
Design and Experimental
Evaluation of a System based
on Dynamic Conits for Scaling
Minecraft-like Environments

Jesse John Robert Donkervliet

Design and Experimental Evaluation of a
System based on Dynamic Conits for
Scaling Minecraft-like Environments

by

Jesse John Robert Donkervliet

to obtain the degree of Master of Science
at the Delft University of Technology,

to be defended publicly on Monday January 15, 2018 at 2:00 PM.

Project duration: January 16, 2017 – January 15, 2018
Thesis committee: Dr. ir. A. Iosup, Delft University of Technology, supervisor

Dr. ir. E. Epema, Delft University of Technology, committee chair
Dr. ir. P. Pawełczak, Delft University of Technology

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract
Minecraft is one of the most popular games of all time, and provides both entertainment and education
to people around the globe. One of the main challenges in gaming is increasing the scalability of these
games to support the large numbers of players they attract. Minecraft-like games make this challenge
even more difficult by introducing the novel feature of a modifiable world. The world that players explore
can be fully modified, allowing players to build anything from a recreation of Manhattan to a functioning
digital computer. These modifications increase the need for communication between players, limiting
scalability. We design and evaluate Meerkat, a prototype system that uses Dynamic Conits to reduce
this communication and increase the scalability of Minecraft-like games.

i

Preface
The master thesis was by far the most difficult part of my education. I am very happy with completing
this challenge and the things I have learned along the way. I think that I have become a better computer
scientist, engineer, and person in the process. During the thesis, I spent hours frowning at my computer,
shouting at my computer, or both at the same time, and I remember clearly wanting to quit on multiple
occasions. Thanks to the help and support from many people, this did not happen. I am very grateful
to them, and they deserve a special thanks.

First, I would like to thank my supervisor, Alexandru Iosup, for pushing me to deliver high-quality
work and not letting me get away with a job half-done. Because of you I am better at getting things
done, while also setting higher standards for myself and living up to these standards.

Second, I would like to thank Jerom van der Sar for sharing his expertise on Minecraft and his
dedicated work on Yardstick. It is a pleasure working with you, and I hope I can keep doing so in the
future. If you keep up the good work, I am sure you will get a lot of things done!

Third, I would like to thank my friends, Tim, Stefan, Otto, Pim, Other Pim, Vincent, and Laurens
for both helping me with my thesis and distracting me from it. Tim, thank you being my rubber duck
during programming, and for being an infinite source of helpful comments about both the technical and
conceptual parts of this thesis. Stefan, thank you for your helpful feedback on my writing and for helping
me get organized, plan tasks, and set deadlines; thank you for being so generous with your time. Otto,
thank you for listening to, and asking questions about, my ramblings about consistency models and my
complex solutions to (seemingly) simple problems.

Finally, I want to thank my family for their constant support, and inspiring me to become a teacher. I
want to thank a number of family members specifically. Thank you, Grandma and Grandpa, for demon-
strating a strong work ethic since before I was born. Thank you, Grandpa, for introducing me to the
world of computers and technology at a young age. Thank you, Dad, for introducing me to the world
of video games and encouraging my interest in computers. Thank you, Mom, for always being there
for me and taking care of me, especially when I forget to take care of myself. Thank you, Elvan, for all
your love and support. You get me back on my feet when I am down; you inspire me to work hard and
never give up. I could not have done this without you. Thank you for everything. I love you.

Jesse John Robert Donkervliet
Delft, January 2018

iii

Contents

List of Figures vii

List of Tables ix

1 Introduction 1
1.1 What is Minecraft? . 2
1.2 Problem statement and main research questions. 2
1.3 Research-oriented approach. 4
1.4 Main contributions . 4
1.5 Structure of this thesis . 5

2 Background 7
2.1 Minecraft-related research . 7
2.2 A brief introduction to consistency . 8
2.3 The Conit consistency model . 10

2.3.1 Important features . 10
2.3.2 Conits and consistency dimensions . 11

2.4 Similar consistency models . 14
2.4.1 Consistency model research. 14
2.4.2 Games and distributed systems research . 15

3 Dynamic Conit model for Minecraft-like games 19
3.1 Dynamic Conit model requirements . 19
3.2 Conit model extensions . 20

3.2.1 Dynamically changing Conit bounds. 20
3.2.2 Optimistic consistency . 21
3.2.3 Conit update messages . 21
3.2.4 Multi-hop Conits . 21
3.2.5 Speculation error . 23

3.3 Application to Minecraft-like games . 23
3.3.1 Guaranteed consistency between servers . 23
3.3.2 Guaranteed consistency between clients and servers 24

3.4 Dynamic Conit performance model . 25
3.4.1 Synchronization controlled by staleness bound. 25
3.4.2 Synchronization controlled by numerical error bound 26
3.4.3 Synchronization controlled by order error bound 26

4 Meerkat: design of a Dynamic Conit system 27
4.1 Design overview . 27
4.2 Consistency bounding . 28

4.2.1 Bounding staleness . 29
4.2.2 Bounding numerical error . 30
4.2.3 Bounding order error . 30

4.3 Dynamic Conit mechanisms . 31
4.3.1 Dynamic bound policies . 31
4.3.2 Pipeline for strict and optimistic consistency . 32
4.3.3 Dynamic Conit information message . 33

4.4 Meerkat performance model . 34

v

vi Contents

5 Experimental setup 35
5.1 Experiments overview . 35
5.2 Yardstick: design of a Minecraft-like game benchmarking tool. 35

5.2.1 System requirements. 36
5.2.2 Design overview . 37
5.2.3 Player behavior model . 38
5.2.4 Player emulation . 38
5.2.5 Yardstick collector . 39
5.2.6 Data publishing . 39

5.3 Experiment workloads . 39
5.3.1 Yardstick experiment workloads . 39
5.3.2 Meerkat experiment workloads . 40

5.4 Environment . 41
5.4.1 DAS-5 distributed supercomputer . 41
5.4.2 Akka framework . 42

5.5 Metrics and data collection. 42
5.5.1 Main metrics . 42
5.5.2 Relative utilization metric (Jerom van der Sar) . 43
5.5.3 Akka Logging . 44
5.5.4 Prometheus monitoring . 44

6 Experimental results 45
6.1 Minecraft scalability experiments . 45

6.1.1 Main findings . 45
6.1.2 Analysis of finding 1 . 45
6.1.3 Analysis of finding 2 . 47
6.1.4 Analysis of finding 3 . 48
6.1.5 Discussion . 49

6.2 Meerkat experimental evaluation . 50
6.2.1 Main findings . 50
6.2.2 Analysis of finding 1 . 51
6.2.3 Analysis of finding 2 . 52
6.2.4 Analysis of finding 3 . 53
6.2.5 Analysis of finding 4 . 56
6.2.6 Analysis of finding 5 . 56
6.2.7 Discussion . 58

7 Conclusion and future work 59
7.1 Main contributions . 60
7.2 Future work . 61

Bibliography 63

Appendices 69

A Minecraft-like game configurations 71
A.1 Vanilla configurations. 71

A.1.1 server.properties . 71
A.2 Spigot configurations . 72

A.2.1 server.properties . 72
A.2.2 bukkit.yml . 72
A.2.3 spigot.yml . 73

A.3 Glowstone configurations . 75
A.3.1 glowstone.yml . 75
A.3.2 worlds.yml . 77

B Experimental results 81
B.1 Minecraft scalability experiments . 81
B.2 Meerkat experiments . 83

List of Figures

1.1 Education in Minecraft . 3

2.1 Conit staleness bounding example . 12
2.2 Conit numerical error bounding example . 13
2.3 Conit order error bounding example . 14

3.1 Difference between Conits and Dynamic Conits . 22
3.2 Dynamic Conits applied to a game server cluster . 24
3.3 Dynamic Conits applied to a server and its clients . 24

4.1 Meerkat system design . 28
4.2 Meerkat staleness bounding mechanism . 29
4.3 Meerkat numerical error bounding mechanism . 30
4.4 Meerkat order error bounding mechanism. 31
4.5 Meerkat processing pipeline . 32
4.6 Meerkat 2-way handshake for adding nodes or Dynamic Conits 33

5.1 Yardstick system design . 37
5.2 Conceptual overview of a Minecraft server tick . 43

6.1 Minecraft tick frequency over number of players . 46
6.2 Minecraft relative utilization over number of players . 46
6.3 Minecraft CPU utilization over number of players . 47
6.4 Minecraft outgoing packet throughput over number of players 48
6.5 Effect of consistency bounds on throughput . 51
6.6 Effect of consistency bounds on synchronization . 53
6.7 Meerkat throughput with fixed numerical error bound under increasing workload 54
6.8 Meerkat throughput with dynamic numerical error bound under increasing workload . . 54
6.9 Meerkat throughput with fixed numerical error bound under 50-player trace workload . 55
6.10 Meerkat throughput with dynamic numerical error bound under 50-player trace workload 55
6.11 Effect of wait mechanism on throughput under stress-test workload on 4 nodes 56
6.12 Effect of wait mechanism on throughput under stress-test workload on 16 nodes 56
6.13 Meerkat throughput using ADMI policy under 50-player trace workload 57
6.14 Meerkat throughput using PM-P policy under 50-player trace workload 57

B.1 Additional experimental result: Minecraft incoming bytes throughput 81
B.2 Additional experimental result: Minecraft outgoing bytes throughput 81
B.3 Additional experimental result: Minecraft incoming packets throughput 82
B.4 Additional experimental result: Minecraft memory usage 82
B.5 Additional result from experiment 6.2.2. 83
B.6 Additional result from experiment 6.2.3 . 83
B.7 Additional experimental result: using static bound of 0 on increasing workload 84
B.8 Additional experimental result: using ADMI policy on increasing workload 84
B.9 Additional experimental result: using PM-P policy on increasing workload 84
B.10 Additional results from experiment 6.2.4. 85
B.11 Additional results from experiment 6.2.5 . 85

vii

List of Tables

1.1 Reader guide . 5

2.1 Comparison of the Conit consistency model with similar models. 17

3.1 Summary of Dynamic Conit model– and system requirements 20

5.1 Summary of experiments . 36
5.2 Summary of Yardstick system requirements. 36
5.3 Yardstick experiment workloads . 39
5.4 Meerkat experiment workloads . 40
5.5 DAS-5 node hardware configurations . 41
5.6 Experiment metrics . 42

6.1 Network packet distribution from Minecraft scalability experiment 49

ix

1
Introduction

The gaming industry is relatively young but takes the world by storm, generating more than 20 billion
dollars in revenue in 2016 in the United States alone [23]. To appreciate the scale of this industry
consider that the total box office revenue1 in 2016 in the United States was less than 12 billion dol-
lars [46]. This large revenue is only possible because of the large number of people that buy and play
video games. World of Warcraft, the largest Massively Multiplayer Online Role Playing Game, peaked
at 12 million subscriptions [31], and Fantasy Westward Journey, an Massively Multiplayer Online Role
Playing Game (MMORPG) popular in China, hit more than one million daily players [47].

A clear stereotype exists about the people who play games: young males that do little else besides
playing games and barely see the light of day. However, this stereotype is nothing more than that. The
average gamer is actually 35 years old, and the number of female gamers age 18 and older represent
a greater portion of the gamer population than males age 18 and younger [23].

MMORPGs are a type of Role Playing Game in which millions of players explore the same virtual
world. In a Role Playing Game players enter an immersive virtual world using a digital representation of
themselves called an avatar. The player controls this avatar and uses it to interact with diverse content,
varying from logic puzzles to epic battles. In an MMORPG, players can also interact with the avatars
of other players from around the world and explore the virtual world together.

There exist many other popular game genres besides (MMO)RPGs. The Role Playing Game (RPG)
is one of the most popular game genres in 2016 in terms of sales. Other popular genres are First Person
Shooter, Sports, and Adventure [23]. A First Person Shooter (or FPS) is a game in which players
control an armed avatar with the goal to shoot enemies. In contrast to other shooters (for instance
the popular arcade classic Space Invaders), First Person Shooters make the player look through the
eyes of their avatar, making the game more immersive. Many popular sports games simulate real-
world players, teams, and sports events. In these games players take control of an athlete or a team
and try to win competitions against other players or computer controlled opponents. But not all sports
games emphasize realism. For instance, Kopanito All-Stars Soccer2 is a soccer game that focuses
primarily on gameplay and features a cartoony art style instead of realistic looking real-world players
and teams. Adventure games are similar to RPG games but have an emphasis on storytelling and world
exploration instead of an emphasis on combat and improving the abilities of the avatar. An example of
a popular adventure game series is The Legend of Zelda. In The Legend of Zelda, the player controls a
character called Link, and is tasked with freeing princess Zelda from Ganon, who has taken her captive.
The games usually feature a list of fixed missions that need to be completed to finish the game, but
exploration is encouraged by rewarding the player with collectibles, rare items, and additional missions.

While games provide amusement for millions of people, games are also used for other important
purposes. Games that are designed with a purpose other than entertainment are called serious games.
Serious games can be used for societal goals such as training professionals [69] and treating trauma
patients [29, 45] by simulating real-world scenarios, and educating people by presenting content in an
immerse form [2, 24, 51, 53, 57].

1The revenue from selling tickets in movie theaters.
2https://kopanitosoccer.com/

1

https://kopanitosoccer.com/

2 1. Introduction

The large population of gamers enables the growth of the game industry, but also poses challenges
to game developers. Players need fresh content to stay engaged with a game, and do not want to replay
content they have already seen, or content that has been seen by many other people [11]. Players also
want to play together with friends, share experiences and meet new people. To meet these challenges,
researchers look for novel techniques to create fresh content at a massive scale [32] and increase the
performance of games and game platforms to scale games to massive numbers of players [33, 42, 62].
These challenges are both active topics of research. This thesis focuses on the challenge of game
scalability, specifically for Minecraft-like games.

1.1. What is Minecraft?
Minecraft is a game that can be used both for amusement and as a serious game. It can do this
because of a novel feature that allows players to modify the entire virtual world. In this thesis we refer
to this feature as a modifiable world. Minecraft discretizes the virtual world into fixed-length columns
called chunks. These chunks are themselves discretized into blocks. To create the virtual world, the
game generates landscapes and towns using these blocks. In Minecraft, players can remove, place,
and replace any block in the virtual world.3 This creates a large sandbox environment in which players
can be creative and create new entertaining or educational content. In this thesis we refer to games
that feature a modifiable, discretized world as Minecraft-like games.

Because the world is modifiable, players are free to create their own content and share this content
with others. This is not just a hypothetical: a large Minecraft modding-community has evolved online4,
modifying the game even further and sharing custom-built worlds and games built within Minecraft itself.
Additionally, Microsoft acquired Mojang, the developer of Minecraft, for 2.5 billion dollars in 2014 [1]
and has released an education edition of Minecraft that is used in primary schools to teach a variety of
subjects such as history, anatomy, digital logic, and economics using custom Minecraft worlds [2]. A
remake of The Oregon Trail, one of the most successful educational games of all time, is now available
as a Minecraft world. Figure 1.1 shows examples of educational material in Minecraft.

The large community and the acquisition by Microsoft is evidence of the popularity and potential of
Minecraft, as both a creative and educational tool. Providing education in a digital format is important
because it can mean getting higher quality material to a larger audience for a lower cost. Furthermore,
Minecraft can make educational material much more engaging for students than text-books and video,
because it is an interactive game. As such, Minecraft facilitates an important role in society.

Unfortunately, the large scale of the industry does not match the scalability of Minecraft. It is dif-
ficult to scale games to millions of players (which are the number of players in popular MMORPGs),
and Minecraft’s modifiable world poses additional novel scalability challenges. This thesis focuses on
increasing the scalability of Minecraft-like games using novel consistency techniques.

1.2. Problem statement and main research questions
Our goal is to enable massive amounts of players to explore Minecraft’s virtual environments to ex-
plore, create, and learn. In other words, we would like to transform Minecraft’s virtual environment to
a Massively Multiplayer Online Game (MMOG). An MMORPG, such as World of Warcraft or Fantasy
Westward Journey, is a type of MMOG with a specific type of gameplay and content.

State-of-the-art commercial multi-player games use server-client architectures. Players run a game
client on their local computer, while the servers are controlled by the game’s developer. Because the
game developer hosts the servers, it can improve player experience by placing servers geographically
close to players (reducing latency) and running cheat-detection software on the servers. MMOGs can
support millions of players, but a single node can support no more than a few thousand players; the
virtual environment and its workload are too large for a single node. To solve this issue, MMOGs
partition the virtual world and distribute these partitions over multiple servers, distributing the workload
and partially parallelizing the system. Because the clients are distributed over the servers, the number
of messages sent by each individual server to clients is reduced. To allow players connected to different
servers to interact with each other, the game hides the partitioning from the users by sharing some
relevant data between servers. Sharing this data introduces inconsistency between players that are

3Excluding the blocks that indicate the lower– and upper bound of the world.
4https://bstats.org/global/bukkit, http://mcstats.org/

https://bstats.org/global/bukkit
http://mcstats.org/

1.2. Problem statement and main research questions 3

(a) The Oregon Trail implemented in Minecraft. (b) An anatomy lesson in Minecraft.

(c) A digital logic AND gate implemented in Minecraft. (d) A lesson in Minecraft by the Council for Economic Ed-
ucation.

Figure 1.1: Screen-shots from multiple educational Minecraft worlds.

connected to different servers. This inconsistency can become visible to the players in the form of
latency or out-of-order operations, which can reduce gameplay experience.

For a massivized version of a Minecraft-like game, these challenges cause more problems. By
allowing players to modify the environment in addition to all the features of a regular MMOG, the same
amount of players generates a heavier workload, which increases the need for partitioning and sharing
data. In games, only dynamic data is communicated between players. Static content such as textures
(e.g., the paint on a player’s weapon or tool) and models (e.g., a building or vehicle) is stored locally
on the player’s device. Dynamic content, such as player behavior (e.g., movement, combat) and its
consequences (e.g., finding an item, gaining experience points) has to be communicated between
players. Minecraft features a virtual environment that is completely modifiable by players. For instance,
players can decide to build a complete city, or dig a network of tunnels. This means that the complete
environment is dynamic, and has to be communicated between players. We conjecture that this results
in significantly more network traffic, forming a scalability bottleneck.

We formalize these problems in the form of four research questions.

RQ1 How to assess the scalability of Minecraft-like games?
It is important to quantify the scalability of the state-of-the-art before any claims of improvement
can be made. However, currently no tools to measure the scalability of Minecraft exist.

RQ2 How to adapt the Conit consistency model to apply to Minecraft-like games?
The Conit consistency model is a model that allows bounded inconsistency between nodes in a
distributed system. In this thesis we refer to this model as the Conit model, or simply as Conits.
The Conit model is a general model that is aimed at general distributed systems and balances
generality and practicality. Minecraft-like games are a very specific type of distributed system and
have specific properties for which the Conit model was not designed. We conjecture that the Conit

4 1. Introduction

model requires changes to be less general and more practical for its application to Minecraft-like
games, but how the model should be changed is not obvious.

RQ3 How to design a system that improves the scalability of these games?
Designing a system that applies novel scalability techniques to Minecraft is challenging because
no system currently exists that combines these elements.

RQ4 How to evaluate such a system experimentally?
To understand the proposed system, its performance must be quantified. However, no standard-
ized tools exist to measure the scalability of computer systems.

1.3. Research-oriented approach
This thesis takes a four-step approach to answer the main research questions. This section describes
the approach taken in this thesis to answer the research questions.

First, it is important to assess the current status of Minecraft’s scalability to see where and how
scalability improvements can be made. To this end we design and implement Yardstick, a distributed
Minecraft benchmarking tool to assess the scalability and determine system bottlenecks. This is done in
collaboration with Jerom van der Sar, who is a Minecraft expert and Bachelor Honors student. Yardstick
is an ongoing research project and is currently used to perform a more in-depth study of Minecraft
scalability.

Second, we propose the Dynamic Conit model: a consistency model based on the Conit consis-
tency model, with additional mechanisms that makes it practical for Minecraft-like games. To show the
flexibility of the Dynamic Conit model, we propose two applications of Dynamic Conits to Minecraft-like
games.

Third, we design and implement Meerkat, a prototype distributed system that implements the Dy-
namic Conit model. The Dynamic Conit model specifies a number of mechanisms, but leaves selecting
the right algorithms and system design up to the programmer. As such, Meerkat is one possible imple-
mentation of the Dynamic Conit model.

Fourth, we evaluate our approach by performing real-world experiments on Meerkat using a com-
bination of synthetic and trace-based workloads. The experiments focus on the increase in scalability
when allowing bounded inconsistency between nodes, and evaluating the effects of changing consis-
tency bounds at runtime. We perform our experiments on the DAS-5, a distributed super computer for
computer science research designed by the Advanced School for Computing and Imaging [10].

1.4. Main contributions
The main contributions of this thesis follow the main research questions presented above:

1. Evaluation of the scalability of Minecraft-like games using Yardstick, the first distributed large-
scale benchmark of Minecraft-like games. (RQ1)

2. Design of a new consistency model called Dynamic Conits, which is based on the Conit consis-
tency model and can be applied to Minecraft-like games. This is the first attempt modify the Conit
consistency model such that it applies to games. (RQ2)

3. Design of a Meerkat, a prototype system that implements the Dynamic Conit model. This is the
first system that implements Dynamic Conits, a consistency model that is designed to improve
the scalability of Minecraft-like games. (RQ3)

4. Evaluation of Meerkat using real-world experiments and trace-based workloads. This is the first
evaluation of scalability techniques for Minecraft-like games using the Conit or Dynamic Conit
model. (RQ4)

We are currently writing an article based on the main findings of this thesis. This article will be
submitted in Q1 of 2018. This thesis is part of the Opencraft research project5, which is an ongoing
research project from the @large research team, aimed at massivizing Minecraft-like games. Yardstick
and Meerkat, systems introduced later in this thesis, are developed as part of this project.
5https://atlarge-research.com/opencraft

https://atlarge-research.com/opencraft

1.5. Structure of this thesis 5

1.5. Structure of this thesis
This chapter introduces Minecraft, the challenges this thesis addresses, the formal research questions
derived from these challenges, and the approach taken to answer these research questions. The next
chapter gives background information on existing research in both game scalability and consistency.
The main content chapters are Chapter 3 through 6. Chapter 3 discusses the Dynamic Conit model and
how it can be applied to games. Chapter 4 discusses the design of Meerkat, a system that implements
the Dynamic Conit model. Chapter 5 discusses the experimental setup and the design of Yardstick,
the benchmarking application for Minecraft-like games. Chapter 6 discusses the results for both the
experimental evaluation of Minecraft scalability as well as the experimental evaluation of Meerkat.

