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Abstract. Probabilistic deterministic Finite Automata (PDFA) learning is a ma-
chine learning method used for tasks requiring human understandability and more
formal validation. In recent years we saw numerous applications of ensemble tech-
niques with other machine learning models such as decision trees. Following the suc-
cess of these attempts, in this paper, we aim to integrate ensemble methods into
Alergia, which is a famous algorithm in the PDFA learning realm. We present a
randomized variation of the Alergia algorithm and show how to build an ensemble
out of it. Such an ensemble can visibly outperform a single Alergia model, which is
documented by a series of experiments. Next, we present a custom distance metric
measuring dissimilarity between a pair of Alergia models. We show how it can be used
to build an Inter-Model Variety score quantifying the overall diversity of a group of
models. Lastly, we analyze several methods that strive to select a well-performing
diverse ensemble out of a big population of generated models.

1 Introduction

Probabilistic Deterministic Finite Automata (PDFA) learning is a branch of machine learn-
ing derived from Automata, which can be used for classi�cation and prediction tasks. Its
aim is to create a minimal PDFA consistent with the training data that can generalize to
unseen test data. The inherent visualization potential of PDFAs makes them useful in areas
requiring interpretable models such as software analysis [1] and anomaly detection [2].

Alergia [3] is a famous deterministic algorithm for learning a regular language given a
data set consisting of only positive data - words that all belong to the language. At its core,
the algorithm starts with a Pre�x Tree Acceptor (PTA) of the samples and then repeatedly
reduces it to smaller automatons that are similar within statistical uncertainty to the original
PTA. The reductions are performed using heuristic merges, where if two states share enough
similarity, they get combined.

Ensemble learning is a general term for methods that combine the predictions of several
di�erent models to make a joint decision. It follows from the concept of the wisdom of the
crowd that tells us the average of many individual guesses should result in an accurate
prediction [4]. Ensemble methods have been successfully used with various machine learning
methods, including some that are closely related to PDFA learning like random forests [5].
Despite this, the use of ensemble techniques with PDFA learning has remained an unexplored
theme.

In this paper, we show how the deterministic Alergia algorithm can be modi�ed to form
an ensemble of distinct models. We propose a method of introducing randomness into the
algorithm and then argue for an approach of combining the predictions of the ensembled
models. We combine these ideas in a parallelizable implementation of the ensemble using
the FlexFringe project [2] as a basis.

We bring up the concept of ensemble diversity formalized by Wood et al. [6] as a hidden
factor in the bias-variety tradeo� of a model. We investigate how model diversity, shown
to elevate the predictive performance of ensembles [4], can in�uence the Alergia ensemble.
We present the Inter-Model Variety (IMV) score as a metric to quantify the diversity of a
group of Alergia-generated PDFAs. Furthermore, we show several methods to optimize for
the ensemble diversity: a heuristic that maximizes the IMV score and clustering.

A particular focus of this research is testing ensemble performance under sparse training
conditions, such as those encountered in real-life datasets like the HDFS software logs. In
such scenarios, a single model trained with Alergia often struggles to generalize e�ectively.
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We demonstrate that ensemble-based approaches o�er a signi�cant advantage in these set-
tings.

The general structure of this paper is as follows. Section 2 gives an overview on the
theoretical background of this research. In Section 3 we present how the original Alergia
algorithm can be modi�ed to produce an ensemble of models. Next, in Section 4, we ex-
perimentally analyze the performance of ensembles and optimizing for ensemble diversity.
Section 6 summarizes the contributions of this paper.

2 Theoretical Background

In this chapter we introduce the theoretical background of the research. We begin in Sec-
tion 2.1 by formally de�ning a PDFA. Next, in Section 2.2, we brie�y go over the general
concepts of evidence-driven merging and the Alergia algorithm. Lastly, in Section 2.3, we
showcase Perplexity which is an evaluation metric used with probabilistic models.

2.1 Probabilistic DFA Extension

Deterministic �nite automaton (DFA) is a machine with a �nite number of states that for
every string of symbols (trace) over some alphabet either accepts or rejects it. Probabilistic
deterministic �nite automaton (PDFA) is built on top of a DFA by assigning each transition
of the machine some probability of occurring next, and every state a probability of being
an accepting state. With such modi�cations, the machine can assign a probability to every
trace over the alphabet, with some traces having a probability of zero.

Formally, we can de�ne a PDFA as a DFA with an addition of a function π : S ×Σ+ →
[0, 1], which establishes the probabilities of transitions. It maps every combination of the
current state s ∈ S and a symbol x ∈ Σ+ to a probability value, such that for every state s
of the automaton, the sum of all values of this function is equal to 1. The extended alphabet
Σ+ is the regular alphabet plus the symbol ϵ marking the end of the trace. The value π(s, ϵ)
indicates the probability of a trace �nishing in state s.

