband gradient descent
sequence (N=1023), with an integration time of 1 s. In this figure, the imaging domain
was increased to 240 × 240 m2. The low sidelobe region is within a circle with a radius
of approximately 85 m, due to the maximum range within the low sidelobe region of the
waveform’s WAF.

The maximum unambiguous detection range of a periodic waveform is determined
by its PRI or sequence length:

Rmax =
cPRI

2
=

cN

2B
(4.1)

For a PRI of 0.5115 s, the waveform can provide a maximum unambiguous detection
range of approximately 383.6 m. As the detection range is much higher than needed,
we also investigated the performance of unoptimized waveforms with a shorter PRI or
sequence length. The SAS imaging results of the LFM waveform, Golomb sequence,
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Figure 4.6: Schematic explaining the actual low sidelobe region of SAS imaging of the wide-
band gradient descent sequence (N = 1023) with a short integration time of 1 s. At t = 0 s,
the transmitter is placed at (30 m, 0 m, 0 m) on the water surface. According to the ambiguity
function properties of the sequence, the low sidelobe region is roughly a sphere region with
a radius of 48 m around the point reflector. After integrating the low sidelobe region over
the ambiguity sphere (circle), the actual low sidelobe region can be approximately seen as a
sphere region with a radius of 48+30

√
2 m. The cross-section of the region with the imaging

domain (a 240× 240 m2 plane at z = −30 m) is a circle with a radius of approximately 85.3
m.

and m-sequence with a different PRI are shown in Figures 4.7, 4.9, and 4.11. The
corresponding WAF of approximately 1 s of these waveforms is presented in Figures
4.8, 4.10, and 4.12.

For chirp-like waveforms (the LFM and the Golomb sequence), a lower PRI results in
more waveform periods being integrated over a 1 s interval. This increased integration
decreases the intensity of the ridge-shaped mainlobe in the WAFs (as shown in Figures
4.8 and 4.10), which in turn reduces the circular ambiguity of the point reflector in the
SAS images.

For the m-sequence, a short sequence length does not seem to significantly affect the
mainlobe of the WAF. However, it expands the low sidelobe region along the velocity
axis and reduces the sidelobe level within that region, as shown in Figure 4.12. The
width of the low sidelobe region along the velocity axis increases approximately in
proportion to 1/N . When the velocity range of the low sidelobe region in the periodic
WAF is larger than [−1, 1] m/s, the low imaging sidelobe region will cover the entire
imaging domain. As a result, the SAS imaging sidelobe is reduced with decreasing
sequence length, as presented in Figure 4.11.

It is also important to note that as we decrease the PRI from 0.5115 s to 0.1275
s, the maximum detection range also decreases from 383.62 m to 95.625 m for the
given simulation setting. For a practical SAS imaging scenario, the PRI cannot be set
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to a very low value. Otherwise, extra imaging artifacts due to the range ambiguity
will appear in SAS imaging results. According to our experimental data, the maximum
detection range should be 3 times higher than the distance between the target of interest
and the transmitter-receiver pair, to avoid the effects of reverberations in an underwater
environment.

(a) LFM (PRI = 0.5115 s) (b) LFM (PRI = 0.2555 s) (c) LFM (PRI = 0.1275 s)

Figure 4.7: SAS imaging reconstructions of a point reflector using LFM waveforms with a
different PRI, with an integration time of 1 s. As the PRI of the LFM decreases, the circular
ambiguity of the point reflector decreases in intensity.

(a) LFM (PRI = 0.5115 s) (b) LFM (PRI = 0.2555 s) (c) LFM (PRI = 0.1275 s)

Figure 4.8: WAF for approximately 1 s of LFM waveforms with a different PRI. As the PRI
of the LFM decreases, the waveform periods integrated within a duration of 1 s increases.
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(a) Golomb sequence (N = 1023) (b) Golomb sequence (N = 511) (c) Golomb sequence (N = 255)

Figure 4.9: SAS imaging reconstructions of a point reflector using Golomb sequences with
a different sequence length, with an integration time of 1 s. As the length of the Golomb
sequence decreases, the circular ambiguity of the point reflector decreases in intensity.

(a) Golomb sequence (N = 1023) (b) Golomb sequence (N = 511) (c) Golomb sequence (N = 255)

Figure 4.10: WAF for approximately 1 s of Golomb sequences with a different length. As the
sequence length of the Golomb sequence decreases, the number of waveform periods integrated
within a duration of 1 s increases, reducing sidelobes and Doppler ambiguities.

(a) m-sequence (N = 1023) (b) m-sequence (N = 511) (c) m-sequence (N = 255)

Figure 4.11: SAS imaging reconstructions of a point reflector using m-sequence with a different
sequence length, with an integration time of 1 s. As the length of the m-sequence decreases,
the imaging sidelobe of the point reflector is reduced.
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(a) m-sequence (N = 1023) (b) m-sequence (N = 511) (c) m-sequence (N = 255)

Figure 4.12: WAF for approximately 1 s of m-sequences with a different length. As the
length of the m-sequence decreases, the waveform periods integrated within a duration of 1 s
increases.

4.1.2.2 SAS imaging of a point reflector over the full circle trajectory

The SAS imaging results of a point reflector over the full circle trajectory are shown
in Figures 4.13, 4.14, 4.15, and 4.16. The imaging results show that all sequences
managed to image the point reflector at (0 m, 0 m, -30 m), after the SAS integration
over the full circle trajectory. However, a circular imaging artifact with a radius of 60
m is also observed in all SAS imaging results. Since the SAS imaging over the full circle
trajectory can be seen as an integration of multiple SAS images with a short integration
trajectory, the circular ambiguity of the point reflector observed in the previous section
is also integrated during the SAS imaging. As shown in Figure 4.17, the integration
of multiple ambiguity circles not only identifies the point reflector but also results in a
circular imaging artifact with a radius of 60 m.