If you are interested in…, you should read Chapter…
1 2 3 4 5 6 7

2.1 ≥2.2 5.1 5.2 6.1 6.2
all content ! ! ! ! ! ! ! ! ! !

using consistency models to increase
scalability in distributed systems

! # ! ! ! # ! # ! !

scalability of Minecraft-like games ! ! # # # ! ! ! # !

Table 1.1: A reader guide for readers with a specific interest.

2
Background

Minecraft is one of themost popular games of all time and offers the unique feature of amodifiable world.
This promotes creativity among players and makes Minecraft suitable for not only recreational but also
educational purposes [7, 24, 43, 51, 57]. However, Minecraft was not built to scale with its popularity,
limiting its usability such that the majority of servers only hosts tens of players simultaneously.

This thesis uses bounded inconsistency between nodes as a novel scalability technique forMinecraft-
like games. To this end, this chapter discusses existing research on both Minecraft and consistency
models in the following two sections. The third section of this chapter discusses the Conit consistency
model, the model used and extended in this thesis. The last section discusses consistency models that
are similar to the Conit model and discusses their positive and negative properties when applying the
model to a Minecraft-like game.

2.1. Minecraft-related research
While Minecraft is one of the most popular games of all time, not much research exists on the scalability
of the system and the behavior of its players. This section summarizes Minecraft-related research on
these topics.

Alstad et al. analyze the performance of the Minecraft server using custom built player emulation us-
ing ProtocolLib1, a library for the Minecraft network protocol [6]. The experiments confirm that Minecraft
does not scale well with the number of players. However, the experiments do not represent a real-world
scenario since a completely flat map is used, entities and weather effects are turned off, and the be-
havior of the bots is not based on any movement model.

HeapCraft is a project aimed at analyzing the behavior of players in Minecraft and improving collab-
oration [49]. Part of the HeapCraft project is a collection of plug-ins that collect data on player behavior
and asks players which activity they are involved in, which is used to build a classifier to automati-
cally detect player activities [48]. Because Minecraft features a modifiable world, player behavior in
Minecraft likely differs from player behavior in regular games. Insight into player behavior in Minecraft
is necessary to create movement models that can be used for realistic performance testing of Minecraft
server implementations.

Kiwano is a distributed system for scaling virtual worlds [20]. Kiwano improves scalability by reduc-
ing network traffic using spatial partitioning. With spatial partitioning, geographically contiguous areas
of the virtual world are partitioned into zones. Servers are then allocated to simulate each of these
zones individually. Static spatial partitioning of the virtual world into zones is used in state-of-the-art
commercial MMORPGs. Partitioning based on other properties, such as social connections between
players, is an active research topic [67]. Kiwano partitions the virtual world into zones dynamically,
based on the current location of players. This balances the number of players in each zone, balanc-
ing the total workload. This makes allocating resources easier, because the workload caused by the
players in each zone is roughly equal. With Kiwano, instead of a server distributing updates to all its
clients, players run a server locally. This server then forwards the updates from its only client to Ki-
wano. Kiwano decides which other clients should receive the updates based on the position of their
1https://github.com/aadnk/ProtocolLib

7

https://github.com/aadnk/ProtocolLib

8 2. Background

avatars in the virtual world; players only receive updates from other players that are geographically
close. This approach has three drawbacks. First, Kiwano makes a binary decision about forwarding
client updates to other clients. Network traffic could be reduced further by decreasing the frequency of
updates received for clients that are in vision of, but not of interest to, the player. Second, Kiwano only
works for updates related to moving entities, and does not support other events, such as the placement
or removal of blocks in a virtual world. It is likely that such updates occur frequently in Minecraft, be-
cause a modifiable world is its distinguishing feature. Third, dynamically partitioning zones based on
player locations can reduce the gameplay experience in areas that are densely populated, such as the
main city areas in World of Warcraft. Because the avatar density of these areas is high, the dynamic
partitioning makes the zones small to balance the workload. This can lead to unrealistically small view
ranges for players, because they do not receive updates from players in non-neighboring zones.

Manycraft [21] is an architecture to scale Minecraft through the use of Kiwano. In Manycraft, clients
locally run a Manycraft node, which contains a Minecraft server and a proxy to communicate with
the underlying Kiwano network. Kiwano communicates updates from the client to other Manycraft
nodes, making updates visible for other players. A drawback of this approach is that, because Ki-
wano only supports communicating entity locations, Manycraft does not support modifiable Minecraft
environments. Additionally, the scalability improvements of Manycraft are only evaluated using coarse-
grained system-level metrics such as memory usage. Although these metrics are related to scalability,
experiments using application-level metrics are needed to evaluate the scalability as perceived by the
players.

Koekepan [22] aims to provide a research platform for novel scalability techniques for virtual worlds.
It is built on top of Minecraft using the default Minecraft client and a modified version of the Minecraft
server. Koekepan allows Minecraft to use a cluster of servers by providing a proxy between the
Minecraft client and the servers. Because the Minecraft client only communicates with the proxy, it
is unaware of the distributed server setup, and the default Minecraft client can be used to connect to
the system. Koekepan is designed to use dynamic spatial partitioning to balance the load over the
server cluster. Koekepan is implemented as a proof-of-concept, and does not present any experimen-
tal results. It is unclear how much Koekepan’s architecture has increased scalability compared to the
vanilla implementation of Minecraft.

Spatial partitioning, used in Kiwano, Manycraft, and Koekepan, aims to improve scalability by re-
ducing the number of messages sent from the servers to the clients. This allows each server to spend
more time simulating the virtual world and player actions. This thesis takes a similar approach, but
takes a more formal route by using bounded inconsistency offered by the Conit model to reduce net-
work traffic. To understand how the Conit model works, it is important to understand the concept of
consistency in distributed systems. The next section gives a brief introduction to this topic.

2.2. A brief introduction to consistency
Consistency is a large field which has been researched for many years. Where early research focused
on shared-memory architectures and multi-core processors, today’s consistency research focuses on
distributed systems that span the entire globe. This section aims to give some context to the material
presented in this thesis by discussing some of the most well-known consistency models in the field of
distributed systems.

To understand why there are so many existing consistency models, it is worth to briefly discuss the
CAP theorem [26]. The CAP theorem describes an inherent trade-off in distributed systems between
Consistency and Availability caused by the possibility of network Partitions. In a distributed system,
multiple nodes work together towards a common goal. To do this, data often needs to be shared be-
tween these nodes. The World Wide Web is an example of a distributed network. In this example, the
data shared between the nodes are web pages. Consistency is defined as the degree of agreement
between the nodes on the value of the shared data. For instance, if a web browser caches a web page
from a server, the data is consistent across these machines. However, when the server updates the
web page, inconsistency is introduced in the system: the server and the web browser have different
versions of the same data. Availability is defined as the ability of users or clients to communicate with
the distributed system and use its features. The World Wide Web is an example of a highly available
system: a system designed to be always available to users, even if accepting user input means that
inconsistencies are introduced in the system. An alternative type of system, such as ACID databases,

2.2. A brief introduction to consistency 9

guarantee strict consistency to users: these systems are always consistent, even if this means tem-
porarily preventing users from making changes to the data. In the event of a network partition, which
means that a subset of the nodes in the distributed system cannot connect to the remaining nodes in
the system, the CAP theorem states that all distributed systems have to choose between remaining
available to users (allowing inconsistency to be introduced in the system), or to remain consistent (re-
fusing users to make changes to the data). In this thesis, refusing users from making changes to the
system is referred to as either limiting availability or blocking. Research on consistency in distributed
systems has resulted in many different consistency models, which can be used to define, quantify
and/or guarantee consistency in a distributed system. This section proceeds by describing a number
of well-known consistency models.

Early consistency models focused on multi-processor and shared-memory systems, and aimed to
be strict but computationally efficient [39]. An advantage of these models is that they can give strong
guarantees about the consistency of the system. The rise of the World Wide Web, distributed com-
puting, and later cloud computing, changed this trend to consistency models that are less strict, but
tolerate node failures and message loss, and provide high availability and low latency to users. An ad-
vantage of these models is that they hide the performance penalty incurred when synchronizing data
across large distributed systems. The most extreme version of relaxed consistency is eventual consis-
tency, which gives no consistency guarantees except that if no more accesses are issued, the system
will eventually converge to a consistent state. One of the most well-known distributed algorithms that
guarantees eventual consistency in a distributed system and tolerates node failures and message loss
is Paxos [37]. Although these are desirable properties in a distributed database, implementing Paxos
in practice and integrating it in a distributed system is non-trivial [16]. Over the last two decades, in a
move back to stricter consistency models, researchers have suggested multiple consistency models
that still provide high availability and low latency, but also give some (probabilistic) consistency guar-
antees. Although some work had already been done on the topic of staying available in the case of
network partitions [19, 25, 34, 63], these models were mostly built on top of existing consistency models
that did not formulate their consistency guarantees from the perspective of the user. This section briefly
describes a number of well-known consistency models from the distributed systems field, ordered from
the strictest to the weakest model (unless readability is impaired, in which case the reversed order is
explicitly indicated). This provides the reader with a context to understand the features of the Conit
consistency model, which is discussed in the next section.

Linearizability is one of the strictest models that can be used in practice. Linearizability guarantees
that the result of a set of accesses on a particular data item is equivalent to a sequential ordering of
these accesses that satisfies two additional conditions [30]:

1. Accesses from one node appear in the same order as they where issued.

2. For any access 𝑎 that is completed before an access 𝑏 is started according to wall-clock time, 𝑎
is ordered before 𝑏.

This matches with an intuitive meaning of a consistent system: any access to a data item is aware of
all earlier accesses to that data item that are completed, no matter where these access occur in the
system. This model does not offer high availability: a write must be communicated across the entire
system before new accesses can be started.

Sequential consistency is similar to linearizability, but it does not require the ordering of the accesses
to match the wall-clock time order, dropping the second ordering requirement from linearizability [36].
Dropping this requirement makes sequential consistency less strict, but it can also yield results that
may be confusing for users. For instance, if data item 𝑥 has an original value of 5, 𝑤(𝑥, 𝑦) writes value
𝑦 to data item 𝑥, and 𝑟(𝑥) → 𝑦 reads data item 𝑥, which yields result 𝑦. Let 𝐴 and 𝐵 be nodes in a
distributed system. Then the following execution is sequentially consistent:

𝐴,𝑤(𝑥, 7)
𝐴, 𝑟(𝑥) → 7
𝐵, 𝑟(𝑥) → 5

Furthermore, enforcing sequential consistency in distributed systems is costly and cannot be used in
highly-available systems.

10 2. Background

Causal consistency is a more relaxed consistency model that can be supported in highly available
distributed applications [3]. Instead of a total order, only a partial order is guaranteed under causal
consistency. The ordering used in causal consistency is an acyclic directed graph called the happened-
before graph. For every two accesses 𝑎 and 𝑏 in this order where there is a path from 𝑎 to 𝑏, one of
the following rules must hold:

1. 𝑎 is placed before 𝑏 in the original program order (and come from the same node).

2. 𝑎 reads a value that is written by 𝑏.
3. There is an access 𝑐 in between 𝑎 and 𝑏 such that 𝑎 causally precedes 𝑐, and 𝑐 causally precedes
𝑏.

If there is no causal relation between two accesses, the causal consistency model sees these accesses
as concurrent. No ordering is specified for concurrent accesses. Furthermore, if nodes do not (indi-
rectly) communicate with each other, their accesses are concurrent to each other. Because no ordering
is created for concurrent accesses, nodes that do not do not communicate with each other are allowed
to diverge from each other, becoming increasingly inconsistent. The causal consistency model does
not include mechanisms to prevent nodes from diverging because they do not communicate.

Real-time causal consistency (RTC) is a modification of causal consistency that adds an additional
requirement to the ordering of accesses. It is therefore a stricter model than causal consistency. In RTC,
an access 𝑎 that happens after an access 𝑏 in real time may not be ordered before 𝑏 in the happens-
before graph [44]. However, 𝑎 and 𝑏 can be ordered as concurrent accesses. In case 𝑎 and 𝑏 are
both writes to the same data item, it is up to the application to resolve the conflict. Many systems that
implement causal consistency actually implement RTC, because ordering 𝑎 before 𝑏 only happens in
artificial circumstances (such as lowest-id writer wins). RTC is stricter than causal consistency, but not
as strict as sequential consistency. However, RTC can still be guaranteed in highly available systems,
in contrast to sequential consistency which cannot.

COPS is a distributed database that formally defines and uses the causal+ consistency model. This
consistency model is also an adaptation of causal consistency. In causal+ consistency, concurrent
operations are resolved to prevent conflicts and diverging nodes [41]. causal+ consistency is a stricter
model than causal consistency, but not as strict as RTC because it lacks the real-time requirement.

Eventual consistency is a catch-all term for consistency models that do not give any consistency
guarantees but one: if no more accesses are issued, the system eventually converges to be fully
consistent. Reducing the consistency guarantees also reduces the complexity of the design and im-
plementation of large-scale distributed systems, which is one of the reasons why these systems have
gained popularity. Eventually consistent systems are highly available, and can be consistent most of
the time [9], but no guarantees can be given.

This section only gives a brief overview of some of the most well-known consistency models to
create a context for the remainder of this thesis. For a more in-depth exploration of consistency models,
the reader may consult one of the many surveys on consistency models and mechanisms [12, 27, 68].

2.3. The Conit consistency model
This section discusses the Conit consistency model [70]. This thesis uses the Dynamic Conit consis-
tency model, an adapted version of the Conit model, to improve the scalability of Minecraft-like games.
To understand the Dynamic Conit model, and how it is different from the original Conit model, it is
important to first look into the Conit model.

This section is divided into three parts. First, it discusses five important features of the Conit model
and motivates why these features are desirable in the context of Minecraft-like games. Second, it
introduces the notion of a Conit and its consistency dimensions. The Conit consistency model uses
these Conits to achieve the five important features. Finally, it discusses a number of limitations of the
Conit model that limit its applicability to Minecraft-like games.

2.3.1. Important features
The Conit consistency model has five important features that differ from the models discussed in the
previous section:

F1 The Conit model supports a spectrum of consistency bounds.

2.3. The Conit consistency model 11

F2 The Conit model supports indicating the importance of individual updates.

F3 The Conit model supports defining real-time bounds on writes.

F4 The Conit model supports arbitrary consistency bounds on arbitrary data.

F5 The Conit model supports defining consistency bounds per node.

This section discusses the Conit consistency model using the five features listed above.
There exists a trade-off between consistency and synchronization. In general, if a stricter consis-

tency model is enforced on a system, the nodes in that system require more synchronization. Synchro-
nization between nodes takes time. Because this time could also be spent accepting new accesses
from clients, the trade-off between consistency and synchronization can also be formulated as a trade-
off between consistency and performance, where performance is defined as system throughput. For
MMOGs throughput is an important metric: it is proportional to the number of entities that can be up-
dated in a single tick. A consistency model that offers a spectrum of consistency settings could offer
high throughput when needed while keeping consistency as high as possible.

Assigning importance to individual writes is useful because it can be used in combination with a
player’s area of interest [40]. For a single player, some updates may be more important than others. A
trapdoor opening a hundred meters away is much less interesting (and allows lower consistency) than
a trapdoor opening directly under the player’s feet!

A notion of time in the consistency model is important because games are real-time systems. The
time of an event is often just as important as the event itself. For instance, if a player triggers a trap or
shoots an arrow, not only is it important that the trigger (pressing a button, releasing the arrow) is visible
before the event (a trapdoor opens, the arrow flies off), it is also important that the event is visible soon
after trigger.

The Conit consistency model can be implemented as part of a distributed system, located be-
tween the data and the network. The Conit model does not know the semantics of the data that is
exchanged [70]. This allows flexibility in its application to Minecraft-like games: Conits can be defined
for the area in which the player is currently located, for other players with whom the player interacts,
for items in which the player in interested, etc.

The ability to set consistency bounds per node allows the system to tune consistency and throughput
where needed. For instance, if a player opens an in-game menu which covers most of the screen, that
player may tolerate much lower consistency than a player that is building a structure together with (and
in close proximity of) friends.

2.3.2. Conits and consistency dimensions
In the Conit consistency model, consistency bounds are specified individually by each node by creating
a so-called Conit. A Conit is a data structure that consist of a list of nodes that share the Conit, and
three numerical values: an allowed inconsistency boundary for three distinct consistency dimensions.
These dimensions are:

1. Staleness, which controls the staleness of data.

2. Numerical error, which controls the amount of unseen change.

3. Order error, which controls ordering guarantees.

These bounds can take any integer value in the domain [0,∞). The Conit consistency model allows a
system to define an arbitrary number of such Conits.

Using Conits, systems are able to quantify and bound inconsistency between nodes. The Conit
model allows consistency to vary between the extremes of linearizability and eventual consistency.
Every access (read or write) indicates if it affects or depends on one or multiple Conits. Inconsistency
is quantified over updates; every write changes a value by a certain amount. For this reason, writes
are also called updates in the remainder of this thesis. The Conit consistency model guarantees that
the inconsistency of the data shown to the user never exceeds the configured value. If Conit consis-
tency bounds are exceeded (determined by the updates that affect the Conit), synchronization between
nodes is required before the access can be completed. Synchronization is a blocking mechanism that
guarantees the system consistency stays within bounds from the perspective of the user. Updates are

12 2. Background

Conit: "structure 1"

Node A

w1, place block
w2, place block
w3, place door

Node B
staleness bound = 60ms

pull writes (w1,w2,w3)

ti
m

e
 i
n
 m

s

.

0
20
40
60

Figure 2.1: An example of a node ፁ bounding staleness to 60ms by sharing a Conit called “structure 1” with a node ፀ. All writes
shown in the figure affect this Conit.

never discarded, but are communicated between nodes during synchronization. The system is fully
consistent when all nodes have seen all updates.

This section proceeds by explaining each of the three consistency dimensions, and how they are
used to bound the inconsistency. These sections make use of an example Conit called “structure 1”.
This name refers to a player-built structure in a modifiable world. We assume that the game is able to
detect such a structure, and ensures both reads and writes that affect the structure are indicated as
such. In the example, this Conit is shared between two nodes, 𝐴 and 𝐵. The values of the consistency
bounds that are used by the Conit depend on the consistency dimension that is discussed.

Staleness
The amount of latency between a game server and its client has a significant effect on the gameplay

experience of the player [8, 17, 54–56, 59, 64]. First Person Shooter (FPS) games are most sensitive
to latency. For these types of games, the gameplay experience of players decreases when the latency
reaches values in the hundreds of milliseconds [8, 54]. For Minecraft-like games, which focus on player-
to-player and player-to-environment interaction in a large open world, a latency in the order of hundreds
of milliseconds is the the acceptable limit for the games to be playable [17, 56, 64], but some players
might still be able to detect latencies as small as 26-40ms [55]. In general, high latency can cause
player experience to decrease. Because of this it is not only important for the latency to be bounded,
it is also important that the latency remains within a range that is tolerable for the players.

Games are typically tick-based, updating the game state at a fixed frequency. The tick frequency
affects latency: if a server operates at a tick frequency of 20Hz, a new tick is started every ኻ

ኼኺ =
0.05 seconds, or 50ms. This means that without taking into account network latency, updates from
the server can take 50ms to reach a client. Assuming stable network conditions, games use the tick
frequency to effectively bound the latency on updates. For instance, Minecraft-like game servers send
updates such as entity locations to all connected clients every tick.

The Conit model bounds latency using a consistency dimension called staleness. Staleness is the
amount of time an update may go unseen by one of the nodes in the Conit. The Conit model lets
the implementation up to the programmer, but TACT, a prototype system that implements the Conit
model [70], uses a pull-based approach combined with limiting availability to guarantee the staleness
bound. As discussed in Section 2.2, limiting availability means that the system blocks: the system
is unavailable to users while synchronization is in progress. Using this approach, a node frequently
checks the last time it has pulled updates from other nodes. If the elapsed time since the pull of
updates exceeds the staleness bound, the node blocks and pulls updates from the other nodes before
it becomes available again. Although the pull-based approach provides a strong guarantee, is has the
downside that it can be inefficient: other nodes can be contacted at times that no updates are available.

As an example we use a scenario where two clients participate in a Minecraft-like game and share
a Conit called “structure 1”. To make the real-time aspect more explicit, the number of milliseconds is
displayed on the left-hand side. Node 𝐵 specified a staleness bound of 60ms. Node 𝐴 places a block
every 20ms. After 60ms, node 𝐵 has not received writes from its neighbors for 60ms, which is equal
to its staleness bound. This means node 𝐵 must now pull the writes from its neighbor, node 𝐴. This is
indicated by the black arrow from 𝐴 to 𝐵.

2.3. The Conit consistency model 13

Conit: "structure 1"

Node A

w1, place block (+1)
w2, place block (+1)
w3, place door (+3)
5>4, push writes

Node B
numerical error = 4

w1,w2,w3

ti
m

e
Figure 2.2: An example of a node ፁ bounding numerical error to 4 by sharing a Conit called “structure 1” with a node ፀ. All writes
shown in the figure affect this Conit.

