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A B S T R A C T

Bio-inspired control systems attract significant interest in the scientific community. The advantage of neural 
systems lies in their ability to adapt to control processes. Path-following tasks in automated vehicles and 
advanced driver assistance systems are an essential component related to vehicle safety and performance. It is 
known that model-based controllers, which integrate a vehicle model into the control logic, are more effective 
than geometry-based controllers. However, a disadvantage of model-based controllers is the lack of adaptation 
capability to changing vehicle dynamic conditions. To address this issue, an adaptive neural controller for path- 
following tasks is proposed based on neural networks, particularly Spiking Neural Networks and Associative 
Maps. Consequently, associative maps and neural interpolation via the modelling of non-linear synaptic con
nections are brought to a spiking neural network to perform adaptive control tasks. Neural associative maps are 
used to derive functional relationships between neural inputs and outputs, further enhancing inference capa
bilities. In addition, neural interpolation with non-linear synaptic connections enables efficient pairwise asso
ciation. Thus, by reproducing a linear quadratic regulator with a learning-capable neural network, it is possible 
to adjust for discrepancies and changes in dynamics through spike-timing-dependent plasticity. Results 
demonstrate that the adaptive controller is effective in maintaining the initial tracking performance of the 
vehicle while adapting to changing dynamic conditions with a computational cost that allows real-time execu
tion. The proposed strategy results in lower error levels in lateral tracking after the learning process, while 
providing similar performance on heading.

1. Introduction

The control of vehicle lateral dynamics is an active and constantly 
evolving research area, especially with the rise of automated vehicles 
and advanced driver assistance systems (ADAS). Efficient path-following 
control ensures driver safety and proper vehicle operation [1].

Various control techniques have been intensively applied to vehicle 
path-following control. Geometry-based controllers, such as the Stanley 
controller [2], have often been used in the past but have demonstrated a 
limited performance in a wider driving range. Instead, model-based 
controllers that integrate a vehicle model into the control logic have 
proven to be more effective. Some of the most common model-based 
controllers are the linear-quadratic regulator (LQR) [3], sliding mode 
control (SMC) and model predictive control (MPC) [4].

One of the main disadvantages of model-based controllers is the need 
for adaptation. Vehicle dynamics dramatically change due to weather 

conditions, road surface and component wear, e.g. tires. In addition, 
there are always discrepancies between the model and actual vehicle 
behaviour. To address this issue, various adaptive control approaches 
have been proposed. One option is to use a more complex model and 
update it over time to adapt to changing conditions, adding this func
tionality to the MPC [5] or SMC [6]. However, this requires significant 
computational costs. Alternatively, a less demanding control technique, 
such as LQR, can be used along with an adaptive algorithm to minimize 
discrepancies, resulting in a lower computational budget.

An emerging option for adaptive control is the use of neural networks 
[7]. Neural networks are able to learn from data, making them a 
promising approach to adapt to changing situations. Adaptive neural 
network applications in non-linear control include electromechanical 
systems [8], robotics [9], vehicles [10] or autonomous systems [11]. 
Spiking neural networks (SNN) are a type of neural network inspired by 
the structure and function of biological neural networks [12]. They have 
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successfully been used for non-linear control [13] including robotics 
[14–16], vehicles [17,18] or autonomous systems [19]. Other applica
tions of spiking neural networks include computer vision [20,21], neu
romorphic computing [22,23] and information processing [24,25].

This paper proposes an adaptive path-following algorithm for auto
mated vehicles based on spiking neural networks and associative maps. 
First, an LQR controller is used as a reference [26]. Next, this controller 
is replicated using a neural network endowed with learning capabilities. 
This way, the complete system is capable of adapting to discrepancies 
and changes in dynamics through continuous learning. Associative maps 
allow the efficient integration of the LQR controller functionality. 
Additionally, associative maps are a learning technique used to create 
associations between inputs and outputs, so that inferences can be made 
from them.

Therefore, the LQR control function is subdivided into sub-functions, 
similar to an approach in genetic programming [27]. Thus, some neural 
sets function as lookup tables to integrate controller operations [28]. 
Neural structures with this functionality can be found in biological 
systems. In these cases, lookup table interpolation is performed through 
non-linear synaptic junctions [29,30]. This requires the implementation 
of "and-like" operations, where the connections between neurons 
perform some forms of multiplication [31]. The Radial Basis Function 
(RBF) is used to divide the input space and perform pairwise connections 
through axo-axonic synaptic junctions [32–34]. This study proposes 
using three synapse models to represent the main types of biological 
synapses: axo-dendritic, dendro-dendritic, and axo-axonic. Unlike con
ventional neural network models that rely only on axo-dendritic con
nections, this approach enables a more detailed and biologically 
accurate representation of neural dynamics.

To implement adaptation, it is necessary to define the learning pro
cess that intervenes during control. There are three basic learning par
adigms [35,36]: supervised learning using error vectors [19,37], 
reinforcement learning using scalar reward signals [38,39] and unsu
pervised learning using statistics of the input signal itself.

Supervised learning was chosen over the other approaches because it 
only requires a known error vector, which is available in this context. On 
the contrary, reinforcement learning requires a scalar reward signal, 
which may not be available or difficult to define during control. In turn, 
unsupervised learning relies on the statistics of the input signal itself, 
which may not be sufficient to achieve the desired adaptation.

Making use of neuronal implementation based on SNN, a bio- 
inspired method based on the temporal difference between pre- and 
post-synaptic neuron spikes is used. This learning method, called spike- 
timing-dependent plasticity (STDP), is modulated by the error vector at 
each time step, similar to how dopamine modulates learning in biolog
ical systems. A more extensive description of this learning method can 
be found in [36].

In this paper, the proposed methodology has been applied to perform 
path tracking. The performance of the controller is evaluated by means 
of simulations in inter-urban driving environments. Key Performance 
Indicators (KPIs) are established to evaluate the performance of the 
adaptive controller, allowing for a comparison of the response with an 
LQR controller without adaptation. The results indicate that the pro
posed controller can maintain the initial tracking performance of the 
vehicle while adapting to changing dynamic conditions.

