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Abstract

In this thesis we will for a quantum Markov semi-group (Φt)t≥0 on a finite von Neumann algebra N
with a trace τ , investigate the property of the semi-group being gradient-Sp for some p ∈ [1,∞]. This
property was introduced in [12] (see also [9]) and has been studied in [9, 10, 12] for quantum Markov
semi-groups on compact quantum groups and on q-Gaussian algebras. Beyond these classes the property
gradient-Sp has not been studied; in particular for groups and their operator algebras no (non-trivial)
examples were known before this thesis. The main aim of this thesis is therefore to construct interesting
examples of quantum Markov semi-groups that possess the gradient-Sp property.

The reason why we are interested in constructing such semi-groups, is because they can be used to
obtain properties like the Akemann-Ostrand property (AO+) and strong solidity for the underlying von
Neumann algebra. Over the last decade, these properties have become a topic of interest and have been
studied for several von Neumann algebras, see [3, 8, 9, 10, 12, 23, 32, 33, 37, 41].

In this thesis we shall focus on group von Neumann algebras (L(Γ), τ) for certain discrete groups
Γ that possess the Haagerup property. Namely, for such groups there exists a proper, conditionally
negative definite function ψ on Γ. We can then define an unbounded operator ∆ψ on the GNS-Hilbert
space L2(L(Γ), τ) as ∆ψ(λv) = ψ(v)λv and consider the corresponding quantum Markov semi-group
(e−t∆ψ )t≥0. For this semi-group we can investigate for what p it has the gradient-Sp property. In
particular we will be considering group von Neumann algebras of Coxeter groups. Namely, a Coxeter
group W possesses the Haagerup property by [4], and a proper conditionally negative function ψ on W is
given by the minimal word length ψ(w) = |w| w.r.t some set of generators. We will ‘almost completely’
characterize for what types of Coxeter systems the semi-group corresponding to the word length is
gradient-Sp. Moreover, in the cases that we get the gradient-S2 property, we obtain the Akemann-Ostand
property (AO+) and strong solidity for L(W ).

Hereafter, we will also consider other quantum Markov semi-groups on L(W ). We consider word
lengths that arise by putting different weights on the generators, and consider the semi-groups associated
to these proper, conditionally negative functions. From this we obtain (AO+) and strong solidity for
L(W ) for some other cases.

Thereafter, we will generalize some of our results obtained for L(W ) to the Hecke algebras Nq(W ),
which are q-deformations of L(W ).

For the case of group von Neumann algebras L(Γ) for general groups, we shall examine for semi-groups
induced by a proper, conditionally negative function ψ, how the gradient-Sp property of the semi-group

(Φt)t≥0 := (e−t∆ψ )t≥0 relates to the gradient-Sq property of the semi-group (e−t∆
α
ψ )t≥0 that is generated

by the αth-root ∆α
ψ of the generator.

Last, we will also show a method that allows us, for right-angled word hyperbolic Coxeter groups, to
obtain (AO+) and strong solidity for L(W ) without building a gradient-Sp quantum Markov semi-group,
but by using a slightly different method.
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1. Introduction

In this thesis we will consider quantum Markov semi-groups and study a property of these semi-groups
that was defined in [9, 12]. Quantum Markov semi-groups that possess that property have some interesting
consequences, that were shown in the same paper. This property, called gradient-Sp, was introduced to
solve an open question in the theory of compact quantum groups, namely the strong solidity of free
orthogonal quantum groups, see [9]. The property was studied further in [10] for more general compact
quantum groups and [12] for q-Gaussian algebras. Beyond these classes the property gradient-Sp has not
been studied; in particular for groups and their operator algebras no (non-trivial) examples were known
before this thesis. The main aim of this thesis is therefore to construct interesting examples of quantum
Markov semi-groups that possess the gradient-Sp property. Similar to [12] this will allow us to obtain
interesting results for the underlying von Neumann algebra.

In this section we shall introduce the main topics of this thesis, without delving to deep in the theory.
For a more advanced introduction on the topics we refer to the preliminaries. We shall moreover finish
this section by giving an overview of the structure of this thesis.

In this section we start by giving some context on what quantum Markov semi-groups are. This we do
by first considering classical Markov semi-groups which arise from random processes. After this we turn
to quantum Markov semi-groups, which can be regarded as non-commutative analogues of the classical
Markov semi-groups. We shall give the definition of these semi-groups, and show their connection to the
classical case. We moreover state some properties of these semi-groups, and discuss their appearance
in physics. Hereafter we shall also give multiple examples of quantum Markov semi-groups for the
convenience of the reader. Thereafter we shall state what the gradient-Sp is about. We shall shortly
discuss why we are interested in quantum Markov semi-groups that posses this property. Furthermore,
we shall give some background on Coxeter groups. These groups play a significant role in this thesis as
they can be used to build von Neumann algebras and quantum Markov semi-groups of which we can
study the gradient-Sp property. Finally, we end by giving an outline of this thesis.

1.1. Classical Markov semi-groups. We give an overview of the classical Markov semi-groups, that
originate from random processes. In a way they tell how a probability distribution behaves over time.
We shall start by introducing discrete time, homogeneous Markov chains, and then turn to continuous
time Markov chains. For more theory on classical Markov semi-groups we refer to [1, Chapter 1].

1.1.1. Discrete time, homogeneous Markov Chains. We let the state space S = {s1, ...., sk} be a finite set,
whose elements we refer to as ‘states’. A discrete time Markov chain on S then is a sequence (Xn)n∈N of
random variables, satisfying the Markov property. This is the property that

P(XN+1 = xN+1|X0 = x0, X1 = x1, ...., XN = xN ) = P(XN+1 = xN+1|XN+1 = xN )(1)

for all N ≥ 0, and all possible states x0, x1, ..., xN , xN+1 ∈ S for which the conditional expectations both
exist. In words, the Markov property stands for the fact that the process is ‘memoryless’ in the sense
that the process from time n only depends on the current value and not on the previous values. The
Markov chain is moreover called homogeneous when P(XN+1 = a|XN = b) is independent of the value
of N .

A discrete time, homogeneous Markov chain (Xn)n≥0 can be regarded as a random walk on the set of
states. The random walk starts in some random state X0, and moves from state si to state sj in the next
‘turn’ according to a single value pi,j := P(XN+1 = sj |Xn = si) that does not depend on N . The |S|×|S|
matrix P defined as Pi,j = pj,i consists of all these transition probabilities and then completely describes
the behavior of the random walk. For example, if we have an initial distribution π = (π1, π2, ..., π|S|)

T for
the value of X0, then the distribution for X1 is given by Pπ. More generally it holds that Pnπ describes
the probability distribution of Xn. The maps Pn thus describe how the initial distribution behaves over
(discrete) time. They can be regarded as linear operators on L∞(S, µ) where µ is the counting measure.
The family of maps (Pn)n≥0 together form a semi-group in the usual sense, that is PnPm = Pn+m. We
moreover have that

∑
i∈S(Pnπ)(i) = 1 =

∑
i∈S π(i) as the probability of ‘being somewhere’ is always

1. More general we thus have that
∑
i∈S(Pnf)(i) =

∑
i∈S f(i) for all f ∈ L∞(S, µ). We also note that

the maps Pn map the positive element π ≥ 0 to a positive element Pnπ ≥ 0, as probabilities are always
positive. More generally we thus have that Pn maps positive elements from L∞(S, µ) to positive elements
from L∞(S, µ).

We summarize these results. The family of linear maps (Pn)n≥0 on L∞(S, µ) satisfies
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(1) We have P 0 = IdL∞(S,µ).

(2) For n,m ≥ 0 we have PnPm = Pn+m.
(3) For n ≥ 0 and f ∈ L∞(S, µ) we have

∫
S P

nfdµ =
∫
S fdµ.

(4) For n ≥ 0 the map Pn is positive on L∞(S, µ).

Now suppose that our random walk is also symmetric in the sense that moving from state sj to state si
has the same probability as moving from state si to state sj . This is to say that pi,j = pj,i, and hence
that the transition matrices Pn are self-adjoint. This means that we moreover have that∫

S

(Pnf) · gdµ =

∫
S

f · (Png)dµ for f, g ∈ L∞(S, µ) and n ≥ 0.(2)

Moreover, for the function 1 ∈ L∞(S, µ) we then have that (P1)i =
∑|S|
j=1 Pi,j =

∑|S|
j=1 Pj,i =

∑|S|
j=1 P(X1 =

sj |X0 = si) = 1. This means that the maps Pn for n ≥ 1 are moreover unital, that is Pn1 = 1. The maps
(Pn)n≥0 corresponding to a discrete time, time homogeneous Markov chain that is moreover symmetric,
have a connection to the semi-groups that we will consider. However, the semi-groups that we consider
are actually continuous over time, that is we consider maps (Φt)t≥0 with t ∈ R+.

1.1.2. Continuous time Markov chains. We now turn to continuous time Markov chains, which are more
closely related to quantum Markov semi-groups. A continuous time Markov chain (Xt)t∈R+

on a set
S = {s1, ..., sk} of states is a random process in which you change from a state to another random state
like in the discrete case. However, in this case the moment when you move to the next state depends on
an exponential random variable T . Equivalently, when in a state si at time t = 0, you move to another
state sj according to some exponential random variables {Ti,j : j 6= i} with parameters {qi,j > 0 : j 6= i},
where qi,j is the parameter of the exponential distribution Ti,j . Namely at time T := minj 6=i Ti,j you
move from state si to sJ , where J = min argj 6=i Ti,j .

A continuous time Markov chain (Xt)t≥0 can entirely be described by a |S| × |S| matrix Q that is
given by Qi,j = qj,i whenever j 6= i and otherwise by Qi,i = −

∑
j 6=i qi,j (this is actually the adjoint

of the transition rate matrix). We now denote the matrices Pt := e−tQ :=
∑
k≥0

(−tQ)k

k! . Now, if the
initial distribution of X0 is given by π, then it is true that the distribution of Xt is given by Ptπ. The
maps (Pt)t≥0 thus describe how the probability distribution behaves over time. The matrices Pt can be
regarded as linear maps on L∞(S, µ) and satisfy similar properties as before, namely

(1) We have P0 = IdL∞(S,µ).
(2) For t, r ≥ 0 we have PtPr = Pt+r.
(3) For t ≥ 0 and f ∈ L∞(S, µ) we have

∫
S Ptfdµ =

∫
S fdµ.

(4) For t ≥ 0 the map Pt is positive on L∞(S, µ).

Also, when the Markov chain is symmetric in the sense that qi,j = qj,i for all i, j then the matrix Q is

self-adjoint. We then also have that Pt is self-adjoint for t ≥ 0 so that
∫
S(Ptf) · gdµ =

∫
S f · (Ptg)dµ

holds for g, f ∈ L∞(S, µ). Moreover, as Q is self-adjoint we have that (Q1)i =
∑|S|
j=1Qi,j =

∑|S|
j=1Qj,i =

Qi,i +
∑
j 6=i qi,j = 0. This shows that Q1 = 0 and hence that Pt1 = 1 for t ≥ 0 in this case.

Also, a property that we have for these Markov chains is that the map t 7→ Pt is continuous. Namely

for 0 ≤ t ≤ r we have ‖Pt − Pr‖ ≤ ‖Pt‖ · ‖I − Pr−t‖ ≤ ‖I − Pr−t‖ ≤
∑
k≥1

‖(t−r)Q‖k
k! ≤ e|t−r|·‖Q‖ − 1,

which shows the continuity.

1.2. Quantum Markov semi-groups. We shall introduce here the definition of a quantum Markov
semi-group on a von Neumann algebra. For a more precise introduction to this topic we refer to the
preliminaries.

1.2.1. Definition. A von Neumann algebra N is a strongly closed ∗-subalgebra of the bounded operators
B(H) on some complex Hilbert space H, with IdH ∈ N . We consider von Neumann algebras that are
finite, which means that every isometry in N is a unitary. For such algebras there exists a normal faithful
trace τ on N . A quantum Markov semi-group on N is then defined a family (Φt)t≥0 of maps Φt : N → N
such that

(1) We have Φ0 = IdN .
(2) For t, s ≥ 0 we have ΦtΦs = Φt+s.
(3) For x ∈ N he map t 7→ Φt(x) from [0,∞)→ N is continuous in the strong topology of N .
(4) For t ≥ 0 the map Φt is trace preserving, that is τ(Φt(x)) = τ(x) for x ∈ N .
(5) For t ≥ 0 the map Φt is unital completely positive.
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(6) For t ≥ 0 the map Φt is symmetric, that is τ(xΦt(y)) = τ(Φt(x)y) for all x, y ∈ N .

Before we examine this definition more closely, we show that the classical Markov semi-group (Pt)t≥0 that
we obtain from a continuous time (symmetric) Markov chain is in fact a quantum Markov semi-group.
Indeed, the family (Pt)t≥0 consists of linear maps on L∞(S, µ) and this space is actually a finite von
Neumann algebra. Moreover, a trace on L∞(S, µ) is given by τ(f) =

∫
S
fdλ. By what we have already

shown, it follows directly that the maps (Pt)t≥0 satisfy conditions (1),(2),(4) and (6). Property (3) also
follows from the continuity that we had already shown. For condition (5) we note that we already know
that the maps Pt are unital and positive. The notion of complete positivity is a condition that is even
stronger than positivity. However, since the von Neumann algebra L∞(S, µ) is abelian the notion of
complete positivity coincides with positivity, see [35, Theorem 3.9.]. We thus obtain that the semi-group
(Pt)t≥0 is in fact a quantum Markov semi-group.

We elaborate some more on the definition of a quantum Markov semi-group. First of all, we note that
the fact that Φt is trace preserving (condition (4)) will already follow from the fact that Φt is unital
and symmetric. The reason we still included this condition is because there are also notions of quantum
Markov semi-groups where the maps Φt are not assumed to be symmetric. Throughout this thesis we
will only consider the symmetrical case, however.

We note that it follows from condition (4) and (5) and from the Kadison-Schwarts inequality that for
x ∈ N we have

τ(Φt(x)∗Φt(x)) ≤ τ(Φt(x
∗x)) = τ(x∗x).(3)

The maps Φt can therefore be extended to bounded operators on the GNS-Hilbert space L2(N , τ). The
operators (Φt)t≥0 then form a C0-semi-group on L2(N , τ). For such semi-groups there is an unbounded
operator ∆ on L2(N , τ) that we call its generator. This operator is defined by

∆(x) = − lim
t↓0

Φt(x)− x
t

(4)

for those x where this limit exists. By the properties of Φt it moreover follows that ∆ positive. Informally
we shall sometimes write e−t∆ to denote the operator Φt. Also, we shall simply write Φt for both the
operator on N and that on L2(N , τ).

1.2.2. Applications in physics. The theory of quantum Markov semi-groups is a vast subject that orig-
inates in quantum mechanics. We give some context on how they appear in physics, for more on this
theory see [28, 34].

In quantum mechanics, a physical system is described by a (complex) Hilbert space H. The state of
the system is given by a certain unit vector ψt. This vector describes all relevant physical properties of
the system at time t and it changes over time according to the Schrodinger equation

i~
d

dt
ψt = H(t)ψt.(5)

Here ~ is a physical constant, and H(t) is a closed densely defined operator called the Hamiltonian
of the system. The operator corresponds to the total energy of the system. When this operator is
time-independent the solution to the Schrödinger equation is given by ψt = e−it~Hψ0. This shows the
appearance of a semi-group. For physical reasons the maps of the semi-groups must be positive. Moreover,
the need for the maps to be completely positive follows by combining multiple physical systems and
considering them as a single system, see [29].

At a given moment, one can execute a measurement to observe certain physical quantities of the
system, like for example the position, the momentum, or the spin of a particle. Such measurements
are described by self-adjoint operators called observables. The spectrum of such operator consists of all
possible outcomes that could be observed. Generally multiple outcomes are possible, in which case the
system is said to be in superposition. What precise outcome is measured is probabilistic.

Let us for example measure the position of a particle on a line at time t. This measurement corresponds
to some observable Q. The probability of observing a certain eigenvalue λ of Q is given by |〈Pλψt, ψt〉|2,
where Pλ is the projection to the eigenspace of Q corresponding to the eigenvalue λ. After we preformed
the measurement and found the particle’s position to be λ0, the state of the physical system immediately

changes to the state ψt+ =
Pλ0ψt√
〈Pλ0ψt,ψt〉

. At that moment the particles position is no longer in super-

position, as we have just measured its value. Directly preforming the same measurement again will not
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change the outcome. However, over time the state of the physical system will again change according to
the Schrödinger equation and one can obtain other outcomes for the measurements.

1.3. Examples of quantum Markov semi-groups. We have seen that the classical Markov semi-
groups are examples of quantum Markov semi-groups. There are also many other ways to build quan-
tum Markov semi-groups. A large variety of examples of quantum Markov semi-groups (Φt)t≥0 can be
constructed on group von Neumann algebras using conditionally negative definite functions. This con-
struction plays a central role in this thesis, and will be thoroughly discussed in section 5. At this point,
however, we shall show some other ways to build quantum Markov semi-groups, with the goal to better
illustrate the definition.

1.3.1. Trivial quantum Markov semi-group. For an arbitrary von Neumann algebra N with a trace τ we
can build a trivial quantum Markov semi-group by setting Φt = IdN for t ≥ 0. The generator of this
semi-group is the operator ∆ = 0.

1.3.2. Heat semi-group. We let T ⊆ C be the unit circle and consider the abelian von Neumann algebra
N = L∞(T) of bounded functions on the torus. We let the trace τ be given by integration. We then have
that the GNS-Hilbert space L2(N , τ) is just L2(T). An orthonormal basis for L2(T) is given by {ek}k∈Z
where ek : T → C is defined as ek(z) = zk. We can then define an unbounded operator ∆ on L2(T) as
∆(ek) = k2ek. This operator actually gives rise to a quantum Markov semi-group (Φt)t≥0 on L∞(T), by
setting (Φt)t≥0 := (e−t∆)t≥0.

1.3.3. Semi-group on matrix algebra Mat2(C). We shall now give an example of a quantum Markov semi-
group on a non-abelian von Neumann algebra. We denote N = Mat2(C) with the standard normalized
matrix trace τ = 1

2 tr. Then for t ≥ 0 we define the linear mapping Φt : N → N as

Φt(

(
a1,1 a1,2

a2,1 a2,2

)
) =

(
a1,1 e−ta1,2

e−ta2,1 a2,2

)
.(6)

These maps are clearly unital, and it can also be seen that these maps satisfy ΦtΦs = Φt+s for t, s ≥ 0.
Moreover, for A = (ai,j), B = (bi,j) ∈ Mat2(C) and t ≥ 0 a computation shows that tr(AΦt(B)) =
tr(Φt(A)B). The fact that the maps Φt are also completely positive is a little more technical, but this

follows from the fact that the matrix Mt =

(
1 e−t

e−t 1

)
for t ≥ 0 is positive. Namely, the mappings Φt

are actually Schur multipliers associated to the symbols Mt and these are completely positive (see [35,
Theorem 3.7] for details).

1.3.4. Example non-symmetric quantum Markov semi-group. We give an example of a family of maps
(Φt)t≥0 that form a non-symmetric quantum Markov semi-group, that is the maps lack the condition
(6) in the definition of a quantum Markov semi-group. Let N = Matn(C) with normalized matrix trace
τ = 1

n tr. For a self-adjoint matrix b ∈ Matn(C) we build maps Φt : N → N by defining

Φt(a) = e−itbaeitb.(7)

That these maps are completely positive can be checked from the definition (see also [35, Theorem
4.1] and concluding remarks). Furthermore, they are clearly unital and preserve trace as tr(Φt(a)) =
tr(e−itbaeitb) = tr(aeitbe−itb) = tr(a). These maps are generally not symmetric however. Thus the maps
(Φt)t≥0 generally do not form a quantum Markov semi-group in the way we define it, and we will not
study these.

1.4. The gradient-Sp property and its importance. For a quantum Markov semi-group and for
p ∈ [1,∞], the gradient-Sp property was introduced in [12] (see also [9] for the case p = 2). This property
will be the main study in this thesis. The gradient-Sp property of a semi-group (e−t∆)t≥0 is involved
with the question whether, for certain a, b ∈ N , the map Ψa,b given by

Ψa,b(x) = −1

2
(∆(axb) + a∆(x)b− a∆(xb)−∆(ax)b)(8)

is contained in the Schatten p-ideal Sp, when considered as a map on B(L2(N , τ)). We shall give the
precise definition of this property only later in section 3. We now only say something about why we
are interested in semi-groups that have this property. This is because, in the paper [12] it was shown
that the existence of a semi-group with this property (under some additional conditions) can be used
to obtain interesting results for the underlying von Neumann algebra, namely the Akemann-Ostrand
property (AO+), and strong solidity. These two properties have become a topic of interest and have
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been studied for several kinds of von Neumann algebras, see [3, 8, 9, 10, 12, 23, 32, 33, 37, 41]. The
two properties are quite technical, and will only be discussed in section 4. At this moment however,
it is important to highlight that for a von Neumann algebra N we are thus only interested in building
a single semi-group that has the gradient-Sp property. Namely, this will already give us, for the von
Neumann algebra N , the results that we are interested in. We also note that the trivial semi-group is
gradient-Sp for all p ∈ [1,∞], but we are not interested in this semi-group, as it does not satisfy some
additional conditions that we need to find the results for the algebra N . In particular, a condition is that
the generator ∆ needs to have compact resolvent.

1.5. Coxeter groups. Another topic that we introduce here are Coxeter groups. These groups play
a significant role in this thesis as they can be used to construct von Neumann algebras together with
quantum Markov semi-groups on these algebras. We shall give here an informal definition of these groups,
and show how these groups can be interpreted geometrically.

A Coxeter group, is a group W that is generated by some finite set S = {s1, ...sn}. The generators
are moreover assumed to satisfy certain Coxeter relations, which are relations of the form (sisj)

mi,j = e.
Here e represents the unit of W , and the quantity mi,j ∈ N ∪ {∞} is such that mi,j = 1 when i = j
and mi,j ≥ 2 otherwise. We note that the restriction mi,i = 1 implies that every generator has order 2.
Furthermore, we note that with the property mi,j = ∞ we mean that no relation of the form (sisj)

m

for m ≥ 1 exists. Another assumption that the Coxeter groups satisfy, is that the relations (sisj)
mi,j for

si, sj ∈ S, are the only non-trivial relations that we have for elements in the group. That is, we can only
apply algebraic manipulations that follow from these relations and the group axioms. A Coxeter group
is thus completely determined by the number of generators and the values mi,j .

Simple examples of Coxeter group are given by the Dihedral groups Dn, which represent the symme-
tries of regular n-sided polygons. For example the Dihedral group D3, which is visualized in fig. 1, is a
Coxeter group. This group is generated by the elements σ1, σ2 which are reflections in lines in the plane
that have an angle of π

3 . It can be seen that the element ρ = σ1σ2 is a rotation over an angle 2π
3 . The

elements σ1, σ2 thus satisfy (σ1σ2)3 = e. We thus obtain that D3 is a group that is generated by some
finite set S = {σ1, σ2} of elements that satisfy the relations σ1σ1 = σ2σ2 = (σ1σ2)3 = e. We moreover
note that all other relations between element in D3 follow from these relations. We thus have that D3

is a Coxeter group. We note moreover that for a Coxeter group the generating set S is not unique. We
could for example also have taken the set S = {σ1, σ1σ2σ1}.

Visualization of the dihedral group D3

σ1

σ2σ1σ2σ1

ρ

Figure 1. This is a visualization of the dihedral group D3, which consists of the sym-
metries of an equilateral triangle. The group is generated by the two reflections σ1 and
σ2. The element ρ = σ1σ2 is a rotation over an angle of 2π

3 . The set of all elements of

D3 is given by {e, ρ, ρ2, σ1, ρσ1, ρ
2σ1}, where e is the identity element.

The groups Dn for n ≥ 1 contain exactly 2n elements and are in particular finite. There are also
Coxeter groups that are infinite. An example of an infinite Coxeter group is given by the infinite di-
hedral group D∞. This is the group generated by the elements σ1, σ2 which are reflections in the
complex plane in the lines <(z) = 0 and <(z) = 1

2 respectively. These reflections satisfy no equa-
tion of the form (σ1σ2)n = e for any n ≥ 1. This can be seen as the element ρ = σ1σ2 sends an
integer k to ρ(k) = σ1(σ2(k)) = σ1(1 − k) = k − 1. The group D∞ then consists of the elements
D∞ = {ρk : k ∈ Z} ∪ {ρkσ1 : k ∈ Z} and every relation these elements satisfy, follows from the relation
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σ2
1 = σ2

2 = e and the group axioms. This shows that D∞ is also a Coxeter group.

We have up till now only considered Coxeter groups generated by two elements. In general a Coxeter
group may have more generators and can have a more complicated structure. We note that a Coxeter
group can also be infinite when all the values mi,j are finite. How to determine from the values (mi,j)i,j
whether the Coxeter group is finite is not trivial, but this has been characterized, see [20, Theorem
1.3.3]. In this thesis we are actually only really interested in infinite Coxeter groups W , as they give
rise to infinite dimensional von Neumann algebras L(W ). On these von Neumann algebras we can build
quantum Markov semi-groups using certain functions ψ : W → [0,∞). Of particular interest will be
the function ψ that is given by the minimal word length |w| of an element w ∈ W . That is, |w| is the
smallest integer k ≥ 0 such that we can write w = w1...wk with wi ∈ S.

1.6. Structure and outline of thesis. We summarize here what we do in each section of this thesis.
First, in section 2 we introduce notation, definitions and results that we will use throughout this

text. This includes theory on von Neumann algebras, completely positive maps, quantum Markov semi-
groups, bimodule structures, group von Neumann algebras, the Haagerup property, hyperbolic groups
and Coxeter groups. Throughout the thesis we will at some points also introduce new definitions when
needed.

In section 3 we shall introduce the gradient-Sp property defined in [12] that we will study in this thesis.
In this section we will also do some calculations that will later be useful. Also we give here a condition
that allows us to check more easily when a quantum Markov semi-group has the gradient-Sp property.

In section 4 we shall review some results from [12] that give some interesting implications for a von
Neumann algebra N , when a certain gradient-Sp quantum Markov semi-group exists. This shows why
we are interested in semi-groups that possess the gradient-Sp property.

In section 5, we shall show a method to construct von Neumann algebras and quantum Markov semi-
groups using certain discrete groups. In this thesis we shall mainly use the construction that we describe
here to build these semi-groups. In this section also some useful notation is introduced that makes it
easier to study the gradient-Sp property.

In section 6, we shall apply the construction from previous sections to Coxeter groups. We then obtain
a certain quantum Markov semi-group of which we study the gradient-Sp property. Here we obtain results
for what Coxeter systems our constructed semi-group is gradient-Sp.

In section 7, we adapt the method from section 6 and consider slightly different semi-groups. We then
obtain the results for what Coxeter groups our new semi-group is gradient-Sp.