Numerical error
When pulling updates at a fixed frequency, no guarantee is given about the importance of the re-

ceived updates. Some updates might not be noticeable to players or are simply irrelevant. Two exam-
ples of such updates in a Minecraft-like game are modifications that are made to the virtual world that
are far from the player’s avatar, and minuscule movements of other avatars in the game. The Conit
consistency model uses a numerical error dimension that can be used to communicate updates when
they are relevant.

The numerical error of a node is defined by first assigning a global weight to each write, and then
calculating the sum of the weights of locally unseen writes. Nodes first share their numerical error
bounds with other nodes. Then each node propagates writes to other nodes to prevent them from
exceeding their numerical error bound. The decision to propagate writes is taken conservatively based
on local information. Two observations are important here.

1. Because the error is defined between a node 𝑟 and a global state, there may at an arbitrary point
in time be no nodes that have a numerical error of 0. That is: none of the nodes have seen all
writes.

2. The numerical error is defined as the sum of the weights of the writes. This means that clients
may still perceive different information when consulting different nodes when the numerical error
is 0, because of differences in write order between the nodes.

An example of the effect of setting a numerical error bound can be seen in Figure 2.2. In this
figure, we see two nodes that are participating in a Minecraft-like game. The accesses shown in the
example affect a Conit called “structure 1”, which the nodes use to define special consistency rules for
a particular building in the game. The nodes are both clients, and client 𝐴 is placing blocks. Client 𝐵
has specified a numerical error bound of 4, which means that the total weight of unseen writes may not
exceed 4. Client 𝐴 first places two regular blocks, which have a global weight of +1. This brings the
total weight to 2, so no communication between the nodes is required (but is allowed). However, client
𝐴 places a door, a more significant type of block, which has a weight of 3. This brings the total weight
of writes not seen by 𝐵 to 5, which is more than the numerical bound set by 𝐵. Therefore, before 𝐴 can
accept new accesses, its writes need to be communicated to 𝐵.

Order error
Even when all updates are synchronized between all nodes, different nodes can still have a different

view of the resulting data. The reason for this inconsistency is that synchronizing updates between
nodes does not specify in which order to apply the updates. Current Minecraft-like games are all
designed as single-server systems, in which the server determines the order of all updates. However,
all MMOG games use multiple servers to enable scaling to large numbers of players. These servers
exchange updates and need to agree on the order of these updates to give players a consistent view
of the data. Creating a fixed order of updates can be time consuming, and might not be necessary
after every update. The order error dimension of Conits allows nodes to specify the number of updates
that can be accepted without agreeing on their order with other nodes. This reduces the number of
times such an order needs to be established. More formally, the order error is defined as the number
of writes on a node that may still be reordered. In this thesis, we refer to such writes as uncommitted

14 2. Background

Conit: "structure 1"

Node A
order error = 5
wA1, place block x1y1

wA2, place block x2y2

commit wA1,wA2,wB1

Node B
order error = 0

wB1, place block x3y3

commit wA1,wA2,wB1

ti
m

e

Figure 2.3: An example of a node ፁ bounding order error to 0 by sharing a Conit called “structure 1” with a node ፀ. All writes
shown in the figure affect this Conit.

writes. The algorithm used to commit writes may be chosen freely by the system that implements the
Conit model.

An example of the effect of setting an order bound is shown in Figure 2.3. Two clients play a
Minecraft-like game and issue accesses over time that affect a particular Conit called “structure 1”. In
this example, only regular blocks are placed. Detecting conflicting writes is up to the application and
is therefore not discussed here. To make this explicit, the blocks in this example are each placed on a
unique location. In this example, both nodes specify an order bound. Node 𝐴 specifies an order bound
of 5, while node 𝐵 specifies an order bound of 0. First node 𝐴 issues a write, which raises its error bound
to 1 and is accepted. Next, both node 𝐴 and node 𝐵 issue writes. At this time, node 𝐴’s order error is
raised to 2 and node 𝐵’s order error is raised to 1. Because node 𝐵 specified an order error bound of
0, its messages must be committed immediately. Committing messages involves creating a total order
for the messages that are committed, which requires communication. Which commit algorithm is used
is not important, only that after the commit phase there is no node in the system that exceeds its order
error bound.

2.4. Similar consistency models
This section discusses a number of consistency models that are similar to the Conit consistency model.
This section differentiates between two types of models. The first type of model originates from consis-
tency model research. Usually these models are designed to be applicable to a specific type of system
and are accompanied by a prototype implementation that is used to evaluate the model. The second
type of model originates from game– or distributed-systems research. These models are usually em-
bedded in a real-world system. This allows a more in-depth experimental evaluation, but can restrict
the generality of the consistency model. These consistency models have a number of features that
are desirable for the domain of Minecraft-like games. The important features from the Conit model
discussed in Section 2.3 and the features from the related consistency models discussed here are
summarized in Table 2.1.

2.4.1. Consistency model research
The Timed consistency model specifies a variable Δ that indicates the maximum amount of time a write
may go unseen by other nodes [65, 66]. Δ takes a numerical value and is analogous to the staleness
dimension that are part of Conits: it creates a consistency spectrum which bounds the real-time delay
between an update being accepted and it being visible on all nodes. A difference with the Conit model
is that Timed consistency does not support assigning an importance or weight to individual writes.
Additionally, Δ is a global parameter, which means that all data that is synchronized between nodes
adheres to the same consistency bound. In the Conit model, individual bounds can be assigned to
each Conit for each node.

Beehive introduces Delta consistency. Similar to the Conit staleness bound and Timed consistency,
Delta consistency guarantees that a read returns the last value that was written at most delta time units
before that operation [61]. Similar to Timed consistency, Delta consistency also has delta as a global
parameter of the application. The value delta can be specified as a time unit relative to a node’s wall
clock or a form of logical clock called virtual time. Using the wall clock makes delta consistency appli-
cable for real-time systems such as games. Similar to TACT, Beehive limits availability (by blocking) if
consistency bounds are exceeded, thereby guaranteeing the consistency bound.

The consistency model suggested by Krishnamurthy et al. [35] describes a model similar to Conits.

2.4. Similar consistency models 15

It defines both staleness and order error as dimensions to measure inconsistency. However, it does
not support bounding inconsistency on numerical error, which means that it does not support assigning
importance to individual updates. The model specifies order error as a global service-level parameter,
and staleness as a parameter set by the client. The Conit model does not use the notion of a client,
instead it considers all nodes as being equal and sharing the same data. The model also defines the
staleness of data using a logical clock that progresses with the number of updates. Staleness is then
the number of updates that have been submitted but not seen by the contacted node. This behavior can
be modeled using the numerical error bound of Conits if each write is set to have a weight of 1. It does
not correspond to the Conit definition of staleness, which uses wall-clock time and is defined as the
amount of time a data item can be accessed on a node before that node needs to pull updates from the
other nodes in the system. Themodel lets clients specify a staleness bound and a probability with which
this bound should be met for each access. In the Conit model, consistency is enforced by blocking if
bounds are exceeded, whereas the probabilistic guarantees of this model allow it to be always available.
Allowing bounds to be set per access the model supports dynamically changing consistency bounds
at runtime. This is an important feature because the workloads on games are also dynamic, which
means that the amount of inconsistency that is tolerable for the players can also be dynamic. Another
important feature from this model is that client-server communication is used, which maps directly to
Minecraft-like games. In contrast, the Conit model uses all-to-all communication between nodes, a
setup that is feasible for a small network of nodes, but not for globally distributed systems such as
MMOGs.

2.4.2. Games and distributed systems research
Vector-Field consistency [58] uses a consistency model based on the Conit consistency model. It
guarantees arbitrary levels of consistency measured across time, order, and value differences.2 Their
algorithms are simple because their system uses a lock-step approach. This is feasible since their use-
case is an ad-hoc network with a single node in control of all traffic. The consistency model introduces
a notion of consistency zones, areas around a pivot such as a player that determine the guaranteed
levels of consistency of data in the consistency zones around the pivot. The consistency bound can
be defined for each consistency zone using a consistency degree. These areas define monotonically
decreasing levels of strictness in consistency. Consistency zones, consistency degrees, and pivots can
be defined for any set of game objects. This model creates flexibility in assigning different consistency
degrees to different game objects, but these differences are defined based on spatial properties (the
zones around the pivot). The Conit consistency model offers greater flexibility by allowing any update to
affect any Conit, allowing arbitrary consistency bounds to be assigned to arbitrary sets of data. Similar
to the consistency model proposed by Krishnamurthy et al., the Vector-Field consistency model uses
client-server communication, which directly maps to Minecraft-like games. This is an important feature
that is missing in the Conit consistency model.

There has been extensive research published on the topic of scaling virtual environments. Don-
nybrook [15] has been proposed by Bharambe et al. as an architecture for large-scale high-speed
peer-to-peer games. Donnybrook utilizes area-of-interest (AoE) management, defining an interest set
for each player. Players receive frequent updates for other players that are in their interest set, but
infrequent updates for players that are not. This binary choice means that Donnybrook does not offer
a consistency spectrum. It also does not allow indicating the importance of individual writes: writes
are either important to a player, or they are not. Reducing the number of updates for some entities in
the virtual world corresponds to the approach of this thesis. However, using Dynamic Conits allows
fine-grained control over the consistency between players because Conit bounds can be set to arbitrary
values. Donnybrook does not give strong consistency guarantees, but dynamically configures for each
players which updates are important and which are not.

Colyseus is an architecture for large-scale online games that uses relaxed consistency to improve
system performance [14]. In the Colyseus architecture, game objects are assigned a primary node
that is in charge of ordering the updates that are applied to that object. If an object is updated at
a different node, these updates are applied tentatively, and may be reordered later by the primary
node. Colyseus relates the types of inconsistency that can occur to the Conit consistency model,
but it does not enforce consistency guarantees among the nodes. Instead, an optimistic approach

2The value difference corresponds to the numerical error bound used by the Conit model.

16 2. Background

is used that propagates updates to nodes after each tick. Colyseus implements almost none of the
important features from Table 2.1. However, Colyseus is the only system that applies weak consistency
to increase the scalability of games running on multiple servers. Both the Opencraft project and this
thesis want to use bounded consistency for the same goal.

PNUTS is a distributed database developed at Yahoo! that uses per-record timeline consistency [18].
For each record, or data item, writes are ordered using sequence numbers. These sequence numbers
are available to clients, allowing the clients to specify their required level of consistency through spe-
cific API calls. For example, if clients require high availability the read-any call can be used which
may return a stale value of the data item. If clients require the most recent data and can afford wait-
ing, the read-latest call can be used. PNUTS also supports a read-critical(version) call
which returns a version of the data item equal or greater than the one specified in the call, which allows
dynamically bounded inconsistency based on data item versions. This API effectively creates a consis-
tency spectrum for reads issued by clients. Because this spectrum is defined for versions of the data,
it does not consider the real-time delay on the visibility of updates. Because the required consistency
is defined per read, arbitrary bounds can be set for arbitrary data which can be different for each client.

2.4. Similar consistency models 17

M
od

el
fe
at
ur
es

C
on

its
Ti
m
ed

/D
el
ta

Kr
is
hn

am
ur
th
y
et

al
.

Ve
ct
or
-F
ie
ld

D
on

ny
br
oo

k
C
ol
ys
eu

s
PN

U
TS

C
on

si
st
en

cy
is

gu
ar
an

te
ed

gu
ar
an

te
ed

pr
ob

ab
ilis

tic
op

tim
is
tic

op
tim

is
tic

op
tim

is
tic

gu
ar
an

te
ed

C
on

si
st
en

cy
sp
ec
tru

m
(F
1)

LI
N
-E
C

!
!

!
#

#
!

W
rit
e
im
po

rta
nc
e
(F
2)

!
#

#
!

#
#

#

R
ea

l-t
im
e
bo

un
d
(F
3)

!
!

#
!

#
#

#

Ar
bi
tra

ry
bo

un
ds

on
ar
bi
tra

ry
da

ta
(F
4)

!
#

!
~

#
#

!

C
on

si
st
en

cy
gr
an

ul
ar
ity

(F
5)

pe
rn

od
e

gl
ob

al
pe

rr
ea

d
pe

rc
lie
nt

pe
rc

lie
nt

gl
ob

al
pe

rr
ea

d
N
on

-b
lo
ck
in
g
bo

un
di
ng

m
ec
ha

ni
sm

s
#

#
!

#
!

!
#

D
yn
am

ic
re
co
nf
ig
ur
at
io
n

#
#

~
#

!
#

!
In
te
ra
ct
io
n

al
l-t
o-
al
l

al
l-t
o-
al
l

cl
ie
nt
-s
er
ve
r

cl
ie
nt
-s
er
ve
r

cl
ie
nt
-s
er
ve
r

se
rv
er
-s
er
ve
r

cl
ie
nt
-s
er
ve
r

Ta
bl
e
2.
1:

C
om

pa
ris
on

of
th
e
C
on

it
co
ns
is
te
nc
y
m
od

el
w
ith

si
m
ila
rm

od
el
s.

3
Dynamic Conit model for Minecraft-like

games

The previous chapter discusses the Conit consistency model and five of its important features that can
improve the scalability of Minecraft-like games. This chapter discusses the Dynamic Conit consistency
model. The Dynamic Conit model is an extension of the Conit model with additional features that
make the model applicable to Minecraft-like games. This chapter is divided into four sections. First,
nine requirements are formulated based on the features of the Conit model and the other consistency
models discussed in Chapter 2. Second, the additional features from the Dynamic Conit model, and
how these features satisfy the requirements, are discussed. Third, two possible applications of the
Dynamic Conit model to Minecraft-like games are presented. Last, a performance model is introduced
that quantifies the performance improvement for Minecraft-like games when using the Dynamic Conit
model.

3.1. Dynamic Conit model requirements
Based on the discussion of Minecraft-related research and the comparison of the Conit consistency
model with other consistencymodels, this section formulates nine requirements for a consistencymodel
to be applicable to Minecraft-like games. These requirements are listed in Table 3.1. The table indi-
cates for each requirement which model or system satisfies the requirement. This section identifies
four drawbacks from the Conit consistency model that make its application difficult in today’s large
scale distributed systems. These drawbacks are translated into the bottom four requirements shown
in Table 3.1.

First, the Conit model is configured to use a fixed consistency bound at runtime, but in a distributed
system that deals with varying workloads, this means that the system is occasionally too consistent,
or not consistent enough. If the system is too consistent, resources are spent synchronizing updates
between nodes unnecessarily. If the system is not consistent enough, the players might encounter
unexpected inconsistencies in the game. Changing the consistency bounds for existing Conits allows
keeping data only as consistent as it needs to be, further reducing the communication required between
nodes.

Second, the Conit model provides consistency guarantees by picking consistency over availability,
blocking on user accesses when consistency cannot be guaranteed. While this might work well in
some cases, this is not desirable behavior for a real-time system such as a game. If the system blocks
when consistency bounds are not met, the game can become unresponsive to the input of the player,
decreasing the gameplay experience.

Third, the Conit model does not include any bootstrapping mechanisms for changing the nodes or
Conits in the system at runtime. The number of players in an MMOG is a main component of the system
workload. However, the number of players experiences large variations, both on short (day/night cycle)
and long (game popularity) time scales. This variability means that MMOGs experience a dynamic
workload [50]. To scale with the workload, new server nodes may be started, and work may need to

19

20 3. Dynamic Conit model for Minecraft-like games

Requirement Conits
Chapter 2

Dynamic Conits
Chapter 3

Meerkat
Chapter 4

1 A spectrum of consistency bounds ! ! !

2 Indicating the importance of individual updates ! ! !

3 Real-time bounds on updates ! ! !

4 Arbitrary consistency bounds on arbitrary data. ! ! !

5 Consistency bounds per node. ! ! !

6 Consistency bounds can be changed at runtime. # ! !

7 Non-blocking consistency bounding mechanisms. # ! !

8 Nodes can join and leave the system at runtime. # ! ~
9 Consistency bound mechanisms work without all-

to-all communication.
~

Table 3.1: Summary of Dynamic Conit model– and system requirements

be redistributed over these servers. The consistency model should support this by explicitly allowing
nodes to join and leave the system, and let these nodes create new Conits.

Fourth, the Conit model requires all-to-all communication between nodes. While this may be possi-
ble in some setups (for instance within a rack in a data-center), this is prohibitive in globally distributed
systems without accepting latencies in the order of seconds. Moreover, when partitioning the virtual
world to balance the load over multiple servers, not all servers are interested in the same data. Players
should only receive updates for data that is relevant to them, and servers should only exchange up-
dates with other servers that are relevant to their players. To prevent nodes communicating data that
is not relevant to them, the consistency model should work without all-to-all communication.

3.2. Conit model extensions
This section discusses five extensions to the original Conit model. The first four extensions are to
fulfill the requirements specified in the previous section. How these features are implemented is later
discussed in Chapter 4. The fifth extension does not satisfy a particular requirement specified in this
thesis. Instead, the extension shows the expressiveness of the Conit consistency model by incorpo-
rating dead reckoning, a technique used in state-of-the-art games to hide network jitter, into the model.
As a result, the inconsistency introduced by dead reckoning is quantified and bounded.

3.2.1. Dynamically changing Conit bounds (Requirement 6)
Which data is important for a player depends on that player’s interest set. Because a player’s interest
set changes frequently, specific content can change from being very important on day 𝑥 to being ne-
glected on day 𝑥 +1. Because of these changing interest sets, the level of consistency of specific data
also changes. If a particular entity is in the interest set of many players, its location should not allow
much inconsistency. As the interest in this entity declines over time, however, its location can allow
increased inconsistency without negatively affecting the gameplay experience of players.

The error bounds on a Conit determine when writes are synchronized between nodes. Because the
bounds are expressed as numerical values, they create a consistency spectrum. A bound of 0 guaran-
tees strict consistency between nodes. A bound of∞ guarantees eventual consistency between nodes
(that is: no guarantees are given). In games, timing is important. This is no different for Minecraft-like
games. Generally speaking, this means that higher consistency is better. However, higher consis-
tency also means a higher exchange of messages between nodes to stay synchronized. Considering
the dynamic workload of Minecraft-like games, committing a large amount of resources to stay consis-
tent may not always be desirable or feasible. Increasing the consistency bound reduces the number
of messages that need to be sent between nodes to synchronize. The throughput saved by reducing
these messages may be used to support additional players.

In the Dynamic Conit model, nodes are allowed to change their consistency bounds used for any
Dynamic Conit in which they participate. Both staleness and order error are enforced using only local
information. This means a node can change both these bounds without any communication to the
other nodes. Changing the numerical bound of a Conit involves the node informing its neighbors about

3.2. Conit model extensions 21

the changed value. For all three bounds, if the bound is decreased, the node needs to check if the
new bound is exceeded. If this is the case, the node needs to synchronized writes with other nodes.
Increasing the consistency bound can never cause a consistency bound to be exceeded, because
increasing the bound increases the allowed inconsistency in the system.

3.2.2. Optimistic consistency (Requirement 7)
The Conit consistency model can enforce strict consistency, limiting availability to users. In a real-time
system such as a game, blocking is undesirable. The system may become unresponsive to the input
from the player while they are in the middle of an action sequence or battle. A simple solution to this
problem is to synchronize asynchronously, and not wait for confirmation. Unfortunately, this does mean
that the consistency bounds can no longer be guaranteed, because reads or writes may be executed
on a node that has not yet completed synchronization. This thesis proposes a weaker consistency
guarantee: optimistic consistency. Under optimistic consistency, if consistency bounds are exceeded,
a synchronization mechanism is triggered. If the underlying network behaves correctly, and the latency
between nodes is bounded, consistency between nodes is still guaranteed. This type of consistency is
also used by Colyseus [14].

3.2.3. Conit update messages (Requirement 8)
In a large scale game, the workload varies over time; players join and leave the game, and server nodes
are started or shutdown depending on the amount of players in the game. Furthermore, in a Minecraft-
like game players enjoy the additional feature of being able to modify the virtual world. This means that
players can create their own content. This changing set of nodes participating in the system, and the
creation and removal of player-created content means that the data that should be kept consistent also
changes over time. To support this, Conits should be able to be created or removed while the system
is running, and new nodes should be able to synchronize with existing Conits.

For example, if Conits are defined for the area of interest of each player, Conits should be created
or destroyed when players join or leave the virtual world respectively. Another example is an important
structure in the virtual world that has its own Conit, which guarantees how inconsistent a player’s view
of this structure can be. If this structure is destroyed in the virtual world, the Conit is no longer affected
by any data and can be removed.

The Dynamic Conit model explicitly supports nodes from creating new Dynamic Conits and sharing
these Dynamic Conits with other nodes at runtime. To this end, each Dynamic Conit keeps a member
list, which tracks the nodes that participate in the Dynamic Conit. Nodes in the system can contact
each other to participate in a new Dynamic Conit or remove themselves from it. Allowing new nodes
and Conits to join the system at runtime is different from allowing Conits to change their consistency
bounds at runtime. The former supports distributed system in which the set of participating nodes
changes over time. The latter supports distributed systems in which the workload of existing nodes
changes over time.

3.2.4. Multi-hop Conits (Requirement 9)
In the original Conit model, updates are exchanged between nodes that all share the same data set.
Data exchanged in a Minecraft-like game is about players and the virtual world. If one node receives
an update on a data item, the node forwards the update to all other nodes.

Figure 3.1a shows a typical application of Conits to a distributed system. Here the computer tower
icons are servers, the person icons are users, the © indicates a collection of Conits, and the connections
indicate which nodes share this collection of Conits. This setup can be mapped to the servers of a
Minecraft-like game in a data-center which host instances of a virtual world. If a player is connected
to one of the server nodes and builds a house or digs a tunnel, this change must become visible to
players that are connected to other nodes.