The main contributions of this study are as follows: 

• Implementation of spiking neural networks to reproduce the 
behaviour of a linear quadratic regulator (LQR) and provide it with 
real-time adaptation capability.

• Definition of neural associative maps to derive functional relation
ships between neural inputs and outputs, thus enhancing inference 
capabilities.

• A framework inspired by genetic programming that decomposes the 
control problem into subfunctions, thus facilitating the development 
of novel controllers.

• To develop a methodology for performing neuronal interpolation 
with non-linear synaptic junctions. More specifically, the replication 
of axo-dendritic, dendro-dendritic and axo-axonic biological synap
ses allows efficient pairwise associations.

• Implementation of the proposed approach to the development of a 
path following LQR SNN controller with real-time learning 
capability.

One of the difficulties faced in this type of system is the need to 
execute the control loop in real time, which requires simplifying the 
complexity of the proposal to maintain this requirement without 
compromising the performance of the controller. The proposal pre
sented here allows its execution in real time with a satisfactory result in 
terms of lateral error control and heading.

This paper is structured as follows: The neuronal network is 
described in Section 2. Section 3 is devoted to the learning procedure. 
Section 4 presents the LQR controller. A sensitivity and stability evalu
ation and a performance comparison are included in Section 5. The 
simulation setup is defined in Section 6. The results of simulations and 
experiments and a discussion are included in Section 7. Finally, con
clusions are drawn in Section 7.

2. Spiking neural network

This section is devoted to describing the main components of the 
spiking neural network that will be used to develop a neural LQR 
controller with the learning capability to perform path tracking. 
Generally speaking, neural networks are formed by linking neurons 
through synaptic connections. Thus, by grouping different neurons, it is 
possible to create a structure capable of performing the desired task. 
Next, the three main elements that constitute the proposed spiking 
neural network, i.e. the neuron, the synapse and the neural structure, are 
described. Each subsection details the mathematical model of each 
component respectively.

2.1. Neuron model

The main component of a neural network is the neuron. Neurons are 
composed of dendrites, body, and axons (Fig. 1). Both dendrites and 
axons communicate with the environment [40]. The behaviour of these 
neural connections, called synapses, is described in Section 2.2. The 
primary function of the neuron’s body, known as the soma, is to convert 
the concentration of neurotransmitters in the synapse (ρ) into electrical 
impulses. These impulses are produced by the current (c) generated in 
the dendrites and contribute to the potential of the neuron (u), which 
then travels along the axon as an electrical impulse.

In this paper, a type of neuron that encodes information in the form 
of spikes, as occurs in biological systems, is used. In particular, the Leaky 
Integrate-and-Fire (LIF) [41] neuron model is employed to reproduce 
the dynamic processes occurring inside biological neurons. This 

Fig. 1. Neuron model.
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simplified model resorts to only one differential equation per neuron, 
significantly reducing its computational cost compared with more 
complex models. To computationally reproduce the biological process 
carried out in the neuron of conversion of neurotransmitter concentra
tion into electrical impulses, two stages are implemented. First, tuning 
curves are used to relate the neuronal gain as a function of the spatial 
position of the impulses. Next, the activation dynamics model its tem
poral response. These processes are described next.

2.1.1. Tuning curves (ρ-c)
Each neuron of the network has an associated tuning curve [42] that 

relates the actual concentration of neurotransmitters with the current 
generated in the neuron body. This way, tuning curves allow for changes 
in the response of the neuron based on the concentration of neuro
transmitters. To this end, Radial Basis Functions (RBFs) are used in this 
study [43]. This selection was made because they allow for the 
approximation of multivariable functions by adding them linearly. 
Consequently, an RBF tuning curve is assigned to each neuron in such a 
way that the linear combination of all neurons represents the process 
variable.

Fig. 2 shows RBF using a different selection of distribution centres (μ) 
and variances (σ2). Eq. (1) represents the Gaussian tuning curve that 
reproduces the current for each neuron n, m being the total number of 
neurons. This current is a function of the concentration in the synapse 
(ρ) or an external variable (vin). In the case of sensory neurons ρ=vin. 
The position of each neuron in space is described by the centre (μ) of the 
Gaussian bell. 
⎧
⎪⎨

⎪⎩

c(n, ρ) = e
− (μ(n)− ρ)2

2σ2

μ(n) = ρmin +
n − 1
m − 1

(ρmax − ρmin)

(1) 

As can be seen in Fig. 2b, the RBF tuning functions of the neurons are 
uniformly distributed in the working range [ρmin, ρmax]. Each Gaussian 
bell represents the spatial position of a neuron in the input range. 
Therefore, depending on the neurotransmitter concentration (ρ), a 
certain number of neurons are activated, each of them generating the 
corresponding current value (c). This way, neural activity is distributed 
among a limited number of neurons, with those closer to the input level 
of neurotransmitter concentration responding more actively.

On the one hand, this methodology prevents very high neuronal 
activity, as can be seen in (Fig. 2c), which would imply high energy 

consumption in a biological system. On the other hand, it also avoids a 
very low activity which would negatively affect the input discretization, 
as can be observed in (Fig. 2a).

2.1.2. Activation dynamics (c-u)
The activation dynamics defines the firing activity of the neuron 

[44]. In this work, activation dynamics is modelled using Eq. (2), which 
reproduces the behaviour of the LIF neuronal model making use of a 
time constant (τ). This model converts the current c(n,ρ) obtained from 
the tuning curves into the neuron (u) potential over time. Additionally, 
when this potential reaches the threshold value (uth), it resets to its bias 
value (u0), which generates an electrical impulse, also called spike. The 
time at which this occurs is known as the time of the last spike (ts). 