In section 8, we extend our results from section 6 and section 7 to semi-groups on other von Neumann
algebras, namely Hecke-algebras.

In section 9, we consider multiple semi-groups, and try to relate the gradient-Sp property of certain
semi-groups to the gradient-Sq property of another semi-group.

In section 10, we discuss a method that allows, for certain von Neumann algebras N , to obtain the
results we are interested in without building a quantum Markov semi-group that is gradient-Sp, but with
some slightly different approach.

Last, in section 11 we summarize all the results that we obtained in this thesis and restate the main
theorems. Also we give some directions for future research.
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2. Preliminaries

In this section we shall introduce some definitions, known results, and establish some notations that
we shall use throughout this thesis. We assume that the reader is familiar with some basic theory on
operator algebras (for example see chapter (1)-(5) from [30]), and state additionally needed theory here.
Besides topics from operator theory we also introduce some group theoretical notions.

2.1. Von Neumann algebras, traces, GNS-representation, Schatten-p ideals. Throughout this
text we will always consider a finite a von Neumann algebras N equipped with a normal faithful finite
trace τ . We state these definitions here, together with some related notions.

2.1.1. von Neumann algebras. A von Neumann algebra N on a Hilbert space H (always taken over C)
is a ∗-subalgebra of the space of bounded operators B(H) that is closed in the strong operator topology
and contains the identity IdH . It holds true by [39, Corollary 1.13.3 and Theorem 1.16.7] that every von
Neumann algebra N is the dual of a Banach space. This Banach space is unique up to isomorphism,
and is called the predual of N . A factor on H is a von Neumann algebra N for which N ′ ∩ N = C IdH
(here N ′ := {a ∈ B(H) : ab = ba for b ∈ N} denotes the commutant of N ). We say that two projections
p, q ∈ N are Murray-von Neumann equivalent if there exists v ∈ N with p = v∗v and q = vv∗, and this
is written as p ∼ q. A projection q is called finite if q ∼ p ≤ q implies that p = q. If the unit 1 ∈ N is a
finite projection, then we also call N finite.

2.1.2. Traces. On a von Neumann algebra we consider a trace, which is a convex mapping τ : N+ → [0,∞]
with τ(0) = 0 such that τ(ab) = τ(ba) for all a, b ∈ N+. A trace is called finite if τ(a) < ∞ for all
a ∈ N+. If τ is finite we can uniquely extend τ to a positive linear functional on N , also denoted τ . This
positive linear functional is then moreover tracial, that is τ(ab) = τ(ba) for a, b ∈ N . A trace is called
normal if it preserves suprema of norm-bounded nets {xi}i∈I of self adjoint elements. It is called faithful
if τ(a) > 0 whenever a > 0. It is true that every finite factor N possesses a unique normal finite faithful
trace τ [43, Theorem V.2.6].

2.1.3. GNS-representation. For a von Neumann algebra N with a normal finite faithful trace τ we will
denote L2(N , τ), or simply L2(N ), for the GNS-Hilbert space. This is the Hilbert space completion of
N with the inner product 〈a, b〉τ = τ(b∗a). We will furthermore denote ‖ · ‖2,τ for the norm of L2(N , τ).
Also we will denote Ωτ for the cyclic vector in L2(N , τ) that implements the trace, which is given by
Ωτ = 1 ∈ N .

2.1.4. Schatten p-ideals. Given a Hilbert space H and p ∈ [1,∞) we will write Sp for the Schatten p-class,
which is an ideal in B(H), consisting of all a ∈ B(H) for which Tr(|a|p) < ∞. Here Tr is the trace on
B(H) defined by Tr(a) =

∑
i∈I〈aei, ei〉, where {ei}i∈I is an arbitrary orthonormal basis for H. This

definition of Tr is in fact independent of the chosen orthonormal basis. Furthermore we will write S∞ for
the ideal of all compact operators in B(H).

2.2. Tensor products, completely positive maps. Throughout this thesis, we shall use different
notions of tensor products. We give an overview of these different notions here. Also we introduce the
definition of completely positive maps.

2.2.1. Different notions of tensor products. For vector spaces V,W we shall write V ⊗alg W for the
algebraic tensor product (see [7, Definition 3.1.1]).

When H1, H2 are Hilbert spaces we will write H1⊗H2 to denote the Hilbert space completion of
H1 ⊗alg H2 w.r.t. the inner product given by 〈a⊗ b, c⊗ d〉 := 〈a, c〉〈b, d〉.

When A,B are algebras we will endow A⊗algB with the multiplication given by (a⊗b)(c⊗d) = ac⊗bd,
which makes A⊗alg B an algebra. When A,B are moreover C∗-algebras we can consider their universal
representations πA : A→ B(HA) and πB : B → B(HB). Then πA and πB are injective ∗-homomorphisms
and by [30, Theorem 6.3.3] these give rise to an injective ∗-homomorphism π : A⊗alg B → B(HA⊗HB).
This then gives us a C∗-norm ‖ · ‖min on A ⊗alg B given by ‖c‖min := ‖π(c)‖. This norm is called the
spatial C∗-norm. There may generally be multiple C∗-norms on A ⊗alg B, however it is the case that
‖c‖min ≤ ‖c‖ for any C∗-norm ‖ · ‖ on A ⊗alg B, see [30, Theorem 6.4.18]. Furthermore, a norm on
A⊗alg B can also be defined as

‖c‖max = max
ρ is a C∗-norm

ρ(c)

which is called the maximal C*-norm. We shall write A ⊗min B and A ⊗max B for the completions of
A⊗alg B w.r.t. the norms ‖ · ‖min and ‖ · ‖max respectively.
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2.2.2. Completely positive maps. In order to introduce the theory of quantum Markov semi-groups, we
must establish the definition of a completely positive map. A map ϕ : A → B between C∗-algebras is
called completely positive, or simply c.p, if for all n ≥ 1 the map ϕ(n) : A⊗minMn(C)→ B ⊗minMn(C)
given by ϕ(n)(a⊗ei,j) = ϕ(a)⊗ei,j is a positive map. We will moreover call ϕ unital completely positive, or
just u.c.p., if A and B are moreover unital and ϕ(1) = 1. These maps have some interesting properties.
As ϕ is in particular positive, we have that ϕ(a∗) = ϕ(a)∗ for a ∈ A. It also holds by the Kadison-
Schwartz inequality [35, Proposition 3.3] that for a u.c.p map we have that ϕ(a)∗ϕ(a) ≤ ϕ(a∗a) for all
a ∈ A. Furthermore, we have that ‖ϕ‖ ≤ 1, [35, Proposition 3.2].

2.3. Quantum Markov semi-group. Let N be a finite von Neumann algebra with a normal faithful
trace τ . A quantum Markov semi-group (Φt)t≥0 on the von Neumann algebra (N , τ) is then defined as
a family of unital completely positive maps Φt : N → N with the properties that

• We have Φ0 = IdN .
• For t, s ≥ 0 we have ΦtΦs = Φt+s.
• For x ∈ N the map [0,∞)→ N given t 7→ Φt(x) is continuous for the strong topology of N .
• For t ≥ 0 the map Φt is symmetric, that is τ(xΦt(y)) = τ(Φt(x)y) for x, y ∈ N .

We note here that the fact that Φt also preserves trace follows from the fact that it is unital and symmetric.
By the fact that Φt is u.c.p and preserves trace we have that

‖Φt(x)‖22,τ = τ(Φt(x)∗Φt(x)) ≤ τ(Φt(x
∗x)) = τ(x∗x) = ‖x‖22,τ(9)

which shows that Φt extends to a contractive map on L2(N , τ). This operator we will also denote by
Φt. By the fact that Φt is also symmetric we have that 〈Φt(x), y〉τ = 〈x,Φt(y)〉τ for all x, y ∈ N , which
shows by density of N in L2(N , τ) that Φt is self-adjoint as an operator in B(L2(N , τ)).

We show that the map [0,∞) → B(L2(N , τ)) given by t 7→ Φt is continuous for the strong operator
topology. Namely, for x ∈ L2(N , τ) we have that

‖Φt(x)− x‖22,τ = τ((Φt(x)− x)∗(Φt(x)− x))(10)

= τ(Φt(x
∗)Φt(x))− τ(Φt(x

∗)x)− τ(x∗Φt(x)) + τ(x∗x)(11)

= τ(x∗Φ2t(x))− τ(x∗Φt(x))− τ(x∗Φt(x)) + τ(x∗x).(12)

Now as t → Φt(x) is continuous for the strong topology of N , it is continuous for the weak topology.
This topology coincides on bounded sets in N with the σ-weak topology. Now since ‖Φt(x)‖ ≤ ‖x‖
for t ≥ 0 we obtain that t 7→ Φt(x) is σ-weakly continuous. This then means that limt↓0 τ(x∗Φt(x)) =
τ(x∗Φ0(x)) = τ(x∗x). This thus means that ‖Φt(x)− x‖2,τ → 0, which proves the claim.

The above conclusion actually says that the maps (Φt)t≥0 form a C0-semi-group on L2(N , τ). For such
semi-groups we can define a generator ∆ of the semi-group as follows. We define ∆ to be the unbounded
operator on L2(N , τ) that is given for x ∈ Dom(∆) by

∆(x) = − lim
t↓0

Φt(x)− x
t

(13)

where the limit is in the ‖·‖2,τ -norm. The domain Dom(∆) here is taken to be the set of all x in L2(N , τ)
for which this limit exists. As (Φt)t≥0 defines a C0-semi-group on B(L2(N , τ)) we have by [42, Theorem
2.2.7] that ∆ is closed and densely defined. It moreover holds by our properties of Φt that ∆(1) = 0 and
that ∆ is symmetric as for x, y ∈ Dom(∆)

〈∆(x), y〉τ = − lim
t↓0

1

t
〈Φt(x)− x, y〉τ(14)

= − lim
t↓0

1

t
〈x,Φt(y)− y〉τ(15)

= 〈x,∆(y)〉τ(16)
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holds. It is even the case that ∆ is positive as

〈∆(x), x〉τ = − lim
t↓0

1

t
〈Φt(x)− x, x〉τ(17)

= lim
t↓0

1

t
(τ(x∗x)− τ(x∗Φt(x)))(18)

= lim
t↓0

1

t

(
τ(x∗x)− τ(Φ t

2
(x∗)Φ t

2
(x))

)
(19)

≥ lim
t↓0

1

t

(
τ(x∗x)− τ(Φ t

2
(x∗x))

)
= 0.(20)

In this text we shall sometimes write (e−t∆)t≥0 to denote the semi-group (Φt)t≥0.

2.4. Bimodule structures. In order to understand the use of the gradient-Sp property we introduce the
notion of bimodules, which is needed in section 4 and section 10. Let A be an algebra. An A−A bimodule
is an Hilbert space H together with two unital ∗-homomorphisms πl : A→ B(H) and πr : Aop → B(H)
whose images commute. Here Aop stands for the opposite algebra. This algebra just equals A as vector
space and the element a ∈ A is written as aop to denote the element in Aop. The multiplication in A is de-
fined in reversed order. This is to say that the multiplication Aop×Aop → Aop is given by aop·bop = (b·a)op.
For a vector ξ ∈ H and for a, b ∈ A we shall simply write aξb to denote πl(a)πr(b

op)ξ = πr(b
op)πl(a)ξ.

We note that this notation is not ambiguous as (ab)ξ = πl(ab)ξ = πl(a)πl(b)ξ = πl(a)(bξ) = a(bξ) and
similarly ξ(ab) = πr((ab)

op)ξ = πr(b
opaop)ξ = πr(b

op)πr(a
op)ξ = πr(b

op)(ξa) = (ξa)b.

We note that when A is a C∗-algebra, then by [30, Theorem 6.3.7.] the ∗-homomorphisms πl and πr
actually induce a unique ∗-homomorphism π : A⊗maxA

op → B(H) that satisfies π(a⊗bop) = πl(a)πr(b
op)

for all a, b ∈ A.

When A is actually a von Neumann algebra, we will assume that the representations πl, πr are more-
over normal. We note that when (N , τ) is finite von Neumann algebra, then a N −N bimodule is given
by L2(N , τ). The ∗-homomorphisms πl : N → B(L2(N , τ)) and πr : N op → B(L2(N , τ)) are then
simply given by left and right multiplication, that is πl(a)b = ab and πr(a)b = ba for a, b ∈ N . The
mappings πl(a) and πr(a) extend uniquely to bounded mappings on L2(N , τ) as N is dense in L2(N , τ).
We will call L2(N , τ) the trivial N −N -bimodule. Another N −N bimodule is given by the Hilbert space
tensor product L2(N , τ)⊗L2(N , τ) . The ∗-homomorphisms πl, πr are then given by πl(a)(b⊗ c) = ab⊗ c
and πr(a)(b ⊗ c) = b ⊗ ca for b ⊗ c ∈ N ⊗ N . Again, these mappings extend to bounded maps on
L2(N , τ)⊗L2(N , τ). The tensor product L2(N , τ)⊗L2(N , τ) together with these bimodule actions we
will call the coarse bimodule.

Given an N − N bimodule H, a submodule of H is a closed subspace of H that is invariant for
the bimodule actions of N . Moreover, given two N − N bimodules H and K, we will say that K is

contained in H when K is isomorphic to a submodule H̃ of H. Here, with an isomorphism we mean an
isomorphism between Hilbert spaces that preserves the bimodule actions. We will moreover say that K
is quasi-contained in H if K is contained in the Hilbert space

⊕
i∈IHi for some index set I.

2.5. Haagerup property for von Neumann algebras. Let N be a finite von Neumann algebra with
a normal faithful finite trace τ . We say that (N , τ) has the Haagerup property whenever there exists a
net of completely positive maps θi : N → N for which τ ◦ θi ≤ τ , and θi is L2-compact, i.e. compact
as an operator on L2(N , τ), and such that θi → idL2(N ,τ) as i → ∞ in the point-ultraweak topology of

B(L2(N , τ)). In [24, Prop. 2.4] was shown that if τ, τ ′ are two normal faithful finite traces on N , and
if N has the Haagerup property w.r.t. τ , then it also has the Haagerup property w.r.t. τ ′. We thus do
not have to specify the trace. In [25, Theorem. 1] was shown that, if (N , τ) is a finite von Neumann
algebra whose predual is separable, then if N has the Haagerup property we can find a quantum Markov
semi-group (Φt)t≥0 on N for which Φt is a compact operator on L2(N , τ) for t > 0.

2.6. Group von Neumann algebras. A way of building von Neumann algebras with a trace τ is by
using a topological group Γ. More specifically, we let Γ be a discrete group.

We shall denote C[Γ] for the group ring of Γ. This is the vector space over C with linear basis {g ∈ Γ}.
Elements of C[Γ] can thus be written in the form

∑
g∈Γ αg · g, where αg ∈ C is non-zero for only finitely

many g ∈ Γ. The space C[Γ] is in fact a ∗-algebra by defining multiplication of the basis vectors in the
natural way using the multiplication in Γ, and by defining the convolution as g∗ = g−1.
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For s ∈ Γ we can define operators λs ∈ B(`2(Γ)) as (λsf)(t) = f(s−1t). These operators satisfy the
equations λsλr = λsr and λsδt = δst, where we denote δt = χ{t}. Now this extends as λ : C[Γ] →
B(`2(Γ)) linearly to an injective ∗-homomorphism, called the left regular representation. Therefore we
can, and generally will regard C[Γ] as a subset of B(`2(Γ)), and denote its elements as

∑
g∈Γ αgλg. The

representation also induces the norm ‖a‖r := ‖λ(a)‖ on C[Γ]. The norm closure of C[Γ] w.r.t. this norm
is denoted C∗λ(Γ) and will also be regarded as a subalgebra of B(`2(Γ)). The C∗-algebra C∗r (Γ) is called
the reduced C∗-algebra of Γ. We can also construct the von Neumann Algebra L(Γ) := C∗λ(Γ)′′, which is
called the group von Neumann algebra of Γ. The canonical trace on L(Γ) is given by τ(x) = 〈xδe, δe〉. By
[43, Proposition 7.9] we have that for a countable (discrete) group Γ that the group von Neumann algebra
if finite. Also, when Γ is countable we have that the predual of L(Γ) is separable. Indeed, its predual is
isomorphic to a quotient of the trace class operators L1(`2(Γ)), see [30, Theorem 4.2.9]. Now as the finite
rank operators F (`2(Γ)) are dense in L1(`2(Γ)), and as F (`2(Γ)) is separable (since `2(Γ) is separable),
we obtain that the predual of L1(`2(Γ)) is separable. Therefore, the predual of L(Γ) is separable. Hence,
whenever L(Γ) has the Haagerup property, we can construct a quantum Markov semi-group.

2.7. Haagerup property for groups. To ensure that the group von Neumman algebra L(Γ) has the
Haagerup property, we must have that Γ possesses the Haagerup property for groups. We will give a
definition of this property for a discrete group Γ.

2.7.1. Positive definite and conditionally negative definite. A map k : Γ× Γ→ C, also called a kernel, is
called positive definite, if for n ≥ 1, s1, ..., sn ∈ Γ and c1, ..., cn ∈ C we have

∑n
i=1

∑n
j=1 cicjk(si, sj) ≥ 0.

The map k is called conditionally negative definite if it takes values in [0,∞), if k(s, s) = 0 for s ∈ Γ
and if for n ≥ 1, s1, ..., sn ∈ Γ and c1, ..., cn ∈ C with

∑n
i=1 ci = 0 we have

∑n
i=1

∑n
j=1 cicjk(si, sj) ≤ 0.

There are also other characterizations of positive definite and conditionally negative definite kernels that
are useful. Namely, a kernel is positive definite if and only if we can find a Hilbert space H and a map
f : Γ → H such that k(r, s) = 〈f(r), f(s)〉 for all r, s ∈ Γ , see [2, p. C.1.4]. Similarly, a kernel is
conditionally negative definite if and only if we can find a Hilbert space H and a map f : Γ → H such
that k(r, s) = ‖f(r)− f(s)‖22 for all r, s ∈ Γ, see [2, p. C.2.3]. A connection between positive definite and
conditionally negative definite kernels is given by Schoenberg’s theorem, [2, Theorem C.3.2.], that says
that a kernel k satisfying k(r, r) = 0 and k(r, s) = k(s, r) for all r, s ∈ Γ is conditionally negative definite
if and only if we have that for t ≥ 0 that the kernel (r, s) 7→ e−tk(r,s) is positive definite.

A function ϕ : Γ → C is called positive definite if the kernel given by (s, t) 7→ ϕ(t−1s) is positive
definite. Likewise a function ψ : Γ → [0,∞] is called conditionally negative definite if the kernel given
by (s, t) 7→ ψ(t−1s) is conditionally negative definite. We call ψ furthermore proper whenever {s ∈ Γ :
ψ(s) < n} is finite for all n ≥ 1.

2.7.2. Haagerup property. For a discrete group Γ the Haagerup property if now defined as the property
that there exists a sequence (ϕn)n≥1 of positive definite functions on Γ such that ϕn(e) = 1, such that ϕn
vanishes at infinity, and such that ϕn → 1 point-wise. We note that if there exists a proper, conditionally
negative definite function ψ on Γ, then we can define the functions ϕt(s) := e−tψ(s) for t > 0 so that the
sequence of functions (ϕ 1

n
)n≥1 satisfy these conditions. Furthermore, if Γ has the Haagerup property,

then a proper, conditionally negative definite function actually always exists, which follows from [7, Th.
12.2.4]. It holds true that the group von Neumann algebra L(Γ) possesses the Haagerup property if and
only if the group Γ possesses the Haagerup property, see[7, Th. 12.2.9.]. We refer to [14] for additional
theory on the Haagerup property for groups.

2.8. Cayley graph, hyperbolic groups. We shall give background to some group theoretic notions
that we shall use.

2.8.1. Cayley Graph. Let Γ be a group that is generated by some finite set S. For such group we can
define the Cayley graph of Γ. This is the simple graph CayleyS(Γ) with vertex set Γ, in which two distinct
vertices u,w ∈ Γ share an edge if and only if uw−1 ∈ S ∪ S−1. This condition basically says that two
vertices are connected if and only if they differ by just one element of S. Since S generates whole of Γ,
we have that the graph CayleyS(Γ) is actually connected. We can define a distance d on CayleyS(Γ) by
defining d(u, v) to be the length of a shortest path from u to v. This makes CayleyS(Γ) a metric space.
We shall call a shortest path between u and v a geodesic. Such geodesic we can just denote by the set
of vertices that the path traverses. Also, for δ > 0 and a subset U ⊆ Γ we shall write Bδ(U) to be the
δ-neighborhood of U , that is we set Bδ(U) := {g ∈ Γ : d(g, U) < δ}.
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2.8.2. Hyperbolicity. The Cayley graph of a finitely generated group can be used to define the notion
of hyperbolicity. That is, let Γ be a group that is finitely generated by some set S. The group Γ is
called hyperbolic if there exists δ > 0 such that for all u, v, w ∈ Γ and for all geodesics P1, P2,P3 in
CayleyS(Γ) between the vertices u and v, between v and w and between w and u respectively, we have
that P1 ⊆ Bδ(P2 ∪ P3) and P2 ⊆ Bδ(P1 ∪ P3) and P3 ⊆ Bδ(P1 ∪ P3). We note that the Cayley graph of
Γ depends on the generating set S, but that the definition of hyperbolicity is in fact independent of the
choice of the generating set, see [18, Theorem 12.5.3].

2.9. Coxeter groups. In this master thesis we will specifically consider group von Neumann algebras
of Coxeter groups. These groups have the Haagerup property, and we can therefore consider a quantum
Markov semi-group on its group von Neumann algebra of which we can study the gradient-Sp property.

A Coxeter group W is a group that is generated by some finite set S = {s1, .., sn} that satisfy the
relations (sisj)

mi,j = e for some elements (mi,j)1≤i,j≤n with mi,i = 1 and mi,j ∈ {2, 3, ..}∪{∞} for i 6= j.
Here mi,j = ∞ means that the elements si and sj satisfy no relation at all. Furthermore, the elements
in W must be equal if and only if they can be shown to be equal by using these relations and the group
axioms. We note here that in general, for a Coxeter group, the set S is not unique. Furthermore, we note
that (sisj)

mi,j = e implies that (sjsi)
mi,j = sisi(sjsi)

mi,j = si(sisj)
mi,jsi = s2

i = e. Therefore we can al-
ways assume that mi,j = mj,i. Furthermore, we note that mi,j = 2 implies that sisj = (sjsi)

2sisj = sjsi,
i.e. the elements si and sj commute. If all coefficients mi,j with i 6= j are either 2 or∞, then the Coxeter
group is called right-angled.

Let S be a finite set and let M = (mi,j)1≤i,j≤n be a symmetric matrix with diagonal elements equal to
1, and off-diagonal elements in the set {2, 3, ..} ∪ {∞}. We will write W = 〈S|M〉 for the Coxeter group
generated by the finite set S subject to the relations (sisj)

mi,j = e, and such that all other relations follow
from these and from the group axioms. We will moreover call 〈S|M〉 a Coxeter system, to empathize that
we have specified the set S. Any element w ∈ W = 〈S|M〉 can be written as w = w1w2....wk for some
k ∈ N and wi ∈ S. We shall therefore call elements w ∈ W words. We denote these words in bold to
distinct them from the letters (i.e. generators in S). Note that a representation of w is not unique as we
can for example add identities as e or (sisj)

mi,j in the representation. We will define the word length of
a word w ∈W w.r.t. the generator set S as the minimal k ≥ 0 for which we can write w = w1....wk with
wi ∈ S. We denote this as |w|S , or simply as |w| when the generator set S is understood. We will call a
representation w = w1....wk with k = |w| reduced. Such reduced representation thus always exists, but

is in general not unique. For example, if mi,j is odd then sj(sisj)
mi,j−1

2 = si(sjsi)
mi,j−1

2 are two distinct
reduced representations of the same word. Furthermore, we shall more generally call a representation

w = w1....wk reduced if |w| =
∑k
i=1 |wi|.

2.9.1. Coxeter groups have Haagerup property. All Coxeter groups satisfy the Haagerup property. Namely,
on a Coxeter group W = 〈S|M〉 we can build a proper, conditionally negative function ψS : W → [0,∞)
by defining ψS(w) = |w|, i.e. ψS is the word length. This function is conditionally negative by [4], and
moreover proper because |{w ∈ W : ψS(w) < n}| ≤ |S|n for n ≥ 1. This shows that the Coxeter group
W possesses the Haagerup property.

2.9.2. Word hyperbolic Coxeter groups. For a Coxeter group it is custom to talk about word hyperbolicity
instead of hyperbolicity. For a right-angled Coxeter group, the property that W is word hyperbolic is
equivalent with the statement that W does not contain Z2 as a subgroup, see [18, Corollary 12.6.3.]

2.9.3. Graph encoding information of Coxeter group. To a Coxeter system W = 〈S|M〉 we can associate
a certain graph that encodes the information of the Coxeter group. We shall denote GraphS(W ) for the
complete simple graph with vertex set S. For distinct elements si, sj ∈ S we moreover label the edge
{si, sj} with the quantity M(si, sj) = M(sj , si). This graph is closely related to the Coxeter-Dynkin
diagram of W , but in those diagrams the edges with label 2 have been omitted. For our purposes it is
better to include those edges as well. We want to empathize that the graph GraphS(W ) generally depends
on the set S of generators. For example, consider the Dihedral group D6 = 〈S|M〉 where S = {s1, s2}
and M(s1, s2) = 6. We can choose an alternative generating set S̃ as S̃ = {σ1, σ2, ρ} where σ1 = s1,
σ2 = s2s1s2 and ρ = (s1s2)3. These elements are of order 2, and generate the entire group. Furthermore
they satisfy the relations M(σ1, σ2) = 3 and M(σ1, ρ) = M(σ2, ρ) = 2. Furthermore, all relations
between the elements follow from these relations. Now it is clear that the labeled graph GraphS(D6) is
not isomorphic to GraphS̃(D6) as the graphs do not even have the same number of vertexes.
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In the case of right-angled Coxeter groups, we have by [38] that for arbitrary Coxeter generator sets

S, S̃ the graphs GraphS(W ) and GraphS̃(W ) are isomorphic (preserving labels).

2.9.4. Geometric interpretation of Coxeter groups. An intuitive, geometric way of looking at Coxeter
groups is by considering them as reflection groups. Namely, for a Coxeter system W = 〈S|M〉 we
can define the bilinear form B : R|S| × R|S| → R as B(ei, ej) = − cos( π

mi,j
), and we can define the

mappings σi on R|S| as σi(v) = v − 2B(v, ei)ei. Then σi(ei) = −ei and σi leaves the linear subspace
Hi := {v ∈ R|S| : B(v, ei) = 0} invariant. Thus σi corresponds to some reflection in a linear subspace.
Note that we have ei ⊥ Hi if and only if mi,j = 2 for all j with i 6= j.

