
Encoding Building Products
Creating a design workflow for a modular infill system using 

Discrete Building Information Modelling and Design Grammars

Tim Schumann 
Student ID: 5374456

TU Delft University
Faculty of Architecture and the Built Environment 

Master of Architecture, Urbanism and Building Sciences
Track Building Technology

Final Report - Defended 17th of January 2023

Mentoring Team:
Dr. P. Nourian, Design Informatics

Prof. Dr.-Ing. T. Klein, Building Product Innovation
Ir. H. Hoogenboom, Design Informatics

Delegate of the Board of Examiners: 
Dr. Ir. S. van der Spek

External Advisor:
Ir. S. Azadi



2 

Abstract

One million homes will be needed in the Netherlands by 2030. Prefabrication in the construction industry 
can contribute to construct affordable houses, but that results often in standardized and not customized 
designs. These repetitive designs can be overcome through the introduction of mass-customization in 
architecture. Computational Architectural Design offers the possibility to tackle mass-customization 
through developing tools to let the user easily customize a design while providing guidelines and 
feedback towards a successful building design. This can be done by discretising a building into building 
blocks that can be controlled through a computational workflow. 

This thesis elaborates on the potential of developing a design tool that allows the customization of 
houses through discrete building information modelling. Since the housing design process is a complex 
and multi-layered problem, the process is broken down into the sub-problems of topological design, 
building product development, configuration, and data export. For these steps, algorithms from the 
gaming industry are tested to improve the participation of the end user trough a simplification of the 
design process. Through design grammars, a relational data structure is created that is compatible to the 
BIM environment of the industry.  

The evolved methods are applied to the test case of a rowhouse design in Delft to predict the possible 
impact of the design tool. The results of this are set in the context of the AEC industry.   

Keywords : Mass Customization, Building Information Modeling, Discrete Architecture1, Participatory Design 

List of Abbreviations 

BMC – Boolean Marching Cubes Algorithm 
BMS – Boolean Marching Squares Algorithm 
PGC – Procedural Content Generation 
WFC – Wave Function Collapse Algorithm 
CAD – Computer-Aided Design 
BIM – Building Information Modelling 
AEC – Architecture, Engineering and Construction 
ERD – Entity Relationship Diagram 

1 The term discrete architecture is explained in chapter 1.1.0 



  

3 
 

Preface 
 
Motivation 
 
My interest in mass customization started during my undergraduate thesis, where I developed an 
individualizable modular lightweight construction system. But when I began to work in an architectural 
office, this vision of simplicity and optimization was given way to the reality I experienced in the industry: 
highly complex workflows with a lot of repetitive processes. The introduction of BIM resulted in most 
projects creating heavy files containing a lot of geometrical information, which not even one team 
member had a complete overview of. My motivation for choosing the Master Track of Building 
Technology at TU Delft was to learn the tools and techniques to simplify and optimize these architectural 
workflows. The course Earthy, taught by Dr.Ir. Pirouz Nourian and Ir. Shervin Azadi introduced me to the 
concepts of generative design. As a result, I started to think of architecture not anymore in geometries 
but in spaces and related information. The ideas provided in Earthy, together with the research of the 
Genesis Lab in Participatory Design and Polygonization provided the foundation for this thesis.  
 
Acknowledgements  
 
This thesis would not be successful without other people's support, guidance and motivation. Firstly, I 
want to thank my mentor team Pirouz Nourian, Shervin Azadi, Tillmann Klein and Hans Hoogenboom for 
their guidance, patience and valuable input.  
I would like to thank Pirouz Nourian for helping me through the methodological and theoretical part of 
this thesis and for the many hours of consultations in which he guided me in the right direction and 
provided valuable references as my main mentor till his departure from TU Delft.  
A big thanks to Shervin Azadi, for showing me the ocean of possibilities in applying python programming 
to architecture. I like to thank him for his great explanation of highly complex content, the impressive pre-
work he did for this thesis, and also his patience with my technical abilities. 
Thank you to Tillmann Klein, who helped me to understand the concerns of the construction industry. He 
helped me to enrich a theoretical workflow with application possibilities and context. 
I would like to thank Hans Hoogenboom for stepping in as my main mentor and bringing a new 
perspective to the project. He helped me to shape a plethora of ideas into a successful thesis.  
Thanks to Nadia Remmerswaal and Tim Castelijn for helping me to evaluate the system's potential in the 
building industry context. 
Thank you to the TU Delft and especially the organisers and teachers of the Building Technology Master 
for providing great coursework, which is an excellent foundation for my professional future. Furthermore, 
I would like to thank for the opportunity to spend a semester abroad at the University of Melbourne 
during my master, which enlightened me both on an academic and personal level.  
Many thanks also to my parents, Andrea and Christoph, and my grandparents, Christine and Hans, who 
gave me the opportunity to do this master's degree at TU Delft. 

 
 
 
 
 
 



  

4 
 

Content 
 

0 INTRODUCTION 6 

0.0 Context 6 

0.1 Problem Statement 7 

0.2 Research Question 7 

0.3 Research Objective 8 

0.4 Methodology 8 

0.5 Scope and Delimitations 9 

1 LITERATURE REVIEW 11 

1.0 Building Information Modelling 11 

1.1 Modular Building Systems 13 

1.2 Encoding Design 18 

1.3 Conclusions 23 

2 DESIGN METHODOLOGY 24 

2.0 Design Terminology 24 

2.1 Units and Sequences 25 

2.2 Dimensioning System 28 

2.3 Stakeholders 29 

2.4 Computational Framework 29 

3 DEVELOPMENT 32 

3.0 Deconstruct the Marching Squares Algorithm 32 

3.1 Building the Boolean Marching Cubes Algorithm 34 

3.2 Testing the Wave Function Collapse Algorithm 37 

3.3 Building Component Development 39 

3.4 Conclusions 42 

4 DESIGN 43 

4.0 Design Tool Workflow 43 

4.1 Creating a topological design 44 

4.2 Tile Creation 49 

4.3 Calculating Tile Options 56 

4.4. Tile Placement 58 

4.5 Postprocessing 61 

4.6 Design Strategies 63 

4.7 Workflow Reflection 66 



  

5 
 

5 EVALUATION 67 

5.0 Verification 67 

5.1 Validation 78 

6 CONCLUSIONS 82 

6.0 Research Questions 82 

6.1 Method-specific Conclusions 83 

6.2 Discussion 84 

7 REFLECTION 85 

8 APPENDIX 89 

9 BIBLIOGRAPHY 91 

9.0 Literature 91 

9.1 Figures 94 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

6 
 

0 Introduction 
 
0.0 Context 
 
The housing market in the Netherlands is pressured. From 2014 until 2020, nationwide house prices rose 
by 52%. In comparison to that, residential construction activity is weak. With an annual growth of 0,9% of 
the building stock in 2020, the level is below the construction volume of 2009 (Global Property Guide, 
2022). Therefore, there is an urgent demand for creating affordable housing solutions as soon as 
possible. Affordable housing solutions can be provided through standardization and prefabrication of 
buildings, which often results in repetitive and unpersonalized designs. A concept to solve this issue is 
mass customization. Mass customization is a strategy that describes the creation of user-adapted 
solutions at the same or lower costs than a standardized production (Bock & Linner, 2010). While the 
concept is applied in other industries, such as the automotive industry with individualizable car options, 
the construction industry still lacks a broad application of mass customization. Through successfully 
improving this application rate, it is essential to establish an intense and continuous relationship between 
the end-user and the housing producers to generate value for all involved parties and improve the 
environmental impact (Bock & Linner, 2010). The basis of this relationship needs to be the end-user's 
participation in the design process at as many stages as possible. To enhance the relationship, the design 
workflow needs to be simplified in a gamified manner so that an unskilled end-user is able to participate 
in the process without contradicting the efficiency of a systemized architecture. Furthermore, it needs to 
be ensured to provide a huge range of design options for the end-user, what needs necessarily to result 
in a collaborative system, involving multiple manufacturers, designers and producers.  
 
0.0.0 Societal Relevance 
 
Buying an own house is for most people one of the most substantial decisions of their entire life. A tense 
housing market and high prices often lead to the choice of standardized housing solutions with no 
possibilities to adapt or individualize. 
But in the society of the 21st century, family structures are becoming more complex, and the need for 
individualization of living spaces is vast. Changes in the size of a single family over the years requires the 
adaptability of space. An individualized building construction based on discrete components can solve 
this issue. Discrete components can be prefabricated; therefore, the final building is much more 
affordable than on-site construction. Furthermore, the discretization of buildings allows the development 
of design tools that can simplify the design process and integrate the end-user from an early stage.  
In prospect, with the combination of discrete elements with gamification, tenants can configure their 
living spaces with reduced professional support. 
 
0.0.1 Scientific Relevance 
 
Using a discrete approach for creating architecture might hypothesize that the creative possibilities are 
limited. However, the scope of combinatorial creativity allows countless design options. An example is the 
piano, containing a limited set of keys, with limitless possibilities for creating new pieces of music. A 
building system based on voxel-based components allows new possibilities towards information 
management within the building process. Establishing a discrete BIM-system allows component tracking 
from the early stages of the design process. Analysis data and design decisions can influence specific 
building components. Discretization is the basis for establishing algorithms in the BIM environment that 
can simplify the design process. In the scope of this thesis, the potential of a discrete BIM approach and 
its potential for the building industry is elaborated.  
 
 
 



  

7 
 

0.1 Problem Statement 
 
Digital Design Platforms like The New Makers Builder offer a collaborative system in which a modular 
house can be designed from discrete components. The components are demountable and therefore 
allow adaptations and individualized solutions (The New Makers, 2022). 
However, these systems work only with one specific building product universe developed by one 
company and therefore exclude millions of building products developed for the construction market. The 
reason for this is the lack of standards and the high complexity of the components, which hinders the 
collaboration of multiple manufacturers.  
Building Information Modelling software solutions like Revit can integrate various products into a design 
workflow. However, these kinds of software are developed to handle planning projects of almost any size 
and complexity. Therefore, building elements are processed to create continuous geometries, resulting in 
highly parametric geometries and adaptable data. This structure allows a lot of flexibility, but it leads to 
complex relationships between components that require a lot of technical skills and hours of work to 
implement, structure and track components.  
This research will tackle these two challenges and combines the two approaches to create an open-
source collaborative building system that solves the dependencies and adjacencies for components 
developed in various environments. Furthermore, the research will elaborate on such a system's potential 
data integration, automatization and output generation. The roles of the architect, the end-user and the 
building product manufacturer is explored towards their participation potential. The methodology will be 
demonstrated on an infill system. 
 
 
0.2 Research Question 
 
Referring to the problem statement, the main research question of this elaboration is the following:  
 
How to create a computational design tool that encodes building products into a participatory and 
discrete architectural workflow? 
 
The research question implies that the main focus of this thesis is the creation of an integrated tool 
considering the aspects of translating building products of various manufacturers into discrete building 
components. Participation in this context reflects the influence of the main stakeholders on the design.  
 
Sub-Questions 
 
The following sub-questions are leading the path towards the main question: 
 
How to implement several kinds of building components with various dimensions into a grid-based 
system? 
 
The current building industry produces building products in various shapes and dimensions. Therefore, an 
essential component of a holistic building system is to examine to which degree existing building 
products with different dimensions can be integrated in the system.  
 
What are the participation possibilities in such a system for the different stakeholders in a building 
project? 
 
To evaluate the potential of the workflow for the application in the context of the AEC industry, it is 
important to examine the influence of the workflow on different stakeholders in the building process. This 
elaboration examines the potential for the end-user, the architect and the building product designer.  
 



  

8 
 

0.3 Research Objective 
 
This research is embedded in the research areas of open-
source architecture, prefabrication and participatory design. 
This thesis's first aim is to develop a framework for integrating 
a discrete BIM workflow. This framework should be 
implemented as a design tool for a voxel-based building 
component infill system. The concept of Mass-customization is 
explored by introducing configuration options for the discrete 
components. Finally, the application of the design tool as a 
participatory platform is reflected. This thesis is embedded in 
the context of the Dutch housing market and is therefore 
focussing on products, services and systems that are available 
in the Netherlands.  
 
0.3.0 Expected Product 
 
The thesis product should consist of a computational workflow and an infill system applying the workflow. 
The computational workflow incorporates a design tool in which a professional user can design BIM-
compatible tile sets based on building products. Additionally, it is aimed for a process in which these tile 
sets can be placed according to a coloured set of voxels and a tile preference by an unskilled user. Finally, 
the infill system should be incorporated into the workflow. 
 
 
0.4 Methodology 
 
0.4.0 Research Methodology 
 
The elaboration follows a rationalistic-atomistic approach. This means that the research problem is 
investigated based on its smallest sub-units of reason and logic. Therefore, the methodological approach 
chosen for this framework is design science research. This research methodology has a scope on creating 
an innovative product with focussing on the process of making choices rather than existing knowledge. 
The design science research methodology distinguishes five steps. After the identification of the problem, 
objectives for the solution are defined. Based on that, design and development is performed. The results 
are first implemented to demonstrate the solution and finally evaluated through verification and 
validation. 
This research is embedded in the generative design framework of GoDesign. GoDesign provides a 
complete framework for the mass-customization and optimization in architectural design. This thesis 
focuses mainly on the shaping phase and is therefore compatible with methods and processes developed 
in the scope of the other phases of GoDesign (Azadi & Nourian, 2021).  

 
Figure 1: GoDesign Framework (Azadi & Nourian , 2021, p. 288) 



  

9 
 

0.4.1 Proposed Methodology 
 
Following the design science research methodology, the following methods were deducted. 
 
1. Literature Review 
For creating a valid design tool, it is necessary to incorporate the current state of research. Therefore, a 
literature review in the three research areas of the thesis, Building Information Modelling, modular 
building systems, and strategies for encoding designs, is conducted. In the area of BIM, current workflows 
and data storage and processing methods are examined. After that, current industry strategies of 
prefabrication are set in the context of open building and discrete architecture. Finally, the technical 
foundations for implementing a discrete computational workflow are elaborated.  
 
2. Design Methodology 
It is essential to define a ruleset and evaluation criteria, to guide the developments according to a 
theoretical framework. Therefore, a ruleset is established and set into a framework after specifying the 
design terminology.  
 
3. Development 
In several studies, the BMC and WFC algorithm's potential is extracted, and their application's possibility is 
evaluated. Furthermore, several aspects of the infill system are designed and tested.  
 
4. Design 
In the design phase, the computational workflow is created and tested. Finally, the tile set database, the 
algorithmic placement, and the participatory framework are combined.  
 
5. Evaluation 
The system workflow is evaluated through validation and verification. For validation, the workflow is 
implemented on a rowhouse typology, and the functionality is elaborated. For validation, the value of the 
workflow for the industry is elaborated by implementing systems and products from the industry. 
Furthermore, interviews with experts from the housing prefab industry are conducted to evaluate the 
thesis product. 
 
6. Conclusion 
The results of the evaluation are assessed, and further potentials are outlined. 
 
 
 
0.5 Scope and Delimitations 
 
The scope of this elaboration is the intersection between architecture, computational design, and product 
design. The main aim of this research is the creation of a design workflow for discrete buildings. For 
demonstration, an infill system is developed and implemented in the workflow. A detailed and producible 
set of components is not part of this study.  
The developed system could be applied in larger housing projects with various stakeholders, but an 
individual house owner is addressed for this study. The development of a structural framework, as same 
as the participation of more complex ownership situations, is not considered. The system's performance is 
set in the context of the construction industry. 
 



  

10 
 

      
 

Figure 2: Thematic organisation of the research (Author) 



 

1 Literature Review 
 
1.0 Building Information Modelling 
 
In the scope of this research, it is relevant to get an overview of the common principles, data structures 
and advances in Building Information Modelling. The second step examines the possibilities of file- and 
data exchange in BIM. 
 
1.0.0 Workflow with BIM 
 
Before Building Information Modelling was inroduced, the construction industry did not work as a whole. 
The individual disciplines looked for their best interest, and the quality of the whole project suffered. In 
2007 in the United States, the waste created by this inefficiency was estimated at $500 billion (Rex Miller, 
2009). With BIM, however, it is possible to overcome the communication deficits in the industry by 
building a structure beforehand virtually. BIM allows the extension of model information by additional 
data, such as scheduling, safety and costs (Hardin et. al., 2015, p. 2). BIM is relevant for construction, as 
same as for the design. The link between these disciplines is done by linking geometry information to 
real-time databases. The crucial areas of information stored in the databases are construction 
documentation, visualization, material information, cost estimations, 4d construction sequencing and 
scheduling, and fabrication data (Garber, 2014).   
 
1.0.1 Geometries, Components and Libraries 
 
While the shift from a physical drawing to CAD just changed the medium, the shift from CAD to BIM 
changed the focus from a class-oriented to an object-orientated design environment. While in CAD-
Software, geometries are grouped in classes, for example, curves and solids, the information modelling 
groups objects into libraries. These libraries can contain additional information, such as materiality or 
adjacency. This object-oriented design approach allows simple geometrical data, such as lines, to 
represent more complex geometries by adding information modelling packages and three-dimensional 
modelling packages. Today, many building suppliers offer libraries of specific products, such as doors, 
windows, and screws. The selection of components from a library provides a streamlined design workflow, 
but it reduces the architectural design to the selection of pre-configured choices (Garber, 2014). 
 
1.0.2 Data Exchange 
 
Fluent communication between a construction project's stakeholders is essential in the BIM environment. 
However, at the beginning of the development of BIM applications, there was no standard file format, 
and different programs' interactions were impossible without data loss.  
 
With enhancing the use of BIM, several data exchange methods were developed. Lou et al. (2020) 
described the three exchange categories: file-based exchange, cloud-based exchange or local data 
exchange. A file-based exchange is a one-way data transfer from one platform or collaborator to another 
through a standardized file format, for example, the Industry Foundation Classes. A disadvantage is that 
manipulations can only be performed on the file, not object level. This issue can be solved with a cloud-
based exchange. However, this exchange method lacks open standards and privacy strategies. A third 
option is the local data exchange, which can be performed through blockchain technology. This 
technology is still in development and lacks compatibility and conflict-resolving mechanisms (Lou et al., 
2020). 
 



  

12 
 

Speckle is an example of a cloud-based data transfer. It is an open-source data platform to connect 3D 
and BIM data across the AEC Industry. Users can install speckle connectors in their working programs, 
such as AutoCad, Rhinoceros, Excel or even Python. Speckle allows real-time data transfer and versioning 
of files (AEC Systems, 2022). Speckle offers access and visualization of 3D data online.  
  
