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Abstract

Classifying continuous sequences of human activities is a current research challenge due to the unconstrained duration of the

constituent activities. Segmentation of these sequences into single-activity segments is under investigation as a potential solution

to this challenge and has been studied in this work. A segmentation method has been proposed based on the extracted Rényi

entropy of micro-Doppler spectrogram representations of human motion. The proposed method has been compared to a state of

the art method for three different experimental data sets, for various sequence types, and in varying signal-to-noise regimes. It has

been shown that the performance of the proposed method is up to 55± 22% higher than the reference method when applied to

different data sets with unchanged parameters. Additionally, improved performance under degraded signal-to-noise ratio (SNR)

conditions has been demonstrated for the proposed method. Finally, two methods for sensor fusion have been formulated for

enhanced segmentation performance when multiple radar nodes are available, and have been demonstrated to increase perfor-

mance by up to 10± 2%. The improved segmentation performance is expected to lead to improvements in continuous activity

classification.

1 Introduction

Monitoring human activities with radar is an active field of

research due to the advantageous characteristics of radar sens-

ing over alternative sensors. The non-contact, all-visibility,

privacy preserving nature of radar observations is a valu-

able prospect for e.g. healthcare, where potential applications

include vital sign monitoring [1, 2], gait analysis [3], fall

detection [4, 5], and activity classification [5–10].

In the case of activity classification, the major challenge

is the step from classifying single, isolated activities, to clas-

sifying continuous sequences containing various activities of

unconstrained duration performed successively. One method of

attempting to tackle this challenge is the segmentation of a con-

tinuous sequence of activities into its constituent single activity

parts. This process of segmentation is often performed based on

brief pauses inserted between subsequent activities [11, 12], or

on other notable changes in the observed motion [13].

In this work, a segmentation method is proposed based on

a statistical descriptor of the activity sequence, namely the

Rényi entropy. It is expected that entropy will better reflect

changes in motion types, rather than solely their presence or

absence. The proposed method is compared with a state of

the art method [13] from literature and evaluated over three

different experimental data sets, and under varying signal-

to-noise conditions. A performance metric is proposed to

quantify segmentation performance. The proposed method is

shown to have higher average performance over the three data

sets when parameters are kept unchanged, indicating that re-

optimisation of parameters per data set is less necessary than

for the reference method. Better performance is also demon-

strated in degraded signal-to-noise conditions. Additionally,

sensor fusion methods are proposed and verified with an exper-

imental data set, collected with a network of five radars. Here,

performance improvement is also shown.

The main contributions in this work are as follows:

• Introduction of a novel method for human activity sequence

segmentation based on Rényi entropy.
• Application of the proposed segmentation method and an

alternative method from the literature to 3 different experi-

mental data sets, with subsequent performance evaluation.
• Analysis of sensor fusion methods for segmentation per-

formance improvement when data from multiple radars are

available.

In Section 2 the utilised data sets and relevant processing

steps are described, followed by a formulation of the segmen-

tation methods in Section 3. Aspects related to the performance

evaluation of the segmentation methods are outlined in Section

4. Section 5 contains the results of performed experiments, with

conclusions in section 6.

2 Data Acquisition and Pre-Processing

In what follows, the data used in this work are described,

as well as relevant pre-processing steps. Data sets containing

sequences of human activities from three sources are utilised:

a set collected by researchers from the University of Alabama

(ALA) [13], a set collected by researchers from the University

of Glasgow (GLG) [14], and a set collected by researchers from
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Table 1 Description of data sets (top), and specific sequence

types in the TUD data set (bottom).

ALA University of Alabama data set [13] Data set containing sequential motions of 3 daily activities (walking,

sitting, standing up) and 15 ASL signs. 12 Subjects.

GLG University of Glasgow data set [14] Data set including sequences of 6 human activities, namely walking,

sitting on a chair, standing up, bending to pick up an object, drinking a

glass of water, and simulating a frontal fall. 16 Subjects.