The group generated by the mappings {σi : i = 1, .., |S|} is isomorphic to the Coxeter group W . It is
clear that the relations σiσi = e holds, since σi is a reflection. When 1 < mi,j <∞ it can also be shown
that the relationship (σiσj)

mi,j = I holds. Namely, it can be seen that σiσj leaves the subspaces Hi ∩Hj

and eiR + ejR invariant. On Hi ∩ Hj it acts as identity and a calculation shows that on eiR + ejR it
acts, w.r.t the basis (ei, ej) as the matrix

σiσj =

(
4B(ei, ej)

2 − 1 2B(ei, ej)
−2B(ei, ej) −1

)
(21)

=

(
4 cos( π

mi,j
)2 − 1 −2 cos( π

mi,j
)

2 cos( π
mi,j

) −1

)
.(22)

We can calculate its eigenvalues, which are e
2πi
mi,j and e

− 2πi
mi,j , which are distinct. We can thus diagonalize

σiσj , and we see that we get (σiσj)
mi,j = I.

For the case mi,j =∞ it can be seen that the vector v = ei + ej is invariant under both σi and σj and
that σiσj(ei) = σi(ei + 2ej) = σi(2v − ei) = 2v + ei. Therefore (σiσj)

m(ei) = 2mv + ej for m ≥ 1 and
thus no relation of the form (σiσj)

m = I exists.
In the above, we have used here some notation as in [27, Section 5.3]. In [27, Section 5.4] it is also

proven that the homomorphism from W → GL(V ) given for generators as si 7→ σi, is actually injective.
Hence W is indeed isomorphic to the group generated by {σi : i = 1, .., |S|}.
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3. The gradient-Sp property

In this section we shall introduce what the gradient-Sp property from [12] is precisely. In section 3.1
we give the precise definition of this property. There we also check whether the gradient-Sp property
holds for some example. Thereafter, in section 3.2 we make some calculations that are useful throughout
the rest of this thesis. Moreover, there we also give a sufficient condition for the gradient-Sp property,
that is useful for showing that a semi-group has this property.

3.1. Definition of gradient-Sp property. For p ∈ [1,∞] we state the definition of the gradient-Sp
property from [12].

Definition 3.1. Let (Φt)t≥0 = (e−t∆)t≥0 be a quantum Markov semi-group on a finite von Neumann
algebra (N , τ). Let A be a σ-weakly dense ∗-subalgebra of N for which AΩτ ⊆ Dom(∆) and ∆(AΩτ ) ⊆
AΩτ and so that furthermore, for a ∈ A the map t 7→ Φt(a) is norm continuous. Fix p ∈ [1,∞]. The
quantum Markov semi-group (Φt)t≥0 is called gradient-Sp if for all a, b ∈ A the map Ψa,b : N → N given
by

Ψa,b(x) = −1

2
(∆(axb) + a∆(x)b−∆(ax)b− a∆(xb))(23)

extends as xΩτ 7→ Ψa,b(x)Ωτ to a bounded map on L2(N , τ) that is moreover in the Schatten p-class Sp.

We recall that for a Hilbert space H, the Schatten p-class Sp for p ∈ [1,∞) is defined as the ideal in
B(H) of all elements a ∈ B(H) that satisfy Tr(|a|p) < ∞. Here Tr denotes the trace on B(H) that is
given by Tr(a) =

∑
i∈I〈aei, ei〉, where {ei}i∈I is an (arbitrary) orthonormal basis for H. Furthermore,

S∞ is defined as the ideal of all compact operators.
We note that the gradient-Sp property generally depends on the choice of the algebra A. Moreover,

we note that an algebra A that satisfies all the stated conditions generally does not exist. However, in
the cases that we consider there is an obvious candidate for the algebra A, and we shall only consider

the gradient-Sp property w.r.t this algebra. We shall furthermore sometimes write the map Ψa,b as Ψa,b
∆

in order to clarify what semi-group (e−t∆)t≥0 we consider.

3.1.1. Example heat semi-group. We consider again the example of the heat semi-group from the in-
troduction. This is the quantum Markov semi-group (Φt)t≥0 = (e−t∆)t≥0 on L∞(T) with generator
∆(ek) = k2ek. We are interested in whether this semi-group is gradient-Sp for some p ∈ [1,∞]. We shall
check whether this is the case w.r.t. the dense ∗-subalgebra A := Span{ek : k ∈ Z} which satisfies all
stated properties. We see that for l,m ∈ Z we have

Ψel,em(ek) = −1

2
(∆(el+k+m) + el∆(ek)em −∆(el+k)em − el∆(ek+m))(24)

= −1

2
((l + k +m)2 + k2 − (l + k)2 − (k +m)2)el+k+m(25)

= −lmel+k+m.(26)

This shows that the map Ψel,em is not compact on L2(T) when l,m 6= 0. Therefore, for l,m 6= 0 the
map Ψel,em is not contained in the Schatten-p class Sp. We thus find that the semi-groups (Φt)t≥0 is not
gradient-Sp for any p ∈ [1,∞].

3.2. Examination of gradient-Sp property. We shall have a closer look at the gradient-Sp property,
by examining the map Ψa,b. We start by calculating the adjoint of the map Ψa,b, as an operator on
L2(N ). We then also calculate for x ∈ N the adjoint of the element Ψa,b(x) of N . These calculations
are used at later points in this thesis. After these calculations we prove a useful lemma that allows us to
more easily check whether a quantum Markov semi-group is gradient-Sp for some p ∈ [1,∞].
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3.2.1. Adjoint of Ψa,b and adjoint of Ψa,b(x). Let a, b ∈ A and x, y ∈ L2(N ). Since ∆ is self-adjoint we
have that

〈Ψa,b(x), y〉 = −1

2
(〈∆(axb), y〉+ 〈a∆(x)b, y〉 − 〈∆(ax)b, y〉 − 〈a∆(xb), y〉)(27)

= −1

2
(〈axb,∆(y)〉+ 〈∆(x), a∗yb∗〉 − 〈∆(ax), yb∗〉 − 〈∆(xb), a∗y〉)(28)

= −1

2
(〈x, a∗∆(y)b∗〉+ 〈x,∆(a∗yb∗)〉 − 〈ax,∆(yb∗)〉 − 〈xb,∆(a∗y)〉)(29)

= −1

2
(〈x, a∗∆(y)b∗〉+ 〈x,∆(a∗yb∗)〉 − 〈x, a∗∆(yb∗)〉 − 〈x,∆(a∗y)b∗〉)(30)

= 〈x,Ψa∗,b∗(y)〉(31)

which shows that (Ψa,b)∗ = Ψa∗,b∗ .
Furthermore, for a, b ∈ A and x ∈ N we have

(Ψa,b(x))∗ = −1

2
(∆(axb) + a∆(x)b− a∆(xb)−∆(ax)b)∗(32)

= −1

2
(∆(b∗x∗a∗) + b∗∆(x∗)a∗ −∆(b∗x∗)a∗ − b∆(x∗a∗)(33)

= Ψb∗,a∗(x∗).(34)

3.2.2. Condition to check gradient-Sp property. We shall show in the following lemma that, to check the
gradient-Sp property, it is sufficient to show that Ψu,w is in Sp for all pairs u,w ∈ A0, where A0 ⊆ A is
some self-adjoint subset that generates the entire algebra A.

Lemma 3.2 (Condition that implies Gradient-Sp property). Let (N , τ) be a finite von Neumann algebra
and let (Φt)t≥0 be a quantum Markov semi-group on N . Furthermore, let ∆ be the generator of (Φt)t≥0

and let A ⊆ N be an appropriate subalgebra of N to which we check the gradient-Sp property. Let
p ∈ [1,∞]. Then (Φt)t≥0 is gradient-Sp if and only if there is a self-adjoint subset A0 ⊆ A of elements
that generates A, such that for all pairs of generators (si, sj) ∈ A2

0 we have that Ψsi,sj is in Sp.

Proof. The only if statement follows directly from the definition of gradient-Sp. We will prove the other
direction. For an element a ∈ A denote |a|A0

for the minimal number k of elements s1, ..., sk in A0

such that a = s1...sk. If such k does not exist, set |a|A0 = ∞. We note that, since A0 is self-adjoint,

every element in A can be written as finite sum a =
∑k
i=1 ciai for some scalars ci ∈ C and element

ai ∈ A with |ai|A0 < ∞. Now if u =
∑k1
i=1 ciui and w =

∑k2
i=1 diwi for some integers k1, k2 ∈ N,

scalars ci, di ∈ C and elements ui, wi ∈ A with |ui|A0
, |wi|A0

< ∞, then we have for v ∈ A that

Ψu,w(v) =
∑k1
i=1

∑k2
j=1 cidjΨ

ui,wj (v). Thus, if all operators Ψui,wj are in Sp, then so is Ψu,w. Now, we

prove for u,w ∈ A with |u|A0
, |w|A0

< ∞ that Ψu,w is in Sp. Namely, we prove by induction for n ≥ 1
that Ψu,w is in Sp for all u,w ∈ A with |u|A0

, |w|A0
≤ n.

Before we do the induction, note that for u1, u2, v, w ∈ A we have

Ψu1u2,w(v) = ∆(u1u2vw) + u1u2∆(v)w −∆(u1u2v)w − u1u2∆(vw)(35)

= (∆(u1u2vw) + u1∆(u2v)w −∆(u1u2v)w − u1∆(u2vw))(36)

+ u1 (∆(u2vw) + u2∆(v)w −∆(u2v)w − u2∆(vw))(37)

= Ψu1,w(u2v) + u1Ψu2,w(v)(38)

and likewise for u, v, w1, w2 ∈ A we have

Ψu,w2w1(v) = Ψu,w1(vw2) + Ψu,w2(v)w1.(39)

We now do the induction. First, by the assumption the statement holds for n = 1. Now, suppose that
the statement holds for some n ≥ 1. We show that the statement also holds for n+1. Namely, let u,w ∈ A
with |u|A0

, |w|A0
≤ n+1. Then there are elements u1, u2, w1, w2 ∈ A with |u1|A0

, |u2|A0
, |w1|A0

, |w2|A0
≤

n and u = u1u2 and w = w2w1. Now

Ψu,w(v) = Ψu1u2,w(v)(40)

= Ψu1,w(u2v) + u1Ψu2,w(v)(41)

= Ψu1,w2w1(u2v) + u1Ψu2,w2w1(v)(42)

= (Ψu1,w1(u2vw2) + Ψu1,w2(u2v)w1) + u1 (Ψu2,w1(vw2) + Ψu2,w2(v)w1) .(43)
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Now, by the induction hypothesis we have that Ψu1,w1 ,Ψu1,w2 ,Ψu2,w1 ,Ψu2,w2 are all in Sp. Now since
the Sp class forms an ideal in B(L2(N , τ)) and since for i = 1, 2 the left and right multiplication v → uiv
respectively v → vwi are bounded operators, we have that the four operators in eq. (43) are all in Sp.
Thus also their sum, Ψu,w, is in Sp. This finishes the induction and thus shows that the associated
semi-group is gradient-Sp. �
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4. Implications of the gradient-Sp property for the von Neumann algebra

We shall in this section elaborate on why we are interested in quantum Markov semi-groups that
possess the gradient-Sp property for certain p ∈ [1,∞]. In short, this is because for a given von Neumann
algebra N , a quantum Markov semi-group (Φt)t≥0 on N that possesses this property can (under some
additional conditions) be used to obtain interesting properties for the algebra N . Therefore, for a von
Neumann algebra N , we are interested in the existence of a quantum Markov semi-group that has the
gradient-Sp property for certain p ∈ [1,∞] (and satisfies some additional conditions).

In section 4.1 we shall show a direct consequence of the gradient-Sp property that was shown in [12,
Section 3]. This consequence is the starting point for other results that follow from the gradient-Sp
property. To understand these other results we give in section 4.2 some additional background. We finish
with section 4.3, where we state the results from [12, Section 5] that follow from the gradient-Sp property
for the von Neumann algebra.

4.1. Quasi-containment of gradient tensor products in coarse bimodule. We shall give here
a direct consequence of the gradient-Sp property. For this we first construct, using a quantum Markov
semi-group, a certain bimodule called the gradient tensor product. We then give the proofs as in [12] that
show the quasi-containment of this bimodule in the coarse bimodule, under assumption of the gradient-Sp
property for p = 2. Also, some weaker results hold for other p. The quasi-containment that is obtained
is the starting point for other results that follow from this.

4.1.1. Construction of the gradient tensor product. We let (N , τ) be a finite von Neumann algebra, and
we let (Φt)t≥0 = (e−t∆)t≥0 be a quantum Markov semi-group on N . We will fix an appropriate dense
∗-subalgebra A ⊆ N as in the definition of the gradient-Sp property (if such subalgebra exists). We shall
moreover denote A for the C∗-completion of A.

A gradient form Γ : A×A → A is defined as

Γ(x, y) =
1

2
(∆(y)∗x+ y∗∆(x)−∆(y∗x)).(44)

This map can be regarded as an A-valued inner product. Now for an A−A bimodule H, we can consider
the (possibly degenerate) inner product on A⊗alg H that is given by

〈x⊗ ξ, y ⊗ η〉 = 〈Γ(x, y)ξ, η〉 x, y ∈ A and ξ, η ∈ H.(45)

The Hilbert space obtained by quotienting out the degenerate part and taking the completion is then
called the gradient tensor product and denoted as H∇. The element x ⊗ ξ in H∇ will be denoted as
x⊗∇ ξ. On H we can define an A−A bimodule action as

a · (x⊗∇ ξ) = ax⊗∇ ξ − a⊗∇ xξ(46)

(x⊗∇ ξ) · a = x⊗∇ ξa.(47)

By [17] this moreover extends to an A − A bimodule. The fact that the right-action is well-defined is
clear. We will show that the left-action is also well defined, by showing that the corresponding map
πl : A → B(H∇) is a unital ∗-homomorphism. First of all, since ∆(1) = 0 we have that Γ(1, 1) = 0 and
hence that ‖1⊗∇ ξ‖2 = 0 for ξ ∈ H. This shows that πl(1)(x⊗∇ ξ) = x⊗∇ ξ, so πl is unital. For a, b ∈ A
and x ∈ A and ξ ∈ H we have

πl(a)πl(b)(x⊗∇ ξ) = πl(a)bx⊗∇ ξ − πl(a)b⊗∇ xξ(48)

= (abx⊗∇ ξ − a⊗∇ bxξ)− (ab⊗∇ xξ − a⊗∇ bxξ)(49)

= abx⊗∇ ξ − ab⊗∇ xξ(50)

= πl(ab)(x⊗∇ ξ).(51)



20

This shows that πl(a)πl(b) = πl(ab). Furthermore, for a, x, y ∈ A and ξ, η ∈ H we have

〈πl(a)(x⊗∇ ξ), y ⊗∇ η〉 = 〈ax⊗∇ ξ − a⊗∇ xξ, z ⊗∇ η〉(52)

= 〈Γ(ax, y)ξ − Γ(a, y)xξ, η〉(53)

=
1

2
〈(∆(y)∗ax+ y∗∆(ax)−∆(y∗ax))ξ, η〉(54)

− 1

2
〈((∆(y)∗a+ y∗∆(a)−∆(y∗a))xξ, η〉(55)

=
1

2
〈(y∗∆(ax)−∆(y∗ax) + ∆(y∗a)x− y∗∆(a)y∗∆(a)x)ξ, η〉(56)

= 〈Ψy∗,x(a)ξ, η〉.(57)

From this it follows that also

〈x⊗∇ ξ, πl(a)(y ⊗∇ η)〉 = 〈πl(a)(y ⊗∇ η), x⊗∇ ξ〉 = 〈Ψx∗,y(a)η, ξ〉 = 〈ξ,Ψx∗,y(a)η〉.(58)

Now by the calculations from section 3.2.1 we have that (Ψy∗,x(a))∗ = Ψx∗,y(a∗), from which it now
follows that πl(a)∗ = πl(a

∗). This shows that πl is a ∗-homomorphism, and that the bimodule action is
well-defined.

4.1.2. Proving the quasi-containment in the coarse bimodule. We now turn to prove the quasi-containment
of the gradient tensor product in the coarse bimodule. For this we state the following lemma from [12,
Lemma 2.2.] with proof. This lemma gives a condition for quasi-containment of bimodules that is useful.

Lemma 4.1. Let N be a von Neumann algebra and A a σ-weakly dense ∗-subalgebra of N with norm
closure A. Let H be an A − A bimodule and let K be an N − N bimodule. Suppose that there exists a
dense subspace D ⊆ H such that for every ξ ∈ D there exists an η ∈ Ksuch that for every x, y ∈ A we
have

〈xξy, ξ〉 = 〈xηy, η〉.(59)

Then for every ξ ∈ D the sub-bimodule Hξ := AξA of H is contained in K as A − A bimodules.
Consequently H is quasi-contained in K.

Proof. We let H and K be as stated and assume the dense subspace D exists. Let ξ ∈ D. Then by
assumption there exists η ∈ K such that 〈xξy, ξ〉 = 〈xηy, η〉 for all x, y ∈ A. Now, let a1, b1, a2, b2 ∈ A
and suppose that a1ξb1 = a2ξb2. Then we have for c, d ∈ A that

〈c(a1ηb1 − a2ηb2)d, η〉 = 〈ca1ηb1d− ca2ηb2d, η〉 = 〈ca1ξb1d− ca2ξb2d, ξ〉 = 0(60)

This means that 〈a1ηb1 − a2ηb2, c
∗ηd∗〉 = 0 and hence that a1ηb1 − a2ηb2 ⊥ AηA. However, this means

that a1ηb1 − a2ηb2 = 0. This calculation have showed us that we can define a map U : AξA → K by
mapping aξb 7→ aηb. We moreover note that ‖U(aξb)‖22 = 〈a∗aηbb∗, η〉 = 〈a∗aξbb∗, ξ〉 = ‖aξb‖22. This
shows that U extends to an isometry on Hξ. It is moreover clear that U(ahb) = aU(h)b for every h ∈ Hξ

and a, b ∈ A, and this extends by continuity to all a, b ∈ A.

Let Σ be the set of all families of unit vectors (ξi)i in H such that each is a sub A − A bimodule
of K and so that all spaces Hξi are orthogonal with each other. We can then by Zorn’s lemma take a
maximal element (ξi)i in Σ. Let Pi be the orthogonal projection onto Hξi . Suppose by contradiction
that P :=

∑
i Pi 6= IdH . We note that P commutes with the A − A bimodule action as the bimodule

actions keeps the subspaces Hξi invariant.
Let ξ ∈ D be such that ξ0 := (I − P )ξ 6= 0 and fix η ∈ K such that 〈aξb, ξ〉 = 〈aηb, η〉 for all a, b ∈ A.

We now have for finitely many ai, bi ∈ A that

‖
∑
i

aiξ0bi‖ = ‖(I − P )
∑
i

aiξbi‖ ≤ ‖
∑
i

aiξbi‖ = ‖
∑
i

aiηbi‖.(61)

We can thus define a contraction v : AηA→ Aξ0A as v(aηb) = aξ0b = (I −P )aξb for a, b ∈ A. As before
such mapping is well-defined. We have moreover that v∗v commutes with the A−A bimodule action as
this holds for (I − P ). We now put η′ := (v∗v)

1
2 η so that

〈aξ0b, ξ0〉 = 〈(I − P )aξb, (I − P )ξ〉 = 〈aη′b, η′〉(62)

for a, b ∈ A. However, this means that ξ0 ∈ D and thus that Hξ0 is a sub A − A bimodule of K. It is
moreover clear that ξ0 is orthogonal to all other vectors ξi. Also, as ξ0 6= 0 we can scale the vector to
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obtain a unit vector. This contradicts the maximality. We thus have that P = IdH which shows that we
have an A−A bimodule embedding

H =
⊕
i

Hξi ⊆
⊕
i

K(63)

and we can extend the A−A action to normal N −N bimodule action using this embedding. �

We shall now turn to the following theorem that saids that the fact that the quantum Markov semi-
group is gradient-S2 will give the quasi-containment of the A−A bimodule L2(N )∇ in the coarse bimodule
L2(N )⊗L2(N ), by using the previous lemma. This theorem was given in [12, Theorem 3.9.] where it
was stated in some more generality. There, for n ∈ N the gradient-S2n property was used to prove the
quasi-containment of the n-fold A−A bimodule L2(N )∇(n) := (...(L2(N )∇)∇...)∇ in the coarse bimodule.
We shall here only give the proof for n = 1 and this case is sufficient for the purposes of this thesis.

In what follows, we shall say that a vector ξ0 ∈ L2(N , τ)∇ is algebraic if it is contained in the linear
span of the elements a ⊗∇ b for a, b ∈ A. Furthermore for a Hilbert space H, we shall write H for its
conjugation. We have that H as a set equals H. For an element b ∈ H we will write b to denote the
element in H. The addition in H is given as in H and scalar-multiplication is given by c · b = (cb) for

c ∈ C and b ∈ H. The inner product for H is given by 〈a, b〉H = 〈a, b〉H . It can be checked that H is
indeed a Hilbert space.

Theorem 4.2. Let (N , τ) be a finite von Neumann algebra. Suppose the quantum Markov semi-group
(Φt)t≥0 has the gradient-S2 property w.r.t. A. Then for any algebraic ξ0 ∈ L2(N )∇ we have that Aξ0A
is contained in the coarse bimodule L2(N )⊗L2(N ) as an A bimodule.

Proof. We fix α = a0⊗∇ a1Ωτ with a0, a1 ∈ A. We define a functional ρ : A⊗algA
op → C as ρ(x⊗yop) =

〈x ·α · y, α〉. By [30, Theorem 6.3.7.] we can find a ∗-homomorphism π : A⊗max A
op → B(L2(N )∇) such

that ρ(x) = 〈π(x)α, α〉. This shows that we have ρ(x∗x) = ‖π(x)α‖22,τ ≥ 0 for x ∈ A⊗alg A
op. We shall

now show that ρ is ⊗min bounded. We define a map Θ : L2(N ) → L2(N ) as Θ(x) = a∗1Ψa∗0 ,a
∗
0 (x)a1Ωτ .

This map is in S2 as Ψa∗0 ,a
∗
0 is in S2 by assumption. Moreover, by the calculations preceding this theorem,

we have for x, y ∈ A that

ρ(x⊗ yop) = 〈x · α · y, α〉(64)

= 〈Ψa∗0 ,a
∗
0 (x)a1y, a1〉(65)

= 〈a∗1Ψa∗0 ,a
∗
0 (x)a1, y

∗〉 = 〈Θ(x), y∗〉.(66)

For ξ, η ∈ L2(N , τ) we consider the rank 1 operator θξ,η on L2(N , τ) given by θξ,η(x) = ξ〈x, η〉τ . For
such operator we have that

〈x, θξ,η(y)〉 = 〈x, ξ〉〈y, η〉(67)

= 〈x⊗ y, ξ ⊗ η〉.(68)

Now, this means that for any finite rank operator θ we have that 〈x, θ(y)〉 = 〈x ⊗ y, ζθ〉 for some

ζθ ∈ L2(N ) ⊗alg L2(N ). Let θ be a finite rank operator on L2(N ). Then we can write θ =
∑n
j=1 θξj ,ηj

for some n ≥ 1 and vectors η1, ..., η|I| ∈ L2(N ) and orthonormal vectors ξ1, ..., ξ|I| ∈ L2(N ). We then
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have that ζθ =
∑n
j=1 ξj ⊗ ηj . Furthermore, let (ei)i∈I be a orthonormal basis for L2(N ), then we have

‖θ‖2S2 =
∑
i∈I
〈θ(ei), θ(ei)〉(69)

=
∑
i∈I

n∑
j=1

〈θξj ,ηj (ei), θξj ,ηj (ei)〉(70)

=
∑
i∈I

n∑
j=1

|〈ηj , ei〉|2(71)

=

n∑
j=1

‖ηj‖2(72)

=

n∑
j=1

〈ξj ⊗ ηj , ξj ⊗ ηj〉(73)

= ‖ζθ‖22.(74)

Now as, by [30, Theorem 2.4.17.], the finite rank operators are dense in S2, we can define an isometry

U : S2(L2(N )) → L2(N )⊗L2(N ) by setting U(θ) = ζθ for finite rank operators and extending this to

a bounded map. We can also build an isometry J : L2(N )⊗L2(N ) → L2(N )⊗L2(N op) as J(x ⊗ y) =
x ⊗ (y∗)op. Indeed, as 〈yop ∗, wop ∗〉τ = τ(wopyop ∗) = τ((y∗w)op) = τ(y∗w) = 〈w, y〉τ = 〈y, w〉τ we have
that

〈J(x⊗ y), J(z ⊗ w)〉 = 〈x⊗ yop ∗, z ⊗ wop ∗〉(75)

= 〈x, z〉τ 〈yop ∗, wop ∗〉τ(76)

= 〈x, z〉τ 〈y, w〉τ = 〈x⊗ y, z ⊗ w〉(77)

which shows that J is an isometry. We now find that

ρ(x⊗ yop) = 〈Θ(x), y∗〉τ(78)

= 〈Θ, θy∗,x〉S2(79)

= 〈θ∗y∗,x,Θ∗〉S2(80)

= 〈JU(θx,y∗), JU(Θ∗)〉(81)

= 〈J(x⊗ y∗), JU(Θ∗)〉(82)

= 〈x⊗ yop, JU(Θ∗)〉.(83)

By [30, Theorem 6.4.19] we can consider A⊗minA
op as a subspace of B(L2(N )⊗L2(N op)). We then find

ρ(z) = 〈z(1⊗ 1), JU(Θ∗)〉| ≤ ‖z‖min · ‖1⊗ 1‖2 · ‖JU(Θ∗)‖2.(84)

This shows that the map ρ is ⊗min-bounded. We show that its extension to A ⊗min A
op is moreover

positive. Namely, let w ∈ A⊗min A
op be positive. Then we can write w = z∗z for some z ∈ A⊗min A

op.
Now since A ⊗alg Aop is a self-adjoint subalgebra of A ⊗min A

op that is weakly dense, it follows from
Kaplansky’s density theorem, [43, Theorem II.4.8], that there exists a bounded net (zi) in A ⊗min Aop

converging strongly to z. Now, as the net is bounded and converges strongly to z we have that z∗i zi → z∗z
weakly. Now since the weak and σ-weak topology coincide on bounded sets, we have that z∗i zi → z∗z = w
σ-weak. Since ρ is normal this then means that 0 ≤ ρ(z∗i zi) → ρ(w), which shows that ρ is positive on
A⊗min A

op.

Now, by the properties of ρ we have by [44, Chapter X] that there exists a ζα ∈ L2(N )⊗L2(N ) such
that 〈x · α · y, α〉 = 〈x · ζα · y, ζα〉 . This thus holds for all α ∈ D := Span{a0 ⊗∇ a1Ωτ : a0, a1 ∈ A}.
As the subspace D is dense in L2(N )∇ it now holds by lemma 4.1 that L2(N ) is quasi-contained in the
coarse bimodule L2(N )⊗L2(N ).