The “Industry Foundation Classes” or in short “IFC” is a standardized file format to allow data transfer 
between the architecture, engineering, and construction industry. The file format contains information 
about the identity of objects, characteristics, relationships, and processes. Additionally, information about 
stakeholders, like owners and designers, as well as abstract concepts like performance, can be codified 
(buildingSMART-International). The development of the format started back in 1995. Therefore, the 
format is based on EXPRESS, a data formatting language available at the time of development. Twenty-
five years later, IFC became the standard for data exchange in BIM, but most developers have no or little 
experience anymore with the work in EXPRESS. Therefore, a task force was developed to modernize the 
ifc format. Independency of the data structure from a specific programming language should be 
achieved. Furthermore, the task force plans to modularize the format, separate responsibilities, and 
eventually allow independent release cycles (Berlo et al., 2021). These aspired improvements would 
enhance the advantage of the IFC standard over other exchange methods.  
 
1.0.3 Classifications 
 
The IFC format introduced a universal classification system for data exchange in BIM. However, in the 
construction industry, the ISO 12006 framework is established. ISO 12006, titled “Organization of 
information about construction works” (International Orgaisation for Standartization, 2015) is applied 
worldwide as a basis for national classification systems for construction. While the objectives of these two 
classifications are comparable, they have considerable differences in internal semantics and structure 
(Ekholm, 2005). For the actual compliance of IFC to the national classification systems, a conversion is 
required. The developer of the IFC standard, buildingSMART International, developed a Data Dicionary 
that can convert the ifc classification to national classifications (buildingSMART-International, n.d.).  
 
1.0.4 Databases 
 
In the scope of this research, it is relevant to access databases that provide data about building products 
and detailing that can be implemented in the workflow. While countless websites offer building product 
information, three examples are presented to show the potential of different kinds of databases relevant 
to this thesis. 
 
Bimobject 
 
Bimobject.com is an online database to create and retrieve building products in various file formats. It is 
the leading database in that sector, with 31 million files downloaded annually. The platform offers 
technical specifications and the BIM-related classification of the offered products. Products can be 
downloaded and seamlessly integrated with a BIM workflow in common software (bimobject, 2022).  
 
NBS Source 
 
The National Building Specification (NBS) is a company in the United Kingdom that provides a 
classification system but also offers a tool to implement building products. NBS source is a tool to find 
building products and download specifications and BIM-files, such as in Revit of IFC format. An advanced 
workflow is created through the integration of classification and specification (NBS Source, 2022).  
 
 
 



  

13 
 

 
KVT Online 
 
KVT (Kwaliteit van houten gevelelementen) Online is a platform created by the NBvT (Nederlandse 
Branchenvereniging voor de Timmerindustrie). It provides a guideline for creating wooden facade 
elements, providing information about the workflow, and integrating materials, assembly and detailing. 
Compared with the other two platforms, the KVT does not provide specific building products from 
manufacturers. However, the end products described on the platform fulfill the Dutch building 
certification BRL 0801 (NBvT, 2014).  
 
1.1 Modular Building Systems 
 
1.1.0 Discrete Architecture 
 
In Mathematics, a discrete variable is countable in a finite amount of time. A continuous variable, 
however, would take forever to count. Therefore, a continuous variable is measured, while a discrete 
variable corresponds to a value in the natural numbers (Abramowitz, 2012, pp. 927). Also, in technology, 
this phenomenon is present. An analogue signal is a continuous signal, while digital information is 
encoded in discrete bytes.  
 

 
Figure 3: The Continous and the Discrete (Author) 

 
The concept of discrete architecture is an alternative perspective towards modular buildings. Gilles Retsin 
describes discrete architecture as the following: “the Discrete is an emerging body of work that seeks to 
redefine the entire production chain of architecture by accelerating the notion of discreteness in 
computation and the physical assembly of buildings”(Retsin, 2019, p. 7). The concept is based on a part-
to-whole approach. This means creating buildings out of parts instead of modelling them continuously, 
such as a concrete shell. Since computation is essentially based on discrete data, combining these parts 
with a digital assembly workflow is possible. Constructing a building from parts means a loss of a certain 
resolution, but it is traded for the possibility of scaling (Retsin, 2019).  
 

 
Figure 4: Assembled Discrete Building Blocks, Photo by James Harris (McAndrew, 2022) 



  

14 
 

1.1.1 Open Building Concept 
 
The Open Building Concept was developed by the Dutch architect John Habraken and aims to improve 
the interaction between the building industry and customers in the built environment. The main concept 
is the subdivision of a building into several levels of decision-making. Open Building differentiates 
between the urban fabric “tissue”, the containing base “support” and the infill. The distinction between 
infill and support systems on the building level creates separate entities with different life cycles and can 
be supplied independently. The support system is setting the limits for the infill system, while the infill 
system determines the requirements of the support system (Cuperus, 2001).  
 

 
Figure 5: Shearing Layers of Change (Stewart Brand, 1994) 

 
Coordination 
 
The main challenge in Open Building is the coordination of dimensions and connection between the 
individual components. Therefore, a classification called formal description was introduced to give every 
element in a building a unique identifier. The formal description contains two parts. The abstract 
description gives specific information about the position of the element in the building. The product 
description states the adaptability of an element. It distinguishes between prefabricated and therefore 
unadaptable elements, standardized elements like plates and elements that are produced on-site 
(Cuperus, 2001). In the scope of this thesis, a new approach towards digitalizing these kinds of 
classification in the framework of Open Building is elaborated.  
 
Matura Infill System 
 
A mentionable system incorporating the principles of Open Building is the Matura Infill System. The 
Matura Infill system was developed by the Ahrend group in the Netherlands in 1986, focusing on modular 
coordination and incorporating cables and conduits (Kendall, 2015).  
 

 
Figure 6: Matura Infill System (Gan, S., Zhang, H. , 2021) 

The system introduces the matrix tile, a component that rests on the floor and contains piping. This 
matrix tile can be covered thanks to its LEGO-like connection points with flooring elements and 



  

15 
 

baseboard channels that can contain further cables. The system can contain all necessary piping for a 
room and allows the assembly of “off-the-shelf-products” (Cuperus, 2001).  

Furthermore, Matura developed a new logistics strategy for dwelling projects. Instead of that, all 
producers of infill parts for dwellings deliver their products to the building site independently, Matura 
offered a product bundle service. All products required for one dwelling unit were packed together and 
loaded into one container in the reverse order in which there are used on-site. This allowed a complete 
installation of a fit-out system of a 1000 m2 unit in only two weeks (Kendall, 2003).  

 
1.1.2 Modular Architecture 
 
To categorize modular architecture, three models can be distinguished as described by (Klein, 2013):  Slot 
modularity, bus modularity and sectional modularity.  
Slot modularity describes the use of one connection interface, that allows the placement of several 
different discrete elements. An example of that is the car radio. A few years ago, a car owner could fit the 
radio of almost every other car in her connection slot.  
Bus modularity describes the concept of an independent connection interface that can connect two or 
more objects. An example of that is the USB Port, connecting several electronic devices.  
The third option is sectional modularity. In sectional modularity, a part shares the same connection 
interface with other parts with different properties. An example of this modularity is the Lego system, with 
interlocking notches and grooves (Klein, 2013). 
 
1.1.3 Design for Deconstruction 
 
While having the primary goal of reconfigurability, it is essential to address the demountabillity of 
components. Guy and Ciarimboli (2005) developed guidelines for the design for deconstruction that are 
worth mentioning. Firstly, materials with reuse and recycling potential should be preferred to use. The 
materials need to be labelled for efficient deconstruction. Connections need to be accessible. Non-
permanent connection methods, such as screws and bolts, should be preferred. In general, components 
should have a straightforward structure and interchangeability should be achieved through 
standardization and modularity (Guy and Ciarimboli, 2005). 
 
1.1.6 Case Studies for modular Building Systems 
 
In this section, several Building Systems for the dwelling market are presented. They are all adopting the 
Open Building concept, and they are applicable to rowhouses or similar typologies. The features of the 
systems are categorized and compared. 
 

 
Figure 7: The Uuthuuske System (The New Makers, 2022) 



  

16 
 

The Uuthuuske is a biobased modular system developed by the New Makers in Delft. With the help of 
digital fabrication, an IKEA-like kit is produced in the factory. The kit is easily mountable, and 
subcomponents, as interior walls, can be clicked together by the house user.(Oorschot & Asselbergs, 
2021) The system is based on sectional modules of 1.2m, which are mounted together. All components 
and service systems can be demounted, so there are a lot of configurations to choose from for the user. 
The comfort cabin is a prefabricated block that is inserted in the house, containing a kitchen, bathroom 
and toilet. Currently, the user can customize a building based on various material options and element 
typologies with assistance through an architect of the New Makers (The New Makers, 2022).  
The Uuthuuske is a very advanced modular housing system, offering a lot of configuration possibilities for 
users. The demountable wooden elements are the base for a comprehensive circularity concept. 
However, the fixed width of the building limits the spatial choices for the user a lot. Furthermore, through 
the closed product universe of this system, the variety of modules is limited.  
 

 
Figure 8: Skylark System (Open Systems Lab, 2022) 

Another system that is referred to translate an IKEA method to building scale is the WikiHouse project. 
WikiHouse is an open-source and digitally-manuactured building system for small and cost-effective 
housing solutions. Users can download a housing design, modify it in SketchUp, and produce it then 
themselves with a CNC machine and plywood sheets. The connections are solved with wooden joinery, 
screwing is mostly avoided. This way, the houses are completely demountable ("www.wikihouse.cc," 
2022).  
The WikiHouse is highly participatory since it transfers the complete production and assembly process to 
the end-user. Thanks to the wooden joinery and the use of wood, it is very circular. On the other side, 
WikiHouse requires high skills. Users must be able to fluently work with SketchUp and a CNC machine, 
furthermore they need basic construction skills.  
 
 

 
Figure 9: Houtbaar Loft. TBI Woonlab (2022, 01) 



  

17 
 

Houtbaar Loft is a modular building system for rowhouses, developed by TBI Woontab in collaboration 
with The New Makers and Sustainer Homes. Houtbaar Loft has a standard hull that contains two wooden 
structural side walls and two facades with windows for the front and the back. As claimed on the product 
website, the system is fully demountable, completely produced out of CLT panels, and can be installed on 
location within one day.  
When the hull is installed, end-users can choose their preferred infill from a module collection. The 
assembly is managed through clicking-connectors, which are placed on the structural sidewalls. Toilet, 
bathroom and kitchen are integrated into a fixed service core in the middle of the house. At 13.01.2022, 
the Houtbaar Loft is still in the prototyping phase and the pricing structure is not yet known (TBI Woonlab 
, 2022, 01).  
The strength of Houtbaar Loft is the combination of a fixed structural hull with a flexible infill system. The 
reconfigurability of the infill elements offers inhabitants a wide range of choices for a loft building. 
However, a disadvantage is the strong design limitation through the fixed envelope, restricting also the 
possibilities for indoor spaces.  
 

 
Figure 10: Gablok System (Gablok, 2022) 

The idea of Gablok evolved from interlocking building block toys. Founded in Belgium in 2019, its goal is 
to allow self-builders to construct their own home. The concept is the stacking of interlocking isolated 
wooden blocks towards the construction of a whole building. With only 8 different elements the assembly 
of a shell construction is possible. The company converts the building designs by an architect into the 
Gablok system and delivers the blocks to the site. The assembly of the Blocks is then in conducted by the  
end-user (Gablok, 2022).  
The Gablok system is translating the building principles of the modular toy LEGO to the building level. 
The modular wooden construction is demountable and is has therefore a high circularity potential. As a 
self-build-system, it requires however high personal effort by the end-user. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

18 
 

1.2 Encoding Design 
 
In the scope of this thesis is the development of a design tool that simplifies the architectural design 
process and offers the opportunity for non-experts to participate in it. For that, several tools for 
generating designs are presented and evaluated. Following that, technical foundations for the 
implementation of the most promising tools are elaborated. 
  
1.2.0 Strategies for encoding designs 
 
Savov et. al (2020) defined five strategies for encoding architectural design into interactive modelling 
platforms: implicit modelling, parametric configuration, part assembly, procedural generation and assisted 
sculpting. The strategies are evaluated from the perspective of an end-user who wants to create an 
individualized design, and a professional designer who assists the end-user and provides initial input for 
the strategies. 
 
Implicit Modeling 
 
Implicit Modeling describes the creation of designs in the commonly available CAD softwares or 3D 
modelling software like McNeel Rhinoceros, Autodesk AutoCad or Blender. While these programs allow 
the highest degree of design freedom, this freedom implies a complex modelling process not suitable for 
an unskilled user. 
 

 
Figure 11: Implicit Modeling with Rhino (Author) 

Parametric Configuration  
 
Parametric Configurators are widely available online to customize 
specific, predefined designs. These configurators allow a non-
expert to participate in the design process by selecting a specific 
combination of predefined options. However, while they are easy 
to use and can provide direct design feedback, such as the final 
price, the design freedom for the end-user is very limited.  
 
 
Figure 12: Parametric Configurator of the beterBASIShuis (TBI Woonlab, 
2022 10 11) 



  

19 
 

Part Configuration 
 
The Part Configuration is the extended version of a parametric configurator. Instead of just selecting 
predefined options, the end-user can freely configure parts following predefined rules towards an 
individualized assembly. While the end-user has a high degree of freedom, the expert´s influence on the 
final design is minimal.  
 
An example of a part configurator is the IKEA Kitchen Planner. The planner is accessible via a desktop 
computer or mobile device in any web browser. Firstly, the user needs to enter data about the general 
type of kitchen she prefers. Then, the kitchen room layout is designed by simply entering the dimensions 
of selected walls. In the third step, an example kitchen is generated and positioned in the individualized 
kitchen room. All kitchen components can be moved, exchanged and modified to users’ preference. The 
user is able to position elements freely in space. Feedback is given firstly by the price indication of the 
whole kitchen configuration and secondly by detecting falsely placed elements. As seen in the figure 
below, items that are not placed according to prespecified design rules are pointed out to the user.  
 

 
Figure 13: IKEA Kitchen Planner (IKEA, 2022) 

The initiative Block by Block is a different approach as a part configurator. Block by Block is a joint 
program between Mojang, the developer of Minecraft and UN-Habitat. They have the novel approach of 
using the computer game Minecraft to let communities participate in urban planning projects. Established 
in 2012, the foundation has funded public space projects in more than 35 countries, often in developing 
countries, impacting the life of more than 2.3 million people. Minecraft is a widely known game and is 
easy to use, especially for kids. In workshops involving people of all ages, urban spaces are designed in 
Minecraft. The design process is done in Multiplayer mode, involving several players working together. 
The designs are then transferred to an architect, who converts them to design drawings. After that, the 
project can be funded and built (Block by Block, 2022).  
 

   
Figure 14: Rebuilding Tradition In The Kathmandu Valley- Minecraft Model and Reality (Block by Block, 2022) 



  

20 
 

Procedural Generation 
 
With Procedural Generation, designs are shaped through additive or discrete modelling according to 
predefined rules. The rules are embedded in algorithms that can run without different degrees of user-
interaction. While keeping control over the design workflow for both professionals and end-users, the 
algorithms can be implemented in intuitive design games. 
 
An example of Procedural Generation is the video game Townscaper, developed by Oskar Stålberg and 
based on the Wave Function Collapse Algorithm. The game is a tool to let the user express combinatorial 
creativity. The user has only two possible actions to perform in the game. A click on the left mouse button 
will add a block, and a click on the right mouse button will remove a block. This simplicity in the 
functionality lets the user immediately understand the game´s principles and generate design options. 
Without specific user instruction, decisions to place blocks at specific locations in the model, balconies, 
staircases, roofs and other building elements are generated (Stålberg, 2022).  
 

  
Figure 15: Two Designs created in seconds by the author in Townscaper (Stålberg, 2022) 

Assisted Sculpting 
 
The last encoding strategy is assisted sculpting, as developed by Savov et. al 2020. To create a unique 
configuration, the user can sculpt a set of voxels according to a predefined grid. The set of voxels is 
converted into geometries through an algorithm, that selects and places predefined tiles according to the 
configuration of the voxel set. The user keeps a high control of the output, while the usability and the 
influence of the expert remain acceptable.  
 

 
Figure 16: Assisted Sculpting (Savov et. al, 2020) 



  

21 
 

Evaluation 
 
In the figure below, the strategies for encoding designs are evaluated. This thesis aims for the creation of 
a design tool that can be used by unskilled end-users but allows professionals to generate design 
guidelines at the same level. The influence of these two players is therefore essential, as same as the 
easiness of use. Furthermore, it is aimed to generate design feedback to provide the end-user feedback 
for the design decisions that are made. Applying these factors, assisted sculpting and procedural 
generation strategies are performing best. Therefore, in the following chapters are the technical 
foundations of these strategies evolved.  
 

 
Figure 17: Comparison of strategies for encoding designs (Author) 

 
1.2.1 Constraint Solving 
 
For assisted sculpting, as for procedural generation, design rules need to be integrated that set 
constraints to the design space of the user. To integrate these constraints, such as the need for a door, 
the placement algorithm must be able to solve constraints. The theory behind this is the constraint 
satisfaction problem. A constraint satisfaction problem is a mathematical problem that contains a finite 
set of variables. Each variable has a non-empty and finite domain of possible values. Furthermore, it 
contains a set of unary and binary constraints. Unary constraints involve only one variable, while binary 
constraints involve two variables.  
An example of a constraint satisfaction problem is the map-colouring problem. In figure 4 is shown how a 
map colouring problem can be solved (Tsang, 1993).  

 
Figure 18: Map-coloring (author) 

 
The tree search method is the simplest method to solve the constraint satisfaction problem. With this 
method, variables are instantiated one after the other. First, a value from the variable’s domain is 
assigned, and the constraint check is performed. If the constraints are satisfied, the next variable is 
instantiated. Backtracking is executed if there is no opportunity to assign a value without violating the 
constraints. This means that the algorithm is revisiting the latest assigned variable and trying to assign a 
new value for it (Liu, 1998).    



  

22 
 

1.2.2 The Wave Function Collapse Algorithm 
 
The Wave Function Collapse algorithm was developed by Max Gumin in 2016. It is based on the Model 
Synthesis Algorithm created by Paul Merrell in 2007 (Merrell, 2022). The name “Wave Function Collapse” 
refers to a phenomenon from quantum mechanics. It describes the abstract probability of finding a 
specific particle somewhere. When a particle is unobserved, it may be in several possible states. Only 
observing the particle's position sets the probabilities of all other options to zero (Giacosa, 2014). This 
principle of collapsing possible positions for elements is also the principle of the WFC Algorithm.  
 