The set of all traces over the regular alphabet is noted as Σ∗. Then, we de�ne the
probability of a trace x ∈ Σ∗ in a PDFA M as:

M(x = x1x2 . . . xn) =
( ∏

i∈1,...,n

π(si−1, xi)
)
· π(sn, ϵ) (1)

where si is the state reached after evaluating �rst i symbols of x. Because of the property
that probabilities in every state sum up to 1, the following holds:∑

x∈Σ∗

M(x) = 1 (2)

Hence, a PDFA M can be also seen as a discrete probability distribution over the space Σ∗.
In this context, performing random walks on M can be seen as sampling elements from the
distribution.

2.2 PDFA Learning and Alergia

Evidence driven state merging [7] is one of the most prominent techniques in the domain of
DFA/PDFA Learning. The algorithm starts with a Pre�x Tree Acceptor of the input trace
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data, which is simply a pre�x tree build from the traces that also stores the frequency of
traces going through and ending up in every tree node. The tree is reduced step-by-step to a
minimal DFA by applying consistent merges. The key feature of the method is that it orders
all the possible consistent merges by the amount of evidence in the data that supports them.
The optimal version of the algorithm always chooses the best scored merge.

Alergia [3] is a probabilistic variant of the evidence-driven state merging framework,
where the criterion in which the merge quality is ordered is a probabilistic bound. In short
terms, the algorithm considers all merges which lead to models that could have produced
the training data within some probabilistic uncertainty. The regular version of the algorithm
always select the most probable of all these merges, which makes it deterministic. The
algorithm �nishes when there are no more merges that ful�ll the probabilistic bound.

2.3 Evaluating Probabilistic Models

How can the quality of probabilistic models such as a PDFA be evaluated and compared?
In case of PDFA models, this question primarily comes down to the predictive performance
of a model on unseen test data. The computational footprint and memory requirements
needed to train and deploy a model are usually minimal, because in general PDFA learning
is regarded as a lightweight machine learning approach [8]. Furthermore, training and run-
ning an ensemble of independent models can be easily parallelized and scales linearly with
ensemble size.

When it comes to evaluating the predictive performance of the models, the problem re-
duces to comparing probability predictions for a set of traces to ground truth values. To
formalize, we seek a metric that given a set of target probabilities P and a set of predicted
probabilities Q, outputs a numeric score indicating the quality of the predictions in compar-
ison to the target. To handle this, Verwer et al. [9] employed the Perplexity score, a standard
metric in probabilistic modeling that quanti�es how well a probability distribution predicts
a sample. Intuitively, it measures the average "surprise" the model experiences when seeing
the actual data. The larger the perplexity, the less likely the model is to guess a sample from
the real distribution. The metric is de�ned as:

Perplexity(p, q) = 2
∑

x p(x)·log q(x) (3)

where p is the target distribution and q is the proposed distribution. The important fact
here is that p and q must have the same domain and that the metric sums over all the
elements in the domain. To make the metric applicable for PDFAs, that often give a non
zero probability value to an in�nite set of traces, we compute the perplexity over a �nite
sample set of test traces. Given an alphabet of symbols Σ and a test set of unique traces
over the alphabet TS ⊂ Σ∗, we de�ne it as:

Score(p, q, TS) = 2
∑

x∈TS p(x)/Np · log q(x)/Nq (4)

In this formula we added terms Np and Nq as normalization constants equal to the sum of
p(x) and q(x) on all the traces in the test set. This is done to normalize the value of the
metric between di�erent test sets.

If q(x) was misaligned with the domain and predicted q(x) = 0 for some positive trace
in the test set, perplexity would be in�nitely high. We can punish the models that don't
recognize all the test traces, while not setting their score to in�nity by replacing the zero
predictions with the average of all other guesses on the test set. This approach is fair as
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only information available to the predictor is used, and the assumption that each test trace
is positive is known by all.

3 Combining Alergia and Ensembles

This chapter aims to explain the analysis of the main research problem and guides the reader
through the implementation of the solutions. It starts in Section 3.1 by showing how the
randomization of Alergia algorithm was achieved and then in Section 3.2 presents how the
predictions of an ensemble of models are combined. Next, the Section 3.3 introduces the
Inter-Model Variety (IMV) score used to quantify the predictive quality of one model in
relation to another one. Section 3.4 continues by showing how a true distance metric can be
achieved using the IMV score. The chapter ends with Section 3.5 presenting how the IMV
score and a chosen clustering technique can be used to prune a huge collection of models
into a similarly performing smaller ensemble.

3.1 Randomization of Alergia

The key research question of this paper is how to modify or build upon the original Alergia
algorithm to produce a varied ensemble of models. Among the many general methods for
transforming a single model into an ensemble, one of the most universal and easy to im-
plement is the introduction of randomness into the learning process. This research adopts
that method to achieve model diversity without straying from the core principles of Alergia.
The added bene�t of this approach is the direct integration with other known variations
or improvements of the Alergia algorithm. Existing problem-solving strategies built around
Alergia can thus be easily converted to work with our ensemble framework.