�

4.2. Additionally needed background and definitions. In theorem 4.2, a direct consequence of the
gradient-S2 property was given. Other results subsequently follow from this. In order to understand
these results, we state here some additional definitions that are needed.
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4.2.1. Completely bounded maps. Let A,B be C∗-algebras. Let ϕ : A → B be a bounded map. Then
for n ≥ 1 the map ϕ(n) : A ⊗min Mn(C) → B ⊗min Mn(C) given by ϕ(n)(a ⊗ ei,j) = ϕ(a) ⊗ ei,j is also

bounded. We shall call ϕ completely bounded if the values ‖ϕ(n)‖ are moreover bounded, and we shall
write ‖ϕ‖cb = supn≥1 ‖ϕ(n)‖. We remark here the resemblance with the definition of completely positive
maps.

4.2.2. Herz-Schur-multipliers. For a kernel k : Γ → Γ → C be a kernel. We define the Schur-muliplier
mk : B(`2(Γ))→ B(`2(Γ)) to be the map that satisfies 〈mk(x)δt, δs〉 = k(s, t)〈xδt, δs〉 for all s, t ∈ Γ and
x ∈ B(`2(Γ)), whenever such map exists. Note that, in case the map exist, it is in fact unique. When
k is a positive definite kernel then by [7, Theorem C.3] the Schur-multiplier exists and is a bounded
u.c.p map. For a function ϕ on Γ we shall write mϕ for the Schur multiplier associated to the kernel
(s, t) → ϕ(t−1s), whenever this function mϕ exists. Note that this function exists in particularly when
ϕ is positive definite. A function ϕ on Γ is called a Herz-Schur-multiplier whenever mϕ is completely
bounded. We shall denote B2(Γ) for the Banach space of all Herz-Schur-multipliers equipped with the
Herz-Schur norm ‖ϕ‖B2

= ‖mϕ‖cb.

4.2.3. Amenable groups. Let Γ be a group. There are many equivalent definitions for amenability, see
[7, Theorem 2.6.8]. One is that the group Γ is amenable if there exists a net (ϕi) of finitely supported
positive definite function on Γ such that ϕi → 1 point-wise. Comparing this to the definition of the
Haagerup property, we see that all amenable groups posses the Haagerup property.

4.2.4. Weak amenable groups. Let Γ be a group. The group Γ is called weakly amenable if there exists a
net (ϕi) of finitely supported function on Γ such that ϕi → 1 point-wise and such that lim sup ‖ϕi‖B2

<∞.
We note that amenable groups are weak amenable. Namely, for an amenable group Γ there exists a net
(ϕi) of finitely supported positive definite function on Γ such that ϕi → 1 point-wise. We can moreover
assume that ϕi(e) = 1 for all i. Now since ϕi is positive definite there exist Hilbert spaces Hi and
functions fi : Γ→ H such that ϕi(t

−1s) = 〈fi(s), fi(t)〉 for s, t ∈ Γ. We get that the function fi satisfies
‖fi(s)‖22 = 〈fi(s), fi(s)〉 = ϕi(e) = 1 for s ∈ Γ. Now, by [7, Theorem C.4] we have that the multiplier mϕ

is completely bounded with ‖mϕ‖cb ≤ 1. This shows that lim sup ‖ϕi‖B2
≤ 1 holds, which shows weak

amenability of Γ.

4.2.5. Approximation properties. A C∗-algebra A satisfies the completely bounded approximation property
(CBAP) if there exists a net of finite rank maps θi : A → A such that for every x ∈ A we have
‖θi(x)−x‖ → 0 and lim supi ‖θi‖cb <∞. A von Neumann algebra N satisfies the W∗-completely bounded
approximation property (W∗-CBAP) if there exists a net of normal finite rank maps θi : N → N such
that for every x ∈ N we have θi(x)→ x weakly and lim supi ‖θi‖cb <∞. For a discrete group Γ we have
by [7, Theorem 12.3.8.] that Γ is weakly amenable if and only if C∗r (Γ) has the CBAP if and only if L(Γ)
has the W∗-CBAP.

4.2.6. Locally reflexive. Let A be a unital C*-algebra. An operator system E is a closed self-adjoint
subspace E ⊆ A so that 1A ∈ E. Now let B be a C*-algebra (either unital or non-unital). We denote
B∗∗ for its double dual, which is unital. We now call B locally reflexive if for every finite dimensional
operator system E ⊆ B∗∗ there exists a net (ϕi) of contractive c.p. maps ϕi : E → A so that ϕi → IdE
in the point-ultraweak topology.

4.2.7. Akemann-Ostrand property AO+. A finite von Neumann algebra N has the Akemann-Ostrand
property (AO+) if there exists a σ-weakly dense unital C∗-subalgebra A ⊆ N such that:

(1) A is locally reflexive.
(2) There exists a u.c.p. map θ : A⊗min A

op → B(L2(N )) such that θ(a⊗ bop)− abop is compact for
all a, b ∈ A.

4.2.8. Strong solidity. A von Neumann algebra is called diffuse if it has no non-zero minimal projections.
A von Neumann algebra N ⊆ B(H) is called amenable if there exists a completely positive map Φ :
B(H)→ N s.t. Φ(x) = x for x ∈ N .

A von Neumann algebra N is now called strongly solid if for every diffuse amenable von Neumann
subalgebra M⊆ N we have that the normalizer NorN (M), defined by

NorN (M) := {u ∈ N | u unitary and uMu∗ =M},
generates an amenable von Neumann algebra, that is, NorN (M)′′ is amenable.

A sufficient condition for strong solidity is given by the following result.
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Theorem 4.3. [23, Theorem 4.2.1] Let N be a finite von Neumann algebra with separable predual. If N
has condition AO+ and satisfies the W∗-CBAP, then it is strongly solid.

4.2.9. Cartan subalgebra. Let N be a finite von Neumann algebra and A ⊆ N a subalgebra. We call the
subalgebra A ⊆ N a Cartan subalgebra if

(1) A is maximal abelian, that is A′ ∩N = A.
(2) The group of normalizers generates N , that is NorN (A)′′ = N .

4.3. Final results that we are interested in. The final results that we want to obtain using gradient-
Sp quantum Markov semi-groups are the Akemann-Ostrand property and strong solidity for new kinds
of von Neumann algebras. We give a historical overview of the study of these properties. Thereafter we
give conditions under which we can obtain these properties using the gradient-S2 property.

4.3.1. Historical overview of the study of (AO)+ and strong solidity. The properties (AO+) and strong
solidity for a von Neumann algebra were defined in the study of the existence of Cartan subalgebras.
These Cartan are an important object of study in the theory of von Neumann algebras. We list results
on this topic here.

It was proven by Voiculescu in [45] that the group von Neumann algebra L(Fn) of the free group
Fn does not have a Cartan subalgebra for 2 ≤ n ≤ ∞. These von Neumann algebras formed the first
examples satisfying this conditions. Later, in [40] it was proven by Shlyakhtenko that for 0 < λ < 1, the
type IIIλ free Araki–Woods factor does no have a Cartan subalgebra. This result relied on the absence
of Cartan subalgebras in L(F∞).

Later in the work of Ozawa and Popa, in [32], strong solidity was defined and it was shown that L(Fn)
has this property. From this it also follows that L(Fn) does not possess a Cartan subalgebra. The strong
solidity has since then become a property of interest. In the continuation of their work, in [33], Ozawa
and Popa proved the absence of a Cartan subalgebra and strong solidity for certain group von Neumann
algebras.

In [41], Sinclair proved strong solidity for group von Neumann algebras L(Γ) for certain discrete
subgroups Γ of SO(n, 1) and SU(n, 1), where SO(n, 1) and SU(n, 1) are respectively the indefinite special
orthogonal group and the generalized special unitary group.

In [22], Houdayer and Ricard proved the absence of Cartan subalgebras for free Araki-Woods factors,
which generalized the result from Shlyakhtenko.

In [36], Popa and Vaes proved strong solidity results for L(Γ) for hyperbolic groups (see also [15, 16]
from Chifian, Sinclair and Udrea for related results).

In [37], Popa and Vaes proved strong solidity results for certain von Neumann algebras using the
Akemann-Ostrand condition (AO+), which was a condition earlier defined by Ozawa in [31]. Thereafter, in
[23], Isono more generally proved that the (AO+) condition implies strong solidity under some conditions
(this is theorem 4.3).

In [3], Boutonnet, Houdayer and Vaes, proved strong solidity for the free Araki-Woods factors, which
improves the result from Shlyakhtenko.

In [8], Caspers proved strong solidity results for certain right-angled word hyperbolic Hecke algebras.
In [9] Caspers introduced the gradient-S2 property to prove strong solidity of the free orthonormal

quantum groups.
In [10], Caspers used the gradient-S2 property to prove strong solidity results for a larger class of

quantum groups. Also, using the non-commutative Riesz-transform it was shown here that these quan-
tum groups have the AO+ property, from which the strong solidity also follows. Furthermore, in [12],
Caspers, Isono and Wasilewski introduced the gradient-Sp property for general p ∈ [1,∞], and they used
this property to prove strong solidity for q-Gaussian algebras.

In this thesis we study this gradient-Sp property for the case of quantum Markov semi-groups on group
von Neumann algebras. In particular we look at Coxeter groups. In some case we obtain (AO+) and
strong solidity similar to [9, 10, 12]. In section 8 we moreover study these properties for Hecke-algebras,
which has also been studied in [8]. Furthermore, we note that in section 10, we will, like [10], use
techniques involving the non-commutative Riesz transforms, to obtain (AO+) for certain von Neumann
algebras.

4.3.2. Consequences of gradient-Sp property under additional conditions. The quasi-containment that
was proven in [12], was used in the same paper to prove the (AO+) property, under some additional
conditions. This can then by theorem 4.3 be used to prove strong solidity in some cases. We state here
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the assumptions under which we obtain the (AO+) property. For this we introduce some notation first.

We shall call the semi-group (Φt)t≥0 gradient coarse if the A−A bimodule action on L2(N )∇ extends
to a normal N −N bimodule action and further L2(N )∇ is weakly contained in the coarse bimodule. By
lemma theorem 4.2 this is the case when (Φt)t≥0 has the gradient-S2 property (w.r.t. A).

The generator ∆ of the semi-group we will call filtered if it has compact resolvent and for every
eigenvalue λ of ∆ we have that there exists a (necessarily finite dimensional subspace) A(λ) ⊆ A such
that A(λ)Ωτ equals the eigenspace of ∆ at eigenvalue λ. Moreover, we assume that for an increasing
enumeration (λn)n≥1 of the eigenvalues of ∆, we have that

A =

∞⊕
n=1

A(λn) A(λl)A(λk) ⊆
l+k⊕
n=0

A(λn)(85)

where
⊕

denotes the algebraic direct sum. Furthermore, we will say that ∆ has subexponential growth
if the eigenvalues satisfy

lim
n→∞

λn+1

λn
= 1.(86)

We now state the theorem that was obtained.

Theorem 4.4. [12, Theorem 5.13] Let N be a finite von Neumann algebra and let (Φt)t≥0 = (e−t∆)t≥0

be a quantum Markov semi-group that is gradient coarse and suppose that ∆ has compact resolvent, and
is filtered with subexponential growth. Assume furthermore that A as defined above is locally reflexive.
Then N satisfies (AO+).

We note that the result also follows when N is finite dimensional.

Remark 4.5. Suppose N is finite dimensional, then it follows from the definition that N possess the
(AO+) property. Indeed, every operator on a finite dimensional space is compact, so we only need to
check local reflexivity. However, this follows from the fact that N ∗∗ ' N when N is finite dimensional.
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5. Gradient-Sp property for semi-groups on group von Neumann algebras

In this section we construct quantum Markov semi-groups on group von Neumann algebras L(Γ) of
discrete groups Γ that possess the Haagerup property. These semi-groups (Φt)t≥0 are built using a proper,
conditionally negative definite function ψ on the group Γ. In the rest of this thesis we will mainly look
at semi-groups that are built in this particular way. In section 5.1 we construct the quantum Markov
semi-groups and calculate the generators of these semi-groups. In section 5.2 we investigate in what cases
these semi-groups are gradient-Sp. There we also do some calculations and introduce some notation that
will be used throughout the next sections. In section 5.3, we moreover check that under some conditions,
the generators of the semi-groups satisfy the properties from section 4.3.2, i.e. that it is filtered and has
subexponential growth.

5.1. Construction of quantum Markov semi-groups using conditionally negative function.
We let Γ be a discrete group that possesses the Haagerup property and show how a quantum Markov
semi-group (Φt)t≥0 on the group von Neumann algebra L(Γ) ⊆ B(`2(Γ)) can be constructed. Since Γ has
the Haagerup property there exists a proper, conditionally negative definite function ψ on Γ. Now for
t ≥ 0 we define functions ϕt : Γ → R as ϕt(g) = e−tψ(g), which, by Schoenberg’s theorem, are positive
definite. These functions moreover satisfy ϕt(e) = 1 and vanish at infinity. We now define a multiplier
mϕt : C[Γ]→ C[Γ] as

mϕt(
∑
g∈Γ

αg · λg) =
∑
g∈Γ

ϕt(g)αg · λg.(87)

From [7, Theorem 2.5.11] we obtain that mϕt extends to a normal u.c.p. map on the group von Neumann
algebra L(Γ). This extension will be denoted as Φt. It is clear that Φ0 = IdL(Γ) and that Φt1Φt2 = Φt1+t2

for t1, t2 ≥ 0. We will show that also the other conditions of a quantum Markov semi-group hold. First
we prove symmetricity. For this we recall that the canonical trace on L(Γ) is given by τ(x) = 〈xδe, δe〉
and we thus see that for g, r ∈ Γ we have

〈λr,Φt(λg)〉τ = τ(Φt(λg−1)λr) = ϕt(g
−1)τ(λg−1λr) = ϕt(g

−1)〈λrδe, λgδe〉 = ϕt(r
−1)1(r = g).(88)

Similarly we obtain 〈Φt(λr), λg〉τ = τ(λg−1Φt(λr)) = ϕt(r)1(r = g). Now, as ψ is conditionally negative
definite there is a Hilbert space H and a function b : Γ→ H such that ψ(w−1u) = ‖b(u)− b(w)‖2 holds
for all u,w ∈ Γ, hence

ψ(r) = ψ(er) = ‖b(r)− b(e−1)‖2 = ‖b(e)− b(r)‖2 = ψ(r−1e) = ψ(r−1).(89)

This shows us that 〈λr,Φt(λg)〉τ = ϕt(r
−1)1(r = g) = ϕt(r)1(r = g) = 〈Φt(λr), λg〉τ . Now, by extending

this linearly we obtain that 〈x,Φt(y)〉τ = 〈Φt(x), y〉τ for x, y ∈ C[Γ]. By density this also means that
〈Φt(x), y〉τ = 〈x,Φt(y)〉τ for x, y ∈ L2(L(Γ), τ). This shows that in particular for x, y ∈ L(Γ) we have
τ(Φt(x)y) = 〈y,Φt(x∗)〉τ = 〈Φt(y), x∗〉τ = τ(xΦt(y)), which proves the maps Φt are symmetric.

We now prove for x ∈ L(Γ) that the function t 7→ Φt(x) is continuous for the strong topology of L(Γ).
First note that for g ∈ Γ we have that the mapping t 7→ Φt(λg) is norm-continuous as by definition

Φt(λg) = e−tψ(g)λg. This implies that for x ∈ C[Γ] the mapping t 7→ Φt(x) is also norm-continuous.
Now let x ∈ L2(L(Γ), τ) and ε > 0. As {λg}g∈Γ is an orthogonal basis for L2(L(Γ), τ), we can choose
y ∈ C[Γ] such that ‖x− y‖2 ≤ ε. Now there exists δ > 0 such that ‖Φh(y)− y‖2 ≤ ε whenever 0 ≤ h ≤ δ.
For such values h we find

‖Φh(x)− x‖2 ≤ ‖Φh(x− y)‖2 + ‖Φh(y)− y‖2 + ‖y − x‖2(90)

≤ ‖x− y‖2 + ‖Φh(y)− y‖2 + ‖y − x‖2(91)

≤ 3ε(92)

where we used that the maps Φt are contractive on L2(L(Γ), τ). This shows that lim
h↓0

Φh(x) = x, where

convergence is in ‖ · ‖2. We now let x ∈ L(Γ), let ξ ∈ L2(L(Γ), τ) and let ε > 0. Then there is ξ′ ∈ L(Γ)
such that ‖ξ − ξ′‖2 ≤ ε. Now

‖(Φh(x)− x)ξ‖2 ≤ ‖(Φh(x)− x)ξ′‖2 + ‖(Φh(x)− x)(ξ − ξ′)‖2(93)

≤ ‖Φh(x)− x‖2 · ‖ξ′‖+ ‖Φh(x)− x‖ · ‖ξ − ξ′‖2(94)

≤ ‖Φh(x)− x‖2 · ‖ξ′‖+ 2‖x‖ε.(95)

We then obtain lim suph↓0 ‖(Φh(x) − x)ξ‖2 ≤ 2‖x‖ε and hence lim
h→0
‖(Φh(x) − x)ξ‖2 = 0 as ε was arbi-

trary. This shows that lim
h↓0

Φh(x) → x in the strong operator topology of B(L2(L(Γ), τ)). Now, as the
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representation π : L(Γ)→ B(L2(L(Γ), τ)) given by π(x)(y) = xy is faithful, we obtain by [26, Corollary
7.1.16] that lim

h↓0
Φh(x) → x in the strong operator topology of L(Γ). We moreover obtain for t > 0 and

η ∈ `2(Γ) that

‖(Φt+h(x)− Φt(x))η‖ ≤ ‖Φt‖ · ‖(Φh(x)− x)η‖ ≤ ‖(Φh(x)− x)η‖ → 0 as h ↓ 0(96)

‖(Φt−h(x)− Φt(x))η‖ ≤ ‖Φt−h‖ · ‖(x− Φh(x))η‖ ≤ ‖(x− Φh(x))η‖ → 0 as h ↓ 0(97)

which shows that t→ Φt(x) is continuous for the strong topology of L(Γ).
It now follows from these properties that (Φt)t≥0 defines a quantum Markov semi-group on L(Γ). This

quantum Markov semi-group we will call the semi-group associated to ψ. As a semi-group on L2(L(Γ), τ)
we can write (Φt)t≥0 = (e−∆ψt)t≥0, where ∆ψ is the unbounded operator on L2(L(Γ), τ) that generates
the semi-group. We can calculate ∆ψ as follows. For g ∈ Γ

∆ψ(λg) = − lim
t→0

Φt(λg)− Φ0(λg)

t
= − lim

t→0

e−tψ(g) − 1

t
λg = ψ(g)λg.(98)

Now as the vectors {λg}g∈Γ form an orthogonal basis for L2(L(Γ), τ) this shows how ∆ψ is defined.
We note that when Γ is infinite we have, because ψ is proper, that ∆ψ is not a bounded operator on
L2(L(Γ), τ).

5.2. Gradient-Sp property for semi-groups on group von Neumann algebras. For a group Γ with
the Haagerup property, and a proper, conditionally negative function ψ on Γ we let (Φt)t≥0 := (e−t∆)t≥0

be the quantum Markov semi-group on L(Γ) associated to ψ. In order to study the gradient-Sp prop-
erty, we first have to specify what ‘nice’ subalgebra A ⊆ L(Γ) we use. For this we will always take
the ∗-subalgebra A := C[Γ]. We note that by the definition of the group von Neumann algebra, this
∗-subalgebra is σ-weakly dense in L(Γ). Moreover, clearly C[Γ] ⊆ Dom(∆ψ) and ∆ψ(C[Γ]) ⊆ C[Γ]. Fur-
thermore, for x ∈ C[Γ] we already showed that the mapping t 7→ Φt(x) is norm-continuous. This shows
that C[Γ] indeed satisfies the properties that we need in order to define the gradient-Sp property.

The gradient-Sp property for p ∈ [1,∞] is now defined as the property that for a, b ∈ C[Γ] we have

that the mapping Ψa,b
∆ψ

: L(Γ)→ L(Γ) given by

Ψa,b
∆ψ

(x) = −1

2
(∆ψ(axb) + a∆ψ(x)b−∆ψ(ax)b− a∆ψ(xb))(99)

extends to a bounded mapping on L2(L(Γ), τ) that is moreover in Sp. We shall generally just write Ψa,b

for Ψa,b
∆ψ

when the semi-group is understood.

We will introduce some notation here that makes it easier to study the gradient-Sp property of the
semi-group. For u,w ∈ Γ we define a function γψu,w : Γ→ R as

γψu,w(v) = ψ(uvw) + ψ(v)− ψ(uv)− ψ(vw)

and we simply write γu,w for γψu,w when the function ψ is understood. We will keep ψ fixed in the

following. We have that the function γu,w is related to the operator Ψλu,λw as

Ψλu,λv(λv) = −1

2
(∆ψ(λuvw) + λu∆ψ(λv)λw −∆ψ(λuv)λw − λu∆ψ(λvw))(100)

= −1

2
γu,w(v)λuvw.(101)

We note that by the calculation from section 3.2.1 we moreover have that (Ψλu,λw)∗ = Ψλ∗u,λ
∗
w =

Ψλu−1 ,λw−1 and that we thus get

|Ψλu,λw |2(λv) = Ψλu−1 ,λw−1 Ψλu,λw(λv)(102)

= −1

2
Ψλu−1 ,λw−1 (γu,w(v)λuvw)(103)

=
1

4
γu−1,w−1(uvw)γu,w(v)λv(104)

=
1

4
|γu,w(v)|2λv.(105)
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This then means that |Ψλu,λw |p(λv) = 2−p|γu,w(v)|pλv and therefore, as {λv}v∈Γ forms an orthonormal
basis, we have that

‖Ψλu,λw‖Sp =

(∑
v∈Γ

〈|Ψλu,λw|p(λv), λv〉

) 1
p

=
1

2
‖γu,w‖`p(Γ).(106)

Now for p ∈ [1,∞), in order to check whether Ψλu,λw is in Sp we thus need to check whether γu,w ∈ `p(Γ).
Moreover, for p = ∞, the condition that Ψλu,λw ∈ Sp means that Ψλu,λw is a compact operator, which
is precisely the case when γu,w ∈ c0(Γ), i.e. when γu,w vanishes at infinity.

The above calculations, together with lemma 3.2, give us a simple condition to check for p ∈ [1,∞]
whether the semi-group (Φt)t≥0 is gradient-Sp
Lemma 5.1. Let Γ be a discrete group, and let Γ0 ⊆ Γ be a subset that generates the entire group. Then
for p ∈ [1,∞), for a semi-group (Φt)t≥0 associated to some proper, conditionally negative function ψ on

Γ, we have that if γψu,w ∈ `p(Γ) for all u,w ∈ Γ0 ∪ Γ−1
0 , then the semi-group (Φt)t≥0 is gradient-Sp. The

same holds true for p =∞ when `p(Γ) is replaced with c0(Γ).

Proof. We denote A0 := {λg : g ∈ Γ0 ∪ Γ−1
0 } ⊆ C[Γ], which is a self-adjoint subset that generates C[Γ].

We fix p ∈ [1,∞). Now, if for all u,w ∈ Γ0 ∪ Γ−1
0 we have that γψu,w ∈ `p(Γ), then, by the calculation of

‖Ψλu,λv‖Sp , we have that also Ψλu,λw ∈ Sp for all u,w ∈ Γ0 ∪ Γ−1
0 . We thus find that Ψa,b ∈ Sp for all

a, b ∈ A0, which shows by lemma 3.2 that (Φt)t≥0 is gradient-Sp. The proof is similar for p =∞. �

5.3. Checking additional conditions to obtain (AO+) and strong solidity. Let ψ be a proper,
conditionally negative definite function on a group Γ satisfying ψ(uw) ≤ ψ(u) + ψ(w) for u,w ∈ Γ and
ψ(Γ) = Z≥0. We show that the generator ∆ψ that we constructed in section 5.1 satisfies the properties
from section 4.3.2, i.e. that it is filtered and has subexponential growth. These properties are needed to
obtain the final results we are interested in.

We first show that ∆ψ is filtered with respect to C[Γ]. First of all we have that (I+∆ψ)−1(λv) = λv

1+ψ(v)

for v ∈ Γ, which shows that (I + ∆ψ)−1 is a compact operator as ψ is proper. The operator ∆ψ thus has
compact resolvent. Furthermore, we have that the finite dimensional subspaces

C[Γ](l) := Span{λv ∈ C[Γ] : ψ(v) = l} for integers l ≥ 0(107)

of C[Γ] are such that C[Γ](l)Ωτ equals the eigenspace of ∆ψ at the eigenvalue l. For these spaces we have
that

C[Γ] =
⊕
l≥0

C[Γ](l) C[Γ](l)C[Γ](k) ⊆
l+k⊕
j=0

C[Γ](j) for l, k ≥ 0(108)

where
⊕

denotes the algebraic direct sum. The first equality holds because ψ only takes positive integers
values and the second equality holds because ψ(uw) ≤ ψ(u) + ψ(w) for u,w ∈ W . Last, we note that
the eigenvalues {l : l ∈ Z≥0} of ∆ have subexponential growth as lim

l→∞
l+1
l = 1.
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6. Gradient-Sp property for semi-groups associated to word length on Coxeter Groups

In this section we will consider semi-groups on group von Neumann algebras of Coxeter groups. Namely,
a Coxeter group W = 〈S|M〉 has the Haagerup property by [4], which allows us to construct semi-groups
like we did in section 5.1. The function ψS on W given by the word length with respect to the generat-
ing set S defines a proper, conditionally negative definite function by [4]. In this section we shall only
consider the quantum Markov semi-group (Φt)t≥0 on L(W ) associated to this function ψS . With the
tools described in section 5.2, we then investigate for what type of Coxeter groups W , this semi-group is
gradient-Sp for some p ∈ [1,∞]. We will obtain two results, theorem 6.7 and theorem 6.8, that together
give an almost complete characterization for what Coxeter systems this is the case. Last we obtain a
result, proposition 6.9, that clarifies the ‘almost complete’ characterization some more, by giving a more
direct condition on the Coxeter group.

We state here two theorems that will give us results when the semi-group is gradient-S2.

Theorem 6.1. For a Coxeter group W we have that L(W ) satisfies the W∗-CBAP. Further, C∗r (W )
satisfies the CBAP and is in particular locally reflexive.

Proof. Since any Coxeter group W is weakly amenable by [19], we obtain by [7, Theorem 12.3.8.] that
L(W ) satisfies W∗-CBAP and that C∗r (W ) satisfies CBAP. Now, the CBAP implies by [7, Definition
12.4.1 and Theorem 12.4.4 and Corollary 9.4.1] that C∗r (W ) is in particular locally reflexive. �

Theorem 6.2. Let W = 〈S|M〉 be a Coxeter group. Suppose the semi-group (Ψt)t≥0 associated to the
word length ψS is gradient-S2, then L(W ) has the AO+ property and is strongly solid.