The algorithm is an example-driven procedural content generation algorithm using constraint solving and 
was initially created for 2D pixel image generations. However, it is also applicable on a 3D tileset to create 
architectural models. Marian Kleinberg developed an infinite virtual city from a simple tileset containing 
bridges, roofs, walls and streets (Kleineberg, 2022). Eleni Chasioti went even further and developed a tool 
to create models with the WFC-Algorithm directly in the 3D-modelling software Rhinoceros, with the help 
of a Grasshopper-Plugin. The plugin allows the creation of design options based on predefined tilesets 
for the early design process (Chasioti, 2020). Through the support of the implementation of design 
constraints, the algorithm can be combined with other algorithms or manual inputs (Gumin, 2022).  
 

 
 
Figure 19: Workflow of the Wave Function Collapse Algorithm (Author)

 
1.2.3 The Marching Cubes Algorithm 
 
The Marching Cubes Algorithm was developed by William Lorensen and Harvey Cline in 1987. It was 
initially developed to create triangular vertices using linear interpolation of medical data, such as MRT 
scans. The basis is a scalar field of voxels, and the algorithm checks the neighbouring conditions of the 
eight corners of the voxel. Based on the 15 unique cube configurations, a polygonal mesh is extracted 
(Lorensen & Cline, 1987). 
 
The python library topoGenesis was developed by Pirouz Nourian and Sherin Azadi at TU Delft University 
since 2020 (Azadi & Nourian, 2021). It contains topological structures and functions that can be used in 
generative design. It contains the Boolean Marching Cubes algorithm, which is an optimization of the 
initial Marching Cubes algorithm for generative design in architecture (Nourian & Azadi, 2022).  
24 cube configurations can incorporate all possible neighbouring conditions for one voxel. For each of 
them, a specific tile is defined, forming a tileset. When the algorithm is running through a voxelized 
shape, it places the tile with the matching neighbouring conditions on the position of the analysed voxel.  
 
1.2.4 Shape Grammars 
 
To produce algorithmic designs that are technical valid and aesthetically pleasant, multiple design rules 
need to be defined. A set of these rules tackling three-dimensional shapes can be called a shape 
grammar. Sass (2005) defines two subcategories of shape grammars relevant for housing design: design 



  

23 
 

grammars and construction grammars. Design grammars can produce architectural designs but do not 
consider materials, assembly, or construction methods. The main aim of design grammars is the 
production of a variety of design options. Construction grammars on the other hand are translating a 
design model into construction components. For example, a construction grammar can transform a 
specific three-dimensional design into a set of two-dimensional line drawings that can be used for CNC 
fabrication (Sass, 2005).  
 

    
Figure 20: A shape grammar and grammar derivation (Sass, 2005) 

 
 
1.3 Conclusions  

 
The results from the literature review are the foundation for the development of evolving the 
methodology of a design tool for discrete building information modelling. The following conclusions can 
be drawn: 
 
Advanced databases for obtaining building products and guidelines are existent and integrated into the 
workflows of the industry. A novel system should integrate connectors to the BIM environment, both on 
the input site through building products on the output side with data exchange. The IFC format was 
identified as the most suitable data format to integrate into the workflow.  
 
A modular system is dependent on a dimensional system. In most presented cases, the dimensioning 
system is dependent on the width of the building, as in the Houtbaar Loft. Sometimes, it is the minimum 
element size, as at Gablok. The careful choice of a dimensioning system is an essential factor regarding 
the limitations of the system. Design for deconstruction should be considered through a simple structure 
with non-permanent connections as a basis for the infill system.  
 
The WikiHouse is the only presented system that allows the user to modify existing modules and create 
new ones. In general, it is interesting that almost all building systems have a closed product universe 
supplied by one company. Opening the system while still keeping the demands towards the user’s skills 
low is a crucial component towards the success of the thesis product.  
 
The principle of converting architectural building elements into tilesets and creating a plethora of spaces 
with them seems to have significant potential for application in the scope of this thesis. While the Boolean 
Marching cubes algorithm can identify specific spatial situations, the Wave Function Collapse Algorithm 
allows an end-user to select particular elements and arrangement patterns. Combining these two 
algorithms towards a user-controlled placement system for system elements can bridge the gap between 
participation and standardization.  
 
 



  

24 
 

2 Design Methodology 
 
2.0 Design Terminology 
 
In this project's scope, there is a computational and a geometrical approach to structuring data. This 
duality allows building components to be placed according to simplified computational rules. The 
following presents the terminology to differentiate between the two data structures.  
 
Voxel 
 
A voxel is a hexahedron representing a specific geometrical module of a specific size in space. Multiple 
stacked voxels form a voxel array, which represents connected spaces with the size of multiple 
geometrical modules. In addition, a voxel can contain information about a specific colour, allowing a set 
of voxels to have multiple colours and display different spaces. A coloured set of voxels is the initial user 
input towards the spatial configuration of the building.  
 
Cube 
 
A cube is a geometrical module with the same dimension as a voxel. The vertices of a cube are the 
centerpoints of eight adjacent voxels, and the centerpoint of the cube is a vertex of each of those voxels. 
Therefore, the voxel and the cube have a relationship of duality. The cube's dimensioning shapes the 
overall grid for the building system. 
 
Sub-Voxel 
 
The sub-voxel represents the region of the overlapping of a cube with a voxel. Since a cube overlapps 
with eight voxels, the zone is an octant of the voxel, as same as an octant of the cube. In a cube 
configuration, the sub-voxel is represented by one digit. This digit can be binary (0 or 1), but it can also 
represent the colour of the parent voxel as an integer. The sub-voxel, as a geometrical unit, is used to 
generate the basic tileset, forming the basis of all other tilesets.  
 
Computational Tile 
 
The computational tile is a geometry assigned to a specific cube. In its most simple form, the tile is 
represented by a surface, separating occupied sub-voxels from unoccupied sub-voxels. The geometry is 
always related to the occupation (or not-occupation) of the eight sub-voxels forming one cube. The size 
of the computational tile is always relative to the voxel/cube sizing. Additional to the eight vertices, a tile 
can be identified through the six faces of the assigned cube and the specific Tile ID.  

 
Figure 21: Visualization of Design Objects (Author) 



  

25 
 

Tile Set  
 
Multiple tiles representing different cube configurations but offering compatibility are forming a tile set. 
These tilesets are the main geometrical input for both BMC and WFC algorithm. A complete tile set 
includes 26 tiles, all assigned to different voxel configurations. 
 
Family 
 
A family is a concept of an extended tileset. A family contains all tiles that are possible to connect with 
each other. This includes the basic tileset of 26 unique cubes but also instances of them containing other 
components, for example windows and doors instead of plain walls.  
 
Building Product 
 
A building product refers to a specific product available on the building market. The building product is 
linked to a unique EAN-number. The EAN13 or GTIN number is the international standard to encode an 
article number. The number allows to trace a product and get information about supply chain and 
manufacturer (Weber, 2020).  
 
Part 
 
A part is a modified or non-modified building product initialized in the computational workflow.  A part 
contains exactly one building product available on the market (for example an OSB-plate), and contains 
additional information about the treatment of this building product. A treatment can be the resizing to 
certain measurements, or the drilling of holes.  
 
Component 
 
A component is a building entity, as it can be mounted on-site. A component contains one or more parts. 
Connection systems, like screws and nails are included in the information of one component. 
Components also display different steps of assembly within a tile, for example by separating the three 
components door, frame and wall.  
 
Building Tile 
 
A building tile is the complete entity of a discrete building component compatible with the voxel grid. It is 
the most important object in the workflow, as it combines information on the virtual objects with 
information of building components. Building tiles function as a translator between a physical building 
component and a virtual design environment.  
 
 
 
2.1 Units and Sequences 
 
Within the workflow, there is data transfer between several interfaces, algorithms and programs 
necessary. To ensure that no data is lost during transitions, it is essential that there is a clear distinction of 
directions, planes and vertices to be able to identify the specific positions of all objects during all stages 
of the workflow. In the following, several elementary counting sequences and units are defined. As a 
boundary condition, a cubic grid system is assumed.  
 
 
 



  

26 
 

2.1.0 Coordinate System 
 

 
Figure 22: Coordinate System (Author) 

 
In the coordinate system, x is defined as direction 0, y as direction 1 and z as direction 2, while assuming 
that the xy-plane is the ground plane. Since most of the geometries discussed in this thesis are produced 
with McNeel Rhinoceros, the coordinate system is set according to this software, resulting in a plain xy-
plane and an orthogonal xz plane. This clarification is the basis for all further numbering of elements. 
 
 
2.1.1 Cube Faces Counting Sequence 
 

 
Figure 23: Derivation of the counting sequence of the cube faces (Author) 

The cube face counting sequence can be derrived from the coordinate system. For each of the six cube 
faces, the direction is defined. It is assumed, that the origin of the coordinate system is the geometric 
center of the cube. The six resulting vectors are now translated into a binary format through inverting 
negative vectors. The resulting list of binary vectors is sorted according to value of all combined digits. 
For example, the vector direction (0, -1, 0) is converted to (1, 0, 1) and sorted according to („101“). All six 
faces are now assigned a face number, used for adjacencies between different cubes and tiles in later 
steps. 



  

27 
 

2.1.2 Cube Vertices Counting Sequence 
 

 
Figure 24: Counting Sequence (Author) 

To be able to codify the cubes, all vertices need to be identified too. The counting is performed from the 
lowest sum of the coordinate of all points (-1, -1, -1) to the largest sum (1, 1, 1). From the counting 
sequence, a specific vertex code, checking the corner conditions of the cube, can be defined. As seen in 
the example, a cube with four corners defined as filled, and two defined as empty, can be translated into 
a binary code. 
 

2.1.3 Establishing a Tileset of 26 unique cubes 
 
One cube with its eight vertices can have 256 possible configurations, with the assumption of using only 
binary values. For the context of this thesis, it is aimed to limit the amount of configurations as much as 
possible to simplify the design process. Solkyu Park developed a method to reduce the 256 
configurations down to 26 configurations relevant to the architectural context (Park, 2022).  
In a first step, point-to-point and edge-to-edge connections are eliminated since they do not have 
relevance in the architecture industry. These types of connections are not able to produce spaces that are 
usable for humans. 
 

 
Figure 25: Connection types of sub-voxels (Author) 

 
Only surface-to-surface connections remain, which are usable to create building parts. The stack of cube 
configurations can already be limited to 126. In the second step, cube configurations with the same shape 
but a different rotation on the xy-plane of the cube are grouped together. This reduced the stack to 33 
unique cube configurations, each representing one shape, having four instances rotated around the 
centerpoint of the cube.  



  

28 
 

From these remaining cube configurations, seven configurations are mirrored along a horizontal axis, 
equivalent to seven other configurations from the stack. These configurations are grouped together as 
well, resulting in a total stock of 26 unique cube configurations with seven of them having eight instances, 
17 having four instances and two having one instance only (Park, 2022). 
These 26 unique cube configurations will be the basis for the tile design and tile structuring in the 
following chapters. However, for the fabrication phase, 33 cube configurations are considered since a 
detailed geometry might have a different setup than a mirrored instance of the same.   
 
2.2 Dimensioning System 
 
The dimensioning system must be chosen accordingly to human needs and human measurements.  
It is important to distinguish between a tatami module and a micro module. The tatami module will be 
the basis for the size of the building components. The tatami module can be divided into micro modules. 
These micro modules are the smallest unit of the system, defining connection interfaces and material 
changes. 
To simplify the generation of the tilesets,  a cuboid rectangle with a squared base was selected as the 
primary voxel geometry. The stairs and the toilet have a strong dependency on human measurements. 
Therefore, the dimensioning system is based on these two building units. According to the Dutch housing 
regulation, the minimum size for a toilet is 0.90m on 1.20m (van Overveld et al., 2011). Based on that, 
0.90m is assumed as the minimal usable width of a building element. To this minimum dimension of the 
usable space, a minimum wall thickness needs to be added. As a reference, the thickness of a standard 
gypsum cardboard partition wall is presented. According to the Rigips system MW12RBRH, the wall has 
an acceptable thickness of 100mm (Verarbeitungsrichtlinien Trockenbau, 2021). Therefore, half of the size 
of the wall thickness is added to each edge of the base surface, creating a base surface of 1.00m x 1.00m.  
The height of the module is dependent on the stair configuration. Based on the length of 1.00m, a 25cm 
run on an 18 cm rise was chosen. This results in a total of 4 steps per module, leading to a height of 
0.72m.  
 

 
Figure 26: Dimensioning System (Author) 

The stacking of these modules defines the minimum height of the second floor. The stacking of four 
modules achieves a height of 2.90 and is therefore sufficient for the minimum ceiling height (2.60m is 
required in the Netherlands (van Overveld et al., 2011)). The stacking of four modules is therefore 
sufficient to reach the next level with a construction height of the ceiling of 30 cm. Stacking five modules 
to reach the next level is required when thicker ceiling construction is used.  
It is important to notice that these dimension proposals will be necessary for the creation of the tilesets in 
this thesis. However, they do not influence the system workflow and could be replaced with other 
dimensions later in the process.  
 
 
 



  

29 
 

2.3 Stakeholders 
 
As the objective of this thesis is a collaborative design tool, it is important to define the stakeholders 
included and excluded from the design workflow.  
 

 
Figure 27: Stakeholders involved in different stages of the planning process (Author) 

Building design and construction involve several stakeholders in various phases. The design tool focuses 
on the phases of product development, conceptual design, and design. The essential involved 
stakeholders in these phases are the building product supplier, the client, the architect and the engineer. 
The design tool needs to have the availability to be compatible with standard BIM-programs, such as 
Revit, so that in prospect also stakeholders in a later stage of the process can profit from the system. For 
simplification, the stakeholders addressed by the design tool are reduced to three parties: the building 
product supplier, the client (house owner) and the architect. The material supplier is included in the 
extended function of a building product designer. The house owner is in this simplified model equivalent 
to the end user. The architect is seen as a designer and manager, combining responsibilities of engineers, 
architects and project managers. These simplifications are done to reduce the focus of the addressed 
persons for this thesis. 
 
 
2.4 Computational Framework 
 
Based on the results of the literature research, a methodology for a design tool can be created.  It was 
chosen to break down the design tool into several sub-steps. This approach offered the possibility to 
conduct experiments in each step separately without letting other parts of the tool compromise the 
results.  
 
2.4.0 Topological Design 
 
With a topological design, it is possible to open the complex spatial planning process for participation. 
Like in Minecraft, blocks or voxels can be placed to create spaces. The difference is, however, that the 
placed voxels represent space directly and do not represent built mass. Therefore, as an input, specific 
voxel sizes and kinds are required. A set of voxels arranged by the user is produced as an output.  
 
 
 
 
 
 
 
 



  

30 
 

2.4.1 Tile Creation 
 

 
Figure 28: Flowchart of the Tile Database Structure 

For the creation of the tiles, a database is required. Following the data storage approaches in Building 
Information Modelling software described in the literature research, a hierarchic system is introduced. The 
hierarchic system has the advantage of using multiple instances of objects that only need to be created 
once. As seen in the flowchart above, it is aimed to create for the design objects individual tables, that 
can be filled with instances. The lowest layer in the hierarchy is the building products table, offering the 
implementation of building products from the industry. Parts, Components and Tiles are design objects 
that relate to the IFC class IfcElement. Through nesting, one tile can incorporate multiple components, 
and one component can incorporate multiple parts. The geometrical requirements towards the database 
are examined in the next chapter through the development of an infill system.   
 
The main database is aimed to be set up in the Microsoft Access format. This format has the advantage 
that it is an industry-standard program, and it is accessible with the widely used SQL language.                                                                                                                                           
The modification, input and output commands are executed with python through the pyodbc library, 
which can access the database.  
 
2.4.2 Tile Options 
 
The next step of the design tool needs to be the definition of the solution space for the tile placement. 
For each voxel of the topological design, cubes need to be extracted, and matching tiles from the tile 
database need to be mapped onto those cubes. This step is a technical necessity and does not include 
any manual modifications.  
 
2.4.3 Tile Placement 
 
The tile placement is the most essential step of the design tool, as it requires the combination of 
participatory design and building information modelling. The following chapter tests the Wave Function 
Collapse algorithm and the Boolean Marching Cubes algorithm to extract the best possible method for 
this step.  
 
2.4.4 Postprocessing 
 
For the Postprocessing, it is required to transfer the data generated in the design tool to other software 
or stakeholders. Strategies need to be tested, which data is relevant to export. Regarding the data 
transfer, the IFC format as an industry standard is chosen. 



  

31 
 

2.4.5 Aimed Level of Detail 
 
Working with Building Information Modelling offers the possibility to design representative mass models 
as same as detailed fabrication-ready models. To set a standard for communication between different 
stakeholders working on several stages of detail, the American Institute of Architects established 2008 five 
levels of development, the LODs (Daga, 2021). As described in the AIA E202 contract, the following levels 
are defined based on (Level of Detail | GSA, n.d.):  
 
 LOD 100 LOD 200 LOD 300 LOD 400 LOD 500 
Title Conceptual Approximate 

Geometry 
Precise 
Geometry 

Precise 
Geometry  

As build 

Model 
Properties 

Primitive 
model 
Roughly sized 

Approximate 
quantity, size, 
location, and 
relationship of 
most objects 

Object 
dimensions, 
capacities and 
connections 
are defined 

Model Data 
ready for 
fabrication 

A combined 
model of LOD 
300 and 400 
All building 
elements 

Additional Data Energy 
analysis 
(optional) 

Preliminary 
Information 
for each 
object 

Data of all 
objects are 
filled 

Additional 
fabrication-
related data 

Objects 
contain cost, 
purchase and 
commissioning 
data 

Implemented 
Layer in Design 
Tool 

Topological 
Design 

Interactive Tile 
Placement 

Tile Creation 
Postprocessing 

- - 

 
The last row shows the level of detail that is aimed to be implemented in the individual parts of the 
design tool. The topological design provides a conceptual design of spaces. The design environment for 
the tile placement is simplified to LOD 200. The Tile Database should contain information for at least LOD 
300.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

32 
 

3 Development 
 
3.0 Deconstruct the Marching Squares Algorithm 
 
3.0.0 Applying the Marching Squares Algorithm 
  
The Boolean Marching Cube algorithm, as explained in the last section, is an algorithm for the 
polygonization of an architectural configuration. To point out the functionality of the BMC algorithm, the 
Marching Squares Algorithm is presented first. The Marching Squares Algorithm is the two-dimensional 
version of the Marching Cubes Algorithm. The goal of the Marching Squares Algorithm is the generation 
of contour for a two-dimensional scalar field (Komura, 2008). 
 
