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Summary

In this thesis a novel model is proposed to solve the Robust Tail Assignment problem. The Robust Tail

Assignment problem aims to assign aircraft to flights, while minimize expected costs of operating a

flight schedule, including expected delay costs. This problem is difficult, because delays can propagate

between successive flights in the schedule, creating dependencies between flights assigned to the same

aircraft.

Using probability distributions of delay for every individual flight, aswell as expected costs associated

with delaying flights, the expected delay costs of a full flight schedule can be estimated. The workings

of a simulator are described, which can be used to evaluate the total expected costs of solution schedules

for the Robust Tail Assignment problem.

To be able to incorporate expected delay costs in a mathematical model, the construction of a

multi-commodity flow network is described, which uses departure and arrival states for flight rotations,

corresponding to discrete amounts of delay. The amount of flow through edges of this network represents

the probability of these states transitioning into other states. By activating and deactivating edges, based

on the assignment of aircraft to rotations, this network can be used in a model to approximate the total

expected delay costs of a model solution.

The proposed robust flow model uses such a state network in a MIP model, that can be solved

using an iterative solver to find good solutions to the Robust Tail Assignment problem. Delay costs are

imposed on edges in the network, to quantify the expected delay costs. In the model, the network size is

reduced by only considering connections between rotations that have high probabilities of propagating

delay. This reduces the accuracy of the model, but shortens the run-time of the optimization process

significantly.

Several experiments are done to test the run-time and performance of the robust flow model. The

model proved hard to solve to optimality, but is able to find good solutions, if the model parameters are

well tuned. Recommendations are given for using the model, as well as future research directions.
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1
Introduction

1.1. Background
Air travel is a popular means of transport, that has been steadily growing in recent decades, doubling in

use between 2006 and 2019, transporting over 4.3 billion passengers in 2019 [3]. Air travel is provided by

airlines, big companies that sell aircraft tickets and provide cargo transport for revenue. These airlines

take care of all operations necessary for air travel, such as scheduling, airport handling, IT services,

aircraft maintenance or catering. The size of these operations is substantial. In 2016, 65.5 million jobs

were supported by air transport, causing $2.7 trillion of economic activity, amounting to 3.6% of the

global GDP [15].

Since air travel is such a large business, there is much to gain in terms of reducing costs and work

by optimizing airline operations. This thesis, assigned by KLM, will focus on optimizing a part of the

airline planning process, to reduce the costs of operating flights. KLM Royal Dutch Airlines is the flag

carrier airline of the Netherlands and the oldest airline in the world, operating flights to 145 destinations.

1.1.1. Flight planning process
This section will contain an overview of the flight planning process, from long term decisions to short

term decisions. This process is a generalisation of the processes of all airlines, meaning the specifics can

differ per airline.

Figure 1.1 shows the decision-making steps of the airline planning process. The steps are divided

into four categories, and four time horizon intervals.

The outer layer represents 12 to 3 months before the day of operation, where long-term decisions are

made, such as the fleet composition and route planning. Fleet composition deals with the purchase of

new aircraft and maintenance or retirement of existing aircraft. Route planning deals with creating the

initial flight schedule, to satisfy the expected demand. This schedule needs to be implementable with

the current fleet. KLM and many other big airlines use a hub-and-spoke system for their flights. In this

system the airline has a central hub, that all flights are connected to. For KLM this hub is Amsterdam

Airport Schiphol, meaning all KLM flights fly either from Schiphol, or towards Schiphol, see Figure 1.2.

In Figure 1.3 you will find an example of a flight schedule, where the blocks correspond to an outgoing

flights followed by a return flight. After creating the initial schedule, ticket sale will start.

The inner layers represent the time period from 3 months to the day of operations, where the short-

term decisions are made. At this time, more information is available about the required maintenance

of the aircraft, as well as an expectation of the final amount of bookings for every flight. Using this

information, an assignment of aircraft to flights in created, with the goal to create an executable schedule,

while minimizing the expected operational costs. In the time period of 2 weeks to 1 day before day of

operations, this schedule will be re-assessed to account for the most recent changes and information, to

further reduce the expected operational costs of the schedule.

The middle circle represents the day of operations, where disruptions and last-minute changes are

handled, and flights are delayed if necessary.

1



1.1. Background 2

Figure 1.1: Integrated decision-making across organisational silos and changing planning horizons.[1]

1.1.2. Robust Tail Assignment
The focus of this thesis in the Robust Tail Assignment problem. The Tail Assignment problem is

the problem that is often solved in the time period of 2 weeks to 1 day before the day of operations,

denoted by “Tail assign" and “Tail swap" in Figure 1.1. The word tail is often used in airline literature,

representing an individual aircraft.

At this time, an initial assignment of aircraft to flights is already created, and the bookings of every

flight are mostly known. This new information means the schedule can be re-optimized. If a flight is

expected to be under-booked, this flight could be assigned a smaller aircraft (different subtype), saving

fuel and operational costs. This process is called down-gauging. Note that this is only possible if a

smaller aircraft is available, or if another flight is up-gauged to a larger aircraft. Up-gauging a flight is

likely to cause extra costs in fuel and operational costs, so these aircraft “swaps" are only implemented

if the net gain is positive.

Besides this, 3 days to 1 day before the day of operations, some airlines have information regarding

expected delays of flights, which depend on factors such as the destination, time and weather forecast.

Using this information, a flight that has a high likelihood to be delayed can be scheduled in such a way,

that the assigned aircraft has longer buffer times between this flight and the next scheduled flight. This

way, the next flight is less likely to be delayed as a result of the aircraft arriving late. Taking this factor of

delay propagation and its related costs into account, the tail assignment can again be re-optimized. This

problem is called the Robust Tail Assignment problem.

So, in general, the goal of the Robust Tail Assignment problem is to find an assignment of aircraft to

all flights, such that the final schedule is executable, while minimizing the total expected costs. These

expected costs consist of many different terms, such as the expected fuel costs, landing fees, parking

charges and expected delay costs. It is usually preferred to keep the assignments as close as possible to

the original assignments, as to not change the schedule too much soon before the day of operations. For

this purpose, a reassignment penalty can be used.
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Figure 1.2: Map of KLM flights, a hub-and-spoke system.

Figure 1.3: Example flight schedule over three days by KLM. The dates are randomized.

1.2. Complexity
The Robust Tail Assignment problem aims to find a feasible assignment of aircraft to all flights with the

lowest expected costs. A feasible flight assignment means the resulting flight schedule is executable.

All relevant costs of a flight are only dependent on the assigned aircraft and the corresponding flight

route. Note that by propagation of delay from one flight to the next, the expected delay of costs of a

flight in a flight route is dependent on all previous flights in that route. Because of this dependency, the

expected delay costs of a flight cannot be calculated locally, i.e. by only considering the predecessor of

every flight.

One thing to note is that the costs of the flights in a specific aircraft’s flight route are independent of

other aircraft’s flight routes. Using this observation and the fact that every flight has to be assigned

precisely one aircraft, the problem reduces to a set partitioning problem, where the sets are possible

flight routes and the elements of the sets are flights.

1.2.1. Set partitioning problem
Let us define the problem as a set partitioning problem. Define � to be the set of available aircraft, and

� to be the set of all flights in the schedule. Define '0 ⊂ � to be the set of feasible flight routes for an

aircraft 0 ∈ �. Let 2A0 be the expected cost of operating flight route A ∈ '0 on aircraft 0. Lastly, define
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1 5 A to equal 1 if flight 5 ∈ � is included in route A ∈ '0 , and 0 if not. Now we can formulate the problem:

minimize

GA0

∑
0∈�

∑
A∈'0

2A0GA0 (1.1)

subject to

∑
0∈AA

∑
A∈'0

1 5 AGA0 = 1 ∀ 5 ∈ � (1.2)∑
A∈'0

GA0 = 1 ∀0 ∈ � (1.3)

GA0 ∈ {0, 1} ∀0 ∈ �, A ∈ '0 (1.4)

In this formulation, the variables GA0 equal 1 if the flight route A is assigned to aircraft 0. The objective
function, Equation (1.1), calculates the sum of the expected costs of all selected flight routes. Constraint

(1.2) ensures every flight is assigned to exactly one aircraft. Constraint (1.3) ensures that an aircraft

operates exactly one flight route.

This formulation is a constrained set partition problem, where all flights have to be included in

exactly one set, and the sets are chosen from the possible sets in

⋃
0∈� '0 . The problem is constrained,

since exactly one set from every '0 has to be chosen.

The set partitioning problem is known to be NP-hard [13]. Also, note that the sets '0 are very big,

since they contain all possible feasible flight routes for an aircraft 0. If we only consider one specific

flight route in a set '0 containing : flights, all subsets of this flight route are also feasible flight routes,

meaning there are 2
:
such flight routes in '0 . Thus, the sets '0 are exponentially big, making the Robust

Tail Assignment problem very difficult.

1.3. Previous work
The Tail Assignment problem is a well studied problem. Grönkvist [14] contains an overview of the

Tail Assignment problem and approaches for solving the problem. In the literature many different

problem formulations related to tail assignment have been studied, as the process of airline planning

differs among airlines. Airlines with regular schedules and large fleets of aircraft can often decide on

tail assignment closer to the day of operations, in which case more exact data and expected costs of

operation are available.

Flight delays are a large cost factor for airlines. Eurocontrol [11] estimates the cost of delaying a

flight to be around 59 to 85 euros per minute. Solving the Tail Assignment problem while minimizing

the operational costs, as well as delay costs is called the Robust Tail assignment problem.

In the literature, the Tail Assignment and Robust Tail Assignment are often solved separately. First

aircraft are assigned to flights, to minimize operational costs, without accounting for delay costs. The

assignments are then reoptimized for robustness, while not allowing aircraft of different subtype from

before to be assigned to flights. Since the operational costs (e.g. fuel costs, landing fees, parking charges)

are very similar for aircraft of the same subtype, this optimization for robustness often does not consider

costs in its objective, but rather a notion of the amount of delay propagation.

To solve the non-robust Tail Assignment problem, two main formulation types are used. Firstly,

there is the set partitioning formulation, as described in Section 1.2.1, which is often solved using

Lagrangian relataxion (e.g. Clarke et al. [8]), or a column generating algorithm (e.g. Kabbani et

al. [17]). The second formulation is a multi-commodity flow network, used by Feo et al. [12]. This

formulation defines a network with flights as nodes and feasible connections between flights as arcs.

The different commodities correspond to different aircraft. Some papers, such as Desaulniers et al. [9]

even propose an algorithm that uses both formulations, to obtain optimal branching strategies for the

column generating method.

Since this flow formulation considers local connections between flight, it is not trivial to incorporate

robustness into such a model, because of the dependency throughout the whole flight route.

Approaches to solve the Robust Tail Assignment problem can be split into three main categories that

we shortly address here.
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1.3.1. Key performance indicators (KPI)
A simple way to introduce a sense of robustness into the Tail Assignment problem is to change or

replace the objective of the problem using terms that measure robustness in a heuristic way. These

terms are called "key performance indicators". For example, one could optimize for having an even

distribution of buffer time between flights. Examples of KPI approaches for solving the Robust Tail

Assignment problem can be found in Burke et al. [7], Reoenberger et al. [18] and Ahmadbeygi et al.

[2]. These appoaches respectively use swap opportunities, cancellation cycles, and locally propagated

delays. Note that these approaches do not optimize directly for the expected total costs, but rather for

measures that decrease the expected total costs heuristically. These approaches are often applied in

situations when not much information about expected delays is available.

1.3.2. Robust optimization
The field of robust optimization considers problems where some input parameters are not fixed, but are

uncertain. Soyster [19] first introduced robustness to linear programming. The idea is that a solution

needs to be feasible for all possible values of its input parameters, i.e. the worst case values. This

approach is highly conservative, and not applicable to the Robust Tail Assignment problem because of

its many possibilities of delay. Later work, such as Ben-Tal & Nemirovski [4] and Bert-simas & Sim [5]

propose less conservative approaches. For example, Bert-simas & Sim [5] only allow a limited amount

of parameters for which to account uncertainty to consider a solution feasible. But, because of the

conservative nature of such worst case concepts, these approaches are expected to high costs and have

not yet been applied to the Robust Tail Assignment problem.

1.3.3. Stochastic optimization
In stochastic optimization, the uncertainty of the input parameters of the problem is considered by

regarding these parameters as random variables. As an objective, the expectation of some objective

function is minimized. For the Robust Tail Assignment problem, a stochastic model can be used to

consider possible delays and delay propagation. Borndörfer [6] and Dovica [10] use the sum of the

probability of delay propagation for all flights as the objective to minimize. The problem is formulated

as a set partitioning problem, and a column generation algorithm is used to find the optimal solution to

the linear relaxation of the problem. The solution to this linear relaxation is then rounded to an integer

solution.

1.4. Thesis outline
In this thesis we will propose a model to solve the Robust Tail Assignment problem. In Chapter 2 the

problem will be mathematically formulated, a way to evaluate a solution of the problem will be given,

and both a non-robust and a benchmark robust model provided by KLM will be described.

Chapter 3 will mathematically describe delay propagation through a flight schedule, explain its

difficulties and give a way to calculate the expected delay costs of a flight route.

In Chapter 4, a Robust Flow Model will be described and explained, which can be used to solve the

Robust Tail Assignment problem.

In Chapter 5 the experiments performed on the model will be described and justified, after which

the results of the experiments will be given and analysed.

Finally, Chapter 6 will contain the conclusion of this thesis, and give directions the usage of the

model, as well as for further research.



2
Robust Tail Assignment Problem

2.1. Problem description
The Robust Tail Assignment problem deals with the assignment of aircraft (or tails) to scheduled flights,

shortly before the day of operation. The goal is to construct a feasible flight route for every aircraft, such

that every flight is operated by some aircraft, while considering business rules (such as restrictions on

aircraft size at certain airports), necessarymaintenance, turn-around times at the airport andminimizing

the total expected costs. This problem is solved every day, to adjust the previously constructed routes

based on the most recent information about expected disruptions and changes in the schedule.

This thesis will focus on flight schedules that use a hub-and-spoke system, meaning one aircraft has

to both operate the flight to another airport and the flight back from this airport. The central airport

is called the hub station, while the other airports are called outstations. When using a hub-and-spoke

system, the scheduled flights can be combined into rotations. A rotation consists of a journey of two

flights, where the first flight departs from the hub station and the second flight arrives back at the

hub station 1. The schedule also contains maintenance blocks, which we will consider to be rotations,

consisting of one “flight”. Maintenance blocks are bound to a certain aircraft, that requires some

maintenance at a given time slot.

Using this description of rotations, the problem reduces to an aircraft-rotation assignment problem.

2.1.1. Business rules
Business rules are instructions or constraints on the business activities. These rules must be satisfied in

the final flight schedule and assignments of the aircraft to flights.

Several business rules apply to the assignment of aircraft to flights. For example, some outstations

are unable to operate a certain subtype of aircraft. This means that rotations containing flights to and

from this outstation are not allowed to be assigned to an aircraft of this subtype.

These assignment business rules affect the input of the problem and have a restricting effect, meaning

they reduce the solution space. For the sake of this thesis we will omit these business rules, since they

vary greatly between airlines, often change over time, and have little impact on the difficulty of the

problem. So, every aircraft-rotation combination is considered to be valid.

A business rule that will be incorporated into this thesis is the use of reserve aircraft. If an aircraft

arrives much later than scheduled, causing the next flight to be delayed by more than 120 minutes,

a reserve aircraft will be used for the next flight. This rule has some exceptions, as there is not an

unlimited supply of reserve aircraft, and other business rules may prevent a reserve aircraft to be used.

For the purpose of this thesis, this notion is simplified. We will assume an unlimited supply of reserve

aircraft, and set a fixed cost to the use of a reserve aircraft.

1Note that some airlines also schedule rotations consisting of more than two flights. For the purpose of this thesis we shall

restrict ourselves to rotations of two flights. All methods and theory studied in this thesis can be modified to also work for

rotations with more than two flights.

6
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2.1.2. Costs
The costs dependent on the assignment of aircraft to rotations considered for the Robust Tail Assignment

problem are the following:

Assignment costs
Assigning an aircraft to a rotation has many associated costs. There are operational costs, which consist

of many types of fees, that are dependent on the outstation and the subtype of the aircraft. These

include airport landing fees, taxes, parking charges at outstation and night stop fees (including hotel

costs for crew).

The fuel cost of a rotation is dependent on the aircraft, since some aircraft are more fuel efficient

than others. The average fuel costs per minute for every aircraft are given as input, so the total fuel price

for every rotation-aircraft pair can be estimated, using the average flight duration of the flights in the

rotation.

Using the information on bookings for a flight, an estimation can be made for the costs of swapping

to an aircraft of a different subtype. For example, if not enough business class seats are available, but

the aircraft has free economy class seats, a cost will be imposed. This will imply a denied boarding cost

on the corresponding rotation-aircraft combination. This cost consists of refunds and future value loss.

Future value loss is an estimation of the missed revenue of passengers that may be less likely to choose

the same airline for their next journeys due to the negative experience.

The assignment cost for every aircraft-rotation combination consists of these costs, which can all be

independently calculated.

Delay costs
If a flight arrives later than scheduled, there are several fees that have to be paid, depending on the

flight and the amount of delay. For example, a delay may cause refunds for passengers that miss their

connecting flight and passengers can request EU claims for delayed flights. Also, future value loss needs

to be considered again. All these factors induce a type of expected costs or reduced future income.

Based on the flight and the amount of delay minutes, an estimation can be made for the delay costs.

2.2. Robustness
Planned schedules are never exactly executable in real life. Due to unforeseeable events, every scheduled

rotation has a possibility of taking longer than planned. If two tightly connected rotations are scheduled

to be flown on the same aircraft, longer flight times of the first rotation can cause delays to the second

rotation, which might in turn cause delays for the next scheduled rotation. To reduce the total amount

of disruption in the real life flight schedule, we need to account for this propagation.

Dealing with such situations can be classified in two approaches: reactive or proactive. Reactive

approaches require you to find a good solution close to the original schedule quickly, when disruptions

occur. In the case of a flight schedule, these disruptions are often only identified at the moment they

occur. The decision of aircraft assignment to rotations are decisions that need to be made in advance,

because of the size and dependencies of the operations required to fly aircraft. Therefore, it is not

preferred to change the assignments at the last moment, meaning a solely reactive approach is not ideal.

Proactive approaches try to find a schedule that can handle disruptions better, in advance. To

accomplish this, the schedule needs to be robust, meaning that the impact of delays on the schedule is as

small as possible. To achieve this robustness, the schedule needs to have buffer time between rotations

that are more likely to be delayed, or cost a lot to be delayed. To be able to quantify the robustness

of a schedule, weather forecasts and data about the previous delays of certain flights can be used to

create expected delay distributions for all flights2. These delay distributions can then be used to find an

expectation of the delay costs for all flights, based on the connected rotations in the schedule, the buffer

time between these rotations, and the delay distributions of the flights.

Calculating the expected total delay cost of a schedule based on these delay predictions is not a

trivial task. Section 3.1 will explain exactly why this is the case.

2The process of predicting delay distributions for a flight is not covered in this thesis. This prediction can be achieved through

Machine Learning algorithms, see e.g. [20]. For the purpose of this thesis, we assume independent delay distributions are

available for all flights in the schedule.
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2.3. Problem Formulation
In this section some mathematical notation will be introduced and the input data, solution space and

objective function will be described.

2.3.1. Input data
The input of the problem consists of:

i) Decision scope: typically the three consecutive days before the day of departure.

ii) Schedule: A schedule of all rotations that are to arrive or depart within the decision scope. The

rotations in the schedule have an initially assigned aircraft. The schedule contains information

about the rotations, such as the scheduled departure time, scheduled arrival time and probability

distribution of expected delay of its flights.

iii) Aircraft: A list of all available aircraft, containing information about the aircraft, such as subtype,

fuel usage, required turnaround time at all stations, etc.)

iv) Operational restrictions: A mapping of stations to compatible aircraft subtypes, along with

restrictions active on aircraft.

v) Delay predictions: For every flight, a probability distribution of the amount of delay is given as a

random variable. These random variables are considered to be independent.

vi) Costs: Assignment costs for each pairing of destination and aircraft. Also, for every flight, the

expected costs associated with arrival delay of the flight are given.

2.3.2. Solution space
A feasible solution is an assignment of aircraft to rotations, such that:

• Every rotation is assigned one aircraft, which is compatible according to the business rules of the

rotation.

• If no flights are delayed, there is enough turnaround time between rotations assigned to the same

aircraft, i.e. every aircraft is assigned a feasible flight route if no flight is disrupted.

2.3.3. Objective
The goal of this optimization tool is to minimize the sum of the total expected costs of all flights in the

time scope.

2.3.4. Mathematical notation

Sets
) Set of time-values in scope

ℛ Set of rotations scheduled to arrive or depart within ), indexed by A
ℱ Set of flights and maintenance blocks, scheduled to arrive or depart

within ), indexed by 5
ℱA Set of flights and maintenance blocks in rotation A ∈ ℛ, scheduled to

arrive or depart within ), indexed by 5
S Set of all aircraft subtypes available within ), indexed by B
SA Set of all aircraft subtypes that are allowed to operate rotation A ∈ ℛ
A Set of all aircraft available within ), indexed by 0
AB Set of all aircraft of subtype B ∈ S available within ), indexed by 0
AA Set of all aircraft 0 ∈ A allowed to operate rotation A ∈ ℛ
D 5 Random variable, containing the probability distribution of delay of a flight 5 ∈ ℱ

Parameters
BC3 5 Scheduled departure time of a flight 5 ∈ ℱ
BC0 5 Scheduled arrival time of a flight 5 ∈ ℱ
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BC3A Scheduled departure time of the first flight of a rotation A ∈ ℛ
BC0A Scheduled arrival time of the last flight of a rotation A ∈ ℛ
0 8=8CA Initially assigned aircraft (∈ A) for rotation A ∈ ℛ
B0 Subtype (∈ S) of aircraft 0 ∈ A
�0

B Minimum ground time needed between flights at the hub station

for aircraft of subtype B ∈ S
�AB Minimum ground time needed between the two flights of rotation A

at the outstation for aircraft of subtype B ∈ S

Costs
2
0BB86=
A0 Expected assignment costs of assigning a rotation A ∈ ℛ to an aircraft 0 ∈ A
2
34;0H

5
(C) Function mapping the amount of arrival delay of a flight 5 ∈ ℱ in minutes to

the expected delay costs

2A4B4AE4 Expected cost of using reserve aircraft

Example 1.
Let us consider a small example of the Robust Tail Assignment problem. This example will be used to

elaborate the workings of the models explained in this thesis.

We consider a schedule containing seven rotations, to be scheduled using a fleet of three aircraft with two
subtypes. The rotations contain thirteen flights in total, where one flight is a maintenance block. We have the
following information about the schedule:

) := [0, 500]
ℛ := {A1 , A2 , A3 , A4 , A5 , A6 , A7}
ℱ := { 51 , 52 , 53 , 54 , 55 , 56 , 57 , 58 , 59 , 510 , 511 , 512 , 513}
A := {01 , 02 , 03}
S := {B1 , B2}

ℱA1 = { 51 , 52} ℱA5 = { 58 , 59}
ℱA2 = { 53 , 54} ℱA6 = { 510 , 511}
ℱA3 = { 55 , 56} ℱA7 = { 512 , 513}
ℱA4 = { 57}
AB1 = {01 , 02}
AB2 = {03}
AA4 = {02}
AA = A ∀A ∈ ℛ\{A4}
AA4 = {02}
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5
1

BC3 0

BC0 45

maint False

D 51 Gamma(6, 5) - 30

5
2

BC3 80

BC0 125

maint False

D 52 Gamma(5, 6) - 30

5
3

BC3 5

BC0 70

maint False

D 53 Gamma(9, 8) - 55

5
4

BC3 110

BC0 175

maint False

D 54 Gamma(8, 9) - 55

5
5

BC3 10

BC0 105

maint False

D 55 Gamma(9, 7) - 70

5
6

BC3 145

BC0 240

maint False

D 55 Gamma(11, 6) - 70

5
7

BC3 205

BC0 250

maint 0
2

D 55 0

5
8

BC3 210

BC0 295

maint False

D 58 Gamma(7, 8) - 55

5
9

BC3 330

BC0 415

maint False

D 59 Gamma(9, 6) - 55

5
10

BC3 290

BC0 365

maint False

D 510
Gamma(6, 7) - 50

5
11

BC3 405

BC0 480

maint False

D 511
Gamma(5, 8) - 50

5
12

BC3 350

BC0 405

maint False

D 512
Gamma(8, 4) - 35

5
13

BC3 440

BC0 495

maint False

D 513
Gamma(6, 5) - 35

Table 2.2: Flight information of example problem. The BC3 and BC0 values represent the amount of minutes after the start of

the schedule. Flight 57 is a maintenance block for aircraft 02, which has no delay predictions. All other flights have delay

predictions in the form Gamma(:, �) + B, representing a shifted Gamma distribution, with shape parameter :, scale
parameter �, shifted by B minutes.

�AB B
1

B
2

0 25 30

A
1

30 35

A
2

35 40

A
3

35 40

A
5

30 35

A
6

35 40

A
7

30 30

Table 2.3: Turnaround times in minutes of aircraft subtypes at the various stations in the schedule of the example problem.

The value A = 0 represents the hub-station, while the A8 values represent the outstations on the corresponding rotations.
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2
0BB86=
A0 0

1
0

2
0

3

A
1

1210 1290 1330

A
2

2150 2110 2240

A
3

3410 3420 3510

A
5

2930 2900 3120

A
6

2350 2270 2550

A
7

1990 2090 2120

flight 2
34;0H

5
(3)

5
1

20 ∗ 3
5
2

18 ∗ 3
5
3

10 ∗ 3
5
4

12 ∗ 3
5
5

15 ∗ 3
5
6

13 ∗ 3
5
7

5 ∗ 3
5
8

8 ∗ 3
5
9

9 ∗ 3
5
10

21 ∗ 3
5
11

20 ∗ 3
5
12

19 ∗ 3
5
13

18 ∗ 3

2A4B4AE4

2500

Table 2.4: Costs in euros for example problem. The delay costs are linear functions of the amount of delay in minutes 3.

In the example, shifted Gamma distributions are picked as probability distributions of delay, since these
distributions have a minimum, but no maximum. This makes sense in practice, since flights have a physical
limitation on the amount of minutes they can arrive early (e.g. minimum flight time), but no limitation on
the amount of extra delay that may be realised due to unforeseen events.

Gamma distributions have a shape parameter : and a scale parameter �, a mean equal to :� and variance
equal to :�2, and start at 0. So, for example, the shifted gamma distribution used for 51 starts at −30 minutes,
has mean E[D 51] = 5 · 5 − 30 = −5 minutes and variance +0A[D 51] = 5 · 52 = 125. This distribution is
plotted in Figure 2.1. Note that these distributions can take negative values of delay. This means a flight has
a positive probability to negate propagated delays.

Note that the cost functions of arrival delay are linear functions, depending on the amount of delay
minutes.

Figure 2.1: Delay prediction for flight 51, a shifted Gamma distribution Gamma(6, 5) − 30, with mean

E[D 5
1
] = 6 · 5 − 30 = 0 and variance +0A[D 5

1
] = 6 · 52 = 150.

An example of a solution to the problem can be found in Figure 2.2. In this solution rotations A1 and A5 are
assigned to aircraft 01, rotations A2 , A4 and A6 to aircraft 02 and rotations A3 and A7 to aircraft 03. Note that
the flights in rotation A6 and A7 have higher delay costs than A5, and the flights in rotation A2 have a high
probability of delay, compared to the other rotations. This means that operating this schedule will likely result
in a high delay cost for the flights in rotation A6.
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Figure 2.2: Example solution schedule for this example problem. The arrows indicate the flight path of the different aircraft.

Note that the rotations are represented by blocks, where the length of the block corresponds to the operating time of the

block, when no flights are delayed.

After some quick deductions, it can easily be seen that this problem has 8 feasible solutions, given in Table 2.5.
The total assignment costs of these solution is also given in this table. As we can see, sol1 has the lowest
assignment cost, but the question remains which schedule has the lowest total expected costs.

solution A
1

A
2

A
3

A
4

A
5

A
6

A
7

20BB86=

sol1 0
1

0
2

0
3

0
2

0
1

0
2

0
3

14150

sol2 0
1

0
2

0
3

0
2

0
1

0
3

0
2

14400

sol3 0
2

0
1

0
3

0
2

0
1

0
2

0
3

14270

sol4 0
2

0
1

0
3

0
2

0
1

0
3

0
2

14520

sol5 0
2

0
3

0
1

0
2

0
3

0
1

0
2

14500

sol6 0
2

0
3

0
1

0
2

0
3

0
2

0
1

14320

sol7 0
3

0
2

0
1

0
2

0
3

0
1

0
2

14410

sol8 0
3

0
2

0
1

0
2

0
3

0
2

0
1

14230

Table 2.5: All feasible solutions to the example problem, and their total expected assignment costs.

2.4. Evaluation
To compare the quality of different models of the Robust Tail Assignment problem, we need to be able

to evaluate the model solutions. In a real life scenario, there is only one schedule that can be executed,

so we cannot easily compare different solutions. The only way to compare solutions is by their expected

costs, as given in the problem input.

Given a solution schedule, most of the expected costs can easily be calculated. The assignment costs,

consisting of operational costs, fuel costs, and swap costs are solely based on the assignment of aircraft

to rotations in the solution. But, the delay costs are more difficult to calculate, since we need to consider

random variables. Moreover, because a delayed flight can cause the next flight operated by the same

aircraft to also be delayed, the expected amount of delay costs of a flight is dependent on the delay of

previous flights. In Section 3.1 this notion will be described in more detail.

To avoid the need to calculate the distributions of (propagated) delay for every flight, a simulation

approach can be used. This section will explain the workings of a simple simulation engine, that

simulates the flight schedule many times, using random draws from the delay distributions. This

simulation engine can be used to evaluate and compare different solutions of the Robust Tail Assignment

Problem. The next section will describe the workings of the simulation engine.