Proof. As the semi-group is gradient-S2, we have by theorem 4.2 that it is gradient coarse. We note
moreover that L(W ) is either finite dimensional (when W is finite) or that the operator ∆ψS is filtered
and has subexponential growth by section 5.3 as ψS satisfies ψS(uw) ≤ ψS(u) + ψS(w) for u,w ∈ W
and ψS(W ) = Z≥0 (when W is infinite). In the first case we obtain that L(W ) has AO+ by remark 4.5
and in the latter case we obtain this by theorem 4.4 and theorem 6.1. It now follows from theorem 4.3
and theorem 6.1 that L(W ) is moreover strongly solid. �

We now make some observations that will help determine for what Coxeter groups W the semi-group
(Φt)t≥0 associated to ψS is gradient-Sp. First, since ψS only takes integer values we have for u,w ∈ W
that γψSu,w is in `p(W ) for some p, or in c0(W ), if and only if γψSu,w is finite rank. Now since elements in the
set S are its own inverse, we have by lemma 5.1 that the semi-group is gradient-Sp for some p ∈ [1,∞] if
and only if for all pairs of generators u,w ∈ S we have that γψSu,w is finite rank. Moreover, if this is the
case then directly we have that (Φt)t≥0 is gradient-Sp for all p ∈ [1,∞]. We state this as the following
remark.

Remark 6.3. For a Coxeter group W , the semi-group on L(W ) associated to the word length ψS is
gradient-Sp for some p ∈ [1,∞] (or equivalently all p ∈ [1,∞]), if and only if γψSu,w is finite rank for all
u,w ∈ S.

We will thus investigate for generators u,w ∈ S when precisely γψSu,w is finite rank.

6.1. Describing support of the function γψSu,w. The following lemma gives, for certain conditionally

negative functions ψ, a simple formula for |γψu,w|. Note that this lemma applies in particular to the word
length ψS .

Lemma 6.4. Let W = 〈S|M〉 be a Coxeter group. Suppose ψ is a conditionally negative function on W
satisfying ψ(w) = ψ(w1)+ ...+ψ(wk) whenever w = w1...wk is a reduced expression. Then for generators
u,w ∈ S and an element v ∈W we have that |γψu,w(v)| = 2ψ(u)1(uv = vw) = 2ψ(w)1(uv = vw).

Proof. We first note that, since we have u2 = w2 = e as they are generators, we have that

γψu,w(v) = γψu,w(uvw) = −γψu,w(uv) = −γψu,w(vw).

When v is fixed, we can then let z ∈ {v, uv,vw, uvw} be such that |z| = min{|v|, |vw|, |vw|, |uvw|}. Then
we have |γψu,w(z)| = |γψu,w(v)|. Furthermore, because |z| is minimal we have |uz| = |zw| = |z|+ 1. Thus,
if z = z1....zk is a reduced expression for z we have that uz1...zk and z1....zkw are reduced expressions
for uz respectively zw. Therefore, ψ(uz) = ψ(u) + ψ(z) and ψ(zw) = ψ(z) + ψ(w). Hence

γψu,w(z) = ψ(uzw) + ψ(z)− ψ(uz)− ψ(zw)(109)

= ψ(uzw)− ψ(z)− ψ(u)− ψ(w).(110)
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Now, since |uz| = |z|+ 1 we either have that |uzw| = |z|+ 2 or |uzw| = |z|. We shall consider these two
separate cases, from which the result will follow.

In the first case we have that uz1....zkw is reduced so that ψ(uzw) = ψ(u)+ψ(z)+ψ(w) and therefore
|γψu,w(v)| = |γψu,w(z)| = 0. We note that in this case also uv 6= vw. Namely, uv = vw would imply
uz = zw and hence uzw = z, which contradicts that |uzw| = |z|+ 2.

In the second case we have that uz1....zkw is not reduced. Therefore, by the exchange condition
(see [18, Theorem 3.3.4.]) and the fact that |uzw| = |z| < |zw| we have that uz1....zkw is equal to
z1...zi−1zi+1..zkw for some index 1 ≤ i ≤ k, or that uz1....zkw = z1....zk. Now, if the former, we also have
that uz = z1...zi−1zi+1...zk so that |uz| < |z| which is a contradiction. In this case we must thus have
that uzw = z and hence uz = zw. This then implies that ψ(uzw) = ψ(z) and ψ(u) = ψ(uz) − ψ(z) =
ψ(zw)− ψ(z) = ψ(w). In this case we thus obtain that

γψu,w(z) = ψ(uzw)− ψ(z)− ψ(u)− ψ(w) = −2ψ(u) = −2ψ(w)(111)

which shows that |γψu,w(v)| = |γψu,w(z)| = 2ψ(u) = 2ψ(w) in this case.

The result now follows from these cases. Namely, either we have that |γψu,w(v)| = 0 and that v does

not satisfy uv = vw, or we have that |γψu,w(v)| = 2ψ(u) = 2ψ(w) and that v does satisfy uv = vw. This

thus shows us that |γψu,w(v)| = 2ψ(u)1(uv = vw) = 2ψ(w)1(uv = vw).
�

We note that for the word length ψS we have ψS(s) > 0 for all generators s ∈ S. Now by lemma 6.4,
in order to see when γψSu,w is finite-rank, we have to know what kind of words v ∈ W have the property
that uv = vw. For this we introduce some notation.

For distinct i, j ∈ {1, ..., |S|} we will, whenever the label mi,j is finite, denote ki,j = bmi,j2 c ≥ 1. Now

if mi,j is even, then mi,j = 2ki,j and we set ri,j = si(sjsi)
ki,j−1. If mi,j is odd, then mi,j = 2ki,j + 1 and

we set ri,j = (sisj)
ki,j . Furthermore we set

ai,j = si bi,j =

{
si mi,j even

sj mi,j odd
ci,j = sj di,j =

{
sj mi,j even

si mi,j odd
.(112)

Then ai,j and bi,j are respectively the first and last letter of the word ri,j . Furthermore when mi,j is
even we have ci,jri,j = sjsi(sjsi)

ki,j−1 = (sjsi)
ki,j = (sisj)

ki,j = ri,jsj = ri,jdi,j and when mi,j is odd
we have ci,jri,j = sj(sisj)

ki,j = si(sjsi)
ki,j = ri,jsi = ri,jdi,j . Thus in either case ci,jri,j = ri,jdi,j .

We will now for generators u,w ∈ S show for what kind of words v ∈W with |v| ≤ |uv|, |vw| we have
that uv = vw. In proposition 6.6 we then give a precise description of the support of γψSu,w.

Lemma 6.5. For generators u,w ∈ S and a word v ∈ W with |v| ≤ |uv|, |vw| we have uv = vw if and
only if v can be written in the reduced form v = ri1,j1 .....rik,ik so that u = ci1,j1 and w = dik,jk and so
that for l = 1, ..., k − 1 we have that cil+1,jl+1

= dil,jl and ail+1,jl+1
6∈ {sil , sjl} and bil,jl 6∈ {sil+1

, sjl+1
}.

Proof. First, suppose that v can be written in the given form v = ri1,j1 .....rik,ik with the given conditions
on cil,jl and dil,jl . Then since we have cil,jlril,jl = ril,jldil,jl = ril,jlcil+1,jl+1

for l = 1, ..., k− 1, and since
u = ci1,j1 and w = dik,jk we have uv = vw, which shows the ‘if’ direction.

We now prove the opposite direction. First note that the statement holds for v = e as this can be
written as the empty word. We now prove by induction to n that for v ∈W with |v| ≥ 1 and |v| ≤ n and
|v| ≤ |uv|, |vw| and uv = vw for some u,w ∈ S, we can write v in the given form. Note first that the
statement holds for n = 0, since then no such v ∈ W exists. Thus, assume that the statement holds for
n− 1, we prove the statement for n. Let u,w ∈ S and v ∈W be with |v| = n and |uv| = |vw| = |v|+ 1
and uv = vw. Let (v1, ..., vn) be a reduced expression for v. Then the expression (u, v1, ..., vn) and
(v1, ...., vn, w) are reduced expressions for uv = vw. In particular we have u 6= v1. Set m := mu,v1 . Now,
since uv and vw are equal and u 6= v1, we can as in the proof of [18, theorem 3.4.2(ii)] find a reduced ex-
pression (y1, ..., yn+1) for uv with n ≥ m−1 so that (y1, ....., ym) = (u, v1, u, v1, ..., u) whenever m is odd,
and (y1, ...., ym) = (u, v1, ...., u, v1) whenever m is even. This is to say that if we let i0, j0 ∈ {1, ..., |S|} be
such that v1 = si0 and u = sj0 , then we have that ri0,j0 = y2...ym and ci0,j0 = sj0 = u. Note that by the
proof of [18, theorem 3.4.2(ii)] we have in particular that m < ∞. Now moreover, since y1 = u we have
that (y2, ...., yn+1, w) is a expression for vw, and this expression is reduced since |vw| = n+ 1.
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Now suppose that m = n+ 1, then v = ri0,j0 and i0 6= j0 since u 6= v1. Now, we have u = sj0 = ci0,j0
and furthermore, since ri0,j0di0,j0 = ci0,j0ri0,i0 = uv = vw = ri0,j0w, also w = di0,j0 . Thus in this case
we can write v in the given form.

Now suppose m < n + 1 and define v′ = ym+1...yn+1 and u′ = di0,j0 and w′ = w. Note that since
u = sj0 = ci0,j0 and u′ = di0,j0 we have

ri0,j0u
′v′ = uri0,j0v

′ = uv = vw = ri0,j0v
′w′.

Therefore u′v′ = v′w′. Moreover |u′v′| = |v′w′| = |v′|+1 since (ym+1, ..., yn+1, w) is a reduced expression
for v′w. Now, since also |v′| ≥ 1 and |v′| ≤ n − 1 we have by the induction hypothesis that there is a
reduced expression v′ = ri1,j1 ....rik,jk for some indices il, jl ∈ {1, ..., |S|} with il 6= jl so that u′ = ci1,j1
and w′ = dik,jk and so that for l = 1, ..., k − 1 we have that cil+1,jl+1

= dil,jl and ail+1,jl+1
6∈ {sil , sjl}

and bil,jl 6∈ {sil+1
, sjl+1

}. Hence we can write v = ri0,j0v
′ = ri0,j0 .....rik,jk . We also have u = sj0 = ci0,j0

and w = w′ = dik,jk and di0,j0 = u′ = ci1,j1 . Furthermore, since |v| = n = (m − 1) + (n − m + 1) =
|ri0,j0 | + |v′|, and since the expression for v′ is reduced we thus have that the expression for v is also
reduced. Now suppose that bi0,j0 ∈ {si1 , sj1}. We note that bi0,j0 6= di0,j0 = ci1,j1 6= ai1,j1 . Now as
also ci1,j1 , ai1,j1 ∈ {si1 , sj1} we obtain that ai1,j1 = bi0,j0 . However as ri0,j0 ends with bi0,j0 and as ri1,j1
starts with ai0,j0 we then obtain that ri0,j0ri1,j1 is not a reduced expression. This contradicts the fact
that the expression for v is reduced. Likewise, if ai1,j1 ∈ {si0 , sj0} we have because of the fact that
ai1,j1 6= ci1,j1 = di0,j0 6= bi0,j0 and di0,j0 , bi0,j0 ∈ {si0 , sj0} that ai1,j1 = bi0,j0 . This then shows that
ri0,j0ri1,j1 is not a reduced expression, which contradicts the fact that the expression for v is reduced.
This proves the lemma. �

Proposition 6.6. Let u,w ∈ S. Then we have z ∈ supp(γψSu,w) if and only if z ∈ {v, uv,vw, uvw}, where
v is a word as in lemma 6.5.

Proof. It is clear that if z ∈ {v, uv,vw, uvw} where v is of the form of lemma 6.5, that we then have
that uz = zw, and hence by lemma 6.4 that ψψSu,w(z) 6= 0. For the other direction we suppose that

z ∈ supp(γψSu,w). Then we have that uz = zw holds by lemma 6.4. Now there is a v ∈ {z, uz, zw, uzw}
such that |v| ≤ |uv|, |vw|. This word v moreover satisfies uv = vw as we had uz = zw. Now, this means
that v can be written in an expression as in lemma 6.5. Last, we note that z ∈ {v, uv,vw, uvw}, which
finishes the proof. �

6.2. Parity paths in Coxeter diagram. In proposition 6.6 we showed precisely for what kind of words
v ∈W we have v ∈ supp(γψSu,w). The question is now whether this support is finite for infinite. It follows
from the proposition that the support is finite if and only if there exist only finitely many words v ∈W
that can be written in the form v = ri1,j1 ....rik,jk with the condition from lemma 6.5. To answer the
question on whether this is the case, we shall identify these expressions with certain walks in a graph.

We will let GraphS(W ) = (V,E) be the complete simple graph with vertex set V = S and labels
mi,j on the edges {si, sj} ∈ E. We let k ≥ 1 and il, jl ∈ {1, .., |S|} for l = 1, ..., k and we let
P = (sj1 , si1 , sj2 , ....., sjk , sik) be a walk in GraphS(W ), which has even length. We will say that P
is a parity path if the edges of P have finite labels, and if il 6= jl for all l and if for l = 1, .., k− 1 we have
sjl+1

= dil,jl and il+1 6∈ {il, jl}. We will moreover call the parity path P , a cyclic parity path if the path

P := (sj1 , si1 , ...., sjk , sik , sj1 , si1) is a parity path.

The intuition for a parity path is that if you walk an edge with odd label, you have to stay there for
one turn and then continue your walk over a different edge than you came from. Furthermore, when you
walk an edge with an even label you have to return directly over the same edge, and then continue your
walk using another edge. Note that in both cases you may still use same edges as before at a later point
in your walk. A parity path is defined such that walking the path any number of times in a row, gives
you a parity path.

We shall now show in the following two lemmas that the gradient-Sp property of the semi-group (Φt)t≥0

on L(W ) associated to the word length ψS , is almost equivalent with the non-existence of parity paths
in GraphS(W ).

Theorem 6.7. Let W = 〈S|M〉 be a Coxeter system. Suppose there is a cyclic parity path

P = (sj1 , si1 , sj2 , ..., sjk , sik)
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in GraphS(W ) in which the labels mil,jl ,mil,il+1
, mjl,il+1

are all unequal to 2. Then the semi-group
(Φt)t≥0 associated to the word length ψS is not gradient-Sp for any p ∈ [1,∞].

Proof. Suppose the assumptions hold. Then we have that there exists a parity path of the form P =
(sj1 , si1 , sj2 , ..., sjk , sik , sjk+1

, sik+1
) where si1 = sik+1

and sj1 = sjk+1
. We will denote v1 = ri1,j1 ...rik,jk .

We note that by the definition of a parity path we have dil,jl = sjl+1
= cil+1,jl+1

for l = 1, .., k − 1 and
dik,jk = sjk+1

= sj1 = ci1,j1 . We now define u = ci1,j1 = dik,jk . Now we thus have uv1 = v1u. This

means by lemma 6.4 that γψSu,u(v1) 6= 0. We show that ψS(v1) ≥ k. To see this, note that ail+1,jl+1
=

sil+1
6∈ {sil , sjl} by the definition of the parity path. Furthermore, since bil,jl 6= dil,jl = cil+1,jl+1

and
bil,jl 6= ail+1,jl+1

(as ail+1,jl+1
6∈ {sil , sjl} 3 bil,jl) and ail+1,jl+1

= sil+1
6= sjl+1

= cil+1,jl+1
we have that

bil,jl 6∈ {ail+1,jl+1
, cil+1,jl+1

} = {sil+1
, sjl+1

}. Now, since there are no labels mil,jl equal to 2 we have
that the sub-words ril,jl contain both elements sil and sjl . This means, since ail+1,jl+1

6∈ {sil , sjl} and
bil,jl 6∈ {sil+1

, sjl+1
}, that the only sub-words of v1 of the form (si, sj , si, ..., si, sj) or (si, sj , si, ..., sj , si)

are the sub-words of ril,jl for some l = 1, ..., k, and the words (bil,jl , ail+1,jl+1
) for l = 1, .., k − 1.

Now we have that |ril,jl | = mil,jl − 1 and for si = bil,jl and sj = ail+1,jl+1
we have |sisj | = 2 ≤

min{mil,il+1
,mjl,il+1

}−1 ≤ mi,j−1. Furthermore, there are no sub-words of v1 of the form (si, si). This
means that the expression for v1 is M -reduced, and therefore, by [18, Theorem 3.4.2], that the expression
is reduced. This means that ψS(v1) ≥ k. Now, since we can create cyclic parity paths Pn by walking
over P a n number of times, we can create vn ∈W with ψS(vn) ≥ nk and γψSu,u(vn) 6= 0. Therefore γψSu,u
is not finite rank, and hence the semi-group (Φt)t≥0 is not gradient-Sp for any p ∈ [1,∞]. �

Theorem 6.8. Let W = 〈S|M〉 be a Coxeter group. If there does not exist a cyclic parity path in
GraphS(W ) then the semi-group (Φt)t≥0 associated to the word length ψS is gradient-Sp for all p ∈ [1,∞].

Proof. Suppose that (Φt)t≥0 is not gradient-Sp for some p ∈ [1,∞]. We will show that a cyclic parity path
exists. Namely, since the semi-group is not gradient-Sp, there exist by remark 6.3 generators u,w ∈ S for
which γψSu,w is not finite rank. Set m = max{mi,j : 1 ≤ i, j ≤ |S|} \ {∞}. We can thus let z ∈ supp(γψSu,w)

be with ψS(z) > m|S|2 + 2. Then by proposition 6.6 there is a v ∈ {z, uz, zw, uzw} such that we can
write v in reduced form v = ri1,j1 ....rik,jk with the conditions as in lemma 6.5. Now define the path
P = (sj1 , si1 , ...., sjk , sik). We show that this is a parity path. By the properties that we obtained from
lemma 6.5, we have that il 6= jl and that mil,jl < ∞ for all l. Moreover sjl+1

= cil+1,jl+1
= dil,jl

and sil = ail,jl 6∈ {sil+1
, sjl+1

}. This shows that P is a parity path. Note furthermore that since

ψS(v) ≥ ψS(z) − 2 > m|S|2, we have that P has length |P | = 2k ≥ 2ψS(v)
m > 2|S|2. Therefore, there

must exist indices l < l′ such that (sjl , sil) = (sjl′ , sil′ ). The sub-path (sjl,sil , ..., sjl′−1,jl′−1
) then is a

cyclic parity path.
�

6.3. Characterization of graphs that contain cyclic parity paths. In the previous section, in
theorem 6.7 and theorem 6.8 we have showed that the gradient-Sp property is almost equivalent to the
non-existence of a cyclic parity path. We shall now characterize in proposition 6.9 precisely when a graph
possesses a cyclic parity path. The content of this proposition is moreover visualized in fig. 2. Thereafter
we state two corollaries that follow from this proposition and from theorem 6.7 and theorem 6.8. These
corollaries give an ‘almost’ complete characterization of the types of Coxeter systems for which the semi-
group associated to ψS is gradient-Sp.

The following lemma show exactly when a cyclic parity path P in the graph GraphS(W ) exists.

Proposition 6.9. Let us denote V = S and E0 = {{i, j} : mi,j ∈ 2N} and E1 = {{i, j} : mi,j ∈ 2N+ 1}.
Then there does not exist a cyclic parity path P in GraphS(W ) if and only if (V,E1) is a forest, and for
every connected component C of (V,E1) there is at most one edge {t, r} ∈ E0 with t ∈ C and r 6∈ C, and
for every connected component C of (V,E1) there is no edge {t, t′} ∈ E0 with t, t′ ∈ C

Proof. First suppose that (V,E1) is not a forest. Then we can find a cycle Q = (sj1 , sj2 , ..., sjk , sj1) in
(V,E1). Now, since all edges are odd, this means that

P = (sj1 , sj2 , sj2 , sj3 , sj3 , ...., sjk−1
, sjk)

is a cyclic parity path. Indeed, if we denote jk+1 := j1 and jk+2 := j2, then jl 6= jl+1 for l = 1, .., k and
we have sjl+1

= djl+1,jl and jl+2 6∈ {jl+1, jl}, which shows all conditions hold.
Now suppose that there is a connected component C of (V,E1) for which there are two distinct edges

{t1, r1}, {t2, r2} ∈ E0 with t1, t2 ∈ C and r1, r2 6∈ C. If t1 = t2 then r1 6= r2 and a cyclic parity
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Graphs with and without a cyclic parity path
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Figure 2. The graph GraphS(W ) is denoted for three different Coxeter systems W =
〈S|M〉 with |S| = 6. In each of the graphs the label M(si, sj) is shown on the edge
{si, sj}. We colored the edge orange when the label is even, we colored it blue when the
label is odd, and we colored it black when the label is infinity. The relations we imposed
on the generators are almost the same in the three cases. They only differ on the edges
{s4, s5} and {s5, s6}. The graph in (A) satisfies the assumptions of proposition 6.9 and
hence does not contain a cyclic parity path. The graph in (B) does not satisfy the
assumptions of the proposition as for the connected component C = {s3, s4} of (V,E1)
there are two distinct edges {s2, s3} and {s4, s5} with even label and with (at least)
one endpoint in C. Therefore the graph contains a cyclic parity path. One is given by
P = (s3, s2, s3, s4, s4, s5, s4, s3) (another cyclic parity path uses the node s1) The graph
in (C) does also not satisfy the assumptions of the proposition as it contains a cycle with
odd labels. Here a cyclic parity path is given by P = (s1, s5, s5, s6, s6, s1) (another cyclic
parity path is obtained by walking in reverse order).

path is given by P = (t1, r1, t1, r2). In the case that t1 and t2 are distinct there is a simple path
Q = (t1, si1 , ..., sik , t2) in (V,E1) from t1 to t2. The path

P = (t1, sj1 , sj1 , sj2 , sj2 , ..., sjk , sjk , t2, t2, r2, t2, sjk , sjk , sjk−1
, sjk−1

, ..., sj1 , sj1 , t1, t1, r1)

then is a cyclic parity path. Indeed, just as the previous case we have that the paths

P1 := (t1, sj1 , sj1 , sj2 , sj2 , ...., sjk , sjk , t2)

and

P2 := (t2, sjk , sjk , sjk−1
, sjk−1

, ....sj1 , sj1 , t1)

are parity paths, since they are obtained from a simple path in (V,E1). We then only have to check that
in the middle and at the start/end of the path P the conditions are satisfied. For the middle, we see that
indeed r2 6∈ {sjk , t2} as the label of the edge between t2 and r2 is even. Furthermore, since P1 is a parity
path we have that sjk 6= t2. Thus also sjk 6∈ {t2, r2}. Furthermore, if we let i, j be such that t2 = sj ,
r2 = si, then since mjk,j is odd, we have that t2 = dj,jk and since mi,j is even we have t2 = di,j . This
shows all conditions in the middle. The conditions at the start/end hold by symmetry. Thus P is indeed
a cyclic parity path.

Now, suppose that there is a connected component C of (V,E1) for which there exists an edge
{t, t′} ∈ E0 with t, t′ ∈ C. Then we can, similar to what we just did, obtain a cyclic parity path by
taking t1 = t and t2 = t′ and r1 = t′ and r2 = t.

We now prove the other direction. Thus, suppose that (V,E1) is a forest and that for every connected
component C there is at most edge {t, r} ∈ E0 with t ∈ C and r ∈ V , and that for every connected
component there is no edge {t, t′} ∈ E0 with t, t′ ∈ C. Suppose there exists a cyclic parity path
P = (sj1 , si1 , ..., sjk , sik) in (V,E0 ∪ E1), we show that this gives a contradiction. Namely, first suppose
that P only has odd edges. Then we have sjl+1

= dil,jl = sil for l = 1, .., k− 1 and sj1 = dik,jk = sik , and
thus P = (sik , si1 , si1 , si2 , si2 , ..., sik−1

, sik). However, since also il+1 6∈ {il, jl} = {il, il−1}, this means
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that Q = (si1 , si2 , ...., sik , si1) is a cycle in (V,E1). But this is not possible since (V,E1) is a forest, which
gives the contradiction. We thus assume that there is an index l such that the label mil,jl is even. By
choosing the starting point of P as jl instead of j1, we can assume that mi1,j1 is even. Now in that case
we have sj2 = di1,j1 = sj1 . We must moreover have i2 6∈ {i1, j1} as P is a parity path. Now as the
edges {i1, j1} and {i2, j2} are thus distinct, and share an endpoint, we obtain that mi2,j2 is odd. This
means that j3 = di2,j2 = i2 6= j2. Now the sub-path (sj2 , si2 , ..., sjk , sik , sj1 , si1) is also a parity path.
Denote jk+1 = j1 and ik+1 = i1 and let 3 < k′ ≤ k + 1 be the smallest index such that sjk′ = sj2 .
Note that such k′ exists since sjk+1

= sj1 = sj2 . Then the sub-path P ′ := (sj2 , si2 , ..., sjk′ , sik′ ) is a
parity path, and the labels mil,jl for l = 2, ..., k′ − 1 are odd since sj2 is the only vertex in its connected
component in (V,E1) that is connected by an edge in E0. Thus, just like previous case we have that
P ′ := (sik′ , si2 , si2 , si3 , ..., sik′−1

, sik′ ). Now this means that the path Q = (sik′ , si2 , si3 , ..., sik′ ) contains

a cycle, which is a contradiction with the fact that (V,E1) is a forest. This proves the lemma. �

We now state two corollaries that directly follow from theorem 6.7, theorem 6.8 and proposition 6.9.

Corollary 6.10. Let W = 〈S|M〉 be a Coxeter system and fix p ∈ [1,∞]. Let us denote E0 = {(i, j) :
mi,j ∈ 2N} and E1 = {(i, j) : mi,j ∈ 2N + 1}. Then the semi-group (Φt)t≥0 on L(W ) associated to the
word length ψS is gradient-Sp if (S,E1) is a forest, and if for every connected component C of (S,E1)
there is at most one edge {t, r} ∈ E0 with t ∈ C and r 6∈ C and no edge {t, t′} ∈ E0 with t, t′ ∈ C.

Corollary 6.11. Let W = 〈S|M〉 be a Coxeter system satisfying M(si, sj) 6= 2 for all si, sj ∈ S. Fix
p ∈ [1,∞]. Let us denote E0 = {(i, j) : M(si, sj) ∈ 2N} and E1 = {(i, j) : M(si, sj) ∈ 2N + 1}. Then the
semi-group (Φt)t≥0 on L(W ) associated to the word length ψS is gradient-Sp if and only if (S,E1) is a
forest, and for every connected component C of (S,E1) there is at most one edge {t, r} ∈ E0 with t ∈ C
and r 6∈ C and no edge {t, t′} ∈ E0 with t, t′ ∈ C.

In the cases that we have obtained the gradient-Sp property, we get by theorem 6.2 that L(W ) has
the (AO+) property, and is strongly solid. We remark however the following result from [6, Example 5.1]

Proposition 6.12. Let Wi = 〈Si|Mi〉 be Coxeter systems for i = 1, 2 such that GraphSi(W ) has no edges
of even label, and such that the edges of odd label form a tree. Then if GraphS1

(W2) has the same set of
labels as GraphS2

(W2) (counting multiplicities), then the Coxeter groups are equal, that is W1 = W2.