In the architectural context, the basis for the process is a mesh surface, for example, the floorplan of a 
room, in figure BMC_01 displayed through the projection of voxels. In the first step, a grid of cells is 
applied to the surface (figure BMC_02). Cells corners covering the surface are filled, while cell corners 
covering no surface are blank (figure BMC_03). This binary image is examined by the algorithm square by 
square, resulting in its name, the Marching Squares Algorithm.  
 

 
Figure 29: Applying the Marching Squares Algorithm (Author) 

As seen in the figure below, for each square are 16 different options of corner configurations possible. 
Some of the 16 options are just rotations of another configuration, reducing the amount of unique 
configurations to six. For each of those configurations, a geometry is defined. In this example, it is a 
simple line separating blank and filled corner points with the shortest distance. The algorithm examines all 
possible squares in the base image and places the geometry from the fitting corner configuration for 
each square.   
 



  

33 
 

 
Figure 30: Marching Squares Tileset (Author) 

 
3.0.1 Embedding the Marching Squares Algorithm into architectural context 
 
For the modular system, there is the need to produce more than just one contour line to contain all 
necessary information. There is the need to generate an outer envelope, providing water tightness and 
protection, and individual infill systems for different rooms. The algorithm needs to run multiple times 
with different cell configurations to achieve that.  
As seen in the figure below, the starting point is the definition of multiple rooms. Now, this information is 
translated to a two-dimensional lattice. Each corner point of the lattice obtains a different value, 
depending on if the space referring to is “room 1”, “room 2” or empty. After that, a threshold is applied to 
the lattice to transfer it to a binary image. In the first case, the values within room 1 are set to “1” and all 
other values are set to “0”. This way, a specific interior tileset for room 1 can be placed. The same process 
is repeated with room 2. For the envelope, the values for rooms 1 and 2 are both set to “1”, and all other 
values are set to “0”. This way, the envelope can cover the whole building.  
 

 
Figure 31: Applying the Marching Squares Algorithm on different fields (Author) 

A detailed set of components can be designed based on the logic described above. Components are in 
the scope of the Marching Squares Algorithm identical to tiles. The figure below shows how an envelope 
and an interior tileset are applied to a building corner. To ensure compatibility of these two tilesets, the 
interior tileset is always placed within the voxel, while the exterior tileset is placed outside of the voxel. 
Both tilesets are adjacent to the faces of the voxel.   
 



  

34 
 

 
Figure 32: Applying two tilesets with Marching Squares (Author) 

 
3.1 Building the Boolean Marching Cubes Algorithm 
 
The Boolean Marching Cubes algorithm is implemented in the topogenesis library in Python by Shervin 
Azadi and Pirouz Nourian 2021. Solkyu Park developed an implementation in Grasshopper 2022. Since 
the individual tiles used in the workflow should be created in Rhinoceros, a new design workflow in 
Grasshopper was created to fit the individual needs of this project.  
 
3.1.0 Automatizing the creation of tilesets 
 
The first step of working with the Boolean Marching Cubes Algorithm is the generation of a basic tileset. 
The tileset is based on the 26 unique cube configurations mentioned in the previous chapter, so in total 
26 tiles needs to be designed. In the fist step, the 26 unique cube configurations are initialized as binary 
code, structured in the four categories “Wall Tiles”, “Floor Tiles”, “Roof Tiles” and “Special Tiles” as 
described by Park (2022).  
 

 
Figure 33: 26 Unique Cube Configurations (Author) 

The cube configurations are then displayed on a regular grid, materializing the filled sub-voxels of each 
cube configuration, as seen in the figure above. The tile geometry is created by offsetting the filled- and 
unfilled subvoxels and intersecting the two sets. The result is a set of 26 unique tile geometries, as seen in 
the figure below. 
 



  

35 
 

 
Figure 34: 26 Unique Tiles generated with Grasshopper (Author) 

After the generation of these 26 tiles, it is necessary to fill al 126 cube configurations they represent. At a 
maximum, one unique tile represents four rotated tiles and four mirrored versions of these rotated tiles. 
The referred rotations are stored in relation to the tile geometry of the unique cube, as seen in the figure 
below.  
 

 
 
Figure 35: Calculating all possible tiles from one unique tile (Author) 

 
An algorithm calculates the IDs of the rotated and mirrored tiles and append these to a list with all 
possible tiles. The kind of rotation and mirroring of the initial geometry is dependent on the position of 
one specific ID in the list.  
 
3.1.1 Applying the Algorithm 
 

 
Figure 36: Flowchart of the Boolean Marching Cube Algorithm (Author) 



  

36 
 

After a tileset is created, the algorithm itself can be applied. The basis for the algorithm is a coloured set 
of voxels, as seen in the figure above. Each corner point of the voxel serves as the centerpoint of a newly 
generated cube.  Now, for the corner points of each cube is identified, if it is inside or outside of a voxel. 
That way, an ID for all cubes can be generated. This IDs are now compared with the IDs of the input 
tileset, as described in the previous chapter. Each tile geometry can now be placed at the right position in 
the cube lattice with the required rotation.  
 

3.1.2 Creating new Tilesets 
 
Following the first successful application of a tileset with the algorithm, new tilesets can now be 
generated based on the basic tileset of the 26 unique tiles. In a first approach, a tileset with tilted tiles for 
the roof are generated within minutes. The workflow speeds up the creation of new tilesets and allows for 
more complex tile options.  
 

 
Figure 37: Applying two tilesets each on two different set of voxels (Author) 

 

 

 

 

 

 

 

 

 

 



  

37 
 

3.2 Testing the Wave Function Collapse Algorithm 
 
Approaches to apply the Wave Function Collapse Algorithm 
 
The WFC algorithm, as described in the literature review, can process different input strategies. The first 
strategy, as implemented in the original algorithm by May Gumin, is based on a sample picture, from 
which the relations between the individual tiles are deducted (Gumin, 2022). 
 
A version of the original algorithm by Mateusz Bugaj is applied in Python (Bugaj, 2020). The starting point 
is the definition of an input image, in this case a 4x4 matrix of either black or white pixels. The rules 
applied in this example image are applied on a 20x20 matrix and create a new image (figure 26) 
 

 
Figure 34: Input Image (4x4) for the Wave Function Collapse Algorithm, Output on a 20x20 matrix (Author) 

 
The advantage of this input strategy is the visual representation and similarity of the output. A 
disadvantage is however the imprecision of the translation of pixel connections from input to output. 
Therefore, a second approach is tested as described by (Chasioti, 2020). For this input method, the 6 
faces of a tile get assigned a specific connection profile, dependent on their geometry. Assigning different 
faces of multiple tiles the same connection profile allows the placement of these tiles next to each other. 
In the figures below, two examples of the application of an tile-based input are demonstrated.  
 
 

 
Figure 38: Tile Set to test the WFC Algorithm (Author) 



  

38 
 

 

Figure 39: Applied tileset on a 20x20 matrix (Author) 

 
Figure 40: extended tileset with furniture (Author) 

 
Figure 41: Application of the extended tileset on a 20x20 matrix (Author) 



  

39 
 

3.3 Building Component Development 
 
While developing the algorithmic components, it is essential to relate to the creation of building 
components. As described in the Methodology, the aim is to develop an interior infill system to show the 
possible advantages of the discrete BIM workflow. Since reconfigurability and reusability of components is 
a large advantage of such a workflow, the reconfigurability of components is the central aim of the 
system. Furthermore, the system needs to react on tolerances and movements, and consider ergonomic 
handling at the construction site. Finally, the system needs to be compatible with the proposed discrete 
design workflow. This means that the sizing and arrangement of the components must reflect the 26 
cubes described in the Design Methodology Section.  
 
3.3.0 References 
 
As shown in the table below, three building systems were analysed based on the established criteria. 
Creating a basic frame as a structural basis seems to be the most successful approach for establishing 
reconfigurability. Connections can be made with at least one face not mounted to when the component 
is finally assembled, the connections to other elements are hidden, which improves the design quality. 
The advantages of all three systems are combined for the design of the basic module.  
 
 

 
 
Figure 42: Comparison of infill systems relevant for discrete design (Author)  

 

3.3.1 Basic Module 
 
In the figure below, the most basic infill system unit is shown. It is a simple wooden frame construction, 
bolted with countersunk screws. Stability against torsion forces is added though the installation of panels 
on both sides of the frame. In the most standard case, OSB plates are installed with each 6 screws, but 
also different plates (as gypsum cardboard) are possible. Assembled, the unit is 1000x720x130 mm. The 
weight is 11,55kg with one OSB plates mounted, and 18,3kg with two OSB plates mounted, therefore 
easily transportable by one person from an ergonomic perspective. The height and width were selected 
based on the voxel size, as described in the Dimensioning section. Materials, such as the selection of the 
screws, are estimated according to examples, they do not guarantee to be the best choice from a 
carpenter´s point of view. It is necessary from the implementation of the component into the workflow, 
that a specific building product is linked.  
 
 



  

40 
 

 
Figure 43: Basic Infill Module (Author) 

 
3.3.2 Further Modules 
 
Following the development of the basic module, more system elements are developed to  
Below, the system is showed applied in context. Based on references, transition modules to ceiling, floor, 
windows and doors are developed.  
 

 
Figure 44: Extended Infill System (Author) 



  

41 
 

3.3.3 Tolerances and Movements 
 
To tackle tollerances and movements, several strategies were developed. Firstly, through decoupling the 
ceiling, the interior walls can react to irregularities of the ceiling. Since the whole system neglects 
permanent connections such as glue or nails, the components are fully demountable. To tackle 
irregularities on the component level, the frame and the cladding plates can be installed in different steps. 
Therefore, the positioning of the cladding plates in relation to the frame can be slightly modified to 
guarantee aesthetic joints.  
 
3.3.4 Integration of Services 
 
The aim of the building system is the integration of several services. The possibility of integrating lighting, 
water and electricity is shown in the graphic below. Furthermore, the integrated floor is based on the Joco 
Floor Heating System. This system is a dry installation and completely reconfigurable. 
 
3.3.5 Assembly 
 
Regarding the need to integrate services and transition modules to other building elements, the strict 
assembly based on the tiling proposed in the Design Methodology cannot be performed in all cases. For 
example, the floor heating system must be installed as a whole, reaching over multiple cube modules. 
Furthermore, doors will be hooked in after the installation of the frame. Therefore, these operations are 
beyond the limitations of the theoretical system and must be considered by an architect.  
 

 
Figure 45: Services and Assembly (Author) 

 
 
 
 
 
 
 
 
 
 
 
 



  

42 
 

3.4 Conclusions 
 
The experimentation with the Boolean Marching Square Algorithm offers the possibility of separating the 
envelope from the interior system to create two different tilesets. This approach reduces the complexity 
of rules that need to be defined for the tile placement.  
 
It is possible to automate the tile production with a Grasshopper script. Simple tilesets for conceptual 
designs can be created quickly. However, severe modifications need to be performed for a more detailed 
approach. Therefore, the automatic generation of tilesets can only be a template for creating a qualitative 
tileset of building components.  
 
The application of the Wave Function Collapse Algorithm gave new insights into the possibilities but also 
for the limitations for the use in an architectural context. The three possible directions of further research 
are connectivity exploration, information lattices and participation. The WFC Algorithm can solve 
connections between possible tiles and elements that are out of the scope of the BMC algorithm. For 
example, the WFC algorithm can solve the connection of various parts in a flat wall. It is possible to assign 
certain voxels values on solar incidence, noise level, and much more data through information lattices. 
With these lattices, the probability matrix of the WFC can be modified, that for example, sun protection 
elements are installed in a wall with high solar incidence. The input for the Wave Function Collapse 
algorithm can be the basis for a participatory system, including the user of a house or building project in 
the design process. A user can choose tiles and possible combinations; based on that, the whole infill can 
be generated.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

43 
 

4 Design 
 

 
 
Figure 46: Application Methods for the Design Tool in context (Author) 

In the Literature Research, the fields of research were examined, and in the Design Methodology Section, 
the framework for the topological design, creation of components, component assembly and data 
generation were elaborated. In the design section, some of the possible application methods for the 
Methodology are presented in the shape of a design tool. As presented in the figure above, for each 
methodology is one method elaborated, but there is potential for future research through exploiting 
other application methods.  
 
 
4.0 Design Tool Workflow 
 
The workflow elaborated in the following sections contains five steps, leading from initial design and tile 
development till export of the produced data for the building industry. Firstly, the creation and encoding 
of a topological design is presented. In a second step, the creation of Building Elements, called “Building 
Tiles”, is elaborated. With the data generated through these two sections, possible tiles for the different 
spatial conditions in the topological design are generated. For each position of the topological design, 
one tile needs to be selected. This can be done by the user directly through an interactive user interface 



  

44 
 

in Rhino. After specifying each tile for the design, output data can be produced. It is possible to extract 
geometries and detail drawings, but also an export of BIM-relevant data in the ifc format is possible.  
 
The workflow is designed to reach a high integration of both the professional design as same as the end-
user. While some tasks need to be performed by a professional, especially the component design, a 
topological building framework, and data generation, the user can be involved in the modification of the 
topological design, as same as the selection of tiles and styles for the building. 
´ 

 
Figure 47: Flowchart of the Design Tool (Author) 

 
4.1 Creating a topological design 
 
The first step of the design workflow is to create a topological design of a building by an architect in 
collaboration with the client. The creation of a topological in comparison to a conventional design is 
abstracting the conceptual design to the space itself. The topological design is based on the spaces that 
are created within a house, not the materialization through walls, floors and ceilings. The design can 
therefore focus on the individual spatial needs of a user. The materialization can be performed in a later 
stage of the process. The final geometry can be re-translated to voxel, so a design loop between space, 
function and geometry evolves.  
 

 
Figure 48: Materialized Design in exchange with a voxelized topological design (Author) 



  

45 
 

4.1.0 Kind of Voxels  
 
The aim of a topological design based on voxel is to reduce the building to the most characteristic 
features of space that is created. The easiest approach to translate a building to a topological design is 
the encoding of rooms as individual units. Each room is translated to a set of voxels, that can be assigned 
to a specific function or design, for example a kitchen or a living room. However, housing spaces that do 
not have an openings cannot be accessed and are therefore obsolete. It is therefore necessary to 
introduce a new layer, openings. An opening is located at a specific location in space and can therefore 
also be represented by a voxel. Since an opening connects two spaces, either two rooms inside the house 
or one room with the outside space. There needs to be placed an opening voxel on both sides of the 
intended opening. To be able to express further features of a topological design, windows are introduced 
as openings allowing a visible connection, but not a passable connection for humans.  
 

 
Figure 49: Kind of Voxels (Author) 

 
4.1.1 Design Rules for the creation of voxelated topological designs 
 
To create the voxelated topological design of a building, a few rules need to be followed to be 
compatible with the system.  
 
Rule 0: Voxel Sizing 
 
In every project, only one voxel size is valid. This means, a voxel size needs to be defined in advance of 
producing components, tiles and designs. All designs created in this thesis build up on the voxel size 1m x 
1m x 0.72m. It is possible to choose a different voxel size, but then there is the need to create new tiles 
that are compliant with the adjusted voxel sizing. 
 
 
 



  

46 
 

Rule 1: Grid Restriction 
 
All voxels used in one project need to connect at least with four vertices to four vertices of another voxel. 
 
Rule 2: Openings 
 
In the yx-plane, opening voxels need exactly one other opening voxel within a different room as direct 
neighbour.  
 
Rule 3: Opening  
 
Opening Voxels can only be placed to the outside of the building. This means that at least one face of an 
opening voxel is not adjacent to another voxel.  
 
Rule 4: Double Assignments 
 
All voxels are assigned to exactly one room and exactly one kind of voxel. This means, that every voxel 
needs to carry two statements.   
 
Rule 5: Rooms 
 
The smallest walkable space is the bathroom, with a size of at least 0.90m * 1.20m, with the minimum 
ceiling height of 2.60m. The box 0.90 * 1.20 * 2.60 is therefore the minimum space that needs to be 
incorporated in one set of voxel to count as a room. With the voxel size of 1m * 1m * 0.72m, at least 8 
voxels are necessary to incapsulate this space and to create a valid room. Furthermore, voxels assigned to 
one specific room must be adjacent to at least one other voxel assigned to the same room.  
 
 
4.1.2 Application of the rules in a CAD environment 

 
Figure 50: Topological Design and Application of Layers (Author) 



  

47 
 

 
The rules presented above need now to be applied in Rhino, to be able to be processed in Grasshopper 
in the following step. Voxels are produced as simple box geometries, but also Brep objects can be 
processed. All voxels must be placed on the right layers in Rhino. For that, a specific codification system is 
established:  
 

 
 
When all voxels are placed and assigned to the wished layers, the topological design is concluded.  
 
 
4.1.3 Encoding a topological design 
 
Algorithm 1: Voxel Reader 
    Data: breps sorted on Rhino Layers (Voxel Room + Kind) 
 for every brep do: 

 get Rhino layer name from brep 
 extract room number and voxel kind from layer name 
 append room number and voxel kind to list layer_list 

 end 
for every brep do: 
 get centerpoint from brep 
 append center point to list centerpoints_list 
end 
create bounding box incapsulating all breps 
get length, width and height from one brep as dimensions_one 
get length, width and height from the bounding box as dimensions_all 
for all values in dimensions_all do: 

  divide value in dimensions_all with value in dimensions_one and add 1 
  append result to list array_size 
 end 

extract smallest point form the vertices of bounding box as starting_point 
create array from starting_point with size array_size and geometry of one brep as cube_array 
for every brep in cube_array do: 
 get coordinates of the vertices as corners 
 for every coordinate in corners do: 
  if coordinate is equal to one value in centerpoint_list: 
   append value form layer_list with the same index to required_cube 
  if coordinate is equal to no value in centerpoint_list: 
   append “000” to required_cube 
 append required_cube to list_of_codified_cubes 
 end 
end 

    Result: (list_of_codified_cubes, array_size) 
 

Figure 51: Pseudo-Code Voxel Reader (Author) 

 
The topological design generated in the previous step needs to be translated to a processable format. 
The algorithm “Voxel Reader” performs this task through reading the topological design as a set of breps, 
and produces a list of cubes that are placed in duality to the voxels. At first, the voxel set is initialized, and  



  

48 
 

an array of cubes in duality to that is produced, as seen in the pseudo 
code. In the second step, the Cube Identifier is generated through 
scanning through all eight vertices of each cube in the array. As shown in 
the illustration below, the information of voxels that have their 
centerpoint at a vertex of a cube are translated to a 24-digit string. This 
code is the Cube Identifier, and it gets assigned to all cubes in the array. 
The Cube Identifier contains the information which room and kind of 
space is at all of its 8 vertices. Together with the array size (containing the 
spatial structure of the array set), the whole topological design can be 
stored in a csv-compatible list.  
An example array can be found in appendix 1.  
  