As shown in Figures 4.13a and 4.13c, the SAS imaging results of the random BPSK
waveform and the HFM waveform (PRI = 0.5115 s) are similar to the imaging PSFs in
Figure 1.3 [1]. The imaging sidelobe of the random BPSK waveform is still constantly
high after the full circle integration. Because chirp-like waveforms have much worse
circular ambiguity effects, extra imaging artifacts are observed near the center of the
imaging domain, after integrating over the full circle trajectory. Among the waveforms
with a PRI of 0.5115 s, the wideband gradient descent sequence has the best SAS
imaging performance, whose sidelobe level is around 8 dB lower than that of the random
BPSK sequence. However, some extra imaging artifacts can also be observed near the
center in Figure 4.13f, which might be caused by the integration of multiple ambiguity
circles.

As shown in Figures 4.14, 4.15, and 4.16, waveforms with a lower PRI generally
provide better SAS imaging performance, at a cost of a reduced maximum unambiguous
detection range. For the LFM waveform and the Golomb sequence, a lower PRI reduces
the circular ambiguity of the point reflector in the SAS imaging over a short integration
trajectory due to the reduced Doppler ambiguities, which consequently improves the
SAS imaging performance after the full circle integration. For the m-sequence, a lower
PRI reduces the imaging sidelobe of the SAS imaging over a short trajectory, which
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(a) random BPSK (non-repeating) (b) LFM (PRI = 0.5115 s) (c) HFM (PRI = 0.5115 s)

(d) m-sequence (N = 1023) (e) Golomb sequence (N = 1023) (f) Wideband gradient descent se-
quence (N = 1023)

Figure 4.13: SAS imaging reconstructions of a point reflector using different waveforms, with
an integration time of 180 s. Apart from the non-repeating random BPSK sequence, the other
waveforms are periodic in time with a PRI of N/B = 0.5115 s. The circular imaging artifact
with a radius of approximately 60 m is observed in all SAS imaging results.

(a) LFM (PRI = 0.5115 s) (b) LFM (PRI = 0.2555 s) (c) LFM (PRI = 0.1275 s)

Figure 4.14: SAS imaging reconstructions of a point reflector using LFM waveforms with
different PRI, with an integration time of 180 s.

also enhances the imaging performance after integration over the full circle trajectory.
Among all sequences tested in the second simulation, the m-sequence with N = 255
has the best SAS imaging performance.
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(a) Golomb sequence (N = 1023) (b) Golomb sequence (N = 511) (c) Golomb sequence (N = 255)

Figure 4.15: SAS imaging reconstructions of a point reflector using Golomb sequences with
different sequence length, with an integration time of 180 s

(a) m-sequence (N = 1023) (b) m-sequence (N = 511) (c) m-sequence (N = 255)

Figure 4.16: SAS imaging reconstructions of a point reflector using m-sequences with different
sequence length, with an integration time of 180 s

4.1.3 Discussion

The simulation results of SAS imaging of a point reflector suggest a strong connection
between the ambiguity function properties of a waveform and its corresponding imaging
performance. For a short synthetic aperture equivalent to 1 s of the integration time,
the SAS imaging result of a waveform can be approximately viewed as a projection of
the waveform’s WAF evaluated over that 1 s duration. This projection relationship is
detailedly illustrated in Figure 4.18. For a short integration time (e.g, a PRI of the
transmit waveform), the waveform design problem of a SAS system can be approxi-
mately seen as a WAF shaping problem. Here, “a short integration time” refers to a
duration during which the position and the velocity of the SAS system can be approx-
imately considered constant, such that the waveforms reflected by voxels within that
duration can be seen as the transmit waveform affected by a single delay and a single
Doppler shift. Even if ambiguity function shaping is not strictly equivalent to the wave-
form design problem for a SAS system, the waveform obtained through this approach
still delivers good imaging performance, compared to conventional waveforms.

Additionally, we found that the imaging performance also depends on the PRI, or
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Figure 4.17: Schematic explaining the reason for the circular artifacts with a radius of 60
m shown in Figures 4.13, 4.14, 4.15, and 4.16. The SAS system is moving along a circle
trajectory to image the point reflector. While the SAS system moving along the trajectory,
multiple ambiguity circles are generated. The integration of multiple ambiguity circles along
the trajectory not only identifies the point reflector at the center of the imaging domain but
also introduces an imaging artifact with a radius of 60 m.

equivalently, the sequence length of the waveform. A lower PRI allows more waveform
periods to be transmitted and integrated within a fixed time window, which enhances
the coherent gain and improves the WAF properties of waveforms. For chirp-like wave-
forms, a lower PRI decreases the ridge-shaped ambiguity in their WAF, thereby re-
ducing the intensity of the circular ambiguity. For the m-sequence, a shorter sequence
length expands the low sidelobe region in its WAF and reduces the sidelobe level in that
region, thereby reducing the SAS imaging sidelobe. However, reducing the PRI or the
sequence length comes at the cost of a shorter maximum unambiguous detection range,
which can cause imaging artifacts due to range ambiguity in practical sonar imaging
scenarios. Therefore, the PRI or the sequence length of waveforms should not be set
too short.