To introduce randomness into the Alergia algorithm, we modify the merge selection pro-
cess, which allows for the creation of a diverse group of models using the same training data.
Speci�cally, we individually skew the quality score of each candidate merge by multiplying
it with a number x← U(1− r,1). Here, U is a uniform distribution from 1− r to 1.

This method allows control over the amount of randomness introduced into the learning
process. For example, one can increase the randomization when training on smaller datasets,
where the number of probable models is limited. Larger values of the parameter r lead to
greater randomness in the merge decisions, and bigger search space of possible models.

3.2 Ensemble Voting

A central question when designing an ensemble is how to combine the outputs of its compo-
nent models. In our case, each randomized Alergia model produces a probability between 0
and 1, allowing for a natural aggregation method: taking an average of the predictions. The
simplest version of this is uniform averaging, where all models have equal weights.

We adopt this equal-weight strategy deliberately. In sparse training sets scenario, one of
the focuses of this work, we want to amplify the bene�t of model diversity. Validation data,
sourced from sparse training set, cannot reliably distinguish truly generalizable solutions
from accidental ones. Thus, adjusting weights based on signals coming from the training
data can reduce the diversity among models, e�ectively pulling the ensemble closer to a
single over�tted solution.

By contrast, equal weighting respects the independence of the diverse hypotheses gen-
erated by randomized training. It treats each model as a valid interpretation of the data,



5

which is especially important in high-uncertainty, low-data settings. Prior work in ensem-
ble learning also supports this view: uniform averaging often performs surprisingly well
when model errors are uncorrelated or weakly correlated [10]. In our setting, the ensemble's
strength comes from the varied inductive biases of its members, not from over�tting a small
validation set.

3.3 Inter-Model Variety Score

Another area explored in this research is a well-known phenomenon in ensemble learning,
that increased diversity among ensemble members can lead to improved performance. This
has been theoretically grounded by Wood et al. [6], who identify diversity as a hidden
dimension of the bias-variance tradeo� and show that greater diversity directly contributes
to a reduction in predictive loss. We propose a method of quantifying ensemble diversity
called the Inter-Model Variety (IMV) score. The IMV score enables comparison of structural
di�erences between ensembles and provides an optimization objective for ensembling Alergia
models.

The construction of the IMV score is based on measuring for each pair of models in the
ensemble how di�erently they behave. One reasonable way to do this is to evaluate how well
one model predicts the outputs of another. This leads to a scoring method based on sample
cross entropy, which we de�ne as a directional measure of how much model A disagrees
with model B on a sample of traces. The idea leverages the fact that a PDFA model can
both generate and evaluate the probabilities of traces. In practice, we sample a set of traces
from one model, and then use the other model to evaluate them. A higher value of sample
cross entropy indicates that the two models make di�erent predictions, thus capturing model
dissimilarity.

This approach is closely related to the perplexity metric discussed earlier in Section 2.3,
which we used to evaluate a model's performance on test data. In both cases, we compare
a model's probability estimates to a set of target values. However, in sample cross entropy,
we omit the exponentiation step used in perplexity. This allows us to measure disparity in
a more linear scale. It is important to note that sample cross entropy is not symmetric, and
that a model compared with itself does not necessarily yield zero.

We de�ne the sample cross entropy from model A to model B as follows:

h(A → B) =
∑

x∈Sk(B)

B(x)

NB
· log A(x)

NA
(5)

Here, Sk(B) denotes a sample of k unique traces generated by model B, with B(x) and
A(x) referring to the probabilities assigned to trace x. NA and NB are normalization con-
stants. The resulting value, h(A → B), gives us a directional score re�ecting how surprising
the behavior of model B is to model A, over a sample of B's trace distribution. This al-
lows us to construct a set of pairwise distances between models and ultimately de�ne the
Inter-Model Variety of an ensemble.

To compute the Inter-Model Variety (IMV) score for an ensemble E of n models, we
begin by generating a unique sample set Sk(M) of traces for each model M ∈ E. Then, for
each ordered pair of models (A,B) ∈ E×E, we compute the sample cross entropy h(A → B)
using the traces from Sk(B). We normalize these values by subtracting the self-cross entropy
of the reference model. This gives us the normalized score:

f(A,B) = h(A → B)− h(B → B) (6)
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The IMV score is then de�ned as the sum of all these normalized distances:

IMV(E) =
∑

A,B∈E×E

f(A,B) (7)

This value aggregates all pairwise comparisons, treating each model both as an evaluator
and as a source of behavior. The score grows with the diversity of model predictions across
the ensemble, rewarding ensembles whose members strongly disagree on each other's sample
outputs.

The intuition behind this approach is that if all models perform similarly and make
similar predictions, the pairwise distances will be low, resulting in a low IMV score. In
contrast, if models behave very di�erently from each other, then the distances will be high,
and the IMV will re�ect this. While the score doesn't take into account di�erent performance
levels across models and cannot be used to compare ensembles of di�erent sizes, it still o�ers
a simple and e�ective way to quantify model diversity, which can be useful for understanding
and optimizing ensemble design.