The Conit model does not consider the inconsistency between a game server and its clients. The
amount of inconsistency between a server and a client does not only depend on the consistency be-
tween the servers, it also depends on the synchronization between the client and the server. For the
player, inconsistency becomes noticeable in the form of out-of-order updates and latency. As discussed
in Section 2.3.2, the amount of latency between the server and the client has a significant effect on the
gameplay experience of the player. However, guaranteeing low latency and high consistency requires
high synchronization between the server and the client, increasing the workload at both ends.

22 3. Dynamic Conit model for Minecraft-like games

(a) Application of the traditional Conit model. (b) Application of the multi-hop Dynamic Conit model.

Figure 3.1: Comparison of the application of Conits and Dynamic Conits in a distributed system. The traditional Conit model
does not support multiple hops of Conits in the network, and requires all-to-all communication between the nodes sharing the
Conits.

To make Minecraft-like games more scalable, the workload on the server should be reduced. If
Conits could be used between the server and the client, bounded consistency can be used to keep the
gameplay experience high and reduce the amount of synchronization required between servers and
their clients. Sharing Conits not only with servers but also with clients means that millions of nodes
are added to the network, which all need to communicate with one another. This is neither feasible
nor desirable. Furthermore, most clients may not be interested in most Conits. Conits that enforce
consistency on the area of interest of player 𝑎 might not be of interest to player 𝑏, whose avatar can be
on the other side of the virtual world. Even if the bounds specified by player 𝑏 are∞, Conits require each
node to allocate a certain amount of memory per node to correctly handle the consistency guarantees
of other nodes, which can cause significant memory overhead in large networks.

To apply Conits in this context, we proposemulti-hop Conits. Figure 3.1b shows a possible applica-
tion of these Conits. In this model, a network of nodes is modeled as a set, in which special multi-hop
Conits can be created for arbitrary subsets. A subset for which one or multiple Conits are defined is
referred to as a subnet. When these subnets are viewed in isolation, the Conits function exactly as
in the traditional model, using the same consistency bounds and mechanisms to enforce consistency.
However, a new mechanism is introduced to support nodes that are part of multiple subnets. If such
a node receives a write from one subnet via synchronization, it checks if the write affects any Conits
shared with other subnets. If this is the case, the node bounds consistency according to these Conits.
If the subnets form a connected graph, any write will be propagated throughout the entire network. 1

Multi-hop Dynamic Conits makes it difficult to reason about the consistency guarantees over mul-
tiple hops in the network; nodes may be separated by multiple Dynamic Conit hops, each with their
own consistency bounds. Figure 3.1b shows two clients that are connected to server 3 (S3). Both of
these clients use Dynamic Conits to reduce communication with the server. Reasoning about the con-
sistency between one of the two players and the server can be done using the traditional Conit model.
However, consistency between both clients is more difficult to quantify. A mathematical investigation
of the consistency bounds over multiple hops is out of the scope of this thesis. Instead, consider this
toy example: assume that the staleness of location updates of the left player to the server is bounded
with a numerical error bound of 1. Also assume that the staleness of location updates of the server to
the right player is bounded by 50ms. In this case, the consistency bound between both players can
be seen as the sum of both consistency bounds2: the location update arriving at the left player cannot
have both a numerical error greater than 1 and a staleness value greater than 50ms.

1Using multi-hop Dynamic Conits requires using optimistic consistency: when the system waits for synchronization to complete,
deadlocks can occur when subnets synchronize with each other.

2Using a liberal definition of the word ‘sum’.

3.3. Application to Minecraft-like games 23

3.2.5. Speculation error
The previous sections describe additions made to the Conit consistency model to satisfy the require-
ments shown in Table 3.1. This section describes another extension of the Conit model that does not
satisfy a particular requirement. Instead, the extension discussed in this section shows the expressive-
ness of the Conit consistency model by incorporating dead reckoning into the model. As a result, the
inconsistency introduced by dead reckoning is quantified and bounded.

The Conit model offers three application-agnostic dimensions to calculate and bound inconsistency
between nodes. While these dimensions are expressive, they are created from the perspective of a
distributed database. However, a Minecraft-like game is not only a distributed database, it is also a
distributed simulation. This section defines speculation error as a new consistency dimension from
the perspective of a distributed simulation. While still being application-agnostic, this new consistency
dimension could allow more expressive bounded consistency in the domain of MMOGs, Minecraft-like
games, and other domains that rely on distributed simulation.

This consistency dimension builds on the observation that simulations may benefit from relaxing
the frequency with which updates are checked for correctness. A game server that hosts a Minecraft-
like game performs many simulations. In some cases, these simulations can be very structured. For
instance, a player might start a computation in a digital circuit, or travel by train over a rail. In these
scenarios, clients can locally simulate these events simultaneously with the server without exchanging
information. Another use-case for speculation error is the propagation of updates concerning player
locations. In a virtual environment with many moving entities, servers can reduce communication load
by synchronizing entity locations less frequently. Clients can use speculation error to locally estimate
the locations of entities before the true location is received from the server.

This thesis defines speculation error as the maximum number of speculative updates on one node.
A speculation error of 𝑥 allows a node to generate 𝑥 updates locally without communicating with other
nodes. When a node reaches 𝑥 updates, it agrees with the other nodes whose updates to accept and
drops its own speculative updates. Speculation error makes dead reckoning part of the consistency
model by quantifying how many speculated updates are allowed before synchronization is required.
An implementation of this consistency dimension requires a consensus algorithm to determine which
updates to keep. In the scenario of a MMOG with multiple server nodes, a trivial consensus algorithm
would be to appoint a primary node for each data item and always accept its updates as the final
updates.

3.3. Application to Minecraft-like games
Dynamic Conits are a flexible consistency model which can be applied to Minecraft-like games in mul-
tiple ways, increasing the scalability of these games. This section discusses two examples of the
application of Dynamic Conits to Minecraft-like games and how these applications can increase the
scalability of these games. The use of Dynamic Conits can reduce the communication between nodes,
increasing system scalability. The two examples discussed in this section are chosen to target the two
main channels of communication in MMOGs: the communication between the different server nodes,
and the communication between the server and its clients.

The Conit consistency model distinguishes accesses from users and synchronization between
nodes. In a Minecraft-like game, updates are exchanged between clients and servers. To map the
Conit model to Minecraft-like games, accesses are defined as changes made to the virtual world by
a player or server. Examples of modifications are moving the player’s avatar or placing a block in
the virtual world. Synchronization between nodes is defined as the messages exchanged between
servers and clients that update the state of the virtual world on the receiving node. Examples of these
messages are avatar displacement messages and block placement messages.

3.3.1. Guaranteed consistency between servers
As discussed in Section 1.2, to support large numbers of players, state-of-the-art MMOGs partition the
virtual world and distribute these partitions over multiple servers. Traditionally, a geographic partitioning
scheme is used, but this is not required. For instance, a partitioning based on social connections is also
possible [67]. These parts are then assigned to different servers by a scheduler. The game servers
share some of their data to hide the partition from the players. For instance, players that are at the
border between two partitions should be able to see players at the other side of the border. Sharing

24 3. Dynamic Conit model for Minecraft-like games

Figure 3.2: An application of Dynamic Conits to bound inconsistency between the servers that simulate a partitioned virtual world.

Figure 3.3: An application of Dynamic Conits to bound inconsistency between a game server and its clients.

this data introduces inconsistency between players that are connected to different servers.
To keep gameplay experience high, the inconsistency between the players should be bounded

to a value that is acceptable for players. While the Conit model can bound inconsistency between
nodes, the game servers are unlikely to share all their data with all other servers. To keep the system
scalable, both the number of servers with which to synchronize and the amount of data that needs to
be synchronized should be small.

Figure 3.2 shows the application of Dynamic Conits between servers. In the figure, the circled ‘D’
indicates a collection of Dynamic Conits, and the connections indicate which nodes share this collection
of Dynamic Conits. The bottom part of the figure shows a bird-eye view of the virtual world and its
partitioning. The green areas indicate zones in the virtual world. The dotted lines indicate which servers
host which parts of the virtual world. The servers communicate with a subset of the remaining servers
(indicated by the connections from the circled D’s) using the multi-hop feature from the Dynamic Conit
model. Multiple Dynamic Conits are shared between servers which host adjacent parts of the virtual
world. These Dynamic Conits are affected by updates that take place close to the border, which causes
these updates to be synchronized to the ‘adjacent’ server according to the configured Conit bounds.

3.3.2. Guaranteed consistency between clients and servers
In the traditional model, the Conits are shared between servers. Consistency between clients and
servers is not considered. However, in Minecraft-like games, clients share a large amount of data with
the servers and continuously synchronize updates. This synchronization requires resources from both
the client and the server. If this synchronization can be reduced, the server may use these resources
instead to support a larger number of players.

Currently, servers synchronize with their clients every game-tick. To reduce synchronization without

3.4. Dynamic Conit performance model 25

reducing gameplay experience, Dynamic Conits can be used. By sharing Dynamic Conits between the
client and the server, bounded inconsistency is introduced that reduces communication between the
two nodes. By defining strict consistency bounds for data in a player’s interest set [13] (for instance the
actions of nearby entities with which the player can interact), and defining loose consistency bounds
for data that is less important to the player (for instance block placements in a structure that is out of
reach of the player), communication can be reduced without reducing gameplay experience.

Figure 3.3 shows an example of this application of Dynamic Conits to games. Here a single server is
connected to four clients. The circled ‘D’ indicates a collection of Dynamic Conits, and the connections
indicate which nodes share this collection of Dynamic Conits. In this application, each player shares
a collection of Dynamic Conits with the server. This collection can contain Dynamic Conits with strict
consistency bounds for entities that are close to the player, or for the state of a digital circuit with which
the player can interact. The collection can also contain Dynamic Conits with loose consistency bounds
for entities that are far away from the player, or are not in the player’s interest set.

3.4. Dynamic Conit performance model
This section defines and discusses a performance model for Dynamic Conits to quantify scalability
improvements when using bounded inconsistency. The model rests on the assumption that every
node has a maximum number of messages that can be processed per second: 𝑡፦ፚ፱. We define
𝑇፦ፚ፱ = 𝑛 × 𝑡፦ፚ፱ as the maximum number of messages that can be processed per second across the
entire system. Here, 𝑛 is defined as the number of nodes in the system. Let 𝑇 be the actual number of
messages processed by the system per second, this leads to the following invariant:

𝑇፦ፚ፱ ≥ 𝑇
≥ 𝑊 + 𝑆 (3.1)

Here𝑊 is the number of updates per second caused by the system workload, the actual writes and
reads performed by clients. 𝑆 is the number of messages per second caused by the Dynamic Conit
model synchronizing between nodes. The total throughput is comprised of these two variables. In a
real-world system, the update throughput,𝑊, is an uncontrolled a variable, whose value is determined
by the number of users in the system and their behavior. The synchronization throughput, 𝑆, is a
controlled variable, whose value is determined by the workload𝑊 and the configuration of the Dynamic
Conits. This means that scalability improvements must be made by modifying 𝑆. The value of 𝑆 is
determined by the workload,𝑊, the number of nodes, 𝑛, and the consistency bound that is used, 𝑏።:

𝑆 = 𝑓።(𝑊, 𝑛, 𝑏።) (3.2)

To simplify the model, we assume that only one consistency bound is used at once. This means that
𝑖 ∈ {𝑠, 𝑛, 𝑜}. Separate functions are used to calculate 𝑆, depending on if a staleness bound, numerical
error bound, or order error bound is used. These three functions are defined and explained below.

3.4.1. Synchronization controlled by staleness bound
When using a staleness bound 𝑏፬, each node pulls writes from all other nodes at most every 𝑏፬ mil-
liseconds. In theory, pulling writes takes two messages.3 This means that when using 𝑛 nodes, each

node exchanges two messages with 𝑛−1 other nodes 1000ms
𝑏፬

times per second. This can be written
as:

𝑆 = 𝑓፬(𝑊, 𝑛, 𝑏፬)

𝑓፬(𝑊, 𝑛, 𝑏፬) =
2𝑛(𝑛 − 1) × 1000ms

𝑏፬
(3.3)

Note that when using a staleness bound, 𝑆 does depend on 𝑛 (the number of nodes in the system), but
not on𝑊 (the update throughput).
3If the staleness bound is very large, the number of writes that are synchronized may also be very large. In practice, these writes
may not all fit in a single, large, synchronization packet.

26 3. Dynamic Conit model for Minecraft-like games

3.4.2. Synchronization controlled by numerical error bound
When using a numerical bound, each node pushes writes to the other nodes if the bound is exceeded.
Nodes communicate their numerical error bound to each other. Other nodes then push their writes
conservatively based on local information. The numerical error bound specifies the weight of the writes
a node may not have seen, compared to the global state (all writes). This means that for a constant nu-
merical error bound, the synchronization throughput per node increases quadratically with the number
of nodes.

As an example, let 𝑏፧ = 4 and 𝑛 = 2. For simplicity. assume that all writes have a weight of 1. For
clarity, let’s call these nodes Alice and Bob.4 If Alice receives 4 writes from clients, she keeps them
to herself because she knows that Bob allows a numerical error of 4. However, when Alice receives a
fifth write, she concludes that the numerical error bound might be exceeded: Bob might not have seen
any of the 5 writes received by Alice. Alice now bounds consistency by synchronizing all 5 writes with
Bob.

Now consider the same example with 𝑛 = 3: Charlie also joins the game. Alice now receives 2
writes from clients. Again, she keeps these writes to herself without communicating to either Bob or
Charlie. When Alice receives a third write, she cannot proceed as in the previous example. Instead, she
has to communicate her writes to both Bob and Charlie. Because the numerical error is 4, Bob allows
4 writes with weight 1 to be unseen by him. Alice does not know how many writes have already been
received by Charlie. If Charlie has also already received 2 writes, the current number of writes unseen
for Bob is 3 + 2 = 5 (the writes from Alice and Charlie together), which exceeds Bob’s numerical error
bound. Because Alice does not know howmany writes Charlie has received, she makes a conservative
decision by synchronizing writes with Bob. Without loss of generality, Bob and Charlie can be swapped
in this example, which is why Alice should also synchronize writes with Charlie. This guarantees that
the consistency bound is never exceeded. This behavior can be written as:

𝑆 = 𝑓፧(𝑊, 𝑛, 𝑏፧)

𝑓፧(𝑊, 𝑛, 𝑏፧) =
2(𝑛 − 1)𝑊

ᑟ
፧ዅኻ

= 2(𝑛 − 1)ኼ𝑊
𝑏፧

(3.4)

3.4.3. Synchronization controlled by order error bound
When using an order bound, 𝑏፨, each node may have 𝑏፨ writes that are uncommitted, which means
they could still be reordered. Bounding this error means committing at least every 𝑏፨ writes. How
committing these messages works is unspecified in the original Conit model, and is also left unspecified
in the Dynamic Conit model. Because the implementation is undefined, this section makes a simplifying
assumption: a single node is appointed as the primary node, and orders all writes in the system. For
a node to commit messages, it sends a list of uncommitted writes to the primary node and receives a
list of committed writes back in the appropriate order. Every node manages their uncommitted writes
individually. This can be written as:

𝑆 = 𝑓፨(𝑊, 𝑛, 𝑏፨)

𝑓፨(𝑊, 𝑛, 𝑏፨) =
2𝑊
𝑏፨

(3.5)

4The author hopes the field of cryptography does not have a copyright on using these names in examples.

4
Meerkat: design of a Dynamic Conit

system
To answer research question 3, specified in Section 1, we design and evaluate Meerkat. Meerkat is a
prototype implementation of the Dynamic Conit model: it provides a set of mechanisms and protocols to
measure and bound consistency according to the Dynamic Conit model. To focus the implementation
of the prototype on the novel Dynamic Conit features, we design Meerkat according to the Keep it sim-
ple, stupid (KISS) principle. To this end, Meerkat uses multiple simple algorithms and single-purpose
components to implement the Dynamic Conit model. This chapter discusses the design of Meerkat,
while Chapter 6 evaluates Meerkat experimentally. In contrast to Minecraft-like games, Meerkat does
not provide a graphical interface to a player, nor does it simulate a virtual environment. Instead, it
accepts updates and reads on data, and synchronizes this data with other Meerkat nodes according to
the set Dynamic Conit consistency bounds. This chapter discusses both the components and mecha-
nisms that allow Meerkat to support Dynamic Conits and how Meerkat satisfies the requirements listed
in Table 3.1.

4.1. Design overview
To understand how the different components of Meerkat interact, it is important to first understand
what the components mean. This section discusses the main components in Meerkat’s design, and
how these components interact. Figure 4.1 shows Meerkat’s system design. Some components in
Figure 4.1 are marked with the letter D in the top right hand corner. Every component with this mark
is required to support Dynamic Conits. The remaining orange components are required to support
regular Conits. Forwarding accesses is indicated using solid connections. Forwarding commands or
meta-data is indicated using dashed connections.

Meerkat is a distributed system that can run with a variable amount of nodes, and is located between
the virtual world simulation and the data store. The virtual world simulator simulates the virtual world
based on data obtained from both the player and Meerkat. The resulting data is sent back to Meerkat,
which stores it locally in the data store and synchronizes the updates with remote servers and clients
based on the configuration of the Dynamic Conits. Each access passes through the Dynamic Conit
manager, which checks the inconsistency in each of the three inconsistency dimensions, based on the
Dynamic Conits that are configured. Because the virtual world simulator knows which data is needed
and how consistent it should be, it can configure the local Dynamic Conits through the Dynamic Conit
manager. If synchronization is required for one of the consistency dimensions, the access is forwarded
to the corresponding component. For instance, if the numerical error bound is exceeded, the access is
forwarded to the Numerical actor. These actors synchronize with other nodes by exchanging updates
with the corresponding actors on remote nodes. The figure only shows one remote node, but there can
be arbitrarily many remote nodes to synchronize with.

To meet Requirement 6 of the Dynamic Conit model, the Workload monitor and Dynamic bound
scheduler are included in Meerkat’s design. The Workload monitor runs on all Meerkat nodes and
keeps track of the message throughput. The Workload monitors across all nodes connect to a single

27

28 4. Meerkat: design of a Dynamic Conit system

Figure 4.1: Meerkat system design. The orange boxes indicate Meerkat system components. The boxes marked with a ‘D’
indicate Meerkat system components required to support Dynamic Conits.

primary node, which runs the Dynamic bound scheduler. Based on the system throughput and the
dynamic bound policy that is used, the consistency bounds of the Dynamic Conits are modified.

To meet Requirement 8 of the Dynamic Conit model, the Dynamic Conit manager takes care of
updating Dynamic Conit information such as adding or removing nodes from the Dynamic Conit, adding
and removing Dynamic Conits completely when no longer needed, and updating the numerical error
bounds from remote nodes when their consistency bounds are changed.

4.2. Consistency bounding (Requirement 1, 4, 5)
Meerkat satisfies Requirements 1 and 4 by bounding consistency in the system using Dynamic Conits.
Dynamic Conits use the same three dimensions as regular Conits: staleness, numerical error, and or-
der error. Each node in the system can configure its own consistency bounds by selecting a numerical
value for each of the three dimensions, for each Dynamic Conit. Because the consistency bounds can
take any integer value greater or equal to zero, Meerkat implements a consistency spectrum (Require-
ment 1). In the Dynamic Conit model, every read and write specifies which Dynamic Conit is affected.
Writes also have a weight associated with them to enable numerical error bounding. This allows clients
to specify arbitrary bounds for arbitrary data (Requirement 4).

Although the Dynamic Conit model specifies how to quantify inconsistency, it does not specify which
mechanisms and algorithms to use to bound the inconsistency. Meerkat uses a reactive approach, that
bounds inconsistency on each of the three dimensions if necessary, after a new access is received from
a client. An access means a read or write operation. While the reactive approach does not hide syn-
chronization latency, it does make the system more predictable, making it easier to study its behavior.
Meerkat’s design is simplified by having three single-purpose components that match the three con-
sistency dimensions. The components are executed sequentially, and each component is responsible

4.2. Consistency bounding 29

Figure 4.2: Meerkat staleness bounding mechanism

for bounding the corresponding consistency dimension. Figure 4.5 shows the sequence in which the
individual components are activated when an access is processed by Meerkat. The actions within
these components are discussed in the sections below. For both reads and writes, first the staleness
bounding mechanism is triggered before the data store is accessed. For writes, after accessing the
data store, the order error bounding mechanism and the numerical error bounding mechanism are trig-
gered. Each of the actor components synchronize with remote nodes as soon as a consistency bound
is exceeded.

4.2.1. Bounding staleness (Requirement 3)
Bounding staleness is done for both reads and writes, and is performed before the access is processed
by the data store, such that the view of the data is within bounds during the execution of the read or
write. To bound staleness error, each node keeps track of the last time writes where pulled from each of
its neighbors. On each new access the staleness bounding mechanism executes the following steps:

1. Select all Dynamic Conits affected by access.

2. Get the union of all nodes that share at least one of these Dynamic Conits.

3. Ask each of these nodes for writes they have seen after their last contact with this node.

Figure 4.2 shows this behavior in the form of a sequence diagram. Here the Remote Staleness
actors 1 through 𝑛 are the actors corresponding to the collection of remote nodes that share one or
more Dynamic Conits with the local node. The figure shows a user (top left) that wants to read a specific
value. In a Minecraft-like game, this could be the game client that requests the contents of a chest of
items after the player opens it. The Dynamic Conit manager (second from the left) selects the Dynamic
Conits affected by the read, and forwards these to the Staleness actor (middle). The Staleness actor
checks for each remote node that shares one of the affected Dynamic Conits if it has synchronized its
updates within the set staleness bound. If this is not the case, the Staleness actor synchronizes with
the remote node by requesting its updates. The local data in the data store (left of Staleness actor) is
updated according to the synchronized updates. For simplicity, the actions taken on the remote nodes
are not shown in the figure. After all synchronization is complete, the relevant data item is read and
its value is returned to the user. If Meerkat is running using optimistic consistency instead of strict
consistency, it returns the value to the user without waiting for synchronization to complete. Optimistic
consistency is a Dynamic Conit feature discussed in Section 3.2.2. Its implementation in Meerkat is
discussed in Section 4.3.2

30 4. Meerkat: design of a Dynamic Conit system

Figure 4.3: Meerkat numerical error bounding mechanism

The figure shows the importance of following the KISS design principle: although the actions taken
by the local node to bound staleness are conceptually simple, its implementation involves multiple
layers of message passing.