When comparing equal length sequences (using a PRI of 0.5115 s), the wideband
gradient descent sequence (N=1023) generated in Chapter 3 demonstrates the best
SAS imaging. Its imaging sidelobe is around 8 dB lower than that of the non-repeating
random BPSK sequence. However, when we decreased the sequence length to N = 255,
the SAS imaging performance of the m-sequence (N = 255) outperforms that of the
wideband gradient descent sequence (N = 1023), because the sidelobe level of the
m-sequence in its WAF is slightly lower than that of the wideband gradient descent
sequence (N = 1023) as shown in Figures 4.12c and 4.3f. Moreover, the mainlobe of the
m-sequence in its WAF is narrower than that of the wideband gradient descent sequence,
which provides a lower intensity on the circular ambiguity of the point reflector as shown
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Figure 4.18: Schematic illustrating the projection of the WAF of a waveform to the SAS
imaging domain when considering a short synthetic aperture. The low sidelobe regions in the
ambiguity domain and the SAS imaging domain are marked with green color. The ambiguity
sphere of the strong clutter is represented by the black dashed line. The maximum range and
the maximum velocity of the low sidelobe region in the ambiguity domain are represented by
vmax and rmax, respectively. It is assumed that the distances of the strong clutter (r1) and
the target of interest (r2), and the radial velocities of the strong clutter (v1) and the target
of interest (v2), are given. To ensure that the target of interest is not covered by the sidelobe
of the clutter, we need to satisfy |r1− r2| ≤ rmax and |v1− v2| ≤ vmax. In the practical sonar
imaging scenario, we typically have a large field of voxels, which are all potential targets. For
all of these voxels, the above two conditions need to be satisfied.

in Figures 4.11c and 4.2f. Therefore, among the all sequences tested, the m-sequence
with N = 255 has the best imaging performance for the given simulation scenario.

The m-sequence only provides a low sidelobe region near the zero-Doppler axis in its
WAF. When the speed of the vessel is high enough, the m-sequence may fail to provide
a good SAS imaging performance because the radial velocity of voxels in the imaging
domain may be higher than the maximum velocity of the low sidelobe region of the
m-sequence’s WAF. As we discussed in Section 2.3.2, the length of the m-sequence has
to be N = 2l−1, where l ∈ Z and l ≥ 2, which further limits the design choice of the m-
sequence. On the other hand, the WAF shaping algorithms (e.g., the wideband gradient
descent methods) allow designing sequences with an arbitrary sequence length and an
arbitrary shape for the RoI. An example demonstrating that the m-sequence may not
provide an ideal SAS imaging performance is described in Section 4.2.2. Theoretically,
with a proper choice of the sequence length N and the RoI Q, sequences generated by
the wideband gradient descent method should give better SAS imaging performance.

4.1.3.1 Sequence design for SAS imaging

Based on our observations, we recommend that a good SAS imaging sequence for a
short synthetic integration time should possess the following properties

• The mainlobe of the WAF should have a thumbtack shape.
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• The RoI Q in the WAF should cover all possible delay-Doppler combinations of
voxels in the imaging domain.

• The sidelobe level in the RoI should be as low as possible.

The thumbtack-shaped mainlobe in the WAF provides an unambiguous joint estimation
of the range and the velocity of the target, which can help to alleviate the circular
ambiguity of the target when using a short synthetic aperture for SAS imaging. Since
the SAS imaging result of a waveform for a short integration time can be approximately
seen as a projection of the waveform’s WAF, the choice of RoI Q and the sidelobe level
within the RoI Q will directly affect the SAS imaging performance of a waveform.
As shown in Figure 4.18, to ensure that the target of interest is still detectable in
the presence of a strong clutter, the target of interest need to stay within the low
sidelobe region of the strong clutter. Based on the relative distance and the relative
radial velocity between the strong clutter and the target of interest, we can obtain
a suitable RoI for the WAF shaping. It is also important to note that, even though
we observed that a low PRI (or equivalently, a short sequence length) can lead to
better SAS imaging results, we did not suggest an ideal sequence length in the above
properties. This is because the main reason for this phenomenon is that changes in the
PRI (or the sequence length) only affect the WAF properties of a waveform within a
fixed time window, which has already been mentioned in the other three properties.

Additionally, we have extra constraints on the sequence length N and the RoI Q.
To ensure that the sequence has a maximum unambiguous detection range of Rmax,
the sequence length should be at least higher than 2BRmax

c
:

N ≥ 2BRmax

c
(4.2)

Because of the (asymptotic) volume invariance property of the WAF, the RoI Q can-
not be too large, otherwise the optimality of sidelobe minimization in the RoI is not
guaranteed. Ideally, the RoI in the (periodic) WAF can be defined as

Qopt
1 = {(τ, v)| − ρTN/B ≤ τ ≤ ρTN/B and − ρvvn ≤ v ≤ ρvvn} (4.3)

where the expression of vn is given in Equation 3.75, and we introduced the RoI pa-
rameters ρT ∈ (0, 1/2) and ρv ∈ (0,+∞) which depend on the imaging scenario. We
recommend that the product of ρT and ρv has to be small enough:

ρopt = ρTρv ≪ 1. (4.4)

For example, the ratio ρopt for the wideband gradient descent sequence used in this
section is approximately 0.375, which ensures that the RoI is relatively small compared
to the total region in the WAF.

1This RoI also includes the mainlobe of the WAF. It should be excluded in any waveform optimization
techniques.
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4.2 Field Trial

In this section, the results of SAS imaging in field trials are provided. The goal of these
trials is to evaluate the SAS imaging performance of sequences obtained from the WAF
shaping in a practical scenario.