3.4 Pairwise Model Distance Metric

Having de�ned the notion of sample cross entropy of one model in relation to another model
(Equation 5), we are able to build a true distance metric out of it. A distance metric is useful
in understanding the search space of possible models given some training data and enables
us to visualize an ensemble with its various components in this space. We de�ne a distance
metric for a set of n models M as a function d : M ×M → R with the following properties:

1. Symmetry: for all i, j ∈ M ×M it holds that d(i, j) = d(j, i).

2. Non-negativity: for all i, j ∈ M ×M it holds that d(i, j) ≥ 0.

3. Zero self-distance: for all i ∈ M it holds that d(i, i) = 0.

One candidate that can be used as a base for a metric ful�lling the above requirements
is a simple measure of similarity proposed in [11]. The similarity measure is based on cross
entropy for discrete probability mass functions and is de�ned as:

Sim(A,B) =
h(A → A) + h(B → B)

h(A → B) + h(B → A)
(8)

with h(A → B) being the sample cross entropy from Equation 5. The similarity measure
is (1) symmetric, (2) greater than zero, and (3) achieves the maximum value in a self
comparison Sim(A,A) = 1. We de�ne a metric having the distance metric properties as:

Dis(A,B) =
1

Sim(A,B)
− 1 (9)

This metric allows us to visually represent the di�erent relations between models of an
ensemble with techniques such as Multidimensional Scaling, which can reduce a high di-
mensional matrix of distances between points to a 2D plot. This can be seen in Figure 3
of Appendix A. Furthermore, a distance metric also enables methods such as clustering of
ensemble models, which we elaborate on in Section 3.5.
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3.5 Ensemble Pruning

The main advantage of the algorithm described in Section 3.1, which can independently
generate multiple ensemble models, is its inherent parallelism. However, simply averaging
over a large number of randomly generated models eventually reduces the diversity of the
ensemble: the randomness becomes diluted, and the ensemble starts to converge towards
a central tendency. This e�ect can reduce the overall generalization ability and lead to
over�tting on the test data. Another motivation for limiting the ensemble size is to preserve
one of the core advantages of PDFA learning : its lightweight nature compared to more
computationally demanding methods like neural networks.

To keep the bene�ts of exploring a big region of the search space by generating a lot of
models, while staying with compact ensemble size, we employ ensemble pruning: selecting
a subset of all the generated models. For this to be e�ective, the pruning method must be
capable of selecting a subset that performs better than a randomly generated small ensemble.
In this work we focus on diversity-driven pruning, where the objective is to incentivize
di�erences between the hypotheses within the �nal ensemble. A diverse ensemble helps
correct for the individual errors of its models, as supported by ensemble learning theory [10].

We consider three pruning methods, each designed to either maximize the diversity of
the ensemble directly (using IMV) or ensure representative coverage of the model space
(using clustering). These two perspectives focus on di�erent but related goals: maximizing
IMV works towards selecting the most distinct models, while clustering strives to accurately
showcase the whole search space of models by sampling from its natural groupings.

IMV-based Greedy Heuristic The �rst pruning method we use is a heuristic aimed at
maximizing the IVM score of the pruned ensemble. By choosing the most diverse models as
our ensemble, we assume that it will represent all the extreme hypotheses, thus spanning
the whole search space. Furthermore, we hope that the average of all the extreme models
will accurately predict the middleground of the search space, so traces that get similar
predictions from most of the models.

Formally, we want to choose a subset of size n of the initial group: S ⊂ E, such that
the IVM value of the smaller ensemble:

∑
(A,B)∈S×S f(A,B) is maximized. This is a known

NP-Hard problem, but we can use a simple heuristic that step by step removes a single
model C from the big ensemble, for which the sum

∑
A∈S f(A,C)+ f(C,A) is the smallest,

until we reach the desired ensemble size. This is illustrated in Algorithm 1.

Algorithm 1 Ensemble pruning with IVM

Require: m← initial ensemble size
n← desired ensemble size
H ← normalized pairwise cross entropies as a matrix

Ensure: H.size = m×m
selection← list[1, 2, . . . ,m]
while length(selection) > n do

scores← H.sumRows() +H.sumColumns()
i← minIndex(scores)
selection← selection.removeIndex(i)
H ← H.removeRow(i)
H ← H.removeColumn(i)

return selection
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Clustering The second pruning approach is based on clustering the full ensemble to identify
representative models for the pruned ensemble. The goal is to avoid over�tting to the implicit
probability distribution of models generated from a particular training set.

As the ensemble size grows, the distribution of its models converges to an implicit dis-
tribution centered on the most likely interpretations of the data. This means that high-
probability models, closely aligned with the training set, will be much better represented
in the ensemble than alternative hypotheses. To increase diversity, we cluster the ensemble
and select one model from each cluster, giving equal representation to each of the present
hypotheses.