4.2.2. Bounding numerical error (Requirement 2)
The numerical error of a node is defined by first assigning a global weight to each write, and then
calculating the sum of the weights of locally unseen writes. Nodes share their numerical error bounds
with remote nodes when first establishing a connection, or when changing their numerical error bound.
This is done using a mechanism discussed in Section 4.3.3. When a node receives a write, it calculates
the numerical error conservatively using the method described in Section 3.4.2. If the numerical bound
is exceeded, the node propagates writes to the other remote nodes. To bound numerical error, Meerkat
executes the following steps:

1. Select all Conits affected by the new write.

2. For each Conit, for each node, determine if their numerical error bound could be exceeded.

3. If so, forward writes and wait for the remote nodes to complete processing.

Figure 4.3 shows this behavior in the form of a sequence diagram. After bounding staleness,
Meerkat bounds the numerical error by forwarding the affected Dynamic Conits to the Numerical actor.
The Numerical actor computes for which nodes the numerical error bound could be exceeded based
on the numerical error bounds received from the remote nodes. For each remote node for which the
numerical error bound is exceeded, the local node synchronizes all writes that it had not sent in pre-
vious executions of the numerical error bounding mechanism. After all remote nodes report that the
received updates have been processed, the local node proceeds by bounding the order error.

4.2.3. Bounding order error
To simplify system design, Meerkat appoints a single node as the primary node. This node decides the
commit order for all nodes. Each time a node’s order error bound is reached, it synchronizes with the
primary node by requesting to commit its local writes. This method is relatively old [52], and provides
a single-point of failure. However, it is simple to implement and matches with the client-server model
of most games, in which a server decides the final ordering of messages. On each write, Meerkat
executes the following steps:

1. Send the primary node a commit request with the corresponding writes.

4.3. Dynamic Conit mechanisms 31

Figure 4.4: Meerkat order error bounding mechanism.

2. Receive the commit-order up to the most recently committed write on the primary node, and
merge them with the local data store.

Figure 4.4 shows this behavior in the form of a sequence diagram. After bounding the numerical
error, Meerkat forwards the affected Dynamic Conits to the Order actor (middle). If for any of these Dy-
namic Conits the number of locally uncommitted writes exceeds the set order error bound, all currently
uncommitted writes are sent to the primary node. The primary node then determines the order of the
writes and applies them to its local data store. The primary node keeps track of the last commit seen
by the local node, and sends all writes that have been committed since. This can include writes syn-
chronized by other nodes that have not yet been seen by the local node. Upon receiving the commits,
the local node rolls back its data store and applies the commits in the order determined by the primary
node. To simplify Meerkat’s design, exactly the same sequence of operations is executed if the local
node is the primary node. In this case, the Remote primary order actor (second from the right) and the
Order actor (third from the right) are the same actor. The same holds for the Remote data store (right)
and the Data store (second from the left). This causes the node to send messages to itself.

4.3. Dynamic Conit mechanisms
The previous section discussed how Meerkat bounds the inconsistency in the system such that the
Dynamic Conit bounds are never exceeded. This section discusses the components and mechanisms
used by Meerkat to support the Dynamic Conit features introduced in Chapter 3.

4.3.1. Dynamic bound policies (requirement 6)
Meerkat satisfies Requirement 6 by using a Dynamic bound scheduler. This scheduler updates the
consistency bounds across nodes using the workload monitors that run on each node. The Dynamic
bound scheduler itself runs on a single node: the primary node. This node is also in charge of assigning
an order to the writes, which happens when bounding order error. For a production ready system, the
primary node should be dynamically assigned at runtime to protect against system failures. To keep
system design simple and focus on the Dynamic Conit mechanisms, this is not supported by Meerkat.

The Dynamic bound scheduler periodically asks all nodes for their throughput for both accesses
from clients and messages used to synchronize with other nodes. Reducing the bounds on a Dynamic
Conit increases the consistency between nodes, but also increases the number of messages that need
to be exchanged to stay consistent. If the number of synchronization messages need to be reduced
to handle an increase in the number of accesses received from clients, the dynamic bound policy can
decide to increase the consistency bounds on existing Dynamic Conits. Similarly, when the number of
accesses decreases, the scheduler may decrease Dynamic Conit bounds to achieve a higher level of

32 4. Meerkat: design of a Dynamic Conit system

Figure 4.5: Meerkat processing pipeline. Because reads cannot increase the inconsistency in the system, they are processed
differently from updates.

consistency.
The specific behavior of the Dynamic bound scheduler depends on the selected dynamic bound

policy. This thesis presents three such policies, and discusses them in the sections below.

ADMI policy
The ADMI policy is a naive policy used as a performance baseline. It periodically checks the current

throughput of synchronization messages. If the throughput is above the threshold, the Conit bound is
multiplied by 2. Otherwise the Conit bound is decreased by 50.

This policy is derived from the additive increase/multiplicative decrease policy used in TCP con-
gestion control. This policy linearly increases the congestion window used when transmitting data. If
congestion takes place, the congestion window is exponentially decreased to prevent further escalation
of the congestion.

PM policy
The PM policy is a more advanced policy that uses a moving average of the throughput of accesses,

the number of nodes in the system, and the Dynamic Conit performance model described in Section 3.4
to calculate which Conit bounds would produce a synchronization message throughput of the desired
amount. The PM policy calculates a lower bound for the required consistency bound, which means that
the actual number of synchronization messages per second can be higher than the intended value.

PM-P policy
This policy is based on a scheduler used in ConPaas [4, 5], which is also a workflow scheduler. This

policy is based on the PM policy. Except instead of calculating the Conit bounds such that the moving
average workload would produce the desired number of synchronization messages per second, it uses
linear regression to predict the workload for the next scheduling step and calculates the required Conit
bounds for that workload.

The intuition behind this policy is that without anticipating the workload, the consistency bound
calculation might lag behind the actual bound needed to bring the number of synchronization messages
to the intended amount. Linear regression allows anticipating the update throughput based on recent
throughput values.
4.3.2. Pipeline for strict and optimistic consistency (Requirement 7)
Meerkat satisfies Requirement 7 by implementing the optimistic consistency guarantees from the Dy-
namic Conit model discussed in Section 3.2.2. Meerkat uses a processing pipeline for incoming up-
dates and reads. This pipeline is shown in Figure 4.5. Depending on how Meerkat is configured, it can
enforce strict consistency or optimistic consistency. If only one access can use the data pipeline at
the time, and the individual components process accesses synchronously, the system enforces strict
consistency. If an access triggers synchronization to bound inconsistency, the pipeline is occupied for
a longer period of time. This reduces availability and blocks incoming accesses. If the pipeline can be
filled with accesses, Meerkat becomes highly available, no longer blocking incoming accesses. This
means that the consistency bound is now optimistic: for an incoming access it is no longer guaranteed
that the data is within consistency bounds. Instead, if an incoming access finds the data exceeding the
consistency bounds, it is guaranteed that synchronization is currently in progress.

4.3. Dynamic Conit mechanisms 33

Figure 4.6: Meerkat 2-way handshake for adding nodes or Dynamic Conits. The HelloAndConitInfo message has the same
content as a regular ConitInfo message, except it triggers a response from the receiving node.

From Figures 4.2, 4.3, and 4.4, only Figure 4.2 shows the difference in behavior when using strict
consistency versus optimistic consistency. Figure 4.3 and 4.4 show Meerkat’s behavior when using
strict consistency. When using optimistic consistency, the system would continue processing the next
access immediately after passing the affected Dynamic Conits to the Numerical actor or Order actor
respectively. This is omitted from the figures to improve readability.

4.3.3. Dynamic Conit information message (Requirement 8)
This section discusses how Meerkat partially satisfies Requirement 8. Meerkat supports both nodes
and Dynamic Conits to join and leave the system at runtime, but the mechanism used to satisfy this
requirement cannot be used in a production-ready system. This section discusses this feature in three
steps. First, it discusses the mechanism used by Meerkat to let new nodes join or create new Dynamic
Conits. Second, it discusses a limitation of the Dynamic Conit model that is introduced by introducing
this feature, which prevents it from being used in a production-ready system. Third, it discusses the
wait mechanism, a simple mechanism used by Meerkat to avoid this limitation in experimental setups.

Requirement 8 is satisfied by allowing nodes to send each other Dynamic Conit information mes-
sages that specify their participation in Dynamic Conits. When a node joins an existing Conit, it must
inform the current members it would like to join the Conit, and communicates its numerical error bound.
It does this by sending a ConitInfo message to the current members. Upon receiving this message,
existing members add the node to their set of neighbors and communicate their numerical bound to
the new node before new accesses are processed. Adding the new node includes communicating all
necessary writes to the new node. If a node leaves an existing Conit, it must inform the other members
of the Conit, along with any writes that the leaving node did not yet communicate. Other nodes remove
the node from their set of neighbors and abort all current attempts to synchronize writes to this node.
Meerkat tracks for each Dynamic Conit which nodes share that Dynamic Conit. When a new node joins
the system, or creates a new Dynamic Conit, it sends its Dynamic Conit information to all other nodes
that it wants to share Dynamic Conits with using a two-way handshake shown in Figure 4.6. The node
that joins the system or creates a new Dynamic Conit performs this handshake with all other nodes with
which it shares Dynamic Conits. Leaving the system or a Dynamic Conit works analogous to joining:
when a node leaves a Dynamic Conit, it sends a ConitInfo message indicating that it is no longer part of
that Dynamic Conit. This will stop synchronization to this node. If the node wants to leave the system,
it sends a ConitInfo message specifying that it is no longer a member of any Dynamic Conit. This will
stop all synchronization to this node.

Meerkat may have been running for an arbitrary amount of time when a new node joins the system.
If this node joins an existing Dynamic Conit, an arbitrary number of updates need to be synchronized
before the consistency bounds of all nodes are met. Because neither the Dynamic Conit model nor
Meerkat include a mechanism to merge updates, the new node may require a large amount of time
to complete processing all synchronized updates. During this time, the node is unable to process
accesses from users.

Meerkat has an optional wait mechanism to prevent this scenario from occurring during use. The
wait mechanism makes sure nodes are never overloaded by synchronizing too many updates at once.

34 4. Meerkat: design of a Dynamic Conit system

It does this by preventing the Meerkat nodes from accepting any accesses from users until they are
connected to every other node. A different solution is required when applying the Dynamic Conit model
to a production-ready system. In a real-world scenario, nodes cannot be required to all join during
system startup because the game has no control over when players join or leave, or when server
nodes fail.

4.4. Meerkat performance model
Meerkat implements the Dynamic Conit model, which is based on the generic Conit consistency model,
but has a number of features to make it applicable to Minecraft-like games. The Dynamic Conit per-
formance model is defined in terms of throughput: the number of messages that can be processed
per second. The goal of Meerkat is to evaluate the scalability improvement in number of players when
using Dynamic Conits. Therefore, it is necessary to translate the number of messages per second to
a number of players. To quantify the scalability improvements when using Meerkat this section defines
a performance model for Meerkat based on the performance model for Dynamic Conits discussed in
Section 3.4.

Because player behavior is hard to predict and changes over time, this section takes the conserva-
tive assumption that a player sends an update to the game once every game tick. For Minecraft-like
games, the tick frequency is 20Hz. This means that a player sends 20 updates per second; a player
generates a workload of 20 messages per second. Let the number of players be 𝑝. Then, using Equa-
tion 3.1, this can be written as:

𝑇፦ፚ፱ ≥ 𝑊 + 𝑆
𝑊 = 20𝑝

𝑇፦ፚ፱ ≥ 20𝑝 + 𝑆

𝑝 ≤ 𝑇፦ፚ፱ − 𝑆
20

≤ 𝑇፦ፚ፱
20 − 𝑆

20

Removing the constants by declaring new variables:

𝑃፦ፚ፱ =
𝑇፦ፚ፱
20

𝑆ᖣ = 𝑆
20

Here 𝑃፦ፚ፱ is the maximum number of supported players, assuming there is no synchronization over-
head. 𝑆ᖣ is the synchronization overhead expressed as the number of players. This can be written
as:

𝑝 ≤ 𝑃፦ፚ፱ − 𝑆ᖣ (4.1)

This performance model indicates that we can increase the number of supported players 𝑝 by de-
creasing the synchronization overhead 𝑆ᖣ. The value of 𝑆 (and 𝑆ᖣ) depends on the workload (the number
of players), the number of nodes, and the consistency bound that is used. The functions to calculate
the value of 𝑆 are described in Section 3.4. We use this model to quantify the scalability improvement
when using the Dynamic Conit model in Chapter 6.

5
Experimental setup

This chapter discusses the setup for the experiments presented in this thesis. This thesis contains
two sets of experiments. The first set of experiments evaluates the scalability of Minecraft-like games.
The second set of experiments uses Meerkat to evaluate the scalability improvement for Minecraft-like
games when using Dynamic Conits. Meerkat is a prototype system that implements the Dynamic Conit
model.

The first section of this chapter gives an overview of all experiments presented in this thesis. Be-
cause no tools exist to evaluate the scalability of Minecraft-like games, the second section introduces
Yardstick, a distributed benchmark for Minecraft-like games. The remaining sections discuss the work-
loads, experiment environment, metrics, and tools used in the experiments.

5.1. Experiments overview
This chapter provides a detailed description of the experimental setup used in this thesis. An overview
of all experiments presented in this thesis is shown in Table 5.1. This section gives a brief description of
this table and the Minecraft-like games evaluated in this thesis. The chapter column indicates in which
chapter the results of the experiment are discussed. The focus column indicates what the experiment
evaluates. The system column shows which systems are evaluated: Minecraft-like games, or Meerkat.
The workloads column indicates the workloads used in the experiment. The workloads are discussed
in Section 5.3. Meerkat can be configured to use one of multiple policies to dynamically change the
consistency bounds. The policies column indicates which policies are used in the experiment. These
policies are described in Section 4.3.1. The metrics column shows the main metric used to report the
experiment results. The main metrics for all experiments are discussed in Section 5.5.1.

This thesis evaluates the scalability of three popular Minecraft-like games using Yardstick. The
three games are:

1. vanilla, the official Minecraft game developed by Mojang.

2. Spigot, the most popular community-driven modded version of vanilla.

3. Glowstone, a from-scratch implementation that is compatible with the Minecraft protocol.

Game configurations for each game are modified to reduce the bias in the experiments while still be-
ing realistic. For instance, NPCs have been disabled (Minecraft primarily features NPCs that attack
players) and join throttling has been disabled. The complete configurations for the experiments can be
found in Appendix A.

5.2. Yardstick: design of a Minecraft-like game benchmarking tool
Although Minecraft is one of the most popular games of all time, no systems exist that evaluate the
performance and scalability of Minecraft-like games. Furthermore, there are no large-scale, publicly
available, workloads to test Minecraft-like games. To solve this problem and answer research question

35

36 5. Experimental setup

Chapter Focus System Workloads Policies Metrics
6.1.2 players vs. simulation

speed
Minecraft-
like games

increasing
players

n/a tick frequency, relative
utilization

6.1.3 players vs. computation Minecraft-
like games

increasing
players

n/a number of utilized cores

6.1.4 players vs. network activ-
ity

Minecraft-
like games

fixed players n/a MC-packet throughput

6.2.2 throughput vs. consis-
tency

Meerkat stress-test static update throughput

6.2.3 synchronization vs. con-
sistency

Meerkat stress-test static synchronization through-
put

6.2.4 effect of dynamic bound Meerkat increasing,
50-player
trace

static, PM consistency area, others

6.2.5 effect of adding nodes Meerkat stress-test static update throughput
6.2.6 effect of dynamic bound

policies
Meerkat 50-player

trace
ADMI,
PM, PM-P

consistency area, others

Table 5.1: A summary of all experiments presented in this thesis. For each experiment: the chapter in which it is discussed, its
focus, the system under test, the workloads and policies used, and the metrics used to report results.

Requirement Section
1 Realistic and configurable player behavior 5.2.3
2 Scale to large numbers of players 5.2.4
3 Compatible with multiple Minecraft-like games 5.2.4, 5.2.5
4 Record complex performance metrics 5.2.5
5 Record the interaction between players and server 5.2.6

Table 5.2: Summary of Yardstick system requirements.

1, we propose Yardstick. Yardstick is a benchmark designed to evaluate the scalability of Minecraft-like
games.

While Yardstick started as a part of this thesis, it is now an independent research project under the
Opencraft umbrella. Jerom van der Sar, a Minecraft expert and Bachelor Honors student, now leads
the project and is responsible for the further design and implementation. This seems a suitable place to
thank him again for his contributions to the project (specifically for the implementation of the Yardstick
collectors for three Minecraft-like games, the player emulation and data publishing components, and
for the formulation of the relative utilization metric), and his infinite enthusiasm for Minecraft and the
Opencraft project.

The remainder of this section is structured as follows. Section 5.2.1 formulates the requirements
for a Minecraft-like game scalability benchmark. Section 5.2.2 discusses the Yardstick system de-
sign. The remaining sections discuss specific system components that are part of Yardstick and fulfill
requirements formulated in Section 5.2.1.

5.2.1. System requirements
This section formulates and discusses five requirements for a Minecraft-like game scalability bench-
mark. An overview of the requirements is shown in Table 5.2.

The aim of the Opencraft project is to scale Minecraft-like games to support millions of players.
Ideally, the scalability of these games is evaluated using millions of human players. However, even if
this number of participants could be gathered, it would be a logistical nightmare to perform a controlled
experiment. The next best option is to use emulated players that are controlled by Yardstick itself. To
obtain meaningful scalability results, it is important that the behavior of the emulated players is similar
to that of human players.

To benchmark scalable versions of Minecraft-like games, the benchmark should be able to con-
trol large numbers of players. Because each player communicates with the server, controlling large
numbers of emulated players can be resource intensive. It is unlikely that a single system can control
millions of emulated players at once.

5.2. Yardstick: design of a Minecraft-like game benchmarking tool 37

Figure 5.1: Yardstick system design. The orange boxes indicate Yardstick system components. The gray boxes group compo-
nents that serve a similar purpose. Boxes marked with a ‘J’ are designed or developed by Jerom van der Sar.

The goal of Yardstick is to evaluate and compare the performance of Minecraft-like games. To
allow performance comparisons, it is important for Yardstick to be compatible with multiple Minecraft-
like games. Yardstick supports a Minecraft-like game if it can both submit a workload (by connecting
emulated players) and observe its behavior (by recording a collection of performance metrics from the
game server).

To evaluate the scalability of a Minecraft-like game, Yardstick should record a collection of perfor-
mance metrics. Some metrics, such as the outgoing message throughput of the server, are visible to
the players, but other, more complex, metrics are kept internally by the server. To record these metrics,
Yardstick should be able to inspect the game state without significantly affecting the server behavior.
These internal metrics can give more insight into the scalability of these games. The relative utilization
is such a metric and is used in this thesis. It is described in Section 5.5.2.

By recording the interaction between the players and the server, Yardstick can export workload
traces that can be replayed either on different Minecraft-like games, or on prototype systems such as
Meerkat. These workloads can be used to evaluate the performance of these systems with a realistic
workload, and help create reproducible experiments.

5.2.2. Design overview
An overview of the Yardstick system design is given in Figure 5.1. TheMinecraft-like game is the system
under test. The orange boxes marked with ‘J’ are developed by Jerom van der Sar. The remaining
boxes indicate components developed as part of this thesis.

The Yardstick user can specify the workload that is used by changing the player behavior and other
player emulation parameters such as the number of players to connect to the server, and the interval
at which the players connect. The user can also configure the system under test by providing a server
configuration and a map used by the server. While Minecraft-like games are typically able to generate
maps at runtime, numerous highly-popular custom-made maps exist. Using the same map for multiple
Minecraft-like games allows comparing the scalability of these games. Yardstick’s design can be split
into three parts:

1. Player Emulation (workload)

38 5. Experimental setup

2. Virtual Environment (system under test)

3. Monitoring (collecting metrics data)

The player emulation module connects players to the Minecraft-like game server based on the
configuration set by the user. Once the emulated players are connected to the server, their behavior
is determined by the player behavior model. The messages exchanged between the players and the
server are forwarded to the results database by the data publishing module. The behavior of these
players is discussed in the next section.

The virtual world contains the Minecraft-like game, which is started with a configuration and map
selection specified by the Yardstick user. To gain insight in the performance and scalability of Minecraft-
like games, Yardstick provides so-called collectors for a number of Minecraft-like games that hook into
the game, and expose complex performance metrics based on internal information to the monitoring
subsystem. Section 5.2.5 describes these collectors in more detail. Section 5.5.2 describes the per-
formance metric that the Yardstick collectors currently record.

Both the data publishing component and the Yardstick Collectors expose data to the monitoring
subsystem. The monitoring component uses Prometheus to record this data and store it for later anal-
ysis. Which metrics are collected, and how Prometheus is used to collect these metrics is discussed
in Section 5.5. Processing of the experiments happens after the experiment is completed. The result
processing and analysis component extracts the resulting data from storage and is able to generate a
collection of tables and figures for analysis by the Yardstick user.