4.2.1 SAS imaging setup

In the field trials, we aim to image two corner reflectors placed on the lake bed with
the CLAMS SAS imaging system. The picture of the two reflectors is shown in Figure
4.19. The distance between the water surface and the lake bed is approximately 20-30
m. Images of the CLAMS system are shown in Figure 4.20, where the CLAMS system
was mounted on a small boat for SAS imaging. Instead of using only one receiver as
we discussed earlier, the SAS imaging system used a receiver array consisting of 10
hydrophones with a spacing of 15 cm. The delay-and-sum beamformer and the null
steering beamformer are used to process the data obtained from the array. To ensure
a cm-level positioning accuracy, three GNSS antennas are attached to the frame of the
system. The frequency band used for the trials is 8000-12000 Hz. To avoid causing
extra turbulence noises, the speed of the boat was less than 1 m/s during the trial.
The SAS imaging performance of the sequences obtained from the WAF shaping is
compared against that of the random BPSK sequence.

Figure 4.19: Image of two corner reflectors to be imaged. The radii of the corner reflectors
are 20 cm and 40 cm, respectively, with estimated target strengths of -24 dB and -12 dB.

4.2.2 Sequence design for the field trial

As shown in Figure 4.21, the two main sources of clutter for the field trials are the direct
wave and the specular reflection. The direct wave refers to the line-of-sight transmission
from the transmitter to the receiver, and typically has a signal strength a few orders
of magnitude higher than that of the signal reflected by the target of interest. The
specular reflection refers to the mirror-like reflection of waves from a smooth surface.
The intensity of the specular reflection is also a few orders of magnitude higher than
that of the scatter reflection. In the field trial, the lake bed can be approximately
considered a flat and smooth surface. When the transmit waveform hits the lake bed,
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(a) Entire frame of the source and sensors (b) Receiver array mounted over the
side of a boat

Figure 4.20: Images of the CLAMS system used for the SAS imaging trial. The receiver
array consists of 10 hydrophones with a spacing of 15 cm. Three GNSS antennas are used to
provide a cm-level positioning accuracy. The frequency band used for the trial is 8000-12000
Hz.

it will be reflected directionally and preserve most of the energy. From a modeling
perspective, the specular reflection can be approximated as a strong, persistent point
clutter located on the lake bed directly beneath the transmitter and the receiver array.

Figure 4.21: Schematic illustrating the two main sources of clutter in the field trial: the direct
wave and the specular reflection.

To ensure that the corner reflectors are visible in the presence of the direct wave and
the specular reflection, we designed a N = 1500 periodic sequence using the wideband
gradient descent method based on the suggestion in Section 4.1.3.1. The periodic WAF
of the sequence is shown in Figure 4.22. Since the speed of the boat was less than 1
m/s, the maximum velocity of the RoI was set to vmax = 1 m/s. To ensure that the
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corner reflectors stay inside the low sidelobe region of the strong clutters, the maximum
range of the RoI was set to rmax = 35 m.

Figure 4.22: Periodic WAF for the wideband gradient descent sequence with N = 1500,
B = 4000 Hz, and fc = 10000 Hz.

Apart from the sequence designed from the WAF shaping, the m-sequence was also
considered. With B = 4000 Hz and fc = 10000 Hz, the length of the m-sequence
has to be at least N = 511 to guarantee a maximum unambiguous detection range of
Rmax = cN

2B
= 96 m. Since the m-sequence has better ambiguity function properties

with a lower sequence length, the ideal length for the m-sequence is N = 511. The
WAF for approximately 1s of the m-sequence (N = 511) is shown in Figure 4.23a.
Compared to the wideband gradient descent sequence (N = 1500), the WAF of the
m-sequence only has a low sidelobe region within |v| < 0.5 m/s, which is much less
than the speed of the boat. Therefore, the m-sequence (N = 511) was not used in the
field trial.

4.2.3 Field trial results

4.2.3.1 Preprocessing results

The SAS imaging trajectory of the field trials with the random BPSK sequence and
the wideband gradient descent sequence (N = 1500) is shown in Figure 4.24. The
integration time of the two trials is 450 s.

To evaluate the SAS imaging performance of the two waveforms before the SAS
imaging, we applied the STMF techniques introduced in Section 2.1 to a single hy-
drophone recording of both waveforms. The STMF results are shown in Figure 4.25, in
which the direct wave at z = 1 m and the specular reflection at approximately z = 22
m are clearly identified. In the STMF result of the wideband gradient descent sequence
(N = 1500), the sidelobes of the direct wave within a 35 m range are significantly
lower than those observed in the STMF of the random BPSK sequence, because of the
ambiguity function properties of the wideband gradient descent sequence.

Since the relative position between the transmitter and the receiver array is always a
constant during the SAS imaging, the direct wave can be easily removed using a decon-
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(a) m-sequence (N = 511) (b) Wideband gradient descent sequence (N =
1500)

Figure 4.23: WAF for approximately 1 s of the m-sequence (N = 511) and the wideband
gradient descent sequence (N = 1500) with B = 4000 Hz and fc = 10000 Hz.

