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Abstract. The article concerns problem of automated generation of anisotropic finite
element meshes on 3D surfaces. The meshes are created using a modification of Delaunay
incremental insertion algorithm working in Riemannian space (using metric transforma-
tion approach). During the meshing process the generator relies on a special structure
(called control space) to provide the required size and shape of elements at any point
within the domain being discretized.

Organization of this control space structure directly influences both the quality of the
obtained mesh and the efficiency of the meshing process. It should allow to combine sizing
information gathered automatically from different sources (in both discrete and continuous
form). The quadtree grid and background mesh structure are typically used for control
space representation.

This article describes an implementation of a adaptive control space structure with
emphasis on efficiency and versatility necessary in automated adaptation process.

1 INTRODUCTION

Unstructured anisotropic mesh adaptation is now widely used in numerical simulations
to improve the accuracy of the solution, reduce the computational time and properly
capture the behavior of the simulated phenomena. With respect to mesh generation the
adaptation task can be divided into two phases: preparing the element sizing map (storing
information like required size, stretching, directionality, etc.) and discretizing the domain
following the prescribed sizing map as closely as possible. This element sizing map (called
usually as control space) can have various structure, typically a uniform grid, quadtree
(octree) or background mesh [1, 2, 3].

In this article we present an automated procedure of adaptive creation of the control
space which takes advantage of a number of geometrical sources of sizing information as
well as potential input from the user or from the numerical solver. The sizing information
for creation of surface meshes is stored in the unified form of metric within discrete nodes
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of the adaptive control space structure (either quadtree or background mesh) and is
interpolated between the nodes. The method of interpolation has to be carefully selected
since it influences both quality of the mesh and the efficiency of the meshing process.

In cases where sizing data is gathered from several different sources (e.g. model ge-
ometry, adaptation process, user input) we start with creation of separate control space
structures for each type of source. Then the resultant control space is calculated using
the intersection procedure, which takes into account both structure and metric data from
the nodes of all control spaces.

In order to assure good quality of the created meshes the metric field within the control
space can be subjected to an additional smoothing procedure which gives control over
the maximum gradation ratio over neighboring elements within the mesh. For domains
composed of several surface patches an iterative procedure of adjusting control space for
adjacent patches was also implemented.

1.1 Surface mesh generation and adaptation

Starting from the BREP description of the domain, the developed generator is able to
produce unstructured (anisotropic if necessary) triangular or quadrilateral meshes in 2D
space or on three-dimensional surfaces, which can be used directly or as an intermediate
step for 3D tetrahedral meshing. The process of mesh generation is hierarchical and
consists of several subsequent phases. First, information about the required element
size throughout the domain is automatically gathered and all contours are accordingly
discretized. Each surface patch is then triangulated using a modification of the Delaunay
incremental insertion algorithm[4]. If the quadrilateral mesh is requested, the conversion
procedure is used[5]. Finally, several methods of mesh quality improvement are applied.

All 2D-meshing operations (triangulation, conversion to quadrilaterals and smoothing)
are working in parametric space of the given surface patch with Riemannian metric in-
troduced using the metric transformation approach [6]. During the meshing process the
generator uses a special control space structure to provide the requested metric (govern-
ing the size, shape and directionality of elements) at any point within the patch being
discretized. Each surface patch has a separate control space structure storing sizing infor-
mation in a metric transformation matrix form in parametrical space of the given patch.

The sizing metric can be obtained directly from the user (in a number of convenient
methods), retrieved from the solver as a part of an adaptation process (as a set of discrete
points with sizing information) and/or gathered automatically from the geometrical and
topological description of the discretized domain. The metric definition source can have
different dimensions: 0D (e.g. for data from adaptation given in the nodes of a compu-
tational mesh), 1D (e.g. for curvature of boundary contours), 2D (e.g. for curvature of
surface patch), and 3D (e.g. from user description). All available sources are processed
and stored in a single adapted control space structure.
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2 CONTROL SPACE FOR SINGLE PATCH

In order to efficiently process metric sources of different form, a hierarchy of control
space structures has been created. Most basic, abstract ControlSpace class defines the
essential functionality of a control space, which is to return the required metric at any
given point within the domain being discretized.

The form of metric which is stored in the control space depends on the selected meshing
method. In our case, the transformation matrix Mt was selected, which is used during
discretization to transform coordinates of a given point P to the Riemannian space:

P ′ = Mt(P )P . (1)

Mt is a two-dimensional symmetrical matrix related to metric tensor M as follows:

M(P ) = Mt(P )Mt
T (P ) (2)

and for which operations like interpolation, minimization or comparison can be efficiently
calculated[6]. For patches on non-planar surfaces the parameterization matrix Mp is
additionally required.