2.4.1. Simulation Engine
We describe the workings of a simulation engine, that estimates the delay costs of a schedule using

simulations. In one simulation, for every flight a delay value is drawn from the given distribution

of delay. In this way, by performing many simulations, the delay distributions for every flight are

approximated. In every simulation we use these delay values to calculate the delay costs of every flight.

In this calculation propagation of delay is considered. The simulations are performed in the following

way:
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Every fleetline can be simulated separately by following the timeline, using a time variable. Initially,

this time variable is set to the departing time of the first flight in the fleetline. The flights in the fleetline

are evaluated in order, starting them at the maximum of the time variable and the scheduled departure

time of the flight. If the departure delay is more than 120 minutes, a reserve aircraft is utilised, and the

flight will depart on the scheduled time. Then, the time variable is updated by adding the duration of

the flight and the drawn amount of delay of the flight, after which the resulting arrival delay of the flight

is saved. Finally, the turnaround time is added to the time variable, before evaluating the next flight

in the fleetline. The saved arrival delay values are used for estimating the delay costs of the solution

schedule. The pseudocode for the simulation engine is given in Algorithm 1.

Algorithm 1 Simulation engine

1: B8<D;0C8>=�<>D=C ← amount of simulations to perform

2: 5 ;44C;8=4B ← dictionary holding the solution fleetlines

3: (aircraft→ sorted list of rotations)

4: B8<�DA 5 ← list containing B8<D;0C8>=�<>D=C simulated duration

5: times of flight 5 (scheduled duration plus randomly drawn

6: delay from distribution) ∀ 5 ∈ ℱ
7: �

5
B ← turnaround time after flight 5 for aircraft subtype B, ∀ 5 ∈ ℱ , B ∈ S

8: 34;0HB ← dictionary holding the simulated arrival delays

9: (flight→ list of length B8<D;0C8>=�<>D=C)
10: A4B4AE4�8A2A0 5 C ← list of zeros of length B8<D;0C8>=�<>D=C
11: for 0 ∈ A do
12: C8<4 ← [−∞,−∞, . . . ,−∞] of length B8<D;0C8>=�<>D=C
13: for A ∈ 5 ;44C;8=4B[0] do
14: for 5 ∈ ℱA do
15: for : ∈ 0, 1, . . . B 8<D;0C8>=�<>D=C − 1 do
16: C8<4[:] ← max(C8<4[:], BC3 5 )
17: if C8<4[:] ≥ BC3 5 + 120 and 5 first flight of rotation 5 then
18: C8<4[:] ← BC3 5
19: A4B4AE4�8A2A0 5 C[:] ← A4B4AE4�8A2A0 5 C[:] + 1

20: end if
21: 34;0HB[ 5 ][:] ← max(C8<4[:] + B8<�DA 5 [:] − BC0 5 , 0)
22: C8<4[:] ← C8<4[:] + B8<�DA 5 [:] + � 5B0
23: end for
24: end for
25: end for
26: end for
27: return 34;0HB, A4B4AE4�8A2A0 5 C

Using the delay and reserve aircraft values found using Algorithm 1, the total expected delay and

reserve aircraft costs can be calculated using the delay costs and reserve aircraft as defined in the

problem description. We get:

E[delay costs] =
∑

:∈{0,1,...,B 8<D;0C8>=�<>D=C−1}

∑
5 ∈ℱ

2
34;0H

5
(34;0HB[ 5 ][:])

B8<D;0C8>=�<>D=C
(2.1)

E[reserve aircraft costs] = 2A4B4AE4

B8<D;0C8>=�<>D=C
·

∑
:∈{0,1,...,B 8<D;0C8>=�<>D=C−1}

A4B4AE4�8A2A0 5 C[:] (2.2)

By performing many simulations, these equation approximate the total expected delay and reserve

aircraft costs. Since the delay costs are not the same in every simulation, we can show the total costs of a

solution using a cumulative distribution function (cdf) of the simulated costs. See Example 2 for an

example of the outcome of the simulations.



2.5. Non-Robust Tail Assignment Model 14

Example 2.
Let us evaluate the different solutions given in Table 2.5, to the example problem defined in Example 1.

Using the simulation engine to perform 10000 simulations for every solution, we get the results given in
Figure 2.3 and Table 2.6.

Figure 2.3: Result a cumulative distribution function of expected total costs for all 8 solutions to the example problem.

assignment delay reserve total delay

costs costs aircraft costs costs minutes

sol1 14150 3900.00 253.5 18303.50 304.3

sol8 14230 3934.17 253.5 18417.67 307.1

sol3 14270 2923.03 57.0 17250.03 255.4

sol6 14320 3116.78 84.75 17521.53 276.5

sol2 14400 2673.56 70.0 17143.56 246.5

sol7 14410 2683.36 70.0 17163.36 248.1

sol5 14500 2596.89 84.75 17181.64 250.9

sol4 14520 2427.52 57.0 17004.52 231.0

Table 2.6: Expected costs for all feasible solutions to the example problem, averaged over 10000 simulations. The solutions

are sorted by the expected assignment costs.

By simulating the solutions, we found that sol4 has the lowest expected total costs, averaged over all 10000
simulations. This does not mean the solution the cheapest in every simulation. For example, if a single
simulation draws negative delays for all flights, the delay costs will be zero for all flights, and the solution
with the lowest assignment costs will be the cheapest. In fact, sol4 has the highest assignment costs of all
solutions, so it will be the most expensive in this simulation! But, sol4 is more robust, and has a smaller
probability of propagating delays, so higher delays drawn in simulations often cause smaller delay costs for
sol4. In Figure 2.3, a steeper cdf corresponds to a more robust solution. Solutions sol1 and sol8 have the least
robustness, which results in high expected delay costs for these solutions.

2.5. Non-Robust Tail Assignment Model
The Robust Tail Assignment problem is a stochastic problem, since we are considering random variables

to calculate the expected delay costs of a solution. If we disregard the delay costs of the Robust Tail

Assignment problem, this problem is reduced to the Non-Robust Tail Assignment problem, a purely
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deterministic problem. This decreases the difficulty tremendously. In this section an Integer Linear

Programming model formulation of the model is proposed, to illustrate the basic workings of a Tail

Assignment problem.

For every allowed rotation-aircraft combination (A, 0), a binary decision variable -A,0 is created.
These variables will indicate the solution, where -A,0 = 1 if aircraft 0 is assigned to rotation A, and
-A,0 = 0 if not. Using these variables, we can express the total costs in an objective function, which we

will try to minimize, as ∑
(A,0):A∈ℛ ,0∈AA

2
0BB86=
A0 -A,0 .

What remains is to assure feasibility of the problem. Firstly, exactly one aircraft has to be assigned to

a rotation. This can be enforced through the following constraints:∑
0∈AA

-A,0 = 1 ∀A ∈ ℛ

Secondly, flight routes need to be feasible. This can also be achieved through constraints on the

decision variables -A,0 . Let '%
>E;?
B denote the set of rotation pairs (A1 , A2), where A1 , A2 ∈ ℛ, that overlap if

assigned to the same aircraft of subtype B ∈ S. This means that either A1 and A2 are overlapping blocks,

or that if A1 and A2 are assigned to such an aircraft, there is not enough turn-around time between the

rotations. We can describe this set mathematically as:

'%
>E;?
B := {(A1 , A2) : A1 , A2 ∈ ℛ , BC3A1 ≤ BC3A2 and BC0A1 + �0

B ≥ BC3A2} (2.3)

The sets '%
>E;?
B can be used to enforce feasibility of the flight routes, through the constraints:

-A1 ,0 + -A2 ,0 ≤ 1 ∀(A1 , A2) ∈ '%>E;?B ,∀0 ∈ AB ∪AA1 ∪AA2

With this objective function and these two sets of constraints, themodel is complete. A full description

of the model can be found in Equation 2.4. The model can be optimized using an iterative solver, such

as Gurobi [16]. Section 4.6 will explain the workings of such an iterative solver.

minimize

-A,0

∑
(A,0):A∈ℛ ,0∈AA

2
0BB86=
A0 -A,0

subject to

∑
0∈AA

-A,0 = 1 A ∈ ℛ.

-A1 ,0 + -A2 ,0 ≤ 1 (A1 , A2) ∈ '%>E;?B , 0 ∈ AB ∪AA1 ∪AA2

-A,0 ∈ {0, 1} A ∈ ℛ , 0 ∈ AA

(2.4)

Example 3.
We build the Non-Robust Tail Assignment Model for our example problem, as defined in Example 1. We have
AA4 = {02} andAA = A for all A ∈ ℛ\{A4}. This means we have the following decision variables:

-A1 ,01
-A1 ,02

-A1 ,03

-A2 ,01
-A2 ,02

-A2 ,03

-A3 ,01
-A3 ,02

-A3 ,03

-A4 ,02

-A5 ,01
-A5 ,02

-A5 ,03

-A6 ,01
-A6 ,02

-A6 ,03

-A7 ,01
-A7 ,02

-A7 ,03
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Using Definition (2.3), we get:

'%
>E;?
B1 := {(A1 , A2), (A1 , A3), (A3 , A4), (A3 , A5), (A4 , A5), (A5 , A6), (A5 , A7), (A6 , A7)}

'%
>E;?
B2 := {(A1 , A2), (A1 , A3), (A3 , A5), (A5 , A6), (A5 , A7), (A6 , A7)}

Using these sets, we can create the model. The full description of the model can be found in Appendix A.1.

2.6. Benchmark Robust Model
For the purpose of evaluating the quality of the robust model given in this thesis, KLM provided a

Benchmark Robust Model to compare the model to. This model uses two separate sub-models to solve

this problem. The result of the first model is used as input for the second model. In this way, some of

the complexity of the problem can be split into two models, making both problems significantly faster to

optimize, at the cost of optimality. For the sake of confidentiality, the full model description is omitted

from this thesis.

Subtype assignment model
This model determines which aircraft subtype is to be used on which rotations, to minimize the total

operational costs, without considering the delay costs. To ensure feasibility of the subtype assignment

in the final solution schedule, the model actually assigns an aircraft to every rotation, creating a fully

feasible solution schedule. The subtypes of the assigned aircraft in this model are used as input for the

next model, the robust model.

Robust model
This model is used for aircraft assignment. It determines which aircraft is to be used on which rotation,

given the assigned subtype by the subtype assignment model solution. It aims to minimize operational

costs, while also improving the overall robustness of the schedule in a heuristic way. The schedule is

considered robust if the probability of delay propagation from one rotation to the next is low. This

model uses the delay predictions of the flights to model this robustness.



3
Towards Incorporating Delay

Propagation

In this section we will give a mathematical description of delay propagation through a schedule, show

why incorporating this propagated delay in an optimization is not an easy task, and give an approach

for approximating the expected costs of delay, including propagated delays, for a solution of the Robust

Tail Assignment problem.

3.1. Mathematical description of delay propagation
If for every flight a probability distribution for the delay of the flight is given, we can mathematically

propagate these distributions through the flight schedule. In this section we will describe the workings

of this propagation.

Assume we know the probability distribution of the delay of any scheduled flight, and that these

distributions are independent. For a flight 5 ∈ ℱ , we denote the delay as a random variableD 5 , and the

propagated delay from previous flights by %� 5 . Let us denote the resulting total delay (arrival delay) as

a random variable )� 5 for every flight 5 ∈ ℱ . For these random variables the following equation holds:

)� 5 = %� 5 + D 5 (3.1)

Note that the probability distribution of )� 5 is equal to the convolution of the probability distributions

of %� 5 andD 5 .

To mathematically describe the propagation of the delay, we define the random variables %�6→ 5 ,B

for every flight pair (6, 5 ) ∈ ℱ × ℱ and aircraft subtype B ∈ S. This variable holds the propagated

delay of flight 5 ∈ ℱ , if flight 6 and 5 are scheduled to be operated in succession by the same aircraft of

subtype B ∈ S. Let � 5B denote the required turnaround time at the airport after a flight 5 for an aircraft

of subtype B ∈ S. Let BC3 5 and BC0 5 denote the scheduled departure and arrival time of flight 5 . The
following equation relates the variables %�6→ 5 ,B to the arrival delay of flight 6:

%�6→ 5 ,B = max(BC06 + )�6 + �6B − BC3 5 , 0) ∀(6, 5 ) ∈ ℱ × ℱ , B ∈ S (3.2)

Note that a flight 5 ∈ ℱ has multiple flights 6 ∈ ℱ that could possibly propagate delay to flight 5 ,
but only one of these connections is realised in a schedule. For every pair of flights ( 5 , 6) and subtype

B ∈ S, define G 5 6B ∈ {0, 1} to equal 1 if flight 6 follows flight 5 using the same aircraft with subtype

B ∈ S in the schedule, and 0 if not. Then the following equation selects the correct connection in the

schedule:

%� 5 =

∑
6∈ℱ ,B∈S

G6 5 B · %�6→ 5 ,B ∀ 5 ∈ ℱ (3.3)

17
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In Equation (3.3), the variables G6 5 B select correct %�6→ 5 ,B , that corresponds to the preceding flight

of 5 , with the correct subtype. Note that in this summation, only one G will equal 1. Also note that for a

long fleetline, the %� of the last flight will be dependent on the distributions of all preceding flights.

By Equation (3.2), the propagated delay of a flight is a summation of two random variables with

some translating. Note that if we get a negative propagated delay, the flight will depart at its scheduled

departing time. Therefore, all the probability of negative propagated delay is assigned to 0 delay using a

max-operation. Note that, if we disregard the max-operation, adding and translating random variables

are operations that can be performed exactly. But, because of the max-operation, calculating these

propagated delay probabilities is not a trivial task. If we consider continuous random variables, the

max-operation sends all probability of negative delay to the exact point 0, giving a mixed distribution

that is partly discrete in the point 3 = 0, and partly continuous for 3 > 0. Since performing exact

operations on these mixed random variables is very difficult, it is convenient to approximate these

operations by discretizing the continuous random variables.

3.2. Discretization
To avoid dealing with mixed random variables, we will discretize our continuous random variables. To

discretize the distributions, we define a step size ℎ?A>1 ∈ R>0 (e.g. ℎ
?A>1 = 1 minute).. Now we can limit

our distributions to only consider values that are multiples of this ℎ?A>1 . We get the following set of

delay options:

)34;0H := {C ∈ R s.t. ∃= ∈ Z : C = = · ℎ?A>1} (3.4)

Note that the random variables of delay may have an infinite number of these points C ∈ )34;0H that
have a positive probability of occurring. To reduce this amount to a finite number, we can limit the

amount of delay options by defining a distribution threshold, the distribution cutoff point ?32? . Using this

threshold, the set of discrete delay options to consider for the random variable of delay of a flight 5 ∈ ℱ
can be limited by defining:

C<8=
5

:= max

(
C ∈ )34;0H s.t. P

(
D 5 ≤ C

)
≤ ?32?

)
(3.5)

C<0G
5

:= min

(
C ∈ )34;0H

5
s.t. P

(
D 5 ≥ C

)
≤ ?32?

)
(3.6)

)
34;0H

5
:= {C ∈ )34;0H s.t. C<8=

5
≤ C ≤ C<0G

5
} (3.7)

Note that if a random variable already has a lower or upper bound, we can refrain from using C<8= or
C<0G , respectively. The continuous probability distributions of delay for the flights 5 ∈ ℱ can now be

discretized by defining the probability mass functions:

?� 5
(C) := P

(
C − ℎ

?A>1

2

< D 5 ≤ C +
ℎ?A>1

2

)
∀C ∈ )34;0H

5
\{C<8=

5
, C<0G
5
} (3.8)

?� 5
(C<8=
5
) := P

(
D 5 ≤ C<8=5

+ ℎ
?A>1

2

)
(3.9)

?� 5
(C<0G
5
) := P

(
C<0G
5
− ℎ

?A>1

2

< D 5

)
(3.10)

Note that the discretized random variables are denoted by� 5 for all 5 ∈ ℱ , as opposed to the continuous

random variablesD 5 .

Example 4.
Let us discretize the probability distribution of expected delay of flight 51 from the example problem defined in
Example 1, using time-steps ℎ?A>1 = 1 minute, and a distribution cutoff point ?32? = 0.001. The continuous
distribution given is a shifted Gamma distribution, which has a lower bound and no upper bound, so we
calculate

C<0G
51

= min

(
C ∈ Z s.t. P(D 51 ≥ C

)
≤ 0.001 = 54

Using Definition (3.8) and (3.10), we get the discrete distribution plotted in Figure 3.1. In all the future
examples regarding the problem defined in Example 1, the values ℎ?A>1 = 1 and ?32? = 0.001 are used to
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discretize the probability distributions.

Figure 3.1: Discretized delay prediction for flight 51, using ℎ
?A>1 = 1 and ?32? = 0.001. The original delay distribution for 51

is a shifted Gamma distribution Gamma(6,5)-30, see Figure 2.1.

3.2.1. Delay propagation of discrete delay distributions
Let us revisit the derived equations for propagated delay of continuous distributions as defined in

Section 3.1. Equation (3.1) and (3.3) still hold when we consider discrete random variables � 5 for all

5 ∈ ℱ . Equation (3.1) can be used to find the delay distribution of total delay for a flight. Note that if

both the random variables %� 5 and � 5 only take delay values in )34;0H , the random variable )� 5 is

also restricted to delay values in )34;0H .
Equation (3.3) selects the correct %�6→ 5 ,B , that corresponds to the preceding flight of 5 , with the

correct subtype.

Equation (3.2) calculates the distribution %�6→ 5 ,B , for flights 5 , 6 ∈ ℱ and B ∈ S. Note that if

BC06 + �
6
B − BC3 5 is not a multiple of ℎ?A>1 , using this equation will cause %�6→ 5 ,B to contain delay

values C not in )34;0H . In this case, we need to round the values to values in )34;0H , giving the following

equations for the probability mass function of %�6→ 5 ,B :

?%� 5→6,B
(0) =

∑
:: P(%� 5 =:)>0

P

(
� 5 ≤ BC36 − BC3 5 − �B − : +

ℎ?A>1

2

)
· P(%� 5 = :) (3.11)

?%� 5→6,B
(C) =

∑
:: P(%� 5 =:)>0

P

(
ℎ?A>1

2

< � 5 − (BC36 − BC0 5 − �B + C − :) ≤
ℎ?A>1

2

)
· P(%� 5 = :) ∀C ∈ )34;0H

(3.12)

Note that if BC06 + �6B − BC3 5 is a multiple of ℎ?A>1 , Equation (3.11) and (3.12) do not require any rounding,

and reduce to:

?%� 5→6,B
(0) =

∑
:: P(%� 5 =:)>0

P
(
� 5 ≤ BC36 − BC3 5 − �B − :

)
· P(%� 5 = :) (3.13)

?%� 5→6,B
(C) =

∑
:: P(%� 5 =:)>0

P
(
� 5 = BC36 − BC0 5 − �B + C − :

)
· P(%� 5 = :) ∀C ∈ )34;0H (3.14)
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Note that if BC06 + �6B − BC3 5 is a multiple of ℎ?A>1 , Equation (3.13) and (3.14) are equivalent to Equation

(3.2).

Example 5.
To provide some insight into this propagation of delay using Equations (3.1), (3.3), (3.2), (3.13) and (3.14),
let us go over a simple example. We consider two flights 5 and 6 scheduled to be operated on aircraft 0, where
6 is operated right after 5 . For simplicity sake, we refrain from using actual timestamps, and just use generic
"time-steps". Let BC0 5 = 0, BC36 = 30, �B0 = 28. The discrete distributions of %� 5 and � 5 , with ℎ?A>1 = 1

can be found in Table 3.1 and 3.2. Note that the values of BC0 5 , BC36 and �B0 are all multiples of ℎ?A>1 , so
there is no need for rounding.

Delay Prob

0 0.7

1 0.2

2 0.1

Table 3.1: %� 5

Delay Prob

-1 0.5

0 0.2

1 0.15

2 0.1

3 0.05

Table 3.2: � 5

Delay Prob

-1 0.35

0 0.24

1 0.195

2 0.12

3 0.07

4 0.02

5 0.005

Table 3.3: (%� 5 + � 5 ) = )� 5

Delay Prob

0 0.905

1 0.07

2 0.02

3 0.005

Table 3.4: max(BC0 5 +%� 5 +� 5 + �B0 − BC36 , 0) = %�6

Firstly, we use Equation (3.2) to calculate %� 5→6,B . Using the probabilities of delays of %� 5 and � 5 , we
can find the distribution of (%� 5 + � 5 ). We get:

P(%� 5 + � 5 = −1) = P(%� 5 = 0) · P(� 5 = −1) = 0.7 · 0.5 = 0.35

P(%� 5 + � 5 = 0) = P(%� 5 = 0) · P(� 5 = 0) + P(%� 5 = 1) · P(� 5 = −1)
= 0.7 · 0.2 + 0.2 · 0.5 = 0.24

P(%� 5 + � 5 = 1) = P(%� 5 = 0) · P(� 5 = 1) + P(%� 5 = 1) · P(� 5 = 0)
+ P(%� 5 = 2) · P(� 5 = −1)

= 0.7 · 0.15 + 0.2 · 0.1 + 0.1 · 0.5 = 0.195

...

In this way we can calculate all the values and probabilities for (%� 5 + � 5 ), see Table 3.3. Note that by
Equation (3.1), this is equal to )� 5 . To find the values for %�6 = %� 5→6 = max(BC0 5 +)5 + �B0 − BC36 , 0),
we first translate this distribution. We have BC0 5 + �B0 − BC36 = −2, so we translate the values of )5 by two
time-units. After taking the max, we get the distribution found in Table 3.4. Note that we could have also
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used Equation (3.13) and (3.14), giving:

?%� 5→6,B
(0) =

∑
:∈{0,1,2}

P
(
� 5 ≤ 30 − 0 − 28 − :

)
· %� 5 (:)

= P
(
� 5 ≤ 2

)
· %� 5 (0) + P

(
� 5 ≤ 1

)
· %� 5 (1) + P

(
� 5 ≤ 0

)
· %� 5 (2)

= 0.95 · 0.7 + 0.85 · 0.2 + 0.7 · 0.1 = 0.905

?%� 5→6,B
(1) =

∑
:∈{0,1,2}

P
(
� 5 = 30 − 0 − 28 + 1 − :

)
· %� 5 (:)

= P
(
� 5 = 3

)
· %� 5 (0) + P

(
� 5 = 2

)
· %� 5 (1) + P

(
� 5 = 1

)
· %� 5 (2)

= 0.05 · 0.7 + 0.1 · 0.2 + 0.15 · 0.1 = 0.07

?%� 5→6,B
(2) =

∑
:∈{0,1,2}

P
(
� 5 = 30 − 0 − 28 + 2 − :

)
· %� 5 (:)

= P
(
� 5 = 4

)
· %� 5 (0) + P

(
� 5 = 3

)
· %� 5 (1) + P

(
� 5 = 2

)
· %� 5 (2)

= 0 · 0.7 + 0.05 · 0.2 + 0.1 · 0.1 = 0.02

?%� 5→6,B
(3) =

∑
:∈{0,1,2}

P
(
� 5 = 30 − 0 − 28 + 3 − :

)
· %� 5 (:)

= P
(
� 5 = 5

)
· %� 5 (0) + P

(
� 5 = 4

)
· %� 5 (1) + P

(
� 5 = 3

)
· %� 5 (2)

= 0 · 0.7 + 0 · 0.2 + 0.05 · 0.1 = 0.005

All distributions in this example are also plotted in Figure 3.2.

Figure 3.2: Probability mass functions of the random variables evaluated in the example.

Now that we have seen the workings of Equations (3.1), (3.3), (3.2), (3.13) and (3.14), we can apply

these equations to a fleetline of our example problem.

Example 6.
Let us consider the fleetline of aircraft 01 for our example problem defined in Example 1, in the solution
schedule from Figure 2.2. The fleetline contains two rotations, A1 and A5. Both rotations contain two flights,
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where delay may propagate between the flights. Similarly to Example 4, we discretize the delay distributions
of the flights in the fleetline using ℎ?A>1 = 1 and ?32? = 0.001, see Figure 3.3. Note that all values defined in
Example 1 are multiples of ℎ?A>1 , so we can use Equations (3.13) and (3.14).

Since rotation A1 is the first rotation in the fleetline of 01 we have no propagated delay for 51, i.e. %� 51 = 0.
Using Equation (3.13) and (3.14), we can calculate the distribution of propagated delays %� 5 for flights
5 ∈ { 52 , 58 , 59}, see Figure 3.4. We see that for this fleetline, there is only a very small probability of
propagating delay from flight 52 to flight 58.

The distributions of the random variables )� 5 = %� 5 + � 5 for 5 ∈ { 51 , 52 , 58 , 59} are given in Figure
3.5.

Figure 3.3: Discretized delay predictions for flights 51 , 52 , 58 and 59, using ℎ
?A>1 = 1 and ?32? = 0.001.
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Figure 3.4: Propagated delay distributions for flights 52 , 58 and 59. The leftmost bars represent the probability of no delay.

The area of the bars are consistent with this probability, which is written inside the bar.

Figure 3.5: Total delay distribution of arrival, for flights 51 , 52 , 58 and 59.
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3.3. Cost of delay
If a flight arrives later than scheduled, the airline has to pay several costs, depending on multiple factors.

Among these factors are the amount of delay, amount of passengers, missed connections of passengers

and expected future value loss. Based on these costs, a cost function based on amount of delay minutes

can be defined for every flight. So we define:

2
34;0H

5
(C) := Cost of flight 5 ∈ ℱ arriving C minutes late.

Using this definition, the total expected delay cost of a flight 5 ∈ ℱ is equal to:

E
[
2
34;0H

5

(
max()� 5 , 0)

) ]
=

∑
3∈)� 5

P()� 5 = 3) · 234;0H
5
(max(3, 0)) (3.15)

Note that if a flight arrives earlier than scheduled, it has no delay, so we round negative delays to 0 in

the cost function. The total expected delay cost of a schedule can now be expressed as:∑
5 ∈ℱ
E

[
2
34;0H

5

(
max()� 5 , 0)

) ]
=

∑
5 ∈ℱ

∑
3∈)� 5

P()� 5 = 3) · 234;0H
5
(max(3, 0)) (3.16)

Example 7.
Let us again consider the fleetline of 01 for our example problem defined in Example 1, in the solution

schedule from Figure 2.2. The expected delay cost of this fleetline is equal to the sum of the expected delay
costs of its flights. Using the distributions found in Figure 3.5 we get:

E
[
2
34;0H

51

(
max()� 51 , 0)

) ]
=

∑
3∈)� 5

1

P
(
)� 51 = 3

)
· 234;0H

51
(max(3, 0)) = 100.77

E
[
2
34;0H

52

(
max()� 52 , 0)

) ]
=

∑
3∈)� 5

2

P
(
)� 52 = 3

)
· 234;0H

52
(max(3, 0)) = 137.68

E
[
2
34;0H

53

(
max()� 53 , 0)

) ]
=

∑
3∈)� 5

8

P
(
)� 58 = 3

)
· 234;0H

58
(max(3, 0)) = 72.31

E
[
2
34;0H

54

(
max()� 54 , 0)

) ]
=

∑
3∈)� 5

9

P
(
)� 59 = 3

)
· 234;0H

59
(max(3, 0)) = 106.85

So the total expected delay cost of the fleetline of 01 is equal to∑
5 ∈{ 51 , 52 , 58 , 59}

E
[
2
34;0H

5

(
max()� 5 , 0)

) ]
= 417.61



4
Robust Flow Model

In this chapter a new proposed model for the Robust Tail Assignment problem will be motivated and

described. In the first section, various model approaches are discussed. In the later sections, the model

will be explained, built and formulated.

4.1. Model approaches
To find a solution that is close to optimal, the delay costs of a solution need to be accurately approximated.

Therefore, it is necessary to incorporate the expected propagated delay distributions for all flights in

the model. The delay costs of flights in the schedule are dependent on all earlier scheduled flights by

propagation of delay. This dependency is the main difficulty of the problem.

One way to solve the problem is by brute force, i.e. trying all possible solutions. For a full schedule

with = rotations and < aircraft, we have O((<!)=/<) possible solutions 1. For all these solutions, the

total expected costs are to be compared. To find the delay costs of a solution, the propagated delay

distributions for all flights need to be calculated, using Equation (3.2) for every flight. This means we

need to perform these heavy operations on random variables O(= · (<!)=/<) times, which will take a

very long time. Therefore, brute force is not feasible for solving the Robust Tail Assignment problem.

Another approach to solve the problem would be to use dynamic programming. This method

requires the problem to be dividable into nested sub-problems, where the optimal solution of a sub-

problem is also a part of the optimal solution of the whole problem. But, because of the dependencies in

the problem, this is not the case, meaning we cannot use dynamic programming.

As deduced by exploring the brute force approach, calculating the propagated delay distributions

for all possible fleetlines in a solution is not feasible. An approach often used in literature is a column

generating algorithm, using the set partitioning formulation as defined in Section 1.2.1. In this formula-

tion, possible fleetlines correspond to columns in a Mixed-Integer Linear Programming (MIP). Since it

is infeasible to consider all possible fleetlines, columns that can improve the solution are dynamically

added to the linear relaxation of the problem, until no more improving columns exist. At this point

the linear relaxation is optimally solved. A rounding heuristic can be used to round the solution to an

integer solution. Note that, because of this final rounding stage, the optimality is lost.

To find optimal integer solutions, delay propagation and delay costs needs to be incorporated in a

model of the problem. In a solution, the propagation of delay distributions can locally be described as

a dependency of a rotation to the previous and the next rotation. This local relation can be depicted

using a graph of nodes and edges, where nodes correspond to rotations, which are connected by edges

1A full schedule means a schedule where all aircraft are operational most of the time. In the worst case, this schedule consists

of =/< blocks of time (with enough turnaround time for the aircraft in between), where in each of these timeblocks < rotations

are operated by the < aircraft. In that case, each block has a total of <! possible assignments. Since we have =/< independent

blocks, we have a total of (<!)=/< possible solutions.