TUD Delft University of Technology data set [15] Data set of 9 human activities including, among others, walking, sit-

ting, and falling. Seven sequence types are collected, five of which are

described in the lower part of this table. 15 Subjects

- Walk and Stop Walking and stopping at random intervals

- Walk and Fall Walking and falling randomly, repeatedly

- Sit Sitting down and standing up, repeatedly

’029’ Fixed location mix Mix of all activity classes, performed in fixed locations (±1m)

’030’ Random location mix Mix of all activity classes, performed in random locations in the area

of observation

the Delft University of Technology (TUD) [15]. Descriptions

of these data sets are found in Table 1.

2.1 TUD Data Set

The TUD data set is acquired by means of a set of five

PulsON P410 Ultra Wideband radars with a centre frequency

and bandwidth of 4.3GHz and 2.2GHz respectively. The

monostatic, omnidirectional radars are arranged in a semicir-

cle with a diameter of 6.38m, where a concentric circle of

diameter 4.38m is designated as the area of observation. A

variety of activities are performed in this area, in sequences of

120 seconds in duration. The sequences are manually labelled,

resulting in a ground truth signal of activity labels accompa-

nying every sequence. The sequence names and descriptions

can be found in Table 1. This data set has been made publicly

available [15].

Each of the five pulse radar nodes outputs a real-valued

vector corresponding to the back-scattered signal. A Hilbert

transform is applied, resulting in a complex-valued IQ vector

which is reshaped into a matrix with short-time and long-time

dimensions. A Fast Fourier Transform (FFT) is subsequently

performed across the short-time dimension of the complex-

valued matrix. From this FFT, the frequency bin corresponding

to the centre frequency of 4.3GHz is isolated and a Short-Time

Fourier Transform (STFT) is performed on this complex vec-

tor. For the STFT a Hanning window of 128 samples with an

overlap of 120 samples is used, with a sample time of 8.2ms.
The magnitude of the complex-valued STFT will hereafter

be referred to as the spectrogram, and will be denoted as X
orXmn, withm indicating Doppler frequency index and n indi-

cating time index. Examples of spectrograms can be viewed in

Guendel et al., 2022 [8].

3 Sequence Segmentation

In this section, two methods are described for the segmenta-

tion of a sequence of human activities into individual activities.

Both methods function by locating transition points in spectro-

grams, which can be used to segment the input sequence.

3.1 Proposed Method

The sequence segmentation method proposed in this work

relies at its core on the detection of rapid fluctuations in sig-

nal entropy. The motivation for entropy as a descriptor is that it

is expected to grant a better insight in the nature of an input sig-

nal compared to alternative quantities such as the Power Burst

Curve (PBC) [9, 13]. Specifically, the Rényi Entropy Hα [16]

is first extracted as in [17] from an input spectrogram X after

normalising every time bin Xn separately:

Hα(Xn) =
1

1− α
log

(∑
m

(
Xmn∑
m
Xmn

)α
)

(1)

for α ≥ 0 and α �= 1. Here Xmn indicates the mth frequency

bin of the nth time bin. In this representation, every time bin

of the input spectrogram is treated as a probability distribution

whose entropy can be computed, with frequency as the dis-

crete random variable and the normalised spectral magnitude

as the probability. The parameter α governs the extent to which

large probabilities influence the entropy, with entropy values

dominated by high-probability events for larger values of α.
Computing (1) for all time bins results in a discrete 1-D time

series Hα[t] for a given spectrogram.