2.1 Adaptive control space

Two adaptive structures of control space were created, implementing balanced quadtree
structure and background mesh (Fig. 1). Both structures implement adaptivity and are
able to initialize the control space from either continuous (e.g. curvature of surface or
analytical equations) or discrete sources (e.g. discrete nodes or segments with metric).
In case of insufficient data the metric in some control nodes has to be interpolated or
extrapolated. The structure of the control space can be further adapted to variation of
metric or parameterization.

(a) quadtree (b) background mesh

Figure 1: Structure of adaptive control space

2.2 Introducing discrete data

For metric source in a form of a set of discrete data, the control space structure is
accordingly adapted in order to avoid situation where any control space element (quadtree
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leaf or mesh triangle) contains data of too different metric description (Fig. 2(a)). After
adaptation of the structure, the nodes of control space are initialized with the weighted
average of metric from the adjacent nodes (Fig. 2(b)). Finally an iterative procedure of
extrapolation of metric for still uninitialized control nodes (having no source points with
metric description in the incident elements) is performed (Fig. 2(c)).

(a) structure adaptation (b) control nodes initializa-
tion

(c) metric extrapolation

Figure 2: Initializing control space structure using discrete data

In order to facilitate precise and convenient definition of size and stretching of elements
throughout the domain, the metric can be defined in each discrete node in a few ways
(Fig. 3)[7]:

• (P, M, r) – metric M is treated as constant in the neighborhood of the point P with
the radius r ≥ 0. Outside this circle the metric is interpolated using control nodes
lying nearby.

• (P1, P2, M, r) – along the segment P1P2 and its neighborhood with length r the
constant metric M is assumed.

• (c(t), t1, t2, M, r) – constant metric M is assumed along the given parametrical curve
c(t) and its neighborhood with length r.
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P
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(c) along curve

Figure 3: Extended metric definition
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2.3 Introducing continuous data

For continuous data (e.g. metric in analytic form or gathered from the curvature of the
surface) all nodes of the current control space structure are initialized with the available
data (for already initialized nodes the minimum metric is calculated). Then each control
space element (quadtree leaf or background mesh triangle) is checked for metric difference
between its vertices and the element is recursively split if necessary.

2.4 Calculating minimum of two control spaces

Computing the minimum of two adaptive control space structures CS1 and CS2 consists
of following phases:

1. For each control node Pj of CS1 the minimum metric min(MCS1
j , MCS2(Pj)) is cal-

culated.

2. All control nodes from the CS2 are introduced into CS1 as discrete metric sources
which may modify the structure of the CS1 structure. The refinement takes place
if the difference between MCS1(Pi) and min(MCS1(Pi), M

CS2
i )) is larger than some

threshold, where MCS2
i is the metric in the ith control node of CS2 and MCS1(Pi) is

the metric calculated from the CS1 at the coordinates of the given control node Pi.

3. Operation described in the first step is performed again.

2.5 Smoothing of the metric field

Metric data come from different sources and the resulting metric map can have unac-
ceptably large variation. Since the required smoothness of the mesh elements may depend
on the application, the gradation parameter dr was introduced. This gradation parameter
simply limits the maximum increase of the required edge length (in any direction) between
any two points of unitary distance (in metric space). Figure 4(a) presents an example
case of maximum gradation of 1D elements length, where dr = hi+1/hi.
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Figure 4: Acceptable metric transition
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2.5.1 Acceptable metric transition for a pair of nodes

For each pair of control nodes Pi and Pj we start with comparing the metrics Mi and
Mj. If diff(Mi, Mj) is smaller than some threshold the rest of this procedure may be
skipped. Otherwise, the requested length of elements along the selected direction PiPj is
calculated as hi and hj (Fig. 4(b)). Maximum and minimum values are set as hmax and
hmin.

The coefficient a is calculated as

a =
hmax − hmin

d(Pi, Pj)
(3)

and is compared with amax which is defined by the gradation ratio:

amax = 2
dr − 1

dr + 1
. (4)

If a > amax the values are accordingly adjusted:

a ← amax (5)

hmax ← ad(Pi, Pj) + hmin . (6)

The maximum gradation factor s is established as:

s = 1− (1− dr)(1− a/2)d(Pi, Pj)

hmin
. (7)

Using this factor metrics in both nodes can be adjusted (Fig. 5):

Mi ← min(Mi, sMj) (8)

Mj ← min(Mj, sMi) . (9)

In order to increase the efficiency of the whole control space smoothing procedure,
the actual computation of the minimum metrics described above takes place only if the
difference between metrics diff(Mi, Mj) is larger than some threshold proportional to the
factor s.
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Figure 5: Constraining metrics
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2.5.2 Global smoothing

In order to ensure proper variation of metric throughout the whole mesh, the two-
point gradation adjusting procedure has to be systematically extended to all nodes of the
given control space. For quadtree structure a recursive method of tree traversing is used
consisting of two steps. In each step the nodes of all tree elements are adjusted with
the nodes of sub-elements. In the first step the tree is updated ”upwards”, propagating
the smoothing from the leaves of the quadtree up to the main level. In the second step
the reverse ”downwards” direction is used. For background mesh structure of the control
space an iterative procedure is implemented, where each node is adjusted with all incident
nodes. The set of checked nodes contains initially all nodes of the background mesh.
During the procedure each checked node is removed from the set, while nodes which had
theirs metric changed are again included into this set.