(a) Random BPSK (b) Wideband gradient descent sequence (N = 1500)

Figure 4.24: Imaging trajectories of the trial with (a) the random BPSK sequence and (b)
the wideband gradient descent sequence (N = 1500). The positions of the strong corner
reflector and the weak corner reflector are approximately (46 m, 624 m) and (45 m, 636 m),
respectively. The integration time of the two trials is 450 s.

volution algorithm (e.g., the CLEAN algorithm mentioned in [1]) given the knowledge
of the transmit waveform. After we applied the CLEAN algorithm to remove the direct
wave, the STMF results are shown in Figure 4.26, in which only the specular reflection
at approximately z = 22 m is identified. In the STMF result of the wideband gradient
descent sequence (N = 1500), the sidelobes of the specular reflection, within a range
of 35 m, are still lower than those observed in the STMF of the random BPSK se-
quence, because of the ambiguity function properties of the wideband gradient descent
sequence.
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(a) Random BPSK (b) Wideband gradient descent sequence (N = 1500)

Figure 4.25: STMF results of the recording from a single hydrophone before applying the
CLEAN algorithm.

(a) Random BPSK (b) Wideband gradient descent sequence (N = 1500)

Figure 4.26: STMF results of the recording from a single hydrophone after applying the
CLEAN algorithm [1] to remove the direct wave.

4.2.3.2 SAS imaging results with the delay-and-sum beamformer

The SAS imaging results obtained using the two waveforms with the delay-and-sum
beamformer are illustrated in Figures 4.27, 4.28, and 4.29. The strong corner reflector
at (46 m, 624 m) is successfully imaged by both the random BPSK sequence and the
wideband gradient descent sequence (N = 1500). In contrast, the weak reflector is
poorly imaged, which can be attributed to its 12 dB lower target and the insufficient
coverage of the SAS trajectories in its vicinity. Notably, the SAS imaging performance
of the wideband gradient descent sequence is slightly better than that of the random
BPSK sequence, as it provides marginally improved imaging of the corner reflectors.
However, since the imaging trajectories are different for the two trials, this performance
difference cannot be conclusively attributed to the waveforms themselves. Apart from
the corner reflectors, the bathymetry of the lake bed between z = −26 m and z = −25
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m is also imaged in the two trials. The voxels with high intensity on the lake bed refers
to the specular reflection, which is generally aligned with the SAS imaging trajectory
of our system.

(a) Random BPSK (b) Wideband gradient descent sequence (N = 1500)

Figure 4.27: SAS imaging results obtained using two waveforms at z = −24.85 m, with the
delay-and-sum beamformer. The imaging trajectories are marked with blue dots.

(a) (b)

Figure 4.28: SAS imaging results obtained using the random BPSK sequence, with the delay-
and-sum beamformer. The imaging depth ranges from -23 m to -30 m. The dynamic range
is 40 dB.

The mean energy distribution along the z-axis for the random BPSK sequence and
the wideband gradient descent sequence (N = 1500) is shown in Figure 4.30. Since the
targets of interest are sparsely located in the imaging domain, the mean energy can be
seen as the SAS imaging sidelobe at a given water depth. Since the lake bed is located
at approximately z = −25.5 m, a peak in mean energy is observed at z = −25.5 m for
both sequences. Because the SAS image obtained using the wideband gradient descent
sequence has stronger specular reflections on the lake bed, the peak mean energy for the
wideband gradient descent sequence is higher than that for the random BPSK sequence.
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(a) (b)

Figure 4.29: SAS imaging results obtained using the wideband gradient descent sequence
(N = 1500), with the delay-and-sum beamformer.

When z ∈ [−26.1,−23), the mean energy for the wideband gradient descent sequence
is higher than that for the random BPSK sequence. However, when z ∈ [−30,−26.1),
the mean energy for the wideband gradient descent sequence is lower than that for the
random BPSK sequence.

Figure 4.30: Mean energy distribution along the z-axis in the SAS imaging domain for the
random BPSK sequence and the wideband gradient descent sequence (N = 1500), with the
delay-and-sum beamformer.

4.2.3.3 SAS imaging results with the null steering beamformer

As shown in the previous section, the SAS imaging performance of the corner reflectors
on the lake bed is limited by the specular reflection. Since the specular reflection is
directly beneath the transmitter and the receiver array, its intensity can be reduced
by using the null steering beamformer. This beamforming technique can cancel the
reflected signal coming from directly beneath the transmitter and the receiver array,
thereby allowing only the scatter reflection to contribute to the SAS imaging.

The SAS imaging results obtained using the two waveforms with the null steering
beamformer are illustrated in Figures 4.31, 4.32, and 4.33. Applying the null steering
beamformer significantly reduces the specular reflection on the lake bed. As a result,
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the imaging performance of corner reflectors is improved in both trials using the random
BPSK sequence and the wideband gradient descent sequence. It is also important to
note that the intensity of the corner reflectors is also reduced after applying the null
steering. In the field trial using the random BPSK sequence, the weak corner reflector
is barely visible, as shown in Figures 4.31a and 4.32.

(a) Random BPSK (b) Wideband gradient descent sequence (N = 1500)

Figure 4.31: SAS imaging results obtained using two waveforms at z = −24.85 m, with the
null steering beamformer. The imaging trajectories are marked with blue dots.

(a) (b)

Figure 4.32: SAS imaging results obtained using the random BPSK sequence, with the null
steering beamformer. The imaging depth ranges from -23 m to -30 m. The dynamic range is
40 dB.

With the null steering beamformer, the mean energy distribution along the z-axis
in the SAS imaging domain for the random BPSK sequence and the wideband gradient
descent sequence (N = 1500) is shown in Figure 4.34. When z ∈ [−25.5,−23), the
mean energy for the random BPSK sequence is nearly the same as that for the wideband
gradient descent sequence. When z ∈ [−30,−25.5), the mean energy for the wideband
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(a) (b)

Figure 4.33: SAS imaging results obtained using the wideband gradient descent sequence
(N = 1500), with the null steering beamformer.

gradient descent sequence is lower than that for the random BPSK sequence, because
of its WAF properties.