To detect rapid changes in entropy, a difference threshold

over a fixed time interval is utilised:

|Hα[t]−Hα[t+ Tlag]| ≥ βσH (2)

with Tlag the time interval, σH the standard deviation of the

entropy over the duration of the sequence, and β a multi-

plicative factor. A multiple of the entropy standard deviation

is chosen to couple the segmentation parameters to the input

data as much as possible, and to minimise the necessity of fine-

tuning parameters per data set. Whenever the threshold from

inequality (2) is exceeded, a transition point is declared and

stored at that time instant.
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3.2 STA/LTA Segmentation

As a primary comparison to the proposed method, ’short term

average over long time average’ (STA/LTA) is utilised as a

change detection algorithm. Following [13], the upper and

lower envelopes u and l of a spectrogram X are computed by

setting the cumulative sum of the magnitudes in a time bin to

95% and 5% of the total respectively and solving for the cor-

responding frequency bins. The absolute distance between the

upper and lower envelope b = |u− l|will hereafter be referred

to as the bandwidth of the spectrogram and is denoted as a dis-

crete function of time b[t]. The short term average and long

term average of the bandwidth at a time t are given by

STA[t] =
1

TS

t+TS∑
t′=t

b[t′]

LTA[t] =
1

TL

t∑
t′=t−TL

b[t′]

respectively, with TS and TL indicating the length of the short

and long windows respectively. Starting and ending points of

activities in the sequence are indicated by two sets of conditions

respectively:

STA[t] > σ1 &
STA[t]

LTA[t]
> σ2

STA[t] < σ3 &
STA[t]

LTA[t]
< σ2.

A STA/LTA ratio exceeding σ2 indicates that a change in the

signal is occurring. Parameter σ1 is a threshold to prevent noise

from triggering the start of a segment, and σ3 is in place to

delay the end of the segment until a given motion has ceased

sufficiently.

4 Case Studies

In the current section, aspects related to the evaluation and

comparison of the segmentation methods are presented.

4.1 Performance Metric

In order to compare segmentation effectiveness, a perfor-

mance metric is proposed here that evaluates both the quan-

tity of found transition points, as well as their proximity to

ground truth transitions. This dimensionless metric will be used

throughout this work. A trapezoidal scoring function is defined

around each ground truth transition such that a found transition

at time ti is assigned a score of:

f [ti] =

⎧⎪⎨
⎪⎩
1, |ti − tGT

j | < Ttol

1− |2(ti−tGT
j −Ttol)|
Ttol

, Ttol ≤ |ti − tGT
j | ≤ 3

2
Ttol

0, otherwise
(3)

where tGT
j indicates the jth ground truth transition point and

Ttol is a tolerance region around this point. Figure 1 graphically

Fig. 1 Graphical representation of the performance metric

function and related quantities.

represents the function and its related quantities. The toler-

ance region allows for small deviations of found transitions

from ground truth transitions not to be penalised. This toler-

ance region helps for example to negate the effects of human

error in ground truth labelling, as well as that of the subjective

notion of the exact location of a transition point between two

activities. The tolerance region is empirically set to 1s based

on visual inspection of ground truth labels and corresponding

spectrograms. Only the found transition in closest proximity to

a ground truth transition receives a score f [ti], all other transi-
tions automatically receive a score of f [ti] = 0 unless they can

be associated with a different ground truth transition. A sin-

gle found transition can only be matched to a maximum of one

ground truth transition. The scores for all found transitions are

summed and divided by the total amount of ground truth tran-

sitions, jmax, or the total amount of found transitions, imax,

whichever is greater:

S =

∑
i
f [ti]

max{imax, jmax} . (4)

These operations result in a score S ∈ [0, 1] ⊂ R for a set of

found transitions that rewards both timeliness and quantity of

found transitions.

4.2 Signal Fusion

As described in Section 2.1, the activities in the TUD data set

are observed by a network of five radar nodes simultaneously.