 
Figure 52: Encoding the Topological Design (Author) 

 
 
4.1.4 Further Input Methods 
 
Any design produced according to the presented rules can be used in the later stages of the workflow. A 
design can be created manually as a voxel-based design, but also other input methods can be 
considered. Referring to the GoDesign framework, approaches based on generative design can be 
implemented as long as the rules are considered. That way, the system is compatible with urbanistic and 
architectural configurators, such as GEN ARCH, as developed by Aditya Soman (Soman, 2021). Also, it is 
possible to convert a volume study adjusted to a specific site or design vision through voxelisation to a 
readable data structure. This can be done through topogenesis, a python library developed by Shervin 
Azadi and Pirouz Nourian (Azadi & Nourian, 2020). 
 
 
 
 
 



  

49 
 

4.2 Tile Creation 
 
The next step in the workflow is tile creation. The process aims to design building components that can 
be mass-produced. The information about materiality, assembly and detail needs to be stored in a 
database. To be able to be compatible with the topological design developed in the previous step, the 
workflow aims to compatibility. The creation of building components follows a bottom-up-approach, 
meaning the configuration of the building component from building products.  
 
 
4.2.0 Database Setup 
 
To set up a database linking all information from building products to the final module installed on the 
construction site, tables are produced for all design objects. In each table, only design objects of one type 
are stored. Through connection of these tables, relations are instated. The figure below shows the Entity 
Relationship Diagram of the Databases used in this project. The database is accessed in several steps of 
the workflow; however, the database is only editable for the tile designer.  
 

 
Figure 53: ERD Diagram of the Tile Database (Author) 



  

50 
 

The following steps explain the workflow by creating an interior infill wall element as building tile. All the 
steps, from Building Product initialization to the generation of Computational Tiles, are performed.   
The wall element is based on the basic module presented in the Development section and contains the 
same base materials.  
 
 
4.2.1 Workflow 
 
For creating Building Tiles, there are two workflows possible, dependant on the aim of the Tile Designer. 
The first approach assumes that the designer wants to create a Building Tile to solve a specific topological 
situation. In that case, the configuration of unique cubes representing the Building Tile topologically is the 
first step for the designer. Based on that, an appropriate family can be selected, and Building Tiles can be 
created with a bottom-up approach from the building product to the final Building Tile. The second 
workflow option assumes that the Tile Designer wants to implement one or many specific building 
products to work within the system. For that, building products are imported first, and based on that, a 
specific configuration of unique cubes is created, and a family is selected. From that point onwards, the 
Building Tile is designed similar in a bottom-up approach. Several steps of the process can be repeated 
or modified, to change the resulting Building Tile. Only once the Building Tile is approved, Faces and 
Computational Tiles need to be defined. The next chapters are described in the order of a topology-
based design.  
 

 
 
Figure 54: Two workflows to create Building Tiles (Author) 

 
 
 
 
 
 
 



  

51 
 

4.2.2 Unique Cubes and Families 
 
A Unique Cubes refers to the spatial voxels, that have their geometrical center at the vertices of the cube. 
It contains information about a specific voxel configuration and its rotations and mirrored versions, as 
described in the Design Methodology. In the Microsoft Access table referring to the Unique Cubes, it is 
also additionally stored if the cube is a purely binary (basic) cube. Since the aimed Building Tile is a wall 
tile facing the outside wall, the UniqueCube_ID 1 (00110011) is assigned. However, since the tile shall be 
twice as high compared to the basic module, an additional UniqueCube_ID 1 is assigned. As seen in the 
figure below, the topological geometry is now defined.  
 
Families are grouping several sets of Building Tiles together and are therefore essential to produce a 
successful tile set. To define a family, it needs to be specified if a set of interior or exterior tiles should be 
designed. Furthermore, the Voxel size is initialized, and the position of the approximate geometry is 
entered. Applied on the example, the Voxel Size 1x1x0.72m is entered, as it is the common voxel size 
assumed in this thesis. The tile is part of an interior infill system, assumed with the thickness of 50 mm.  
 

 

Figure 55: Unique Cubes and Families (Author) 

 
 
 



  

52 
 

4.2.3 Building Products 
 
As described in the literature review, a broad stock of building material databases is already available 
online. From these databases, information for millions of building products can be extracted. Automated 
scrapping of this information would be the optimal information access, but in the scope of this thesis, the 
information is entered manually. For the demonstration tile, five different building products are needed. 
The figure below shows the insertion of a wood screw in the table “Building Products” as a new entry. For 
each new entry, an ID is generated automatically, which is used to identify a certain building product in 
the later process. Next to the dimensions, it is possible to register BIM-relevant data, such as weight, price 
and applied norms. The building product geometry can be imported directly from the manufacturer or 
created in a CAD-program. The location of the geometry file is linked to the table. 
 

                
Figure 56: Table: Demonstration of a Material Import (Author)                                Figure 57:Countersunk Screw (Spax) 

 
4.2.4 Parts 
 
While building products display information about actual products from the industry only, parts extend 
this information by adding data about changed dimensions through cutting, modified shapes, or 
additional finishings. For the demonstration, an OSB plate available on the market of 2500 x 1200 x 15 mm 
is implemented. However, a dimension of 1430 x 990 x 15mm is required for a specific building element. 
This modification in size is expressed in a changed dimension in the Part table. Each Part is linked to 
exactly one BuildingProduct ID. However, it is possible to create multiple Parts referring to one building 
product, as for example a gypsum cardboard can be cut down to several dimensions. The geometry for 
the part can be re-used from the building product if the dimensions are the same, otherwise it can be 
designed in a CAD program and linked to the table.  
 

  
Figure 58: Demonstration of Part Implementation (Author) 



  

53 
 

4.2.5 Components 
 
Components are functional units made from one or several parts. Therefore, compared to the previous 
categories, one component needs to eventually link to several parts and their position and rotation in 
relation to the component origin. This requires one entry for each Part Instance linked to a component. In 
the example below, one component is created from two parts, a gypsum cardboard plate and a screw. 
Since 11 part instances are used, there are 11 entries filled in the components table, linking all to the same 
Component ID.  
 
 

 
Figure 59: Assigning Components (Author) 

 

 
Figure 60: Representation of a component through Parts, Instances and as a whole (Author) 

 
 
 
 



  

54 
 

4.2.6 Building Tiles 
 
In the next step, several components are grouped to a unit compatible with the topological design: The 
Building Tile. The setup of the data format is identical to the component table: One entry in the table 
represents the position and rotation of a component instance in relation to the Building Tile origin. In the 
example below, a Building Tile is created from two components. The assembled Building Tile fits in the 
spatial grid defined in the Family.  
 

 
Figure 61:Assigning Building Tiles (Author) 

 
Figure 62: Assembly of a building tile (Author) 



  

55 
 

4.2.7 Computational Tiles 
 
Once the Building Tiles are defined, they can be split into Computational Tiles so that they are 
processable with topological designs. This is done by slicing the geometry along the voxel grid defined in 
the Family table. As seen in the example below, the Computational Tile table 
contains information about the connectivity of all six faces and the referred Building Tile of each 
computational tile. The calculation of the faces is described in the next chapter.  
  

 

 
Figure 63: Demonstration of the creation of Computational Tiles (Author) 

 
 
 
 
 



  

56 
 

4.2.8 Faces 
 
Faces enrich the information given by the cube configuration to specify internal or external connections 
of Computational Tiles. The encoding of the faces is necessary, as otherwise Building Tiles would not be 
able to be constructed after an algorithm or a user modifies a spatial configuration. There are two types 
of connections, internal and external connections. Internal connections are referring to a fixed connection 
within one building tile and must therefore be complied. External connections can be a structural, sealing 
or piping connection, limiting the adjacent faces of other components. In the scope of this thesis, only 
internal connections were applied in the design tool, but in prospect, it would be an enrichment for the 
system to implement external connections. Below, an example is shown, in which all faces of the 
computational tiles are analysed.  
 

 
Figure 64: Encoding Faces (Author) 

 
 
4.3 Calculating Tile Options 
 
Based on a topological design and assuming a filled Tile Database, it is necessary to calculate the possible 
tile options for each position in the building. Following the concept of open building, the three systems 
structure, shell/membrane, and interior infill are separated, while the structural system is not in the scope 
of this elaboration. From the topological design, the building envelope and each individual room need to 
be extracted. Following that, for all individual instances, tile options are generated.  
 
 
 
 
 
 



  

57 
 

4.3.0 Generate Subsets 
 

 
Figure 65: Converting an array of Cubes to Cube Subsets (Author) 

Algorithm 2: Generate_Subsets 
    Data: list_of_codified_cubes, array_size 
 for item in codified_cubes do: 

 remove delimiter “X” and room number 
 if item does not contain “0”: 
   set item to “00000000” 

append item to envelope_cubes 
identify number of rooms from list_of_codified_cubes 
for room in all_rooms do: 
 for item in codified_cubes do: 
  for vertex in item do: 
   if item does not contain “room”: 
    set vertex to “0” 
  assemble vertex to item 
  if item does not contain “0”: 
   set item to “00000000” 
  append item to room_cubes 
 append room_cubes to all_room_cubes 
end 

    Result: (envelope_cubes, all_room_cubes) 
 

Figure 66: Pseudo Code for creating cube subsets (Author) 

 
4.3.1 Assigning Tiles to Subsets 
 
When the cube subsets are created, Computational Tiles from the Database can be assigned to each item 
in all subsets. Firstly, the unique cube of all items in the subsets is identified, as seen in the pseudo-code 
below. In a second step, all Computational Tiles based on the same unique cube are appended to a list of 
possible tiles for each item. The Face Ids, stored also in the Tile Database, are appended according to the 
rotation the tile is placed. This algorithm creates the basis for a successful tile placement. It is also a part 
of the code that can be extended in prospect, as there is huge potential to add sensitivity to the selection 
of tiles though incorporating for example the performance of the tiles. Below, the algorithm is described 
in pseudo-code, an example of the output can be found in appendix 2. 
 
Algorithm 3: Assigning_Tiles_to_Subsets 
    Data cube_subset, unique_cubes_table, computational_tiles_table 

for item in envelope_cubes do: 
 produce rotated and mirrored cube versions 
 find matching entry in unique_cubes_table 
 append UniqueCube_ID of entry to unique_cubes_subset 
end 



  

58 
 

for item in unique_cubes_subset: 
 find matching entry in computational_tiles_table 
 for each matching entry: 
  if cube_subset == envelope_cubes: 
   if ctile_Type == exterior: 

append ctile_ID ctile_Faces to ctiles_item 
  if cube_subset == room_cubes: 
   if ctile_Type == interior: 

append ctile_ID and ctile_Faces to ctiles_item 
  end 
  append ctiles_item to ctiles_subset 
 end 
    Result: (ctiles_subset) 
 
Figure 67: Pseudo Code for the Algorithm to assign Tiles to Cube Subsets 

 

4.4. Tile Placement 
 
In the scope of this thesis, two tile placement methods were developed. The first method is an interactive 
tile placement in Grasshopper, while the second method is an automated placement method based on 
the Wave Function Collapse Algorithm in python. While the first method could be implemented 
successfully, the second method is described in the section of future developments, as no results could be 
achieved from this method yet.  
 
The interactive tile placement demonstrates one possible user integration in the design process. A user 
with a basic knowledge of Rhino and without technical knowledge of building components can 
individualize and modify a design according to personal preferences. As a first step, a geometrical 
representation of the building is created that the user can modify in a second step. For that, the geometry 
of the most basic set of Tiles from the tile options generated in the previous step, is applied on the 
topological design, as seen in the pseudo-code below.  
The result is an array from tile geometries encapsulating the previously defined topological design. In the 
scope of this thesis, the geometries are represented through the obj and 3dm files produced in the tile 
creation section. In prospect of usability and performance, the geometrical information should be 
transported through an ifc file.   
 
 
Algorithm 4: Compute_Basic_Placement 
    Data c_tiles_subset, array_size, voxel_size, c_tile_geometries 

create 3D_array of points with array_size and voxel_size as cell as 3D_point_list 
read names of all geometries as list_names_geometries 
for item in c_tiles_array do: 
 extract first tile in item as start_tile 
 get rotation value from start tile as rotation_tile 
 find start_tile in list_names_geometries 

get geometry related to start_tile 
 if rotation_tile >= 4 do: 
  rotation_tile = rotation_tile – 4 

mirror geometry 
rotate geometry for rotation_tile * 90° 

 place geometry at first location first_item in 3D_point_list 
 remove first_item from 3D_point_list 
end 

    Result: (placed_basic_tile_geometries) 
 



  

59 
 

 
Figure 68: Several Building Assemblies as Algorithm Output (Author) 

 
 
4.4.1 Interaction 
 
Based on the initial placement of geometries, the user can now modify the arrangement. Conceptually, 
the user can replace and modify tiles in a gamified manner, offering an intuitive user interface to guide 
the user to advantageous decisions. For a proof of concept, the interactivity is implemented in the 
Grasshopper environment. Regarding an industry application, a gamified interaction would need to be 
programmed in a web-based 3D environment.   
 
The implementation in Grasshopper is based on the activation of the tile geometries positioned in the 
previous step. The workflow is described in the user interaction diagram below, supported by screenshots 
of the workflow in the figure below. After the initialization and initial geometry placement, a clickable 
mesh is produced (Step 1). With the click on the left mouse button on one tile, options for replacements 
are shown (Step 2). The user can then navigate through the options, which are displayed simultaneously 
in the model (Step 3). When selecting the preferred option, the user can enter the alteration, and the 
model updates the modification. This step can be repeated for each tile as long as the user wants to 



  

60 
 

make changes. When the final version is achieved, the updated list of placed computational tiles including 
their rotations are saved and made available for postprocessing (Step 4).  
 

 
Figure 69: User Interaction Diagram (Author) 

 
Figure 70: Interactive Tile Placement in Rhinoceros 



  

61 
 

4.4.2 Checking the Face Conditions 
 
For the successful implementation of the user interface, the system's feedback regarding a tile placement 
decision is essential. Therefore, for each selected tile by the user, a stencil is applied to check the 
conditions of all six faces of the tile. In three-dimensional space, a stencil can represent neighbourhoods. 
The two common types of neighbourhoods are the von Neumann neighbourhood with six neighbours 
and the Moore neighbourhood with 26 neighbours (Azadi & Nourian, 2020). Since only the 
neighbourhood of the faces needs to be checked, the van Neumann stencil is sufficient. For each of the 
six neighbouring tiles, the Face_ID of the face adjacent to the examined tile is extracted. If the Face_ID is 
not identical to the adjacent one of the examined tile, a warning will show up in the Grasshopper 
Interface. 
 

 
Figure 71: Van Neumann Stencil applied for the interactive tile placement (Author) 

 
 
4.5 Postprocessing 
 
The Postprocessing aims to translate the placement model (three-dimensional array of computational 
tiles) to information relevant to the building process, industry and construction. As described in the 
introduction to this chapter, multiple options of data export are considerable. The ifc format provides the 
opportunity to export geometrical data enriched with information about assembly, actors, parts and even 
more. Ideally, all information can be exported through this channel. To demonstrate the potential of the 
data export, two techniques were tested. First, there is the option of generating details of the important 
parts of the building geometry. In a second approach, the building tiles can be exported in the IFC 
format. Due to time reasons, the implementation of the ifc export does not contain geometrical 
information.  
 
4.5.0 Detail Generation 
 
To be able to use the algorithm for detail generation, computational tiles used in the model need to have 
a 2D drawing assigned, containing the detail for the specific geometric situation of the computational tile. 
Only details for situations that are relevant for planners, as corners, windows and other transitional 
situations need to be drawn as details. For example, no detail is needed for a computational tile 
representing a straight wall. The detail drawings can be produced in any CAD program and stored with 
the same file name as the computational tile itself, but with the addition of the plane, the detail is 



  

62 
 

produced on. For example, if a sectional detail in the plane XY is produced for computational tile 
E_B_11001100, the file is stored as E_B_11001100_XY.dxf. With this workaround, the produced details can be 
exported later into the model. The user of the tool needs to select a plane and the specific layer (in voxel 
steps) in which the detail drawing shall be generated. Now, for every tile placed on the sectional layer, a 
detail drawing is placed if existent, as seen in the Pseudo-Code below. 
 
Algorithm 5: Detail_Generation 
    Data specific_c_tile_ids_layer, plane_select, layer_array, detail_geos 

for item in c_tile_ids_layer do: 
in detail_geos find unit with name == item and plane == plane_select 
rotate + mirror unit according to rotation of item 
move unit to position if item on layer_array  

end 
 

 
Figure 72: Detail Sections generated in Grasshopper (Author) 

 
4.5.1 IFC Export 
 
For the IFC-export the python library IfcOpenShell is used. IfcOpenShell provides an interface to read, 
create and modify IFC files in the programming languages C++ and Python (Norén & Gauthier, n.d.). 
After creating a new IFC file and project, each Building Tile used in the project is created as an IfcObject. 
Then, the included components and the tile quantities are created as IfcObjects and nested to the 
assigned Building Tile, as seen in the pseudo-code below.  
 
Algorithm 6: IFC_Export 
    Data tile_database, used_building_tiles_ids  

create new IFC file 
create new IFC project 
for tile in used_building_tiles_ids do: 

import from tile_database all components assigned to item as components_list 
 create new IfcObject with tile name 
 create new IfcLabel with quantities of tile 
 for each component in components_list do 
  create new IfcObject with component name 
  assign component to tile 

  end 
 end 
   Result: ifc_file_of_building_tiles 
 
 
 



  

63 
 

4.6 Design Strategies 
 
With the methodical steps of the design tool defined in the previous chapters, conceptual considerations 
can be drawn that extend the scope of the infill system. Especially design strategies to solve structural 
joints, membranes, materiality, structures, and bespoken tiles need to be elaborated to extend the system 
to a whole building design.  
 