We use two clustering methods: K-Medoids and A�nity Propagation. K-Medoids
is an alternative to K-Means which, instead of computing centroids, selects k actual models
as cluster centers. Additionally, K-Medoids does not require a Euclidean distance, so we
can directly use the custom distance metric de�ned in Section 3.4. K-Medoids is especially
suitable for spatial-style clustering, which assumes that clusters are compact and roughly
Gaussian-shaped in the distance space. This makes it well-suited to datasets where models
form dense, clearly separated groups. However, in cases where model similarity relationships
form less regular or overlapping structures, K-Medoids may not accurately re�ect structure
of the ensemble.

A�nity Propagation, on the other hand, is a message-passing algorithm that selects
clusters based on pairwise similarities without requiring the number of clusters to be pre-
speci�ed [12]. It builds a network of mutual a�nities between models and identi�es central
exemplars that best summarize the rest of the data. Unlike K-Medoids, A�nity Propagation
is not restricted to �nding spatially compact clusters, and can capture irregularly shaped
or even nested cluster structures. This makes it particularly e�ective when the diversity in
the ensemble is more structural or topological than spatial, as is often the case with Alergia
models and our custom distance metric. We include A�nity Propagation as a complementary
approach to K-Medoids, as its emphasis on network structure over distance shape might yield
more representative and diverse ensembles in this setting.

4 Experimental Setup and Results

This chapter presents the �ndings and insights gained from the experimental phase of this
research. Section 4.1 details the experimental setup, selection of datasets and used evaluation
methods. Section 4.2 compares the performance of a single Alergia model against basic
ensembles. Next, section 4.3 explores the e�ect of advanced ensemble techniques - pruning.
Finally, Section 4.4 presents the application of the Alergia ensemble to a real-world problem,
using software logs for anomaly detection.

4.1 Data Selection and Evaluation

To thoroughly evaluate the proposed ensemble methods, experiments were conducted on
three types of data: (1) the Reber grammar [13], (2) randomly generated PDFAs using the
PAutomaC methodology [9], and (3) real-world software traces from the HDFS dataset [14,
15]. This combination provides a complete testing environment. Arti�cial data allows for
controlled and adjustable experiments with direct comparison against a known ground truth.
Real-life data serves as a practical benchmark for model performance in realistic conditions
with unknown underlying model.
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Arti�cial Data: Random PDFAs The arti�cial datasets were generated by �rst con-
structing a random target PDFA using the PAutomaC methodology. The training set con-
sisted of traces generated by random walks over the automaton. The test set was composed
of unique traces also generated via random walks. If a generated trace was already present
in the test set, a new walk was performed to maintain uniqueness.

Each test trace was annotated with its true probability, calculated as the product of the
transition probabilities encountered during the walk. This ground truth allowed a precise
evaluation of the learned models by computing the perplexity score. The test set size
was chosen to be comparable to the amount of data typically needed for a single model to
reliably approximate the target.

Real-World Data: HDFS Software Logs The second dataset consisted of real-world
HDFS system logs. This dataset is a standard benchmark in anomaly detection research.
Each trace in the dataset represents a sequence of event types, labeled either as Normal

or Anomaly. Only Normal traces were used to train the PDFA models, which re�ects the
unsupervised nature of most real-world training conditions.

To evaluate model performance, the remaining Normal traces were mixed with anomalous
ones to form a test set. Each trace was assigned a probability by the learned model, where
traces with probability under some threshold are regarded as anomalies. The e�ectiveness
of the ensemble in distinguishing between the two classes was assessed using the Precision-
Recall Curve (PRC) based on the value of the detection threshold.

4.2 Comparison of Single Model and Ensemble Performance

This section compares the predictive performance of a single deterministic Alergia model
with that of a randomized ensemble of Alergia models. The comparison focuses on how
these models behave under varying training set sizes: levels of sparsity. For ensembles, the
perplexity results are averaged over 50 independent training runs, with standard error bars
shown to illustrate variance.

Fig. 1. Single model vs an ensemble performance against growing training set size. The perplexity
score and standard deviation comes from 50 independent train runs on training set of each size.
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Performance Trends Across Training Set Sizes Figure 1 presents the performance
of both the single model and the ensemble as the size of the training set increases. Each
training set is constructed by appending new traces to the previous set, ranging from very
sparse (50 traces) to dense (1000 traces). The test set remains �xed across all experiments.

The ensemble shows a clear and steady convergence trend as more training data is added.
Even at low sparsity levels, the ensemble behaves steadily, with lower perplexity and less
variance compared to the single model. The performance of the single model changes in
sharp jumps, suggesting that it either fails or succeeds in capturing the underlying structure
of the data depending on the composition of the training set.

Aggregate Comparison Across Datasets To generalize the observations beyond a single
learning curve, we evaluate model performance on the synthetic datasets under two train-
ing settings: sparse and dense training set. Table 1 summarizes the results. The ensemble
outperforms the single model in all sparse settings, often by a signi�cant margin. In dense
settings, where training data is plentiful, the gap between the two methods narrows.