Figure 4.34: Mean energy distribution along the z-axis in the SAS imaging domain for the
random BPSK sequence and the wideband gradient descent sequence (N = 1500), with the
null steering beamformer.

4.2.4 Discussion

The field trial results show that although the wideband gradient descent sequence
(N = 1500) produces better STMF results compared to the random BPSK sequence,
its SAS imaging performance on corner reflectors does not reflect its optimal ambiguity
function properties. The wideband gradient descent sequence has much lower sidelobes
in the RoI in its WAF, but its SAS imaging performance on the corner reflectors is only
slightly better than that of the random BPSK sequence.

One possible explanation for this phenomenon is that the SAS imaging performance
of the corner reflectors is dominated by the ambiguities of the lake bed in the field trial.
In the SAS imaging results with the delay-and-sum beamformer, while the SAS imaging
system are moving on the water surface along a trajectory, an ambiguity of the specular
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reflection is generated for every hydrophone in every short-time window, as shown in
Figure 4.35. Since the intensity of the ambiguity of the specular reflection is a few
orders of magnitude higher than the other sidelobes, the SAS imaging sidelobe level in
the water layer is dominated by the ambiguity of the specular reflection rather than
the sidelobe of the clutter. With the delay-and-sum beamformer, the ambiguity of
the specular reflection obtained from every hydrophone is integrated in the imaging
domain, which creates a high imaging sidelobe region in the water layer. Therefore,
we observed that both the random BPSK sequence and the wideband gradient descent
sequence (N = 1500) have a similar imaging performance on the corner reflectors placed
on the lake bed, as shown in Figures 4.27, 4.28, and 4.29.

Figure 4.35: Schematic explaining the high imaging sidelobe in the water layer of SAS imaging
results of the field trials with the delay-and-sum beamformer. The black dashed lines represent
the ambiguities of the specular reflection. While the SAS imaging system are moving on the
water surface along a trajectory, an ambiguity of the specular reflection is generated for every
hydrophone in every short-time window. The white circles represent the corner reflectors on
the lake bed.

In the SAS imaging results with the null steering beamformer, the specular reflection
and its corresponding ambiguity are canceled. However, since nulling the specular
reflection does not remove the backscatter of the lake bed caused by features and
inhomogeneities on the lake bed itself, each voxel on the lake bed can still be considered
as a point reflector but has a much lower reflection coefficient compared to the specular
reflection. As shown in Figure 4.36, the voxels illuminated by the transmitter on the
lake bed still create ambiguities in the water layer. As a result, the imaging sidelobe
in the water layer is still dominated by the ambiguities of these voxels on the lake bed.
Therefore, we observed that the mean energy for the random BPSK is nearly the same
as that for the wideband gradient descent sequence when z ∈ [25.5,−23), as shown in
Figure 4.34.

According to our theoretical analysis, the imaging sidelobes within the first few
meters below the lake bed are still dominated by the ambiguity of voxels on the lake
bed. As the depth increases, the imaging sidelobe will gradually become dominated by
the sidelobe of the clutter. Thus, we observed that the SAS imaging results obtained
using the wideband gradient descent sequence (N = 1500) have a lower imaging sidelobe
for the sub-bottom layer compared to those obtained using the random BPSK sequence,
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Figure 4.36: Schematic explaining the high imaging sidelobe in the water layer of SAS imaging
results of the field trials with the null steering beamformer. The beamwidth of the transmitter
is assumed to be θ. The blue dashed lines represent the ambiguities of the voxels illuminated
by the transmitter. These ambiguities also appear in the sub-bottom layer, but only up to a
range that depends on the transmitter’s beamwidth and the position of the receiver array. It
is important to note that the intensity of the ambiguity of these voxels is much lower than
that of the specular reflection.

as shown in Figures 4.30 and 4.34. These low sidelobes in the sub-bottom layer may
potentially help us find sub-bottom targets. As shown in Figure 4.37, several distinct
dots were observed below the lake bed in the SAS imaging results obtained using
the wideband gradient descent (N = 1500), which might correspond to sub-bottom
boulders.

In general, because the imaging sidelobes in the water layer are dominated by the
ambiguity of the specular reflection or the backscatter of the lake bed, the sequence
designed through WAF shaping only provides marginally improvement in SAS imaging
of corner reflectors on the lake bed, compared to the random BPSK sequence. However,
through our analysis, we found that this sequence can provide lower imaging sidelobes
within the sub-bottom layer, which may be beneficial for the sub-bottom target detec-
tion.

(a) Delay-and-sum beamformer (b) Null steering beamformer

Figure 4.37: Possible sub-bottom boulders in the SAS imaging results obtained using the
wideband gradient descent sequence (N = 1500), with the delay-and-sum beamformer and
the null steering beamformer.
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4.3 Conclusion

In this chapter, we evaluated the SAS imaging performance of waveforms designed
through WAF shaping. Through both simulations and fields, we investigated the rela-
tionship between the WAF properties of a waveform and its corresponding SAS imaging
performance.

Simulation results demonstrated a strong connection between the WAF of wave-
form and its SAS imaging performance. For a short synthetic aperture, the SAS imag-
ing results can be approximately interpreted as a projection of the waveform’s WAF.
Waveforms with a thumbtack-shaped mainlobe and a low average sidelobe energy in a
well-defined RoI generally provide better SAS imaging performance. Among the tested
waveforms with a sequence length of N = 1023 (or equivalently, a PRI of 0.5115 s), the
sequence generated by the wideband gradient descent algorithm in Section 3.4 showed
the best SAS imaging performance, outperforming conventional waveforms, such as the
LFM, and the Random BPSK sequence. We also observed that reducing the sequence
length can improve imaging performance by increasing the number of periods integrated
over a fixed time window. However, this comes at the cost of a reduced maximum un-
ambiguous detection range, which may introduce range ambiguity artifacts in practical
applications. Based on our observations of simulation results, ideal properties for a
SAS imaging waveform are provided in Section 4.1.3.1.