5.2.3. Player behavior model
While research about player behavior in games is available, no model of player behavior exists for
games with modifiable environments. Yardstick is designed to be extensible and allow users to add new
behavior models that include modifications to the virtual environment. For games, some archives exist
that contain a collection of game-traces. These traces contain information such as player movement
and actions for a variety of games [28]. However, to our knowledge no large scale game-trace exists
for Minecraft. For this reason, the experiments in this thesis use a synthetic workload.

Currently, Yardstick supports a simple, but configurable, player interaction model based on an ex-
isting behavior model from Second Life [38]. This model is based on observations of real players in
Second Life. The movement model distinguishes between two types of movement:

1. short-distance movement.

2. long-distance movement.

Short-distance movement represent players that are in an area that contains content such as a player’s
house. Long-distance movement represent players that are exploring the world, looking for content.
To the best of our knowledge, no realistic ratio between these types of behavior is known. Therefore,
Yardstick chooses one of these two types of movement uniformly at random. Once a type of behavior
is selected, the players perform this behavior for a duration selected uniformly at random between 1
and 3 minutes. When this time has expired, Yardstick again chooses a type of movement uniformly at
random.

While the Minecraft modding community is large and multiple player emulation frameworks imple-
mentations already exist, we found that these frameworks are either not easily programmable, or were
incompatible with modern versions of the game due to changes in the protocol used for Minecraft
server-client communication. For this reason Yardstick emulates players using custom player emu-
lation. Currently, the player emulation model is simple. The player emulation module ignores most
incoming messages from the server, except for the map data, which is needed for player path-finding.

5.2.4. Player emulation
To benchmark scalable versions of Minecraft-like games, Yardstick should be able to emulate large
numbers of players. Because each player communicates with the server, controlling large numbers of
emulated players can be resource intensive. To support this, Yardstick distributes the load over multiple
nodes. Yardstick can do this because the players, once connected to the server, operate independently
of each other. This means that using multiple nodes to emulate players does not introduce overhead
that limits scalability. Each node uses the same configuration, emulates an equal number of players,

5.3. Experiment workloads 39

workload duration player join
interval

player batch size max. players # player
emulation nodes

repetitions

increasing players 3600s 120s 10 300 5 3
fixed players 600s 1s 5 25-300:25 5 6

Table 5.3: Properties of the workloads used in the Yardstick experiments.

and connects players to the same server. Yardstick does allow the player emulation nodes to commu-
nicate. This enables complex workloads, such as a single player connecting to the server at a fixed
interval, in which case the nodes need to take turns connecting new players.

A player emulation node monitors the communication between each of its players and the server.
When the Minecraft-like game server communicates that the player is logged in, and both the avatar
and world are loaded, the player is assigned a task based on the player behavior model that is used.
The tasks, similarly to the Minecraft-like game clients, are tick based. The players are emulated by
executing a single step of the their task at a fixed frequency. The communication between the players
and the server is forwarded to the data publishing module that stores it with the experiment results.

5.2.5. Yardstick collector
Analyzing the external behavior of the Minecraft-like game server is enough to determine if the server
scales to a certain workload, but it does not show where the scalability bottlenecks of the systems are
located. To evaluate the scalability bottlenecks of these games, more advanced performance metrics
should be collected that record their internal behavior. To observe this internal state, Yardstick uses
Collectors. These Collectors consist of custom-code which is added to the server source code directly.
This code exposes complex performance metrics to Yardstick’s monitoring component. Alternative
methods, such as the use of Java agents or an API provided by the game developers, can also be
used to create Collectors. However, these alternatives are not as reliable as the current implementation.
Java agents only work if the Minecraft-like game runs on the JVM, and using an API is only possible if
the game developers provide it.

5.2.6. Data publishing
The data publishingmodule stores the communication between the emulated players and theMinecraft-
like game server. Recording the interaction allows for the creation of trace-based workloads that can
be replayed on other Minecraft-like game servers, or on prototype systems such as Meerkat. The
data publishing stores this communication by asynchronously writing the data to the result database
as separate files for each player emulation node. For each Minecraft packet that is sent or received by
a player, the type of packet and a time stamp is stored. Because the volume of this data is large, it is
stored using stream compression.

5.3. Experiment workloads
The experiments performed for this thesis use a variety of workloads, but also share many important
properties. The Minecraft experiments use emulated players to evaluate performance. One type of
behavior is used in the experiments presented in this thesis. This behavior is described in the next
section. Because Meerkat is a prototype system for Dynamic Conits, and not a complete game, emu-
lated players cannot connect to Meerkat. Instead, Meerkat is evaluated by observing its behavior while
sending writes (value updates) to it. This is further discussed in Section 5.3.2.

5.3.1. Yardstick experiment workloads
Yardstick is a distributed benchmark that supports large-scale player emulation. To support coordi-
nated player behavior, Yardstick player emulation nodes are able to communicate with each other. For
example, an experiment focused on how the number of players affects server performance may let
emulated players join the server in a regular interval. In this case, the Yardstick Bot Framework can
internally schedule player join behavior using a round-robin approach to distribute load on Yardstick
instances evenly. The Yardstick experiments use two different workloads. An overview of the workload
parameters is shown in Table 5.3.

The first workload, increasing players lets players join over time until a maximumnumber of players

40 5. Experimental setup

workload policy duration bounds synchronization
throughput

target

nodes repetitions

stress-test static 300s 0-5,50-250:50 n/a 1,2,4,8,16,32 20
increasing static 1500s 0, 5 n/a 1,2,4,8 1
increasing other 1500s n/a 200 1,2,4,8 1
50-player trace static 600s 0, 5 n/a 1,2,4,8 1
50-player trace other 600s n/a 200 1,2,4,8 1

Table 5.4: Properties of the workloads used in the Meerkat experiments. When the static policy is used, a fixed bound is set.
When another policy is used, the bound is dynamic and a synchronization throughput target is set.

is reached, and observes theMinecraft server during this process. For this workload, 5 player emulation
nodes are used. Each node connects 2 new players every 120 seconds. The experiment duration
is 1 hour, or 3600 seconds. The join interval, combined with the duration of the experiment brings
the maximum number of connected players to 300. This workload is repeated three times for each
Minecraft-like game.

The second workload, fixed players quickly connects players until a fixed amount of players has
been reached. For the remaining duration of the experiment the behavior of the Minecraft-like game
server is observed. For this workload, 5 player emulation nodes are used. Each node connects a
new player to the server every second. The maximum number of players ranges from 25 to 300 using
multiples of 25. For each combination of a Minecraft-like game and maximum number of players, the
experiment is repeated 6 times.

5.3.2. Meerkat experiment workloads
A Meerkat workload consists of a collection of accesses that are submitted at a specific time. The
Meerkat experiments use three different workloads. An overview of the workload parameters is shown
in Table 5.4. In all experiments where a static consistency bound is used, the bound of one of the
dimensions is set to a fixed value, while the others are set to infinity. While arbitrary combinations of
error bounds are possible, the experiments presented here focus on the performance impact of the
individual consistency dimensions.

The first workload, stress-test, evaluates the effect of the Conit model on the maximum throughput
of the system. stress-test sends each node a new write as soon as it has completed processing
the previous write. Because writes trigger all three consistency dimensions (in comparison to reads,
which only triggers the staleness actor), this synthetic workload is the heaviest possible workload for
the system. This workload is repeated 20 times for each combination of consistency bounds and
number of nodes. The small bound values (0-5) have been chosen to observe scalability improvements
when allowing low inconsistency in the system. The large bound values (50-250) have been chosen to
observe scalability improvements when using staleness bounds that are still tolerable to players.

The second workload, increasing, increases the frequency of the writes over time. increasing
sends writes with a frequency of 20 ⋅ 𝑖, where 𝑖 = 1 at the start of the experiment, and is increased
by 1 every 30 seconds. The constant of 20 writes per second is based on the Meerkat performance
model, discussed in Section 4.4, where 1 player corresponds to 20 writes per second. This workload
is similar to the increasing players workload used in the Minecraft scalability experiments, where
additional players join over time. This workload has a duration of 1500 seconds, reaching a maximum
of 1000 writes per second, or 50 players. This workload is used both in combination with a static
consistency bound as well as a dynamic consistency bound. When a dynamic bound is used, the
target synchronization throughput is set to 200 messages per second. This workload is executed once
for each combination of consistency bound and number of nodes.

The final workload, 50-player trace, evaluates a more realistic scenario by replaying messages
transmitted by a Minecraft-like game server that are recorded during the Minecraft scalability experi-
ments using the fixed players workload, configured to connect 50 players. In the Minecraft scalability
experiments, a set of emulated players connect and interact with the Minecraft-like game server. In the
50-player trace workload, each Meerkat node selects an emulated player and replays the Server-
EntityPositionPacket messages this player received, by translating them into Meerkat updates.
These updates are then synchronized between the multiple Meerkat nodes according to the set Dy-

5.4. Environment 41

Resource Property Value
CPU # cores dual 8-core
CPU clock frequency 2.4 GHz
memory size 64 GB
interconnect network Architecture FDR InfiniBand
disk file system network mounted storage

Table 5.5: DAS-5 node hardware configurations used for all experiments presented in this thesis.

namic Conit bounds. This scenario is similar to multiple servers communicating player locations to
each other in a distributed virtual environment, which can occur when these servers share a border in a
spatially-partitioned virtual world. This scenario is discussed in Section 3.3.1. Because a trace is used
in which 50 emulated players connect to the Minecraft-like game server, each Meerkat node replays
the position updates from 50 − 1 = 49 other players. This means that the workload is scaled up when
using multiple Meerkat nodes; running the 50-player trace workload on four Meerkat nodes generates
twice as many updates as running the same workload on two Meerkat nodes. Similar to the increasing
workload, the 50-player trace workload is used both in combination with a static consistency bound
as well as a dynamic consistency bound. When a dynamic bound is used, the target synchronization
throughput is set to 200 messages per second. This workload is executed once for each combination
of consistency bound and number of nodes.

We configure the workloads to have the following properties: all workloads consist of 100% writes
with a numerical weight of 1. There is always 1 defined Conit that is affected by all updates. When
applied to games, the number of Dynamic Conits will likely be in the order of the number of players.
However, to keep the system simple and to better observe the behavior of the Conit model, only one
is used in the workloads in this thesis.

The policies used for the Meerkat experiments are static, PM, and PM-P. These policies are dis-
cussed in Section 3. Each policy uses a sliding window size of 10 seconds to determine the current
average throughput of messages. The bounds are also updated every 10 seconds. Because we are
interested in which types of tuning policies work, and not in tuning the performance of the policies,
these parameters are not varied in the experiments.

5.4. Environment
Distributed systems are complex, and their performance is affected not only by their design and imple-
mentation, but also by the environment in which they are deployed. This section discusses the environ-
ment in which the Minecraft-like games and Meerkat are evaluated. First, it discusses the DAS-5: the
supercomputer that is used for all experiments presented in this thesis. Second, it discusses Akka1, a
framework for building scalable distributed systems in Java and Scala, which is used to build Meerkat.

5.4.1. DAS-5 distributed supercomputer
All experiments presented in this thesis are performed on the DAS-5 distributed supercomputer [10].
The DAS-5 is a project of the Advanced School for Computing and Imaging (ASCI), and is funded by
NWO/NCF. The DAS-5 is comprised of six clusters located throughout the Netherlands. It features
state-of-the-art hardware, and offers special nodes that are equipped with HPC accelerators such as
GPUs. The DAS-5 provides the opportunity for a large number of students and researchers to conduct
experiments in a controlled and common infrastructure. Without such an infrastructure, researchers
would need to use commercial alternatives. Researchers have no control over commercial infrastruc-
tures, and may not know the hardware and configurations that are used. This makes it more difficult
for researchers to reproduce results. Furthermore, the lack of control also means that specialized
hardware required for research might not be available.

A summary of the hardware used in the experiments presented in this thesis is shown in Table 5.5.
The nodes in the DAS-5 are connected to both an Ethernet and InfiniBand network. In the experiments
presented in this thesis, all nodes communicate using the high-performance InfiniBand connections.
More details on the hardware of these nodes are available on the website of the DAS-5.2

1https://akka.io/
2http://www.cs.vu.nl/das5/

https://akka.io/
http://www.cs.vu.nl/das5/

42 5. Experimental setup

metric collected for metric collected by unit
Minecraft-like game CPU utilization Prometheus 0-n (number of cores)

tick frequency Prometheus numerical value
relative utilization (Section 5.5.2) Prometheus 0-100%

Yardstick incoming/outgoing Minecraft packets Prometheus count
Meerkat access throughput Akka logging messages per second

sync throughput Akka logging messages per second
consistency area Akka logging numerical value

Table 5.6: Metrics collected in experiments. All metrics are discussed in Section 5.5.1, unless indicated otherwise.

5.4.2. Akka framework
The tools available for building and debugging distributed systems are less advanced than those avail-
able for single-node systems. This means that building and debugging distributed systems is more
labor intensive and error-prone. Meerkat is built on top of Akka: a framework for building scalable dis-
tributed systems in Java and Scala. Akka tries to reduce the effort needed to build scalable and reliable
distributed systems. It takes care of many networking and configuration tasks, allowing the engineer
to focus on the system features.

To build scalable and reliable distributed systems, Akka uses the actor model. In this model, a
collection of actors run asynchronously and can be distributed across nodes. These actors perform
actions based on messages they receive from other actors. Meerkat, a system built on top of Akka,
provides its own actors that are run by the Akka framework. Akka routes the messages between the
actors, taking care of synchronization, locating actors on the network, and serializing and deserializing
these messages.

5.5. Metrics and data collection
Collecting data andmeasurements during the experiments is done either by using Prometheus or by us-
ing logging. Prometheus is the preferred method for collecting measurements. However, Prometheus
has strict requirements on the format used for the data it must record. Only lists of numerical values
(time-series data) with specific requirements are supported. Furthermore, Prometheus uses a polling
approach which does not allow precise recording of when events are triggered.

Yardstick uses Prometheus for both hardware metrics, such as CPU and memory utilization, and
system metrics, such as the rate of incoming and outgoing packets. Meerkat uses logging to collect
data about the system itself, such as the number of participants in the Conit, the current consistency
bounds, and the sending and receiving of synchronization messages. Hardware metrics such as CPU
and memory utilization are collected using Prometheus.

5.5.1. Main metrics
This section discusses one by one the main metrics used to report the experiment results. An overview
of the metrics that are used is shown in Table 5.6.

The number of utilized cores is a metric to quantify the CPU utilization. Instead of a percentage,
where 0% means an idle CPU and 100% means a fully utilized CPU, a number between 0 and 𝑛 is
used, where 𝑛 is the total number of CPU cores in the node that is used for the experiment. It is
straightforward to calculate the normalized CPU utilization from the number of utilized cores: divide by
the total number of cores and multiply by 100. The number of utilized cores is more informative than
the normalized value. If, for example, the experiment results show that the CPU utilization does not
exceed 1 core, this suggests that the system does not support parallel processing. This observation
would be more difficult to make when the normalized value is used, and a value such as 12.5% is
observed (which corresponds to 1 utilized core, if the total number of cores is 8).

Tick frequency is the number of ticks completed by a Minecraft-like server per second. During each
tick, the server completes a simulation step of the virtual world. The value of the tick frequency is a
constant determined by the game designers. All Minecraft-like games evaluated in this thesis use a
tick frequency of 20Hz.

The relative utilization is a metric that is related to the tick frequency. When using a fixed tick fre-
quency, there is a fixed amount of time between two consecutive ticks. The relative utilization quantifies

5.5. Metrics and data collection 43

𝑡፬ 𝑡፝ 𝑡፞

Tick Duration Tick Wait Duration

Tick Interval
Figure 5.2: Conceptual overview of a Minecraft server tick. The Tick Duration denotes the time spent by the server simulating
the virtual world. The Tick Wait Duration denotes the time spent by the server waiting before the next tick is started.

how much of that time is used by the server to perform the virtual world simulation step. If this value
exceeds 100%, the processing takes more time than allocated and consecutive ticks are delayed. This
suggests that the server is overloaded. This metric is explained in more detail in Section 5.5.2.

The Minecraft packet throughput captures the throughput of both the incoming and outgoing pack-
ets of the Minecraft server. This metric does not capture the throughput of Ethernet packets, but of
Minecraft packets. These are application-level messages such as ServerEntityPositionPacket,
which the server uses to indicate the position of an entity to a client, and ServerChuckDataPacket,
which the server uses to communicate the layout of the virtual world to the client. To reduce the number
of modifications needed to the Minecraft-like game server’s code, the message throughput is captured
by Yardstick’s player emulation module.

The player update throughput is the metric used to report the results from the Meerkat experiments.
It reports how many updates are accepted by Meerkat per second. These updates are part of the
workload, which in a real-world scenario are caused by the players connected to the Minecraft-like
game. A higher player update throughput indicates that more player updates can be processed in one
second, and indicates better scalability.

The synchronization throughput is used to report the amount of synchronization between Meerkat
nodes. To bound inconsistency, Meerkat needs to synchronize player updates received on one node
to the other nodes. This means sending synchronization messages. This metric shows the total num-
ber of synchronization messages exchanged per second across all Meerkat nodes. Exchanging and
processing synchronization packets is overhead caused by using a distributed system. Therefore, a
lower synchronization throughput indicates better scalability.

The consistency area is defined as the integral of the consistency bound over time. The consis-
tency area is computed using the trapezoidal rule, because it can be directly applied to discrete data.
The consistency bound can be automatically adjusted by the dynamic bound policies described in Sec-
tion 4.3.1. At any point in time, the consistency bound indicates the maximum allowed inconsistency in
the system. The consistency area is captured to observe the behavior of the dynamic bound policies
over time. The consistency area is equal to the average consistency bound multiplied by the dura-
tion of the experiment. Because all dynamic bound policies are compared using the same 50-player
trace workload, these experiments have the same duration. This means that the consistency area is
proportional to the average inconsistency, but is easier to visualize.

5.5.2. Relative utilization metric (Jerom van der Sar)
To perform scalability measurements, Yardstick defines its own scalability metric based on the server
tick rate. A tick is a simulation step of a game server that corresponds to one execution of the game
loop. Most commercial games use tick-based servers that simulate (or tick) the virtual world at a regular
interval.

During each iteration of the game loop (also known as a server tick), Minecraft processes client
packets, updates entities and the environment, and transmits the new state to clients. Ticks are started
at a constant frequency, called the tick frequency, equal to 20Hz. From this, the interval between two
consecutive ticks, the tick interval, can be calculated to be equal to 50ms. Tick processing completes
after a variable amount of time. The length of this period is called tick duration. Subsequently, the
game loop pauses until the next tick should be started. The length of this period is equal to the tick
interval minus the tick duration, and is referred to as the tick wait duration. Figure 5.2 illustrates a
game tick. Here 𝑡፬ indicates the start time of a tick, 𝑡፝ indicates the start of the tick wait period, and 𝑡፞
indicates the end of the tick and the start of the next tick. This is a high-level model of a tick that enables

44 5. Experimental setup

reasoning about the performance of the game server without adding implementation-specific details.
For instance, although the main operations that occur within a tick are known, the order in which these
take place and the level of concurrency used depend entirely on the implementation.

From the Minecraft game loop, we determine a new metric, the relative utilization, which may be
analogous to the utilization of the server process. We define the relative utilization as a fraction of the
tick duration over the tick interval. Mathematically, this corresponds to:

𝑈፫ =
𝑡፝ − 𝑡፬
𝑡፞ − 𝑡፬

𝑈፫ represents the relative utilization, a fraction where 0 ≤ 𝑈፫ ≤ 1 under normal circumstances. 𝑡፝,
𝑡፬, and 𝑡፞ should be interpreted as in Figure 5.2, and are measured in millisecond precision. The tick
interval in Minecraft is equal to 50ms. Considering this, the formula above can be rewritten as:

𝑈፫ =
𝑡፝ − 𝑡፬
50

When 𝑈፫ approaches 1, the tick wait duration is low and there is little leeway for additional server
load. When 𝑈፫ approaches zero, little to none of the capacity of the server is used. This metric effec-
tively allows us to determine when a server is overloaded, and when there is capacity for higher server
load.

5.5.3. Akka Logging
Meerkat uses logging to perform measurements during the experiments. The logging is implemented
using Akka and uses dedicated actors to process log messages. Each line that should be logged is
sent to a logging actor as a message. These actors are run asynchronously run by Akka to reduce the
IO wait for the rest of the system. To collect the logs in a single location, the nodes in the experiment
write the logs to a network mounted disk on the DAS-5.

5.5.4. Prometheus monitoring
Unfortunately, no standardized solution exists for collecting data from a multitude of metrics in a dis-
tributed system. This gives researchers the responsibility to find, deploy, configure, and operate their
own set of tools. This is a task that we grudgingly accept, but take very seriously nonetheless. In the
experiments presented in this thesis, a significant amount of the measurements is conducted using the
Prometheus monitoring framework3. This framework is relatively new and is comparable to systems
such as InfluxDB4 and Graphite5. One major advantage of Prometheus over these other systems is
that the application comes in a single binary with all its dependencies. This removes the need to install
software on the nodes used for the experiments and simplifies deployment significantly.

Prometheus consists of multiple smaller applications that fulfill different roles. The main application
(from here on calledPrometheus) ‘scrapes’ target applications (from here on called targets), pulling data
from different metrics and storing them in a single database. The targets monitor the system on which
they run and offer the data this yields to Prometheus. For all experiments in this thesis, Prometheus
runs on a separate node that has no other tasks than to log the data from the targets. A target runs
on each of the other nodes involved in the experiment. Collecting game-specific data is possible by
using the Prometheus API that allows arbitrary programs to expose data to the main application. An
overview of the collected metrics can be found in Table 5.6.

Network activity is also monitored in the experiments presented in this thesis. Because Prometheus
monitors the targets through networking, this may affect the measurements. Because the nodes in the
DAS-5 are connected to both InfiniBand and Ethernet, we eliminate the effect these measurements
have on the observed network activity by running the monitoring activities over Ethernet, while the
system under test communicates internally using InfiniBand. Only the network device used by the
system under test is considered in the experimental results.