These results support the hypothesis that ensembles are particularly worthwhile when
training data is sparse relative to model complexity. We hypothesize that in such cases, the
single model tends to over�t, converging to narrow, suboptimal interpretations of the data.
The ensemble mitigates this by combining diverse hypotheses, leading to a more robust and
broad approximation of the target model.

This behavior aligns with previous �ndings in ensemble learning literature. Ensembles
often improve generalization by reducing model variance and averaging over multiple decision
boundaries [4]. Our results demonstrate that these bene�ts also apply in the context of PDFA
learning using Alergia, particularly in data-scarce scenarios.

A surprising phenomenon occurs in the case of the random_4 dataset. Here, the models
in the dense training set scenario actually perform worse than in the sparse scenario. Our
presumption is that the dense training set size is actually too small to generate small, high-
con�dence models, and instead produces large models with few merged nodes and high
variance.

Dataset
Train Best Avg. perplexity increment to best

size score Single Ensemble (r = 1.5) Ensemble (r = 3.0)

reber
35 50.6 113.7± 250.1 29.6± 40.2 19.7± 27.5

80 50.5 1.2± 0.8 1.4± 1.0 2.2± 1.6

random 1
300 49.3 43.9± 53.1 8.5± 6.4 8.7± 5.3

900 48.6 22.5± 51.9 0.7± 1.7 0.6± 0.8

random 2
250 81.3 99.4± 67.7 24.7± 15.1 26.3± 10.3

700 68.8 7.8± 13.4 1.6± 2.4 1.9± 1.1

random 3
350 119.1 410.6± 223.7 113.7± 80.8 130.8± 59.4

1000 98.7 51.8± 37.6 12.8± 9.2 9.1± 5.8

random 4
150 20.6 26.7± 32.3 9.0± 7.5 8.0± 7.7

600 22.4 40.4± 35.2 18.9± 9.3 16.4± 9.3

Table 1. Single model vs ensemble performance across datasets. Values represent perplexity di�er-
ence to the best score on the given trainset. The scores are averaged over 50 independent runs with
di�erent training. r is the value of the random parameter. Both ensemble models have a size of 20.
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4.3 E�ects of Optimizing for IVM with Ensemble Pruning

To understand the e�ect various ensemble pruning techniques presented in Section 3.5 have
on the performance of the ensemble, we conducted a series of experiments. These experiments
aim to answer a central research question: how can ensemble diversity, be harnessed to
improve the predictive performance of PDFA models trained with the Alergia algorithm?
We evaluate this question using our IMV score as a way to quantify ensemble diversity, and
test the impact of optimizing for diversity through pruning.

We consider the three pruning strategies described in Section 3.5: Max-IMV, K-Medoids
clustering and A�nity Propagation. They are compared against the full ensemble they were
created from and and a random ensemble of the same size as the pruned ones.

Trends in the Behavior of Pruned Ensembles In the �rst experiment, we analyze how
the pruning method behave as the size of the generated models increases. Figure 2 shows
representative runs highlighting trends and edge cases.

In the plot for random_3, we observe that both Max-IMV and clustering require a warmup
period in the number of generated models to stabilize performance. This behavior is expected
as with too few models, pruning has limited selection power and high variance in outcome.
Once enough models are available, some of the pruned ensembles begin to match or even
slightly exceed the performance of the full ensemble.

Fig. 2. Performance of various pruning methods versus an ensemble of all models on two datasets
with a growing number of generated models.
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An interesting behavior appears when the large ensemble is unbalanced due to one or
more outlier models with extreme predictions, which is showcased in the plot for the dataset
random_4. In such cases, clustering-based methods and Max-IMV often select these outlier
models due to their uniqueness, which leads to a sharp spike in perplexity. In contrast,
the full ensemble is more robust in these situations, as it dilutes the e�ect of any single
model by averaging over the entire distribution. This suggests that while diversity can boost
generalization, it must be balanced in terms of bias and variance.

Statistical Comparison Across Datasets To generalize the �ndings, we conducted a
second experiment across three synthetic datasets. For each dataset, we trained a large
ensemble of 200 models and pruned it down to 20 models using each of the four pruning
methods. Each experiment was repeated 10 times on di�erent training sets, and results were
averaged. The results are summarized in Table 2.

Dataset
Train Best Average perplexity di�erence to best

size score All models Random Max-IMV K-Medoids A�nity

random 1 300 61.5 9.7± 5.1 14.9± 10.1 13.2± 8.8 12.5± 9.6 12.8± 10.2

random 2 300 98.1 12.2± 6.8 18.3± 10.2 8.7± 4.7 10.6± 6.7 9.3± 6.6

random 3 400 151.7 95.1± 49.8 113.9± 73.1 57.8± 39.8 97.1± 65.8 86.8± 61.5

Table 2. 200-model ensemble vs 20-model pruned ensembles performance across datasets. The
scores are mean di�erences to the best score for a given dataset, accompanied by the standard
deviation. The best score for each training set is highlighted.

Several key observations can be made:

� All pruning methods consistently outperform random selection. This con�rms the role
diversity plays in creating more informative ensembles than arbitrary selection.