{ u̇(n) = τ (c(n, ρ) + u0 − u(n))

if u(n) > uth then

{
u(n) = u0

ts(n) = t

(2) 

2.2. Synapse model (u-ρ)

The synapse is the component of the neuron that allows spikes to pass 
from an output neuron to an input neuron via neurotransmitters. 
Different synaptic connections can occur depending on the zone of the 
neuron involved, giving rise to three types of synapses: axo-dendritic, 
dendro-dendritic and axo-axonic [34].

The concentration (ρ) of these neurotransmitters is responsible for 
enhancing or decreasing the response of the post-synaptic neurons. This 
work proposes the use of the three types of synapse models. Each model 
reproduces the behaviour of the three main existing biological synapse 
types. On one hand, axo-dendritic and dendro-dendritic connections are 
considered linear. On the other hand, multiplication is assigned to axo- 
axonic synapses to reproduce non-linear connections. Therefore, an 
appropriate selection of synapse types is essential to establish the 
desired behavior of the neural network.

Fig. 3 shows the possible configurations between the axons and 
dendrites of two neurons. The most common synaptic connection is axo- 
dendritic. In this type of synapse, the axon of one neuron connects with 
the dendrites of another. This connection is usually considered linear 
and can include a delay in the release of neurotransmitters. Similarly, 
the dendro-dendritic connection between two dendrites of different 
neurons is usually modelled like the axo-dendritic connection. However, 
the axo-axonic neuron, produced between two axons, usually exhibits 

Fig. 2. Tuning curves: low a), medium b), and high c) activity.
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non-linear behaviour, where one of the axons directly modulates the 
other. This behaviour can be multiplication or a firing detector in a 
digital "and-like" operation.

Consequently, for linear connections (axo-dendritic and dendro- 
dendritic), Eq. (3) is used to convert the membrane potential into 
neurotransmitter concentration, which is proportional to the firing rate. 
To do so, the firing rate is defined as the inverse of the time elapsed since 
the last spike, calculated as the difference between the current time (t) 
and the time of the last spike (ts). Additionally, a gain term (sg) and bias 
value (s0) have been added to compensate for residual neuron activity. 

ρ(ts) =
(

sg

(t − tpre
s ) − s0

)

W (3) 

Where W represents the weight of the synaptic connection.
To reproduce the non-linear response of axo-axonic connections, it is 

necessary to include the neuronal activity of both axons. To this end, a 
multiplication operation is performed [45], according to: 

ρ
(
tpre
s , tpost

s
)
=

(
sg

(t − tpre
s ) − s0

)

W
(

sg
(
t − tpost

s
)
− s0

)

(4) 

where (post) is the post-synaptic neuron, and (pre) is the presynaptic 
neuron.

Motor neurons are connected to the environment; therefore, neuro
transmitter concentration is assigned to an output variable (vout = ρ). 
Similarly, in the case of sensory neurons, an input variable is assigned (ρ 
= vin).

2.3. Neural structure

By combining neurons and synapses, it is possible to create different 
neural structures. In this proposal, an associative map is required to 
implement the LQR controller in a neural network. Poggio [29] pro
posed an approach to modelling "how the brain might work", using a 
Gaussian function as the only factorizable RBF. The Gaussian function is 
used to represent any function in a physiologically plausible manner by 
establishing relationships between pairs of variables (Fig. 4).

For this purpose, Poggio proposed that the brain is composed of 
’modules’ that can approximate any multivariable function. The orga
nisation of the modules for a three-variable function is shown in Fig. 4. 
In this case, inputs x and y, symbolizing a receptive field, are discretized 
using Gaussian functions and an associative map. The output is obtained 
using function G2 = f(x,y). Variable z is also associated with function G1 
= g(z). Finally, the function that associates the three variables by 
combining G1 and G2 through multiplication is defined by G3 = f(x,y)⋅g 
(z). Poggio stated that the combination of multiple variables could be 
replicated by using only the multiplication operator.

In this study, Poggio’s theory is applied to create associative maps 
between two variables and connect them to represent any desired 
function, such an LQR controller. As indicated in 2.2, this work proposes 
using axo-axonic connections to reproduce the non-linear relationship 
between two variables. Subsequently, more complex functions can be 

replicated by combining sets of neurons that perform the required linear 
and non-linear operations with the tuned weights provided by associa
tive maps.

As shown in Fig. 5, each associative map consists of two input vari
ables, one connected with an axo-dendritic layer and the other one 
assigned to an axo-axonic layer. Both layers contain neurons associated 
to Gaussian tuning curves uniformly distributed over the input space 
(see Eq. (1)), as was described in 2.1.1. The connections of these neurons 
through non-linear synapses determine the output value of the asso
ciative map.

For a given input, a specific group of neurons is activated according 
to the tuning curve associated with each neuron. This way, closer neu
rons are more excited, generating greater neuronal activity. Therefore, 
the weight of the synaptic connection with the highest activity de
termines the output at each moment in time (Fig. 6). This method is 
similar to coincidence detection [30,46], in which non-linear connec
tions are used to select a neuronal region. Therefore, the activity in the 
neurons of the module or associative map depends on the synchronisa
tion between the connected neurons (temporal summation) and the 
temporal distribution of the variables that define the associative map 
(spatial summation).

For instance, an associative map can be created between two vari
ables (x,y) that represent function f(x,y) (Fig. 7). This map associates 
each variable to the axo-dendritic (x) and axo-axonic (y) unions. The 
weight matrix of the map (5) is directly calculated by evaluating the 
function at the centroid of the tuning curves (µ) for each input, as 
defined in Eq. (1). 

W = f(x, y)
{

x = μaxo− dentritic
y = μaxo− axonic

(5) 

The function exhibits greater or lesser discretisation depending on 
the number of neurons (m) associated with each input set.

Fig. 7 shows an associative map that reproduces function f(x,y)=- 
(x2+y2), a colour scale is used to represent the weight of each connection 
between the axo-dendritic and axo-axonic layers . Sinusoidal signals are 
utilized as inputs for both the axo-axonic and axo-dendritic layers to 
evaluate the functionality of the associative map.