MATERIALITY 
 
The presented workflow allows the creation of a material passport for each building created with it. 
Through referencing to the database, the environmental impact and material composition can be derived. 
The building tiles, if created after the design for deconstruction principles, can be reused or recycled if the 
building is demounted. For the structure, it is recommended to use timber since it allows easy 
disassembly and reuse compared with concrete constructions.     
 
STRUCTURAL JOINTS 
 
When developing a structural system, tile developers can implement structural joints. To be compliant 
with the guidlines of design for deconstruction, it is essential to avoid permanent connectors, such as 
glue. It is preferred to use steel rods as introduced in the infill system, as seen in the figure below. 
 

 
Figure 73: Structural Components (Author) 

 
Membranes 
 
Providing airtightness and water tightness is the weakness of a discrete building system. The discrete 
building systems of the WikiHouse and the Gablok system are excluding membranes and propose the 
installation on top of the assembled discrete structure. For the workflow proposed in this thesis, the same 
strategy is applied. Between the infill tiles and the envelope tiles, a vapor barrier can be installed. 
Additionally, a water-proof membrane can be mounted on the envelope tile before the application of the 
cladding.  
 



  

64 
 

 
Figure 74: Integration of Membranes (Author) 

 
CEILINGS 
 

 
Figure 75: Defining a structural direction to produce ceilings (Author) 

Regarding the structure, the ceiling is a considerable challenge. While the system can generate 
unidirectional structures without any issues, most discrete structural systems are directional. Therefore, it 
is necessary to introduce the parameter of the structural connection on the level of computational tiles. 
When a structural direction is assigned to all necessary ceiling tiles, it becomes easy to produce a 
structurally valid ceiling. The structural direction can be set to the x or the y- axis of the model, and the 
valid computational tiles can be placed according to that direction.  
 
 
 
 



  

65 
 

Bespoke Tiles  
 
The design tool should offer the opportunity for application in projects of different sizes and spatial 
conditions. The most straightforward application that unfolds the system's full potential is a free-standing 
house without any spatial restrictions. On these projects, full modularity of the system can be provided, as 
tolerances can be balanced within the system. The system needs to adapt by using bespoke tiles when 
there are restrictions, such as a building gap for a terraced house. As seen in the figure below, a large 
part of the system can still be used, but around one-third of the tiles need to be modified. This can be 
done either on-site by disassembling the prefabricated tiles or in an industrial setting.  
 

 
Figure 76: Application of the system on spatially restricted projects (Author) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

66 
 

4.7 Workflow Reflection 
 
4.7.0 Performance 
 
The workflow as presented in the chapters above is one possibility of applying the Design Methodology. 
Due to the technical abilities I acquired during this thesis's production, the applications are implemented 
in Microsoft Access, Rhinoceros, Grasshopper and VS Code with Python. Especially the geometry-based 
implementation of the interactive tile placement is not yet performing fluently. In Grasshopper, this effect 
was reduced through data dam components, but prospectively the workflow needs to be implemented in 
a different design environment. The data exchange between Python, Microsoft Access and Grasshopper is 
fluent. However, an integrated workflow developed only in Python and connected to an online SQL 
database would be a step for improvement.  
 
4.7.1 Redundancy 
 
Redundancy in computer sciences refers to the implementation of data backups during a workflow. 
Redundancy improves the reliability of a system and provides a better understanding of where the system 
fails. In the design tool, redundancy is integrated through the need to execute the tool steps individually. 
Therefore, it is possible for the user to detect unsatisfying results at the end of each step. However, in 
prospect it is necessary to implement the automatic detection of unsuccessful generated solutions, since 
the program is otherwise still dependent on a professional, who needs to validate the results of each step 
of the workflow.  
 
4.7.2 Prospect 
 
In prospect, the methods executed in this section need to be improved in reliability, performance and 
participation. Especially the Wave Function Collapse algorithm offers unused potential. By extending the 
design influence of this algorithm, it is possible to modify the spatial configuration of the design 
simultaneously with the tile placement. The algorithm could improve spatial decisions made in the 
topological design and guide the end-user through a participatory process based on performance- and 
design-based parameters.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



  

67 
 

5 Evaluation 
 
5.0 Verification  
 
To verify the design tool, a toy problem is selected to demonstrate all steps of the process, the usability 
and possibilities for participation and modification. 
 
5.0.0 Building Task  
 
The terraced house is the most common housing topology in the Netherlands, therefore this typology is 
selected to demonstrate the system. To rate the system's potential, the demonstration is designed to be 
comparable to the beterBASIShuis by tbi woonlab. As a building task, it is assumed that a small family 
plans to build the house, requiring a kitchen, a living room, two bathrooms and two sleeping rooms 
 
beterBASIShuis 
 
The beterBASIShuis is a product line for prefabricated rowhouses by TBI WOONlab. TBI is one of the 
largest Dutch construction companies, involved in the construction and technical equipment of various 
building projects and typologies. The beterBASIShuis focuses on affordability. An average terraced house 
is available for 120.000€, including building costs. Housing typologies, features and sizes can be 
individualized. The system allows the user to select a specific style, size, and height for the building 
design. Then, the user can select additional features, for example, a second toilet or dormer window. The 
house is constructed with prefab concrete panels (De beterBASIShuis Woonplanner, 2022).  
 

 
Figure 77: beterBASIShuis (TBI Woonlab, 2022, 10 11) 

 

 

 

 

 

 

 



  

68 
 

5.0.1 Context 
 

 
Figure 78: Site Context of the Toy Problem (Author) 

An empty site in the centre of Delft is chosen to locate the toy problem. The site is embedded in the 
urban context of Delft and offers the possibility of extension, as one site on the property is left empty. The 
building to create is around 6 meters wide, 10 meters long and two stories high.  
 

5.0.2 Topological Design 
 
In the first step, a topological design of the desired building is to be configured. In collaboration with the 
architect, sizes for the several rooms and their position in the building are defined, as seen in the figure 
below. It is decided to position the sleeping rooms and one bathroom in the upper level, while remaining 
the other functions on the first floor. In a second step, internal connections and opening spaces of the 
building are assigned for each room. 
 

 
Figure 79: Topological design of a rowhouse 



  

69 
 

5.0.3 Tile Creation 
 
After creating the topological design, the number of necessary tiles can be derived. There are at least two 
families required, one for the building envelope and one for the interior infill.  
 
Envelope Family 
 
The envelope family contains tiles the necessary tile for the generation of the foundation, walls and roof. 
Additionally, three options are created for window and door design. For the facade, there is a brickwork 
system and a timber system created, as seen in the following pages. 
 

 
Figure 80: Computational Tiles from the Envelope Tileset (Author) 

 
Interior Family 
 
The interior family contains all necessary tiles to create walls, flooring, ceiling, interior doors, openings 
and stairs. As described in the limitations, a structural system is not part of this thesis. However, 
placeholders for structural components are considered. The interior family is based on the research 
described in the Development Section.  
 



  

70 
 

 
Figure 81: Envelope Tileset Brickwork 



  

71 
 

 
 
Figure 82: Envelope Tileset Timber (Author) 



  

72 
 

 

 
 

 

 

 

Figure 83: Infill Tileset (Author) 



  

73 
 

 
Figure 84: Additional Tiles Infill System (Author) 

 
In the scope of the Interior Family development, the options of integrating several building products in 
the workflow are tested through the implementation of three different interior door types. Three door 
types with different sizes and frame types were selected for the implementation into the system. 
Especially, the compatibility of the system towards given products from the building industry is 
elaborated. The selected frames were a block frame, an enclosing steel frame and an enclosing wooden 
frame. These frames have different requirements towards connection and assembly. In the following 
figures, detail drawings of the implementation of the frames are presented. The simple wooden frame as 
basic module is very flexible regarding the implementation of new components, so all three door types 
were able to be implemented successfully.  
 

 
Figure 85: Detail Integration Hörmann BaseLine with block frame (Author) 



  

74 
 

 
Figure 86: Detail Integration Hörmann BaseLine with enclosing steel frame (Author) 

 
Figure 87: Detail Integration Hörmann BaseLine with eclosing wood frame (Author) 

 

5.0.4 Interactive Tile Placement 
 
The tile options for the cube array can be calculated based on the created tilesets and the topological 
design. Compatible tiles are selected from the database and imported into Grasshopper. The user 
interface for replacing tiles is initialized based on these tile options. Below, some examples of potential 
tile modifications are shown. Firstly, the facade is designed, and several options are examined. When the 
facade design is committed, each room can be designed individually. Finally, the whole configuration, 
containing the envelope and seven rooms can be committed and exported as a final design.   
 
       



  

75 
 

    
 

 
Figure 88: Envelope Variations (Author) 



  

76 
 

                 

 
Figure 89: Applied Infill System (Author) 

 



  

77 
 

 

 
Figure 90: Detail Infill System (Author) 

 
 
5.0.5 Postprocessing 
 
When the final design is committed, the building design can be prepared for fabrication. For that, firstly 
the Ids and quantities of all used Building Tiles are extracted. The obtained information is the basis of 
producing the necessary tiles and based on the referencing of the design to the database, information 
about prices, materiality and assembly can be extracted.  
 
 
5.0.6 Results 
 
The application of the workflow to the toy problem resulted in the successful creation of a topological 
design, tile creation and tile placement towards a successful building design. The whole building design, 
neglecting structural components and sealing, was able to be produced with discrete components 
compatible with a topological design. A comparison between the design tool to the beterBASIShuis and 
an individualized design is shown below. The proposed solutions bridges the gap between a 



  

78 
 

prefabricated in-house design as the beterBASIShuis and an individualized construction. The system can 
combine the individualization of living spaces with the advantages of discretization and prefabrication. 
The proposal is classified in the context of the whole building industry in the following section.  
 
 

 
Table 1: Comparison of design methods (Author) 

 

5.1 Validation 
 
In the following, the features of the thesis product is set in the context of the construction industry. 
Therefore, the impact on the stakeholders, the application strategies, and the circular potential is 
elaborated.  
 
5.1.0 Compatibility Potential 
 
To test the compatibility of the developed design tool with building systems from the industry, the Skylark 
250 building system from WikiHouse implemented into the workflow. The system was selected because 
the digital models and construction data are openly available, which is the main requirement for 
implementing building products into the developed workflow. Skylark 250 is the most common building 
system from WikiHouse, with an insulation thickness of 250mm. It is a demountable system built from 
several discrete components, as shown in the figure below. The components are produced from 18mm 
plywood sheets. A CNC machine is necessary to cut out the required shapes. The system is documented 
in an openly available guide, helping with the building's design, manufacturing, and assembly (Open 
Systems Lab, 2022). 
 

 
Figure 91: Skylark 250 Blocks (Open Systems Lab, 2022) 



  

79 
 

 
The first step of implementing a building system is the definition of voxel size. The Skylark 250 system is 
based on a 0.6m x 0.6m grid, with height increments of 0.3m. A voxel size as small as 0.6m x 0.6m x 0.3m 
requires relatively high computational resources. Therefore, the voxel size for this implementation is set to 
0.6m x 0.6m x 0.6m.  
 
In a second step, suitable building components for the implementation in the workflow are selected. 
Therefore, several voxel sets are designed, and suitable blocks are placed manually in the best identified 
positions.  
 

 
Figure 92: Application of the Skylark 250 system onto a voxel set (Author) 

 
 
Resulting this experimental test of applying a topological design onto the Skylark system, missing 
components can be identified. As seen in the graphic above, the corner block cannot be implemented 
successfully. Therefore, the development of a new corner block is required.   
 



  

80 
 

 
Figure 93: Adjusted Blocks and Computational Tiles (Author) 

 
In the figure above, the adjusted application with newly developed corner modules is shown.  
It can be concluded that a building system like the Wikihouse Skylark 250 can be integrated in the design 
tool workflow. With creating new blocks that simplify the integration in the workflow, the Wikihouse 
system can profit from the simplified design process. Compared with the current design workflow in 
Sketchup or Rhinoceros, the design tool developed in this thesis can contribute to a more accessible 
design for unskilled users.  
 
5.1.1 Impact on the Stakeholders 
 
Projecting the application of the workflow to the building industry, the influence on the addressed 
stakeholders as defined in the Design Methodology needs to be considered. In the table below, the 
advantages and disadvantages for the individual parties are displayed. The architect, as the main operator 
of the design tool, needs to take restrictions in the design freedom into account to profit from a 
simplified design process. This dilemma is further discussed in the general reflection.  

 
Figure 94: The Design Tool in the context of stakeholders (Author) 



  

81 
 

5.1.2 Circularity Potential 
 
Regarding the circularity potential of the system, three aspects need to be differentiated: the data aspect, 
the system aspect and the reconfiguration aspect. Firstly, through the information stored in the database 
and the integrated tracking of all used building products down to screws, the circularity potential can be 
estimated at all times. Wear and tear, same as damage, can be calculated based on spot checks, and the 
resulting rate can be projected to installed elements in similar conditions and circumstances. Regarding 
the system, the design following the guidelines for design for deconstruction, as described by Guy and 
Ciarimboli (2005) ensures a systematic circularity potential. However, in prospect, the system would need 
to be developed together with carpenters and experts on circular design to maximize the actual 
percentage of the system potential for reusability. 
Regarding reconfiguration, the design tool setup allows house owners to modify their buildings after 
some time to personal preferences. Instead of removing components and throwing them away or 
downcycling, there is the potential to create a marketplace for exchanging building tiles for house 
owners. That way, building tiles can be reused in multiple projects. This approach would integrate into an 
upcoming trend in the construction industry for private households in the form of platforms for trading 
circular building materials as restado (restado, n.d.). 
 
5.1.3 Application Potential for the Industry 
 
To estimate the potentials and weaknesses of the proposed system regarding the application for the 
industry, two interviews with industry professionals were conducted.  
The first interview partner was Nadia Remmerswaal. She was from 2020-2022 project leader at The New 
Makers, and leads her own architectural practice. As Remmerswaal states, the idea of the open system is 
well known at the New Makers, as it was one of the initial visions of the company. The ideas are 
implemented partially in current projects of The New Makers through the data exchange and modular 
combination of a system by The New Makers with a construction system of other companies. 
Remmerswaal sees the potential of the proposed system regarding disassembly and material tracking. 
The voxel grid of the system would allow a simplified disassembly and reassembly of components, as the 
sizing and connections are very restricted. The integration of builders and constructors as designers of 
building components is seen critically by Remmerswaal. In the current industry, builders do not want to 
share their systems with the competition, as it would weaken their market position. Also, the business 
model of the builders would need to adapt. It would become necessary to introduce extensive storage 
facilities for components, as same as extended production facilities. However, the current economic 
pressure in the industry could lead to a change in the approach of some builders and manufacturers to 
evolve their perspective towards open building systems.  
A second interview was conducted with Tim Castelijn, Head of Software and Data at The New Makers.  
Castelijn could evaluate the technical perspective of the proposed design tool. As an advantage of the 
voxel-based system, Castelijn identified the possibility of creating several Building Tiles from only a few 
Computational Tiles, simplifying detail generation. He generally appreciates the concept of an open 
system for multiple manufacturers. However, the need to follow predefined protocols could be less 
efficient than the tailored software solutions developed by The New Makers. The balance between 
standardization and flexibility for the individual needs of the product developers is one one the main 
challenges of a system like proposed in this thesis.  
 
Concluding the outcome of the industry interviews, it can be seen that the concept of an open and 
modular construction system is known and partially applied. However, a large part of the industry is not 
yet open to participate in such a system, mainly because of intellectual property reasons, convenience 
and a lack of individualizable open software solutions. However, the industry is currently facing challenges 
through the environmental, political and economic situation and might slowly open up for a disruptive 
approach like a system as proposed in this elaboration. 
 



  

82 
 

6 Conclusions 
 
6.0 Research Questions 
 
In concluding this research, the research questions formulated in the introduction are answered and 
contextualized.  
 
How to create a computational design tool that encodes building products into a participatory and 
discrete architectural workflow? 
 
This thesis proposed a framework to break down the complexity of a discrete BIM workflow into 
functional units with defined inputs and outputs in which different stakeholders could operate in 
prospect. The workflow was divided into five stages: “Topological Design”, “Tile Creation”, “Calculating 
Tile Options”, “Tile Placement”, and “Postprocessing”. Each of these stages can be solved with different 
design methods, of which some possible solutions are presented in this thesis.  
 
A first unit is a design tool allowing the creation and codification of topological designs. This is done by 
creating design rules and creating a solution space in which successful designs can be produced. The 
second unit is a Database, which can translate building products into functional components that can be 
applied to a topological design. The third step is the determination of possible tile placements in relation 
to the topological design through constraint solving. The fourth step is the application of the components 
created in the database on the topological design. This is done with an interactive Grasshopper 
environment using an extended version of the Boolean Marching Cube algorithm. In the last step, data 
transfer of the design result to the building industry is enabled.  
 
In the finalized workflow, an infill system for rowhouse configurations is implemented and applied 
successfully on a test case to validate the design tool.  
 
This thesis demonstrated the successful creation and application of a design tool that allows the creation 
and configuration of spaces and components. While the tool can produce multiple solutions and run 
through several iterations, the stability of the tile placement algorithms is not ensured yet, as the 
implementation is done only for demonstration purposes.  
 
How to implement several kinds of building components with various dimensions into a grid-based system? 
 
The implementation of building products of all kinds of sizes is made possible by the distinction between 
a virtual computational module, “Computational Tile”, and a building module which is sized as a manifold 
of the computational module. This workaround solves the application of all possible building products. 
However, it eventually requires partitioning one building product into virtual units at the beginning of the 
design process and, at the end of the process, reconstructing the building product from the virtual 
modules.  
Systems available on the market, like the Skylark 250 system by Wikihouse, can be implemented into the 
workflow. However, the voxel size needed to adapt to this specific system, leading to the lack of 
compatibility with systems based on other voxel sizes. The workflow can simplify the access of several 
building systems but cannot overcome the problem of manufacturers using different grids for their 
product lines.  
 
What are the participation possibilities in such a system for the different stakeholders in a building project? 
 
The stakeholder structure was simplified in the scope of this thesis. However, conclusions regarding the 
participatory potential can be drawn for the most important stakeholders involved in the process, the 



  

83 
 

architect, the end-user, and the building product manufacturer. The architect needs to act as a mediator 
during the design process. She needs to guide the user towards a topological design and react on 
potential system errors. Furthermore, the integration of membranes and structure needs to be in the 
architect's scope. The end-user is involved in large parts of the design process and can make spatial 
decisions as same as aesthetic differentiations. Finally, the participation of the building product 
manufacturer in the design process is increased significantly, as he has the whole responsibility of the 
kind, amount, and style of components. It will be necessary to support the building manufacturer with a 
designer to evaluate the needs and requirements of architects and end-users for the system.  
 