� On more di�cult datasets (random_2 and random_3), pruned ensembles often outper-
form the full 200-model ensemble. This suggests that selecting a diverse, focused subset
can improve generalization by �ltering out redundant or overrepresented models.

� Max-IMV performs best on the more di�cult datasets. We hypothesize this is because
those datasets provide limited coverage of the full model space, and maximizing IMV
encourages exploration of di�erent regions of that space.

� Clustering-based methods perform best on the easier dataset (random_1), where the full
ensemble already spans much of the model space. In this case, clustering can e�ectively
�nd a representative subset of models.

These results support the hypothesis that ensemble diversity can meaningfully improve pre-
dictive performance in sparse-data PDFA learning. They also suggest an interesting tradeo�:
while maximizing diversity is useful in sparsely explored search spaces of models, clustering
is more e�ective when diversity is already present. These �ndings align with the diversity-
bias-variance interpretation proposed by Wood et al. [6], where diversity complements bias
reduction and variance control in ensemble generalization.



13

4.4 Real-World Anomaly Detection with the Alergia Ensemble

We evaluated the performance of ensemble and pruning on the HDFS software trace dataset.
We tested a single model, 20-model ensemble, and another 20-model ensemble pruned down
from 200 models. Models were trained on increasing volumes of normal traces and evaluated
on a test set mixed with anomalous traces. Recall was measured at three high-precision
levels. We showcase the results in Table 3.

Train size Model
Recall values for di�erent precision levels

p = 0.99 p = 0.999 p = 0.9999

200

Single 0.931 0.931 0.931

Ensemble 0.974 0.579 0.579

Max-IMV 0.984 0.984 0.984

500

Single 0.963 0.963 0.963

Ensemble 0.986 0.709 0.709

Max-IMV 0.986 0.986 0.986

1,000

Single 0.972 0.972 0.968

Ensemble 0.991 0.991 0.984

Max-IMV 0.992 0.992 0.984

5,000

Single 0.984 0.983 0.976

Ensemble 0.998 0.995 0.992

Max-IMV 0.998 0.995 0.992

100,000
Single 0.987 0.959 0.946

Ensemble 0.995 0.972 0.966

Table 3. Recall (fraction of detected anomalies) at �xed precision levels p (fraction of �agged traces
that are truly anomalous) for di�erent model types and training set sizes on the HDFS dataset.
The best and second-best score for each precision level is highlighted.

The results show a consistent trend: both regular ensembles (for larger training sizes) and
Max-IMV pruned ensembles outperform the single model. In particular, the pruned ensem-
bles achieve the best recall values across all precision levels�surpassing even the ensemble
trained on 100,000 traces.

A key observation is how recall degrades with increasing precision thresholds. For small
training sizes (e.g., 200 and 500), regular ensembles experience a sharp drop in recall as the
precision level increases. By contrast, pruned ensembles maintain high recall even under the
strictest precision requirements.

This suggests an important di�erence in ensemble behavior. Models whose recall collapses
at high precision levels likely exhibit greater variance or internal inconsistency. In random
ensembles, this can occur when overrepresented or misaligned models distort the output
probabilities. The pruned ensemble, however, is explicitly selected for structural diversity,
which helps avoid such skewed groupings. Diverse models may cover more of the search
space, improving the model's balance and ability to distinguish subtle anomalies under high
con�dence thresholds.

These results indicate that using ensembles of models, especially with pruning, can im-
prove anomaly detection even in sparse-data scenarios.
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5 Responsible Research

This chapter outlines the ethical consideration associated with PDFA learning. Additionally,
it mentions how the results of the experiments can be reproduced.

5.1 Ethics of Ensemble Alergia Learning

The introduction of ensemble methods into PDFA learning with focus on the Alergia algo-
rithm, brings about several ethical considerations worth analyzing.

Environmental Impact While ensemble learning typically involves training and evaluat-
ing multiple models�potentially dozens instead of a single automaton�the overall compu-
tational footprint remains small. This is especially true when compared to large-scale neural
network training, which often requires vast GPU resources and signi�cant energy consump-
tion. PDFAs are symbolic, compact, and interpretable models that can be trained e�ciently
on CPUs, making ensemble-based approaches in this domain highly energy-e�cient. Thus,
the environmental impact the presented approach remains minimal and aligns with goals of
sustainable and responsible machine learning.

Misuse Potential As with many data-driven models, there exists a potential for misuse.
If ensembles of PDFAs are applied to sensitive domains, such as modeling user behavior or
predicting actions, they could inadvertently be used for surveillance, pro�ling, or manipu-
lative user modeling without consent. While the models themselves are interpretable and
relatively simple, the ethical responsibility lies in how they are applied and the nature of
the data used for training.

Bias and Transparency Ensembles may also obscure interpretability to some extent, espe-
cially if conclusions are drawn from aggregate predictions without understanding individual
automaton behavior. While PDFAs are inherently more transparent than black-box mod-
els, using an ensemble may require additional mechanisms to ensure that decisions made
by the system remain explainable and auditable. Furthermore, any biases present in the
training data may be consistently reinforced across ensemble members, which underlines
the importance of ethical data sourcing and evaluation.