25
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that represent the operation of delay propagation. The model described in this thesis is a MIP model.

The model uses a depiction of local dependencies, to accurately approximate the delay propagation

through the entire fleetline. The operations of delay propagation are performed by considering various

states of delay a rotation can reside in, where a state is connected to all states it can possibly transition

into in any solution by directional edges. Probabilities are calculated using flow over these edges. The

probability of a rotation being in a certain state is determined by the flow over its connected edges.

Depending on the assignments of a solution, edges in this network are activated or deactivated, to be

able to approximate the correct delay distributions for that solution. The values of the active edges will

be used to approximate the total expected delay costs of a solution.

The creation of this model will be explained in detail and in small steps in the next sections.

4.2. Aircraft assignment
The Robust Tail Assignment problem is an assignment problem, with the same degree of freedom as the

Non-Robust Tail Assignment problem. Therefore, the base of the model is similar to the Non-Robust

Tail Assignment model, as described in 2.5. For every feasible rotation-aircraft combination, a decision

variable - is created, which can take the binary values 0 and 1:

-A,0 ∈ {0, 1} ∀A ∈ ℛ , 0 ∈ AA . (4.1)

If such a variable -A,0 has value 1 in a model solution, rotation A will be assigned to aircraft 0 is the
schedule. These values form the solution of the model. In a solution, exactly one aircraft needs to be

assigned to every rotation, which can be enforced using the constraints:∑
0∈AA

-A,0 = 1 ∀A ∈ ℛ. (4.2)

To ensure the assignment costs are optimized for in the model, the sum over these costs for every

assignment variable is added to the objective value:∑
A∈ℛ

∑
0∈AA

2
0BB86=
A,0 · -A,0 . (4.3)

Finally, to have a solution schedule that is feasible, rotations that will overlap if assigned to the same

aircraft must be forced to be assigned to different aircraft. In the Non-Robust Tail Assignment model

from Section 2.5, this is achieved by finding pairs of rotations that overlap, and defining constraints for

these pairs, see Equation (2.3). Note that if we have : rotations that all overlap with each other, this

requires : · (:−1)/2 = O(:2) constraints per aircraft, while the same can be achieved using one constraint

per aircraft, forcing the sum of the values of - corresponding to this aircraft and the : rotations to be

less than or equal to 1.

To find these sets of overlapping rotations, let us define a small preprocessing algorithm, shown in

Algorithm 2. Since the turnaround time depends on the aircraft subtype, we define the variables '(
>E;?
B

to hold rotation sets, that overlap if two of these rotations are assigned to the same aircraft of subtype B.
The idea of this algorithm is create a running set, adding rotations to this set in chronological order,

based on their BC3A . If this BC3A is higher than the BC0@ plus turnaround time of any of the rotations

@ currently in the running set, these rotations are deleted from the set. In this way the running set

always contains rotations that all overlap with each other, for which we can create a single constraint

per aircraft.

What remains is to define the corresponding feasibility constraints:∑
A∈AB, s.t. 0∈AA

-A,0 ≤ 1 ∀0 ∈ A , AB ∈ '(>E;?B0 . (4.4)
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Algorithm 2 Determine overlapping rotations

1: '(
>E;?
B ← empty set that will hold rotation sets ∀B ∈ S

2: B>AC43!8BC ← list of all rotations A ∈ ℛ, sorted by BC3A
3: AD==8=6(4CB ← empty set that will hold the running sets ∀B ∈ S
4: for A ∈ B>AC43!8BC do
5: for B ∈ SA do
6: C>�4;4C4 ← empty set that will hold rotations to be deleted

7: for @ ∈ AD==8=6(4CB do
8: if BC0@ + �0

B ≤ BC3A then
9: add @ to C>�4;4C4
10: end if
11: end for
12: if |C>�4;4C4 | > 0 then
13: add AD==8=6(4CB to '(

>E;?
B

14: end if
15: for @ ∈ C>�4;4C4 do
16: delete @ from AD==8=6(4CB
17: end for
18: add A to AD==8=6(4CB
19: end for
20: end for
21: for B ∈ S do
22: if AD==8=6(4CB ∉ '(

>E;?
B then

23: add AD==8=6(4CB to '(
>E;?
B

24: end if
25: end for
26: return '(>E;?B ∀B ∈ S

Example 8.
We apply Algorithm 2 to create feasibility constraints for our example problem, as defined in Example 1.

We loop over the rotations in order of BC3, so we start with A1. We have (A1 = {B1 , B2}. The sets
AD==8=6(4CB1 and AD==8=6(4CB2 are intially empty, so after evaluating A1 we have:

AD==8=6(4CB1 = AD==8=6(4CB2 = {A1}

Now A2 is evaluated. We have BC0A1 + �0

B1
= 125 + 25 > 5 = BC3A2 and BC0A1 + �0

B2
= 125 + 30 > 5 = BC3A2 ,

so no rotations are to be deleted from the running sets. We get:

AD==8=6(4CB1 = AD==8=6(4CB2 = {A1 , A2}

After evaluating A3, we have:

AD==8=6(4CB1 = AD==8=6(4CB2 = {A1 , A2 , A3}

Evaluating A4, we only loop over (A4 = {B1}. We have:

BC0A1 + �0

B1
= 125 + 25 ≤ 205 = BC3A4

BC0A2 + �0

B1
= 175 + 25 ≤ 205 = BC3A4

BC0A3 + �0

B1
= 240 + 25 > 205 = BC3A4

We now have C>�4;4C4 = {A1 , A2}, so by line 12-18 of the algorithm, we get '(>E;?B1 =
{
{A1 , A2 , A3}

}
, and
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AD==8=6(4CB1 = {A3 , A4}. Looping over the last three rotations A5 , A6 and A7, we end up with the sets:

'(
>E;?
B1 =

{
{A1 , A2 , A3}, {A3 , A4 , A5}

}
'(

>E;?
B2 =

{
{A1 , A2 , A3}, {A3 , A5}

}
AD==8=6(4CB1 = {A5 , A6 , A7}
AD==8=6(4CB2 = {A5 , A6 , A7}

In lines 21-25, these final running sets are added to the overlapping sets, and we get:

'(
>E;?
B1 =

{
{A1 , A2 , A3}, {A3 , A4 , A5}, {A5 , A6 , A7}

}
'(

>E;?
B2 =

{
{A1 , A2 , A3}, {A3 , A5}, {A5 , A6 , A7}

}
Now, we can define the feasibility constraints for the example problem, using Equation (4.4):

-A1 ,01
+ -A2 ,01

+ -A3 ,01
≤ 1

-A1 ,02
+ -A2 ,02

+ -A3 ,02
≤ 1

-A1 ,03
+ -A2 ,03

+ -A3 ,03
≤ 1

-A3 ,01
+ -A5 ,01

≤ 1

-A3 ,02
+ -A4 ,02

+ -A5 ,02
≤ 1

-A3 ,03
+ -A5 ,03

≤ 1

-A5 ,01
+ -A6 ,01

+ -A7 ,01
≤ 1

-A5 ,02
+ -A6 ,02

+ -A7 ,02
≤ 1

-A5 ,03
+ -A6 ,03

+ -A7 ,03
≤ 1

Note that only 9 constraints are required, as opposed to 23 constraints if we create overlapping constraint per
pair of rotations.

4.3. Delay propagation by flow
As described in Section 3, subsequent flights assigned to the same aircraft may propagate delay. This

section will describe a way to estimate the expected delay costs of a schedule, taking into account this

delay propagation, using a flow network. Firstly, Section 4.3.1 describes what a flow network is. Section

4.3.2 describes how a flow network can be used to model propagation of probabilities. Then, in Section

4.3.3, an algorithm for determining the pairs of rotations that may propagate delay is given. Finally, in

Section 4.4, the necessary steps for creating the network are described. Section 4.5.2 will contain the

mathematical formulation of the model.

4.3.1. Flow network
In graph theory, a flow network is a directed graph containing nodes and edges. Every edge receives a

flow value, which cannot exceed the capacity of the edge. This flow must satisfy the flow propagation

restriction, which means that in every node that is not a source or sink, the sum of flows of incoming

edges is equal to the sum of flows of outgoing edges. A source node has a predefined total outgoing

flow, while a sink node has a predefined total incoming flow.

4.3.2. Network description
The general idea of this network is to create a network of connected nodes, corresponding to departure

and arrival timestamps for every rotation, with directional edges between nodes, where flow represents

probability. The network will contain states as nodes, where the flow though these nodes corresponds

to the probability that this state occurs. These state nodes will be subtype dependent, since the subtype

of the assigned has an impact on the turnaround time of the aircraft between flights, and therefore has

an impact on the delay propagation. Edges in this network will be activated based on the assignments

created by the assignment decision variables of the basemodel, using constraints. To ensure conservation
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of probability, for every node the outgoing probability should be equal to the incoming probability,

which can also be achieved by constraints.

For this model, instead of the actual timestamps, let us consider the relative time compared to the

start of the schedule, in minutes. For example, for a schedule that starts on January 1st at 00:00, the

timestamp 01/01 01:10 will have a relative time of 60+ 10 = 70 minutes. This means that we will refer to

this timestep as C = 70.

The nodes in this network correspond to timestep states where a rotation can possibly start or end,

and are subtype dependent. We will denote these nodes by (C , A , B), C ∈ ), A ∈ ℛ , B ∈ SA . There are

two types of nodes, departure state nodes and arrival state nodes, for every rotation. We denote the

departure and arrival state nodes for a rotation A ∈ ℛ and subtype B ∈ S by #
34?
AB and # 0AA

AB , respectively.

The nodes in #
34?
AB represent the states of departure for rotation A, so a node (C , A , B) ∈ #34?

AB corresponds

to the state that rotation A departs at timestep C on an aircraft of subtype B. Similarly, the nodes in

# 0AA
A represent the states of arrival for rotation A, so a node (C , A , B) ∈ # 0AA

AB corresponds to the state that

rotation A arrives at timestep C on an aircraft of subtype B. For this model, we incorporate the turnaround

time at the hub airport into the arrival states. This means a state (C , A , B) ∈ # 0AA
AB indicates the assigned

aircraft is ready for the next rotation at timestep C.
These nodes are connected by edges, that can take any value between 0 and 1, corresponding to

probabilities. There are two types of edges, edges between rotations and edges within rotations. Edges

between rotations connect arrival state nodes of one rotation to departure state nodes of another rotation.

Edges within rotations connect departure state nodes to arrival state nodes. Nodes are only connected

by edges if the transition of states from the outgoing state node to the incoming state node is feasible

and has a positive probability of happening, based on the delay predictions. Precisely how this is

determined, will be described in the following sections.

The total incoming flow into a node (C , A , B) ∈ #34?
AB represents the probability that rotation A departs

at timestep C on an aircraft of subtype B, i.e. P
(
C
34?
A = C ∧ assigned subtype = B

)
. Note that if, in a

solution, an aircraft with another subtype is assigned, this probability will be equal to 0, thus the node

should have no incoming flow. Similarly, the total incoming flow into a node (C , A , B) ∈ # >DC
AB represents

the probability that rotation A is turned around at the hub station at timestep C on an aircraft of subtype

B:
P

(
C0AAA = C ∧ assigned subtype = B

)
.

An edge between two nodes represents the probability that the first and the second event happen. As

we have seen in Section 2.2, within a single rotation, the delay probabilities of the arrival of the last

flight in the rotation are solely dependent on the probabilities of the departure of the first flight in the

rotation (propagated delay from previous rotations), and the subtype of the assigned aircraft. Therefore,

we create edges that are subtype specific. That way, we can preprocess all delay propagation within

every rotation. For example, an edge from a node (C1 , A , B) ∈ #34?
AB to a node (C2 , A , B) ∈ # 0AA

AB represents

the probability:

P
(
C
34?
A = C1 ∧ C0AAA = C2 ∧ assigned subtype = B

)
= P

(
C0AAA = C2 |C34?A = C1 , assigned subtype = B

)
· P

(
C
34?
A = C1 ∧ assigned subtype = B

)
. (4.5)

The probability P
(
C0AAA = C2 |C34?A = C1 , assigned subtype = B

)
can be calculated in preprocessing, us-

ing Equations (3.13) and (3.14) fromSection 2.2, while the probabilityP
(
C
34?
A = C1 | assigned subtype = B

)
is equal to the incoming flow from edges corresponding to subtype B in the node (C1 , A , B). Therefore,
we can enforce the right amount of flow into the corresponding edge ((C1 , A), (C2 , A), B), using a linear

constraint. These constraints, and this preprocessing step will be further explained in Section 4.4.2

Edges between arrival states of a rotation # 0AA
A1B

and departure states of another rotation #
34?
A2B are

quite straightforward. For every rotation pair (A1 , A2) and subtype B for which A1 → A2 is a feasible

connection on an aircraft of subtype B, we create edges. Every arrival state (C1 , A1 , B) ∈ # 0AA
A1B

is connected

to the first feasible departure state (C2 , A2 , B) ∈ #34?
A2B . This means we take the minimum C2, such that
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(C2 , A2 , B) ∈ #34?
A2B and C2 ≥ C1, meaning it is a feasible connection. If rotations A1 and A2 are assigned to

be operated in succession on the same aircraft of subtype B by the decision variables, these edges are

activated. If this is not the case, these edges are set to 0.

4.3.3. Propagation pairs
If we consider this network for delay propagation, we need to connect the arrival state nodes of a

rotation scheduled early in the day to departure state nodes of all feasible rotations that can be scheduled

directly after this rotation. This means we need to create a great number of edges between rotations,

creating many variables. Having many variables will cause the model to be more difficult to solve,

impacting the optimization speed. Since for a lot of these connections, the probability of propagating

delay is very small or even negligible, we might be able to disregard these connections, and reduce

the number of edges in the network, speeding up the optimization. To accomplish this, let us set a

threshold of probability, where if a connection in the worst-case scenario has a probability of delay

propagation lower than this threshold, we disregard the connection. We will call this threshold the

propagation cutoff point or ??2? . So, for a connection between two rotations A1 and A2, we consider the

worst-case scenario of propagated delay for rotation A1. If we assign A2 to be operated right after

A1, and the probability of A2 having any propagated delay from A1 is smaller than ??2? , we do not

connect arrival state nodes of A1 to departure state nodes of A2. If we do assign these rotations to the

same aircraft, we send all probability from arrival state nodes of A1 to a sink and let the departure

state node of A2 that corresponds to no delay be a source of 1 flow, disregarding the propagated de-

lay probability. In this way, the number of edges between rotations in the network can be greatly reduced.

To determine which pairs of rotation do need to be connected by edges, and to determine the

possible departure and arrival states options that need to be considered for every rotation, we need

to know exactly how much delay can be propagated from previous rotations. Let us define a small

pre-processing algorithm to determine the maximum timestep where these rotations can arrive over all

possible assignments, as well as the maximum timestep where the threshold ??2? is passed, using the

given probability distributions of delay.

For every feasible rotation-aircraft combination (A, 0), A ∈ ℛ , 0 ∈ AA , we define the variables

C<0G
34?
A0 , C<0G

0AA
A0 , C<0G

?2?
A0 as:

C<0G
34?
A0 The maximum timestep where rotation A can depart if

assigned to aircraft 0, considering possible propagated delays.

C<0G0AAA0 The maximum timestep where rotation A can be turned around

at the hub airport if assigned to aircraft 0, considering possible

propagated delays.

C<0G
?2?
A0 The maximum timestep where the ??2? threshold is passed,

considering possible propagated delays.

Since for a rotation A ∈ ℛ, the time-steps C<0G
34?
A0 and C<0G

?2?
A0 only depend on rotations @ that are

scheduled to arrive before A departs in the schedule, we can determine these time-steps by evaluating

the rotations in order of increasing BC3. Note that the time-steps C<0G
?2?
A0 depend on the full worst-case

probability distribution of propagated delay of A, it is dependent all the distributions of previous

rotations. To simplify this, we will only consider the worst-case mean value (<40=%A>?A0) of the
propagated delay from previous rotations to calculate this value.

Using these variables, we can define an algorithm that can be used to determine all values of C<0G
34?
A0 ,

C<0G0AAA0 and C<0G
?2?
A0 , see Algorithm 3.

First, for every rotation A ∈ ℛ, the maximum duration of the flights (3DA<0G
5

) is determined, based on

the delay predictions of these flights. Also, a list of all rotations (B>AC43!8BC) is created, sorted by BC3.
For every rotation-aircraft combination (A, 0), A ∈ ℛ , 0 ∈ A, we initially save the worst-case mean of

propagated delay as <40=%A>?A0 = 0. Also, an empty set ?A>?%08AB is created, which will hold pairs of
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rotations with aircraft subtypes, for which we need to create edges.

Algorithm 3 Determine propagation pairs

1: 3DA<0G
5
← BC0 5 − BC3 5 + <0G(� 5 ) ∀ 5 ∈ ℱ

2: B>AC43!8BC ← list of all rotations A ∈ ℛ, sorted by BC3A
3: ?A>?%08AB ← empty set that will hold tuples (A1 , A2 , B) to create edges for

4: C<0G
34?
A0 ← BC3A ∀A ∈ ℛ , 0 ∈ AA

5: C<0G0AAA0 ← BC0A ∀A ∈ ℛ , 0 ∈ AA

6: C<0G
?2?
A0 ← 0 ∀A ∈ ℛ , 0 ∈ AA

7: <40=%A>?A0 ← 0 ∀A ∈ ℛ , 0 ∈ AA

8: for A ∈ B>AC43!8BC do
9: for 0 ∈ AA do
10: <0G"40=0 ← BC3A
11: for @ ∈ B>AC43!8BC<A do
12: if @ → A is feasible & C<0G

?2?
@0 > BC3A then

13: add (@, A, B0) to ?A>?%08AB
14: <0G"40=0 ← max(<0G"40=0 , <40=%A>?@0)
15: if A is a maintenance block then
16: C<0G

34?
A0 ← max(C<0G34?A0 , C<0G

0AA
@0 )

17: else
18: C<0G

34?
A0 ← max(C<0G34?A0 ,min(C<0G0AA@0 , BC3A + 120))

19: end if
20: end if
21: end for
22: if A contains two flights, 51 , 52. then
23: C<0G0AAA0 ← max(BC3 52 , C<0G

34?
A0 + 3DA<0G51

+ �AB0 ) + 3DA<0G52
+ �0

B0

24: �<0G0AAA0 = max(<0G"40=0 + � 51 + BC0 51 − BC3 51 + �AB0 , BC3 52)+
25: � 52 + BC0 52 − BC3 52 + �0

B0
26: else ⊲ A is a maintenance block

27: C<0G0AAA0 ← C<0G
34?
A0 + 3DA<0G51

+ �0

B0

28: �<0G0AAA0 ← <0G"40=0 + � 51 + BC0A − BC3A + �0

B0
29: end if
30: <40=%A>?A0 ← E[�<0G0AAA0 ]
31: C<0G

?2?
A0 = min(C ∈ ) s.t. P(�<0G0AAA0 ≥ C) ≤ ??2?)

32: end for
33: end for
34: return C<0G34? , C<0G0AA , C<0G?2? , ?A>?%08AB
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Let us again consider a simple example, to illustrate the workings of Algorithm 3.

Example 9.
Let us again consider the example problem defined in Example 1, to illustrate the workings of Algorithm 3.
The probability distributions of delay are discretized using ℎ?A>1 = 1 and ?32? = 0.001, as in Example 4.
For the algorithm, we take propagation cutoff point ??2? = 0.05. This means that only connections with a
probability of propagated delay higher than 5% are considered in the model. First we sort the rotations by BC3,
and get:

B>AC43!8BC = [A1 , A2 , A3 , A4 , A5 , A6]
We loop over B>AC43!8BC, starting with A1. Rotation A1 can be operated by all aircraft, so we loop over
[01 , 02 , 03]. By line 10 we get:

<0G"40=01
← BC3A1 = 0

There are no rotations in B>AC43!8BC before A1, lines 11 to 21 are skipped. This means that we have
C<0G

34?
A101

= BC3A1 = 0.
Rotation A1 contains two flights, 51 and 52, so in line 22 to 31 we calculate:

C<0G0AAA101

← max(BC3 52 , C<0G
34?
A101

+ 3DA<0G
51
+ �AB0

1

) + 3DA<0G
52
+ �0

B0
1

= max(80, 0 + 99 + 30) + 105 + 25 = 259

�<0G0AAA101

← max(<0G"40=A101
+ � 51 + BC0 51 − BC3 51 + �AB0 , BC3 52) + � 52 + BC0 52 − BC3 52 + �0

B0

= max(0 + � 51 + 45 − 0 + 30, 80) + � 52 + 125 − 80 + 25

= max(� 51 + 75, 80) + � 52 + 70

<40=%A>?A1 ,01
← E[�<0G0AAA0 ]
= E[max(� 51 + 75, 80) + � 52 + 70] = 158

C<0G
?2?
A101

← min(C ∈ ) s.t P(�<0G0AAA0 ≥ C) ≤ ??2?)
= min(C ∈ ) s.t P(max(� 51 + 75, 80) + � 52 + 70 ≥ C) ≤ 0.05) = 182

Similarly, we find the values for the pairs (A1 , 02), (A1 , 03), as well as all the pairs with A2 and A3, since they
have no feasible preceding rotations. For these values, see Table 4.1.

Next, rotation A4 is considered. This rotation is a maintenance block for aircraft 02, so we loop over [02].
By line 10 we get:

<0G"40=02
← BC3A4 = 205

Rotations A1 and A2 are feasible to be operated before A4, and we have C<0G?2?A102

= 182 ≤ 205 and
C<0G

?2?
A202

= 313 > 205, so by line 12, we only operate lines 13 to 19 for rotation A2. We get:

(A2 , A4 , B1) is added to ?A>?%08AB

<0G"40=02
← max(205, 250) = 250

Rotation A4 is a maintenance block, so we get:

C<0G
34?
A402

← max(205, 460) = 460

Then, lines 22 to 31 are operated in the same way as before. Repeating this process for all rotations and
aircraft, we get the values as found in Table 4.1. The propagation pairs that are saved by the algorithm are:

?A>?%08AB = {(A2 , A4 , B1), (A2 , A5 , B1), (A2 , A5 , B2), (A2 , A6 , B1), (A2 , A6 , B2),
(A3 , A6 , B1), (A3 , A6 , B2), (A4 , A6 , B1), (A4 , A7 , B1)}

Figure 4.1 shows the propagation pairs as arrows between rotation blocks.
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Rotation A Aircraft 0 C<0G
34?
A0 C<0G0AAA0 C<0G

?2?
A0 <40=%A>?A0

A
1

0
1

0 259 182 158

A
1

0
2

0 259 182 158

A
1

0
3

0 269 190 164

A
2

0
1

5 460 313 250

A
2

0
2

5 460 313 250

A
2

0
3

5 470 322 259

A
3

0
1

10 416 306 274

A
3

0
2

10 416 306 274

A
3

0
3

10 426 314 280

A
4

0
2

460 530 383 320

A
5

0
1

330 709 515 468

A
5

0
2

330 709 515 468

A
5

0
3

330 724 539 490

A
6

0
1

410 757 534 510

A
6

0
2

410 757 558 519

A
6

0
3

410 762 539 515

A
7

0
1

350 609 542 524

A
7

0
2

470 729 542 524

A
7

0
3

350 614 547 529

Table 4.1: Values of C<0G34?A0 , C<0G0AAA0 and C<0G
?2?
A0 in minutes for the example problem, found using Algorithm 3.

Figure 4.1: Visualisation of the propagation pairs ?A>?%08AB, found using Algorithm 3. The arrows correspond to feasible

connections that have a significant probability of propagating delay, if assigned to the same aircraft. The color of the arrows

corresponds to the aircraft subtype.

Using the values found using Algorithm 3, we can easily define all the possible departure and arrival

state options for every rotation, which will be described in the next section.

4.4. Network creation
This section describes the creation of the delay propagation network, using the results of Algorithm 3.

First, we define a constant step size ℎBC4? in minutes, which we use for the discrete departure and

arrival state nodes of the rotations.
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4.4.1. Nodes
Using the values found using pre-processing Algorithm 3, we can create the nodes of the network. For

every rotation A ∈ ℛ and subtype B ∈ SA , we define:

#
34?
AB := {(BC3A , A , B)}

∪
{
(C , A , B) s.t. C ≡ 0 mod ℎBC4? , BC3A < C ≤ max

0∈AB

C<0G
34?
A0 + ℎBC4?/2

}
(4.6)

# 0AA
AB :=

{
(BC0A + �0

B0
, A , B)

}
∪

{
(C , A , B) s.t. C ≡ 0 mod ℎBC4? ,

BC0A + �0

B0
< C ≤ min

(
max

0∈AB

C<0G0AAA0 , max

@ s.t.
(A,@,B)∈?A>?%08AB

max

0∈AB

C
34?
@0 + ℎBC4?

)
+ ℎBC4?/2

}
(4.7)

#34?
:=

⋃
A∈ℛ ,B∈SA

#
34?
AB (4.8)

# 0AA
:=

⋃
A∈ℛ ,B∈SA

# 0AA
AB (4.9)

# := #34? ∪ # 0AA
(4.10)

Firstly, regardless of the step size ℎBC4? , for every rotation A ∈ ℛ and subtype B ∈ SA , a node (BC3A , A , B)
is created, corresponding to the scheduled time of departure, which is added to #

34?
AB . Similarly the

nodes (BC0A + �0

B0
, A , B) are created and added corresponding # 0AA

AB . These nodes are the earliest possible

departure and arrival states to consider, since a rotation is not allowed to depart before its scheduled

time, and two rotations are only assigned to the same aircraft if the connection is feasible, meaning it is

not necessary to consider earlier arrival times. We can simply round earlier arrival time states up to the

BC0A + �0

B states.

Note that for the other state nodes, the timesteps are multiples of ℎBC4? , so they are globally rounded,

which will make it easier to define edges between rotations. Departure state nodes are created for

all globally rounded possible time steps, as found by Algorithm 3. For the arrival states, we take a

minimum, to reduce unnecessary states. If for a rotation the maximum timestep of the departure states

of its propagation pairs is later than the maximum arrival state timestep, this means all states between

these timesteps will result in a reserve aircraft being used, if this pair is connected. Therefore, we only

need to create a single state that represents these reserve aircraft states. Also note that if a rotation has no

outgoingpropagation pairs, only one arrival state node is created, corresponding to the BC0 of the rotation.

Example 10.
Using Definitions (4.6) and (4.7), we can determine the state nodes for our example problem, defined in
Example 1. For this example, let us take a stepsize of ℎBC4? = 15 minutes. First, let us consider rotation A1.
We have C<0G34?A101

= C<0G
34?
A102

= C<0G
34?
A103

= 0, so we get:

#
34?
A1 ,B1 = {(0, A1 , B1)}

#
34?
A1 ,B2 = {(0, A1 , B2)}

Rotation A1 has no outgoing propagation pair for B1 and B2, so we get:

# 0AA
A1 ,B1

= {(150, A1 , B1)}
# 0AA
A1 ,B2

= {(155, A1 , B2)}
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For rotation A2, we have C<0G
34?
A201

= C<0G
34?
A202

= C<0G
34?
A203

= 5, so we get:

#
34?
A2 ,B1 = {(5, A2 , B1)}

#
34?
A2 ,B2 = {(5, A2 , B2)}

Rotations A2 has three outgoing pairs for B1, and two outgoing pairs for B2, where:

max

@ s.t.
(A

2
,@,B

1
)∈?A>?%08AB

max

0∈AB
1

C
34?
@0 = max(C34?A402

, C
34?
A501

, C
34?
A502

, C
34?
A601

, C
34?
A602

) = max(460, 330, 330, 410, 410) = 460

max

@ s.t.
(A

2
,@,B

2
)∈?A>?%08AB

max

0∈AB
2

C
34?
@0 = max(C34?A503

, C
34?
A603

) = max(330, 410) = 410

C<0G0AAA201

= C<0G0AAA202

= 460 and C<0G0AAA203

= 470, so we get:

# 0AA
A2 ,B1

= {(200, A2 , B1), (210, A2 , B1), (225, A2 , B1), (240, A2 , B1), (255, A2 , B1), (270, A2 , B1), (285, A2 , B1),
(300, A2 , B1), (315, A2 , B1), (330, A2 , B1), (345, A2 , B1), (360, A2 , B1), (375, A2 , B1), (390, A2 , B1),
(405, A2 , B1), (420, A2 , B1), (435, A2 , B1), (450, A2 , B1), (465, A2 , B1), }

# 0AA
A2 ,B2

= {(205, A2 , B2), (210, A2 , B2), (225, A2 , B2), (240, A2 , B2), (255, A2 , B2), (270, A2 , B2), (285, A2 , B2),
(300, A2 , B2), (315, A2 , B2), (330, A2 , B2), (345, A2 , B2), (360, A2 , B2), (375, A2 , B2), (390, A2 , B2),
(405, A2 , B2), (420, A2 , B2)}

Similarly, nodes are created for the other rotations. All nodes created for this problem can be found in Tables
4.2 and 4.3.

Rotation A Subtype B Timesteps C, s.t. (C , A , B) ∈ #34?
A,B

A
1

B
1

0

A
1

B
2

0

A
2

B
1

5

A
2

B
2

5

A
3

B
1

10

A
3

B
2

10

A
4

B
1

205, 210, 225, 240, 255, 270, 285, 300, 315,

330, 345, 360, 375, 390, 405, 420, 435, 450, 465

A
5

B
1

210, 225, 240, 255, 270, 285, 300, 315, 330

A
5

B
2

210, 225, 240, 255, 270, 285, 300, 315, 330

A
6

B
1

290, 300, 315, 330, 345, 360, 375, 390, 405

A
6

B
2

290, 300, 315, 330, 345, 360, 375, 390, 405

A
7

B
1

350, 360, 375, 390, 405, 420, 435, 450, 465

A
7

B
2

350

Table 4.2: All departure state nodes in the Robust Flow Model network for the example problem.
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Rotation A Subtype B Timesteps C, s.t. (C , A , B) ∈ # 0AA
A,B

A
1

B
1

150

A
1

B
2

155

A
2

B
1

200, 210, 225, 240, 255, 270, 285, 300,315,330,

345, 360, 375, 390, 405, 420, 435, 450, 465

A
2

B
2

205, 210, 225, 240, 255, 270, 285, 300, 315, 330,

345, 360, 375, 390, 405, 420

A
3

B
1

265, 270, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420

A
3

B
2

270, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420

A
4

B
1

275, 285, 300, 315, 330, 345, 360, 375, 390, 405

420, 435, 450, 465, 480

A
5

B
1

440

A
5

B
2

445

A
6

B
1

505

A
6

B
2

510

A
7

B
1

520

A
7

B
2

525

Table 4.3: All arrival state nodes in the Robust Flow Model network for the example problem.