To sum up, a module that reproduces any non-linear function f(x,y) 
can be created using the proposed neural network. This module can be 
combined with others, creating more complex functions. This way, it is 
possible to emulate the behaviour of brain areas that carry out complex 

Fig. 3. Synapse configuration.

Fig. 4. Physiologically plausible multidimensional Gaussian structure (extract 
from [29]).
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processing, such as system control of objects and face detection in the 
visual system. To facilitate adaptation or the learning of unknown be
haviours, an appropriate learning method must be employed to define 
the network weights, as described in the following section.

3. Learning method

Learning allows the adaptation of the LQR controller to model dis
crepancies, changes in dynamics, and other unmodelled uncertainties. 
This study is aimed at performing lateral control of a four-wheeled 
vehicle to follow a predetermined path. In this example, the error vec
tor (e) contains information about the lateral and heading deviations. As 
this error vector is determined at each time step, supervised learning is 
proposed as the learning methodology.

The main advantage of the proposed approach is that it can be 
actively implemented during vehicle control, having the ability to tune 
the reference controller (LQR) without compromising stability.

A biologically plausible mechanism that exploits neuronal plasticity 
is used to implement supervised learning with a spiking neural model. 
The chosen mechanism is spike-timing-dependent plasticity (STDP), 
which adjusts synaptic weights (W) depending on the firing times of pre- 
and post-synaptic neurons [47]. Additionally, this mechanism is 
modulated by an external signal that activates or deactivates learning, 

similar to dopamine in biological learning.
Therefore, the eligibility trace (c) is defined as the STDP signal. The 

eligibility trace value is obtained from the firing time of the pre- and 
post-synaptic neurons (6) as a function of time constant τc. This eligi
bility emphasizes weight potentiation to achieve synchronization be
tween the two neurons, depending on the firing times (ts) of the pre- and 
postsynaptic neurons (Fig. 8). 

ċ = τc

(
1

(t − tpre
s )

(
t − tpost

s
) − c

)

(6) 

Additionally, the action of dopamine (d) is defined using the error 
vector (e), as a function of time constant τd, according to: 

ḋ = τd(e − d) (7) 

Both signals modify the synaptic weights of the associative maps 
through Eq. (8), which adds a learning rate factor (λ) to adjust the 
learning speed for each problem. 

W(t+1) = W(t) + λ c(t) d(t) (8) 

Neuronal connections have the capacity to modify their weight 
depending on the temporal synchronization of these, the error 
committed (dopamine (d)) and the spatial arrangement of the variables 

Fig. 5. Neural structure for the input-output associative map.

Fig. 6. Neural activity concentration in the synapses.
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that activate that part of the associative map that needs learning.
To illustrate the learning process, we present an example of a simple 

neural network, similar to the one shown in Fig. 7, which represents 
function -(x2+y2). In this case, the network has no prior knowledge. 
Therefore, all weights are initialized at zero at the beginning of the 
learning process (W = 0).

As shown in Fig. 9, the weight matrix is updated in each iteration. In 
addition, Fig. 10 shows the response of the network compared to the 
reference value and the corresponding level of dopamine at each instant. 
It is worth noting that dopamine levels are directly related to the error in 
tracking the reference signal. This figure includes the response of the 
network after 5, 10 and 15 iterations. During this process, it can be 
verified that the neural network began to shape the weight matrix at its 

ends, prioritizing the area with more error and, consequently, higher 
dopamine assignment. After 15 iterations, the weight matrix reached the 
configuration shown in Fig. 7, thus demonstrating that the learning 
method functioned as intended. Notably, the learning rate of the 
network is reduced when low dopamine levels are reached.

4. Neural LQR controller

This section introduces the LQR controller, which is used as a model- 
based controller to implement a neural network with learning capabil
ities. Additionally, the controller is equipped with preview and gain- 
scheduling capabilities that enable real-time adjustment to improve its 
performance. The integration with the neural network, coupled with the 

Fig. 7. 2D function f(x,y)=-(x2+y2) neural representation for sinusoidal input.

Fig. 8. Weight potentiation based on pre- and postsynaptic firing times.
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use of STDP learning, allows the controller to continuously adapt to 
external conditions and model discrepancies.

4.1. Conventional LQR

LQR provides an alternative to selecting the closed-loop eigenvalue 
locations to minimize the cost function that combines the input energy 
and system state (x). Specifically, the LQR calculates the steering wheel 
angle (δ) (where δ = -K*x) to minimize the cost function (9). The 
controller gain is then calculated by solving the Continuous Algebraic 
Riccati Equation (K =

[
Ky,Kẏ,KΨ,KΨ̇

]
) (10). 

J =

∫∞

0

(
xT(t)Q x(t)+ δT(t)R δ(t)

)
dt (9) 

K =
(
R + BTx B

)TBTx A (10) 

where Q and R are the weights of the states and the control input, 
respectively, and must be adjusted accordingly. To determine the gains, 
a bicycle model was used with a lateral error (ey) and heading error (eΨ) 
as well as their derivatives (dotey,doteΨ) set as state variables (x) (11). 

x =
[
ey ėy eψ ėψ

]T (11) 

Using this state vector, state-space Eq. (12) is posed using A and B 
matrices of the bicycle model. 

ẋ = A x + B δ (12) 

B =

[

0
Cf

m
0

lf Cf

Izz

]T 

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 1 0 0

0 −
Cf + Cr

m Vx

Cf + Cr

m
−

Cf

m Vx

0 0 0 1

0 −
Cf lf − Crlr

IzzVx

Cf lf − Crlr
Izz

−
Cf lf 2

+ Crlr2

IzzVx

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Table 1 lists the variables and parameters used in the simulations. 
The control function is presented in Eq. (13), where a gain vector is 
defined for each state variable and a global gain is associated with the 
feedback term (KFB).

Additionally, a feedforward gain (KFF) was added to utilize future 
information from the system using the curvature response of the bicycle 
model (14). The future information used is the road curvature radius (R). 