 
6.1 Method-specific Conclusions 
 
Polygonization 
 
The initial implementation of the Boolean Marching Cubes Algorithm was insufficient to translate a 
topological design, and to produce valid designs incorporating relations between and in building 
components. To translate a topological design, the binary codification of the Boolean Marching Cube 
algorithm was extended by two more voxel options, resulting in a heximal codification. The interrelation 
of Building Components was implemented through the addition of encoding the tile faces. With applying 
a stencil, neighbouring faces were able to be detected.   
 
Discretization 
 
The discretization of building components expressed in the “Tile Creation” offered the possibility of 
implementing any building product in a computational workflow. While the Database implementation is a 
success, the discretization requires the manual input of multiple sub steps. This process should be 
automatized in prospect.   
 
Voxelization 
 
Voxelization was the basis for creating a discrete workflow, as the restriction to a three-dimensional array 
of voxels simplified the design process. However, the voxel grid also showed disadvantages since it also 
restricted the design. Even though it is possible to create tiles without showing the voxel grid, it is still 
necessary for connecting to other components and restricts, therefore, the design freedom.  
 

 

 

 

 

 

 

 

 

 



  

84 
 

6.2 Discussion 
 

One of the initial aims of this thesis is the contribution the one million homes initiative, meaning to 
provide qualitative housing in less time. To evaluate the contribution potential towards that, it needs to 
be assessed in which market segments the design tool could be applied.  
 
Self-builders (detached or terraced housing) 
 
Designing and constructing an individualized building is not very common in the Netherlands. However, 
the workflow proposed in this thesis is optimized for this use case. It is possible that more houses can be 
created with this method cause of a more efficient design process and prefabricated components.  
 
Housing development (detached or terraced housing) 
 
The terraced house is the most common building typology in the Netherlands. Because of the lack of 
building plots, in most cases are series of houses of the same building type constructed next to each 
other. This leads to monotonous architecture and a lack of individualization. With the design tool 
proposed in the thesis, project developers could offer their clients the opportunity to individualize their 
homes. The project developer can define rules and restrictions such as plot size, dimensions and possible 
tiles. In that solution space, clients could individualize houses to their needs.  
 
Apartment buildings 
 
Apartment buildings are often complex constructions with more than three stories. Since the proposed 
design tool's main aim is the use of discrete components, the possibilities of constructing large-scale 
buildings are limited. To incorporate apartment buildings, the workflow would need to be developed 
much further, eventually resulting in losing the initial simplicity. Regarding infill systems, there is indeed 
the potential to apply the workflow in apartment buildings to let the inhabitants configure their living 
spaces.   
 

 
Figure 95: Application of the design tool to different markets (Author) 

 

 

 

 



  

85 
 

7 Reflection 
 
The main objective of this research was to create a design tool for mass-customizing buildings with 
discrete building components. An increase in the use of discrete building elements is extremely relevant 
in the building industry, as it increases the circular potential of buildings through the reuse and 
reconfiguration of building components. The research produced a methodology for creating discrete 
building components, including their applicability to unlimited topological designs. Furthermore, the 
process is collaborative, and the degree of participation of professional, client and machine can be 
adjusted and individualized in every project.  
 
7.0 Problem Solving Process 
 
The first step in solving the design problem was to define a clear methodological framework, in which the 
scope and limitations of the systems were clarified. The problem was then split into more minor problems 
to have a clear solution space for each individual step. Experiments of several methods and processes 
elaborated a suitable method for each step of the overall problem. The final methods were examined in 
depth and executed to create sub-packages of an operational workflow. Finally, the potential of the 
design tool was evaluated through the application of the system to a toy problem, where the chances 
and weaknesses of the system were concluded.   
 
7.1 Effectiveness of the Process 
 
Computational Design in Architecture is a thriving research environment, as the developments are at an 
early stage, so experimentation in a broad context is necessary to achieve progress. Regarding this 
premise, I would say that the chosen process was indeed efficient, as it allowed me to tackle the 
objectives with several experiments. Furthermore, the experimental setup of the workflow allowed the 
intersection with other disciplines, such as Mathematics, Product Design, and Game Design to solve 
specific parts of the problem.  
 
7.2 Mentor Feedback 
 
My mentors were deeply involved in the process of ideation, design and development, which was a 
considerable contribution to the success of this thesis. Dr.Ir. Pirouz Nourian was during the largest part of 
my working time my first mentor, and helped me with the conceptual, methodical and mathematical part 
of the thesis. Ir. Shervin Azadi supported me with his broad knowledge on gamification and algorithmic 
design on the implementation of the design workflow. Their main feedback on structuring the thesis in 
working packages and starting to develop a working version of the design tool that can be extended in 
the process was a huge help in structuring my work and keeping an overview of the process. My first 
mentor Ir. Hans Hoogenboom supported me in combining the different ideas evolved in this thesis to an 
articulate storyline of the system. His main feedback focussed on the usability of the design tool for the 
practice and guided me to show the features in different contextual situations.  
My second mentor Prof. Dr.-Ing. Tillmann Klein gave me important feedback towards the usability of the 
system in the building industry, and helped me to accept that there are no perfect solutions in the final 
industry application, 
 
7.3 Relation of the thesis to the master track and the master program 
 
Creating one million homes in the Netherlands until 2030 is a large challenge for the building industry 
and needs integration of a wide range of subjects from the Master of Architecture, Urbanism, and 
Building Sciences. In this interdisciplinary research, I am focussing on the possibilities in Building 
Technology towards efficient, affordable and individualized housing solutions. For me, Building 



  

86 
 

Technology is bridging the gap between architectural designs, principles and systems with the demands 
and possibilities of engineering, technology, and industry. With this thesis, I am tackling exactly this 
bridge, with bringing together requirements, concerns and limitations from multiple perspectives towards 
an integrated solution materialized in the design tool created as objective of this thesis.   
 
7.4 Societal Relevance 
 
During the work on my thesis, I learned that the construction industry is not by coincidence in the current 
state of slow innovation. Negotiating between different disciplines, departments, interests, programs and 
humans is a complex task. I finally had to accept, that a workflow incorporating all interests is impossible 
to tackle in one master’s thesis. However, this thesis outlines a roadmap of possibilities for a collaborative 
workflow, that can finally result in a more participatory design process and a more effective housing 
production for using discrete components and their potential of reconfigurability and reusability.  
 
7.5 Scientific Relevance 
 
Building Information Modelling and especially the ifc-format provide already today a solution of 
collaboration between different stakeholders and interests. However, the introduction of the discrete 
component to the idea of BIM is novel and allows the customization of BIM to the needs of 
prefabrication. Based on the elaborated design methodology, further research can be done regarding the 
implementation of generative design methods and analysis lattices to the discrete design. The voxel-
based system directly transfers building- and non-building related data structures on the design and can 
be located with spatial precision.  
 
7.6 Ethical Issues 
 
The largest ethical issue in discretization of architecture is the risk, that buildings are losing design quality 
through the need of reacting to grids and given components. This is expressed in the concern of an 
unitary grid, that will take the flexibility and uniqueness from spaces and creates an architecture of 
anonymity. During the thesis, I learned that an unitary grid for all buildings cannot be the solution for the 
problems in the building industry. An unitary grid would not be able to react to various building sites or 
in-situ projects without creating unpleasant transition components. Therefore, it is specifically included in 
the process, that the voxel size is not fixed, and can be adapted to be suitable for multiple context 
situations. Even if there are multiple building systems with different sizing existing next to each other, 
there can be still use of the methodologies elaborated in this thesis, by for example using the same 
components, parts and materials for multiple Building Tiles based on different voxel sizes. However, this is 
a question that cannot be finally answered with the product of this thesis. Another, more theoretical issue 
is the question if this thesis is contributing for the computer to replace the architect as the designer 
perspectively. However, one of the learnings I developed during the work on my thesis is that aesthetics 
and design are essential for qualitative living. The architect must be an essential part of the design 
process, but maybe the architect's role can change. She can act more as a mediator and designer who 
can focus on designing spaces and configurations and can leave the repetitive work of detail 
development and calculations to algorithms. I am looking positively to the architect´s role in the future. 
Architects can be visionaries working together with computers instead of against them.  
 
7.7 Self-development 
 
During the work on my thesis, I got insights into the connection of BIM, design and industry. The concept 
of BIM, for me only known in the form of programs like Revit, is thanks to smart formats like the ifc 
already much more advanced. However, I hope I also could point out some weaknesses of the concept, 
especially in relation to design and industry.  



  

87 
 

Since most of the design workflow was built in the programming language python, I could improve my 
programming skills a lot. I saw the potential that is offered by the open-source concept of python 
libraries and was impressed by the power of the developer’s community, that were able to solve almost 
all technical questions I encountered.  
 
 
 
7.8 Future Developments 
 
7.8.0 Automatic Tile Placement 
 
The automatic tile placement is an alternative to the gamified approach described in the design section. 
While the interactive approach is driven by the personal preferences of the user, the automatic approach 
aims for the optimization of specific design factors. This can be the price of the building, but also the 
performance or the adaption to the environmental context. The automatic placement is divided in two 
steps, as seen in the figure below. Firstly, the data, on which base an optimization should be performed, is 
selected initialized. In a second step, the Wave Function Collapse algorithm generates a valid solution.   
 

 
Figure 96: Automatic Tile Placement (Author) 

Integrating the Algorithm in the Interactive Tile Placement would offer new possibilities to improve design 
quality. The algorithm could correct or extend the spatial configuration created in the topological design 
and present new spatial configuration options.  
 
7.9.1 Human-Machine Interaction 
 
Another development improvement would be the introduction of a more advanced human-machine 
interaction. This can be done by performing the topological design and interactive placement in a virtual 
reality environment. Components, tiles and spaces can be displayed in the scale 1:1, and end-users would 
get a better relation to the final executed design.  
 
7.9.2 Digital Platform 
 
The methodology elaborated in the thesis presents many possibilities for implementing solutions for the 
working packages. The major development that needs to be taken is the implementation of the workflow 
into a context that can actually be used by the construction industry. The best way would be to create a 
cloud-based platform in which the individual work packages can be implemented. An online platform 
would allow the architect, tile developer and end-user to work simultaneously on designs. They could 
exchange information about their needs and preferences and communicate problems in real time. In the 
figure below, a visual concept is presented for a potential design of the platform.  
 



  

88 
 

 
Figure 97: UX design Potential Platform (Author) 

 
 
 

 
 
 
 



  

89 
 

8 Appendix 
 
8.0 Output File Examples  
 
Topological Design (Example Code Algorithm 1): 
 
Cubes Model x 
3 
4 
4 
X000X000X000X000X000X000X000X001 
X000X000X000X000X000X000X001X001 
X000X000X000X000X000X000X001X000 
X000X000X000X000X000X001X000X001 
X000X000X000X000X001X001X001X001 
X000X000X000X000X001X000X001X000 
X000X000X000X000X000X001X000X001 
X000X000X000X000X001X001X001X001 
.... 
X001X000X000X000X000X000X000X000 
 
 
Calculating Tile Options (Example Code Algorithm 2): 
 
[[3, 4, 4], ['1103#1#0#0#0#0#0#0'], ['1104#0#0#0#0#0#0#0'], ['1103#0#0#0#0#0#0#0'], 
['1104#1#0#0#0#0#0#0'], ['1106#0#0#0#0#0#0#0'], ['1104#3#0#0#0#0#0#0'], ['1104#1#0#0#0#0#0#0'], 
['1106#0#0#0#0#0#0#0'], ['1104#3#0#0#0#0#0#0'], ['1103#2#0#0#0#0#0#0'], ['1104#2#0#0#0#0#0#0'], 
['1103#3#0#0#0#0#0#0'], ['1102#1#0#0#0#0#0#0'], ['1100#0#0#0#0#0#0#0', '1501#0#0#0#0#0#0#0'], 
['1102#0#0#0#0#0#0#0'], ['2001#5#0#0#0#1001#0#1002', '2002#5#0#0#0#1001#0#1002', 
'2003#5#0#0#0#1001#0#1002', '2012#5#0#0#0#1007#0#1006'], ['0#0#0#0#0#0#0#0'], 
['1100#3#0#0#0#0#0#0', '1501#3#0#0#0#0#0#0'], ['2001#1#0#1001#0#0#0#1002', 
'2002#1#0#1001#0#0#0#1002', '2003#1#0#1001#0#0#0#1002', '2012#1#0#1007#0#0#0#1006'], 
['0#0#0#0#0#0#0#0'], ['1100#3#0#0#0#0#0#0', '1501#3#0#0#0#0#0#0'], ['1102#2#0#0#0#0#0#0'], 
['1100#2#0#0#0#0#0#0', '1501#2#0#0#0#0#0#0'], ['1102#3#0#0#0#0#0#0'], ['1102#1#0#0#0#0#0#0'], 
['1100#0#0#0#0#0#0#0', '1501#0#0#0#0#0#0#0'], ['1102#0#0#0#0#0#0#0'], 
['2004#5#1002#0#0#1003#0#0', '2005#5#1002#0#0#1003#0#0', '2006#5#1002#0#0#1003#0#0', 
'2013#5#1006#0#0#1008#0#1006', '2017#5#1010#0#0#0#0#0'], ['0#0#0#0#0#0#0#0'], 
['1100#3#0#0#0#0#0#0', '1501#3#0#0#0#0#0#0'], ['2004#1#1002#1003#0#0#0#0', 
'2005#1#1002#1003#0#0#0#0', '2006#1#1002#1003#0#0#0#0', '2013#1#1006#1008#0#0#0#1006', 
'2017#1#1010#0#0#0#0#0'], ['0#0#0#0#0#0#0#0'], ['1100#3#0#0#0#0#0#0', '1501#3#0#0#0#0#0#0'], 
['1102#2#0#0#0#0#0#0'], ['1100#2#0#0#0#0#0#0', '1501#2#0#0#0#0#0#0'], ['1102#3#0#0#0#0#0#0'], 
['1114#1#0#0#0#0#0#0'], ['1115#0#0#0#0#0#0#0'], ['1114#0#0#0#0#0#0#0'], ['1115#1#0#0#0#0#0#0'], 
['1117#0#0#0#0#0#0#0'], ['1115#3#0#0#0#0#0#0'], ['1115#1#0#0#0#0#0#0'], ['1117#0#0#0#0#0#0#0'], 
['1115#3#0#0#0#0#0#0'], ['1114#2#0#0#0#0#0#0'], ['1115#2#0#0#0#0#0#0'], ['1114#3#0#0#0#0#0#0']] 
 
 
 
 
 
 
 



  

90 
 

8.1 External Code Packages used for this Thesis 
 
Numpy 
Numpy is a python library that provides the opportunity to create, access and modify multi-dimensional 
arrays.  
https://numpy.org/doc/stable/index.html 
 
pyodbc 
pyodcb is a library that allows the access of odbc databases. It is used in this project to read the Microsoft 
Access Tile Database. 
https://pypi.org/project/pyodbc/ 
 
IfcOpenShell 
IfcOpenShell provides tools to access, modify or create ifc files from scratch. It is used for the export of ifc 
files.  
https://ifcopenshell.org/ 
 
Other  
The framework for the two-dimensional implementation of the Wave Function Collapse algorithm is 
created by Ir. Shervin Azadi. The contributed code is contained separately in the file “WTC_Pillow” in the 
thesis repository on github.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://numpy.org/doc/stable/index.html
https://pypi.org/project/pyodbc/
https://ifcopenshell.org/


  

91 
 

9 Bibliography  
 
9.0 Literature 
 
Abramowitz, M. (2012). Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical 
Tables. (Vol. 1–1 online resource). Dover Publications. https://www.hoopladigital.com/title/11605855 
 
Azadi, S., & Nourian, P. (2021). GoDesign: A modular generative design framework for mass-
customization and optimization in architectural design. 39th eCAADe Conference 2021, Novi Sad. 
 
Azadi, S., & Nourian, P. (2020). ‘topoGenesis: Initial Pre-release’. Retrieved 10. October 2022 from 
https://topogenesis.readthedocs.io/. 
 
Berlo, L. van, Krijnen, T. F., Tauscher, H., Liebich, T., Kranenburg, A. van, & Paasiala, P. (2021). Future of the 
Industry Foundation Classes: Towards IFC 5. Proceedings of the 38th International Conference of CIB W78. 
https://repository.tudelft.nl/islandora/object/uuid%3Abd3b0a6b-e956-4474-bddd-94b77aa7c6e0 
 
bimobject. (2022). BIM objects- Dresser Door | BIMobject. BIMobject®. Retrieved 14. November 2022 from 
https://www.bimobject.com/en/murphydoor/product/dresser-door 
 
Block by Block. (2022). Block by Block. Block by Block. Retrieved 02. December 2022 from 
https://www.blockbyblock.org 
 
Bock, T., & Linner, T. (2010). Individualization of Design Variation in Construction. 27th International 
Symposium on Automation and Robotics in Construction. https://doi.org/10.22260/ISARC2010/0064 
 
Brand, S. (1994). How buildings learn: What happens after they’re built. Viking. 
 
Bugaj, M. (2020). Wave Function Collapse—Tutorial of a Basic Example Implementation in Python. The 
Startup. https://medium.com/swlh/wave-function-collapse-tutorial-with-a-basic-exmaple-
implementation-in-python-152d83d5cdb1 
 
buildingSMART-International. (n.d.). BuildingSMART Data Dictionary. BuildingSMART International. 
Retrieved 22. November 2022 from https://www.buildingsmart.org/users/services/buildingsmart-data-
dictionary/ 
 
buildingSMART-International. Industry Foundation Classes (IFC). buildingSMART International. Retrieved 
20.09.2022 from https://technical.buildingsmart.org/standards/ifc 
 
Chasioti, E. (2020). Gameplay with encoded architectural tilesets: A computational framework for building 
massing design using the Wave Function Collapse algorithm.  
 
Chien, S.-F., & Shih, S.-G. (2001). Design through Information Filtering. CAAD Futures 2001, Eindhoven. 
 
Cuperus, Y. (2001). An Introduction to Open Building.  
 