Hence, it turns out that that the Coxeter groups are in some cases actually equal. In such case we
have obtained the gradient-Sp property for multiple quantum Markov semi-groups.
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7. Gradient-Sp semi-groups associated to weighted word lengths on Coxeter groups

In this section we will consider proper, conditionally negative definite functions on Coxeter groups
that are different from the standard word length. We can then consider the quantum Markov semi-
groups associated to these other functions, and study the gradient-Sp property of these semi-groups. We
show that these other semi-groups may have the gradient-Sp properties in cases where the semi-group
associated to the word length ψS fails to be gradient-Sp. For p ∈ [1,∞] this gives us new examples of
Coxeter groups W for which there exist a gradient-Sp quantum Markov semi-group on L(W ). This is
the main aim of this section. The structure of this section is as follows. We first prove, in section 7.1,
for certain functions ψ that they are conditionally negative. Thereafter, we shall use these functions in
section 7.2 to prove for certain Coxeter groups W that we can construct a gradient-Sp quantum Markov
semi-group on L(W ).

7.1. Certain weighted word lengths define proper, conditionally negative functions. For a
Coxeter group W there are, besides the standard word length w.t.r. some generators, also other kinds
of conditionally negative definite functions (see [5] for more on this). We shall show that for certain
non-negative weights x = (x1, ...x|S|) we can construct a conditionally negative functions ψx on W as
the word length with respect to the weights x on the generators. Thereafter, we examine when these
functions are moreover proper.

7.1.1. Weighted word lengths that are conditionally negative. We will denote G̃raphS(W ) for the subgraph
of GraphS(W ) that has vertex set S and edge set E = {(si, sj) : 3 ≤M(si, sj) <∞}. We will furthermore

denote Ci for the connected component in G̃raphS(W ) that contains si. We have the following lemma.

Lemma 7.1. Let W = 〈S|M〉 be a Coxeter group. Then if x ∈ [0,∞)|S| is such that xi = xj whenever
Ci = Cj, then the function ψx : W → [0,∞) given for a word w = w1....wk in reduced expression by

ψx(w) =
∑|S|
i=1 xi|{l : wl = si}| is well-defined, and is conditionally negative.

Proof. Let n = (n1, ..., n|S|) ∈ N|S| be such that ni = nj whenever Ci = Cj . We denote Sn = {si,k : 1 ≤
i ≤ |S|, 1 ≤ k ≤ ni} for the set of letters. We then define Mn : Sn → N ∪ {∞} as:

Mn(si,k, sj,l) =


M(si, sj) Ci = Cj and k = l

2 Ci = Cj and k 6= l

M(si, sj) Ci 6= Cj
.

We set W̃n = 〈Sn|Mn〉. We now define a homomorphism ϕn : W → W̃n given for generators by ϕn(si) =
si,1si,2....si,ni . We note that ϕn(si)

2 = si,1...si,nisi,1...si,ni = s2
i,1...s

2
i,ni

= e. Furthermore, when Ci = Cj
we have that ni = nj and (ϕn(si)ϕn(sj))

m = (si,1....si,nisj,1....sj,nj )
m = (si,1sj,1)m(si,2, sj,2)m....(si,nisj,nj )

m.

This means that in this case (ϕn(si)ϕn(sj))
M(si,sj) = e. If Ci 6= Cj then either M(si, sj) = 2 or

M(si, sj) = ∞. If M(si, sj) = 2 then also ϕn(si)ϕn(sj) = si,1...si,nisj,1...sj,nj = sj,1...sj,njsi,1...si,ni =
ϕn(si)ϕn(sj) holds. Therefore, we can extend ϕn to words w = w1....wk ∈ W by defining ϕn(w) =
ϕn(w1)...ϕn(wk). By what we just showed, this map is well-defined. Furthermore, from the definition
it follows that this map is a homomorphism. Moreover, we note that if w = w1...wk ∈ W is a reduced
expression, then ϕn(w) = ϕn(w1)...ϕn(wk) is also a reduced expression. This means in particular that

ϕn is injective. Furthermore, if we denote ψ̃n for the word length on W̃n, then we have that for a word
w = w1....wk ∈W written in a reduced expression that

ψ̃n ◦ ϕn(w) =

k∑
l=1

ψ̃n(ϕn(wl))(113)

=

|S|∑
i=1

ψ̃n(ϕn(si))|{l : wl = si}|(114)

=

|S|∑
i=1

ni|{l : wl = si}|.(115)
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Now fix x ∈ [0,∞)|S| with xi = xj whenever Ci = Cj . For m ∈ N define nm ∈ N|S| by (nm)i =
dmxie+ 1 ∈ N. Now, for w ∈W with reduced expression w = w1...wk we have∣∣∣∣∣∣ 1

m
ψ̃nm ◦ ϕnm(w)−

|S|∑
i=1

xi|{l : wl = si}|

∣∣∣∣∣∣ ≤
|S|∑
i=1

| (nm)i
m

− xi| · |{l : wl = si}|(116)

=

|S|∑
i=1

|dmxie+ 1−mxi|
m

|{l : wl = si}|(117)

≤
|S|∑
i=1

2

m
|{l : wl = si}|(118)

≤ 2|w|
m

,(119)

and hence 1
m ψ̃nm ◦ϕnm(w)→

∑|S|
i=1 xi|{l : wl = si}| as m→∞. This shows in particular that ψx is well

defined. Now, since 1
m ψ̃nm ◦ ϕnm → ψx point-wise, and since 1

m ψ̃nm ◦ ϕnm is conditionally negative, we
have by [2, Proposition C.2.4(ii)] that ψx is conditionally negative. �

We state two remarks to lemma 7.1.

Remark 7.2. By lemma 7.1, in the case of a right-angled Coxeter group W = 〈S|M〉 we have that every
weight x ∈ [0,∞)|S| defines a conditionally negative function.

Remark 7.3. For a general Coxeter group W = 〈S|M〉 and arbitrary non-negative weights x ∈ [0,∞)|S|

the weighted word length is not well-defined. Indeed, if si, sj ∈ S are such that M(si, sj) is odd, then for

ki,j := bM(si,sj)
2 c we have that (sisj)

ki,jsi and sj(sisj)
ki,j are two reduced expressions for the same word,

but the values of |{l : wl = si}| and |{l : wl = sj}| depend on the choice of the reduced expressions.

We shall now turn to examine when a weighted word length is proper. In that case we can study the
gradient-Sp property of the associated semi-group.

7.1.2. Weighted word lengths that are proper. Let us fix a Coxeter system W = 〈S|M〉. Let I ⊆ S be a
subset of the generators such that for i = 1, .., |S| either Ci ⊆ I or Ci∩I = ∅. We can define non-negative
weights x ∈ [0,∞)|S| by x(i) = χI(i). Then by lemma 7.1 we have that ψx defines a conditionally
negative function on W , and we shall denote this function by ψI . We give the following characterization
on when the function ψI is moreover proper.

Proposition 7.4. The function ψI is proper if and only if the elements S \ I generate a finite subgroup.

Proof. Indeed, if the generated group H is infinite, then ψI is not proper as ψI |H = 0. On the
other hand, if the generated group H contains N < ∞ elements, then for a reduced expression w =
w1....wk ∈ W we can not have that wl, wl+1, ...wl+N ∈ S \ I for some 1 ≤ l ≤ k −N as the expressions

wl, wlwl+1, wlwl+1wl+2, .. would all be distinct elements in H. This thus implies that ψI(w) > |w|
N+1 − 1

which shows that ψI is proper in this case. �

7.2. Gradient-Sp property with respect to weighted word length ψI. We let W = 〈S|M〉 be a
Coxeter system. When a subset I ⊆ S is such that ψI defines a proper, conditionally negative definite
function on W , we can study the gradient-Sp property of the associated semi-group. We shall only do this
for right-angled Coxeter groups. For such group, by remark 7.2, we have that ψI defines a conditionally
negative function for all I ⊆ S. If the set I then is moreover such that the elements in S \ I pair-wise
commute, then ψI is also proper.

Now, when the above property on the set I is satisfied, we can study the gradient-Sp property of the
associated semi-group. For this we note that the functions ψx satisfies ψx(w) = ψx(w1) + .. + ψx(wk)
when w = w1...wk is a reduced expression. Therefore, by lemma 6.4 we have that γψx

u,w(v) 6= 0 for
u,w ∈ S and v ∈W if and only if uv = vw and ψ(u) > 0.

Theorem 7.5. Let W = 〈S|M〉 be a right-angled Coxeter group and let x ∈ [0,∞)|S| and p ∈ [1,∞].
Furthermore, suppose the function ψx is proper. Then, the semi-group (Φt)t≥0 induced by ψx is gradient-
Sp if and only if there do not exist generators r, s, t ∈ S with M(r, s) = M(r, t) = 2 and M(s, t) =∞ and
ψx(r) > 0.
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Proof. Suppose that (Φt)t≥0 is not gradient-Sp for some p ∈ [1,∞]. We will show the generators with the
given properties exits. Namely, there are generators u,w for which γψx

u,w is not finite rank. We can thus let

v ∈W with |v| > |S|+ 1 be such that γψx
u,w(v) 6= 0. Then uv = vw and ψx(u), ψx(w) > 0 by lemma 6.4.

We note moreover that, by [18, Lemma 3.3.3] we have that u = w because these elements are conjugate,
and the Coxeter group is right-angled. We can now let z ∈ {v, uv,vw, uvw} be such that |z| ≤ |uz|, |zw|.
Then the equality uz = zw also holds. Therefore, we can write z in reduced form z = ri1,j1 ....rik,jk with
the conditions as in lemma 6.5. Now, as M(sil , sjl) < ∞ we must have M(sil , sjl) = 2 for l = 1, ..., k.
Hence z = si1si2 ...sik . Furthermore sjl+1

= sjl for l = 1, .., k − 1 since M(sil , sjl) is even. We define
r = sj1 . Then r = ci1,j1 = u so that ψx(r) > 0. Furthermore, since k = |z| ≥ |v| − 1 > |S| there exist
indices l < l′ such that M(sil , sil′ ) =∞. We then set s = sil and t = sil′ . Then M(s, r) = M(sil , sjl) = 2
and likewise M(t, r) = 2. This shows all stated properties hold for r, s, t.

For the other direction, suppose that there exist r, s, t ∈ S with M(r, s) = M(r, t) = 2 and M(s, t) =∞
and ψx(r) > 0. Define the words vn = (st)n. Then we have |vn| = 2n and hence {vn}n≥1 are all distinct.
Moreover, we have rvn = vnr and ψx(r) > 0. This means by lemma 6.4 that γψx

r,r (vn) = ψx(r) > 0 for
n ≥ 1. Thus the semi-group (Φt)t≥0 is not gradient-Sp. �

As in section 6 it follows that when the semi-group is gradient-S2 we obtain that L(W ) has the (AO+)
property and is strongly solid. Indeed, it is clear from section 5.3 that when W is infinite the operator ∆ψx

is filtered w.r.t C[W ] and has subexponential growth. The result then follows analogue to theorem 6.2.
We now state a useful corollary that follows this fact and the previous lemma.

Corollary 7.6. Let W = 〈S|M〉 be a right-angled Coxeter group and let p ∈ [1,∞]. Furthermore set

S0 = {r ∈ S : ∃s, t ∈ S : M(r, s) = M(r, t) = 2 and M(s, t) =∞}(120)

and I = S \ S0. Then, if the elements in S0 pairwise commute, we have that the function ψI on W
induces a gradient-Sp semi-group (Φt)t≥0. In particular L(W ) has the AO+ property and is strongly
solid.

The set S0 can also be described as the set of all the generators that are contained in multiple maximal
cliques. Here with a clique we mean a set of generators that pair-wise commute.

Example of right-angled Coxeter group with gradient-Sp semi-group
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Figure 3. In the above, the graph GraphS(W ) is denoted for a certain right-angled
Coxeter group. The edges with label∞ have been omitted. The set S0 has been denoted
in red. As all elements in this set pairwise commute, we obtain that the function ψI
with I = S \ S0 induces a gradient-Sp quantum Markov semi-group for all p.

We note that the (AO+) and strong solidity results from corollary 7.6 were already known, as they fol-
low from [21, Lemma 6.2.8] and from [36, Theorem 1.4]. The techniques we use here are different however.

We give a simple example of a right-angled Coxeter group W = 〈S|M〉 for which we can find a subset
I ⊆ S so that ψI is proper, and so that the associated semi-group is gradient-Sp for p ∈ [1,∞]. We
furthermore note that in our example, the semi-group associated to the standard word length ψS is not
gradient-Sp for any p ∈ [1,∞]. Another example is shown in fig. 3

Example 7.7. Let S = {s1, s2, s3, s4} and define M as M(si, sj) = 1 whenever i = j, as M(si, sj) = 2
whenever |i − j| = 1, and as M(si, sj) = ∞ whenever |i − j| ≥ 2. We set W = 〈S|M〉 and denote
I = {s1, s4}. Then since the elements in S \ I = {s2, s3} commute, they generate a finite subgroup. This
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thus means that ψI is proper. Now, since there is only one generator in {s2, s3, s4} that commutes with
s1, and also only one generator in {s1, s2, s3} that commutes with s4 we have that the generators r, s, t
as in theorem 7.5 do not exist. This means that the semi-group (Φt)t≥0 associated to ψI is gradient-Sp
for all p ∈ [1,∞]. However, for this Coxeter group, the semi-group associated to the world length ψS is
not gradient-Sp for any p ∈ [1,∞]. Indeed, if we set r = s2, s = s1 and t = s3 then theorem 7.5 shows
that this is not the case.
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8. Gradient-Sp property for semi-groups on Hecke Algebras

Let W = 〈S|M〉 be a Coxeter system. In this section we will, instead of looking at a semi-group
on the group von Neumann algebra L(W ), consider semi-groups on the Hecke algebras Nq(W ). These
Hecke algebras are deformations of L(W ), depending on the parameter q. In section 8.1 we shall give a
definition of these algebras. In section 8.2 we shall then study the gradient-Sp property of semi-groups
on these algebras. Last, in section 8.3 we shall, under some assumptions, consider semi-groups on certain
Hecke algebras and prove the gradient-S2 property of these semi-groups.

8.1. Definition of Hecke algebra. We will give a definition of these Hecke algebras. Let us fix q =
(qs)s∈S with qs > 0 for s ∈ S and such that qs = qt whenever s, t ∈ S are conjugate in W . In this text we
shall call such tuples Hecke tuples. Moreover, we will denote ps(q) = qs−1√

qs
. We can as in [18, Theorem

19.1.1] define for s ∈ S the operators T
(q)
s : `2(W )→ `2(W ) given by

T (q)
s (δw) =

{
δsw |sw| > |w|
δsw + ps(q)δw |sw| < |w|

.

For these operators we have

〈T (q)
s (δw), δz〉 = 〈δsw, δz〉+ 〈ps(q)δw, δz〉1(|sw| < |w|)(121)

= 〈δw, δsz〉+ 〈δw, ps(q)δz〉1(|sz| < |z|)(122)

= 〈δw, T (q)
s (δz)〉(123)

that is (T
(q)
s )∗ = T

(q)
s .

Now, for a word w ∈ W with reduced expression w = w1....wk we can set T
(q)
w = T

(q)
w1 .....T

(q)
wk , which

is well-defined by [18, Theorem 19.1.1]. We note that we have (T
(q)
w )∗ = T

(q)
w−1 and T

(q)
w (δe) = δw.

Furthermore for s ∈ S and w ∈W they satisfy the equations

T (q)
s T (q)

w = T (q)
sw + ps(q)T

(q)
w 1(|sw| < |w|)(124)

T (q)
w T (q)

s = T (q)
ws + ps(q)T

(q)
w 1(|ws| < |w|).(125)

Note that the first equation holds by the proof of [18, Theorem 19.1.1], and the second equation follows
by taking the adjoint on both sides.

We will denote Cq[W ] for the ∗-algebra spanned by the linear basis {T (q)
w : w ∈ W}. We furthermore

denote C∗q (W ) ⊆ B(`2(W )) for the C∗-algebra obtained by taking the closure of Cq[W ]. Finally, we define
the Hecke von Neumann-algebra Nq(W ) (or simply Nq) as the strong closure of C∗q (W ). We equip the
von Neumann algebra with the faithful finite trace τ(x) = 〈xδe, δe〉. We note here that when q = (qs)s∈S
is taken as qs = 1 for s ∈ S, then (Nq, τ) is simply the group von Neumann algebra L(W ). The group
von Neumann algebra is thus a special case of a Hecke algebra.

When the tuple q = (qs)s∈S is fixed, we will simply write Tw instead of T
(q)
w and ps instead of ps(q).

8.2. Gradient-Sp property for semi-groups on Hecke-algebras. Let W = 〈S|M〉 be a Coxeter
system. Fix a Hecke tuple q = (qs)s∈S with the stated properties, we will consider semi-groups on the
von Neumann algebra Nq. We let ψ be a proper conditionally negative definite function on W . We

define an unbounded operator ∆
(q)
ψ on L2(Nq, τ) by putting ∆

(q)
ψ (Tw) = ψ(w)Tw for the orthogonal

basis vectors {Tw : w ∈ W}. While a proper, conditionally negative function always induces a quantum
Markov semi-group on the algebra L(W ), this is not the case on Nq(W ). We can define for t ≥ 0 a

mapping Φt : Cq[W ] → Cq[W ] as Φt(Tw) = e−tψ(Tw)Tw, but this map may generally not extend to a
u.c.p map on Nq(W ). In this subsection we shall work under the assumption that ψ is such that Ψt

actually extends to a u.c.p. map.

Assumption 8.1. We have that ψ is a proper, conditionally negative function for which, for t ≥ 0 the
function Φt : Cq[W ]→ Cq[W ] given by Φt(Tw) = e−tψ(Tw)Tw extends to a u.c.p. map on Nq(W ).

If assumption 8.1 is satisfied then (Φt)t≥0 forms a quantum Markov semi-group on Nq. Indeed, the
maps (Φt)t≥ then form a semi-group of u.c.p. maps. The fact that Φt is symmetric follows, as in
section 5.1, from the fact that τ(Φt(Tr)Tg) = τ(TgΦt(Tr)) for all r,g ∈ W . Continuity of the map
t 7→ Φt(x) w.r.t the strong topology of Nq(W ) follows also similar to section 5.1, which shows that
(Φt)t≥0 is a quantum Markov semi-group.
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Under assumption 8.1 we can study the gradient-Sp property of this semi-group. This we will do
now. In order to do this, we first have to fix our appropriate ∗-subalgebra A ⊆ Nq. For this, we can
in fact just take A = Span{Tw : w ∈ W}, which is a σ-weakly dense ∗-sub-algebra of Nq. Moreover
A ⊆ D(∆) and ∆(A) ⊆ A and t 7→ Φt(a) is norm-continuous for a ∈ A. This means that we can check
the gradient-Sp property with respect to the sub-algebra A. Moreover, since the set A0 := {Ts : s ∈ S}
forms a self-adjoint set that generates the ∗-algebra A, we have by lemma 3.2 that in order to check the
gradient-Sp property for (Φt)t≥0 we only have to check that ΨTu,Tw is in Sp for generators u,w ∈ S. To
check when this is the case we shall make some calculations to obtain a simplified expression for ΨTu,Tw .

8.2.1. Simplified expression for the operator ΨTu,Tw . We make some calculations to obtain an explicit,
simplified expression for the operator ΨTu,Tw for u,w ∈ S. We will fix u,w ∈ S and let v ∈W . We have
by the multiplication rules that

Tu(TvTw) = TuTvw + TuTvpw1(|vw| < |v|)(126)

= Tuvw + puTvw1(|uvw| < |vw|)(127)

+ (Tuv + puTv1(|uv| < |v|))pw1(|vw| < |v|).(128)

We can now make the following calculations

∆ψ(TuTvTw) = ψ(uvw)Tuvw + ψ(vw)puTvw1(|uvw| < |vw|)(129)

+ ψ(uv)Tuvpw1(|vw| < |v|) + ψ(v)puTvpw1(|uv| < |v|)1(|vw| < |v|)(130)

Tu∆ψ(Tv)Tw = ψ(v)(Tuvw + puTvw1(|uvw| < |vw|))(131)

+ ψ(v)(Tuv + puTv1(|uv| < |v|))pw1(|vw| < |v|)(132)

Tu∆ψ(TvTw) = ψ(vw)TuTvw + ψ(v)TuTvpw1(|vw| < |v|)(133)

= ψ(vw)(Tuvw + puTvw1(|uvw| < |vw|))(134)

+ ψ(v)(Tuv + puTv1(|uv| < |v|))pw1(|vw| < |v|)(135)

∆ψ(TuTv)Tw = ψ(uv)TuvTw + ψ(v)puTvTw1(|uv| < |v|)(136)

= ψ(uv)(Tuvw + Tuvpw1(|uvw| < |uv|))(137)

+ ψ(v)pu(Tvw + Tvpw1(|vw| < |v|))1(|uv| < |v|).(138)

Now by collecting all terms we get

−2ΨTu,Tw
∆ψ

(Tv) = ∆ψ(TuTvTw) + Tu∆ψ(Tv)Tw − Tu∆ψ(TvTw)−∆ψ(TuTv)Tw(139)

= (ψ(uvw) + ψ(v)− ψ(vw)− ψ(uv))Tuvw(140)

+ [(ψ(uv) + ψ(v)− ψ(v))1(|vw| < |v|)− ψ(uv)1(|uvw| < |uv|)]Tuvpw(141)

+ [(ψ(vw) + ψ(v)− ψ(vw))1(|uvw| < |vw|)− ψ(v)1(|uv| < |v|)]puTvw(142)

+ (ψ(v) + ψ(v)− ψ(v)− ψ(v))1(|uv| < |v|)1(|vw| < |v|)puTvpw(143)

= γψu,w(v)Tuvw(144)

+ ψ(uv)(1(|vw| < |v|)− 1(|uvw| < |uv|))Tuvpw(145)

+ ψ(v)(1(|uvw| < |vw|)− 1(|uv| < |v|))puTvw(146)

= γψu,w(v)Tuvw(147)

+ ψ(uv)

(
|v| − |vw|+ 1

2
− |uv| − |uvw|+ 1

2

)
Tuvpw(148)

+ ψ(v)

(
|vw| − |uvw|+ 1

2
− |v| − |uv|+ 1

2

)
puTvw(149)

= γψu,w(v)Tuvw +
1

2
(|uvw|+ |v| − |vw| − |uv|) (ψ(uv)Tuvpw − ψ(v)puTvw)(150)

= γψu,w(v)Tuvw +
1

2
γψSu,w(v)(ψ(uv)Tuvpw − ψ(v)puTvw)(151)

where ψS is the proper conditionally negative function given by the word length. Now, when uv 6= vw
we have by lemma 6.4 that γψSu,w(v) = 0. In the other case that uv = vw holds, we have | 12γ

ψS
u,w(v)| =

ψS(u) = 1. In this case the elements u and w are also conjugate and therefore pu = pw. Combining these
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facts we obtain the simplified formula for ΨTu,Tw given by

ΨTu,Tw
∆ψ

(Tv) = −1

2

(
γψu,w(v)Tuvw +

1

2
γψSu,w(v)(ψ(uv)− ψ(v))Tuvpw

)
.(152)

8.2.2. Bound on S2-norm of ΨTu,Tw . Using the simplified expression for ΨTu,Tw that we have obtained,
we shall now give an upper bound on the S2 norm of ΨTu,Tw . When this upper bound is finite it can be
used to show to show that the semi-group that we considered is gradient-S2. In the following, we shall
work under the assumption that ψ(uw) ≤ ψ(u) + ψ(w) holds for u,w ∈W .

We let u,w ∈ S. Using the expression for ΨTu,Tw that we found, and using the fact that {Tv}v∈W is
an orthonormal basis for L2(Nq(W ), τ) we obtain that for the S2-norm of ΨTu,Tw we have the following
bound

‖ΨTu,Tw
∆ψ

‖2S2 =
∑
v∈W
〈ΨTu,Tw

∆ψ
(Tv),ΨTu,Tw

∆ψ
(Tv)〉(153)

=
1

4

∑
v∈W

[
|γψu,w(v)|2 +

1

4
|γψSu,w(v)|2|ψ(uv)− ψ(v)|2|pu|2

]
(154)

≤ 1

4

(
‖γψu,w‖2`2(W ) +

1

4
|ψ(u)|2p2

u‖γψSu,w‖2`2(W )

)
.(155)

We are then thus interested in functions ψ for which this bound is finite for all u,w ∈ S.

8.3. Building gradient-S2 quantum Markov semi-groups. We will now find Coxeter systems W =
〈S|M〉 together with proper, conditionally negative functions ψ on W satisfying ψ(uw) ≤ ψ(u)+ψ(w) for
all u,w ∈W for which the bound in eq. (155) is finite for all u,w ∈ S. In certain cases we know that the
function ψ actually induces a quantum Markov semi-group, i.e. that assumption 8.1 is satisfied. In those
cases we thus obtain a gradient-S2 quantum Markov semi-group. We shall give examples In section 8.3.1
we shall, for an arbitrary Hecke tuple q = (qs)s∈S and for certain right-angled Coxeter group W construct
a proper conditionally negative function ψ that induces a gradient-S2 quantum Markov semi-group on
Nq(W ). Thereafter, in section 8.3.2 we shall give other examples of Coxeter groups W and proper,
conditionally negative functions ψ on W such that the bound from eq. (155) is finite for all u,w ∈ S.
However, in these cases we do not know for what tuples q = (qs)s∈S the function ψ induces a quantum
Markov semi-group on Nq(W ). For these cases we thus only obtain that if ψ induces a quantum Markov
semi-group on Nq(W ), then it is also gradient-S2.

8.3.1. Gradient-S2 quantum Markov semi-groups. We let W = 〈S|M〉 be a right-angled Coxeter group
for which

S0 = {r ∈ S : ∃s, t ∈ S : M(r, s) = M(r, t) = 2 and M(s, t) =∞}(156)

generates a finite group, i.e. the elements in S0 commute. This is similar to the condition in corollary 7.6.
We now denote I = S \ S0 and we consider the conditionally negative definite function ψI on W . This
function is proper as S0 generates a finite group. We now fix a tuple q = (qs)s∈S . Because W is right-
angled it follows by the results [8, Corollary 3.4] and [11, Proposition 2.30] that ψI satisfies assumption 8.1.
This means that ψI actually induces a quantum Markov semi-group on Nq(W ). We show that this semi-
group is gradient-S2. Namely, it follows from corollary 7.6 that for all u,w ∈ S we have that γψIu,w ∈ `2(Γ).

Now, if we have u ∈ S0 then ψI(u) = 0 and hence by eq. (155) we have ‖ΨTu,Tw
∆ψI

‖2S2 ≤
1
4‖γ

ψI
u,w‖2`2(Γ) <∞.