3https://prometheus.io/
4https://www.influxdata.com/
5https://graphiteapp.org/

https://prometheus.io/
https://www.influxdata.com/
https://graphiteapp.org/

6
Experimental results

This chapter discusses the experiments and results for both the Minecraft and Meerkat experiments
described in Chapter 5. For both sets of experiments, first the goal of each set is briefly discussed,
followed by the main findings and an analysis of the results. A detailed discussion of the experiment
setup can be found in Chapter 5. For a complete overview of the experiments, see Table 5.1. Next, the
experiment results are presented and analyzed. Not all experiment results are shown in this chapter.
For the omitted results, see Appendix B.

6.1. Minecraft scalability experiments
The two goals of theMinecraft scalability experiments are to evaluate the current scalability of Minecraft-
like games, and to find out if Dynamic Conits can increase the scalability of these games. The first ex-
periment, which shows the effect of the number of players on the tick frequency and relative utilization,
covers the first goal, while the latter two experiments, which show the effect of the number of players
on the CPU and network usage, cover the second goal.

6.1.1. Main findings
1. Minecraft-like games scale to hundreds of players. For higher numbers of players, the tick fre-

quency is reduced. This motivates to look for novel scalability techniques.

2. The CPU does not form a bottleneck for scalability. This motivates to reduce the load on resources
other than the CPU to increase scalability.

3. Minecraft-like games transmit large numbers of packets which increase with the number of play-
ers. This motivates to use Dynamic Conits to reduce the number of messages by allowing
bounded inconsistency between nodes.

6.1.2. Analysis of finding 1
Minecraft-like games scale to hundreds of players. Using the tick frequency and novel relative utilization
metrics, we observe that all the evaluated games are overloaded under at least one of the workloads.
In all figures discussed in this section, the color of the curve indicates the Minecraft-like game used in
the experiment. We now proceed to describe this result.

Figure 6.1 depicts the tick frequency of the Minecraft server while under the increasing players and
fixed players workloads. The horizontal axis depicts the number of connected players and the vertical
axes depict the tick frequency. The Minecraft-like games are all configured to run at a tick frequency
of 20Hz, or 50ms per tick. Figure 6.1a shows that the tick frequency from both Glowstone (blue
curve) and vanilla (red curve) drops below 20Hz during the increasing players workload. The tick
frequency of Glowstone drops below 20Hz when connecting 175 players or more. The tick frequency
of vanilla drops below 20Hz when connecting 225 players or more. The tick frequency from Spigot
is hidden behind the red curve from vanilla and is limited to 225 players. The tick frequency indicates
the number of simulation steps of the virtual world per second. Decreasing this value means that the

45

46 6. Experimental results

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

5

10

15

20

fre
qu

en
cy

 (H
z)

server implementation
glowstone
spigot
vanilla

(a) Effect of the increasing players workload

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

5

10

15

20

fre
qu

en
cy

 (H
z)

number of players
glowstone
spigot
vanilla

(b) Effect of the fixed players workload

Figure 6.1: Tick frequency of Minecraft-like game servers when varying the number of players. The markers indicate the median
value, and the whiskers indicate a 95% confidence interval.

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

50

100

150

200

250

300

350

re
la

tiv
e

ut
iliz

at
io

n
(%

)

server implementation
glowstone
spigot
vanilla

(a) Effect of the increasing players workload

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

50

100

150

200

250

300

350

re
la

tiv
e

ut
iliz

at
io

n
(%

)

number of players
glowstone
spigot
vanilla

(b) Effect of the fixed players workload

Figure 6.2: Relative utilization of Minecraft-like game servers when varying the number of players. The markers indicate the
median value, and the whiskers indicate a 95% confidence interval.

simulation of the virtual world slows down, decreasing the overall game speed. Figure 6.1b shows
that both Glowstone (blue curve) and Spigot (green curve) drop below the tick frequency of 20Hz
for large numbers of players while under the fixed players workload. Glowstone drops below 20Hz
when connecting 125 players or more, while Spigot drops below 20Hz when connecting 225 players
or more.

Figure 6.2 depicts the relative utilization of the Minecraft-like game servers for both workloads. The
horizontal axes depict the number of players connected to the server and the vertical axes depict the
relative utilization. Figure 6.2a shows that the relative utilization of both Glowstone (blue) and vanilla
(red) exceeds 100% during the increasing players workload. The relative utilization of Glowstone
exceeds 100% when connecting 175 players or more. The relative utilization of vanilla exceeds 100%
when connecting 225 players or more. The relative utilization indicates how much time within a server
tick is used by the server executing the game loop. A relative utilization larger than 100% means that
ticks exceed their maximum duration, delaying the execution of the next server tick. Figure 6.2b shows
that the relative utilization of both Glowstone and Spigot exceed 100% during the increasing players
workload. The relative utilization of Glowstone exceeds 100% relative utilization when connecting 125
players or more. The relative utilization of Spigot exceeds 100% relative utilization when connecting
250 players or more.

Combining Figure 6.1 and Figure 6.2 shows that the decrease in tick frequency coincides with ex-
ceeding a relative utilization of 100% for each of the Minecraft-like games. This suggests that the tick

6.1. Minecraft scalability experiments 47

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

2

4

6

8

10

12

N
um

be
r o

f u
til

iz
ed

 c
or

es

server implementation
glowstone
spigot
vanilla

(a) Effect of the increasing players workload.

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

2

4

6

8

10

12

N
um

be
r o

f u
til

iz
ed

 c
or

es

number of players
glowstone
spigot
vanilla

(b) Effect of the fixed players workload.

Figure 6.3: CPU utilization of Minecraft-like game servers when varying the number of players. The markers indicate the median
value, and the whiskers indicate a 95% confidence interval.

frequency of the servers decrease because the duration of each individual tick is larger than its maxi-
mum duration, delaying the execution of the next tick, hereby reducing the tick frequency. Which games
exceed 100% relative utilization depends on the workload. Figure 6.2a shows that bothGlowstone and
vanilla exceed 100% relative utilization under the increasing players workload. Figure 6.2b shows
that both Glowstone and Spigot exceed 100% relative utilization under the fixed players workload
This indicates that different Minecraft-like games react differently to a specific workload: Spigot does
not exceed 100% relative utilization under the increasing players workload, but it does under the
fixed players workload. vanilla exceeds the 100% relative utilization under the increasing players
workload, but it does not under the fixed players workload.

Currently, Minecraft-like games scale to hundreds of players while state-of-the-art MMOG games
scale to thousands of players. This gap, of multiple orders of magnitude, provides a clear motivation
for researchers to look for novel techniques to increase the scalability of Minecraft-like games. Meerkat
implements Dynamic Conits, which can be one of these techniques.

6.1.3. Analysis of finding 2
The CPU does not form a bottleneck for scalability. None of the games fully utilizes the CPU in any of
the experiments. Figure 6.3 shows the number of utilized cores over the number of connected players
for both workloads. The horizontal axes show the number of connected players, and the vertical axes
show the number of utilized cores of the Minecraft-like game server node. We now proceed to describe
this result.

Figure 6.3a shows the number of utilized cores over the number of players while under the in-
creasing players workload. Between 25 and 150 players all games show a trend of an increasing
CPU utilization for an increasing number of players. Between 150 and 300 players, the CPU utilization
of bothGlowstone and vanilla stops increasing. The CPU utilization of Glowstone (blue curve) keeps
increasing until 175 players. For a larger number of players the CPU utilization decreases slowly and
seems to diverge towards 8 cores. The CPU utilization of vanilla (red curve) keeps increasing until 275
players. At 300 players the utilization is slightly below the utilization for 275 players, but the variance
of the utilization is increased.

Figure 6.3b shows the number of utilized cores over the number of players while under the fixed
playersworkload. Between 25 and 150 players all games show a trend of increasing CPU utilization for
an increasing number of players. Between 150 and 300 players, the CPU utilization of bothGlowstone
and vanilla stops increasing. The CPU utilization of Glowstone (blue curve) keeps increasing until 150
players. For a larger number of players the CPU utilization seems to be roughly constant at a value
between 7 and 8 cores. The CPU utilization of vanilla (red curve) keeps increasing until 200 players.
For larger numbers of players, the CPU utilization stays slightly below 8 cores.

Combining Figure 6.2 and Figure 6.3 shows that while the relative utilization exceeds 100% for all

48 6. Experimental results

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

100000

200000

300000

400000

500000

600000

700000

av
er

ag
e

nu
m

be
r o

f p
ac

ke
ts

 p
er

 s
ec

on
d

server implementation
glowstone
spigot
vanilla

(a) Effect of the increasing players workload

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

100000

200000

300000

400000

500000

600000

700000

av
er

ag
e

nu
m

be
r o

f p
ac

ke
ts

 p
er

 s
ec

on
d

number of players
glowstone
spigot
vanilla

(b) Effect of the fixed players workload

Figure 6.4: Outgoing packet throughput on Minecraft-like game servers when varying the number of players. The markers
indicate the median value, and the whiskers indicate a 95% confidence interval.

games and continues to increase with the number of players, the number of utilized cores does not, and
never reaches 32 (the total number of cores in the node). This shows that the game is spending more
time on each game tick without spending additional time on the CPU. We consider three explanations
for this observation. The simplest explanation is that the number of computations within a game tick
is not a system bottleneck. The second explanation is that the number of computations does form
a bottleneck without reaching 100% CPU utilization because the game cannot be parallelized further
due to inherently sequential computations. The third explanation is that the CPU does not reach 100%
utilization because the games could benefit from increased parallel processing, but are not designed
to do so.

Only in the second explanation does the CPU form a scalability bottleneck. However, this explana-
tion seems unlikely because the players emulated by Yardstick move around the virtual world without
interacting with the other players. This means that their player states could be updated in parallel. If
CPU is not the scalability bottleneck of Minecraft-like games, other resources must be responsible for
further extending the tick duration. If the network is one of these resources, Dynamic Conits can im-
prove game scalability because they reduce the network traffic. Allowing bounded inconsistency does
require additional bookkeeping and thus additional CPU usage. However, none of the games utilizes
all CPU cores and the bookkeeping required by Dynamic Conits can run concurrently with the game
itself. Therefore resources are available for this bookkeeping.

6.1.4. Analysis of finding 3
Minecraft-like games transmit a large number of packets which increases with the number of players.
All servers show an increasing number of packets sent per second until they become overloaded, at
which point the servers show erratic behavior. We now proceed to describe this result.

Figure 6.4a shows the number of packets per second transmitted by the Minecraft-like game server
over the number of players while under the increasing players workload. The horizontal axis shows
the number of players, and the vertical axis shows the number of packets per second sent by the
server. The number of outgoing packets per second sent by Spigot (green curve) increases until
150 players. For larger numbers of players, the variance of the number of packets sent per second
significantly increases and the median values (the markers on the curve) stop increasing. The same is
true for Glowstone (blue curve) after 175 players. The number of outgoing packets per second sent
by vanilla (red curve) increases until 275 players. Only for 300 players does the number of packets
sent per second decrease slightly.

Combining Figure 6.2a and Figure 6.4a shows that for both Glowstone and vanilla, the decrease
in number of packets sent per second coincides with a relative utilization greater than 100%. The
relative utilization greater than 100% indicates that the server is overloaded and cannot keep up with
the workload.

Figure 6.4b shows the number of packets per second transmitted by the Minecraft-like game server

6.1. Minecraft scalability experiments 49

packet name frequency percentage
of total size

average
packet size

 min 25pc 50pc 75pc max

ServerEntityPositionPacket 45% 2% 9 35 0 9 9 9 32274
ServerEntityHeadLookPacket 18% 0% 3 38 0 3 3 4 32726

ServerEntityPositionRotationPacket 16% 1% 11 40 0 11 11 12 31618
ServerEntityVelocityPacket 5% 0% 8 146 0 7 8 8 63744
ServerEntityTeleportPacket 5% 1% 29 66 0 29 29 29 31650

ServerEntityMetadataPacket 3% 0% 25 459 0 7 7 32 62696
ClientPlayerPositionPacket 3% 0% 25 72 0 25 25 25 31622
ServerEntityStatusPacket 1% 0% 5 0 0 5 5 5 34

ServerSpawnObjectPacket 1% 0% 68 663 0 55 55 55 62236
ServerPlayBuiltinSoundPacket 1% 0% 23 176 0 22 22 22 31618

ServerChunkDataPacket 1% 93% 31643 9323 0 31066 31080 31613 251826
ServerMultiBlockChangePacket 1% 0% 37 284 0 20 26 41 32704

ServerBlockChangePacket 1% 0% 11 147 0 10 10 10 31614

Table 6.1: Network packet distribution for vanilla experiment with 200 players using the fixed players workload.

over the number of players while under the fixed players workload. The horizontal axis shows the
number of players, and the vertical axis shows the number of packets per second sent by the server.
All games show an increasing number of packets sent for an increasing number of players. The number
of packets per second sent by Glowstone (blue curve) keeps increasing with the number of players.
The number of packets per second sent by Spigot (green curve) and vanilla (red curve) also increases
with the number of players, but stops doing so after 225 players.

Combining Figure 6.2b and Figure 6.4b shows that the reduced increase in number of packets
sent per second by Glowstone coincides with the game exceeding 100% relative utilization. This
can be seen by the blue curve exceeding 100% in Figure 6.2b, and the change in slope in the blue
curve in Figure 6.4b. The reduction in number of packets sent by Spigot also coincides with the game
exceeding 100% relative utilization. This can be seen by the whiskers of the green curve exceeding
100% in Figure 6.2b, and the erratic and lower values of the green curve in Figure 6.4b. The reduction
in packets sent by vanilla does not coincide with the game exceeding 100% relative utilization.

However, when combining Figure 6.3b and Figure 6.4b we observe that the reduction in number of
packets sent coincides with a stagnation in the CPU utilization of the game. vanilla seems unable to
use more than 8 CPU cores. This can be seen in Figure 6.3b, where for 200 players or more the red
curve is very close to, but stays below, a utilization of 8 cores.

Table 6.1 shows a summary of the network activity from one of the repetitions of the fixed players
workload. Most network traffic is caused by the server communicating player location data to the
clients. Only packets that have a frequency of 1% or more have been included in the table. All packet
names that start with ‘Server’ are sent by the server. Similarly, packet names that start with ‘Client’
are sent by the client. The first row of the table shows that 45% of the packets exchanged between
the server and clients are ServerEntityPositionPacket packets. These packets communicate
the location of an entity from the server to a client. The top five rows in the table show packets related
to entity positioning. These packets account for almost 90% of all network traffic between the server
and the clients. The location of an entity in the virtual world is not always relevant to other players,
motivating efforts to research novel techniques to allow (bounded) inconsistency between players and
decrease the amount of data that needs to be communicated. By defining a Dynamic Conit on the
data that specifies the location of entities in the virtual world, the number of packets that need to be
communicated can be reduced.

6.1.5. Discussion
The experiments in this thesis that evaluate the scalability of Minecraft-like games use a player em-
ulation model that is part of the Yardstick benchmarking tool and is based on player movement in
Second Life. However, a more accurate movement model called SAMOVAR is available based on
player movement traces obtained from World of Warcraft [60]. Changing the player behavior, includ-
ing player movement, could affect the workload on the server and the number of players that it can
support. To realistically simulate player behavior, more is needed than an accurate player movement
model. Real players of Minecraft-like games are likely to modify the virtual world, which is a feature that
other games (such as Second Life and World of Warcraft) do not offer. Changing the virtual world re-
quires additional communication, and likely increases the amount of ServerBlockChangePackets
and ServerMultiBlockChangePackets transmitted by the game.

50 6. Experimental results

Similar to entity locations, modifications to the virtual world are not always relevant to other players,
motivating efforts to research novel techniques to allow (bounded) inconsistency between players and
decrease the amount of data that needs to be communicated. Dynamic Conits reduce the amount
of network traffic by allowing bounded inconsistency between nodes. This would affect the number
of ServerBlockChangePackets, ServerMultiBlockChangePackets, and ServerEntityPo-
sitionPackets because these packets are used to update the state of the game at the client. Dy-
namic Conits can also be used to reduce the number of ServerChuckDataPackets. These packets
are used to communicate the state of the virtual world to the clients. These packets are retransmitted
each time a client connects, even if this client was recently connected to the server. If a Dynamic Conit
is defined that is affected by changes to the virtual world, clients could request only those updates from
the server, instead of the complete state of the virtual world. In cases where a client has not connected
to a server for a long period of time, the client has likely missed many updates. Here communicating
merged updates or the state of the virtual world might be more efficient. This motivates researching
the combination of such techniques with Dynamic Conits, as introduced in Section 3.2.

Both experiments experienced problems when connecting players to the servers. During the ex-
periment running the increasing players workload, Spigot regularly disconnected or refused some of
the players that tried to connect. This explains why the green curve in the figures that visualize the
increasing players workload does not continue until 300 players: this number of players was never
reached before the end of the experiment. During the experiments running the fixed players workload,
the join interval was set at 1 second. This short interval was problematic for all of the Minecraft-like
game servers. All servers occasionally took longer than 1 second to inform Yardstick that the new
player was connected. However, if the server does not respond in time, Yardstick considers the at-
tempt to let the new player join as failed, sending a Disconnect packet to the server. Such packets
seem to be ignored by the server while the player is still logging in (and thus not officially connected).
This results in the player still connecting to the server eventually, but being considered failed, and thus
left idle, by Yardstick. In future experiments this interaction between Yardstick and the Minecraft-like
games should be improved to have more control over the (number of) connected players.

6.2. Meerkat experimental evaluation
From the results presented in the previous section, we conclude that there is ample room for improve-
ment of the scalability of Minecraft-like games. The Minecraft scalability experiments show that the
games scale to hundreds of players. The CPU is never fully utilized, but the network utilization of the
games are high, and continues to increase with the number of players. To reduce the network utilization
of these games, we propose a novel technique: Dynamic Conits. Dynamic Conits allow bounded in-
consistency between nodes, reducing the amount of synchronization required. This section evaluates
Meerkat, a prototype system that implements Dynamic Conits, in two steps.

The goal of the first two experiments is to evaluate the impact of different consistency bounds of
the traditional Conit model on update throughput and synchronization throughput. A higher update
throughput indicates that a higher number of updates can be processed in the same amount of time.
The Conit model can increase the update throughput by reducing the frequency of synchronization.
For Minecraft-like games, increasing the update throughput can mean increasing the number of events
the game can process in a single tick. If the number of events per time unit is constant, a higher update
throughput can reduce the tick duration, reducing the relative utilization.

The goal of the remaining experiments is to evaluate the features of the Dynamic Conit model, and
their ability to improve the performance of Minecraft-like games. Specifically, the experiments focus on
dynamically changing Dynamic Conit bounds, and the effect of letting new nodes join a system under
heavy load. Limiting the amount of synchronization messages by dynamically changing consistency
bounds can prevent Minecraft-like games from exceeding 100% relative utilization. This can allow the
game to scale to a larger number of players at the cost of increased inconsistency.

6.2.1. Main findings
1. Using Dynamic Conits’ bounded inconsistency can double the number of supported players.

2. Using Dynamic Conits’ bounded inconsistency can significantly decrease the amount of synchro-
nization between nodes.

6.2. Meerkat experimental evaluation 51

0

250

500

750

1000

1250

1500

1750

N
um

be
r o

f p
la
ye

rs

2 4 8
Number of nodes

0

5000

10000

15000

20000

25000

30000

35000
N
um

be
r o

f u
pd

at
es

 p
er
 s
ec

on
d

 M
in
ec

ra
ft-
lik
e

 M
in
ec

ra
ft-
lik
e

 M
in
ec

ra
ft-
lik
e

Bound
0
50

100
150

200
250

(a) Effect of staleness bounds on update throughput

0

250

500

750

1000

1250

1500

1750

N
um

be
r o

f p
la
ye

rs

2 4 8
Number of nodes

0

5000

10000

15000

20000

25000

30000

35000

N
um

be
r o

f u
pd

at
es

 p
er
 s
ec

on
d

Bound
0
1

2
3

4
5

(b) Effect of numerical bounds on update throughput

Figure 6.5: Effect of staleness and numerical consistency bounds on update throughput. The top of the bars indicate the median
value, and the whiskers indicate a 100% confidence interval.

3. Dynamically changing the Dynamic Conit bounds can prevent high workloads creating large num-
bers of synchronization messages, and can reduce inconsistency under low workloads.

4. Adding new nodes to a Dynamic Conit during high workload can cause system stalls.

5. Dynamic bound policies can control howmuch consistency is reduced and howmuch consistency
is lost.

6.2.2. Analysis of finding 1
Setting higher consistency bounds using Dynamic Conits’ bounded inconsistency can double the num-
ber of supported players as calculated by Meerkat’s performance model discussed in Section 4.4. This
is a promising result for Minecraft-like games because it suggests that Dynamic Conits can also signif-
icantly increase the maximum number of players supported in Minecraft-like games. We now proceed
to describe this result.

Overall, Figure 6.5 shows that the system throughput or number of supported players can increase
significantly while keeping the consistency bounds low, limiting the amount of inconsistency. This is a
promising result for Minecraft-like games, because large inconsistencies could decrease the experience
of players, and would thus not be a viable solution to scale these games. We now discuss each sub-part
of Figure 6.5 in turn.