Daga, L. (2021, February 19). A Practical Approach to Level of Detail (LOD)—United-BIM. Retrieved 03. 
December 2022 from https://www.united-bim.com/practical-approach-to-level-of-detail/ 
 
Ekholm, A. (2005). ISO 12006-2 and ifc – prerequisites for coordination of standards for classification and 
interoperability. ITcon, 10, 276–279. 

https://technical.buildingsmart.org/standards/ifc


  

92 
 

Gablok (2022). Retrieved 23. January 2022 from https://gablok.be/en/ 
 
Gan, S., Zhang, H. (2021). Research on Maintainability and Renewability of SI Housing. IOP Conference 
Series: Earth and Environmental Science 
 
Garber, R. (2014). BIM Design : Realising the Creative Potential of Building Information Modelling (Vol. 1). 
John Wiley & Sons, Incorporated.  
 
Giacosa, F. (2014). On Unitary Evolution and Collapse in Quantum Mechanics. DOI: 
10.12743/quanta.v3i1.26 
 
Global Property Guide (2022). The Netherlands: pandemic not enough to cool down its red-hot housing 
market. Retrieved 10. January 2022 from  
https://www.globalpropertyguide.com/Europe/Netherlands/Price-History 
 
Gumin, M. (2022). WaveFunctionCollapse. Retrieved 10. January 2022 from 
https://github.com/mxgmn/WaveFunctionCollapse 
 
Guy, B. a. C., Nicholas (2005). Design for Disassembly 
in the built environment: a guide to closed-loop design and building. In C. o. Seattle (Ed.). 
 
Hardin, B., & McCool, D. (2015). Bim and construction management : Proven tools, methods, and 
workflows. John Wiley & Sons, Incorporated. 
 
International Orgaisation for Standartization (2015). ISO 12006-2:2015 
Building construction — Organization of information about construction works — Part 2: Framework for 
classification. Retrieved 4. January 2023 from https://www.iso.org/standard/61753.html 
 
Kendall, S. (2003). Product Bundling or Kitting: Balancing Efficiency and Variety in the Market.  
 
Kendall, S. (2015). Notes Toward a History of the Matura Infill System Development.  
 
Klein, T. (2013). Integral Facade Construction. Delft University of Technology, Faculty of Architecture.  
 
Kleineberg, M. (2022). Wave Function Collapse. Retrieved 10. January 2022 from Github. 
https://github.com/marian42/wavefunctioncollapse 
 
Komura, T. (2008). Scalar Algorithms: Contouring.  
 
NBvT. (2014). Wat is de KVT-online? NBvT. https://nbvt.nl/services/kvt/wat-de-kvt-online 
Norén, M., & Gauthier, T. (n.d.). IfcOpenShell—The open source IFC toolkit and geometry engine. Retrieved 
2 December 2022, from https://ifcopenshell.org/ 
 
Level of Detail | GSA. (n.d.). Retrieved 16 September 2022, from https://www.gsa.gov/real-estate/design-
and-construction/3d4d-building-information-modeling/bim-software-guidelines/document-guides/level-
of-detail 
 
Liu, Z. (1998). Algorithms for Constraint Satisfaction Problems (CSPs).  
 
Lou, J., Lu, W., & Xue, F. (2020, November 27). A review of BIM data exchange method in BIM collaboration. 

https://gablok.be/en/
https://www.globalpropertyguide.com/Europe/Netherlands/Price-History
https://github.com/mxgmn/WaveFunctionCollapse
https://github.com/marian42/wavefunctioncollapse


  

93 
 

McAndrew, C. (n.d.). The building blocks for a new kind of architecture—The Bartlett Review 2021—UCL - 
University College London. Retrieved 6 December 2022, from 
https://www.bartlettreview.com/features/the-building-blocks-for-a-new-kind-of-architecture 
NBS Source. (2022). https://source.thenbs.com/ 
 
Lorensen, W., & Cline, H. (1987). Marching Cubes: A High Resolution 3D Surface Construction Algorithm. 
ACM SIGGRAPH Computer Graphics 21, 163-169.  
 
McAndrew, C. (2021). The building blocks for a new kind of architecture. Retrieved 02. November 2022 
from https://www.thebartlettreview.com/features/the-building-blocks-for-a-new-kind-of-architecture 
 
Merrell, P. (2022). Retrieved 10. January 2022 from Model Synthesis. Retrieved 10. January 2022 from 
https://paulmerrell.org/model-synthesis/ 
 
Nourian, P., & Azadi, S. (2022). Boolean Marching Cube. Retrieved 02. February 2022 from from 
topoGenesis: https://topogenesis.readthedocs.io/notebooks/boolean_marching_cubes/ 
 
Oorschot, L. (2021). Modulair, circulair, opschaalbaar en betaalbaar -So You Think You Can BUILD 
challenge. 1M Homes Initiative. Retrieved 08. August 2022 from 
https://1mh.openaccess.ac/index.php/1mh/preprint/view/44/75  
 
Oorschot, L., & Asselbergs, T. (2021). New Housing Concepts: Modular, Circular, Biobased, Reproducible, 
and Afordable. Sustainability, 13.  
 
Open Systems Lab. (2022, 01 10). www.wikihouse.cc. Retrieved from Wikihouse: 
https://files.cargocollective.com/c229869/WHouse_Guide_1.1.pdf 
 
Park, S. (2022). Houscaper. Delft University of Technology.  
 
Retsin, G. (2019). Discrete Architecture in the age of automation. Architectural Design, 7-13.  
 
restado. (n.d.). Restado. restado.de. Retrieved 7 December 2022, from https://restado.de/  
 
Rigips. (2021). Verarbeitungsrichtlinien Trockenbau. Düsseldorf: Saint-Gobain Rigips GmbH. Retrieved 23. 
September 2020 from medien.rigips.de  
 
Sass, Lawrence. (2005). Wood Frame Grammar. Computer Aided Architectural Design Futures 2005 
[Proceedings of the 11th International Conference on Computer Aided Architectural Design Futures / ISBN 
1-4020-3460-1] Vienna (Austria) June 2005, pp. 383-392. 10.1007/1-4020-3698-1_36. 
 
Savov, A., & Tessmann O., & Winkler R. (2020). Encoding Architectural Designs as Iso-surface Tilesets for 
Participatory Sculpting of Massing Models. 10.1007/978-3-030-29829-6_16. 
 
Soman, A. (2021). Gen Arch. TU Delft University of Technology. 
 
SPAX International GmbH & Co. KG (2022). Spax Screws. Retrieved 22. November 2022 from 
https://www.spax.com/en/products/universal/flat-countersunk-head/universal-screw-5-x-70-mm-200-
pieces-full-thread-flat-countersunk-head-t-star-plus-t20-4cut-wirox-1191010500705/pid-814/ 
 
Smith, G. (2015). An Analog History of Procedural Content Generation. Boston: Northeastern University, 
Playable Innovative Technologies Lab. 
 

https://paulmerrell.org/model-synthesis/
https://topogenesis.readthedocs.io/notebooks/boolean_marching_cubes/
https://1mh.openaccess.ac/index.php/1mh/preprint/view/44/75


  

94 
 

Stålberg, O. (2022). Townscaper. Retrieved 7 December 2022 from https://oskarstalberg.com/Townscaper/ 
 
TBI Woonlab. (2022, 10 11). De beterBASIShuis Woonplanner. Retrieved from 
https://www.tbiwoonlab.nl/labels/beterbasishuis/woonplanner-beterbasishuis/ 
 
TBI Woonlab. (2022, 01 12). Houtbaar Loft Concept. Retrieved from Houtbaar: 
https://www.houtbaar.nl/loft/ 
 
The New Makers. (2022, 01 09). The New Makers. Retrieved 11. January 2022 from 
https://thenewmakers.com/product/uuthuuske/ 
 
Trading Economics. (2022, 01 11). Netherlands Home Ownership Rate. Retrieved 11. January 2022 from 
tradingeconomics.com: https://tradingeconomics.com/netherlands/home-ownership-
rate#:~:text=Home%20Ownership%20Rate%20in%20Netherlands%20averaged%2067.55%20percent%20
from%202005,of%2063.90%20percent%20in%202005 
 
Tsang, E. (1993). Foundations of Constraint Satisfaction. Academic Press.  
 
van Overveld, M., van der Graaf, P. J., Eggink-Eilander, S., & Berghuis, M. I. (2011). Praktijkboek Bouwbesluit 
2012. Sdu Uitgevers.  
 
 
 
9.1 Figures 
 
Figure 1: GoDesign Framework (Azadi & Nourian , 2021, p. 288) 8 
Figure 2: Thematic organisation of the research (Author) 10 
Figure 3: The Continous and the Discrete (Author) 13 
Figure 4: Assembled Discrete Building Blocks, Photo by James Harris (McAndrew, 2022) 13 
Figure 5: Shearing Layers of Change (Stewart Brand, 1994) 14 
Figure 6: Matura Infill System (Gan, S., Zhang, H. , 2021) 14 
Figure 7: The Uuthuuske System (The New Makers, 2022) 15 
Figure 8: Skylark System (Open Systems Lab, 2022) 16 
Figure 9: Houtbaar Loft. TBI Woonlab (2022, 01) 16 
Figure 10: Gablok System (Gablok, 2022) 17 
Figure 11: Implicit Modeling with Rhino (Author) 18 
Figure 12: Parametric Configurator of the beterBASIShuis (TBI Woonlab, 2022 10 11) 18 
Figure 13: IKEA Kitchen Planner (IKEA, 2022) 19 
Figure 14: Rebuilding Tradition In The Kathmandu Valley- Minecraft Model and Reality (Block by Block, 
2022) 19 
Figure 15: Two Designs created in seconds by the author in Townscaper (Stålberg, 2022) 20 
Figure 16: Assisted Sculpting (Savov et. al, 2020) 20 
Figure 17: Comparison of strategies for encoding designs (Author) 21 
Figure 18: Map-coloring (author) 21 
Figure 19: Workflow of the Wave Function Collapse Algorithm (Author) 22 
Figure 20: A shape grammar and grammar derivation (Sass, 2005) 23 
Figure 21: Visualization of Design Objects (Author) 24 
Figure 22: Coordinate System (Author) 26 
Figure 23: Derivation of the counting sequence of the cube faces (Author) 26 
Figure 24: Counting Sequence (Author) 27 



  

95 
 

Figure 25: Connection types of sub-voxels (Author) 27 
Figure 26: Dimensioning System (Author) 28 
Figure 27: Stakeholders involved in different stages of the planning process (Author) 29 
Figure 28: Flowchart of the Tile Database Structure 30 
Figure 29: Applying the Marching Squares Algorithm (Author) 32 
Figure 30: Marching Squares Tileset (Author) 33 
Figure 31: Applying the Marching Squares Algorithm on different fields (Author) 33 
Figure 32: Applying two tilesets with Marching Squares (Author) 34 
Figure 33: 26 Unique Cube Configurations (Author) 34 
Figure 34: 26 Unique Tiles generated with Grasshopper (Author) 35 
Figure 35: Calculating all possible tiles from one unique tile (Author) 35 
Figure 36: Flowchart of the Boolean Marching Cube Algorithm (Author) 35 
Figure 37: Applying two tilesets each on two different set of voxels (Author) 36 
Figure 38: Tile Set to test the WFC Algorithm (Author) 37 
Figure 39: Applied tileset on a 20x20 matrix (Author) 38 
Figure 40: extended tileset with furniture (Author) 38 
Figure 41: Application of the extended tileset on a 20x20 matrix (Author) 38 
Figure 42: Comparison of infill systems relevant for discrete design (Author) 39 
Figure 43: Basic Infill Module (Author) 40 
Figure 44: Extended Infill System (Author) 40 
Figure 45: Services and Assembly (Author) 41 
Figure 46: Application Methods for the Design Tool in context (Author) 43 
Figure 47: Flowchart of the Design Tool (Author) 44 
Figure 48: Materialized Design in exchange with a voxelized topological design (Author) 44 
Figure 49: Kind of Voxels (Author) 45 
Figure 50: Topological Design and Application of Layers (Author) 46 
Figure 51: Pseudo-Code Voxel Reader (Author) 47 
Figure 52: Encoding the Topological Design (Author) 48 
Figure 53: ERD Diagram of the Tile Database (Author) 49 
Figure 54: Two workflows to create Building Tiles (Author) 50 
Figure 55: Unique Cubes and Families (Author) 51 
Figure 56: Table: Demonstration of a Material Import (Author)                                                              
Figure 57: Countersunk Screw (Spax) 52 
Figure 58: Demonstration of Part Implementation (Author) 52 
Figure 59: Assigning Components (Author) 53 
Figure 60: Representation of a component through Parts, Instances and as a whole (Author) 53 
Figure 61:Assigning Building Tiles (Author) 54 
Figure 62: Assembly of a building tile (Author) 54 
Figure 63: Demonstration of the creation of Computational Tiles (Author) 55 
Figure 64: Encoding Faces (Author) 56 
Figure 65: Converting an array of Cubes to Cube Subsets (Author) 57 
Figure 66: Pseudo Code for creating cube subsets (Author) 57 
Figure 67: Pseudo Code for the Algorithm to assign Tiles to Cube Subsets 58 
Figure 68: Several Building Assemblies as Algorithm Output (Author) 59 
Figure 69: User Interaction Diagram (Author) 60 
Figure 70: Interactive Tile Placement in Rhinoceros 60 
Figure 71: Van Neumann Stencil applied for the interactive tile placement (Author) 61 
Figure 72: Detail Sections generated in Grasshopper (Author) 62 
Figure 73: Structural Components (Author) 63 



  

96 
 

Figure 74: Integration of Membranes (Author) 64 
Figure 75: Defining a structural direction to produce ceilings (Author) 64 
Figure 76: Application of the system on spatially restricted projects (Author) 65 
Figure 77: beterBASIShuis (TBI Woonlab, 2022, 10 11) 67 
Figure 78: Site Context of the Toy Problem (Author) 68 
Figure 79: Topological design of a rowhouse 68 
Figure 80: Computational Tiles from the Envelope Tileset (Author) 69 
Figure 82: Envelope Tileset Brickwork 70 
Figure 83: Envelope Tileset Timber (Author) 71 
Figure 84: Infill Tileset (Author) 72 
Figure 85: Additional Tiles Infill System (Author) 73 
Figure 86: Detail Integration Hörmann BaseLine with block frame (Author) 73 
Figure 87: Detail Integration Hörmann BaseLine with enclosing steel frame (Author) 74 
Figure 88: Detail Integration Hörmann BaseLine with eclosing wood frame (Author) 74 
Figure 89: Envelope Variations (Author) 75 
Figure 90: Applied Infill System (Author) 76 
Figure 93: Detail Infill System (Author) 77 
Figure 95: Skylark 250 Blocks (Open Systems Lab, 2022) 78 
Figure 96: Application of the Skylark 250 system onto a voxel set (Author) 79 
Figure 97: Adjusted Blocks and Computational Tiles (Author) 80 
Figure 98: The Design Tool in the context of stakeholders (Author) 80 
Figure 99: Application of the design tool to different markets (Author) 84 
Figure 100: Automatic Tile Placement (Author) 87 
Figure 101: UX design Potential Platform (Author) 88 
 


	0 Introduction
	0.0 Context
	0.0.0 Societal Relevance
	0.0.1 Scientific Relevance

	0.1 Problem Statement
	0.2 Research Question
	0.3 Research Objective
	0.4 Methodology
	0.4.0 Research Methodology
	0.4.1 Proposed Methodology

	0.5 Scope and Delimitations

	1 Literature Review
	1.0 Building Information Modelling
	1.0.0 Workflow with BIM
	1.0.1 Geometries, Components and Libraries
	1.0.2 Data Exchange
	1.0.3 Classifications
	1.0.4 Databases

	1.1 Modular Building Systems
	1.1.0 Discrete Architecture
	1.1.1 Open Building Concept
	1.1.2 Modular Architecture
	1.1.3 Design for Deconstruction
	1.1.6 Case Studies for modular Building Systems

	1.2 Encoding Design
	1.2.0 Strategies for encoding designs
	1.2.1 Constraint Solving
	1.2.2 The Wave Function Collapse Algorithm
	1.2.3 The Marching Cubes Algorithm
	1.2.4 Shape Grammars

	1.3 Conclusions

	2 Design Methodology
	2.0 Design Terminology
	2.1 Units and Sequences
	2.1.0 Coordinate System
	2.1.1 Cube Faces Counting Sequence
	2.1.2 Cube Vertices Counting Sequence
	2.1.3 Establishing a Tileset of 26 unique cubes

	2.2 Dimensioning System
	2.3 Stakeholders
	2.4 Computational Framework

	3 Development
	3.0 Deconstruct the Marching Squares Algorithm
	3.1 Building the Boolean Marching Cubes Algorithm
	3.2 Testing the Wave Function Collapse Algorithm
	3.3 Building Component Development
	3.3.0 References
	3.3.1 Basic Module
	3.3.2 Further Modules
	3.3.3 Tolerances and Movements
	3.3.4 Integration of Services
	3.3.5 Assembly

	3.4 Conclusions

	4 Design
	4.0 Design Tool Workflow
	4.1 Creating a topological design
	4.1.0 Kind of Voxels
	4.1.1 Design Rules for the creation of voxelated topological designs
	4.1.2 Application of the rules in a CAD environment
	4.1.3 Encoding a topological design
	4.1.4 Further Input Methods

	4.2 Tile Creation
	4.2.0 Database Setup
	4.2.1 Workflow
	4.2.2 Unique Cubes and Families
	4.2.3 Building Products
	4.2.4 Parts
	4.2.5 Components
	4.2.6 Building Tiles
	4.2.7 Computational Tiles
	4.2.8 Faces

	4.3 Calculating Tile Options
	4.3.0 Generate Subsets
	4.3.1 Assigning Tiles to Subsets

	4.4. Tile Placement
	4.4.1 Interaction
	4.4.2 Checking the Face Conditions

	4.5 Postprocessing
	4.5.0 Detail Generation
	4.5.1 IFC Export

	4.6 Design Strategies
	Bespoke Tiles

	4.7 Workflow Reflection
	4.7.0 Performance
	4.7.1 Redundancy
	4.7.2 Prospect


	5 Evaluation
	5.0 Verification
	5.0.0 Building Task
	5.0.1 Context
	5.0.2 Topological Design
	5.0.3 Tile Creation
	5.0.4 Interactive Tile Placement
	5.0.5 Postprocessing
	5.0.6 Results

	5.1 Validation
	5.1.1 Impact on the Stakeholders
	5.1.2 Circularity Potential
	5.1.3 Application Potential for the Industry


	6 Conclusions
	6.0 Research Questions
	6.1 Method-specific Conclusions
	6.2 Discussion

	7 Reflection
	8 Appendix
	9 Bibliography
	9.0 Literature
	9.1 Figures

	Leere Seite