δ = KFB
( [

Ky Kẏ Kψ Kψ̇
]
x
)
+ KFFδFF (13) 

δFF =
lf + lr + kusV2

x

R
(14) 

Due to the strong dependence of the response of the system to the 

Fig. 9. Evolution of the weight matrix (W) during the learning process (5, 10, and 15 iterations).

Fig. 10. Evolution of the output and dopamine during the learning process (5, 10, and 15 iterations).

Table 1 
Icycle model parameters.

Parameter Description Value Units

M Mass of the vehicle 1620 kg
lf Distance from front Axle to CoG 1.075 m
lr Distance from rear Aaxle to CoG 1.725 m
Cf Front axle stiffness 1.5e5 N/rad
Cr Front axle stiffness 1.1e5 N/rad
Izz Inertia moment of vehicle (z-axis) 2253 kg*m2

kus Understeer gradient 0.0098 rad*s2/m
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longitudinal speed (Vx), the control gain is determined for multiple 
discrete speed values. This way, as a way of gain scheduling, the 
controller parameters are adjusted according to the speed at each 
instant. Control function (13) is modified to include system longitudinal 
speed dependence, giving rise to the following equation: 

δ = KFB
(
Ky

(
ey,Vx

)
+Kẏ

(
dotey,Vx

)
+Kψ (eψ ,Vx)+Kψ̇ (doteψ ,Vx),Vx

)

+ KFF(R,Vx)

(15) 

4.2. Neural LQR

This work presents an innovative implementation of the LQR 
controller using spiking neural networks. Control variables, i.e. heading 
and lateral error, are related through neural maps, each one consisting of 
two variables with a size of m × m neurons.

The use of two variables per map is possible because the control 
function (15) only has a non-linear relationship with the longitudinal 
velocity. This makes it possible to implement it by using only six asso
ciative maps, each associated with a gain (

[
Ky, Kẏ, Kψ , Kψ̇ , KFF , KFB

]
)). 

Fig. 11 shows the variables used for each map, the connections between 
them and a representation of the weights in different colours. In total, 12 
neural layers are required as interfaces for associative maps. The 
learning process is carried out locally only in associative maps that use 
an input error signal, with the same signal acting as a dopamine acti
vation variable (d). This error adjusts STDP learning, modifying the 
associative map where there is more neuronal activity without affecting 
the other regions.

Table 2 summarizes the values used to implement the neural LQR, 
including the neural network parameters and the learning method. 
Discretization of the control function using neural associative maps 

requires defining the working range to establish the fitting curves. 
Table 2 also includes the discretization ranges (ρ) selected to obtain a 
good resolution in the map without compromising the operation of any 
variable that works outside the range and saturates the input.

These parameters have thus been selected based on similar data 
found in the literature and after a trial-and-error tuning process. More 
specifically, the number of neurons and the learning factor, which are 
the more critical parameters, were selected to ensure that all the 
necessary processes were accomplished with minimal computation cost 
and without adversely affecting the performance of the controller, as 
will be shown in the next section. Future work will address the devel
opment of an optimization process to adjust the network parameters.

Fig. 11. LQR function neural representation.

Table 2 
Neural network parameters.

Symbol Description Value

M Number of neurons per layer 4 to 28
N Number of neurons 240=12 (Layers)*m
u0 Bias potential 0.2
Τ Neuron time constant 2 ms
sg Synapse gain 21
τc Eligibility time constant 10 ms
τd Dopamine time constant 30 ms
Λ Learning Factor 0 to 4
Δt Time interval 1 ms
ρy Range of lat. error [− 0.3.0.3] m
ρẏ Range of dlat. error [− 0.5,0.5] m/s
ρΨy Range of head. error [− 0.5.0.5]
ρΨ̇ Range of dhead. error [− 0.5.0.5]
ρVx Speed range [0160]
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5. Sensitivity, stability and performance comparison

In this section, three key aspects of the proposed methodology to 
develop SNN based are analyzed. First, a sensitivity analysis is carried 
out to assess how changes in the main SNN parameters affect the 
controller performance. Second, the stability of the controller is verified 
following an empirical approach. Third, the performance of an SNN 
controller is evaluated by comparing it with other conventional con
trollers, including an adaptative model predictive controller. These tests 
are performed using the model presented in Section 4 and with the 
vehicle conducting undergoing a double-lane change maneuver in two 
different road conditions, i.e. high adherence (μ=1) and low adherence 
(μ=0.2). The track is 4 m wide and the tests are performed at a longi
tudinal speed of 15 m/s.

5.1. Sensitivity analysis

Next, an evaluation of how variations in the main network param
eters affect the SNN controller performance is conducted. The most 
influential parameters of the neural network, and therefore affecting the 
controller performance, are the number of neurons and the learning 
factor. Both must be carefully selected for the specific problem, which in 
this case is vehicle control. To perform this analysis, a double-lane 
change maneuver on a high-adherence road is reproduced.

Fig. 12 illustrates the sensitivity of the controller to these parameters. 
In the first case, the influence of selecting a number of neurons between 
4 and 28 is evaluated. As can be seen in Fig. 12 (left plot), a low number 
of neurons results in insufficient discretization, which leads to a loss of 
information from the base controller and a degradation of its perfor
mance. On the contrary, if the number of neurons is too high, each 
neuron is assigned a very small portion of the control variable leading to 
a limited time to act, which also leads to poor performance. Conse
quently, the number of neurons per layer is set to 20 to carry out the 
simulations.

Second, as for the learning factor, low values result in behavior 
identical to the standard LQR (λ = 0), since the network does not adapt 
effectively when the road changes from high adherence to low adher
ence conditions. On the other hand, excessively high values cause the 
controller to aggressively try to minimize the error, resulting in severe 
vehicle oscillations, as shown in Fig. 12 (right plot). Consequently, a 
learning factor equal to 1 is selected for the simulations.