To investigate the effectiveness of sensor fusion for segmen-

tation performance increase, two methods of signal fusion are

proposed here. Consider a set of spectrograms G originating

from a corresponding combination of radar nodes. For the first

method, fusion through summation, spectrograms are summed

element-wise over this set:

Fmn =
∑
X∈G

Xmn (5)

where F is the final, fused spectrogram. The second fusion

method entails the concatenation of the spectrograms of inter-

est in the frequency dimension, such that

F n = X�
n Y �

n . . .� Zn, X,Y ,Z ∈ G, (6)
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where the subscript n indicates the nth time bin of a spec-

trogram and the operator � indicates concatenation. For both

methods, the fused spectrogram F is subsequently utilised as

the input for further segmentation processing as in Section 3.1.

4.3 Method Optimisation

In order to be able to compare the two methods described in

Section 3, an optimisation of their parameters is performed

under various conditions. Optimisation is achieved by means

of a Genetic Algorithm (GA) intended to maximise the per-

formance within each method’s parameter space. Specifically,

the GA from the Global Optimization Toolbox for MATLAB

is employed with default parameters except for the stopping

condition, which is set to a total run time of 2 hours. The aver-

age improvement per iteration after this time is noted to be less

than a percent of typical standard deviations of performance

between sequences. As discussed in section 3.2, the parame-

ters for STA/LTA segmentation are the noise thresholds σ1 and

σ3, the ratio threshold σ2, and the two window sizes T1 and

T2. For the proposed method, the parameters are the entropy

parameter α, and the lag window size Tlag.

5 Results

In this section the results of several experiments are presented.

In Tables 2 and 3, an investigation in the optimality of

method parameters and their portability between different data

sets and sequences is summarised. The parameters of each

method are optimised for a particular data set or sequence

type, and subsequently applied to the remaining data sets or

sequence types. It should be noted that parameters are scaled

where applicable, e.g. window sizes for differing sample rates.

The off-diagonal elements in both tables reflect the portabil-

ity of optimised parameters across different data sets. It is

noted that the proposed method generally results in higher per-

formance than its STA/LTA counterpart. Additionally, it can

be seen that the lowest performance elements in both tables

are associated with the Glasgow data set, indicating general

difficulties in automatically segmenting these sequences.

Table 2 Segmentation performance for the proposed method,

with parameters optimised for one out of four sets of sequences

and subsequently applied to all four sets to gauge portability of

parameters. Subscripts ’W’ and ’M’ refer to sequence types

Walk and Stop, and ’mix 030’ respectively. Refer to Table 1 for

sequence descriptions.

Optimised for:

[%] TUDW TUDM ALA GLG

Applied

on:

TUDW 91±7 83±11 61±13 72±13

TUDM 59±12 74±10 57±9 46±8

ALA 40±10 75±12 80±10 39±11

GLG 53±16 48±10 36±7 62±14

Figure 2 summarises the results of the sensor fusion experi-

mental work. The fusion methods from Section 4.2 are applied

Table 3 Segmentation performance for the STA/LTA-based

method, with parameters optimised for one out of four sets of

sequences and subsequently applied to all four sets to gauge

portability of parameters. Subscripts ’W’ and ’M’ refer to

sequence types Walk and Stop, and ’mix 030’ respectively.

Refer to Table 1 for sequence descriptions.

Optimised for:

[%] TUDW TUDM ALA GLG

Applied

on:

TUDW 87±10 76±10 41±11 17±15

TUDM 56±14 76±10 44±6 14±11

ALA 51±17 76±12 84±8 24±11

GLG 4±8 6±13 47±9 64±15

to the Walk and Stop and ’mix 030’ sequences, before being

processed with the proposed segmentation method. The results

indicate that the spectrogram summation method exhibits the

most notable effect on performance, with an improvement of

7± 3% in the case of walking and stopping when increasing

from one node to two nodes. Further increases in amount of

fused nodes give diminishing returns. For the mixed sequence,

a performance increase of 3± 1% is noted when increasing the

amount of nodes from one to five. The performance increases

achieved through spectrogram summation can be explained by

the noise-mitigating effects of coherently summing the sub-

jects’ micro-Doppler signatures, which will be particularly

noticeable when the subject becomes stationary.