5.2 Reproducibility of Experiments

Parts of the data used in the research come from publicly available sources. The one exception
is self generated random PDFAs, which are attached as model descriptions in .dot �les.
These can be parsed and rendered as diagrams by most software dealing with graph data.
The parsed machines can be used to reproduce data sets similar to the ones used for the
experiments. The code used in the research is also published alongside the paper. All of
the experiments were performed on a 12 core personal computer and took a few hours at
longest, thus reproducing them should be available to practically any willing researcher.
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6 Conclusions and Future Work

This work explored how ensemble learning techniques can be applied to Probabilistic De-
terministic Finite Automata (PDFA) learning using the Alergia algorithm.

We proposed a randomized variation of the Alergia algorithm by introducing controlled
randomness into the merge selection process. This allowed the generation of a diverse set
of models from the same training data. The resulting models were combined using uniform
voting, which produced stable probabilistic predictions. Because the models are trained
independently, both model generation and prediction can be parallelized e�ciently. This
approach proved e�ective and practical, forming the foundation of the ensemble framework
studied in this work.

We introduced a distance metric based on cross entropy to compare structural di�erences
between PDFA models. Building on this, we de�ned the Inter-Model Variety (IMV) score
to quantify the diversity of a group of models. Our experiments showed that encouraging
diversity, using either IMV maximizing heuristics or clustering, can help select a compact and
diverse subset of models from a larger ensemble. In particular, the Max-IMV pruning method
frequently outperformed both the full ensemble and random subsets, especially in low-data
scenarios. However, we also observed that if the ensemble contains an extreme or misaligned
model, diversity-maximizing strategies may amplify its in�uence. This suggests a need for
future work on stabilizing diversity-based pruning methods, possibly by incorporating model
quality evaluation or outlier detection.

Our experiments demonstrated that ensembles consistently outperform single Alergia
models when training data is sparse. Moreover, ensemble pruning can further improve pre-
dictive performance while reducing ensemble size. In the HDFS anomaly detection experi-
ments, pruned ensembles even outperformed full ensembles trained on 100 times more data,
indicating that smart model selection can substitute for large data volumes.

This research opens several directions for further exploration. First, the impact of hyper-
parameters such as the level of randomization and ensemble size could be studied in more
detail. Second, the IMV score could be combined with other metrics to balance diversity
and accuracy during pruning.

In conclusion, ensemble methods, when carefully constructed and optimized for diversity,
o�er a signi�cant performance boost to PDFA learning with Alergia. They improve gener-
alization, especially in sparse-data settings, and �ll a gap in lightweight high-performing
machine learning methods for anomaly prediction.
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Appendix A IMV Score Visualization

Fig. 3. Spatial visualization of models selected by pruning a bigger ensemble with Max-IMV (on
the left) and K-Medoids (on the right). The plots depict the di�erence in the behavior of the two
pruning methods. The visualization was done by reducing a distance matrix formed with the custom
distance metric using Multidimensional Scaling.

Appendix B Code Implementation

Most of the key Alergia ensemble implementation was built on top of the FlexFringe [2]
project. The functionality added to the FlexFringe's C++ codebase includes:

� Run con�gurations to train ensembles and use them to predict trace probabilities.
� Computation of the perplexity score using a provided �le with a set of target probabili-
ties.

� Computation of the pairwise sample cross entropy values for ensemble models.
� Option to set ensemble weights for predicting traces.
� Option to de�ne a pruned subset of models that should be used for predicting traces.

All the remaining parts of the implementation such as the various pruning techniques
were all implemented as complementary Python code. The Python codebase also includes
all of the code to orchestrate FlexFringe runs and experiments. The utility code used for
running FlexFringe with various con�gurations can be found in ffutils.py. The implemen-
tation of the custom distance metric, the IMV score and all pruning methods is contained
in variety.py. PDFA random machines, generation of test and train sets can be found
in pdfa.py. The complementary code also includes de�nitions of the PDFAs used in the
experiments such as reber, random_1, etc...

All the code used for the research is publicly available in the following repositories:

� Fork of FlexFringe: https://github.com/BlazuLyda/FlexFringeEnsemble.
� Python code: https://github.com/BlazuLyda/FlexFringeUtils.
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Appendix C Use of Generative Models

The creation of this paper was supported by the large language model ChatGPT. The use
of this model was restricted to improving the style, wording and clarity of the written text,
but all of the presented ideas, reasoning and conclusions belong to the author. Furthermore,
the text sourced from the model was used as a support rather than a starting point in the
writing process.

When it comes to the use of the ChatGPT model in the research process, it was used to
accelerate repeatable tasks such as writing the code for plotting the graphs. Furthermore,
the model was also used as a search engine for accessing the academic literature. All of the
sources recommended by the model were personally checked for quality and applicability to
the research by the author.