Figures 6 and 7 present meshes of a simple rectangular domain with circular holes
created for different values of the gradation ratio parameter and without smoothing.

(a) without smoothing (b) gradation ratio dr = 8 (c) gradation ratio dr = 2

Figure 6: Gradation ratio for smoothing of metric field

(a) without smoothing (b) gradation ratio dr = 8 (c) gradation ratio dr = 2

Figure 7: Gradation ratio for smoothing of metric field (quadrilateral mesh)
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3 AUTOMATED CONSTRUCTION OF CONTROL SPACE

Algorithm 1 shows subsequent steps of automated creation and actualization of the
control space structure. The domain being discretized is assumed to consist of one or
more surfaces patches (possibly connected), where each surface provides a parametric
representation. Each patch is triangulated separately in its parametric space. However,
special care must be taken for assuring smooth variation of elements over adjacent patches.

foreach surface patch do1

create initial control space2

mark all 3D-contours (c3d) as invalid3

while ∃ invalid c3d or ∃ invalid surface patch do4

foreach invalid c3d do5

mark all surface patches incident to this contour as invalid6

foreach invalid surface patch do7

update control space with length of discretization segments of c2d
8

I step of patch discretization – triangulation of boundary nodes only9

mark this patch as valid-I10

update control space with proximity of boundary segments11

foreach incident c3d do12

if c3d discretization is too coarse for Γ2d then mark c3d as invalid13

foreach not valid-II surface patch do14

II step of patch discretization – insertion of inner nodes, conversion, smoothing,15

etc.
mark this patch as valid-II16

Algorithm 1: Preparation of control space during process of mesh generation

3.1 Creating the initial control space structure

The procedure starts with determining the bounding rectangle of the given surface
patch (in its parametrical space) and creation of the main level grid. At he first step
the structure of the control space is initialized and adapted for the curvature of the
surface. For each control node in the initial main level grid of the control space structure
the curvature data is retrieved from the parametrical description of the surface patch.
The required metric in form M = (α, h1, h2) is calculated (from principal curvatures
and directions of the surface patch) and adjusted using the curvature ratio coefficient c,
maximum stretching dmax, minimum and maximum length. In the adaptation phase in
all elements of the control space the metric within element is calculated directly from
the surface curvature and compared with the value obtained via the interpolation from

8



Tomasz Jurczyk and Barbara G lut

element vertices. If the difference of metrics is larger than a given threshold the quadtree
leaf or background mesh triangle is split accordingly and recursively checked. In case
where the curvature of surface is not available for all nodes of the control space (e.g. the
surface patch is note regular) an additional extrapolation procedure has to be performed.

If there is any existing data given by user (in any form) or obtained from the adaptation
procedure, a separate control space (or control spaces) is created and minimum control
space is computed.

In the next step the already existing control space is further adjusted using the cur-
vature of contours. Along each curvilinear contour within the discretized domain the
metric M = (α, h1, h2) is calculated, where h1 is computed from the principal curvature,
h2 = dmaxh1 and α is tangent to the contour. This information is introduced into the
control space using the extended metric representation described in Sec. 2.2.

Since the nodes of the control space are using coordinates from the parametric space of
the surface patch, the structure of the control space is further adapted with respect to the
parameterization irregularity. This step is necessary if the interpolation of metric (used
during meshing process) is to be calculated using shape functions in parametric space.
Finally the whole control space is smoothed according to the given gradation ratio.

3.2 Updating control space

After discretization of contours and initial triangulation of boundary nodes for the
given surface patch, additional sizing information becomes available and can be used to
check and adjust the control space:

• Length of boundary segments (Fig. 8(a)). Length lMi of each boundary edge is
calculated according to local metric space. If lMi < ε1 (in our work the parameter ε1

is set to 0.8) the control space in the neighborhood is updated accordingly (using the
length of this segment as a reference). Additionally if lMi < ε1/2 or 1/lMi < ε1/2, the
contour containing this edge is marked as invalid and should be discretized again.

• Proper representation of curvilinear boundaries (Fig. 8(b)). Distance between the
mesh segment and the underlying curvilinear contour is measured, and in case of
too rough discretization the control space in this area is accordingly updated (using
curvature of the contour directly) and the whole contour is marked as invalid.