4.4.2. Edges
We need to define two sets of edges, between rotations and within rotations. First, for every rotation

A ∈ ℛ and subtype B ∈ SA , let us define:

)
34?
AB :=

{
C s.t. (C , A , B) ∈ #34?

AB

}
(4.11)

)0AAAB := {C s.t. (C , A , B) ∈ # 0AA
AB } (4.12)

Now, for every rotation pair with subtype (A1 , A2 , B) ∈ ?A>?%08AB, let us define the edges between

rotations as:

�
?A>?
A1A2B :=

{
((C , A1 , B), (C , A2 , B)) ∀C ∈ )0AAA1 ,B

∩ )34?A2B

}
(4.13)

∪
{
((C , A1 , B), (BC3A2 , A2 , B)) ∀C ≤ BC3A2 ∈ )0AAA1 ,B

\)34?A2B

}
(4.14)

∪
{
((C , A1 , B), (BC3A2 , A2 , B)) ∀C ≥ max()34?A2B ), C ∈ )0AAA1B

}
(4.15)

The first set of edges (4.13) connects arrival states and departure states of the two rotations in a

propagation pair with the same subtype, corresponding to the exact same time steps. The second set of

edges (4.14) connects arrival states and departure states of the two rotations in a propagation pair with

the same subtype, where the second rotation departs on time. The last set of edges (4.15) corresponds to

reserve aircraft edges, where the first rotations causes more than 120 minutes of delay for the second

rotation, so a reserve aircraft is used. To be able to use this reserve aircraft set in our objective function,

let us define

�A4B4AE4A1 ,A2 ,B
=

{
((C , A1 , B), (BC3A2 , A2 , B)) ∀C ≥ max()34?A2B ), C ∈ )0AAA1B

}
∀(A1 , A2 , B) ∈ ?A>?%08AB (4.16)

�A4B4AE4 =
⋃

(A1 ,A2 ,B)∈?A>?%08AB
�A4B4AE4A1 ,A2 ,B

(4.17)

For every rotation A ∈ ℛ, we define the edges within this rotation as:

�A>CAB :=
{
((C1 , A , B), (C2 , A , B)) ∀C1 ∈ )34?AB , C2 ∈ )0AAAB

if P
(
C2 − ℎBC4? < C0AAA ≤ C2 + ℎBC4? |C

34?
A = C1 , subtype = B

)
> 0

}
(4.18)

Note that the probability P
(
C2 − ℎBC4? < C0AAA ≤ C2 + ℎBC4? |C

34?
A = C1 , subtype = B

)
is dependent on

the distribution of all flights in the rotation. The calculations that need to be done to find this probability

use Equations (3.13) and (3.14), as defined in Section 2.2.
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Creating edges within a maintenance rotation is treated as a special case, since a maintenance

block has no available delay prediction. This means these block are assumed to have the trivial delay

distribution � 5 = 0, i.e. P
(
� 5 = 0

)
= 1. If the duration of this maintenance (including turnaround time)

is not an exact multiple of the defined step size ℎBC4? , using Definition (4.22) will cause departure states

corresponding to 3minutes of delay to either be rounded up or down to an arrival state corresponding to

3′ ≠ 3 minutes. Because of the trivial delay distribution, this rounding will be the same for all departure

states corresponding to delay. This will cause the delay propagation in these blocks to be inaccurate.

To avoid this inaccuracy, in this case we will create two edges for every departure state node, to both

the arrival state nodes corresponding to delay minutes closest to 3 minutes (rounded up and down).

The probability of this departure state will be linearly split over these nodes, based on the distance to

the exact amount of delay minutes 3 of the departure state, using a constraint which we will formulate

later. In this way, delay propagation is maintenance blocks will be more accurate.

Besides these edges, we also create edges from and to the sink and source respectively. If a rotation

has no propagated delay coming from previously assigned rotation, its departure state corresponding

to no delay needs to get a probability of 1 from the source. To achieve this, we define the edges:

�B>DA24AB := {(B>DA24 , (BC3A , A , B)) ∀A ∈ ℛ , B ∈ SA} (4.19)

If a rotation is not connected to any of its outgoing propagation pairs, we need to let all the probability

flow away into the sink, since no delay will be propagated. The delay costs used in the objective value

are imposed on edges towards departure state nodes, which will be explained in the next section. For

this reason, in the case of no outgoing propagation pairs, probability can flow from these departure

states directly to the sink. So we can define the edges to the sink as:

�B8=:AB {((C , A , B), B 8=:) ∀A ∈ ℛ , B ∈ SA , (C , A , B)0AA ∈ # 0AA
AB } (4.20)

Let us define the sets

�?A>? :=

⋃
A1 ,A2 ,B∈?A>?%08AB

�
?A>?
A1 ,A2 ,B (4.21)

�A>C :=

⋃
A∈ℛ ,B∈SA

�A>CA,B (4.22)

�B>DA24 :=

⋃
A∈ℛ ,B∈SA

�A>CA,B (4.23)

�B8=: :=

⋃
A∈ℛ ,B∈SA

�A>CA,B (4.24)

� := �?A>? ∪ �A>C ∪ �B>DA24 ∪ �B8=: (4.25)

�+E := {(E1 , E2) ∈ �?A>? ∪ �B>DA24 : E2 = E} ∀E ∈ #34?
(4.26)

�+E := {(E1 , E2) ∈ �A>C : E2 = E} ∀E ∈ # 0AA
(4.27)

�−E := {(E1 , E2) ∈ �A>C ∪ �B8=: : E1 = E} ∀E ∈ #34?
(4.28)

�−E := {(E1 , E2) ∈ �?A>? : E1 = E} ∀E ∈ # 0AA
(4.29)

Example 11.
Let us again consider the example defined in Example 1, and use Definitions (4.13), (4.14), (4.15), (4.19) and
(4.20) to determine the edges in the model. For the definition of the nodes in the model, see Example 10. First,
let us consider the edges between rotations. We create edges for all rotation pairs with subtypes in ?A>?%08AB,
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that we found using Algorithm 3. One of the pairs with subtype to consider is (A4 , A6 , B1). We have

)
34?

6,1
= {290, 300, 315, 330, 345, 360, 375, 390, 405}

)0AA
4,1 = {275, 285, 300, 315, 330, 345, 360, 375, 390, 405, 420, 435, 450, 465, 480}

)0AA
4,1 ∩ )

34?

6,1
= {300, 315, 330, 345, 360, 375, 390, 405}(

)0AA
4,1 \)

34?

6,1

)
≤BC3A

2

= {275, 285}(
)0AA

4,1 \)
34?

6,1

)
≥BC3A

2
+120

= {420, 435, 450, 465, 480}

So, we get

�
?A>?

4,6,1
:= {((300, A4 , B1), (300, A6 , B1)),
((315, A4 , B1), (315, A6 , B1)),
((330, A4 , B1), (330, A6 , B1)),
((345, A4 , B1), (345, A6 , B1)),
((360, A4 , B1), (360, A6 , B1)),
((375, A4 , B1), (375, A6 , B1)),
((390, A4 , B1), (390, A6 , B1)),
((405, A4 , B1), (405, A6 , B1))}

∪ {((275, A4 , B1), (290, A6 , B1)),
((285, A4 , B1), (290, A6 , B1)),

∪ {((420, A4 , B1), (195, A6 , B1)),
((435, A4 , B1), (290, A6 , B1)),
((450, A4 , B1), (290, A6 , B1)),
((465, A4 , B1), (290, A6 , B1)),
((480, A4 , B1), (290, A6 , B1))}

Next, we consider the edges within rotations. For example, rotation 2 has edges from (5, A2 , B1) to all nodes
(C , A2 , B1) ∈ # 0AA

A2 ,B1
, as all the corresponding state transitions have a positive probability.

Rotation 4 is a maintenance block, which has no delay prediction. This maintenance is scheduled to take
65 minutes plus a turnaround time of 30 minutes, while the state nodes correspond to times globally rounded
to 15 minutes. Since 105 is not exactly divisible by 15, this block is treated as a special case, and we will
create two edges for every departure state node. For example, the node (210, A4 , B1)34? has a probability of 1
to have arrival state (305, A4 , B1)0AA , but this node does not exist. The closest arrival state nodes are the nodes
(300, A4 , B1)0AA and (315, A4 , B1)0AA , so we will connect the departure node to both these nodes.

Finally edges from the source and to the sink are created. All edges can be found in Appendix A.3.

The created edges are decision variables in the flow network, which can take any value in the interval

[0, 1], corresponding to probabilities. Let these decision variables be defined as:

4E1 ,E2
∈ [0, 1] ∀(E1 , E2) ∈ � (4.30)

To achieve conservation of probability, we need to to have flow propagation in every node, which

can be achieved through the following constraints:∑
(E1 ,E2)∈�+E

4E1 ,E2
=

∑
(E1 ,E2)∈�−E

4E1 ,E2
∀E ∈ # (4.31)

The edges within rotations, �A>C (4.18), send the probability flowing into the departure state nodes to

possible arrival state nodes, according to the delay distributions of the flights within the rotation. By the

previously defined Constraints (4.31), there is flow propagation in the departure state nodes. In order to
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assign the correct amount of flow to outgoing edges of these nodes, this incoming flow needs to be split

over these edges in the correct amounts. To achieve this, constraints can be used that enforce the ratio of

flow values between these edges to be consistent with the correct probabilities.

Example 12.
For example, suppose we have a departure state (C , A , B)34? that can transition into three states (C1 , A , B)0AA ,
(C2 , A , B)0AA and (C3 , A , B)0AA with probabilities:

P((C1 , A , B)0AA |(C , A , B)34?) = 0.5

P((C2 , A , B)0AA |(C , A , B)34?) = 0.3

P((C3 , A , B)0AA |(C , A , B)34?) = 0.2

To ensure the incoming flow in node (C1 , A , B)0AA is split correctly over the three edges, the ratios need to be
consistent with these probabilities. We can use the following constraints:

4(C ,A ,B)34? ,(C1 ,A ,B)0AA · 0.3 = 4(C ,A ,B)34? ,(C2 ,A ,B)0AA · 0.5
4(C ,A ,B)34? ,(C2 ,A ,B)0AA · 0.2 = 4(C ,A ,B)34? ,(C3 ,A ,B)0AA · 0.3
4(C ,A ,B)34? ,(C1 ,A ,B)0AA · 0.2 = 4(C ,A ,B)34? ,(C3 ,A ,B)0AA · 0.5

Note that the third constraint in the above example is implied by the first two constraints, meaning we

can omit this constraint. In fact, if we have = possible arrival states a departure state can transition into,

we can arbitrarily choose one such state, and relate the edge towards this state node to all other edges.

So, in general, let us define the following probability splitting constraints:

∀A ∈ ℛ , B ∈ SA , C34? ∈ )34?AB :

Pick an arbitrary C0 ∈ )0AAAB , such that P((C0 , A , B)0AA |(C34? , A , B)34?) > 0

∀C8 ∈ )34?AB \{C0} :

4(C34? ,A ,B)34? ,(C8 ,A ,B)0AA · P
(
(C0 , A , B)0AA |(C34? , A , B)34?

)
= 4(C34? ,A ,B)34? ,(C0 ,A ,B)0AA · P

(
(C8 , A , B)0AA |(C34? , A , B)34?

)
(4.32)

The values of the probabilities P
(
(C0AA , A , B)0AA |(C34? , A , B)34?

)
can again be calculated using Equations

3.13 and 3.14, in preprocessing. By these equations, the following holds for a rotation containing two

flights, 51 and 52, if assigned to an aircraft of subtype B1 ∈ SA :

)� 52 = %� 52 + � 52

= max(BC0 51 + %� 51 + � 51 + �
51
B1 − BC3 52 , 0) + � 52 (4.33)

(4.34)

Note that if we want to calculate the values of P
(
(C0AA , A , B)0AA |(C34? , A , B)34?

)
, we are given %� 51 =

C34? − BC3 51 and B1 = B, so we get the following:(
)� 52 |(C34? , A , B)34?

)
= max(BC0 51 + C34? − BC3 51 + � 51 + �

51
B − BC3 52 , 0) + � 52 (4.35)

Since we created distinct arrival state nodes using Definition (4.7), with a step size of ℎBC4? , the following

holds for most of the nodes (C0AA , A , B)0AA :

P
(
(C0AA , A , B)0AA |(C34? , A , B)34?

)
= P

(
C0AA − ℎBC4? < BC0 52 + �0

B +
(
)� 52 |(C34? , A , B)34?

)
≤ C0AA + ℎBC4?

)
(4.36)

In Definition (4.7), we took the minimum of two values as an upper bound for C, which may cause higher

values of the distribution of

(
)� 52 |(C34? , A , B)34?

)
to not be considered in these probabilities. Therefore,
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for the latest arrival state node, we omit the upper bound in the calculation of this probability. So for

the latest arrival state node (C<0G , A , B)0AA ∈ # 0AA
A,B , we get:

P
(
(C<0G , A , B)0AA |(C34? , A , B)34?

)
= P

(
C<0G − ℎBC4? < BC0 52 + �0

B +
(
)� 52 |(C34? , A , B)34?

) )
(4.37)

Similarly, we need to round all probability of a negative arrival delay to the first arrival state node.

Additionally, since the difference in time between the first and second arrival state node is not necessarily

equal to ℎBC4? , we need to adjust the bounds for these nodes, so they do not overlap. For the first arrival

state node (C0 , A , B)0AA and the second arrival state nodes (C1 , A , B)0AA , we get:

P
(
(C0 , A , B)0AA |(C34? , A , B)34?

)
= P

(
BC0 52 + �0

B +
(
)� 52 |(C34? , A , B)34? ≤ min(C0 + ℎBC4? , C1 − ℎBC4?)

) )
(4.38)

P
(
(C1 , A , B)0AA |(C34? , A , B)34?

)
= P

(
min(C0 + ℎBC4? , C1 − ℎBC4?) < BC0 52 + �0

B +
(
)� 52 |(C34? , A , B)34? ≤ C1 + ℎBC4?

) )
(4.39)

There are two special cases to these equations. If a departure state node is connected to only one arrival

state node, naturally we send all probability from the departure state node to this arrival state node. If a

departure state node is connected to two arrival state nodes, Equation (4.38) holds, but for the second

arrival state node we get a combination of Equation (4.39) and (4.37):

P
(
(C1 , A , B)0AA |(C34? , A , B)34?

)
= P

(
min(C0 + ℎBC4? , C1 − ℎBC4?) < BC0 52 + �0

B +
(
)� 52 |(C34? , A , B)34?

) )
(4.40)

The values of P
(
(C0AA , A , B)0AA |(C34? , A , B)34?

)
are calculated for every edge

(
(C0AA , A , B)0AA , (C34? , A , B)34?

)
∈

�A>C , in preprocessing. These values are then used to define the probability splitting constraints (4.32).

4.4.3. Delay costs
To impose delay costs in the objective value of the model, we need to add costs to some of the created

edges. We are given a cost function 2
34;0H

5
(C) for every flight, which returns the costs of delaying flight 5

by C minutes. Since the nodes of our network represent departure and arrival states of rotations, and not

of flights, we can not use this cost function directly. The easiest way to assign delay costs is to calculate

the expected delay costs for both flights in a rotation, given an departure state, and assign this cost to all

edges flowing into this departure state node.

To calculate this cost, Equations (3.2), (3.1) and (3.15) can be used. For an departure state node

(C , A , B) ∈ #34?
, where A contains flights 51 and 52, we take %� 51 = C−BC3 51 , such that P(%� 51 = C−BC3 51) =

1. Then Equations (3.2) and (3.1) are used to calculate the probability distributions of )� 51 and )� 52 .

Using these distributions, the expected delay costs of flights 51 and 52 can be determined, using Equation

(3.15). The sum of these two values will be imposed as expected delay cost of departure state node

(C , A , B), by adding this cost to all edges flowing into this state node.

For all departure nodes (C , A , B) ∈ #34?
, this process is performed in preprocessing, and the costs are

saved. To access these values in the model, define a function 234;0H=>34(C , A , B), which returns this value

for every node (C , A , B) ∈ #34?
.

Example 13.
We calculate the cost of the node (0, A1 , B1) ∈ #34? in our example problem, as defined in Example 1. Rotation
A1 contains two flights, 51 and 52. We have BC3 51 = 0, so we take %� 51 = 0 − BC3 51 = 0. The calculations
of )� 51 and )� 52 if %� 51 and rotation A1 is assigned an aircraft of subtype B1, and the calculations of the
expected delay costs are already performed in Example 6 and Example 7. So, the value that will be imposed to
the node (0, A1 , B1) will be equal to 234;0H=>34(0, A1 , B1) = 100.77 + 137.68 = 238.45. All incoming edges for
this node in the model network will have a cost of 238.45.



4.4. Network creation 41

4.4.4. Deactivating edges
In order to use the defined network to calculate the delay cost in an optimization model, we need

activate the right edges of the network, based on the selected assignments of aircraft to rotations in the

model. To achieve this, let us define some more variables:

=>�=2%08AA,B ∈ {0, 1} ∀A ∈ ℛ , B ∈ SA (4.41)

=>$DC%08AA,B ∈ {0, 1} ∀A ∈ ℛ , B ∈ SA (4.42)

?08AA1 ,A2 ,B ∈ {0, 1} ∀(A1 , A2 , B) ∈ ?A>?%08AB (4.43)

The variables =>�=2%08AA,B and =>$DC%08AA,B equal 1 if rotation A is assigned to an aircraft of subtype B,
and respectively no incoming or no outgoing propagation pair is assigned to the same aircraft, else

they equal 0. This means that if =>�=2%08AA,B = 1 for some A ∈ ℛ , B ∈ SA , rotation A has no probability of

propagated delay in the model. Similarly, if =>$DC%08AA,B = 1, rotation A has no chance of propagating

delay to the next rotation in the schedule, in the model. Note that if rotation A is not assigned an aircraft

of subtype B, these variables always equal 0.

If two rotations A1 , A2 ∈ ℛ are assigned to be consecutively operated on the same aircraft of subtype

B, and (A1 , A2 , B) ∈ ?A>?%08AB, the variable ?08AA1 ,A2 ,B equals 1, else it equals 0.
Note that these rotations need to be consecutively connected, meaning that if for a propagation

pair (A1 , A2 , B) ∈ ?A>?%08AB, there is no rotation assigned to be operated on the same aircraft between

rotations A1 and A2. For example, if ?A>?%08AB contains the propagation pairs (A1 , A2 , B), (A2 , A3 , B) and
(A1 , A3 , B), and all three rotations A1, A2 and A3 are assigned to the same aircraft of subtype B, only the

edges considering the pairs (A1 , A2 , B) and (A2 , A3 , B) should be activated. To achieve this, let us define the

sets:

?A>?%08AB14CFA1 ,A2 ,B
:= {(A1 , A3 , B) ∈ ?A>?%08AB s.t. BC0A3 + �0

B ≤ BC3A2} (4.44)

?A>?%08AB>DCA,B := {(A1 , A2 , B′) ∈ ?A>?%08AB s.t. A1 = A, B′ = B} (4.45)

?A>?%08AB 8=2A,B := {(A1 , A2 , B) ∈ ?A>?%08AB s.t. A2 = A, B′ = B} (4.46)

Now we can enforce these variables =>�=2%08AA,B , =>$DC%08AA,B and ?08AA1 ,A2 ,B to have the correct value

using the following constraints:

?08AA1 ,A2 ,B +
∑

(A1 ,A3 ,B)∈?A>?%08AB14CFA
1
,A

2
,B

?08AA1 ,A3 ,B ≥ -A1 ,0 + -A2 ,0 − 1

∀(A1 , A2 , B) ∈ ?A>?%08AB, 0 ∈ AA1 ∩AA2 ∩AB (4.47)

=>$DC%08AA,B +
∑

(A1 ,A2 ,B′)∈?A>?%08AB>DCA,B

?08AA1 ,A2 ,B′) =
∑

0∈AA∩AB

-A,0

∀A ∈ ℛ , B ∈ SB (4.48)

=>�=2%08AA,B +
∑

(A1 ,A2 ,B′)∈?A>?%08AB 8=2A,B

?08AA1 ,A2 ,B′) =
∑

0∈AA∩AB

-A,0

∀A ∈ ℛ , B ∈ SB (4.49)

Constraint (4.47) sets the ?08A variables to 1 if assigned consecutively on the same aircraft of the right

subtype. Constraint (4.48) ensures that precisely one of the variables =>$DC%08A and ?08A is selected to

equal 1 for the assigned aircraft subtype, and none for the other subtypes. Constraint (4.49) does the

same thing as Constraint (4.48), for the variables =>�=2%08A and ?08A.

Example 14.
Let us consider our example problem, defined in Example 1. As found in Example 9, we have propagation
pairs:

?A>?%08AB ={(A2 , A4 , B1), (A2 , A5 , B1), (A2 , A5 , B2), (A2 , A6 , B1), (A2 , A6 , B2),
(A3 , A6 , B1), (A3 , A6 , B2), (A4 , A6 , B1), (A4 , A7 , B1)}

Note that we have propagation pairs (A2 , A4 , B1), (A4 , A6 , B1) and (A2 , A6 , B1). This means, using Definition
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(4.44), we have ?A>?%08AB14CF44=A2 ,A6 ,B1
= {(A2 , A4 , B1)}. For all other propagation pairs (A8 , A9 , B), there is no

feasible propagation pair in between the pair, so we get an empty set ?A>?%08A14CF44=A8 ,A9 ,B
. We get the following

set of constaints:

?08AA2 ,A4 ,B1 ≥ -A2 ,02
+ -A4 ,02

− 1

?08AA2 ,A5 ,B1 ≥ -A2 ,01
+ -A5 ,01

− 1

?08AA2 ,A5 ,B1 ≥ -A2 ,02
+ -A5 ,02

− 1

?08AA2 ,A5 ,B2 ≥ -A2 ,03
+ -A5 ,03

− 1

?08AA2 ,A6 ,B1 + ?08AA2 ,A4 ,B1 ≥ -A2 ,01
+ -A6 ,01

− 1

?08AA2 ,A6 ,B1 + ?08AA2 ,A4 ,B1 ≥ -A2 ,02
+ -A6 ,02

− 1

?08AA2 ,A6 ,B2 ≥ -A2 ,03
+ -A6 ,03

− 1

?08AA3 ,A6 ,B1 ≥ -A3 ,01
+ -A6 ,01

− 1

?08AA3 ,A6 ,B1 ≥ -A3 ,02
+ -A6 ,02

− 1

?08AA3 ,A6 ,B2 ≥ -A3 ,03
+ -A6 ,03

− 1

?08AA4 ,A6 ,B1 ≥ -A4 ,02
+ -A6 ,02

− 1

?08AA4 ,A7 ,B1 ≥ -A4 ,02
+ -A7 ,02

− 1

=>$DC%08AA1 ,B1 = -A1 ,01
+ -A1 ,02

=>$DC%08AA1 ,B2 = -A1 ,03

=>$DC%08AA2 ,B1 + ?08AA2 ,A4 ,B1 + ?08AA2 ,A5 ,B1 + ?08AA2 ,A6 ,B1 = -A2 ,01
+ -A2 ,02

=>$DC%08AA2 ,B2 + ?08AA2 ,A5 ,B2 + ?08AA2 ,A6 ,B2 = -A2 ,03

=>$DC%08AA3 ,B1 + ?08AA2 ,A6 ,B1 = -A3 ,01
+ -A3 ,02

=>$DC%08AA3 ,B2 + ?08AA2 ,A6 ,B2 = -A3 ,03

=>$DC%08AA4 ,B1 + ?08AA4 ,A6 ,B1 + ?08AA4 ,A7 ,B1 = -A4 ,02

=>$DC%08AA5 ,B1 = -A5 ,01
+ -A5 ,02

=>$DC%08AA5 ,B2 = -A5 ,03

=>$DC%08AA6 ,B1 = -A6 ,01
+ -A6 ,02

=>$DC%08AA6 ,B2 = -A6 ,03

=>$DC%08AA7 ,B1 = -A7 ,01
+ -A7 ,02

=>$DC%08AA7 ,B2 = -A7 ,03

=>�=2%08AA1 ,B1 = -A1 ,01
+ -A1 ,02

=>�=2%08AA1 ,B2 = -A1 ,03

=>�=2%08AA2 ,B1 = -A2 ,01
+ -A2 ,02

=>�=2%08AA2 ,B2 = -A2 ,03

=>�=2%08AA3 ,B1 = -A3 ,01
+ -A3 ,02

=>�=2%08AA3 ,B2 = -A3 ,03

=>�=2%08AA4 ,B1 + ?08AA2 ,A4 ,B1 = -A4 ,02

=>�=2%08AA5 ,B1 + ?08AA2 ,A5 ,B1 = -A5 ,01
+ -A5 ,02

=>�=2%08AA5 ,B2 + ?08AA2 ,A5 ,B2 = -A5 ,03

=>�=2%08AA6 ,B1 + ?08AA2 ,A6 ,B1 + ?08AA4 ,A6 ,B1 + ?08AA3 ,A6 ,B1 = -A6 ,01
+ -A6 ,02

=>�=2%08AA6 ,B2 + ?08AA2 ,A6 ,B2 + ?08AA3 ,A6 ,B2 = -A6 ,03

=>�=2%08AA7 ,B1 + ?08AA4 ,A7 ,B1 = -A7 ,01
+ -A7 ,02

=>�=2%08AA7 ,B2 = -A7 ,03

These variables can now be used to deactivate edges that do not correspond to the assignment

selected by the decision variables of the model, using the constraints:
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4B>DA24 ,(BC3A ,A ,B) = =>�=2%08AA,B ∀A ∈ ℛ , B ∈ SA (4.50)∑
(E,B8=:)∈�B8=:AB

4E,B8=: ≤ =>$DC%08AA,B ∀A ∈ ℛ , B ∈ SA (4.51)∑
(E0AA ,E34? )∈�? A>?A

1
,A

2
,B

4E0AA ,E34? ≤ ?08AA1 ,A2 ,B ∀A1 , A2 , B ∈ ?A>?%08AB (4.52)

By Constraints (4.50), edges from the source are set to 1 if the corresponding rotation is assigned

an aircraft of the corresponding subtype, and this rotation-subtype combination has no incoming

propagation pair. Constraints (4.51) set edges to the sink to 0 if =>$DC%08AA,B is 0, meaning no probability

should flow away into the sink if a propagation pair is selected. Constraints (4.52) ensure that probability

can only flow to rotation states corresponding to a selected rotation pair.
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4.5. Model formulation
4.5.1. Mathematical notation
This model uses the same notation used in the problem formulation in Section 2.3.4. Also, the notation

used in the definitions in Sections 4.2, 4.3 and 4.4 will be used, which is summarized here:

Sets
#34?

Set of nodes (C , A , B)34? ∈ ⋃
A∈ℛ ,B∈SA #

34?
AB

# 0AA
Set of nodes (C , A , B)0AA ∈ ⋃

A∈ℛ ,B∈SA #
0AA
AB

# Set of nodes (C , A , B) ∈ #34? ∪ # 0AA

)
34?
AB Set of timesteps for which departure state nodes are created

)0AAAB Set of timesteps for which arrival state nodes are created

�?A>? Set of edges (E0AA , E34?) ∈ ⋃
(A1 ,A2 ,B)∈?A>?%08AB �

?A>?
A1A2B

�A>C Set of edges (E34? , E0AA) ∈ ⋃
A∈ℛ ,B∈SA �

A>C
AB

�B>DA24 Set of edges (B>DA24 , (BC3A , A , B)) ∀A ∈ ℛ , B ∈ SA
�B8=: Set of edges (E, B8=:) ∀E ∈ # 0AA

� �?A>? ∪ �A>C ∪ �B>DA24 ∪ �B8=:
�+E ⊆ �, set of all incoming edges for any node E ∈ #
�−E ⊆ �, set of all outgoing edges for any node E ∈ #
�+E,B ⊆ �, set of all incoming edges for any node E ∈ # ,

corresponding to subtype B ∈ S
�−E,B ⊆ �, set of all outgoing edges for any node E ∈ # ,

corresponding to subtype B ∈ S
?A>?%08AB Set of all propagation pairs A1 , A2 , B

?A>?%08AB14CFA1 ,A2 ,B
⊆ ?A>?%08AB, set of propagation pairs A1 , A3 , B that may be

assigned between rotations A1 and A2 on an aircraft of subtype B
?A>?%08AB>DCA,B ⊆ ?A>?%08AB, set of outgoing propagation pairs

for rotation A on an aircraft of subtype B

?A>?%08AB 8=2A,B ⊆ ?A>?%08AB, set of incoming propagation pairs

for rotation A on an aircraft of subtype B

'(
>E;?
B Set of sets of rotations A ∈ ℛ that overlap if assigned to

an aircraft of subtype B ∈ S
Decision Variables
4E1 ,E2

∈ [0, 1] ∀(E1 , E2) ∈ �
-A,0 ∈ {0, 1} ∀A ∈ ℛ , 0 ∈ AA

?08AA1 ,A2 ,B ∈ {0, 1} ∀(A1 , A2 , B) ∈ ?A>?%08AB
=>�=2%08AA,B ∈ {0, 1} ∀A ∈ ℛ , B ∈ SA
=>$DC%08AA,B ∈ {0, 1} ∀A ∈ ℛ , B ∈ SA

Cost functions
20BB86=(A, 0) Assignment cost of assigning rotation A ∈ ℛ to aircraft 0 ∈ AA

234;0H=>34(C , A , B) Expected delay costs of rotation A ∈ ℛ, if its first flight departs
at timestep C ∈ )34?AB , on an aircraft of subtype B ∈ SA
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4.5.2. Formulation

minimize

4 , -

∑
A∈ℛ ,0∈A

20BB86=(A, 0)-A,0 (4.53)

+
∑

E34?∈#34?