Field trial results further validated the practical advantages of waveforms obtained
through the WAF shaping. Since the imaging sidelobes in the water layer are dominated
by the ambiguity of the specular reflection or the backscatter of the lake bed, the
wideband gradient descent sequence (N = 1500) only offered slight improvement in SAS
imaging of corner reflectors on the lake bed, compared to a random BPSK sequence.
However, this sequence did exhibit lower imaging sidelobes in the sub-bottom layer,
suggesting the sequences designed through the WAF shaping may offer advantages for
sub-bottom target detection, where the sidelobe suppression is crucial for detecting
weak targets beneath the strong surface reflector.

In general, through simulations and field trials, we answered the first sub-question of
the main research question: “What is the relationship between the ambiguity properties
of a waveform and its corresponding SAS imaging performance? Is ambiguity function
shaping equivalent to waveform design for a SAS system?”. Although the WAF shaping
is not strictly equivalent to waveform design for a SAS system, it still provides a useful
and practical framework for improving the SAS imaging performance.
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Conclusion 5
In this thesis, we addressed the optimal continuous waveform design problem for a SAS
system from the perspective of the wideband ambiguity function shaping. To ensure
that the designed waveform has an optimal peak-to-average power ratio, an unimodular
constraint was considered.

In Chapter 2, we began by establishing a theoretical connection between the wide-
band ambiguity function shaping of a waveform and its impact on SAS imaging perfor-
mance. Specifically, we showed that the waveform design problem for a SAS system,
within a short integration time (during which the position and velocity of the system
can be considered approximately constant), can be seen as a wideband ambiguity func-
tion shaping problem. Using this approximation, we can simplify the waveform design
problem for the entire synthetic aperture as a wideband ambiguity function shaping
problem for a short waveform and then repeat the designed waveform periodically to
obtain the waveform for transmission.

In Chapter 3, we formulated the wideband ambiguity shaping problem as a non-
convex optimization problem and proposed four relaxation methods to solve it, in-
cluding the USSM-avg algorithm (based on the USSM [32]), the randomization-based
method, the wideband gradient descent method, and the narrowband approximation
method. The proposed methods use the average sidelobe energy in the RoI as the
objective function for optimization, resulting in better overall sidelobe minimization
performance compared to the USSM algorithm [32], which aims to minimize the max-
imum sidelobe. Among these methods, the wideband gradient descent method with
a warm start initialization showed the best performance in terms of average sidelobe
minimization in the RoI and computational efficiency.

In Chapter 4, the SAS imaging performance of waveforms designed by the wide-
band ambiguity function shaping was evaluated through both simulations and field
trials. Through SAS imaging simulations of a point reflector, we showed that wave-
forms with thumb-tack shaped mainlobe in its WAF and a low sidelobe region in a
well-designed RoI yield superior SAS imaging performance, particularly in imaging
scenarios with a short synthetic aperture. Additionally, we observed that reducing
the sequence length (or PRI) can enhance imaging quality by increasing the number
of waveform periods integrated within a fixed duration, thereby reducing the velocity
ambiguity of the waveform. However, this improvement comes at the cost of a reduced
maximum unambiguous detection range, which must be carefully balanced in practical
applications. Experiments based on field trials further supported our findings. Even
though it was expected that the SAS imaging performance of corner reflectors on the
lake bed is limited by ambiguities of the specular reflection or the backscatter of the
lake bed, we still observed slightly better imaging performance when using the sequence
obtained through the wideband ambiguity function shaping. Since the sidelobe sup-
pression is crucial for detecting weak sub-bottom targets beneath the strong surface
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reflector, where we expect that ambiguity artifacts from the lake bed no longer play
a role, the waveform obtained through the wideband ambiguity function may have
potential advantages for sub-bottom imaging.

In conclusion, this thesis demonstrates that the wideband ambiguity function shap-
ing offers a powerful and practical framework for continuous waveform design for SAS
systems. Although ambiguity function shaping is not strictly equivalent to the wave-
form design problem for SAS systems, it still provides a tractable and effective method
for improving the SAS imaging performance.

5.1 Future work

5.1.1 Future work on wideband ambiguity shaping algorithms

Despite the promising performance of the wideband gradient descent method for the
wideband ambiguity function shaping, several questions still remain for the wideband
ambiguity function shaping algorithms. Firstly, in terms of computational efficiency,
our approaches are generally more expensive than algorithms for narrowband ambiguity
function shaping, especially when the sequence length is long (e.g., N > 1000). Future
work could explore more efficient methods for relaxing the non-convex optimization
problem for the wideband ambiguity function shaping to reduce the computational
complexity without compromising performance.

Secondly, the objective function of our algorithms only minimizes the average side-
lobe energy in the RoI, which does not necessarily reduce the maximum sidelobe that
the USSM algorithm aims to minimize and may result in several high peak sidelobes
in the RoI. An alternative objective function could be a weighted sum of the average
sidelobe energy and the maximum sidelobe in the RoI. In this way, both the maximum
sidelobe and the average sidelobe energy are taken into account during the optimiza-
tion, which may lead to improved performance in the wideband ambiguity function
shaping.