• Vicinity of boundaries (Fig. 8(c)). Triangles of the initial Delaunay triangulation
with metric area lower than some threshold ε2 (equal to 0.2 in our work) are in-
spected and the control space is appropriately updated.

4 USING CONTROL SPACE DURING MESHING

During the mesh generation, each time the local metric has to be established at the
given coordinates, the proper value is retrieved from the control space.
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(a) boundary
segment

(b) boundary curve (c) boundary vicinity

Figure 8: Updating control space

If the coordinates of the inspected point are close enough to the point, where the
metric was recently calculated, the current metric may be considered valid, and no further
operation would be needed. The maximum distance between points, which can be called
”close enough” is calculated in the metric space (i.e. it depends on the required length of
edges according to the current metric).

4.1 Quadtree grid

The procedure starts with localizing the leaf containing the point for which the metric
value is required. Then the metric is calculated from the vertices of the rectangular leaf
using linear or quadratic interpolation (Fig. 9):

Mt(Q) =
n∑

i=0

Ni(η, ξ)Mt(Pi) (10)

where n is the number of nodes (4 for linear or 8 for quadratic ”serendipity” interpolation)
and Ni(η, ξ) are the shape functions given in Table 1.
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Figure 9: Interpolation for regular grid
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Table 1: Shape functions for quadtree nodes (η, ξ ∈ [0, 1])

linear quadratic
N0 (1− η)(1− ξ) (1− η)(1− ξ)(−2η − 2ξ + 1)
N1 η(1− ξ) η(1− ξ)(2η − 2ξ − 1)
N2 ηξ ηξ(2η + 2ξ − 3)
N3 (1− η)ξ (1− η)ξ(−2η + 2ξ − 1)
N4 4(1− η)(1− ξ)η
N5 4(1− ξ)ηξ
N6 4(1− η)ηξ
N7 4(1− ξ)(1− η)ξ

4.2 Background mesh

The procedure starts with searching for the containing triangle, which is done by
traversing the triangles in the mesh in the direction of the given point (an additional
quadtree structure is used for selection of good starting triangle for this traversing algo-
rithm). After the containing triangle is found the metric is interpolated from a local set
V∗ of vertices, depending on the selected method (detailed description can be found in
[8]). From this set of nodes the resulting metric is calculated using the weighted average
formula:

Mt(Q) =
1∑

Pi∈V∗ ωi

∑
Pi∈V∗

Mt(Pi)ωi (11)

where ωi = d(Q,Pi)
−2 is the inverse squared-distance weight, calculated from points

coordinates in parametric space. If d(Q, Pi) < ε, the metric from the point Pi is taken
directly, skipping the interpolation procedure.

4.3 Storing the parameterization matrix

The second matrix required during the meshing process, the parameterization matrix
can be calculated directly from the parametric representation of the surface patch or it
could be stored within the control space. Storing this matrix within the control space
structure allows to increase significantly the efficiency of the meshing process without
visible degradation of the mesh quality.

The parameterization matrix is stored in the nodes of the control space structure and
is interpolated in precisely the same way as the metric transformation matrix.

5 EXAMPLES

Figure 10 presents the triangular mesh created for an analytical surface patch with
inner holes. The parametric surface description is

p2 : (u, v)→ (u, v, 1.5e−0.001(u2+v2) sin(2u) cos(0.2v)) (12)

where u, v ∈ [−6, 6].
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(a) adapted control space (b) generated mesh

Figure 10: Analytical surface

Figures 11 and 12 present triangular meshes for domain consisting of two adjacent
surface patches and control space structures for each of the patch with additional user-
defined metric map along the inner contour in shape of letter C. Mesh in Fig. 11 was
created using the procedure of control space adaptation, the other one without it which
results in areas of mesh with unsatisfactory transitions of elements (shown in Fig.13 in
more detail).

(a) triangular mesh (b) control space

Figure 11: Mesh of two-patch surface with adaptation of control space

6 CONCLUSIONS

The procedure of automated creation of the control space for generation of surface
meshes on multi-patch domains was presented. This procedure together with described
implementation of adaptive control space structure allows to take advantage of metric
description obtained from different sources which can be than efficiently combined and
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(a) triangular mesh (b) control space

Figure 12: Mesh of two-patch surface without adaptation of control space

(a) without control space adaptation (b) with control space adaptation

Figure 13: Closeup of the generated meshes

used during the meshing process.
In fully automated mesh generator all phases of the meshing process (including creation

of sizing control space) shouldn’t require any interaction from the user. At the same time
the user should have the possibility of influencing the meshing process in a way he deems
necessary depending on the purpose of the created meshes. The described method fulfills
these requirements by combining automatically gathered geometrical sizing information
with metric prescribed by user (in a discrete or analytical way) or gathered from the
adaptation procedure.

The future work will concentrate on extending this iterative procedure for three-
dimensional mesh generation.
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