5.2. Controller stability

Analyzing the stability of a neural network-based controller is 
inherently challenging. Neural networks, due to their highly nonlinear 
and complex structures, act as black box approximators. This complexity 
makes it difficult to derive analytical stability conditions using classical 
methods such as Lyapunov theory. The nonlinearity and high dimen
sionality of the network, combined with the intricate interaction of its 

weights and activation functions, hinder the formulation of an appro
priate Lyapunov function, making formal mathematical proofs of sta
bility largely impracticable.

In this context, the empirical cell mapping technique offers a prac
tical alternative for stability evaluation [48]. The method involves dis
cretizing the state space into a finite number of cells and mapping the 
state transitions between these cells over time. By simulating the con
troller’s response over a range of initial conditions, cell mapping pro
vides insight into whether trajectories converge to stable attractors or 
diverge. This approach allows stability properties to be observed 
without the need for an explicit analytical model.

Fig. 13 shows the evolution of the lateral position and heading errors 
in simulations, evaluated using the cell mapping method on an 11 × 11 
grid with a maximum lateral error of 5 m and a heading error of 40◦. As 
can be seen, both algorithms tend to a stable response of zero error, 
being the SNN LQR faster due to the learning capabilities. In high 
adhesion conditions, both controllers behave similarly and are able to 
ensure vehicle stability. However, when the adhesion decreases, the 
LQR controller—although remaining stable—exhibits pronounced os
cillations. In contrast, the adaptive properties of the neural imple
mentation minimize these oscillations, thus ensuring stability across its 
entire operating range.

5.3. Controller comparison

Three controllers are used to compare the performance of the Neural 
LQR. To evaluate them, the double lane change maneuver is performed 
under both high and low adhesion conditions. This comparison evalu
ates the response of the controllers under design conditions (high 
adhesion), as well as their ability to handle dynamic changes caused by 
variations in road grip. For this purpose, seven key performance in
dicators are defined. These KPIs include the root-mean-square error 
(RMSE), the maximum value (MAX) and the standard deviation (SD) of 
the lateral position and heading angle errors. In addition, the execution 
time per iteration (DT) was added as another KPI to measure the 
maximum frequency at which the control loop can be executed and to 
evaluate the computational cost of the algorithms.

The first controller selected is the standard LQR, which is used as a 
reference. Although it initially behaves similarly to the neural LQR 
under high adhesion conditions, its performance deteriorates when 
adhesion decreases, leading to pronounced oscillations, especially in the 
heading angle. The second controller evaluated is a model predictive 
controller (MPC), chosen as a reference based on a well-established 
model. In this case, despite its predictive capabilities, it also leads to 
poor controller response when the adhesion changes, as its internal 
model does not fully reproduce the actual conditions. Furthermore, an 
adaptative model predictive controller (AMPC) is also included in this 
comparison [49]. This approach enables the path-following controller to 
adapt to changing operating conditions, thus allowing better adaptation 
to changes in adhesion levels.

Fig. 12. Number of neurons (μ=1) (left) and learning rate influence (μ=0.2) (right).
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As can be seen in Fig. 14, the performance of all controllers is similar 
under high adhesion conditions (μ = 1), resulting in low position and 
heading angle errors. However, when adhesion decreases, the response 
of the controllers deteriorates significantly in some cases. First, both 
LQR and standard MPC give rise to high errors, as they lack the ability to 
adapt to dynamic changes. On the contrary, the AMPC and the Neural 
LQR are able to successfully reduce the error after adapting to the 
change in adhesion conditions. Table 3 summarizes the key performance 
indicators of the controllers’ response in the low-adherence region of the 
test. The analysis of these results demonstrates the capability of the 
proposed SNN LQR controller to perform path-tracking tasks satisfac
torily. As shown, the SNN LQR controller provides the best overall re
sults in terms of lateral error and heading angle. On the contrary, the 
execution time per iteration of the proposed controller is the highest, but 
it still meets real-time requirements. In this regard, it is worth 
mentioning that the programming of the control algorithm on neuro
morphic hardware will significantly reduce the execution time.

In this simulation, the learning factor is set to (λ = 1). During this 
maneuver, when μ = 1, the error is very low, so learning is not activated. 
However, when the adhesion decreases, i.e., μ = 0.2, the error 
committed is very high and the learning acts quickly to compensate for 
the error produced. This example is intended to showcase the 

controller’s capabilities under extreme conditions. In a real environ
ment, however, such discrepancies would not occur as frequently, and 
the learning process would be gradual, improving the vehicle’s perfor
mance over time, similar to how a human driver would adapt. This 
behavior is demonstrated in the following section, where, on a track, the 
vehicle’s performance gradually improves over time beyond the base
line controller.

As it has been shown, the key advantage of the proposed Neural LQR 
is that it does not require prior knowledge of road conditions to update 
the model, as is the case with AMPC. Significantly, when an increase in 
error is detected, the neural LQR activates learning and improves its 
response accordingly. This allows the controller to compensate for dis
crepancies between the model used in the design phase and the real 

Fig. 13. LQR and LQR SNN error evolution in low and high adherence conditions.

Fig. 14. Controller comparison in double lane change (Lateral position (left) and heading angle (right)).

Table 3 
Controllers performance comparison.

RMSEy RMSEΨ MAXy MAXΨ SDy SDΨ DT (µs)

LQR 0.04 0.89 0.46 2.52 0.18 0.94 2
SNN 0.01 0.17 0.16 1.2 0.06 0.42 180
MPC 0.02 0.93 0.28 1.89 0.11 0.96 48
AMPC 0.02 0.23 0.34 1.37 0.14 0.48 98
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vehicle being driven as well as to changes in the driving conditions, as 
will be demonstrated in the next section, where the performance of the 
controller is verified using a high-fidelity simulation of a long vehicle 
course.

6. Track simulation setup

To validate the performance of the neural LQR control algorithm, a 
simulation of a vehicle driving on a test track (Fig. 15) was performed. 
The simulation used a validated multi-body vehicle model in IPG-Car- 
Maker, which was supplemented with Delft-Tyre 6.2 software repre
senting tire dynamics. IPG Automotive’s CarMaker simulation technol
ogy enables demonstrating the proposal’s effectiveness in real-world 
dynamic scenarios. The test track was a 4.3-km-long, two-lane asphalt 
road with 20 curves of varying radii and distances between them, rep
resenting both urban and inter-urban driving environments. The IPG 
driver was set to cruise at the reference speed of 15 m/s.