∑
(E,E34? )∈�+

E34?

234;0H=>34(E34?) · 4E,E34? (4.54)

subject to

∑
0∈A

-A0 = 1 ∀A ∈ ℛ (4.55)∑
A∈AB, s.t. 0∈AA

-A,0 ≤ 1 ∀0 ∈ A , AB ∈ '(>E;?B0 (4.56)∑
(E′ ,E)∈�+(C ,A ,B),B

4E′ ,E −
∑

(E,E′)∈�−(C ,A ,B),B

4E,E′ = 0 ∀(C , A , B) ∈ # (4.57)

?08AA1 ,A2 ,B +
∑

(A1 ,A3 ,B)∈?A>?%08AB14CFA
1
,A

2
,B

?08AA1 ,A3 ,B ≥ -A1 ,0 + -A2 ,0 − 1 ∀(A1 , A2 , B) ∈ ?A>?%08AB,

0 ∈ AB ∩AA1 ∩AA2 (4.58)

=>$DC%08AA,B +
∑

(A1 ,A2 ,B)∈?A>?%08AB>DCA,B

?08AA1 ,A2 ,B =
∑

0∈AB∩AA

-A,0 ∀A ∈ ℛ , B ∈ SA (4.59)

=>�=2%08AA,B +
∑

(A1 ,A2 ,B)∈?A>?%08AB 8=A,B

?08AA1 ,A2 ,B =
∑

0∈AB∩AA

-A,0 ∀A ∈ ℛ , B ∈ SA (4.60)∑
(E0AA ,E34? )∈�?A>?A

1
A
2
B

4E0AA ,E34? ≤ ?08AA1 ,A2 ,B ∀(A1 , A2 , B) ∈ ?A>?%08AB (4.61)

4B>DA24 ,(BC3A ,A ,B) = =>�=2%08AA,B ∀A ∈ ℛ , B ∈ SA (4.62)∑
(E,B8=:)∈�B8=:AB

4E,B8=: ≤ =>$DC%08AA,B ∀A ∈ ℛ , B ∈ SA (4.63)

P((C1 , A , B)0AA |(C0 , A , B)34?)·4(C0 ,A ,B)34? ,(C2 ,A ,B)0AA ∀A ∈ ℛ , (C0 , A , C)8= ∈ � 8=
5
,

= P((C2 , A , B)0AA |(C0 , A , B)34?) · 4(C0 ,A ,B)34? ,(C1 ,A ,B)0AA ( 5 , C1)>DC ∈ �>DC
5
, where

( 5 , C2)>DC ∈ �>DC
5

arbitrary (4.64)

4E1 ,E2
∈ [0, 1] ∀(E1 , E2) ∈ � (4.65)

-A,0 ∈ {0, 1} ∀A ∈ ℛ , 0 ∈ AA (4.66)

?08AA1 ,A2 ,B ∈ {0, 1} ∀(A1 , A2 , B) ∈ ?A>?%08AB (4.67)

=>�=2%08AA,B ∈ {0, 1} ∀A ∈ ℛ , B ∈ SA (4.68)

=>$DC%08AA,B ∈ {0, 1} ∀A ∈ ℛ , B ∈ SA (4.69)

4.5.3. Parameter influence
The size and shape of the network, as well as the accuracy of the solutions are dependent on the

parameters used to create the network. In total, we defined four parameters: ℎ?A>1 , ?32? , ??2? and ℎBC4? .
In this section, the influence of these four parameters on the network is evaluated. The decision variables

corresponding to the network are the edges �, as well as the variables =>�=2%08A, =>$DC%08A and ?08A.
Since the number of variables |=>�=2%08A | and |=>$DC%08A | are not dependent on the size and shape of

the network, an the number of variables |?08A | is simply equal to |?08A | = |?A>?%08AB |, we will omit

these variables in the analysis, and only consider the number of edges. First the number of edges is

given as a function of the number of state nodes #34?
and # 0AA

, as well as the number of propagation

pairs ?A>?%08AB. Then, conclusions are drawn about the influence of the four parameters. Finally, the

accuracy of the solutions of the network is evaluated.
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Number of Edges
The network contains four types of edges; edges between rotations �?A>? , edges within rotations �A>C ,
edges from the source to departure state nodes �B>DA24 and edges from arrival state nodes to the sink

�B8=: . Let us consider the influence of the number of state nodes and number of propagation pairs on

these types of edges separately.

• Edges between rotations �?A>? connect all arrival state nodes to exactly one departure state nodes

of another rotation, if these rotations are a propagation pair. So the total number of edges between

rotations is equal to:

|�?A>? | =
∑

(A,@,B)∈?A>?%08AB
|# 0AA

A,B | (4.70)

• Edges within rotations �A>C connect departure state nodes to arrival state nodes of the same

rotation. One departure state node is connected to many arrival state nodes, corresponding

to possible state transitions, based on the delay distributions of the flights in the rotation. By

Definition (4.18), a departure state node (C1 , A , B) is connected to an arrival state node (C2 , A , B)
if P

(
C2 − ℎBC4? < C0AAA ≤ C2 + ℎBC4? |C

34?
A = C1 , subtype = B

)
> 0. So the number of edges within

rotations is equal to:

|�A>C | =
∑
A∈ℛ

∑
B∈SA

∑
(C1 ,A ,B)∈#34?

AB

|{(C2 , A , B) ∈ # 0AA
AB

s.t. P
(
C2 − ℎBC4? < C0AAA ≤ C2 + ℎBC4? |C

34?
A = C1 , subtype B

)
> 0}| (4.71)

We can further evaluate this equation, if we assume the distribution to satisfy the following

(natural) relation for C0AA
A,0

< C0AA
A,1

:

P
(
C2 − ℎBC4? < C0AAA,0 ≤ C2 + ℎ

BC4? |C34?A = C1 , subtype B
)
> 0

∧ P
(
C2 − ℎBC4? < C0AAA,1 ≤ C2 + ℎ

BC4? |C34?A = C1 , subtype B
)
> 0 =⇒

P
(
C2 − ℎBC4? < C0AAA,2 ≤ C2 + ℎ

BC4? |C34?A = C1 , subtype B
)
> 0 ∀C0AAA,0 ≤ C

0AA
A,2 ≤ C

0AA
A,1

Let C<8=(C1 ,A ,B) be equal to the minimum value, such that

P
(
C2 − ℎBC4? < C<8=(C1 ,A ,B) ≤ C2 + ℎ

BC4? |C34?A = C1 , subtype B
)
> 0.

Similarly, let C<0G(C1 ,A ,B) be equal to the maximum value, such that

P
(
C2 − ℎBC4? < C<0G(C1 ,A ,B) ≤ C2 + ℎ

BC4? |C34?A = C1 , subtype B
)
> 0. Then, we get:

|�A>C | =
∑
A∈ℛ

∑
B∈SA

∑
(C1 ,A ,B)∈#34?

AB

|{(C2 , A , B) ∈ # 0AA
AB

s.t. P
(
C2 − ℎBC4? < C0AAA ≤ C2 + ℎBC4? |C

34?
A = C1 , subtype B

)
> 0}| (4.72)

≈
∑
A∈ℛ

∑
B∈SA

∑
(C1 ,A ,B)∈#34?

AB

min(C<0G(C1 ,A ,B) ,max()0AAAB )) −max(C<8=(C1 ,A ,B) ,min()0AAAB ))
ℎBC4?

(4.73)

=

∑
A∈ℛ

∑
B∈SA

∑
(C1 ,A ,B)∈#34?

AB

min(C<0G(C1 ,A ,B) ,max()0AAAB )) −max(C<8=(C1 ,A ,B) , BC0AB + �
0

B )
ℎBC4?

(4.74)

For real-life instances of the Robust Tail Assignment problem, considering sensible parameters,

the terms of the sum in this equation would roughly be equal the some constant 0 < 2 < 1 times

the amount of arrival state nodes of the rotation-subtype pair (A, B).
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• Every feasible rotation-subtype combination has exactly one edge from the source to the corre-

sponding no-delay departure state, see Equation (4.19). Therefore, the number of edges from

source in the network is equal to:

|�B>DA24 | =
∑
A∈ℛ
|SA | (4.75)

• For every arrival state node in the network, exactly one edge to the sink is created, see Equation

(4.20). Therefore, the total number of edges to the sink is equal to:

|�B8=: | =
∑
A∈ℛ

∑
B∈SA

|# 0AA
AB | (4.76)

Distribution discretizing parameters
The probability step size ℎ?A>1 and distribution cutoff point ?32? , as defined in Section 3.2, influence the

discretization and rounding of the delay distributions for every flight in the schedule. The discretization

of the delay distribution approximates the actual distribution, where higher values of step size ℎ?A>1

cause a rougher approximation of the distribution. The value ?32? influences the tail of the delay

distributions of flights, causing high delay options to be rounded down to a maximum value. A higher

value of ?32? causes a lower cutoff point in the tail of the distribution. If we have ℎBC4? > ℎ?A>1 and
??2? >> ?32? 2, the values ℎ?A>1 and ?32? do not influence the state creation of the model. But these

values do influence the accuracy of the probabilities concerning the various possible state transitions, i.e.

edges in the model. Also, the accuracy of the delay costs assigned to states in the model are dependent

on ℎ?A>1 and ?32? . Lower values of ℎ?A>1 and ?32? cause these probabilities and delay costs to be more

accurate, at the cost of more preprocessing time.

Propagation cutoff point
The propagation cutoff point ??2? , as defined in Section 4.3.3, is used in Algorithm 3 and influences the

number of edges in the network, and therefore the number of decision variables in the model, in the

following way:

By line 31 in Algorithm 3, the values of C<0G
?2?
A0 negatively correlate to ??2? , i.e. a lower value of ??2?

causes a higher values of C<0G
?2?
A0 . By line 12, higher values of C<0G

?2?
A0 cause more pairs of rotations

with subtype to be added to ?A>?%08AB. A higher number of propagation pairs directly causes more

edges between rotations �?A>? and edges to the sink �B8=: to be created in the network,see Equation

(4.70) and (4.76). But, ?A>?%08AB also influences the number of edges in a different way. By Equation

(4.7), the arrival state nodes created for a rotation A and subtype B are dependent on the maximum

departure timesteps C<0G
34?
@B of rotations @ such that (A, @, B) ∈ ?A>?%08AB. Also, the values of these

maximum departure timesteps C<0G
34?
@B are dependent on the ?A>?%08AB, by line 15-19 in Algorithm 3.

This means that the number of departure state nodes are also dependent on the number of ?A>?%08AB.
Therefore, an increase of these propagation pairs causes an increase in departure and arrival state

nodes. As discovered in Equation (4.70), (4.74) and (4.75), more state nodes means more edges between

rotations, within rotations and from the source.

Note that a higher cutoff point causes more propagation pairs to be omitted from the model,

decreasing the accuracy of the model.

So, in general, the propagation cutoff point has a negative correlation with the number of edges in

the network, as well as the accuracy of the model.

State step size
For the state creation of the model, the step size ℎBC4? is used. State nodes corresponding to delayed

states all correspond to timesteps that are multiples of ℎBC4? , which directly influences the number of

2In theory, the parameter ??2? can have an impact on the number of nodes created in the network. By line 1, 23 and 27 of

Algorithm 3, the values of C<0G0AAA0 are dependent on ??2? , meaning these values C<0G0AAA0 increase for decreasing ??2? . But by
Definition (4.7), the arrival states nodes are bounded by the departure state nodes of its outgoing propagation pairs, which are

bounded in line 18 of Algorithm 3.
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nodes in the network. For a rotation A and subtype B, by Definition (4.6) and (4.7), we have:

2
34?
AB := max

0∈AB

(
C<0G

34?
A0 − BC3A

)
(4.77)

20AAAB := min

(
max

0∈AB

C<0G0AAA0 , max

@ s.t.
(A,@,B)∈?A>?%08AB

max

0∈AB

C
34?
@0

)
− BC0A − �0

B0
(4.78)

|#34?
AB | ≈ 1 + 2

34?
AB + ℎBC4?/2

ℎBC4?
=

3

2

+ 2
34?
AB

ℎBC4?
(4.79)

|# 0AA
AB | ≈ 1 + 2

0AA
AB + ℎBC4?/2

ℎBC4?
=

3

2

+ 20AAAB

ℎBC4?
(4.80)

Note that the values of 2
34?
AB and 20AAAB do not depend on ℎBC4? . The exact values for |#34?

AB | and |# 0AA
AB |

are equal to the derived approximation rounded up or down, depending on the values of BC3A , 2
34?
AB

and BC0A , �0

B0
, 20AAAB . Using this approximation we can conclude that the number of nodes in the network

decreases linearly with the parameter ℎBC4? . This means doubling ℎBC4? will approximately half the

number of arrival and departure state nodes.

The number of nodes in the network impacts the number of edges in the network. Combining

Equation (4.70) and (4.80), we find:

|�?A>? | =
∑

(A,@,B)∈?A>?%08AB
|# 0AA

A,B | ≈
∑

(A,@,B)∈?A>?%08AB

3

2

+ 20AAAB

ℎBC4?
(4.81)

Similarly, using Equation (4.76) and (4.80), we get:

|�B8=: | =
∑
A∈ℛ

∑
B∈S
|# 0AA

A,B | ≈
∑
A∈ℛ

∑
B∈S

3

2

+ 20AAAB

ℎBC4?
(4.82)

So, the number of edges between rotations and edges to the sink are decreases linearlywith the parameter

ℎBC4? .
Using Equation (4.74) and (4.79), we find that the number of edges within rotations decreases

quadratically with the parameter ℎBC4? . This means halving ℎBC4? would increase the number of edges

within rotations by a factor of 4.

The number of edges from the source is not influenced by the parameter ℎBC4? .
So, increasing the parameter ℎBC4? will decrease the number of edges between rotations and to sink

linearly, and the number of edges within rotations quadratically.

4.6. Solution method
The model formulation of the Robust Tail Assignment problem, as given in Section 4.5.2 is solved

using the Gurobi solver package [16], using a Python environment. This main part of this solver is a

linear-programming based branch-and-bound algorithm. This section will describe the workings of this

algorithm, and other operations performed by the solver.

4.6.1. Branch-and-Bound
The main algorithm of the solver uses a search tree to find the optimal solution. See Figure 4.2 for an

example of a search tree. The algorithm will evaluate nodes of this tree in turn, starting at a root node

(the top node), and working its way down. Every node corresponds to a slightly different MIP model.

The root node corresponds to the original MIP model. For every other node, the MIP is has the same

formulation as the MIP of the parent node, with one added constraint.

Throughout the algorithm, the best solution found thus far is saved, as well as its objective value,

called the "incumbent". Initially, the value of incumbent is set to None.

Evaluating nodes
When evaluating a node, the corresponding MIP model is reduced to its linear-programming relaxation,

a Linear Programming (LP) model, by lifting all integrality restrictions. In the MIP formulated in
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Figure 4.2: Example of a search tree.

Section 4.5.2, this means the binary variables -, ?08A, =>�=2%08A and =>$DC%08A are no longer binary

variables, but can take any value in the interval [0, 1]. Note that every feasible solution of the MIP

model is also a solution of the corresponding LP model. Solving such an LP model is much easier than

the corresponding MIP model, the Gurobi solver can solve this LP model very quickly using efficient

implementations of the simplex and interior-point methods.

If the LP model has no feasible solutions, the MIP model also contains no feasible solution. In this

case the node can be omitted from the search tree. If an optimal solution to the LP model is found, this

solution is checked. Three possibilities are considered:

• The solution satisfies all integrality restrictions of the MIP model.

This solution is also the optimal solution to the corresponding MIP model. In this case the node is

considered fathomed, meaning the node does not need further branching. The solution is also a

solution to the original MIP in the root node by the definition of the search tree. Therefore, we can

update the incumbent value to the minimum of the current incumbent value and the objective

value of this solution.

• The solution does not satisfy all integrality restrictions of the MIP model and the objective value is

not lower than the current incumbent value. In this case the objective value of the solution is a

lower bound on solutions of this MIP model. Since this lower bound is higher than the current

value of incumbent, there is no need to further examine this branch, since no better incumbent

solutions can be found. The node is fathomed and needs no further branching.

• The solution does not satisfy all integrality restrictions of the MIP model and the objective value is

lower than the current incumbent value.

Since the integrality constraints are not satisfied, the solution is not feasible for the MIP model of

this node. In this case the objective value of the solution is a lower bound on solutions of this

MIP model. Since the lower bound is lower than the current incumbent value, this node is worth

exploring. To further explore the MIP model, a single non-integral variable +0A = :, : ∉ Z from

the solution is picked. The node is branched into two nodes, with the added constraints +0A ≥ :
and +0A ≤ :, respectively. Here : denotes the value of : rounded up, and : rounded down. In

this way, the search space of the MIP model is cut into two distinct parts.

After evaluating a node and creating branches if necessary, another node is picked to be evaluated,

until all nodes are fathomed. At that moment, the best solution found is the optimal solution to the

original MIP model. This is the end of the branch-and-bound algorithm.

Note that order in which the nodes are evaluated, as well as the variable selected for branching, have

big impact on the run-time of the algorithm. If better choices are made, incumbent solutions are found

quicker, and nodes are more often fathomed. The Gurobi package uses many sophisticated techniques

to select nodes and variables, as well as several other operations to speed up the algorithm.

4.6.2. Other operations
In this section some of the most important algorithm improving operations are described. More

information about these operations can be found on the Gurobi website [16].
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Presolve
Before initiating the branch-and-bound algorithm, the model formulation is reduced and tightened

by presolve operations. Such operations include deleting constraints implied by other constraints,

tightening constraints using integrality if variables, and deleting variables that have implied values.

Note that these operations change the MIP model, meaning some of these operations need to be reversed

to be able to represent the final solution in terms of the original MIP model.

Cutting planes
When evaluating nodes, after a solution to the LP-relaxation is found, which contains some non-integer

variable values that ought to be integers in the MIP model, clever constraints can be added to the model

to cut this solution from the LP search space. Now the LP model can be resolved, and the LP solver will

find a different optimal solution.

Note that this operation adds constraints to the model, making the LP-relaxations harder to solve.

Therefore, such constraints are only added by the Gurobi solver, if they benefit the solving process.

Heuristics
In order to find good incumbent solutions early in the algorithm, heuristics can be used. Heuristics are

quick methods to find a feasible solution of a model, with no guarantee of optimality. For example,

non-integer variables in the solution of the LP-relaxation can be rounded to integer values and fixed,

after which the LP-relaxation can be resolved with the hope of finding an incumbent solution. A good

incumbent solution will cause the branch-and-bound algorithm to be able to fathom nodes quicker,

speeding up the process. Gurobi employs several heuristics on the nodes of the branch-and-bound

algorithm, to find incumbent solutions.

Parallelism
The operations performed at the nodes of the branch-and-bound algorithm are independent of each

other, and can be parallelized. A computer contains multiple cores, that Gurobi can control to evaluate

separate nodes at the same time, speeding up the solving process.
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Experiments

The Robust Flow Model, described in Section 4, will be tested using two types of experiments. Firstly,

the model is tested using a variety of parameter values, to determine the influence of these parameters

on the run-time of the model. Secondly, the model is compared to robust model currently used by KLM,

described in Section 2.6, as well as the Non-Robust model, described in Section 2.5, to see which model

finds better solutions within a given time-frame. In this section, the setup of these experiments will be

explained, the results of the experiments are discussed, and conclusions about the performance of the

model are drawn.

5.1. Experimental setup
This section will describe the setup of the experiments. First the setup of the problem schedule and the

delay distributions will be described. Then, the setups of the experiments will be given. All experiments

are run on a 64-bit laptop PC with an Intel(R) Core(TM) i7-8750H processor with 2.20GHz and 16 GB of

RAMmemory, running Windows 11. The code is written in Python.

5.1.1. Problem flight schedule
Since this thesis is written on behalf of KLM, the problem used in the testing environment is a

flight schedule provided by the KLM. This problem contains flights and maintenance blocks, with all

corresponding expected cost functions, as well as an original assignment of aircraft to flights. Since the

flight schedule and expected costs are confidential, this information will be omitted from this thesis. In

order to be able to show the performance of the different models, the expected costs will be scaled to the

expected costs of this original assignment solution. This way, the percentage difference in expected

costs between the models can be shown.

The given problem scenario is a flight schedule of three days long, where information about the

delay distributions is only provided for the first day. The goal is to consider the expected delay costs

for the flights operated on this first day. For the last two days robustness can be ignored, as in a real

life scenario the assignments for these days can be re-evaluated the next day, when more information

about the expected delays is available. By including these two days in the problem in a non-robust

way, a feasible connection between the days is ensured. Also, since the schedule often contains bigger

overnight gaps between flights, the chance of delay propagation between different days is usually very

small.

Some general information about the problem can be found in Table 5.1, and a figure of the flight

schedule can be found in Figure 5.1. Note that the aircraft names and the dates are randomized.

51
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Flights 1630

Rotations 879

Flights on first day 618

Rotations on first day 341

Maintenance blocks 23

Maintenance blocks on first day 14

Aircraft 101

Aircraft Subtypes 5

Average Flight Duration 97.9 min

Minimum Flight Duration 34 min

Maximum Flight Duration 306 min

Table 5.1: General information about the problem used for the experiments.

Figure 5.1: Full schedule used for the experiments, with original assignments. The dates are randomized.

To be able to find the influence of problem size on the run-time of the Robust Flow Model, need to

test the model using various problem sizes. The problem is determined by the problem size, i.e. the

amount of flights/rotations/aircraft, and the delay distributions of the flights in the schedule. In this

analysis, two ways are used to change the problem size.

Firstly, a parameter B?0AB8CH is used to determine the sparsity of the schedule. If we use B?0AB8CH = 1,

the full schedule is used. If we take B?0AB8CH = 0.5, half the rotations in the schedule are deleted from

the problem. An example of a schedule with B?0AB8CH = 0.5 is given in Figure 5.2.

Secondly, a parameter B8I4 is used to determine the amount of aircraft in the schedule. If we have

B8I4 = 0.5, half the aircraft are omitted from the problem. To preserve feasibility of the problem, all

rotations that were originally assigned to these aircraft are also omitted. An example of a schedule with

B8I4 = 0.5 is given in Figure 5.3.
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Figure 5.2: Schedule with B?0AB8CH = 0.5, with original assignments. Half of the rotations are deleted.

Figure 5.3: Schedule with B8I4 = 0.5, with original assignments. Half the aircraft with corresponding rotations are deleted.

5.1.2. Delay distributions
Besides the flight schedule, the problem also depends on the probability distributions of delay for the

flights in the schedule. In practice, these distributions are based on several factors, such as weather

and previous data on delays. In this section, some research will be done to figure out what realistic

probability distributions of delay look like, after which an way to generate such distributions for the

experiments is given.

Research
In order to use realistic probability distributions of delay in our experiments, we do some research into

real delay predictions, as given by a KLM delay prediction model. This model gives delay predictions

using a percentile description, with a step size of 5%, from 5% to 95%. Also, the 1% and 99% percentiles

are given. We denote by ?4A28% the value of the 8% percentile. An example plot of delay predictions of

all flights in a one day schedule, is given in Figure 5.4.
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Figure 5.4: Cumulative distribution function of delay predictions by percentile for all flights in the example schedule.

Note that in this figure, we assume a linear relation between the different percentile prediction

points, as an approximation of the cumulative distribution function (cdf). Under this assumption, we

can find the probability density function (pdf), corresponding to this cdf. Using the piecewise linearity

of the cdf, we have that a linear line segment [(0G , 0H), (1G , 1H)] in the cdf corresponds to a horizontal

line segment [(0G , (1H − 0H)/(1G − 0G)), (1G , (1H − 0H)/(1G − 0G))] in the pdf. In Figure 5.5 the pdf and cdf

of the delay prediction for one flight are given.
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Figure 5.5: Example probability density function (pdf) and cumulative distribution function (cdf) of the delay predictions for a

single flight.

Note that the shape of the approximation of the PDF has one mode and is bell-shaped. This is the

case for all delay predictions in the schedule. Let us find the mean and variance of the delay distributions

for these flights, using the definitions:

� = E(-) =
=∑
8=1

G8?8 , (5.1)

�2 = V(-) =
=∑
8=1

(G8 − �(-))2?8 , (5.2)

where G8 are discrete events of the sample space -, where |- | = =, that occur with a probability of

?8 . As an estimation, we take the G8 ’s to be the midpoints between two percentiles, and take as ?8 the
difference between the percentiles. For the remaining 1% blocks at the ends of the predictions, we take
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as G8 the value of the percentile. So, we get:

� = 0.01?4A21% + 0.04(?4A25% + ?4A21%)/2 +
18∑
8=1

0.05(?4A2
5(8+1)% + ?4A258%)/2

+ 0.04(?4A299% + ?4A295%)/2 + 0.01?4A299%

�2 = 0.01(?4A21% − �)2 + 0.04((?4A25% + ?4A21%)/2 − �)2

+
18∑
8=1

0.05((?4A2
5(8+1)% + ?4A258%)/2 − �)2

+ 0.04((?4A299% + ?4A295%)/2 − �)2 + 0.01(?4A299% − �)2

If we plot the mean and standard deviation of the delay distributions for every flight in the schedule

on both a stormy and calm day, we find the results as shown in Figure 5.6 and 5.7.

Figure 5.6: Mean and standard deviation of delay predictions for every flight on the first day of the schedule, on a stormy day.

The colour of the points corresponds to the length of the flight, where a longer flight has a darker colour.
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Figure 5.7: Mean and standard deviation of delay predictions for every flight on the first day of the schedule, on a non-stormy

day. The colour of the points corresponds to the length of the flight, where a longer flight has a darker colour.

From figure 5.7 we conclude that the delay distributions of non-disrupted flights have a mean

between -25 and 10, with most distributions between -20 and 0 minutes of delay. We also see that the

standard deviation mostly takes values between 13 and 40, where the standard deviation takes lower

values when the mean is close to -8, and and higher values when the mean is further away from this -8.

The means of the delay distributions of this non-disrupted day, have a mean of -10 and a standard

deviation of 7.

In Figure 5.6 we see that some flights have a higher expected delay (i.e. higher mean) than in Figure

5.7. We see many means between 0 and 15. These are flights that are expected to be disturbed by a

storm. The delay distributions of these disturbed flights seem to follow the relation � =
25�+120

9
.

Delay distribution generation
Using this information, we will generate realistic delay distributions to use for the experiments. First,

let us address the type of probability distribution to use. The Robust Flow Model is not restricted to

any distribution. Based on the analysis performed in the previous section, a continuous unimodal

distribution is expected. Also, since there is a physical limitation to the amount of time a flight can

be faster than scheduled (minimum flight time), we can assume that there is a lower bound to the
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distributions. For these reasons, a shifted Gamma distribution will be used in the experiments. This

distribution has a lower bound and no upper bound in its domain, is unimodal and is continuous.

The Gamma distribution has a shape parameter : > 0 and a scale parameter � > 0, and is defined on

the domain (0,∞). It has amean equal to � = :� and a variance equal to �2 = :�2
. If we shift the Gamma

distribution by a factor B, the domain changes to (B,∞) and the mean will equal � = :� + B, while the

variance remains �2 = :�2
. Note that the shifted Gamma distribution can be uniquely described by its

mean �, standard deviation �2
and lower bound B. Given these values, the shape and scale parameters

are equal to:

: =
(� − B)2

�2

(5.3)

� =
�2

�
(5.4)

What remains is to generate shifted Gamma distributions to use in the experiments. In the ex-

periments, we will test the models using various degrees of disturbances. Therefore, we need to be

able to create multiple scenarios of delay predictions, ranging from an undisturbed schedule to a very

disturbed schedule. To achieve this, we will use two different pools of distributions to draw samples

from, one pool corresponding to non-disrupted flights and one corresponding to disrupted flights. In

the experiments, we use a parameter 38BAD?C8>= ∈ [0, 1], which determines the fraction of flights that

draw from the disrupted pool. The remainder of flights will draw from the non-disrupted pool. The

distributions in the pools will be described using their mean �, standard deviation �2
and lower bound

B.

By our research in the previous section, on a non-disrupted day we found that the means of the

distributions are distributed with a mean of -10 and a standard deviation of 7. Therefore, for a delay

distribution of a non-disrupted flight, we will draw a mean � using a truncated normal distribution

with mean -10 and standard deviation 7. The distribution is truncated at -30 and 10, in order to discard

extreme outliers. The standard deviation �2
of the non-disrupted delay distribution is drawn uniformly

from a interval within two bounds, based on Figure 5.7.

For means between -30 and -12, we draw standard deviations using a uniform distribution, such that

−
11� + 41

7

≤ � ≤
9 − 7�

3

.

For means between -12 and -5, we draw standard deviations using a uniform distribution, such that

13 ≤ � ≤ 31.

For means between -5 and 15, we draw standard deviations using a uniform distribution, such that

5� + 64

3

≤ � ≤
� + 67

2

.

By our research in the previous section, we also found that delay distributions of disrupted flights

have means and standard deviations that follow the relation � =
25�+120

9
. Since these predictions have

been evaluated by KLM to underestimate the impact of disturbances, we will draw means that are

somewhat higher than we found in this research. So, for the delay distributions of disrupted flights, we

will draw means � using a truncated normal distribution with mean 10 and standard deviation 10. The

distribution is truncated at -20 and 40, in order to discard extreme outliers. As standard deviations

of the delay distributions for these flights we will use the relation � =
25�+120

9
, but we take � = 20 as a

minimum.