Fig. 2 Segmentation performance of the proposed method vs

amount of fused radar nodes for 2 methods of fusion and for 2

sequence types. ’Sum’ refers to summation of spectrograms,

’Conc’ refers to their vertical concatenation, subscripts ’W’

and ’M’ refer to sequence types Walk and Stop, and ’mix 030’
respectively. Refer to Table 1 for sequence descriptions.
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Figures 3 and 4 display a breakdown of performance for both

the proposed segmentation method and STA/LTA over differ-

ent types of sequences in the TUD data set. Parameters are

optimised for the Walk and Stop sequence and the ’mix 030’
sequence respectively, and applied to all the other sequences.

Both methods give comparable results, and it is noted that opti-

mising on the mixed sequence results in a better performance

overall, at the cost of a decrease in performance for the simpler

Walk and Stop sequences.

Fig. 3 Segmentation performance for various sequences in the

TUD data set and for two segmentation methods. Refer to Table

1 for sequence descriptions. ’All’ refers to all sequences.

Lastly, Figure 5 shows the effects of signal-to-noise ratio

(SNR) on segmentation performance for both methods. SNR is

controlled by adding complex-valued Additive White Gaussian

Noise (AWGN) to the signal in the frequency bin correspond-

ing to the centre frequency, obtained after performing the first

FFT described in Section 2. The performance for the proposed

method decreases less rapidly with decreasing SNR than the

method based on STA/LTA. This is possibly attributable to the

parameter σ3 in the STA/LTA method which is intended to

serve as a bandwidth threshold for an activity end-point. This

parameter is not adaptive and thus, for low SNR, can prevent

activity end-points from being detected as noise may cause the

bandwidth to remain above the threshold.

6 Conclusion

In this work, segmentation of continuous sequences of human

activities is explored through the application and compari-

son of two methods. The first of these methods is proposed

in this work and constitutes the extraction of Rényi entropy

from an input spectrogram, and the subsequent evaluation of

Fig. 4 Segmentation performance for various sequences in the

TUD data set and for two segmentation methods. Refer to Table

1 for sequence descriptions. ’All’ refers to all sequences.

Fig. 5 Segmentation performance versus signal-to-noise ratio

(SNR) for a sequence of walking and stopping.

said entropy for transition points. Segmentation accuracy is

gauged in different contexts, and improvement of the proposed

method over the reference STA/LTA method is noted in the fol-

lowing two cases. Firstly, when applying method parameters

optimised on one data set to a different data set, an average
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performance improvement of 11 percentage points is achieved,

with lower and upper bounds of −11 and +42 percentage

points respectively. This indicates improved portability of the

proposed method parameters. Secondly, when decreasing the

SNR of the input spectrograms, the performance of the pro-

posed method declines less rapidly than the reference method,

indicating improved noise resilience. Additionally, it is shown

that sensor fusion through spectrogram summation results in

increased segmentation performance of up to 10± 2% using

the proposed method.

In future work, the influence of varying SNR on perfor-

mance may be investigated further by implementing adaptive

features in the proposed method. Since the parameter α influ-

ences the relative contribution of high and low values to the

entropy, it is expected that it will have a noise-mitigating effect

on performance. Furthermore, sensor fusion in this work has

been examined by altering the quantity of sensors, but dif-

ferent geometries may give interesting insight in maximising

performance whilst minimising sensor utilisation. A valuable

addition to the proposed method would be to allow for differ-

ent levels of ’granularity’ in segmentation, i.e. a user-defined

threshold as to what constitutes a ’true’ transition, as this is a

subjective matter in reality.

Finally, the end goal of segmentation is to improve the over-

all classification accuracy of continuous sequences. An abstract

measure of performance is used in this work to enable a prelim-

inary comparison of sequences and methods, but classification

accuracy should be a final metric to strive towards.
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