Thirdly, it is also worth exploring the joint design of transmit waveform and receive
filter for the wideband ambiguity function shaping, as investigated in [31] for the nar-
rowband ambiguity function shaping. Such joint design of two separate sequences has
the potential to further improve the optimality of the sidelobe minimization in the RoI,
with the cost of a slightly lower SNR.

Lastly, the wideband gradient descent method was specifically used for the waveform
design for SAS systems in this thesis. It could be easily extended to other wideband
applications, such as the waveform design for underwater target tracking, where the
range-Doppler ambiguity of the waveform is also crucial for the tracking performance.

5.1.2 Future work on waveform design for SAS imaging

In this thesis, we have focused on periodic waveform design for SAS imaging, where a
single waveform is repeatedly transmitted. Although the designed periodic waveform
demonstrates better imaging performance compared with the conventional waveforms,
there are still several promising directions for further improving the SAS imaging per-
formance.
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Firstly, although some ideal properties of a good SAS imaging sequence are sug-
gested in Section 4.1.3.1, it is still unclear what would be the optimal selection for the
RoI Q and the sequence length N for SAS imaging. For example, we only considered
a rectangular-shaped RoI with uniform weights for the wideband ambiguity function
shaping in this thesis. However, since some delay-Doppler pairs (τ, α) in the RoI will
not be mapped to the SAS imaging domain, we may further improve the SAS imag-
ing performance by not including those pairs during the wideband ambiguity function
shaping. The design of the sequence length N and the RoI Q still requires further
investigations.

Secondly, instead of designing a single periodic waveform, another possible direction
could be the design of a train of waveforms, where each waveform may occupy a different
frequency band. This approach introduces greater flexibility in ambiguity function
shaping, and may enable the use of advanced coding strategies to further suppress the
imaging sidelobe, improve the imaging robustness, and mitigate the range ambiguity
caused by using periodic waveforms.
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Appendix A
A.1 Proof: the volume invariance property of narrowband

ambiguity function

Recall that the expression of a NAF is

χN(τ, fD) =

∫ ∞

−∞
xbb(t)x

∗
bb(t− τ)ej2πfDtdt (A.1)

Then we have

|χN(τ, fD)|2 =
∫ ∞

−∞

∫ ∞

−∞
xbb(ta)x

∗
bb(ta − τ)ej2πfDtax∗

bb(tb)xbb(tb − τ)e−j2πfDtbdtadtb

=

∫ ∞

−∞

∫ ∞

−∞
xbb(ta)x

∗
bb(ta − τ)x∗

bb(tb)xbb(tb − τ)ej2πfD(ta−tb)dtadtb

(A.2)

The volume under the surface of a narrowband ambiguity function can be expressed as

VNAF =

∫ ∞

−∞

∫ ∞

−∞
|χN(τ, fD)|2dτdfD (A.3)

By substituting Equation A.2 into Equation A.3, we obtain

VNAF =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xbb(ta)x

∗
bb(ta − τ)x∗

bb(tb)xbb(tb − τ)ej2πfD(ta−tb)dtadtbdτdfD

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
xbb(ta)x

∗
bb(ta − τ)x∗

bb(tb)xbb(tb − τ)[

∫ ∞

−∞
ej2πfD(ta−tb)dfD]dtadtbdτ

(A.4)

Since
∫∞
−∞ ej2πfD(ta−tb)dfD = δ(ta − tb), we have

VNAF =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞
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xbb(ta)x

∗
bb(ta − τ)x∗

bb(tb)xbb(tb − τ)δ(ta − tb)dtadtbdτ

=
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=
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|xbb(ta)|2|xbb(ta − τ)|2dτdta

(A.5)
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Let tc = ta − τ , and substituting it into Equation A.5, we get

VNAF =

∫ ∞

−∞

∫ ∞

−∞
|xbb(ta)|2|xbb(tc)|2dtcdta

=

∫ ∞

−∞
|xbb(tc)|2dtc

∫ ∞

−∞
|xbb(ta)|2dta = (∥xbb(t)∥2)2

= |χN(0, 0)|2

(A.6)

Therefore, the volume under a NAF is a fixed constant that only depends on the energy
of the transmit signal.

84


	Abstract
	Acknowledgments
	Introduction
	Background
	SAS imaging system
	Ambiguity function
	Derivation of the (wideband) ambiguity function
	Derivation of the narrowband ambiguity function
	Properties of the ambiguity function

	Review of conventional waveforms
	Frequency modulated waveform
	Phase modulated waveform
	Other waveforms and ideal properties for the SAS imaging waveform

	Literature review of ambiguity function shaping methods
	Conclusion

	Wideband Ambiguity Function Shaping
	Non-convex formulation of the wideband ambiguity function problem
	Non-convex formulation of the periodic wideband ambiguity function problem
	Algorithms for the wideband ambiguity function shaping
	USSM-avg algorithm
	Randomization-based method
	Wideband gradient descent method
	Narrowband approximation method

	Evaluation and comparison of the proposed algorithms
	Simulation settings and evaluation metrics
	Simulation results
	Discussions and conclusion


	Waveform Design for SAS imaging
	SAS imaging simulation
	Simulation settings
	Simulation results
	Discussion

	Field Trial
	SAS imaging setup
	Sequence design for the field trial
	Field trial results
	Discussion

	Conclusion

	Conclusion
	Future work
	Future work on wideband ambiguity shaping algorithms
	Future work on waveform design for SAS imaging


	Appendix
	Proof: the volume invariance property of narrowband ambiguity function