Now that we have a way of generating realistic values �, � for non-disrupted and disrupted flights,

we can use the corresponding gamma distributions as delay distributions for the flights in the schedule.

As lower bound B for these distributions, we take -0.5 times the expected flight time, which seems like a

reasonable physical limitation.



5.1. Experimental setup 59

5.1.3. Run-time analysis
Let us define the experiments to run, in order to determine the influence of the problem size and shape,

as well as the model parameters on the run-time of the Robust Flow Model. In total we defined 7

parameters, which influence the problem and the model, these parameters are

B?0AB8CH, B8I4 , 38BAD?C8>=, ?32? , ℎ?A>1 , ??2? , ℎBC4? .

The problem itself is defined by parameters B?0AB8CH, B8I4 and 38BAD?C8>=, while the model depends on

the parameters ?32? , ℎ?A>1 , ??2? and ℎBC4? . As concluded in Section 4.5.3, the parameters ?32? and ℎ?A>1

only influence the accuracy of the approximation of the delay costs, at the cost of some preprocessing

time. As the main bottleneck of the model is the solving process, we will omit these parameters from

our run-time analysis. To be able to see the influence of the 5 remaining parameters separately, three

values for every parameter will be taken. For every combination of these values, an experiment will be

run. In total, there are 3
5 = 243 such combinations. Note that we have 3 problem-defining parameters

and 2 model-defining parameters. In order to maintain consistency in the experiments, experiments

using the same problem-defining parameters will be performed on the exact same problem. This means

a total of 3
3 = 27 problems will be generated, where each such problem will be solved using 2

3 = 9

different models.

The parameter values used in the experiments are the following:

B?0AB8CH ∈ {0.25, 0.5, 1}
B8I4 ∈ {0.25, 0.5, 1}

38BAD?C8>= ∈ {0, 0.5, 1}
?32? = 0.001

ℎ?A>1 = 1

??2? ∈ {0.025, 0.05, 0.1}
ℎBC4? ∈ {5, 10, 20}

In every experiment, the problem is solved using the Robust Flow Model and evaluated using the

evaluator. This process is divided into multiple parts, for which the run-time is saved seperately. These

parts are:

• Preprocessing. In this step, all the relevant sets for the model are created and the probabilities

corresponding to the edges are calculated, using Algorithm 2, Algorithm 3 and the equations

formulated in Section 4.4.

• Model creation. In this step, the model variables are initiated, and the objective function and all

constraints are defined using these variables.

• Optimization. In this step, the MIP solver Gurobi [16] is used to solve the model. For the

optimization part, a time limit of one hour is used.

• Simulation. In this step, the solution of the model is simulated using the simulator.

5.1.4. Performance analysis
To analyse the performance of the Robust Flow Model (RFM), the final solution of the model will to be

compared to the solutions found by the Non-Robust Tail Assignment model (NRM) and the Benchmark

Robust Model (BRM), as well as the original schedule.

To resemble the real-life use case as much a possible, these experiments will be performed using on

the full schedule, and using a time limit of 15 minutes. This means we use problems with B?0AB8CH = 1

and B8I4 = 1. To determine the effectiveness of RFM on differing levels of expected disruptions, a wider

range of 38BAD?C8>= values will be used. To be able to find the best parameters settings to use for RFM,

a wider range of ??2? and ℎBC4? values will be used. The parameter values used in these experiments are

the following:
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B?0AB8CH = 1

B8I4 = 1

38BAD?C8>= ∈ {0, 0.2, 0.4, 0.6, 0.8, 1}
?32? = 0.001

ℎ?A>1 = 1

??2? ∈ {0.05, 0.1, 0.2, 0.35, 0.5, 0.65}
ℎBC4? ∈ {10, 20, 40, 60, 90}

For every problem (defined by 38BAD?C8>=), the problem is solved using the RFM with all possible

settings ??2? and ℎBC4? , as well as using one instance of BRM and NRM. The solutions found by all these

models are evaluated using the evaluator, and compared to the originally given schedule.

5.1.5. Expectations
Run-time analysis
In the preprocessing step, Algorithm 3 is used to define the set of propagation pairs ?A>?%08AB. The
most time-consuming operation of this algorithm is expected to be the calculation of the propagated

delay distributions (line 24/28). This operation is performed once for every feasible rotation-aircraft

combination considered for robustness.

Also, to find the probabilities associated with the propagation of probability over edges within

rotations �A>C , see Equation (4.35) in Section 4.4.2, a similar calculation needs to be performed for

every departure state node #34?
. After this operation, propagation probabilities for these edges can be

calculated. This process is performed for every departure state node, making this process expected

to be more time-consuming than Algorithm 3. Since the amount of departure state nodes increases

linearly with the amount of rotations considered for robustness, and decreases linearly with the step

size ℎBC4? , we expect the run-time of the preprocessing step to show the same behaviour.

In the model creating step, the variable objects and constraints are created, using the results from the

preprocessing step. The most time consuming part is expected to be the creation of the flow propagating

constraints (see Constraint 4.57 in the formulation of the Robust Flow Model, Section 4.5.2). To create

these constraints, we need to loop over the incoming and outgoing edges for every node in the network.

This means every edge in the network needs to be incorporated twice in such constraints. Therefore, the

model creating time is expected to increase linearly with the total amount of edges in the network.

Besides this, for a lower value of the step size ℎBC4? , a departure state node is connected to more

arrival state nodes. This means that more edges are captured in a single constraint. So, besides the total

amount of edges in the network, the value of ℎBC4? is expected to affect the model creating time as well.

A lower value of ℎBC4? with the same amount of edges is expected to have shorter model creating time

than a higher value of ℎBC4? .

The run-time of the optimization step is not easy to predict, since it depends on the "difficulty"

of the model to solve. The main decision variables are the assignment variables -A0 ; these variables
determine the solution, that all other variables in the model depend on. Therefore, the amount of

variables -A0 directly impacts the size of the search space, and therefore the difficulty of the problem.

But, the real difficulty of the problem lies in the dependency in the solutions. By only considering

relevant propagation pairs ?A>?%08AB, this dependency is simplified in the Robust Flow Model. If more

?A>?%08AB are considered in the model, the model is harder to solve. Another factor of the difficulty of

the problem may be the B?0AB8CH of the problem. In a more dense schedule, there are more feasibility

constraints acting on the assignment variables, which should make it more difficult for the optimizer to

navigate through the search space. Therefore, the run-time of the optimization step of the model is

expected to be mostly influenced by these factors. Note that the amount of ?A>?%08AB considered in the

model for a specific problem setup is directly impacted by the value of ??2? .
Besides these factors, the step size ℎBC4? will impact the run-time as well, since its value will directly

change the total amount of variables and constraints in the model.
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Performance analysis
The performance of RFM depends on several factors. Lower values of ℎBC4? cause the model to be more

accurate in the approximation of the delay costs, but will cause the model to contain more variables

as well. Similarly, a lower value of ??2? will cause the model to be more accurate and contain more

propagation pairs |?A>?%08AB |, causing more edges as well. More variables will generally cause longer

optimizing times. But, since the main difficulty of the problem lies in the propagation, more propagation

pairs will likely have the biggest impact on the optimizing time.

For the full schedule, the optimizer will likely not find optimized results within the given timespan.

This means the performance of the model will be a tradeoff between accuracy of the model, and

simplicity of the model. A higher accuracy will cause the model to be more difficult to solve, which will

decrease the quality of the best solution found by the model in the given timespan. What parameter

values will cause the best performance of the model likely depends on the problem size, as well as the

expected disruption in the schedule. A higher expected disruption will cause more propagation pairs to

be considered in the model, with the same value of ??2? .
In general, the quality of the solution found by the model is expected to mostly depend on the value

of ??2? .

5.2. Results
In this section, the general results of the experiments will be given. The results and information for

every specific experiment can be found in Appendix A.4.

5.2.1. Run-time
The run-time of the model consists of three parts; preprocessing time, model creation time and

optimizing time. In this section the run-time of these parts will be evaluated separately.

Preprocessing time
In the preprocessing step, the propagation pairs ?A>?%08AB are determined using Algorithm 3, and the

sets #34?
, # 0AA

are created, as well as all edges �, with their corresponding probabilities (see Equation

(4.32)).

Figure 5.8 and 5.9 show the preprocessing time in the plots of the experiments, plotted against

the amount of rotations considered for robustness. From these figures, we can conclude that the

preprocessing time linearly depends on this amount of robust rotations in the problem, where the slope

depends (mostly) on the values of ℎBC4? and 38BAD?C8>=.

Model creation time
In the model creating step, the sets from defined in the preprocessing step are used to create all variables

and constraints in the model.

Figure 5.10 shows the model creating time in the experiments plotted against the total amount of

edges in the model network. In this figure, we can clearly see that the model creating time depends

linearly on the amount of edges in the network, where the steepness depends on the step size ℎBC4? . Do

note that the amount of edges also depends on the value of ℎBC4? .

Optimization process
The optimizing time is the biggest bottleneck in solving the model. For 91 out of the 243 experiments,

the optimal value was not found after 60 minutes of optimization. For 6 experiments, not a single

feasible solution was found in 60 minutes. But, the optimizing time can still be analysed. To analyse

the run-time of the optimization process, we will look at two different values; The first timestep when

a feasible solution is found and the timestep when the final solution is proven to be optimal. If in an

experiment such a timestep is not reached within the timeframe of 60 minutes, the experiment will be

plotted using a cross symbol on the timestep value of 3700 seconds.
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Figure 5.8: Processing time of the experiments, plotted against the amount of rotations in the problem to consider for robustness.

The results are grouped by the values of ℎBC4? used in the model.

Figure 5.9: Processing time of the experiments, plotted against the amount of rotations in the problem to consider for robustness.

The results are grouped by the values of 38BAD?C8>= used in the model.
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Figure 5.10: Model creating time in the experiments plotted against the amount of edges in the model network. The results are

grouped by the value of ℎBC4?

Figure 5.11: Log-log plot of the optimization time in the experiments against the amount of propagation pairs |?A>?%08AB |. The
results are grouped by the amount of assignment variables -A>C,02 .
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Figure 5.12: Log-log plot of the optimization time in the experiments against the amount of propagation pairs |?A>?%08AB |. The
results are grouped by the sparsity of the problem used in in the experiments.

Figure 5.13: Log-log plot of the optimization time in the experiments against the amount of propagation pairs |?A>?%08AB |. The
results are grouped by the value of ℎBC4? used in the model.
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Optimization time

First, let us consider the optimization time, i.e. the timestep when the final solution is proven to be the

optimal solution. In section 5.1.5 we expected this time to mostly depend on the amount of propagation

pairs |?A>?%08AB |, the amount of main decision variables -A>C,02 , the sparsity of the problem, and the

step size ℎBC4? . Figures 5.11, 5.12 and 5.13 show the optimization time in the experiments plotted against

the amount of propagation pairs.

From Figure 5.11 and 5.13, we can conclude that for every distinct schedule setup used in the

experiments, and for every distinct value of ℎBC4? , a linear relation in the log-log plot is present between

the optimization time and the amount of propagation pairs |?A>?%08AB |. Using Figure 5.12, we see that

the steepness of this linear relation in the log-log plot seems to depend on the sparsity of the problem.

A linear relation in a log-log plot corresponds to a polynomial relation. Thus, for every distinct

problem schedule and value of ℎBC4? , we have:

>?C8<8I0C8>=C8<4 ≈ 2 ∗ |?A>?%08AB |:

The steepness of the linear relation in the log-log plot is equal to the power : in this polynomial

relation. If we look at specific problem setups (B8I4 , B?0AB8CH, 38BAD?C8>=), we see that for different

values of ℎBC4? , the time-to-optimal-solution shows linear relations with the amount of propagation

pairs ?A>?%08AB in the log-log plot, with similar steepness. As an example, see Figure 5.14. Therefore,

we assume the value of the power : is not dependent on the value of ℎBC4? . Note that for different

problem setups, the steepness of this relation in the log-log plot can be different. This means that : is a
function of the problem setup. Thus, when solving a specific problem, the value of |?A>?%08AB | has a
polynomial influence on the optimization time of the problem.

Figure 5.14: Log-log plots of the optimization time in the experiments against the amount of propagation pairs |?A>?%08AB |. The
lines correspond to same problem setup and value of ℎBC4? , for changing ??2? (and thus changing |?A>?%08AB |. The titles of the

sub-figures correspond to the problem setups (B8I4 , B?0AB8CH, 38BAD?C8>=). Only a subset of the experiments are shown.

The value of ℎBC4? had a translating effect on the relation between the optimization time and the

amount of propagation pairs |?A>?%08AB |, see Figure 5.13. To investigate the precise influence of the

value of ℎBC4? on the optimization time, let us plot the optimization time against the value of ℎBC4? , while

keeping all other parameters constant, see Figure 5.15.
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Figure 5.15: Log-log plot of the optimization time in the experiments against the value of ℎBC4? used in the model. The lines

correspond to experiments on the same problem setup, as well as the same value of ??2? for the model, for changing values of

ℎBC4? .

In general, the lines in Figure 5.13 show a linear relation between the optimization time and the

value of ℎBC4? in the log-log plot, when all other parameters are constant. Also, we see that the steepness

of these linear relations in this plot is quite constant. Note that the lines reaching an optimization

time of 3700 seconds are experiments that did not reach optimality, and were cut off at 3600 seconds

of optimization. If consider the steepnesses of the linearized relations in this plot, disregarding any

experiments that were cut off, we find an average steepness of approximately -1.18. Therefore, we

update the our equation for the optimization time to:

>?C8<8I0C8>=C8<4 ≈ 2 ∗ (ℎBC4?)−1.18 ∗ |?A>?%08AB |:

Note that both 2 and : are solely dependent on the specific problem setup.

In conclusion, given a problem, both the amount of propagation pairs |?A>?%08AB |, and the step size

ℎBC4? have polynomial influence on the optimization time of the Robust Flow Model.

First solution time

Next, let us consider the first solution time, i.e. the timestep in the optimization process when the first

feasible solution is found. We perform an similar analysis to the optimization time. Figure 5.16 and 5.17

show the first solution time in the experiments versus the amount of propagation pairs |?A>?%08AB |.



5.2. Results 67

Figure 5.16: Log-log plot of the first solution time in the experiments against the amount of propagation pairs |?A>?%08AB |. The
results are grouped by the problem setup.

Figure 5.17: Log-log plot of the first solution time in the experiments against the amount of propagation pairs |?A>?%08AB |. The
results are grouped by the value of ℎBC4? used in for the model.

Using Figure 5.16 and 5.17, we see that for every distinct value of ℎBC4? , a linear relation in the log-log

plot is present between |?A>?%08AB | and the first solution time, with the same steepness. The linear

relation approximation of this relation is given in Figure 5.18.
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Figure 5.18: Log-log plot of the first solution time in the experiments against the amount of propagation pairs |?A>?%08AB |. The
results are grouped by the value of ℎBC4? used in for the model. For every value of ℎBC4? , a linear approximation of the values is

also shown.

A linear relation in a log-log plot corresponds to a polynomial relation. Thus, we have the following

time complexity:

5 8ABCB>;DC8>=C8<4 ≈ 2 ∗ |?A>?%08AB |:

Note that 2 depends on the value of ℎBC4? . The steepness of the linear relation in the log-log plot is equal

to the power : in this polynomial relation. The linear approximations in Figure 5.18 have a steepness of

1.66, which is independent of the value of ℎBC4? . So, we get the time complexity:

5 8ABCB>;DC8>=C8<4 ≈ 2 ∗ |?A>?%08AB |1.66

The value of ℎBC4? has a translating effect in the on the linear relation in the log-log plot between the

first solution time and the amount of propagation pairs |?A>?%08AB |, see Figure 5.18. To investigate the

precise influence of the value of ℎBC4? on the first solution time, let us plot the first solution time against

the value of ℎBC4? , while keeping all other parameters constant, see Figure 5.19.

The lines in Figure 5.19, disregarding the experiments corresponding to very short times (that are

prone to fluctuations, see the lines with timesteps under one second), show a linear relation between the

first solution time and the value of ℎBC4? in the log-log plot. We see that the steepness of these linear

relations in this plot is quite constant. If consider the steepnesses of the linearized relations in this plot,

we find an average steepness of approximately -1.64. Therefore, we update the assumed time complexity

of the first solution time to:

5 8ABCB>;DC8>=C8<4 ≈ 2 ∗ (ℎBC4?)−1.64 ∗ |?A>?%08AB |1.66

If we assume 2 to be constant, we have:

5 8ABCB>;DC8>=C8<4 = $
(
(ℎBC4?)−1.64 ∗ |?A>?%08AB |1.66

)
In conclusion, both the amount of propagation pairs |?A>?%08AB |, and the step size ℎBC4? have

polynomial influence on the first solution time of the Robust Flow Model.
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Figure 5.19: Log-log plot of the first solution time in the experiments against the value of ℎBC4? used in the model. The lines

correspond to experiments on the same problem setup, as well as the same value of ??2? for the model, for changing values of

ℎBC4? .

5.2.2. Performance
In this section the results of the performance analysis for RFMwill be evaluated. First, the approximation

ratios of the RFM solutions from these experiments are evaluated. Next, we analyse the achieved

MIP gap within the timespan of the experiments. Finally, the solutions found by the RFM models are

compared to each other, to the BRM solution, and the NRM solution.

For the purpose of this analysis, a total of 180 experiments are performed, one experiment for each

combination of the parameter values specified in Section 5.1.4. For these experiments, a time limit of 15

minute is given. Note that this time limit includes the preprocessing, model creating, and optimizing

time. Out of the 180 experiments, three models were solved to optimality, and 32 experiments did not

find any feasible solutions within the given time-span. For every problem setup, BRM and NRM are

also optimized.

Approximation ratio
RFM approximates the expected costs of operating a solution schedule in real life. In the creating

process of RFM, several approximation are made, causing the model to be solved more easily, at the cost

of optimality. The delay distributions are discretized, the states are discretized with steps of length

ℎBC4? , and propagation of delay is only considered for pairs of rotations with higher probabilities of

propagation. Note that these approximations only apply to the calculations concerning expected delay

costs (including reserve aircraft costs). The expected assignment costs are not approximated in the

model.

Exactly how much the approximated expected cost of a solution differs from its actual expected cost

is called the approximation ratio. For a solution (, let us define this approximation ratio '0??A>G as:

'0??A>G(() :=
�
34;0H

<>34;
(()

�
34;0H

B8<D;0C8>=
(()

The values �
34;0H

<>34;
(() and �

34;0H

B8<D;0C8>=
(() correspond to the delay costs of a solution (, respectively

calculated by the model and by the simulation engine. If this ratio is close to 1 for any feasible solution,

the model is considered accurate. Note that we only consider delay costs for this ratio, since these are

the only costs that are approximated in the model.

To evaluate the accuracy of RFM, approximation ratios '0??A>G(() are calculated for the final solution

( of every experiment. Note that these solutions are often not proven to be the optimal solutions. Figure

5.20, 5.21 and 5.22 show these ratios plotted against the amount of propagation pairs |?A>?%08AB | in the

corresponding models.
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Figure 5.20: Plot of the approximation ratios '0??A>G in the experiments against the amount of propagation pairs |?A>?%08AB |
used in the model network. The results are grouped by the value of 38BAD?C8>=, which corresponds to the different problem

setups.

Figure 5.21: Plot of the approximation ratios '0??A>G in the experiments against the amount of propagation pairs |?A>?%08AB |
used in the model network. The results are grouped by the value of ℎBC4? used in the models.
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Figure 5.22: Plot of the approximation ratios '0??A>G in the experiments against the amount of propagation pairs |?A>?%08AB |
used in the model network. The results are grouped by the value of ??2? used in the models.

From these figures, we can conclude that there is a clear relation between the approximation ratio

'0??A>G and the amount of propagation pairs |?A>?%08AB |. This makes sense, since a lower amount

of propagation pairs means that more omitted propagation pairs in the model. Also, for schedules

with higher 38BAD?C8>=, the accuracy drops faster when lowering the amount of propagation pairs

|?A>?%08AB |, since more heavily disrupted schedules naturally have more delay propagation. This

means more propagation pairs are necessary to capture most of this propagation into the model.

Besides this, also note that the value of ℎBC4? has some influence on the approximation ratio. On

average higher values of ℎBC4? causes the approximation ratio to be slightly higher. Note that for lower

??2? (and thus lower |?A>?%08AB |), a bigger step size ℎBC4? causes the approximation ratio to increase

often above 1. This is the a result of the more extreme rounding that occurs with higher values of ℎBC4? .
Since the probability density functions of expected propagated delay are usually decreasing functions

throughout the fleetline (see Example 6 in Section 3.2), a bigger step size ℎBC4? causes the delay to be

rounded up.

MIP-gap
Most of the performed experiments do not finish the optimization process, and are unable to find the

optimal solution or prove that a found solution is optimal. As we have seen in the run-time analysis,

even if we extent the run-time to 3600 seconds, schedules with full sparsity prove hard to optimize.

Therefore, we shall analyse the final MIP-gaps achieved in the experiments.

As described in section 4.6, the Gurobi solver used to solve the model uses a branch and bound

algorithm to search for feasible solutions. At any stage in this process, the MIP-gap is defined as:

"�% := |I% − I� |/|I% |,

where I% denotes the objective value of the best feasible solution found thus far, and I� denotes the best

proven bound on feasible solutions. If the I% = I� in any stage of the solving process, it is proven that

the found solution is optimal. In this case we have "�% = 0.

In the experiments, the value of the MIP-gap after 15 minutes of run-time is saved. Figure 5.23

shows the MIP-gap plotted against the amount of propagation pairs |?A>?%08AB |. In this figure we see

that if we consider relatively little propagation pairs (|?A>?%08AB | ≤ 20000), the MIP-gap often drops

below 1%. Also, we see that the MIP-gap depends on the amount of disruption in the schedule. This

can be explained by considering the fraction of expected costs that are delay costs in model, for the

final solution found by the optimizer. Figure 5.24 shows this fraction of expected delay costs for all

experiments. In this figure we see that the delay costs incorporate about 8% of the expected costs in
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schedules with minimal expected disruption, and up to 23 % of the expected costs in very disrupted

schedules. The delay costs are most difficult to optimize over, which is why the MIP-gap will be higher

if a higher fraction of the expected costs are delay costs.

Figure 5.23: Plot of the the MIP-gap plotted against the amount of propagation pairs |?A>?%08AB |. The results are grouped by the

value of 38BAD?C8>=, which corresponds to the different problem setups.

Figure 5.24: Plot of the the fraction of delay costs in the final model solution, plotted against the amount of propagation pairs

|?A>?%08AB |. The results are grouped by the value of 38BAD?C8>=, which corresponds to the different problem setups.

Simulation results
The approximation ratio combined with MIP-gap, after 900 seconds, give an indication of the expected

performance of the model. If more propagation pairs ?A>?%08AB are considered in the model, the

approximation ratio gets better, but the MIP-gap gets worse. To get the best model performance, we

need to find the sweet spot for this trade-off.

To evaluate the quality of the final solutions found by the models in the experiments, Figure 5.25

shows the average total costs after simulating these solution schedules 500 times each. The average costs

are given as a ratio of the average costs of the given original schedule. Note that for schedules with
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more expected disruption, there are more delay costs to be reduced by the models, which will cause

lower ratios of costs. Therefore, we also plot these average simulated costs separately for the different

values of 38BAD?C8>=, see Figure 5.26. For comparison, this figure also includes the solutions found by

BRM and NRM.

Figure 5.25: Plot of the simulated costs of final model solutions, scaled by the simulated costs of the original schedule, against the

amount of propagation pairs |?A>?%08AB | in the model. The results are grouped by the value of 38BAD?C8>=, which corresponds

to the different problem setups.

From these figures, we can conclude that the optimal amount of propagation pairs |?A>?%08AB | for
the tested problem schedule and time limit seems to be around 20000 propagation pairs, independently

of the amount of 38BAD?C8>= in the schedule. A direct correlation between the value of ℎBC4? and

the solution quality is not clearly deducible. For schedules with small amounts of 38BAD?C8>= (i.e.

38BAD?C8>= ∈ {0.0, 0.2}), models with higher step size ℎBC4? seem to perform better. In schedules with

higher amount of 38BAD?C8>=, there is a lot of variation in the quality of the solution of the models.

Figure 5.27 shows the same figure as before, but this time colored based on the final MIP-gap reached

by the optimizer. From this figure we can deduce that the MIP-gap is a clear indicator of the quality of a

solution. For models with the same value of ??2? (and therefore similar |?A>?%08AB |), a lower MIP-gap

implies a better solution, irregardless of the value of ℎBC4? . Therefore, ℎBC4? does not seem to influence

the quality of the solution much (within the set of values used for ℎBC4?), but may still have an impact on

the speed of solving the model and thus on the MIP-gap.

We do see that models with very little propagation pairs |?A>?%08AB | do not produce very good

solutions while having a very low MIP-gap. This can be explained by the low approximation ratios, as

discussed before.

An explanation for the large variation in MIP-gaps for similar experiments can be due to luck when

branching in the branch and bound solving method. If a relatively good solution is found early in the

process, the algorithm can cut branches faster, resulting in faster optimization.
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Figure 5.26: Plots of the simulated costs of final model solutions, scaled by the simulated costs of the original schedule, against

the amount of propagation pairs |?A>?%08AB | in the model. The results are split by the value of 38BAD?C8>=, which corresponds to

the different problem setups, and grouped by the value of ℎBC4? used in the model. Also, the scaled simulated costs of the final

solutions of the Benchmark Robust Model (BRM) and the Non-Robust Model (NRM) for each problem setup are shown.
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Figure 5.27: Plots of the simulated costs of final model solutions, scaled by the simulated costs of the original schedule, against

the amount of propagation pairs |?A>?%08AB | in the model. The results are split by the value of 38BAD?C8>=, which corresponds to

the different problem setups, and coloured by the MIP-gap achieved in the experiments. Also, the scaled simulated costs of the

final solutions of the Benchmark Robust Model (BRM) and the Non-Robust Model (NRM) for each problem setup are shown.

From these experiments, we can conclude that BRM, as provided by KLM, finds better robust

solutions than NRM. But the experiments also show that even better solutions are possible, and that

RFM is capable of finding such solutions.

In order to find good solutions using RFM, a sufficient amount of propagation pairs need to be

included in the delay network, to be able to capture the propagated delay. This amount of propagation

pairs |?A>?%08AB | can be controlled by changing the value of the parameter ??2? in the network creating

process. If a solver is able to reduce the MIP-gap enough, the solution will be of great quality. For big

problems sizes, such as the problem used in this analysis, the model proves hard to optimize using the

Gurobi solver on a regular computer. But, if good solutions are found quickly in the solving process,

RFM can outperform BRM.

To show that the RFM indeed outperforms BRM if low enough MIP-gaps are reached in the solving

process, let us consider a smaller problem size, i.e. 20% of the full schedule. As before, Figure 5.28

shows the evaluated results of solving this problem for several instances of RFM, compared to BRM

and NRM. All models used in this experiment were fully optimized. From this figure we can conclude

that considering more propagation pairs |?A>?%08AB | included in the network increases the accuracy

of RFM, providing better solutions if solved to optimality. If enough propagation pairs are included,

RFM outperforms BRM. The value of ℎBC4? used for RFM does not seem to influence the quality of the

solution much.
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Figure 5.28: Plot of the simulated costs of final model solutions, scaled by the simulated costs of the original schedule, against the

amount of propagation pairs |?A>?%08AB | in the model. The problem solved is a problem with reduced size (B8I4 = 0.2). The
results are grouped by the value of ℎBC4? used in the model. Also, the scaled simulated costs of the final solutions of the

Benchmark Robust Model (BRM) and the Non-Robust Model (NRM) for each problem setup are shown.



6
Conclusion

In this thesis a novel model for the Robust Tail Assignment problem is described and analysed. The

proposed Robust Flow Model uses a multi-commodity flow network to approximate the propagation

of delay through solution flight schedules. The delay options that are considered in the network are

discretized, using a constant step size. To reduce the amount of connections in the network, only

connections between flight rotations are considered if the probability of delay propagation exceeds

a threshold. This network is utilized in a Mixed Integer Programming model, which can be solved

using an iterative solver. The model uses the network to consider expected delay costs for every flight,

including propagated delay, using assignment variables to activate and deactivate edges in the network,

creating the correct flows.

With the right parameters, the model is capable of finding very good robust solutions. A good

robust solution will cause a decrease in expected total costs of operating the schedule. But for big

problem instances, the model proves difficult to solve to optimality. Using a iterative solver, based on a

branch-and-bound algorithm, the quality of solutions found during the solving process depends on

the branching decisions. Therefore, if a time limit is used in the solving process, causing the model

to not be solved to optimality, the best solution found in this time period can vary in quality. Ta-

ble 6.1 contains a summary of the pros and cons of the three differentmodels thatwere tested in this thesis.

Robust Flow Model

Pros

Capable find great robust solutions

Optimizes accurately for expected costs

Cons

Parameters need to be well tuned

Difficult to solve to optimality for big problem sizes

Benchmark Robust Model

Pros

Finds good robust solutions

Solvable in reasonable time for big problem sizes

Cons

Does not optimize for expected costs

Optimality is lost by limiting the assignments

to one subtype based on non-robust optimization

Non-Robust Model

Pros Fast optimization

Cons Not robust

Table 6.1: Pros and cons of the three models described in this thesis.
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The Robust FlowModel can be extended to include other airline related aspects. Two common exten-

sions to the Tail Assignment Problem are Schengen/Non-Schengen connections and crew connections.

Schengen/Non-Schengen connections influence the required turnaround time of the aircraft at the hub

station based on the destinations of the rotations, which can directly be included while creating the

delay propagation network, since this network is connection based. Crew connections can cause delays

in the fleetline of one aircraft to propagate to the fleetline of another aircraft. This means delays in the

different fleetlines are no longer independent. Therefore, considering delay propagation caused by crew

connections increases the difficulty of the problem significantly. But, the state nodes in the Robust Flow

Model and the corresponding probabilities can be used to account for this propagation of delay by crew

connections, using constraints that allow crew connections to update the probabilities of departure

delay states accordingly.