The experiment setup was designed to assess both the performance 
and stability of the proposed system [17,50]. This study aimed to 
evaluate the stability of a neural network controller in an inter-urban 
environment. To evaluate robustness and performance, simulations 
and real-world tests under various conditions were conducted, 
comparing the results to those of a leading competitor. Specifically, 
simulations to replicate a long-path tracking test that included extreme 
conditions were carried out, incorporating sensor noise to reflect 
real-world scenarios. Performance indexes were obtained and compared 
to those of the competitor to verify the effectiveness of the proposal. 
Hence, a long-duration simulation was carried out, integrating curves of 
both large and small radii as well as 90- or 180-degree turns in a few 
meters to demonstrate the ability of the controller to maintain control in 
different situations. A measurement model was included to reproduce 
model uncertainties. The limitations of the actuator were also consid
ered. The aforementioned features were included to yield results that 
showed that the proposed controller can maintain stability throughout 
its entire operating range. Throughout the testing, no stability issues 
were observed, leading to the conclusion that the controller’s stability is 
ensured.

The control and learning neural network implementation was 

conducted using Matlab/Simulink, co-simulating with IPG software. To 
ensure real-time execution of the model and algorithm as well as the 
possibility to embed the control software, this co-simulation was carried 
out on hard real-time dSPACE Scalexio hardware, commonly used for 
rapid control prototyping.

7. Track simulation results

In this section, we present the results of control simulations using the 
configuration described in the previous section. It should be noted that 
the algorithm programmed in the simulation tool also included the 
learning strategy. Therefore, the whole proposal has been tested, vali
dated and evaluated in a real-time environment. Fig. 16 shows the 
reduction in the lateral error (ey) of the proposed controller compared 
with the LQR controller. In addition, Fig. 17 includes four graphs, each 
corresponding to one lap. The evolution of the error can be seen as a 
function of the vehicle’s position on the circuit. It can be observed that 
the SNN-based adaptive controller reduces lateral error in each lap of the 
circuit without compromising stability.

However, the heading error (eψ) did not decrease because of the 
extremely low errors achieved (below 0.5◦). After 40 laps (Fig. 18a), 
despite having a similar error value, a temporary deviation is observed 
between the benchmark and the proposed controller (Fig. 18b). This is 
because the target trajectory does not necessarily have to be the fastest 
or shortest one. Thus, the proposed adaptive controller requires slightly 
more time to complete the path but manages to provide fewer tracking 
errors.

Fig. 19 shows the percentage of time in which the controller is 
dealing with driving conditions that allow effective learning. As can be 
seen, the percentage decreases as the test progresses. Thus, in the first 
laps, effective learning is carried out only in around 10 % of the driving 
time. After 20 laps, the LQR SNN controller only learns for less than 5 s 
per lap.

Fig. 20 shows that the maximum lateral error decreases when the 
number of laps increases. After 40 iterations (laps), the convergence 
criterion of 1 mm/lap is reached and the simulation is stopped. At this 
point, after approximately three hours of driving, the simulation is 
considered to have been concluded. Regarding the convergence speed, it 
should be noted that at the learning process, the LQR SNN controller has 
no prior knowledge. Consequently, at the beginning of the test, the LQR 
SNN controller behaves like a conventional LQR controller, as can be 
seen in Fig. 17 (LQR vs LQR SNN in lap 1).

By analysing two consecutive curves (Fig. 21), it can be observed that 
the lateral error decreases significantly after only 10 laps. However, it 
was necessary to perform 30 more laps to reach the stopping criterion. 
The dopamine levels are so low that no further learning is achieved. As 
shown in lap 40, the driving becomes more aggressive to reduce the 
error, with high-frequency but low-amplitude oscillations observed. 
Depending on the type of controller sought, the convergence criterion 
can be adjusted and dopamine levels can be reduced to limit learning 
and obtain less aggressive control, such as the one achieved after 10 laps.

Finally, to compare the proposed algorithm with the LQR controller, 
Key Performance Indicators (KPIs) are again used to quantify the 
improvement achieved. Table 4 shows that, after learning, the proposed 
SNN controller reduced the error levels in the lateral and heading errors. 
However, it was observed that the heading error of the proposed 
controller is slightly higher than the one provided by the reference LQR 
controller. This is due to the fact that, to reduce the lateral error, the 
neural controller produces slightly higher yaw values.

Regarding the execution time, although the implementation of the 
neural network and learning method considerably increases the execu
tion time of the algorithm, it still stays below the limit of 1000 us, which 
meets the real-time requirements at a frequency of 1 kHz.

As can be seen in Table 4, the results obtained are promising, 
demonstrating a significant reduction in lateral error and maintenance 
of system stability. Heading error did not decrease significantly, being Fig. 15. Simulation control scheme.
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Fig. 16. Lateral error through the first four laps (over time).

Fig. 17. Lateral error through the first four laps (relative to position).

Fig. 18. Heading error through lap 40.
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slightly higher than that of the conventional LQR controller in some 
cases. The implementation of the neural network increased the iteration 
execution time, which could be a potential limitation for systems with 
more stringent real-time requirements. This limitation can be addressed 
by implementing the neural controller on neuromorphic hardware.

8. Conclusion

This study proposes an adaptive path-following control algorithm 
combining an LQR controller with spiking neural networks and asso
ciative maps. By integrating these techniques, the proposed controller 
provides an efficient and optimal solution for controlling the lateral 
dynamics of a vehicle, which is critical for ensuring vehicle tracking 
performance.

The proposed approach provides an adaptation mechanism for a 
model-based controller. Using spiking neural networks, it is possible to 
perform STDP learning to adjust synaptic weights. This way, the 
controller has the capability to adapt to discrepancies between the 
simplified model used by the controller and the high-fidelity model or 
real-world conditions.