In the other case that u ∈ S \ S0 = I we have that ψI(u) = 1 = ψS(u) and therefore by lemma 6.4 we
have

|γψIu,w(v)| = 2ψI(u)1(uv = vw) = 2ψS(u)1(uv = vw) = |γψSu,w(v)|.(157)

This means that in this case γψSu,w = γψIu,w ∈ `2(Γ) and therefore

‖ΨTu,Tw
∆ψI

‖2S2 ≤
1

4

(
‖γψIu,w‖2`2(Γ) +

1

4
|ψI(u)|2 · ‖γψSu,w‖2`2(Γ)

)
<∞.(158)

We thus obtain that in either case we have that ‖ΨTu,Tw
∆ψI

‖S2 <∞. Now, by the observations made in the

begin of section 8.2 we obtain that the semi-group (Φt)t≥0 on Nq(W ) that is associated to this function
ψI is gradient-S2. We note moreover that the operator ∆ψI is filtered and has subexponential growth
w.r.t. Cq[W ] when W is infinite. As Hecke-algebras are moreover locally reflexive by [13, Theorem 0.5],
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[7, Corollary 9.4.1] we obtain similar to theorem 6.2 and corollary 7.6 that the Hecke-algebra Nq(W )
has the (AO+) property in this case. As by [8] we have for right-angled Coxeter groups W that Nq(W )
also has the W∗CBAP, we then moreover obtain strongly solid for Nq(W ) by theorem 4.3, whenever we
obtained (AO+).

8.3.2. Other possible quantum Markov semi-groups. Let us fix a Coxeter system W = 〈S|M〉 for which
γψSu,w is in `2(W ) for u,w ∈ S. These Coxeter systems were ‘almost completely’ characterized in section 6.
Let q = (qs)s∈S be a Hecke tuple. We will now make the assumption that ψS satisfies assumption 8.1
for Nq(W ). Under this assumption we have that ψS induces a quantum Markov semi-group (Φt)t≥0 on
Nq(W ). Now, since the quantity ‖γψSu,w‖`2(W ) is finite for all u,w ∈ S, we have by the bound in eq. (155)

that ‖ΨTu,Tw
∆ψS

‖S2 is finite for all u,w ∈ S. By the observations at the start of section 8.2 this means that

(Φt)t≥0 is then gradient-S2. We thus obtained that if the proper, conditionally negative function ψS on
W induces a quantum Markov semi-group on Nq(W ), then this semi-group is moreover gradient-S2. As
in section 8.3.1 we obtain in such case that the Hecke-algebra Nq(W ) has the (AO+) property.
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9. Semi-groups constructed using roots of generators

In this section we will consider the roots of generators of quantum Markov semi-groups. Namely, for
a generator ∆ of a quantum Markov semi-group, and for α ∈ (0, 1) it holds true by [17, Section 10.4]
that the root ∆α also generates such semi-group. We can then study the gradient-Sp property of that
semi-group. In particular, we want to relate the gradient-Sp property of the semi-group (e−∆t)t≥0 to the

gradient-Sq property of the semi-group (e−∆αt)t≥0. In section 9.1 we will do this when ∆ := ∆ψ is a
generator of a semi-group on a group von Neumann algebra L(Γ), associated to some proper, conditionally
negative function ψ. However, the result we obtain is not very strong as we are only able to do this under
the assumption that the function n 7→ #ψ−1([n, n+ 1)) has polynomial growth, and that the function ψ
satisfies ψ(uw) ≤ ψ(u)+ψ(w) for all u,w ∈ Γ. In section 9.2 we show that some condition on the growth
of #ψ−1([n, n+1)) is really necessary, as we give an example of a semi-group associated to some function

ψ for which (e−∆ψ )t≥0 is gradient-Sp for all p ∈ [1,∞], but for α ∈ (0, 1) the semi-group (e−∆α
ψ )t≥0 is

not gradient-Sp for any p ∈ [1,∞). This shows that we do need some condition on ψ in order to say

something about the gradient-Sp property of (e−t∆
α
ψ ).

9.1. Roots of generators of semi-groups associated to a conditionally negative function. Let
us be given a discrete group Γ and a proper, conditionally negative definite function ψ on Γ. We can for
α ∈ (0, 1) consider the root of the positive operator ∆ψ that generates the semi-group (Φt)t≥0 associated
to ψ. By [17, Section 10.4] this operator ∆α

ψ then also generates a semi-group on L(Γ), that we denote

by (Φαt )t≥0. We note that the generator ∆α
ψ can be given explicitly by ∆α

ψ(λv) = ψα(v)λv. On C[Γ]

the semi-group (Φαt )t≥0 is then given by Φαt (
∑

g∈Γ αgλg) =
∑

g∈Γ e
−tψα(g)αgλg. Define for t ≥ 0 the

function ϕt,α : Γ → R given by ϕt,α(x) = e−tψ
α(x). Then Φαt is given on C[Γ] by the function mϕt,α

that multiplies point-wise with the function ϕt,α. Now, since (Φαt )t≥0 is a quantum Markov semi-group
we have that the mϕt,α extends to a u.c.p. map on L(Γ). This means by [7, Theorem 2.5.11] that the
function ϕt,α is positive definite. Now, since this holds for all t ≥ 0, we have by Schoenberg’s theorem [2,
Theorem C.3.2] that the function ψα is conditionally negative. It is moreover clear that ψα is actually
proper. Also we see that in fact we have that ∆α

ψ = ∆ψα , i.e. the semi-group generated by ∆α
ψ is the

semi-group associated to the proper, conditionally negative function ψα.

In the following lemma we will, for α ∈ (0, 1) and for certain functions ψ relate the gradient-Sp
property of the semi-group (Φ

∆ψα

t )t≥0 to the gradient-Sq property of the semi-group (Φ
∆ψ

t )t≥0. We first
introduce some notation. For functions f, g : N → [0,∞] we will write f(n) . g(n) whenever there is
a constant c > 0 such that f(n) ≤ cg(n) for all n ≥ 1. A condition that we impose in the following
lemma is that ψ is such that n 7→ #ψ−1([n, n+ 1)) has polynomial growth. This means that we assume
#ψ−1([n, n + 1)) . nr for some r ≥ 0. An example of a function ψ satisfying this condition is the
word length | · | on the Coxeter group W = 〈s1, s2|M(s1, s2) = ∞〉. Indeed, for that function we have
#ψ−1([n, n + 1)) = #ψ−1({n}) = 2 is constant. Another condition we impose on ψ is that is satisfies
ψ(uw) ≤ ψ(u) + ψ(w) for all u,w ∈ Γ. This condition is also satisfied by the word length.

Lemma 9.1. Let Γ be a group with a proper, conditionally negative definite function ψ. Suppose the
corresponding quantum Markov semi-group (Φt)t≥0 is gradient-Sq for some q ∈ [1,∞], and suppose we
have for n ∈ N that #ψ−1([n, n + 1)) . nr for some r ≥ 0. Also suppose that ψ satisfies ψ(uv) ≤
ψ(u)+ψ(w) for all u,w ∈ Γ. Then for α ∈ (0, 1) the semi-group (Φαt )t≥0 associated to ψα is gradient-Sp
for p > max{ r+1

2−α ,
1

1−α
r+1 + 1

q

}.

Proof. Fix u,w ∈ Γ. First note that since (Φt)t≥0 is gradient-Sq for some q ∈ [1,∞], we can find N1

such that ψ(v) ≥ N1 implies that |γψu,w(v)| < 1. We now set N2 = ψ(u) + ψ(w) and N = max{N1, N2}.

Now choose a v ∈ Γ with y := ψ(v) ≥ 8N . Also set y1 = ψ(uv) − ψ(v) and y2 = ψ(vw) − ψ(v), so
that ψ(uvw)− ψ(v) = y1 + y2 + γψu,w(v). We note that since ψ satisfies the triangle inequality we have
|y1| ≤ ψ(u) and |y2| ≤ ψ(w). We define the function g(x) = xα. Then by using the mean value theorem
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multiple times we get

|γψ
α

u,w(v)| = |(ψ(uvw)α + ψ(v)α − ψ(uv)α − ψ(vw)α|

= |(ψ(v) + y1 + y2 + γψu,w(v))α − (ψ(v) + y1)α + ψ(v)α − (ψ(v) + y2)α|

= |g(y + y1 + y2 + γψu,w(v))− g(y + y1) + g(y)− g(y + y2)|
≤ |g(y + y1 + y2)− g(y + y1) + g(y)− g(y + y2)|

+ |g(y + y1 + y2 + γψu,w(v))− g(y + y1 + y2)|

= |y2 · g′(c1)− y2 · g′(c2)|+ |γψu,w(v)| · |g′(c3)|

= |y2| · |c2 − c1| · |g′′(c4)|+ |γψu,w(v)| · |g′(c3)|
for some c1 between y+ y1 + y2 and y+ y1, some c2 between y and y+ y2, some c3 between y+ y1 + y2 +
ψψu,w(v) and y + y1 + y2 and for some c4 between c1 and c2. It follows that we have the bounds

|c1 − y| ≤ |y1|+ |y1|(159)

|c2 − y| ≤ |y2|(160)

|c3 − y| ≤ |y1|+ |y2|+ |γψu,w(v)|(161)

|c4 − y| ≤ |y1|+ |y2|.(162)

Now since also |y1|, |y2|, |γψu,w(v)| ≤ N we have for i = 1, 2, 3, 4 that |ci − y| ≤ 4N ≤ y
2 and thus ci ≥ y

2 .
Now since |g′| and |g′′| are decreasing functions, we have that |g′(c3)| ≤ |g′(y2 )| and |g′′(c4)| ≤ |g′′(y2 )|.
Also we have that |c2 − c1| ≤ |c1 − y|+ |c2 − y| ≤ 3N . We now define the following two constants

C1 = N · (3N)α|α− 1|22−α(163)

C2 = α21−α.(164)

We then have that

|γψ
α

u,w(v)| ≤ |y2| · |c2 − c1| · |g′′(c4)|+ |γψu,w(v)| · |g′(c3)|(165)

≤ N · (3N)α|g′′(y
2

)|+ |γψu,w(v)| · |g′(y
2

)|(166)

≤ N · (3N)α|α− 1|
(y

2

)α−2

+ |γψu,w(v)| · α
(y

2

)α−1

(167)

≤ C1ψ(v)α−2 + C2|γψu,w(v)| · ψ(v)α−1.(168)

This inequality that we obtained thus holds for all v ∈ Γ with ψ(v) ≥ 8N . We shall now turn to show
that the `p(Γ)-norms of the right hand side are finite.

By assumption we have that #ψ−1([n, n + 1)) . nr holds. Now for p1 >
r+1
2−α we have that −1 >

r + (α− 2)p1 and hence

‖ψα−2χψ−1([1,∞))‖`p1 (Γ) =
∑

y∈ψ(Γ),y≥1

#ψ−1({y}) · y(α−2)p1(169)

≤
∑
n∈N

#ψ−1([n, n+ 1)) · n(α−2)p1(170)

.
∑
n∈N

nr+(α−2)p1 <∞.(171)

Note also that since ψ is proper we have that ψ(v) < 1 for only finitely many v ∈ Γ. This shows that for
p1 >

r+1
2−α we have that ‖ψα−2‖`p1 (Γ) is finite. We now let p2 >

1
1−α
r+1 + 1

q

. We can set q′ = 1
1
p2
− 1
q

so that

1
p2

= 1
q + 1

q′ holds. Furthermore since 1
p2
− 1

q <
(

1−α
r+1 + 1

q

)
− 1

q = 1−α
r+1 we obtain that q′ > r+1

1−α . This

means that we have the inequality −1 > r + (α− 1)q′ and therefore

‖ψα−1χψ−1([1,∞))‖`q′ (Γ) =
∑

y∈ψ(Γ),y≥1

#ψ−1({y}) · y(α−1)q′(172)

≤
∑
n∈N

#ψ−1([n, n+ 1)) · n(α−1)q′(173)

.
∑
n∈N

nr+(α−1)q′ <∞.(174)
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Again, since ψ(v) < 1 for only finitely many v ∈ Γ, this shows that for p2 > 1
1−α
r+1 + 1

q

we have that

‖ψα−1‖`q′ (Γ) is finite. Now since ‖γψu,w‖`q(Γ) = 2‖Ψu,w
∆ψ
‖Sq is finite by assumption, we have by Hölder

that ‖γψu,w · ψα−1‖`p2 (Γ) is finite. This shows us that for p > max{ r+1
2−α ,

1
1−α
r+1 + 1

q

} we have that

‖γψ
α

u,wχψ−1([8N,∞))‖`p(Γ) ≤ C1‖ψα−2‖`p(Γ) + C2‖γψu,w · ψα−1‖`p2 (Γ)(175)

and this quantity is finite. Since ψ is moreover proper we have that ψ−1([0, 8N)) is finite, and therefore
we have that ‖γψαu,w‖`p(Γ) is finite. This shows that the semi-group generated by ψα is gradient-Sp for
such p, and this proves the lemma. �

9.2. Showing need of assumption of polynomial growth on ψ−1. We now show that for certain
semi-groups (Φt)t≥0 on group von Neumann algebras on Coxeter groups, that, although the semi-groups
may possess the gradient-Sp property for all p ∈ [1,∞], we have for α ∈ (0, 1) that the semi-groups
associated to the αth-power root of the generators generate semi-groups that are not gradient-Sp for any
p ∈ [1,∞]. This shows that in general we do need some condition of the growth of n 7→ #ψ−1([n, n+ 1)).

Let W = 〈S|M〉 be a Coxeter system. We consider the semi-group (Φt)t≥0 associated to the word
length ψS . In section 6 and section 7 we have classified for many Coxeter groups whether this semi-group
is, or is not gradient-Sp for p ∈ [1,∞]. For α ∈ (0, 1) we let (Φαt )t≥0 := (e−t∆

α
ψ )t≥0 be the semi-group

generated by the αth-root of ∆ψ. In the following lemma we show that (Ψα
t )t≥0 is not gradient-Sp for

any p ∈ [1,∞] when there are three distinct elements s1, s2, s3 ∈ S such that M(s1, s2) = M(s2, s3) =∞.
However, by corollary 6.10 it is clear that there are Coxeter groups satisfying this condition for which the

semi-group (Φt)t≥0 = (e
−t∆ψS
t )t≥0 is gradient-Sp for all p ∈ [1,∞). This thus shows that we generally

need some assumption on the growth of the function n 7→ ψ−1([n, n+1]) in order to say something about
the gradient-Sp property of the semi-group corresponding to the roots of the generator.

Lemma 9.2. Let W = 〈S|M〉 be a Coxeter group. Suppose there are distinct elements s1, s2, s3 ∈ S s.t.
M(s1, s2) = M(s2, s3) = ∞ then for α ∈ (0, 1) the semi-group (Ψα

t )t≥0 associated to the function ψαS is
not gradient-Sp for any p ∈ [1,∞).

Proof. Let u = w = s1. For n ≥ 2 let us denote

W2n+1 = {v := s2v1s2v2s2..s2vn−1s2s1s2 ∈W : vi ∈ {s1, s3}}(176)

W2n+2 = {v := s2v1s2v2s2..s2vn−1s2s1s3s2 ∈W : vi ∈ {s1, s3}}.(177)

Let n ≥ 5. We note that the expressions for the words v ∈ Wn are reduced, and hence |v| = n for
v ∈ Wn. Also we note that we have |Wn| ≥ 2

n
2−2.

For x ≥ 0 we set

γ(x) = (x+ 2)α − 2(x+ 1)α + xα(178)

so that we for v ∈ Wn we have that

γ
ψαS
u,w(v) = ψS(uvw)α + ψS(v)α − ψS(uv)α − ψS(vw)α = γ(n).(179)

Now set g(x) = xα, then for n ≥ 1 we have that

γ(n) = ((n+ 2)α − (n+ 1)α)− ((n+ 1)α − nα) = g′(c2)− g′(c1)(180)

where c1 ∈ [n, n+ 1] and c2 ∈ [n+ 1, n+ 2] by the mean value theorem. Now, applying the mean value
theorem again we obtain c ∈ [c1, c2] such that

|γ(n)| = |g′(c2)− g′(c1)| = |(c2 − c1)g′′(c)| ≥ α|α− 1|(n+ 2)α−2(c2 − c1).

Now in case that c2 − c1 ≤ 1
2 we obtain c3 ∈ [n+ 2, n+ 3] and c′ ∈ [c2, c3] such that

|γ(n+ 1)| = |g′(c3)− g′(c2)| = |(c3 − c2)g′′(c′)| ≥ α|α− 1|(n+ 3)α−2(c3 − c2).

Now since c2 − c1 ≤ 1
2 we then have that c3 − c2 ≥ c3 − 1

2 − c1 ≥ 1− 1
2 = 1

2 . Hence either way we have

for n ≥ 1 that max{|γ(n)|, |γ(n+ 1)|} ≥ 1
2α(1− α)(n+ 3)α−2.
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We now have

‖γψ
α
S

u,w‖p`p(Γ) =
∑
v∈Γ

|γψ
α
S

u,w(v)|p(181)

≥
∑
n≥5

∑
v∈Wn

|γψ
α
S

u,w(v)|p(182)

≥
∑
n≥5

|γ(n)|p · |Wn|(183)

≥
∑
n≥3

|γ(2n)|p · |W2n|+ |γ(2n+ 1)|p · |W2n+1|(184)

≥
∑
n≥3

max{|γ(2n)|p, |γ(2n+ 1)|p} ·min{|W2n|, |W2n+1|}(185)

≥
∑
n≥3

(
1

2
α(1− α)(2n+ 3)α−2

)p
· 2n−2 =∞.(186)

This shows that ‖Ψu,w
∆ψα

S

‖Sp = ∞ for p ∈ [1,∞), which shows that the semi-group is not gradient-Sp for

p ∈ [1,∞). �
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10. Obtaining main results for L(W ) for right-angled word hyperbolic Coxeter groups

Throughout this section we assume that W = 〈S|M〉 is a right-angled word-hyperbolic Coxeter group.
For such Coxeter groups we will obtain in corollary 10.9 that L(W ) has the (AO+) property, and that
it is strongly solid. These results were already known for general hyperbolic groups Γ, see [21, Lemma
6.2.8], [36, Theorem 1.4]. The method we present here however uses completely different tools. We note
moreover that the method used in this section also differs somewhat from the proof methods done in
previous sections. We give an outline of the proof we give in this section.

In section 10.1 we construct for the Coxeter group a certain bimodule HW . Thereafter in section 10.2
we give some conditions under which we obtain a certain quasi-containment of bimodules. In section 10.3
we examine these properties for the bimodule HW . In the final part, in section 10.4, we use the non-
commutative Riesz-transform together with the results we already obtained to prove the existence of a
u.c.p. map θ : C∗r (W )⊗minC

∗
r (W )op → B(`2(W )) as in the definition of the Akemann-Ostrand property.

From this we then obtain that L(W ) possesses the (AO+) property and is strongly solid.

10.1. Construction of bimodule HW . We let W = 〈S|M〉 be a word hyperbolic right-angled Coxeter
group. We shall write CliqS(W ) for all subsets of S of which the elements mutually commute. In the
following, for every I ∈ CliqS(W ) we will define a C[W ] − C[W ] bimodule HI . This is done in a way
similar to the construction in section 4.1. Thereafter, a single C[W ]−C[W ] bimodule HW is constructed
as a tensor product of these bimodules.

For I ∈ CliqS(W ), define the unbounded mapping ∆I : L2(L(W ))→ L2(L(W )) by

∆I(λv) = ψS\I(v)λv.(187)

Note here that ψS\I is the weighted word length defined in section 7. For I ∈ Cliq(S) we moreover define
mappings ΓI : C[W ]→ C[W ] by

ΓI(a, b) =
1

2
(∆I(b)∗a+ b∗∆I(a)−∆I(b∗a)).(188)

Denote c00(W ) for the set of finitely supported functions on W . For I ∈ CliqS(W ) we denote the
(possible degenerate) inner product 〈·|·〉I on HI,0 := C[W ]⊗ c00(W ) by

〈a⊗ ξ, b⊗ η〉I = 〈ΓI(a, b)ξ, η〉.(189)

We then define the Hilbert Space HI by quotienting out the degenerate part, and taking the completion.
The element a⊗ ξ ∈ HI we will denote by a⊗I ξ to empathize what Hilbert space we use. Similar as in
section 4.1, the space HI has a C[W ]− C[W ] module structure given by

x · (a⊗I ξ) = xa⊗I ξ − x⊗I aξ(190)

(a⊗I ξ) · y = a⊗I ξy.(191)

Now, if we have two C[W ] bimodules H1 and H2, then we can construct a C[W ] bimodule H as follows.
We set H = H1⊗H2 as Hilbert space, and denote the element a⊗ b ∈ H as a⊗W b. The bimodule action
on H is defined by

λg · (a⊗W b) = λga⊗W λgb(192)

(a⊗W b) · λg = aλg ⊗W bλg(193)

which makes H a C[W ] bimodule. We can apply this construction to the bimodules HI for I ∈ CliqS(W )
to obtain a single bimodule HW given by

HW =
⊗

I∈CliqS(W )

HI .(194)

10.2. Conditions on coefficients that imply quasi-containment. We shall now turn to showing
results that will give quasi-containment of a certain submodule of HW in the coarse bimodule. For this
we first introduce some definitions and prove some lemmas here that will make it easier to prove this. In
the next subsection we finish the argument.

Definition 10.1 (Coefficients). Let Γ be a discrete group, H be a C[Γ] bimodule and let ξ, η ∈ H. If
a map exists Tξ,η : C[Γ] → C[Γ] such that τ(Tξ,η(x)y) = 〈xξy, η〉 for all x, y ∈ C[Γ], then this map is

actually unique. Indeed, if T̃ξ,η is another map with this property then τ((Tξ,η − T̃ξ,η)(x)y) = 0 for all

x, y ∈ C[Γ] so that T̃ξ,η = Tξ,η. This unique map (if it exists) is called the coefficient of H at ξ, η. We
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shall simply write Tξ for Tξ,ξ. We will say that the coefficient Tξ,η is in Sp for some p ∈ [1,∞] if the map
extends to a bounded operator Tξ,η : `2(Γ)→ `2(Γ) that is moreover in Sp.

We have the following proposition that follows from lemma 4.1 that gives us quasi-containment of H
under some condition on the coefficients.

Proposition 10.2 (Quasi-containment). Let H be a bimodule over C[Γ]. If there exists a dense subset
H0 ⊂ H such that for any ξ ∈ H0 the coefficient Tξ,ξ is in S2 then H is quasi-contained in the coarse
bimodule `2(Γ)⊗ `2(Γ).

A subset H00 ⊆ H (not necessarily being a subspace) is called cyclic if H0 := SpanC[Γ]H0C[Γ] is dense
in H. The following lemma tells us that we can reduce to checking the property only for the coefficient
for ξ, η ∈ H00.

Lemma 10.3 (Reduction to cyclic subset). Suppose that H00 ⊆ H is a cyclic subset whose coefficients
Tξ,η for ξ, η ∈ H00 are in S2. Then the coefficients Tξ,η for ξ, η ∈ H0 := spanC[Γ]H00C[Γ] are in S2.
Consequently, by proposition 10.2, H is quasi-contained in the coarse bimodule `2(Γ)⊗ `2(Γ).

Proof. Let ξ′ = λgξλh and η′ = λsηλt for some λg, λh, λs, λt ∈ Γ and ξ, η ∈ H00. We have that

τ(Tξ′,η′(x)y) = 〈xξ′y, η〉(195)

= 〈xλgξλhy, λsηλt〉(196)

= 〈λs−1xλgξλhyλt−1 , η〉(197)

= τ(Tξ,η(λs−1xλg)λhyλt−1)(198)

= τ(λt−1Tξ,η(λs−1xλg)λhy)(199)

this shows that Tξ′,η′(x) = λt−1Tξ,η(λs−1xλg)λh. Therefore we have that Tξ′,η′ is in S2. It follows that
the coefficients are in S2 for all elements in C[Γ]H00C[Γ], and hence also for all element in H0. From this
it follows by Proposition 10.2 that H is quasi-contained in the coarse bimodule `2(Γ)⊗ `2(Γ). �

10.3. Some coefficients for bimodule HW are finite rank. We shall now continue to work with the
bimodule HW that we constructed for a right-angled word-hyperbolic Coxeter group W . We shall show
that certain ξ, η ∈ HW , the coefficient of HW at ξ, η is finite rank. These coefficient are then Sp for
p ∈ [1,∞].

10.3.1. Coefficients for a subset. Let us denote H00 ⊆ HW for the sets of all the vectors

ξv := (λv ⊗ δe)⊗W ...⊗W (λv ⊗ δe)(200)

with v ∈W . For ξu, ξw ∈ H00 we now inspect the coefficient Tξu,ξw . We have that

τ(Tξw,ξu(λv)y) = 〈λv · ξw · y, ξu〉(201)

=
∏

I∈CliqS(W )

〈λv · (λw ⊗I δe) · y, λu ⊗I δe〉I(202)

=
∏

I∈CliqS(W )

〈Ψ∆I
λu−1 ,λw

(λv)δey, δe〉(203)

=
∏

I∈CliqS(W )

γ
ψS\I
u−1,w(v)〈λu−1vwδey, δe〉.(204)

Now, we define the function

γ̃u,w(v) =
∏

I∈CliqS(W )

γ
ψS\I
u,w (v).(205)

Then, if γ̃u−1,w(v) = 0 we have that τ(Tξw,ξu(λv)y) = 0 for all y ∈ C[W ]. Hence we have Tξw,ξu(λv) = 0
in this case. We thus have that Tξw,ξu is finite rank whenever γ̃u−1,w has finite support. In lemma 10.5
we shall show that the function γ̃u,w is actually finite rank for all u,w ∈W so that we obtain

Corollary 10.4. Let W be a right-angled, word hyperbolic Coxeter group. Consider the subset H00 ⊆ HW
defined above. For ξ, η ∈ H00 we have that the coefficient Tξ,η is finite rank.

We shall now turn to prove lemma 10.5 from which this corollary follows.
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10.3.2. Proving the product from eq. (205) is finite rank. In order to prove lemma 10.5 we shall introduce
some notation here that we will use. A tuple (w1, ..., wk) with wi ∈ S we will call reduced if the
expression w1....wk is reduced. Furthermore, we will call the tuple semi-reduced whenever |w1....wk|+ |{l :
wl = e}| = k. We will say that a pair (i, j) with i < j collapses for a tuple (w1, ..., wk) whenever
wi = wj 6= e and the elements {wl : i ≤ l ≤ j} pair-wise commute. In that case we will call the tuple
(w1, ..., wi−1, e, wi+1, ..., wj−1, e, wj+1, ..., wk) the tuple obtained from (w1, .., wk) by collapsing on the pair
(i, j). We note that the word w1....wk corresponding to (w1, .., wk) is in fact the same as the word
w1...wi−1ewi+1...wj−1ewj+1...wk corresponding to the collapsed tuple. The notation that we introduced
here is convenient because it keeps indices aligned correctly. We also note that a tuple (w1, ..., wk) is
semi-reduced if and only if we cannot collapse on any pair (i, j). Hence, for a general tuple we can obtain
a semi-reduced tuple by subsequently collapsing on pairs (i1, j1), ...., (iq, jq).