In order to speed up the solving process for the Robust Flow Model, further research can be done.

The solver could benefit from advanced branching methods or rounding heuristics, which will cause the

branch-and-bound algorithm to find good solutions faster, and therefore reduce the optimization time.

Another way of speeding up the algorithm, is by supplying a good initial solution. A simple heuristic

or heuristic model can be used to find a reasonably good robust solution, which can be supplied as

an initial solution. The Robust Flow Model can then be initialised using this solution, to kick-start the

branch-and-bound algorithm with a low incumbent value. This way, nodes in the search tree can be

fathomed more often, decreasing the optimization time.

To use the Robust Flow Model in practice, a simple option to get better performance from the model

is by using a better computer. The computational capabilities of a laptop are limited, using hardware

specifically designed for solving computational problems can speed up the solving process significantly.

Besides this, the Robust Flow Model can be simplified significantly by using a similar approach as

the Benchmark Robust Model. One could first solve the non-robust tail assignment problem, without

considering delay costs, and use the resulting assignment as input for the Robust Flow Model. By

restricting the Robust Flow Model to only assign aircraft of the same subtype as the aircraft assigned by

this non-robust model to the rotations, the problem is split into sub-problems. This will decrease the

search space of the model and speed up the model, at the cost of optimality. But, since the Robust Flow

Model accurately optimizes over the total expected costs, it will still outperform the Benchmark Robust

Model, which uses a heuristic method to quantify robustness.

Finally, it is worth noting that the simulator, as defined in Section 2.4.1 can be used to the advantage

of the user. Several solutions found in the process of solving the Robust Flow Model for varying model

parameters can be saved and evaluated, after which the best solution can be chosen to use in practise.

Note that this is a general tool that can be used to evaluate solutions of any robust tail assignment model,

and is not restricted to the Robust Flow Model.
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A.1. Example Non-Robust Tail Assignment Model

minimize

-A,0
1210 · -A1 ,01

+ 1290 · -A1 ,02
+ 1330 · -A1 ,03

+ 2150 · -A2 ,01
+ 2110 · -A2 ,02

+ 2240 · -A2 ,03

+ 3410 · -A3 ,01
+ 3420 · -A3 ,02

+ 3510 · -A3 ,03

+ 0 · -A4 ,02

+ 2930 · -A5 ,01
+ 2900 · -A5 ,02

+ 3120 · -A5 ,03

+ 2350 · -A6 ,01
+ 2270 · -A6 ,02

+ 2550 · -A6 ,03

+ 1990 · -A7 ,01
+ 2090 · -A7 ,02

+ 2120 · -A7 ,03

subject to -A1 ,01
+ -A1 ,02

+ -A1 ,03
= 1

-A2 ,01
+ -A2 ,02

+ -A2 ,03
= 1

-A3 ,01
+ -A3 ,02

+ -A3 ,03
= 1

-A4 ,02
= 1

-A5 ,01
+ -A5 ,02

+ -A5 ,03
= 1

-A6 ,01
+ -A6 ,02

+ -A6 ,03
= 1

-A7 ,01
+ -A7 ,02

+ -A7 ,03
= 1

-A1 ,01
+ -A2 ,01

≤ 1

-A1 ,02
+ -A2 ,02

≤ 1

-A1 ,01
+ -A3 ,01

≤ 1

-A1 ,02
+ -A3 ,02

≤ 1

-A2 ,01
+ -A3 ,01

≤ 1

-A2 ,02
+ -A3 ,02

≤ 1

-A3 ,02
+ -A4 ,02

≤ 1

-A3 ,01
+ -A5 ,01

≤ 1

-A3 ,02
+ -A5 ,02

≤ 1

-A4 ,02
+ -A5 ,02

≤ 1

-A5 ,01
+ -A6 ,01

≤ 1

-A5 ,02
+ -A6 ,02

≤ 1

-A5 ,01
+ -A7 ,01

≤ 1

-A5 ,02
+ -A7 ,02

≤ 1

-A6 ,01
+ -A7 ,01

≤ 1

-A6 ,02
+ -A7 ,02

≤ 1

-A1 ,03
+ -A2 ,03

≤ 1

-A1 ,03
+ -A3 ,03

≤ 1

-A2 ,03
+ -A3 ,03

≤ 1

-A3 ,03
+ -A5 ,03

≤ 1

-A5 ,03
+ -A6 ,03

≤ 1

-A5 ,03
+ -A7 ,03

≤ 1

-A6 ,03
+ -A7 ,03

≤ 1

-A,0 ∈ {0, 1} A ∈ ℛ , 0 ∈ AA
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A.2. Base of example Robust Flow Model

minimize

-A,0
1210 · -A1 ,01

+ 1290 · -A1 ,02
+ 1330 · -A1 ,03

+ 2150 · -A2 ,01
+ 2110 · -A2 ,02

+ 2240 · -A2 ,03

+ 3410 · -A3 ,01
+ 3420 · -A3 ,02

+ 3510 · -A3 ,03

+ 0 · -A4 ,02

+ 2930 · -A5 ,01
+ 2900 · -A5 ,02

+ 3120 · -A5 ,03

+ 2350 · -A6 ,01
+ 2270 · -A6 ,02

+ 2550 · -A6 ,03

+ 1990 · -A7 ,01
+ 2090 · -A7 ,02

+ 2120 · -A7 ,03

subject to

-A1 ,01
+ -A2 ,01

+ -A3 ,01
≤ 1

-A1 ,02
+ -A2 ,02

+ -A3 ,02
≤ 1

-A1 ,03
+ -A2 ,03

+ -A3 ,03
≤ 1

-A3 ,01
+ -A5 ,01

≤ 1

-A3 ,02
+ -A4 ,02

+ -A5 ,02
≤ 1

-A3 ,03
+ -A5 ,03

≤ 1

-A5 ,01
+ -A6 ,01

+ -A7 ,01
≤ 1

-A5 ,02
+ -A6 ,02

+ -A7 ,02
≤ 1

-A5 ,03
+ -A6 ,03

+ -A7 ,03
≤ 1

?08AA2 ,A4 ,B1 ≥ -A2 ,02
+ -A4 ,02

− 1

?08AA2 ,A5 ,B1 ≥ -A2 ,01
+ -A5 ,01

− 1

?08AA2 ,A5 ,B1 ≥ -A2 ,02
+ -A5 ,02

− 1

?08AA2 ,A5 ,B2 ≥ -A2 ,03
+ -A5 ,03

− 1

?08AA2 ,A6 ,B1 + ?08AA2 ,A4 ,B1 ≥ -A2 ,01
+ -A6 ,01

− 1

?08AA2 ,A6 ,B1 + ?08AA2 ,A4 ,B1 ≥ -A2 ,02
+ -A6 ,02

− 1

?08AA2 ,A6 ,B2 ≥ -A2 ,03
+ -A6 ,03

− 1

?08AA3 ,A6 ,B1 ≥ -A3 ,01
+ -A6 ,01

− 1

?08AA3 ,A6 ,B1 ≥ -A3 ,02
+ -A6 ,02

− 1

?08AA3 ,A6 ,B2 ≥ -A3 ,03
+ -A6 ,03

− 1

?08AA4 ,A6 ,B1 ≥ -A4 ,02
+ -A6 ,02

− 1

?08AA4 ,A7 ,B1 ≥ -A4 ,02
+ -A7 ,02

− 1
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=>$DC%08AA1 ,B1 = -A1 ,01
+ -A1 ,02

=>$DC%08AA1 ,B2 = -A1 ,03

=>$DC%08AA2 ,B1 + ?08AA2 ,A4 ,B1 + ?08AA2 ,A5 ,B1 + ?08AA2 ,A6 ,B1 = -A2 ,01
+ -A2 ,02

=>$DC%08AA2 ,B2 + ?08AA2 ,A5 ,B2 + ?08AA2 ,A6 ,B2 = -A2 ,03

=>$DC%08AA3 ,B1 + ?08AA2 ,A6 ,B1 = -A3 ,01
+ -A3 ,02

=>$DC%08AA3 ,B2 + ?08AA2 ,A6 ,B2 = -A3 ,03

=>$DC%08AA4 ,B1 + ?08AA4 ,A6 ,B1 + ?08AA4 ,A7 ,B1 = -A4 ,02

=>$DC%08AA5 ,B1 = -A5 ,01
+ -A5 ,02

=>$DC%08AA5 ,B2 = -A5 ,03

=>$DC%08AA6 ,B1 = -A6 ,01
+ -A6 ,02

=>$DC%08AA6 ,B2 = -A6 ,03

=>$DC%08AA7 ,B1 = -A7 ,01
+ -A7 ,02

=>$DC%08AA7 ,B2 = -A7 ,03

=>�=2%08AA1 ,B1 = -A1 ,01
+ -A1 ,02

=>�=2%08AA1 ,B2 = -A1 ,03

=>�=2%08AA2 ,B1 = -A2 ,01
+ -A2 ,02

=>�=2%08AA2 ,B2 = -A2 ,03

=>�=2%08AA3 ,B1 = -A3 ,01
+ -A3 ,02

=>�=2%08AA3 ,B2 = -A3 ,03

=>�=2%08AA4 ,B1 + ?08AA2 ,A4 ,B1 = -A4 ,02

=>�=2%08AA5 ,B1 + ?08AA2 ,A5 ,B1 = -A5 ,01
+ -A5 ,02

=>�=2%08AA5 ,B2 + ?08AA2 ,A5 ,B2 = -A5 ,03

=>�=2%08AA6 ,B1 + ?08AA2 ,A6 ,B1 + ?08AA4 ,A6 ,B1 + ?08AA3 ,A6 ,B1 = -A6 ,01
+ -A6 ,02

=>�=2%08AA6 ,B2 + ?08AA2 ,A6 ,B2 + ?08AA3 ,A6 ,B2 = -A6 ,03

=>�=2%08AA7 ,B1 + ?08AA4 ,A7 ,B1 = -A7 ,01
+ -A7 ,02

=>�=2%08AA7 ,B2 = -A7 ,03

-A,0 ∈ {0, 1} ∀A ∈ ℛ , 0 ∈ AA
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A.3. Edges in example Robust Flow Model
A.3.1. Edges between rotations �?A>?

((200, A2 , B1), (205, A4 , B1))
((210, A2 , B1), (210, A4 , B1))
((225, A2 , B1), (225, A4 , B1))
((240, A2 , B1), (240, A4 , B1))
((255, A2 , B1), (255, A4 , B1))
((270, A2 , B1), (270, A4 , B1))
((285, A2 , B1), (285, A4 , B1))
((300, A2 , B1), (300, A4 , B1))
((315, A2 , B1), (315, A4 , B1))
((330, A2 , B1), (330, A4 , B1))
((345, A2 , B1), (345, A4 , B1))
((360, A2 , B1), (360, A4 , B1))
((375, A2 , B1), (375, A4 , B1))
((390, A2 , B1), (390, A4 , B1))
((405, A2 , B1), (405, A4 , B1))
((420, A2 , B1), (420, A4 , B1))
((435, A2 , B1), (435, A4 , B1))
((450, A2 , B1), (450, A4 , B1))
((465, A2 , B1), (465, A4 , B1))

((200, A2 , B1), (210, A5 , B1))
((210, A2 , B1), (210, A5 , B1))
((225, A2 , B1), (225, A5 , B1))
((240, A2 , B1), (240, A5 , B1))
((255, A2 , B1), (255, A5 , B1))
((270, A2 , B1), (270, A5 , B1))
((285, A2 , B1), (285, A5 , B1))
((300, A2 , B1), (300, A5 , B1))
((315, A2 , B1), (315, A5 , B1))
((330, A2 , B1), (330, A5 , B1))
((345, A2 , B1), (210, A5 , B1))
((360, A2 , B1), (210, A5 , B1))
((375, A2 , B1), (210, A5 , B1))
((390, A2 , B1), (210, A5 , B1))
((405, A2 , B1), (210, A5 , B1))
((420, A2 , B1), (210, A5 , B1))
((435, A2 , B1), (210, A5 , B1))
((450, A2 , B1), (210, A5 , B1))
((465, A2 , B1), (210, A5 , B1))

((205, A2 , B2), (210, A5 , B2))
((210, A2 , B2), (210, A5 , B2))
((225, A2 , B2), (225, A5 , B2))
((240, A2 , B2), (240, A5 , B2))
((255, A2 , B2), (255, A5 , B2))
((270, A2 , B2), (270, A5 , B2))
((285, A2 , B2), (285, A5 , B2))
((300, A2 , B2), (300, A5 , B2))
((315, A2 , B2), (315, A5 , B2))
((330, A2 , B2), (330, A5 , B2))
((345, A2 , B2), (210, A5 , B2))
((360, A2 , B2), (210, A5 , B2))
((375, A2 , B2), (210, A5 , B2))
((390, A2 , B2), (210, A5 , B2))
((405, A2 , B2), (210, A5 , B2))
((420, A2 , B2), (210, A5 , B2))

((200, A2 , B1), (290, A6 , B1))
((210, A2 , B1), (290, A6 , B1))
((225, A2 , B1), (290, A6 , B1))
((240, A2 , B1), (290, A6 , B1))
((255, A2 , B1), (290, A6 , B1))
((270, A2 , B1), (290, A6 , B1))
((285, A2 , B1), (290, A6 , B1))
((300, A2 , B1), (300, A6 , B1))
((315, A2 , B1), (315, A6 , B1))
((330, A2 , B1), (330, A6 , B1))
((345, A2 , B1), (345, A6 , B1))
((360, A2 , B1), (360, A6 , B1))
((375, A2 , B1), (375, A6 , B1))
((390, A2 , B1), (390, A6 , B1))
((405, A2 , B1), (405, A6 , B1))
((420, A2 , B1), (290, A6 , B1))
((435, A2 , B1), (290, A6 , B1))
((450, A2 , B1), (290, A6 , B1))
((465, A2 , B1), (290, A6 , B1))

((205, A2 , B2), (290, A6 , B2))
((210, A2 , B2), (290, A6 , B2))
((225, A2 , B2), (290, A6 , B2))
((240, A2 , B2), (290, A6 , B2))
((255, A2 , B2), (290, A6 , B2))
((270, A2 , B2), (290, A6 , B2))
((285, A2 , B2), (290, A6 , B2))
((300, A2 , B2), (300, A6 , B2))
((315, A2 , B2), (315, A6 , B2))
((330, A2 , B2), (330, A6 , B2))
((345, A2 , B2), (345, A6 , B2))
((360, A2 , B2), (360, A6 , B2))
((375, A2 , B2), (375, A6 , B2))
((390, A2 , B2), (390, A6 , B2))
((405, A2 , B2), (405, A6 , B2))
((420, A2 , B2), (290, A6 , B2))

((265, A3 , B1), (290, A6 , B1))
((270, A3 , B1), (290, A6 , B1))
((285, A3 , B1), (290, A6 , B1))
((300, A3 , B1), (300, A6 , B1))
((315, A3 , B1), (315, A6 , B1))
((330, A3 , B1), (330, A6 , B1))
((345, A3 , B1), (345, A6 , B1))
((360, A3 , B1), (360, A6 , B1))
((375, A3 , B1), (375, A6 , B1))
((390, A3 , B1), (390, A6 , B1))
((405, A3 , B1), (405, A6 , B1))
((420, A3 , B1), (290, A6 , B1))
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((270, A3 , B2), (290, A6 , B2))
((285, A3 , B2), (290, A6 , B2))
((300, A3 , B2), (300, A6 , B2))
((315, A3 , B2), (315, A6 , B2))
((330, A3 , B2), (330, A6 , B2))
((345, A3 , B2), (345, A6 , B2))
((360, A3 , B2), (360, A6 , B2))
((375, A3 , B2), (375, A6 , B2))
((390, A3 , B2), (390, A6 , B2))
((405, A3 , B2), (405, A6 , B2))
((420, A3 , B2), (290, A6 , B2))

((275, A4 , B1), (290, A6 , B1))
((285, A4 , B1), (290, A6 , B1))
((300, A4 , B1), (300, A6 , B1))
((315, A4 , B1), (315, A6 , B1))
((330, A4 , B1), (330, A6 , B1))
((345, A4 , B1), (345, A6 , B1))
((360, A4 , B1), (360, A6 , B1))
((375, A4 , B1), (375, A6 , B1))
((390, A4 , B1), (390, A6 , B1))
((405, A4 , B1), (405, A6 , B1))
((420, A4 , B1), (290, A6 , B1))
((435, A4 , B1), (290, A6 , B1))
((450, A4 , B1), (290, A6 , B1))
((465, A4 , B1), (290, A6 , B1))
((480, A4 , B1), (290, A6 , B1))

((275, A4 , B1), (350, A7 , B1))
((285, A4 , B1), (350, A7 , B1))
((300, A4 , B1), (350, A7 , B1))
((315, A4 , B1), (350, A7 , B1))
((330, A4 , B1), (350, A7 , B1))
((345, A4 , B1), (350, A7 , B1))
((360, A4 , B1), (360, A7 , B1))
((375, A4 , B1), (375, A7 , B1))
((390, A4 , B1), (390, A7 , B1))
((405, A4 , B1), (405, A7 , B1))
((420, A4 , B1), (420, A7 , B1))
((435, A4 , B1), (435, A7 , B1))
((450, A4 , B1), (450, A7 , B1))
((465, A4 , B1), (465, A7 , B1))
((480, A4 , B1), (350, A7 , B1))

A.3.2. Edges within rotations �A>C

((0, A1 , B1), (150, A1 , B1))
((0, A1 , B2), (155, A1 , B2))

((5, A2 , B1), (200, A2 , B1))
((5, A2 , B1), (210, A2 , B1))
((5, A2 , B1), (225, A2 , B1))
((5, A2 , B1), (240, A2 , B1))
((5, A2 , B1), (255, A2 , B1))
((5, A2 , B1), (270, A2 , B1))
((5, A2 , B1), (285, A2 , B1))
((5, A2 , B1), (300, A2 , B1))
((5, A2 , B1), (315, A2 , B1))
((5, A2 , B1), (330, A2 , B1))
((5, A2 , B1), (345, A2 , B1))
((5, A2 , B1), (360, A2 , B1))
((5, A2 , B1), (375, A2 , B1))
((5, A2 , B1), (390, A2 , B1))

((5, A2 , B2), (205, A2 , B2))
((5, A2 , B2), (210, A2 , B2))
((5, A2 , B2), (225, A2 , B2))
((5, A2 , B2), (240, A2 , B2))
((5, A2 , B2), (255, A2 , B2))
((5, A2 , B2), (270, A2 , B2))
((5, A2 , B2), (285, A2 , B2))
((5, A2 , B2), (300, A2 , B2))
((5, A2 , B2), (315, A2 , B2))
((5, A2 , B2), (330, A2 , B2))
((5, A2 , B2), (345, A2 , B2))
((5, A2 , B2), (360, A2 , B2))
((5, A2 , B2), (375, A2 , B2))
((5, A2 , B2), (390, A2 , B2))
((5, A2 , B2), (405, A2 , B2))

((10, A3 , B1), (265, A3 , B1))
((10, A3 , B1), (270, A3 , B1))
((10, A3 , B1), (285, A3 , B1))
((10, A3 , B1), (300, A3 , B1))
((10, A3 , B1), (315, A3 , B1))
((10, A3 , B1), (330, A3 , B1))
((10, A3 , B1), (345, A3 , B1))

((10, A3 , B2), (270, A3 , B2))
((10, A3 , B2), (285, A3 , B2))
((10, A3 , B2), (300, A3 , B2))
((10, A3 , B2), (315, A3 , B2))
((10, A3 , B2), (330, A3 , B2))
((10, A3 , B2), (345, A3 , B2))
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((205, A4 , B1), (275, A4 , B1))
((210, A4 , B1), (285, A4 , B1))
((225, A4 , B1), (285, A4 , B1))
((225, A4 , B1), (300, A4 , B1))
((240, A4 , B1), (315, A4 , B1))
((240, A4 , B1), (300, A4 , B1))
((255, A4 , B1), (330, A4 , B1))
((255, A4 , B1), (315, A4 , B1))
((270, A4 , B1), (330, A4 , B1))
((270, A4 , B1), (345, A4 , B1))
((285, A4 , B1), (345, A4 , B1))
((285, A4 , B1), (360, A4 , B1))
((300, A4 , B1), (360, A4 , B1))
((300, A4 , B1), (375, A4 , B1))
((315, A4 , B1), (375, A4 , B1))
((315, A4 , B1), (390, A4 , B1))
((330, A4 , B1), (405, A4 , B1))
((330, A4 , B1), (390, A4 , B1))
((345, A4 , B1), (420, A4 , B1))
((345, A4 , B1), (405, A4 , B1))
((360, A4 , B1), (420, A4 , B1))
((360, A4 , B1), (435, A4 , B1))
((375, A4 , B1), (450, A4 , B1))
((375, A4 , B1), (435, A4 , B1))
((390, A4 , B1), (465, A4 , B1))
((390, A4 , B1), (450, A4 , B1))
((405, A4 , B1), (465, A4 , B1))
((405, A4 , B1), (480, A4 , B1))
((420, A4 , B1), (480, A4 , B1))
((435, A4 , B1), (480, A4 , B1))
((450, A4 , B1), (480, A4 , B1))
((465, A4 , B1), (480, A4 , B1))

((210, A5 , B1), (440, A5 , B1))
((225, A5 , B1), (440, A5 , B1))
((240, A5 , B1), (440, A5 , B1))
((255, A5 , B1), (440, A5 , B1))
((270, A5 , B1), (440, A5 , B1))
((285, A5 , B1), (440, A5 , B1))
((300, A5 , B1), (440, A5 , B1))
((315, A5 , B1), (440, A5 , B1))
((330, A5 , B1), (440, A5 , B1))

((210, A5 , B2), (445, A5 , B2))
((225, A5 , B2), (445, A5 , B2))
((240, A5 , B2), (445, A5 , B2))
((255, A5 , B2), (445, A5 , B2))
((270, A5 , B2), (445, A5 , B2))
((285, A5 , B2), (445, A5 , B2))
((300, A5 , B2), (445, A5 , B2))
((315, A5 , B2), (445, A5 , B2))
((330, A5 , B2), (445, A5 , B2))

((290, A6 , B1), (505, A6 , B1))
((300, A6 , B1), (505, A6 , B1))
((315, A6 , B1), (505, A6 , B1))
((330, A6 , B1), (505, A6 , B1))
((345, A6 , B1), (505, A6 , B1))
((360, A6 , B1), (505, A6 , B1))
((375, A6 , B1), (505, A6 , B1))
((390, A6 , B1), (505, A6 , B1))
((405, A6 , B1), (505, A6 , B1))

((290, A6 , B2), (510, A6 , B2))
((300, A6 , B2), (510, A6 , B2))
((315, A6 , B2), (510, A6 , B2))
((330, A6 , B2), (510, A6 , B2))
((345, A6 , B2), (510, A6 , B2))
((360, A6 , B2), (510, A6 , B2))
((375, A6 , B2), (510, A6 , B2))
((390, A6 , B2), (510, A6 , B2))
((405, A6 , B2), (510, A6 , B2))

((350, A7 , B1), (520, A7 , B1))
((360, A7 , B1), (520, A7 , B1))
((375, A7 , B1), (520, A7 , B1))
((390, A7 , B1), (520, A7 , B1))
((405, A7 , B1), (520, A7 , B1))
((420, A7 , B1), (520, A7 , B1))
((435, A7 , B1), (520, A7 , B1))
((450, A7 , B1), (520, A7 , B1))
((465, A7 , B1), (520, A7 , B1))
((350, A7 , B2), (525, A7 , B2))
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A.4. Experiment results
A.4.1. Run-time experiments
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0.250 0.250 0 5 0.025 57 24 26 133 24.946 5.121 2.202 0.072

0.250 0.250 0 5 0.050 57 24 26 114 24.441 4.841 1.617 1.311

0.250 0.250 0 5 0.100 57 24 26 74 20.395 3.421 0.860 0.036

0.250 0.250 0 10 0.025 57 24 26 139 13.844 1.576 0.625 0.449

0.250 0.250 0 10 0.050 57 24 26 114 14.819 1.505 0.571 0.023

0.250 0.250 0 10 0.100 57 24 26 69 12.075 1.023 0.510 0.024

0.250 0.250 0 20 0.025 57 24 26 143 9.203 0.607 0.326 0.021

0.250 0.250 0 20 0.050 57 24 26 116 10.150 0.567 0.307 0.019

0.250 0.250 0 20 0.100 57 24 26 70 8.350 0.475 0.302 0.010

0.250 0.250 0.500 5 0.025 57 24 26 158 35.847 7.150 2.648 0.087

0.250 0.250 0.500 5 0.050 57 24 26 134 33.239 8.193 2.624 0.064

0.250 0.250 0.500 5 0.100 57 24 26 111 32.271 5.696 1.955 0.049

0.250 0.250 0.500 10 0.025 57 24 26 158 20.836 2.186 0.820 0.027

0.250 0.250 0.500 10 0.050 57 24 26 133 18.868 1.958 0.617 0.020

0.250 0.250 0.500 10 0.100 57 24 26 111 17.826 1.578 0.802 0.021

0.250 0.250 0.500 20 0.025 57 24 26 156 11.440 0.739 0.365 0.194

0.250 0.250 0.500 20 0.050 57 24 26 130 11.319 0.665 0.341 0.015

0.250 0.250 0.500 20 0.100 57 24 26 111 11.117 0.617 0.410 0.013

0.250 0.250 1 5 0.025 57 24 26 190 46.256 9.553 6.425 5.708

0.250 0.250 1 5 0.050 57 24 26 168 46.340 8.457 4.664 0.093

0.250 0.250 1 5 0.100 57 24 26 142 43.818 7.007 3.060 0.078

0.250 0.250 1 10 0.025 57 24 26 188 25.194 2.531 1.074 0.926

0.250 0.250 1 10 0.050 57 24 26 168 25.237 2.431 0.935 0.755

0.250 0.250 1 10 0.100 57 24 26 141 24.651 2.036 0.634 0.487

0.250 0.250 1 20 0.025 57 24 26 190 15.331 0.904 0.522 0.018

0.250 0.250 1 20 0.050 57 24 26 165 14.666 0.858 0.418 0.015

0.250 0.250 1 20 0.100 57 24 26 136 13.594 0.705 0.335 0.016

0.250 0.500 0 5 0.025 119 41 51 524 47.836 10.612 6.994 2.616

0.250 0.500 0 5 0.050 119 41 51 459 56.895 10.048 5.150 2.022

0.250 0.500 0 5 0.100 119 41 51 308 47.004 7.848 2.810 0.928

0.250 0.500 0 10 0.025 119 41 51 531 28.437 3.572 3.144 1.028

0.250 0.500 0 10 0.050 119 41 51 464 36.704 3.619 3.345 0.987

0.250 0.500 0 10 0.100 119 41 51 309 30.748 3.148 2.327 0.040

0.250 0.500 0 20 0.025 119 41 51 540 21.610 1.706 2.445 0.330

0.250 0.500 0 20 0.050 119 41 51 450 18.709 1.451 1.619 0.212

0.250 0.500 0 20 0.100 119 41 51 319 18.921 1.456 1.311 0.164

0.250 0.500 0.500 5 0.025 119 41 51 721 82.778 18.390 23.156 9.637

0.250 0.500 0.500 5 0.050 119 41 51 670 85.701 17.747 32.370 19.228

0.250 0.500 0.500 5 0.100 119 41 51 592 88.038 16.989 18.177 4.639

0.250 0.500 0.500 10 0.025 119 41 51 730 49.613 6.631 11.839 5.846

0.250 0.500 0.500 10 0.050 119 41 51 678 41.782 5.211 9.977 3.935

0.250 0.500 0.500 10 0.100 119 41 51 595 40.370 4.570 6.845 2.576

0.250 0.500 0.500 20 0.025 119 41 51 724 23.043 2.217 2.873 1.256

0.250 0.500 0.500 20 0.050 119 41 51 676 22.984 2.069 3.527 1.065

0.250 0.500 0.500 20 0.100 119 41 51 585 22.774 1.844 3.126 0.529

0.250 0.500 1 5 0.025 119 41 51 811 104.707 24.021 26.129 7.332

0.250 0.500 1 5 0.050 119 41 51 765 102.008 21.330 18.900 8.603

0.250 0.500 1 5 0.100 119 41 51 682 103.193 17.256 20.275 7.944

0.250 0.500 1 10 0.025 119 41 51 815 54.085 7.372 8.160 2.706

0.250 0.500 1 10 0.050 119 41 51 765 58.120 6.642 6.538 1.936

0.250 0.500 1 10 0.100 119 41 51 685 49.922 5.124 5.697 1.756
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0.250 0.500 1 20 0.025 119 41 51 817 26.165 2.433 2.483 1.024