The simulations conducted using Matlab/Simulink and the well- 
known fully validated IPG CarMaker software to model the vehicle 
demonstrate the effectiveness and stability of the proposed controller 
under various curvature conditions on an inter-urban circuit. Key Per
formance Indicators were used to evaluate the performance of the 
controller.

In future work strategies to optimize the computational cost, such as 
eliminating low-activity neural connections, using bio-inspired neural 
structures and implementing the neural network on neuromorphic 
hardware, will be explored. In addition, this study focused on an under- 
actuated system in which only the steering angle could be controlled. To 
further improve vehicle performance, neural structures can be easily 

scaled up to act on fully actuated or over-actuated systems, enabling 
control over more variables, such as the traction and steering angle of 
different wheels. Methods for activating or deactivating the dopamine 
signal can also be researched, considering factors such as energy con
sumption or the time required to perform the required maneuver. 
Finally, the proposed neural structures can be adapted to perform other 
control tasks, such as braking, traction and longitudinal control. By 
initially replicating the response of a conventional controller, the neural 
network can subsequently modify its internal parameters to adapt its 
response to changing inputs, thanks to the learning capability. This 
adaptation can be very useful when dealing with different surfaces, load 
conditions and malfunctions.
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[17] J. Pérez, M. Alcázar, I. Sánchez, J.A. Cabrera, M. Nybacka, J.J. Castillo, On-line 
learning applied to spiking neural network for antilock braking systems, 
Neurocomputing 559 (2023) 126784, https://doi.org/10.1016/j. 
neucom.2023.126784.

[18] Z. Bing, C. Meschede, G. Chen, A. Knoll, K. Huang, Indirect and direct training of 
spiking neural networks for end-to-end control of a lane-keeping vehicle, Neural 
Netw. 121 (2020) 21–36, https://doi.org/10.1016/j.neunet.2019.05.019.

[19] J. Liu, H. Lu, Y. Luo, S. Yang, Spiking neural network-based multi-task autonomous 
learning for mobile robots, Eng. Appl. Artif. Intell. 104 (2021), https://doi.org/ 
10.1016/j.engappai.2021.104362.

[20] S. Barchid, J. Mennesson, J. Eshraghian, C. Djéraba, M. Bennamoun, Spiking neural 
networks for frame-based and event-based single object localization, 
Neurocomputing 559 (2023), https://doi.org/10.1016/j.neucom.2023.126805.

[21] Y. Li, Y. Liu, R. Li, L. Zhou, L. Dang, H. Mu, Q, Hyperspectral image classification 
based on faster residual multi-branch spiking neural network, Comput. Geosci. 197 
(2025), https://doi.org/10.1016/j.cageo.2025.105864.

[22] S. Yang, Q. He, Y. Lu, B. Chen, Maximum entropy intrinsic learning for spiking 
networks towards embodied neuromorphic vision, Neurocomputing 610 (2024) 
128535, https://doi.org/10.1016/j.neucom.2024.128535.

[23] S. Yang, H. Wang, B. Chen, SIBoLS: robust and energy-efficient learning for spike- 
based machine intelligence in information bottleneck framework, IEEE Trans. 
Cogn. Dev. Syst. 16 (5) (2024) 1664–1676, https://doi.org/10.1109/ 
TCDS.2023.3329532.

[24] S. Yang, B. Chen, Effective surrogate gradient learning with high-order information 
bottleneck for spike-based machine intelligence, IEEE Trans. Neural Netw. Learn. 
Syst. 36 (1) (2025) 1734–1748, https://doi.org/10.1109/TNNLS.2023.3329525.

[25] C. Du, F. Liu, B. Kang, T. Hou, Speech emotion recognition based on spiking neural 
network and convolutional neural network, Eng. Appl. Artif. Intell. 147 (2025), 
https://doi.org/10.1016/j.engappai.2025.110314.

[26] A. Schmeitz, J. Zegers, J. Ploeg, M. Alirezaei, Towards a generic lateral control 
concept for cooperative automated driving, in: 2017 5th IEEE International 
Conference on Models and Technologies for Intelligent Transportation Systems, 
IEEE, 2017.

[27] R. Poli, J. Koza, Genetic programming. Search Methodologies: Introductory 
Tutorials in Optimization and Decision Support Techniques, 2nd Edition, Springer 
US, 2014, pp. 143–186, https://doi.org/10.1007/978-1-4614-6940-7_6.

[28] H. Bagherinezhad, M. Rastegari, A. Farhadi, LCNN: lookup-based convolutional 
neural network, in: IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR), 2016.

[29] T. Poggio, A theory of how the brain might work, Cold Spring Harb. Symp. Quant. 
Biol. 55 (1990) 899–910.

[30] F. Schubert, C. Gros, Nonlinear dendritic coincidence detection for supervised 
learning, Front. Comput. Neurosci. 15 (2021), https://doi.org/10.3389/ 
fncom.2021.718020.

[31] M. Christof, K.B.W.S Pi, Learning: on radial basis functions and cortical associative 
learning, Adv. Neural Inf. Process. Syst. 2 (2000) 474–481.

[32] E.R. Kandel, The molecular biology of memory storage : a dialogue between genes 
and synapses, Science 294 (2015) 1030–1039.

[33] B.D. Baptista Filho, E.L.L. Cabrai, A.J Soares, A new approach to artificial neural 
networks, IEEE Trans. Neural Netw. 9 (1998) 1167–1179, https://doi.org/ 
10.1109/72.728360.

[34] K.K. Cover, B.N. Mathur, Axo-axonic synapses: diversity in neural circuit function, 
J. Comp. Neurol. 529 (2021) 2391–2401, https://doi.org/10.1002/cne.25087.

[35] K. Doya, M. Kawato, Neural mechanisms of learning and control, IEEE Control Syst. 
Mag. 21 (2001) 42–54, https://doi.org/10.1109/37.939943.
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