We will now prove the lemma.

Lemma 10.5. For a right-angled word hyperbolic Coxeter group W , for u,w ∈ W the function γ̃u,w :
W → R given by

γ̃u,w(v) =
∏

I∈Cliq(S)

γ
ψS\I
u,w (v)

has finite support.

Proof. Let u = u1....un1 ,v = v1...vn2 ,w = w1....wn3 ∈ W written in reduced expression. We will more-
over assume that |v| > |u|+ |w|+ |S|+ 2. We will show that for such words we have γ̃u,w(v) = 0. This
then shows that γ̃u,w has finite support.

Let (u′1, ..., u
′
n1
, v′1, ..., v

′
n2

) be the semi-reduced tuple obtained by subsequently collapsing the tuple
(u1, .., un1 , v1, .., vn2) on pairs (i′1, j

′
1), ..., (i′q1 , j

′
q1). Then we must have i′l ≤ n1 and j′l > n1 since the

expressions for u and v were reduced. Also |uv| = |u| + |v| − 2q1 and more generally for a weight
x ∈ [0,∞)|S| we have

ψx(uv) = ψx(u) + ψx(v)− 2

q1∑
l=1

ψx(ui′l).

Likewise let (v′′1 , ..., v
′′
n2
, w′′1 , ..., w

′′
n3

) be the semi-reduced tuple obtained by subsequently collapsing the
tuple (v1, .., vn2 , w1, .., wn3) on pairs (i′′1 , j

′′
1 ), ..., (i′′q2 , j

′′
q2). Then we must have i′′l ≤ n2 and j′′l > n2 since

the expressions for v and w were reduced. Also |vw| = |v|+ |w| − 2q2 and more generally for a weight
x ∈ [0,∞)|S| we have

ψx(vw) = ψx(v) + ψx(w)− 2

q2∑
l=1

ψx(wj′′l −n2
).

Let us denote J = {vj : j ∈ {1, ..., n2} \ ({j′1 − n1, ...., j
′
q1 − n1} ∪ {i′′1 , ..., i′′q2})}. Now since n2 = |v| >

|u|+ |w|+ |S|+ 2 ≥ q1 + q2 + |S|+ 2 we have that |J | ≥ |S|+ 2. Hence, there are two elements g1, g2 ∈ J
that do not mutually commute. Now, if s1, s2 ∈ S commute with all elements in J , then s1, s2 commute
with both g1 and g2 so that by the word hyperbolicity of W we must have that also s1 commutes with
s2. We now let I0 ⊆ S be the set of all generators that commute with all elements in J . Then by what
we just mentioned we have that the elements in I0 pair-wise commute, i.e. I0 ∈ CliqS(W ).

Now, for i = 1, .., n1 let us set ũi = u′i and for i = 1, ..., n3 set w̃i = w′′i . Furthermore, for i = 1, .., n2

set ṽi = e whenever either v′i = vi or v′′i = e but not both, and set ṽi = vi otherwise. Let us also
denote ũ = ũ1..ũn2

, ṽ = ṽ1...ṽn2
and w̃ = w̃1...w̃n3

. We claim that then we have that ũṽw̃ = uvw.
Namely, we have that uvw = uv′′1 ...v

′′
n2
w′′1 ...w

′′
n3

. Now we can collapse (u1, ..., un1
, v′′1 , ..., v

′′
n2
, w′′1 , ..., w

′′
n3

)
subsequently on the pairs (i′l, j

′
l) for l = 1, .., q1 except when v′′j′l−n1

6= vj′l−n1
for some 1 ≤ l ≤ q1, in

which case vj′l−n1
= e. If this is the case then j′l − n1 = i′′kl for some kl ∈ {1, ..., q2}. In particular it

follows that in this case ui′l = vj′l−n1
= vi′′kl

= wj′′kl−n2
and that this element commutes with all elements

in J . Therefore ui′l ∈ I0. We can then simply interchange the elements at index i′l (which is ui′l) and the

element at index j′l (which is v′′j′l−n1
= e). This manipulation does not change the word, and allows us to

continue collapsing on the remaining pairs. Once we are done collapsing on all pairs we have obtained
the tuple (ũ1, ..., ũn1 , ṽ1, ..ṽn2 , w̃1, ..., w̃n3). This thus shows us that uvw = ũṽw̃. It also shows us that

ṽj′l−n1
∈ {e} ∪ I0 for l = 1, ..., q2. Note that also by definition ũi′l = e for l = 1, ..., q1 and w̃j′′l −n2

= e

for l = 1, ..., q2. Therefore we also have that ψS\I0(ũi′l) = ψS\I0(e) = 0 for l = 1, .., q1 and likewise
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ψS\I0(w̃j′′l −n2
) = 0 for l = 1, .., q2. Furthermore ψS\I0(ṽj′l−n1

) = 0 for l = 1, .., q1 and ψS\I0(ṽi′′l ) = 0 for
l = 1, .., q2.

Also, if we can collapse (ũ1, ...ũn1 , ṽ1, ...ṽn2 , w̃1, ..., w̃n3) on some pair (i, j) then we must have i ≤ n1

and j > n1 + n2. Indeed otherwise either (u′1, ..., u
′
n1
, v′1, ..., v

′
n2

) or (v′′1 , .., v
′′
n2
, w′1, ..., w

′′
n3

) is not semi-
reduced, which is a contradiction. Now let (i1, j1), .., (iq, jq) be the pairs on which we can subsequently
collapse (ũ1, ...ũn1

, ṽ1, ...ṽn2
, w̃1, ..., w̃n3

) to obtain a semi-reduced tuple. Then we thus must have il ≤ n1

and jl > n1 +n2. This thus implies that for l = 1, .., q we have that ũil = w̃jl commutes with the elements
from J . Therefore we have {ũil : l = 1, .., q} = {w̃il : l = 1, .., q} ⊆ I0.

Now, we have that

ψS\I0(uvw) = ψS\I0(u) + ψS\I0(v) + ψS\I0(w)(206)

− 2

[
q1∑
l=1

ψS\I0(ui′l) +

q2∑
l=1

ψS\I0(wi′′l −n2
) +

q∑
l=1

ψS\I0(ũil)

]
(207)

= ψS\I0(uv) + ψS\I0(vw)− ψS\I0(v) + 2

q∑
l=1

ψS\I0(ũil)(208)

= ψS\I0(uv) + ψS\I0(vw)− ψS\I0(v).(209)

This shows that γ
ψS\I0
u,w (v) = 0. Therefore, as I0 ∈ CliqS(W ) we obtain that γ̃u,w(v) = 0. Now as this

holds for every v ∈W with |v| > |u|+ |w|+ |S|+ 2, we obtain that γ̃u,w has finite support. �

10.4. Proving results using non-commutative Riesz transform. Let Γ be a discrete group. We
will let ∆ : `2(Γ)→ `2(Γ)⊗ `2(Γ) be the co-multiplication which is the linear extension of the map given
for g ∈ Γ by

∆(λg) = λg ⊗ λg.(210)

We note that this is indeed an isometry as we have

〈∆(λg),∆(λr)〉 = 〈λg ⊗ λ,λr ⊗ λr〉 = 〈λg, λr〉〈λg, λr〉 = 〈λg, λr〉.(211)

Let Γ be a discrete group and H be a C[Γ] bimodule. We shall call a partial isometry V : `2(Γ)→ H
almost bimodular if for all x, y ∈ C[Γ] the map `2(Γ)→ H given by ξ 7→ xV (ξ)y − V (xξy) is compact.

The arguments from lemma 10.6 and proposition 10.7 were shown to the author by Martijn Caspers
and Mateusz Wasilewski. The author thanks them for allowing him to present their proofs here.

Lemma 10.6. Let H1 and H2 be bimodules over C[Γ]. Let S1 : `2(Γ) → H1 and S2 : `2(Γ) → H2 be
partial isometries. We define a map S1 ∗ S2 : `2(Γ)→ H1 ⊗Γ H2 as (S1 ∗ S2) := (S1 ⊗ S2)∆. Then if for
i = 1, 2 the map Si is almost bimodular, and if furthermore ker(Si) = Span{λg : g ∈ Ii} for some subset
Ii ⊆ Γ then S1 ∗ S2 is an almost bimodular partial isometry with ker(S1 ∗ S2) = Span(ker(S1) ∪ ker(S2)).

Proof. We first show that S1∗S2 is a partial isometry. Let a, b ∈ `2(Γ) be elements in (ker(S1)∪ker(S2))⊥.
We can then write a =

∑
g∈Γ αgλg ∈ `2(Γ) and b =

∑
g∈Γ βgλg ∈ `2(Γ) for some αg, βg ∈ C for g ∈ Γ

that satisfy αg = βg = 0 when g ∈ I1 ∪ I2. We shall check that 〈S1 ∗ S2(a), S1 ∗ S2(b)〉 = 〈a, b〉. We have

〈(S1 ∗ S2)(a), (S1 ∗ S2)(b)〉 = 〈
∑
g∈Γ

αgS1(λg)⊗ S2(λg),
∑
r∈Γ

βrS1(λr)⊗ S2(λr)〉(212)

=
∑
g∈Γ

∑
r∈Γ

αgβr〈S1(λg)⊗ S2(λg), S1(λr)⊗ S2(λr)〉(213)

=
∑
g∈Γ

∑
r∈Γ

αgβr〈S1(λg), S1(λr)〉〈S2(λg), S2(λr)〉(214)

=
∑
g∈Γ

∑
r∈Γ

αgβr〈λg, λr〉〈λg, λr〉(215)

=
∑
g∈Γ

αgβg = 〈a, b〉.(216)

Now, let a ∈ ker(S1)∪ker(S2). Then we can write a =
∑
g∈Γ αgλg where the complex numbers αg satisfy

αg = 0 when g 6∈ I1 ∪ I2. We moreover note that when g ∈ I1 ∪ I2 then S1(λg) = 0 or S2(λg) = 0 so that
S1(λg)⊗ S2(λg) = 0. This shows that (S1 ∗ S2)(a) =

∑
g∈I1∪I2 αgS1(λg)⊗ S2(λg) = 0. This shows that

S1 ∗ S2 is a partial isometry with ker(S1 ∗ S2) = Span(ker(S1) ∪ ker(S2)). We now show that it also is
almost bimodular. For this we first note that for u,w ∈ Γ and for i = 1, 2 we have that a 7→ λuSi(a)λw
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is a partial isometry with kernel Span{λg : g ∈ Ii}. Furthermore the map Su,wi : `2(Γ) → Hi given by
Su,wi (a) = Si(λuaλw) is a partial isometry with kerSu,wi = Span{λg : g ∈ λ−1

u Iiλ
−1
w }. We compute that

λu(S1 ∗ S2)(λv)λw = λu(S1(λv)⊗ S2(λv))λw(217)

= λu(S1(λv)⊗ S2(λv))λw(218)

= (λuS1(λv)λw ⊗ λuS2(λv)λw)(219)

= (λuS1λw ∗ λuS2λw)(λv)(220)

so that we obtain that λu(S1 ∗ S2)λw = (λuS1λw) ∗ (λuS2λw). Furthermore, we calculate

(S1 ∗ S2)(λuλvλw) = S1(λuvw)⊗ S2(λuvw)(221)

= Su,w1 (λv)⊗ Su,w2 (λv)(222)

= (Su,w1 ∗ Su,w2 )(λv)(223)

and hence obtain that (S1 ∗ S2)(λuaλw) = (Su,w1 ∗ Su,w2 )(a) for a ∈ `2(Γ). This then gives us that for
a ∈ `2(Γ) we have

λu(S1 ∗ S2)(a)λw − (S1 ∗ S2)(λuaλw) = (λuS1λw ∗ λuS2λw)(a)− (Su,w1 ∗ Su,w2 )(a)(224)

= ((λuS1λw − Su,w1 ) ∗ λuS2λw)(a)(225)

− (Su,w1 ∗ (Su,w2 − λuS2λw))(a).(226)

Now since both S1 and S2 are almost bimodular we have that λuS1λw − Su,w1 and Su,w2 − λuS2λw are
compact. We shall now show that when K : `2(Γ)→ H1 is compact and T : `2(Γ)→ H2 is bounded then
K ∗T and T ∗K are compact. This will then show by eq. (224) that S1 ∗S2 is almost bimodular. We can
find a sequence {Fn}n≥1 of finite subsets of Γ that increases to Γ. For a finite set F , we denote PF for the
orthogonal projection on the subspace of `2(Γ) of functions with support in F . This projection is finite
rank, as F is finite. Now, we note now that PF is such that ∆◦PF = (PF⊗Id`2(Γ))◦∆ = (Id`2(Γ) ◦PF )◦∆.
We now show that K ∗ T can be approximated in norm by finite rank operators. Namely, we have

‖(K ∗ T )PF −K ∗ T‖ = ‖(KPF −K) ∗ T‖ ≤ ‖KPF −K‖ · ‖T‖.(227)

Now by compactness of K we have that limn→∞ ‖KPFn−K‖ = 0. Therefore also limn→∞ ‖(K ∗T )PFn−
K ∗ T‖. Now, since the operators (K ∗ T )PFn for n ≥ 1 are finite rank, we have that K ∗ T is compact.
The argument that T ∗K is compact is similar. Now, by what we stated before this gives that S1 ∗ S2 is
almost bimodular, which finishes the proof.

�

For a set J = {v1, ..., vn} ∈ Cliq(S) we will denote the word λJ := v1....vn. Note that since the
elements in J commute the order of the elements vi in the expression does not matter, so that λJ is
well-defined. We shall moreover call a word of which all letters commute a clique word. It can now be
seen that for I ∈ Cliq(S) we have that ker(∆I) = Span{λJ : J ⊆ I} and that this is a finite dimensional
subspace of `2(Γ).

For I ∈ Cliq(S) we now introduce the Riesz-transform RI associated to ∆I . This is linear map
RI : `2(W )→ HI defined on ker(∆I)⊥ by

RI(λv) =
λv ⊗ δe√
ψS\I(v)

(228)

and on ker(∆I) as 0. We prove that the Riesz-transform is a partial isometry that is almost bimodular.

Proposition 10.7. For I ∈ Cliq(S) the Riesz-transform RI is an almost bimodular partial isometry with
ker(RI) = Span{λJ : J ⊆ I}.
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Proof. We first show that it is a partial isometry. Namely, for λu, λw that are in ker(∆I)⊥ we have

〈RI(λu), RI(λw)〉 =
〈λu ⊗ δe, λw ⊗ δe〉I√
ψS\I(u)ψS\I(w)

(229)

=
〈ΓI(λu, λw)δe, δe〉√
ψS\I(u)ψS\I(w)

(230)

=
〈(ψS\I(w−1) + ψS\I(u)− ψS\I(w−1u))λw−1uδe, δe〉

2
√
ψS\I(u)ψS\I(w)

(231)

= 1(u = w)
ψS\I(u−1) + ψS\I(u)− ψS\I(e)

2
√
ψS\I(u)ψS\I(u)

(232)

= 1(u = w) = 〈λu, λw〉.(233)

Therefore we have for a, b ∈ ker(∆I)⊥ that 〈RI(a), RI(b)〉 = 〈a, b〉. It now follows that RI is a partial
isometry with ker(RI) = ker(∆I) = Span{λJ : J ⊆ I}.

In order to proof that RI is almost bimodular we use the result [12, Theorem 5.12]. To use this result
we need ∆I to be filtered and have subexponential growth. This is true when W is infinite, which follows
from section 5.3. Moreover, when W is finite we have that `2(W ) is finite dimensional and therefore RI
is almost bimodular in this case as well. In either case we thus obtain that RI is almost bimodular.

�

Proposition 10.8. Let W = 〈S|M〉 be a right-angled word-hyperbolic Coxeter group. There exists a u.c.p.
map θ : C∗r (W )⊗min C

∗
r (W )op → B(`2(W )) such that for all a, b ∈ C∗r (W ) we have that θ(a⊗ bop)− abop

is compact.

Proof. By proposition 10.7 we have that for I ∈ Cliq(S) the maps RI are almost bimodular partial
isometries, whose kernel is given by ker(RI) = ker(∆I) = Span{λJ : J ⊆ I}. Therefore, by apply
lemma 10.6 multiple times we have that the mapping R : `2(W )→ HW defined by

R = ∗I∈Cliq(S)RI(234)

is a partial isometry that is almost bimodular. Moreover, by explicit examination we see that the finite
dimensional kernel of (234) is given by the linear span of {λI , I ∈ Cliq(S)}. Furthermore, we have

(235) R(λv) := ⊗I∈Cliq(S)RI(λv) =

 ∏
I∈Cliq(S)

ψS\I(v)−
1
2

 (λv ⊗ δe)⊗W . . .⊗W (λv ⊗ δe) ∈ H00

for every v ∈ W not being a clique word. Let K ⊆ `2(W ) be the closed linear span of {λI , I ∈ Cliq(S)}
which is a finite dimensional subspace of `2(W ). Let pK : `2(W )→ K be the orthogonal projection onto
K. Then pK is finite rank and hence 1 − pK is almost bimodular. Since pK is the projection onto the
kernel of R we have that R∗R = 1− pK is Fredholm.

Let L ⊆ H be the smallest C[W ]-C[W ] bimodule containing the range of R. Note that we have

Ran(R) ⊆ L ⊆ H0
‖·‖2

where H0 := C[W ]H00C[W ]. Now, for every vectors ξ and η of the form (235)
we have that the coefficients Tξ,η is Hilbert-Schmidt, see corollary 10.4 and lemma 10.3. Therefore Tξ,η
is Hilbert-Schmidt for every ξ, η ∈ L by lemma 10.3. It follows from proposition 10.2 that L is quasi
contained in the coarse bimodule. We have now obtained that R : `2(W ) → L satisfies the assumptions
of [12, Proposition 5.2] and the same proposition concludes the theorem. �

Corollary 10.9. Let W be a right-angled word-hyperbolic Coxeter group. Then L(W ) has the AO+

property and is strongly solid.

Proof. The C*-algebra C∗r (W ) ⊆ L(W ) is a σ-weakly dense subalgebra. Now by theorem 6.1 we have
that C∗r (W ) is locally reflexive. Now the property from proposition 10.8 then gives us that L(W ) has
the AO+ property, by its definition. As L(W ) has W∗-CBAP by theorem 6.1, and as it has a separable
predual, we then obtain from theorem 4.3 that L(W ) is strongly solid. �
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11. Discussion and conclusions

In this thesis we have for quantum Markov semi-groups studied the gradient-Sp property from [9,
12]. We did this with the goal of obtaining new examples of von Neumann algebras that have the
Akemann-Ostrand property (AO+) and are strongly solid. Specifically we have studied the gradient-Sp
property for certain quantum Markov semi-groups on the group von Neumann algebras L(W ) for given
Coxeter group W . We had moreover extended our study to Hecke algebras Nq(W ). In certain cases we
were able to obtain a gradient-Sp quantum Markov semi-group, which then gave us (AO+) and strong
solidity for the von Neumann algebra. Also, for certain Coxeter groups W we were able to obtain these
properties for L(W ) using a slightly different method. We will in this section restate the precise results
that we obtained. This we will do in section 11.1, where we state and discuss our results for each section
separately. Thereafter, in section 11.2 we shall moreover discuss possible directions for future research.

11.1. Summarizing results. We shall summarize our results for each section.
In section 3 we stated the definition of the gradient-Sp property and we proved lemma 3.2 that shows

that in order to prove the gradient-Sp property it is enough to check the defining condition only for pairs
of elements in a self-adjoint generating set A0.

In section 4 we discussed the results that we want to obtain using gradient-Sp quantum Markov semi-
groups. We moreover restated conditions from [12] that our quantum Markov semi-group must satisfy to
obtain these results.

In section 5 we considered semi-groups on group von Neumann algebras that are built using a proper,
conditionally negative function ψ. For these semi-groups we gave a specific condition on the function ψ
that ensures that the semi-group is gradient-Sp.

In section 6 we specifically considered group von Neumann algebras of Coxeter groups. We looked
at the quantum Markov semi-groups associated to the standard word length and studied when this
semi-group is gradient-Sp. We obtained the following result.

Theorem 11.1. Let W = 〈S|M〉 be a Coxeter system. We denote E0 = {(i, j) : M(si, sj) ∈ 2N}
and E1 = {(i, j) : M(si, sj) ∈ 2N + 1}. Suppose W is such that (S,E1) is a forest, and that for every
connected component C of (S,E1) there is at most one edge {t, r} ∈ E0 with t ∈ C and r 6∈ C, and no
edge {t, t′} ∈ E0 with t, t′ ∈ C. Then the quantum Markov semi-group on L(W ) associated to standard
word length is gradient-Sp for all p ∈ [1,∞], and L(W ) has the Akemann-Ostrand property (AO+) and
is strongly solid.

We also obtained results on when the semi-group is not gradient-Sp. These results combined give an
almost complete characterization of the kind of Coxeter groups for which this semi-group is gradient Sp
for some p ∈ [1,∞] (or equivalently for all p ∈ [1,∞]). If we only consider Coxeter groups W = 〈S|M〉
for which no two generators s, t ∈ S commute, then our characterization is actually complete. That is,
we have obtained the following result.

Theorem 11.2. Let W = 〈S|M〉 be a Coxeter system such that M(s, t) 6= 2 for all s, t ∈ S. We denote
E0 = {(i, j) : M(si, sj) ∈ 2N} and E1 = {(i, j) : M(si, sj) ∈ 2N + 1} and fix p ∈ [1,∞]. We have that
the semi-group on L(W ) associated to the word length ψS is gradient-Sp if and only if (S,E1) is a forest,
and for every connected component C of (S,E1) there is at most one edge {t, r} ∈ E0 with t ∈ C and
r 6∈ C, and no edge {t, t′} ∈ E0 with t, t′ ∈ C.

We emphasize that this does not give a classification of Coxeter groups for which L(W ) is strongly
solid. Indeed, from the gradient-S2 property we obtain strong solidity, but the fact that the semi-group
is not gradient-S2 does not mean that L(W ) is not strongly solid.

In section 7 we considered semi-groups on L(W ) that are associated to other conditionally negative
functions ψ, namely weighted word lengths. Here, we were able to construct gradient-Sp quantum Markov
semi-groups on L(W ) for certain right-angled Coxeter groups W . More specifically we assumed that the
right-angled Coxeter group W is such that the elements in

S0 := {r ∈ S : ∃s, t ∈ S : M(r, s) = M(r, t) = 2 and M(s, t) =∞}(236)

mutually commute. The semi-group that we constructed was then actually the semi-group associated
to the proper, conditionally negative function ψS\S0

. We then showed that this semi-group is Sp for all
p ∈ [1,∞].

In section 8 we have looked at the Hecke algebras Nq(W ), and we tried to generalize our results from
section 6 and section 7 to these algebras. We obtained in section 8.3.1 that the construction from section 7
for p = 2 actually applies to general Hecke algebras Nq(W ) as well. We state the result here.
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Theorem 11.3. Let W be a right-angled Coxeter group for which the elements in

S0 := {r ∈ S : ∃s, t ∈ S : M(r, s) = M(r, t) = 2 and M(s, t) =∞}(237)

all mutually commute. We then denote I = S\S0, and we let q = (qs)s∈S be an arbitrary Hecke tuple. We
obtain that the function ψI induces a gradient-S2 quantum Markov semi-group on Nq(W ). Furthermore
we find that Nq(W ) has the Akemann-Ostrand property (AO+) and is strongly solid.

In section 8.3.2 we look at the Coxeter groups W for which the word length ψS induces a gradient-S2

quantum Markov semi-group on L(W ). We do not know in those cases whether the word length ψS also
induces a quantum Markov semi-group on the Hecke algebras Nq(W ). However, we obtain for those cases
that, for a Hecke tuple q = (qs)s∈S , if ψS induces a quantum Markov semi-group on Nq(W ), then this
semi-group is moreover gradient-S2. That is, we have

Theorem 11.4. Let W be a Coxeter group, and let q = (qs)s∈S be a Hecke tuple. Suppose the word
length ψS induces a gradient-S2 quantum Markov semi-group on L(W ). Furthermore, suppose that the
word length ψS induces a quantum Markov semi-group on Nq(W ). Then this semi-group on Nq(W ) is
also gradient-S2 and we obtain that the Hecke-algebra Nq(W ) has the Akemann-Ostrand property (AO+).

In section 9 we looked at group von Neumann algebras for generally groups that have the Haagerup
property. We aimed to relate the gradient-Sp of a semi-group (e−∆ψ )t≥0 associated to a proper, condi-
tionally negative function ψ to the gradient-Sq property of a semi-group that is generated by a root ∆α

ψ

of the positive generator ∆ψ. The conditions on the function ψ that we had to impose in order to get
such results turned out to be quite restrictive. This result may therefore not be very useful.

In section 10, for a right-angled word-hyperbolic Coxeter group W , we constructed certain bimodules
similar to [12]. These we used to construct a single bimodule HW . For this bimodule we showed that
certain coefficients are finite rank, which then gave us the quasi-containment of certain bimodules. Using
the non-commutative Riesz-transform we obtained our results for L(W ), that is, we obtained

Theorem 11.5. Let W be a right-angled word hyperbolic Coxeter group. Then L(W ) has the Akemann-
Ostrand property (AO+) and is strongly solid.

We note that the result from theorem 11.5 was already known in [36] for general hyperbolic groups.
However, the proof that we gave uses a completely different method.

11.2. Directions for future research. We finish this thesis by stating questions that remain open, and
discussing directions for future research. There are the following two main classification problems.

11.2.1. Classification of Coxeter groups for which L(W ) is strongly solid. We have obtained results that
say that L(W ) is strongly solid for certain kinds of Coxeter groups. Ideally we would want to obtain a
full classification for what kind of Coxeter groups this holds. To obtain new types of Coxeter groups for
which L(W ) is strongly solid, one could try to prove that the semi-group associated to the standard word
length is gradient-Sp for some Coxeter groups for which this is not yet known. However, this can only
give relatively few new examples. Perhaps one should adapt the semi-group that we are using in order
to get more new results, or maybe one should use an entirely different method instead. Furthermore, in
order to obtain a classification one should also study for what Coxeter groups L(W ) is not strongly solid.

11.2.2. Classification what Hecke algebras Nq(W ) are strongly solid. We have tried to extend our results
for group von Neumann algebras to Hecke algebras. However in section 8.3.2 we do not know for what
Hecke tuples q = (qs)s∈S the function ψS will actually induce a quantum Markov semi-group on Nq(W ).
If we could, as in the right-angled case obtain that this is the case, then we obtained new examples of
Hecke algebras that are strongly solid. Furthermore, if more results on the classifications of Coxeter
groups W for which L(W ) is strongly solid are obtained, one may also try to extend these to Hecke
algebras as well.
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