0.250 0.500 1 20 0.050 119 41 51 769 26.405 2.257 2.631 0.877

0.250 0.500 1 20 0.100 119 41 51 701 26.471 2.051 2.956 0.898

0.250 1 0 5 0.025 226 92 101 2681 139.636 35.569 194.503 118.839

0.250 1 0 5 0.050 226 92 101 1970 136.638 30.308 87.308 52.954

0.250 1 0 5 0.100 226 92 101 1270 112.247 23.497 18.284 13.728

0.250 1 0 10 0.025 226 92 101 2658 71.037 13.602 51.923 21.141

0.250 1 0 10 0.050 226 92 101 2011 69.045 11.158 33.372 11.099

0.250 1 0 10 0.100 226 92 101 1291 61.942 8.423 8.620 3.519

0.250 1 0 20 0.025 226 92 101 2655 44.447 7.127 40.103 6.505

0.250 1 0 20 0.050 226 92 101 2010 43.720 5.725 13.875 3.695

0.250 1 0 20 0.100 226 92 101 1290 39.733 4.238 7.695 2.269

0.250 1 0.500 5 0.025 226 92 101 3391 175.090 46.220 255.560 136.984

0.250 1 0.500 5 0.050 226 92 101 2899 174.060 41.579 180.909 93.622

0.250 1 0.500 5 0.100 226 92 101 2355 171.385 35.823 103.448 65.914

0.250 1 0.500 10 0.025 226 92 101 3427 94.568 17.827 74.356 25.544

0.250 1 0.500 10 0.050 226 92 101 2898 94.759 15.755 43.640 21.970

0.250 1 0.500 10 0.100 226 92 101 2349 94.180 13.212 36.884 14.952

0.250 1 0.500 20 0.025 226 92 101 3420 54.415 9.464 32.050 13.662

0.250 1 0.500 20 0.050 226 92 101 2896 54.688 8.357 21.269 7.412

0.250 1 0.500 20 0.100 226 92 101 2348 54.402 6.815 14.532 10.117

0.250 1 1 5 0.025 226 92 101 4292 210.936 58.451 428.244 205.077

0.250 1 1 5 0.050 226 92 101 3856 210.267 53.325 355.699 169.254

0.250 1 1 5 0.100 226 92 101 3260 210.480 47.401 153.776 93.134

0.250 1 1 10 0.025 226 92 101 4311 105.151 23.353 99.208 27.150

0.250 1 1 10 0.050 226 92 101 3848 114.719 20.493 76.155 22.332

0.250 1 1 10 0.100 226 92 101 3267 114.521 18.082 32.119 14.747

0.250 1 1 20 0.025 226 92 101 4294 66.610 12.434 45.975 7.273

0.250 1 1 20 0.050 226 92 101 3855 66.742 11.018 41.628 6.160

0.250 1 1 20 0.100 226 92 101 3254 61.849 9.524 17.368 7.277

0.500 0.250 0 5 0.025 114 41 26 536 53.058 11.363 4.963 2.268

0.500 0.250 0 5 0.050 114 41 26 428 57.284 10.075 4.524 1.630

0.500 0.250 0 5 0.100 114 41 26 306 47.501 7.176 3.144 0.817

0.500 0.250 0 10 0.025 114 41 26 543 31.699 3.560 3.120 1.038

0.500 0.250 0 10 0.050 114 41 26 435 31.064 3.345 2.492 0.872

0.500 0.250 0 10 0.100 114 41 26 321 31.111 2.955 1.573 0.371

0.500 0.250 0 20 0.025 114 41 26 547 18.737 1.429 2.287 0.320

0.500 0.250 0 20 0.050 114 41 26 432 18.468 1.182 1.410 0.235

0.500 0.250 0 20 0.100 114 41 26 329 17.156 1.027 1.061 0.146

0.500 0.250 0.500 5 0.025 114 41 26 694 78.675 15.397 12.327 3.728

0.500 0.250 0.500 5 0.050 114 41 26 592 78.617 13.889 8.870 1.785

0.500 0.250 0.500 5 0.100 114 41 26 474 75.024 11.778 3.018 2.085

0.500 0.250 0.500 10 0.025 114 41 26 690 42.385 4.697 5.441 1.239

0.500 0.250 0.500 10 0.050 114 41 26 601 42.156 4.343 5.724 1.155

0.500 0.250 0.500 10 0.100 114 41 26 489 40.261 3.587 3.298 0.601

0.500 0.250 0.500 20 0.025 114 41 26 704 24.996 1.771 3.771 0.765

0.500 0.250 0.500 20 0.050 114 41 26 606 24.795 1.581 2.062 0.664

0.500 0.250 0.500 20 0.100 114 41 26 490 24.227 1.374 1.378 0.252

0.500 0.250 1 5 0.025 114 41 26 773 81.479 17.755 28.785 4.969

0.500 0.250 1 5 0.050 114 41 26 649 80.384 16.022 17.049 3.165

0.500 0.250 1 5 0.100 114 41 26 510 73.678 14.173 9.477 1.958
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0.500 0.250 1 10 0.025 114 41 26 783 40.477 5.531 10.948 1.584

0.500 0.250 1 10 0.050 114 41 26 666 40.093 4.865 7.614 1.317

0.500 0.250 1 10 0.100 114 41 26 521 40.454 4.282 6.026 0.685

0.500 0.250 1 20 0.025 114 41 26 785 23.740 2.151 7.005 0.915

0.500 0.250 1 20 0.050 114 41 26 670 25.959 1.833 5.004 0.710

0.500 0.250 1 20 0.100 114 41 26 525 25.868 1.600 2.787 0.589

0.500 0.500 0 5 0.025 230 80 51 1949 127.100 31.121 124.720 7.610

0.500 0.500 0 5 0.050 230 80 51 1556 126.921 26.750 65.678 7.169

0.500 0.500 0 5 0.100 230 80 51 1032 119.681 22.252 19.595 3.777

0.500 0.500 0 10 0.025 230 80 51 1977 69.436 10.088 65.028 3.387

0.500 0.500 0 10 0.050 230 80 51 1589 69.550 8.878 48.255 3.048

0.500 0.500 0 10 0.100 230 80 51 1046 65.553 7.021 8.310 2.413

0.500 0.500 0 20 0.025 230 80 51 1953 39.918 4.288 44.388 1.318

0.500 0.500 0 20 0.050 230 80 51 1558 39.722 3.691 24.329 2.394

0.500 0.500 0 20 0.100 230 80 51 1068 38.884 3.005 7.256 0.414

0.500 0.500 0.500 5 0.025 230 80 51 2510 161.798 39.499 1706.891 72.721

0.500 0.500 0.500 5 0.050 230 80 51 2185 160.475 35.198 1284.845 36.624

0.500 0.500 0.500 5 0.100 230 80 51 1814 155.976 31.250 479.195 23.932

0.500 0.500 0.500 10 0.025 230 80 51 2544 87.675 13.811 969.364 13.166

0.500 0.500 0.500 10 0.050 230 80 51 2201 88.620 12.076 426.966 9.946

0.500 0.500 0.500 10 0.100 230 80 51 1872 84.970 10.436 244.186 7.805

0.500 0.500 0.500 20 0.025 230 80 51 2512 50.287 5.811 314.306 2.852

0.500 0.500 0.500 20 0.050 230 80 51 2174 50.219 5.321 135.490 5.816

0.500 0.500 0.500 20 0.100 230 80 51 1845 48.947 4.353 196.712 3.933

0.500 0.500 1 5 0.025 230 80 51 3067 176.952 47.334 3600.508 129.335

0.500 0.500 1 5 0.050 230 80 51 2673 177.428 42.657 3600.388 81.423

0.500 0.500 1 5 0.100 230 80 51 2262 177.049 37.853 1376.143 33.155

0.500 0.500 1 10 0.025 230 80 51 3074 95.900 16.268 3600.183 15.715

0.500 0.500 1 10 0.050 230 80 51 2670 96.141 14.307 3600.182 6.263

0.500 0.500 1 10 0.100 230 80 51 2301 96.352 12.860 627.688 12.749

0.500 0.500 1 20 0.025 230 80 51 3046 56.050 7.096 1307.878 5.579

0.500 0.500 1 20 0.050 230 80 51 2687 55.363 6.478 695.974 8.188

0.500 0.500 1 20 0.100 230 80 51 2285 55.293 5.415 399.683 6.667

0.500 1 0 5 0.025 451 175 101 8607 242.263 80.985 1041.284 301.534

0.500 1 0 5 0.050 451 175 101 6663 228.424 65.463 532.427 148.864

0.500 1 0 5 0.100 451 175 101 4527 218.287 52.124 167.188 56.842

0.500 1 0 10 0.025 451 175 101 8659 136.611 35.070 387.015 73.812

0.500 1 0 10 0.050 451 175 101 6777 136.681 28.580 225.794 44.946

0.500 1 0 10 0.100 451 175 101 4581 131.251 21.276 64.020 18.978

0.500 1 0 20 0.025 451 175 101 8673 80.370 22.181 116.752 21.563

0.500 1 0 20 0.050 451 175 101 6780 79.831 17.345 77.821 13.242

0.500 1 0 20 0.100 451 175 101 4620 77.378 12.275 31.965 6.961

0.500 1 0.500 5 0.025 451 175 101 12528 322.513 118.525 3601.105 815.600

0.500 1 0.500 5 0.050 451 175 101 10862 320.041 103.856 3232.693 569.751

0.500 1 0.500 5 0.100 451 175 101 8937 318.093 87.953 1533.478 368.890

0.500 1 0.500 10 0.025 451 175 101 12589 175.660 55.164 1629.842 105.437

0.500 1 0.500 10 0.050 451 175 101 10931 175.678 47.293 2083.873 83.514

0.500 1 0.500 10 0.100 451 175 101 8997 174.078 39.101 505.813 70.443

0.500 1 0.500 20 0.025 451 175 101 12540 102.319 35.259 988.595 29.635

0.500 1 0.500 20 0.050 451 175 101 10895 94.220 29.815 332.309 23.979

0.500 1 0.500 20 0.100 451 175 101 8910 101.497 23.781 280.253 17.298
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0.500 1 1 5 0.025 451 175 101 14507 367.036 142.298 3601.497 1444.277

0.500 1 1 5 0.050 451 175 101 12749 366.982 125.830 3601.232 1049.609

0.500 1 1 5 0.100 451 175 101 10993 366.087 108.100 3600.956 628.300

0.500 1 1 10 0.025 451 175 101 14572 199.586 67.927 3600.979 196.112

0.500 1 1 10 0.050 451 175 101 12828 200.769 57.872 3125.061 138.755

0.500 1 1 10 0.100 451 175 101 11069 199.156 49.158 3600.668 84.892

0.500 1 1 20 0.025 451 175 101 14585 116.676 42.559 3602.123 44.128

0.500 1 1 20 0.050 451 175 101 12842 120.593 37.047 2166.988 34.082

0.500 1 1 20 0.100 451 175 101 11038 122.543 32.309 1001.672 23.801

1 0.250 0 5 0.025 258 97 26 3412 134.180 35.764 3602.005 39.883

1 0.250 0 5 0.050 258 97 26 2650 143.806 31.585 3600.345 54.961

1 0.250 0 5 0.100 258 97 26 1785 139.309 25.890 3600.298 23.758

1 0.250 0 10 0.025 258 97 26 3441 79.046 12.032 3600.195 13.478

1 0.250 0 10 0.050 258 97 26 2714 78.104 10.234 3600.191 8.902

1 0.250 0 10 0.100 258 97 26 1790 76.291 8.159 3600.179 9.560

1 0.250 0 20 0.025 258 97 26 3450 45.364 5.346 3600.162 9.320

1 0.250 0 20 0.050 258 97 26 2652 45.224 4.325 3600.099 7.226

1 0.250 0 20 0.100 258 97 26 1865 44.603 3.524 1969.120 4.154

1 0.250 0.500 5 0.025 258 97 26 4253 177.272 45.704 3600.448 38.065

1 0.250 0.500 5 0.050 258 97 26 3623 176.830 40.294 3600.418 15.906

1 0.250 0.500 5 0.100 258 97 26 2928 175.665 34.800 3600.479 35.181

1 0.250 0.500 10 0.025 258 97 26 4258 88.449 15.814 3600.256 30.340

1 0.250 0.500 10 0.050 258 97 26 3658 95.296 14.026 3600.247 18.854

1 0.250 0.500 10 0.100 258 97 26 2953 94.978 11.695 3600.209 17.991

1 0.250 0.500 20 0.025 258 97 26 4275 55.169 7.091 3600.179 9.234

1 0.250 0.500 20 0.050 258 97 26 3615 55.216 5.949 3600.133 9.575

1 0.250 0.500 20 0.100 258 97 26 2995 55.064 5.060 3600.151 9.192

1 0.250 1 5 0.025 258 97 26 5437 209.013 59.172 3600.396 80.364

1 0.250 1 5 0.050 258 97 26 4822 192.498 53.293 3600.447 114.589

1 0.250 1 5 0.100 258 97 26 4140 196.116 47.070 3600.421 138.756

1 0.250 1 10 0.025 258 97 26 5476 104.552 21.398 3600.254 35.402

1 0.250 1 10 0.050 258 97 26 4826 113.149 19.775 3600.277 75.410

1 0.250 1 10 0.100 258 97 26 4147 113.507 16.423 3600.234 134.858

1 0.250 1 20 0.025 258 97 26 5441 65.401 9.586 3600.218 18.508

1 0.250 1 20 0.050 258 97 26 4814 65.556 8.254 3600.200 16.492

1 0.250 1 20 0.100 258 97 26 4135 65.529 7.026 3600.135 9.767

1 0.500 0 5 0.025 470 184 51 10487 261.848 81.146 3601.013 580.381

1 0.500 0 5 0.050 470 184 51 8479 282.683 68.887 3600.686 359.563

1 0.500 0 5 0.100 470 184 51 5841 275.662 55.321 3600.588 512.314

1 0.500 0 10 0.025 470 184 51 10630 153.558 33.419 3600.269 139.161

1 0.500 0 10 0.050 470 184 51 8581 154.057 27.763 3600.361 94.451

1 0.500 0 10 0.100 470 184 51 5954 148.889 21.004 3600.285 45.133

1 0.500 0 20 0.025 470 184 51 10645 89.228 18.902 3600.361 45.825

1 0.500 0 20 0.050 470 184 51 8541 89.459 14.879 3600.312 28.820

1 0.500 0 20 0.100 470 184 51 5957 87.863 10.895 3600.192 14.857

1 0.500 0.500 5 0.025 470 184 51 13666 337.915 115.303 3600.725 1900.757

1 0.500 0.500 5 0.050 470 184 51 11823 323.073 100.590 3600.625 1376.361

1 0.500 0.500 5 0.100 470 184 51 9808 319.097 86.648 3600.597 494.167

1 0.500 0.500 10 0.025 470 184 51 13678 175.604 48.339 3600.360 509.010

1 0.500 0.500 10 0.050 470 184 51 11874 175.825 41.851 3600.285 177.697

1 0.500 0.500 10 0.100 470 184 51 9845 174.215 35.296 3600.623 115.733
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1 0.500 0.500 20 0.025 470 184 51 13645 105.536 27.545 3600.185 85.709

1 0.500 0.500 20 0.050 470 184 51 11848 102.637 23.310 3600.487 54.419

1 0.500 0.500 20 0.100 470 184 51 9883 114.460 19.306 3600.302 35.795

1 0.500 1 5 0.025 470 184 51 16201 381.735 143.361 3600.876 2881.946

1 0.500 1 5 0.050 470 184 51 14579 402.769 127.847 3600.756 2150.661

1 0.500 1 5 0.100 470 184 51 12693 397.189 110.536 3600.678 1635.734

1 0.500 1 10 0.025 470 184 51 16239 217.061 61.028 3600.400 882.221

1 0.500 1 10 0.050 470 184 51 14629 217.144 54.081 3600.393 615.937

1 0.500 1 10 0.100 470 184 51 12705 218.168 46.084 3600.308 197.584

1 0.500 1 20 0.025 470 184 51 16316 127.778 34.701 3600.222 246.764

1 0.500 1 20 0.050 470 184 51 14624 127.458 30.133 3600.232 91.208

1 0.500 1 20 0.100 470 184 51 12702 127.282 25.298 3600.179 58.688

1 1 0 5 0.025 902 355 101 40152 530.286 269.173 3602.028 None

1 1 0 5 0.050 902 355 101 31703 505.926 215.259 3601.225 3514.667

1 1 0 5 0.100 902 355 101 21508 495.680 157.608 3601.772 581.162

1 1 0 10 0.025 902 355 101 40259 276.782 163.410 3600.801 749.811

1 1 0 10 0.050 902 355 101 32080 276.890 123.339 3600.733 338.219

1 1 0 10 0.100 902 355 101 21787 278.045 82.471 3600.490 133.372

1 1 0 20 0.025 902 355 101 40053 165.198 125.535 3600.551 269.684

1 1 0 20 0.050 902 355 101 32185 165.439 93.431 3600.483 115.592

1 1 0 20 0.100 902 355 101 22316 163.584 60.816 3601.237 64.312

1 1 0.500 5 0.025 902 355 101 52271 658.974 408.085 3606.961 None

1 1 0.500 5 0.050 902 355 101 45571 653.635 348.207 3601.602 None

1 1 0.500 5 0.100 902 355 101 38133 637.966 282.982 3601.606 2392.121

1 1 0.500 10 0.025 902 355 101 52517 352.722 247.166 3607.400 2324.515

1 1 0.500 10 0.050 902 355 101 45827 354.084 208.695 3600.951 1133.626

1 1 0.500 10 0.100 902 355 101 38497 359.672 170.414 3601.151 619.397

1 1 0.500 20 0.025 902 355 101 52311 207.123 190.681 3600.816 701.954

1 1 0.500 20 0.050 902 355 101 45685 206.932 159.154 3600.656 347.843

1 1 0.500 20 0.100 902 355 101 38498 205.994 129.282 3600.576 196.509

1 1 1 5 0.025 902 355 101 63768 721.717 535.770 3609.536 None

1 1 1 5 0.050 902 355 101 56228 712.856 455.418 3605.596 None

1 1 1 5 0.100 902 355 101 48548 717.290 385.588 3603.948 None

1 1 1 10 0.025 902 355 101 64197 391.477 330.976 3601.590 3318.057

1 1 1 10 0.050 902 355 101 56380 392.411 277.367 3602.242 2181.179

1 1 1 10 0.100 902 355 101 48661 391.167 228.595 3601.055 1253.526

1 1 1 20 0.025 902 355 101 64004 233.382 258.936 3600.992 1033.265

1 1 1 20 0.050 902 355 101 56360 231.545 211.919 3600.890 530.310

1 1 1 20 0.100 902 355 101 48513 231.501 173.151 3601.228 273.765
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A.4.2. Performance experiments
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1 1 0 10 0.050 27329 0.019 0.982 0.977

1 1 0 10 0.100 19936 0.008 0.973 0.951

1 1 0 10 0.200 10966 0.002 0.971 0.903

1 1 0 10 0.350 3963 0.000 0.974 0.861

1 1 0 10 0.500 654 0.000 0.977 0.831

1 1 0 10 0.650 0 0.000 0.976 0.840

1 1 0 20 0.050 27438 0.018 0.980 0.982

1 1 0 20 0.100 19781 0.006 0.971 0.952

1 1 0 20 0.200 11154 0.001 0.971 0.899

1 1 0 20 0.350 4313 0.000 0.974 0.859

1 1 0 20 0.500 963 0.000 0.977 0.835

1 1 0 20 0.650 0 0.000 0.976 0.840

1 1 0 40 0.050 26866 0.011 0.973 0.983

1 1 0 40 0.100 19837 0.006 0.972 0.951

1 1 0 40 0.200 11081 0.002 0.971 0.908

1 1 0 40 0.350 4510 0.000 0.974 0.862

1 1 0 40 0.500 961 0.000 0.977 0.838

1 1 0 40 0.650 106 0.000 0.977 0.834

1 1 0 60 0.050 27327 0.010 0.972 0.990

1 1 0 60 0.100 19815 0.006 0.971 0.959

1 1 0 60 0.200 11619 0.002 0.971 0.904

1 1 0 60 0.350 5545 0.000 0.974 0.864

1 1 0 60 0.500 1177 0.000 0.977 0.834

1 1 0 60 0.650 32 0.000 0.977 0.829

1 1 0 90 0.050 25384 0.011 0.971 1.005

1 1 0 90 0.100 18875 0.008 0.971 0.978

1 1 0 90 0.200 10405 0.003 0.972 0.917

1 1 0 90 0.350 3746 0.000 0.973 0.870

1 1 0 90 0.500 545 0.000 0.976 0.839

1 1 0 90 0.650 22 0.000 0.977 0.835

1 1 0.200 10 0.100 26785 0.028 0.981 0.973

1 1 0.200 10 0.200 18105 0.010 0.970 0.926

1 1 0.200 10 0.350 9770 0.003 0.970 0.870

1 1 0.200 10 0.500 4266 0 0.972 0.828

1 1 0.200 10 0.650 746 0.000 0.977 0.799

1 1 0.200 20 0.100 26611 0.019 0.973 0.968

1 1 0.200 20 0.200 18078 0.010 0.968 0.938

1 1 0.200 20 0.350 9959 0.001 0.968 0.865

1 1 0.200 20 0.500 4621 0.000 0.972 0.830

1 1 0.200 20 0.650 846 0 0.977 0.794

1 1 0.200 40 0.050 32890 0.040 0.992 0.990

1 1 0.200 40 0.100 26442 0.013 0.968 0.971

1 1 0.200 40 0.200 18269 0.009 0.968 0.937

1 1 0.200 40 0.350 10014 0.001 0.967 0.875

1 1 0.200 40 0.500 4973 0.000 0.973 0.828

1 1 0.200 40 0.650 880 0 0.977 0.796

1 1 0.200 60 0.050 33273 0.015 0.967 0.993

1 1 0.200 60 0.100 26547 0.014 0.968 0.977

1 1 0.200 60 0.200 18127 0.008 0.967 0.925

1 1 0.200 60 0.350 10700 0.001 0.966 0.881

1 1 0.200 60 0.500 6199 0.000 0.973 0.826

1 1 0.200 60 0.650 997 0.000 0.977 0.798
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1 1 0.200 90 0.100 26177 0.015 0.969 0.981

1 1 0.200 90 0.200 17734 0.009 0.967 0.942

1 1 0.200 90 0.350 8895 0.004 0.967 0.891

1 1 0.200 90 0.500 3731 0.000 0.970 0.841

1 1 0.200 90 0.650 741 0.000 0.976 0.802

1 1 0.400 10 0.200 25400 0.026 0.973 0.952

1 1 0.400 10 0.350 18292 0.013 0.969 0.892

1 1 0.400 10 0.500 12099 0.001 0.967 0.829

1 1 0.400 10 0.650 5466 0.001 0.972 0.797

1 1 0.400 20 0.050 37239 0.032 0.974 0.992

1 1 0.400 20 0.100 31944 0.026 0.970 0.978

1 1 0.400 20 0.200 25429 0.018 0.968 0.943

1 1 0.400 20 0.350 18091 0.014 0.967 0.913

1 1 0.400 20 0.500 11750 0.001 0.966 0.831

1 1 0.400 20 0.650 5619 0.000 0.973 0.789

1 1 0.400 40 0.050 37249 0.027 0.969 0.997

1 1 0.400 40 0.100 31859 0.025 0.968 0.984

1 1 0.400 40 0.200 24967 0.022 0.969 0.958

1 1 0.400 40 0.350 18201 0.008 0.964 0.893

1 1 0.400 40 0.500 11552 0.002 0.967 0.839

1 1 0.400 40 0.650 4727 0.000 0.973 0.790

1 1 0.400 60 0.050 37135 0.032 0.973 1.003

1 1 0.400 60 0.100 32305 0.034 0.976 0.992

1 1 0.400 60 0.200 25147 0.033 0.980 0.953

1 1 0.400 60 0.350 17562 0.008 0.965 0.888

1 1 0.400 60 0.500 10594 0.002 0.968 0.828

1 1 0.400 60 0.650 4555 0.000 0.972 0.796

1 1 0.400 90 0.050 37450 0.042 0.979 1.024

1 1 0.400 90 0.100 32111 0.026 0.967 1.005

1 1 0.400 90 0.200 26166 0.022 0.966 0.980

1 1 0.400 90 0.350 16966 0.010 0.965 0.899

1 1 0.400 90 0.500 10581 0.003 0.967 0.844

1 1 0.400 90 0.650 5082 0.000 0.971 0.804

1 1 0.600 10 0.350 23189 0.036 0.979 0.927

1 1 0.600 10 0.500 16960 0.014 0.969 0.851

1 1 0.600 10 0.650 10324 0.001 0.968 0.789

1 1 0.600 20 0.050 40454 0.044 0.975 0.998

1 1 0.600 20 0.200 29856 0.035 0.970 0.970

1 1 0.600 20 0.350 22918 0.027 0.971 0.915

1 1 0.600 20 0.500 17005 0.015 0.969 0.864

1 1 0.600 20 0.650 10470 0.001 0.970 0.782

1 1 0.600 40 0.050 40188 0.047 0.977 1.000

1 1 0.600 40 0.200 29658 0.056 0.991 0.974

1 1 0.600 40 0.350 23135 0.042 0.983 0.932

1 1 0.600 40 0.500 17129 0.010 0.962 0.869

1 1 0.600 40 0.650 10671 0.002 0.968 0.796

1 1 0.600 60 0.100 35146 0.039 0.970 0.994

1 1 0.600 60 0.200 29649 0.040 0.975 0.977

1 1 0.600 60 0.350 22575 0.022 0.965 0.927

1 1 0.600 60 0.500 16654 0.010 0.967 0.846

1 1 0.600 60 0.650 8381 0.001 0.968 0.791

1 1 0.600 90 0.050 39846 0.056 0.983 1.022

1 1 0.600 90 0.100 34963 0.036 0.965 1.008

1 1 0.600 90 0.200 29005 0.032 0.964 0.991

1 1 0.600 90 0.350 22297 0.035 0.972 0.958

1 1 0.600 90 0.500 15045 0.011 0.963 0.873

1 1 0.600 90 0.650 8360 0.002 0.968 0.799



A.4. Experiment results 95

B?
0
AB
8C
H

B8
I
4

3
8B
AD
?
C8
>
=

ℎ
BC
4
?

?
?
2
?

|?
A>
?
%
0
8A
B
|

M
I
P
-
g
a
p

S
i
m
u
l
a
t
e
d
c
o
s
t
s

A
p
p
r
o
x
i
m
a
t
i
o
n

r
a
t
i
o

1 1 0.800 10 0.350 23803 0.040 0.972 0.925

1 1 0.800 10 0.500 16915 0.032 0.981 0.845

1 1 0.800 10 0.650 9922 0.000 0.968 0.760

1 1 0.800 20 0.200 30448 0.049 0.974 0.969

1 1 0.800 20 0.350 23713 0.026 0.960 0.917

1 1 0.800 20 0.500 17221 0.017 0.963 0.859

1 1 0.800 20 0.650 9961 0.001 0.965 0.770

1 1 0.800 40 0.200 30265 0.036 0.961 0.962

1 1 0.800 40 0.350 23300 0.048 0.979 0.933

1 1 0.800 40 0.500 16834 0.015 0.965 0.844

1 1 0.800 40 0.650 9562 0.002 0.969 0.762

1 1 0.800 60 0.050 41971 0.052 0.970 1.011

1 1 0.800 60 0.100 36911 0.055 0.974 1.002

1 1 0.800 60 0.200 30459 0.053 0.978 0.970

1 1 0.800 60 0.350 23741 0.043 0.977 0.921

1 1 0.800 60 0.500 17146 0.013 0.962 0.845

1 1 0.800 60 0.650 8471 0.001 0.969 0.758

1 1 0.800 90 0.100 36603 0.070 0.986 1.021

1 1 0.800 90 0.200 29239 0.041 0.964 0.983

1 1 0.800 90 0.350 23370 0.043 0.974 0.934

1 1 0.800 90 0.500 16794 0.012 0.960 0.850

1 1 0.800 90 0.650 7779 0.001 0.965 0.773

1 1 1 10 0.500 21975 0.031 0.962 0.861

1 1 1 10 0.650 14508 0.027 0.977 0.779

1 1 1 20 0.200 34757 0.063 0.969 0.974

1 1 1 20 0.350 28329 0.060 0.974 0.935

1 1 1 20 0.500 21855 0.040 0.968 0.874

1 1 1 20 0.650 14314 0.012 0.964 0.776

1 1 1 40 0.200 34837 0.058 0.964 0.972

1 1 1 40 0.350 27837 0.047 0.963 0.927

1 1 1 40 0.500 22178 0.031 0.961 0.866

1 1 1 40 0.650 13634 0.009 0.960 0.779

1 1 1 60 0.050 46273 0.067 0.967 1.010

1 1 1 60 0.350 28136 0.055 0.971 0.927

1 1 1 60 0.500 20908 0.025 0.957 0.861

1 1 1 60 0.650 12508 0.006 0.961 0.762

1 1 1 90 0.350 27227 0.046 0.958 0.943

1 1 1 90 0.500 21616 0.054 0.974 0.915

1 1 1 90 0.650 14162 0.010 0.960 0.783
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1 0.200 0 5 0.0125 2005 0 0.980 0.972

1 0.200 0 5 0.025 1686 0 0.980 0.970

1 0.200 0 5 0.050 1294 0 0.980 0.954

1 0.200 0 5 0.100 850 0 0.981 0.925

1 0.200 0 5 0.200 449 0 0.982 0.877

1 0.200 0 5 0.350 127 0 0.985 0.845

1 0.200 0 10 0.0125 2017 0 0.980 0.974

1 0.200 0 10 0.025 1706 0 0.980 0.972

1 0.200 0 10 0.050 1303 0 0.980 0.958

1 0.200 0 10 0.100 841 0 0.980 0.940

1 0.200 0 10 0.200 469 0 0.982 0.880

1 0.200 0 10 0.350 159 0 0.985 0.846

1 0.200 0 20 0.0125 2018 0 0.980 0.975

1 0.200 0 20 0.025 1673 0 0.980 0.973

1 0.200 0 20 0.050 1262 0 0.980 0.956

1 0.200 0 20 0.100 806 0 0.980 0.926

1 0.200 0 20 0.200 409 0 0.983 0.886

1 0.200 0 20 0.350 162 0 0.984 0.859

1 0.200 0 40 0.0125 1962 0 0.980 0.982

1 0.200 0 40 0.025 1657 0 0.980 0.978

1 0.200 0 40 0.050 1289 0 0.980 0.964

1 0.200 0 40 0.100 818 0 0.980 0.940

1 0.200 0 40 0.200 423 0 0.983 0.882

1 0.200 0 40 0.350 163 0 0.983 0.868

1 0.200 0 60 0.0125 2025 0 0.979 0.991

1 0.200 0 60 0.025 1702 0 0.980 0.985

1 0.200 0 60 0.050 1262 0 0.980 0.968

1 0.200 0 60 0.100 815 0 0.981 0.918

1 0.200 0 60 0.200 484 0 0.983 0.879

1 0.200 0 60 0.350 182 0 0.985 0.847
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