Figure 6.5a shows the throughput or number of players supported by Meerkat as a function of the
number of nodes and the staleness bound. The horizontal axis shows the number of nodes sharing the
Dynamic Conit, and each group shows a number of staleness bounds. The bound of 50ms corresponds
to Minecraft-like games; this is because these games synchronize every tick, and their tick duration
is 50ms. The horizontal axis shows the number of updates per second processed by Meerkat. It
also shows the corresponding number of players based on Meerkat’s performance model, where each
player provides a workload of 20 messages per second. The figure shows that higher staleness bounds
significantly increase the throughput or number of players supported by the system. The effect of the
increased staleness bound is greater for a larger number of nodes. When using 2 nodes (left group) the
number of players increases from roughly 600, when using a consistency bound of 50ms, to roughly
1000, when using a consistency bound of 250ms. When using 4 or 8 nodes (middle and right group,
respectively), a staleness bound of 250ms achieves more than 2 times the throughput, compared to a
bound of 50ms. This is a promising result for Minecraft-like games, because delays of 250ms still allow
player actions without negative impact on gameplay experience [17].

Similarly to Figure 6.5a, Figure 6.5b shows the throughput or number of players supported by
Meerkat. The Figure is of the same type as Figure 6.5a, except the numerical error bound is used in-
stead of the staleness bound. Here, there is no Minecraft-like game equivalent, because these games

52 6. Experimental results

do not use numerical error bounding. We analyze this figure in two steps. First, we analyze the behav-
ior observed when sharing the Dynamic Conit with 4 nodes (the middle group) and 8 nodes (the right
group). Second, we analyze the behavior observed when sharing the Dynamic Conit with 2 nodes (the
left group).

The middle and right groups in Figure 6.5b show a Dynamic Conit shared between 4 nodes and 8
nodes, respectively. When sharing a Dynamic Conit with 4 nodes, the same throughput is observed
for any numerical error bound between 0 and 2. When a numerical error bound of 3 is used, the
throughput increases. Similar to a numerical error bound between 0 and 2, using a numerical error
bound between 3 and 5 results in equal system throughput. This is expected behavior, because the
synchronization behavior for a Dynamic Conit with a numerical bound is not only determined by the
value of this bound, but also by the number of nodes sharing the Dynamic Conit. The numerical error
bound specifies how many writes may be unseen by any node. If a Dynamic Conit is shared with 4
nodes, then for each node there are 3 other nodes that may have seen writes the 4th node has not.
Therefore, with a numerical error bound of 3, each node can accept 1 update without synchronizing,
while guaranteeing the consistency bound. However, if a numerical error bound of 2 is used, accepting
1 update without synchronizing can cause the consistency bound to be exceeded. This means that,
if 3 nodes share a Dynamic Conit with a numerical error bound of 2, each node must synchronize
every update it receives immediately. This effectively rounds the numerical error bound of 2 down to
0. Similarly, for a Dynamic Conit shared between 8 nodes (the right group), no increase in throughput
is observed when increasing the numerical error bound. This is because all numerical error bounds
shown in Figure 6.5b are effectively rounded down to 0. For a Dynamic Conit shared with 8 nodes,
all numerical error bounds lower than 7 are effectively rounded down to 0. See Section 3.4.2 for more
details on this behavior.

The left group in Figure 6.5b shows a Dynamic Conit shared between 2 nodes. When sharing a
Dynamic Conit with 2 nodes, the behavior of the numerical error bound is more intuitive. A numerical
error bound of 0 (black bar) corresponds to synchronizing every update with the other node immediately,
a numerical error bound of 1 (dark green bar) corresponds to synchronizing with the other node every
2 updates, and so on. Comparing these bars shows that a numerical error bound of 1 doubles the
throughput to 10000 updates per second. Further increasing the numerical bound shows diminishing
returns, as can be seen from the sub-linear increase in bars in the left group. However, a numerical error
bound of 4 results in a throughput that is more than three times higher than the throughput observed
when using a numerical error bound of 0. This is a promising result for Minecraft-like games, because
low inconsistency can significantly increase the throughput. For instance, a player that sees another
player building a structure in the distance may not be interested to receive updates about every change
made to that structure. Here, a numerical error bound between the client and the server can be used
to synchronize only every three or four updates.

6.2.3. Analysis of finding 2
Setting higher consistency bounds significantly reduces the number of synchronization messages ex-
changed between nodes at the cost of increased inconsistency. This is a promising results for Minecraft-
like games because it can reduce the amount of synchronization between servers and clients. For our
analysis, we focus on the application of Dynamic Conits between servers, as described in Section 3.3.1.
Although Minecraft-like games currently do not have distributed server setups, this is likely to change
in the future because all state-of-the-art MMOGs use such setups. We now proceed to describe this
result.

Figure 6.6a shows the number of synchronization messages per second exchanged by the nodes
as a function of the number of nodes and the staleness bound. The horizontal axis shows the number
of nodes sharing the Dynamic Conit, and each group shows a number of staleness bounds. The
vertical axis shows the number of synchronization messages per second. Note that the vertical axis
uses a logarithmic scale. Comparing synchronizing every update as soon as it arrives (black bar)
with synchronizing updates once every 50ms (dark green bar) shows that Minecraft-like games, which
communicate once per 50ms, already reduce synchronization significantly compared to systems that
use strict consistency. But Dynamic Conits can reduce the amount of synchronization further. For
instance, a Minecraft-like game running on 8 nodes would exchange close to 1000 messages per
second to synchronize updates (right group, dark green bar). When using a staleness bound of 250ms,
this synchronization can be reduced to roughly 200 messages per second (right group, light gray bar).

6.2. Meerkat experimental evaluation 53

2 4 8
Number of nodes

10
0

10
1

10
2

10
3

10
4

10
5

N
um

be
r o

f s
yn

ch
ro
ni
za

tio
n
m
es

sa
ge

s
pe

r s
ec

on
d

 M
in
ec

ra
ft-
lik
e

 M
in
ec

ra
ft-
lik
e

 M
in
ec

ra
ft-
lik
e

Bound
0
50

100
150

200
250

(a) Effect of staleness bounds on synchronization
throughput

2 4 8
Number of nodes

10
0

10
1

10
2

10
3

10
4

10
5

N
um

be
r o

f s
yn

ch
ro
ni
za

tio
n
m
es

sa
ge

s
pe

r s
ec

on
d

Bound
0
1

2
3

4
5

(b) Effect of numerical bounds on synchronization
throughput

Figure 6.6: Effect of staleness and numerical consistency bounds on synchronization message throughput. The top of the bars
indicate the median value, and the whiskers indicate a 100% confidence interval.

Similarly to Figure 6.6a, Figure 6.6b shows the number of synchronization messages per second
exchanged by the nodes. The figure is similar to Figure 6.6a, except that a numerical error bound is
used instead of a staleness bound. Here, there is no Minecraft-like game equivalent, because these
games do not use numerical error bounding. The number of synchronization messages exchanged is
much higher than in Figure 6.6a, because the numerical error bound that is used is low. Because this
experiment uses the stress-test workload, the most intensive possible workload, the number of syn-
chronization messages is also high. When sharing the Dynamic Conit across two nodes (left group), the
numerical error bound can significantly decrease the amount of synchronization messages exchanged
between the two servers. The bars show a linear decrease in height. Because the vertical axis has a
logarithmic scale, this means the linear increase in numerical error bound exponentially decreases the
number of synchronization messages between the nodes. When running the Dynamic Conit on 4 or 8
nodes, the small numerical error bounds have little effect. This is consistent with the results shown in
Figure 6.5b and the Dynamic Conit performance model described in Section 3.4, which describes that
a numerical error bound becomes less effective when increasing the number of nodes.

Figure 6.6 shows the number of synchronization messages exchanged between nodes for a varying
number of nodes, using multiple staleness and numerical error bounds. The result shows that the
consistency bound can be used to control the number of synchronization messages. This is a promising
result for Minecraft-like games, because it gives the game developer the tools to quantify how much
consistency must be reduced to lower the synchronization overhead.

6.2.4. Analysis of finding 3
Dynamically changing the Dynamic Conit bounds can prevent high workloads creating large numbers
of synchronization messages, and can reduce inconsistency under low workloads. We now proceed
to describe this result.

Figure 6.7 shows the player update– and synchronization throughput in Meerkat when running the
increasing workload on two nodes while using a fixed numerical error bound of 5. This workload
is completely synthetic and the configuration can be compared a scenario where two servers run a
distributed virtual world and share their data. Each server is connected to an increasing number of
players. For this workload, the static bound of 5 is not enough to keep the number of synchronization
messages low. The horizontal axis shows time. The vertical axis shows the player update– and syn-
chronization throughput in messages per second in the top figure, and the numerical error bound in the
bottom figure. The number of player updates increases over time, which can be seen from the upward

54 6. Experimental results

0

25

50

nu
m

be
r o

f p
la

ye
rs

0 200 400 600 800 1000 1200 1400
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput

0 200 400 600 800 1000 1200 1400
time (s)

0

2

4

nu
m

er
ic

al
 b

ou
nd inconsistency area: 7490

Figure 6.7: Meerkat throughput when using a fixed numerical error bound of 5 during the increasing workload.

0

25

50

nu
m

be
r o

f p
la

ye
rs

0 200 400 600 800 1000 1200 1400
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput
max. synchronization throughput

0 200 400 600 800 1000 1200 1400
time (s)

0

5

10

nu
m

er
ic

al
 b

ou
nd inconsistency area: 6900

Figure 6.8: Meerkat throughput when using the dynamic PM numerical error bound during the increasing workload.

slope in the blue curve. The number of synchronization messages is proportional to the number of
player updates because a static bound is used. Therefore the green curve also has an upward slope.
From this workload, it can be seen that the number of synchronization messages will only increase with
the number of players, generating an increasingly large overhead. This can be prevented when using
dynamic consistency bounds.

Similar to Figure 6.7, Figure 6.8 shows the player update– and synchronization throughput inMeerkat
when running the increasing workload on two nodes. This workload is completely synthetic and the
configuration can be compared a scenario where two servers run a distributed virtual world and share
their data. Each server is connected to an increasing number of players. Instead of a static consistency
bound, the PM policy is used to configure the numerical error bound dynamically. The PM policy has
been configured to keep the number of synchronization messages below 200 per second. Initially, the
synchronization throughput (green curve) increases with the player update throughput (blue curve), but
when the set limit is reached (red line) the PM policy increases the numerical error bound from 0 to 1
(blue curve in bottom figure). Because the workload keeps increasing (blue curve in top figure), the
PM policy keeps increasing the numerical error bound (and decreasing consistency between nodes)
to prevent the synchronization throughput from exceeding 200 messages per second. This result is
promising for Minecraft-like games because it enables the games to keep overhead limited while scal-
ing to larger numbers of players. However, in practice the numerical error bound is limited because the
inconsistency may not decrease player experience.

Figure 6.9 shows the behavior of Meerkat when running the 50-player trace workload on two nodes
while using a fixed numerical error bound of 5. The horizontal axis shows time, and the vertical axis
shows the player update– and synchronization throughput in the top figure, and the numerical error
bound in the bottom figure. Contrary to the increasingworkload, the 50-player traceworkload reduces
in intensity over time. This results in both the player update throughput (blue curve) and synchronization

6.2. Meerkat experimental evaluation 55

0 100 200 300 400 500 600
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput

0 100 200 300 400 500 600
time (s)

0

2

4

nu
m

er
ic

al
 b

ou
nd inconsistency area: 7490

Figure 6.9: Meerkat throughput when using a fixed numerical error bound of 5 during the 50-player trace workload.

0 100 200 300 400 500 600
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput
max. synchronization throughput

0 100 200 300 400 500 600
time (s)

0

2

4

nu
m

er
ic

al
 b

ou
nd inconsistency area: 1420

Figure 6.10: Meerkat throughput when using the dynamic PM numerical error bound during the 50-player trace workload.

throughput (green curve) decreasing over time. Because of the static numerical error bound of 5 (blue
curve in bottom figure), the synchronization throughput is below 200 messages per second for almost
the entire duration of the experiment.

Similar to Figure 6.9, Figure 6.10 shows the behavior of Meerkat when running the 50-player trace
workload on two nodes. The horizontal axis shows time, and the vertical axis shows the player update–
and synchronization throughput in the top figure, and the numerical error bound in the bottom figure.
Instead of a static bound, the PM policy is used to configure the numerical error bound dynamically.
Because the workload is low, the PM policy can decrease the numerical error bound below 5 (blue
curve in bottom figure) without exceeding 200 synchronization messages per second (red curve in top
figure). Because the workload decreases over time, thePM policy further decreases the numerical error
bound over time, increasing the consistency between nodes. This is a promising result for Minecraft-
like games because it means that the games do not constantly have to be inconsistent; some Dynamic
Conits can have a default bound of 0, only increasing that bound when the workload becomes more
intense.

Combining Figure 6.8 and Figure 6.10 shows the stabilizing behavior of the PM policy. This policy
shows opposite behavior for the two workloads. The increasingworkload shows an increasing number
of updates over time. To keep the number of synchronization messages stable over time, the PM policy
increases the Dynamic Conit bounds over time, decreasing both the number of synchronization mes-
sages exchanged between Meerkat nodes and the consistency between nodes. Exactly the opposite
happens for the 50-player trace workload. Here the PM policy decreases the consistency bounds over
time, increasing both the number of synchronizationmessages exchanged betweenMeerkat nodes and
the consistency between nodes.

56 6. Experimental results

0 50 100 150 200 250 300
time (s)

0

10000

20000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(a) stress-test workload without wait mechanism

0 50 100 150 200 250 300
time (s)

0

50000

100000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(b) stress-test workload with wait mechanism

Figure 6.11: Effect of wait mechanism on throughput under stress-test workload on 4 nodes

0 50 100 150 200 250 300
time (s)

0

5000

10000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(a) stress-test workload without wait mechanism

0 50 100 150 200 250 300
time (s)

0

20000

40000

60000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(b) stress-test workload with wait mechanism

Figure 6.12: Effect of wait mechanism on throughput under stress-test workload on 16 nodes

6.2.5. Analysis of finding 4
Introducing new nodes during high workloads can cause system stalls. Under high workloads, many
updates are processed by all nodes. When a new node is added to the Dynamic Conit, it contacts the
other nodes in the Dynamic Conit to exchange updates such that the system stays consistent within
bounds. Because many updates are being processed by all nodes, the current Dynamic Conit nodes
are flooded with updates from the new node when it joins the Dynamic Conit. Because updates are
processed individually, nodes need to first process all synchronized updates before accepting new
updates. This can cause a system stall. In Minecraft-like games, such a scenario can occur when a
new client connects to a server. The server has likely processed many updates before the new player
connects. The client then has to process all synchronized updates before the player can start the
game. This is a strong motivation to support merged updates or communicating data in the Dynamic
Conit model. We now proceed to describe this result.

Figure 6.11 shows Meerkat system throughput under the stress-test workload on 4 nodes with
and without the wait mechanism. The wait mechanism causes nodes to only start accepting updates
after they are connected to all other nodes in the Dynamic Conit. Without the wait mechanism, nodes
accept updates while connecting to the other nodes. The horizontal axes show time, and the vertical
axes show message throughput in messages per second. In both Figure 6.11a and Figure 6.11b, the
update throughput (blue curve) is unstable. However, with the wait mechanism, the throughput always
stays above zero, whereas without the wait mechanism, the throughput halts completely after roughly
60 seconds. After roughly 240 seconds the synchronized updates been processed and system activity
is resumed.

Figure 6.12 shows the Meerkat system throughput under the stress-test workload on 16 nodes
with and without the wait mechanism. Similar to the experiment run on 4 nodes, running stress-test
without the wait mechanism causes a system stall. This can be seen in Figure 6.12a, where the update
throughput (blue curve) drops to zero after roughly 75 seconds. The stall takes more than 225 seconds,
which means the system remains blocked for the remainder of the experiment.

6.2.6. Analysis of finding 5
Dynamic Conits’ dynamic bound policies can control the consistency of the system and the number
of synchronization messages exchanged between nodes. This is a promising result for Minecraft-like
games because it gives game developers the mechanisms to control the consistency and synchroniza-
tion throughput that are best for the game and the type of data communicated. We now proceed to
describe this result.

The performance of the policies is compared using the actual synchronization throughput, the syn-

6.2. Meerkat experimental evaluation 57

0 100 200 300 400 500 600
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput
max. synchronization throughput

0 100 200 300 400 500 600
time (s)

0

20

40

nu
m

er
ic

al
 b

ou
nd inconsistency area: 15000

Figure 6.13: Meerkat throughput when using the dynamic ADMI policy during the 50-player trace workload.

0 100 200 300 400 500 600
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput
max. synchronization throughput

0 100 200 300 400 500 600
time (s)

0

5

10

nu
m

er
ic

al
 b

ou
nd inconsistency area: 1710

Figure 6.14: Meerkat throughput when using the dynamic PM-P policy during the 50-player trace workload.

chronization throughput target, and the inconsistency area. The inconsistency area is the integral of
the allowed inconsistency in the system over time. We compute this integral using the trapezoidal
rule because it maps directly to discrete data. Because all dynamic bound experiments use the same
50-player trace workload, they have the same duration. This means that the consistency area is pro-
portional to the average inconsistency, but is easier to visualize.

Figure 6.13 shows the 50-player trace workload using the ADMI policy (described in Section 4.3.1).
The horizontal axes shows time. The top vertical axis shows the throughput of both updates and
synchronization messages. The red line indicates the target throughput for synchronization messages.
The bottom vertical axis shows the numerical bound that is set by the policy. TheADMI policy’s smallest
bound increase is 50, which does not work well for this low workload; a bound of 0 is too strict, but a
bound of 50 is too high. The resulting behavior is oscillation, resulting in a total inconsistency area of
15000 over the complete experiment (blue area).

Figure 6.14 shows the 50-player trace workload using the PM-P policy (described in Section 4.3.1).
The figure is of the same type as Figure 6.13, except the PM-P policy instead of the ADMI policy. This
policy tries to predict the workload using linear regression on the workload of the last ten seconds.
The performance of this policy is better than that of the ADMI policy. The number of synchronization
messages (green curve) is closer to the target (red line), and the total inconsistency area is an order
of magnitude smaller than than of the ADMI policy on the same workload.

Figure 6.10 shows the 50-player trace workload using the PM policy (described in Section 4.3.1).
This policy calculates the required consistency bound for the current workload using the performance
model described in Section 3.4. It outperforms both the ADMI policy and the PM-P policy on the 50-
player trace workload. The number of synchronization messages (green curve) is closer to the target
(red line), and the inconsistency area of 1420 is the smallest of the three policies (blue area).

58 6. Experimental results

Although the PM policy is the clear winner in this case, different behavior might be visible for other
workloads. While a comprehensive comparison of these policies is out of scope of this thesis, the
differences in their behavior show that different methods for controlling the inconsistency in the system
and synchronization messages is possible.

6.2.7. Discussion
The results presented in this chapter show that the value of error bounds have a significant impact
on the number of supported players, but increasing the numerical error bound has the most impact
when the number of nodes sharing the Dynamic Conit is low. Sharing Dynamic Conits with few nodes
matches the application to Minecraft in which Dynamic Conits are shared between server-client pairs.

The Dynamic Conit bound experiments show that the number of synchronization messages can be
kept stable by changing the consistency bounds. In practice, to prevent decreased user experience,
an upper bound on the consistency bounds must be set. This means that Dynamic Conits allow the
game scalability to stretch with the number of players, but only up to a certain point.

Scalability improvements using bounded order error are not evaluated because of technical difficul-
ties. Even when using a simple commit algorithm as discussed in Section 4.2.3, the implementation
turns out to be non-trivial.

7
Conclusion and future work

The gaming industry is a young but very large industry, generating more than 20 billion dollars in rev-
enue in 2016 in the United States alone [23]. To appreciate the scale of this industry, consider that the
total box office revenue1 in 2016 in the United States was less than 12 billion dollars [46]. This large
revenue is only possible because of the large number of people that buy and play video games.

While games provide amusement for millions of people, games are also used for other important
purposes. Games that are designed with a purpose other than entertainment are called serious games.
Serious games can be used for societal goals such as training professionals [69] and treating trauma
patients [29, 45] by simulating real-world scenarios, and educating people by presenting content in an
immerse form [2, 51, 53, 57].

The large population of gamers enables the growth of the game industry, but also poses challenges
for game developers. One of these challenges is that players want to play together with friends, share
experiences and meet new people. To meet these challenges, researchers look for novel techniques
to create fresh content at a massive scale [32] and increase the performance of games and game
platforms to scale games to massive numbers of players [33, 42, 62]. Increasing the scalability of
games is an active topic of research.

Minecraft is a game that can be used both for amusement and as a serious game. It can do this
because of a novel feature that allows players to modify the entire virtual world. A large Minecraft
modding-community has evolved online, modifying the game even further and sharing custom-built
worlds and games built within Minecraft itself. Additionally, Microsoft acquired Mojang, the developer
of Minecraft, for 2.5 billion dollars in 2014 [1] and has released an education edition of Minecraft that
is used in primary schools to teach a variety of subjects such as history, anatomy, digital logic, and
economics using custom Minecraft worlds [2].

Unfortunately, the large scale of the industry does not match the scalability of Minecraft. It is diffi-
cult to scale games to millions of players, which are the number of players in popular MMORPGs, and
Minecraft’s modifiable world poses additional, novel, scalability challenges. Because of Minecraft’s
unique modifiable environment, massivizing it is a challenge. In games, only dynamic data is commu-
nicated between players. Static content such as textures (the paint on a player’s weapon or tool) and
models (a building or vehicle) is stored locally on the player’s device. Dynamic content, such as player
behavior (e.g., movement, combat) and its consequences (e.g., finding an item, gaining experience
points) has to be communicated between players. Minecraft features a virtual environment that is com-
pletely modifiable by players, which means that more data is dynamic, and has to be communicated
between players.

Our goal is to enable massive amounts of players to explore Minecraft’s virtual environments to
explore, create, and learn. This thesis makes several contributions to this end.

1The revenue from selling tickets in movie theaters.

59

60 7. Conclusion and future work

7.1. Main contributions
This section discusses the main contributions in this thesis, and how these contributions address the
research questions posed in Chapter 1.

How to assess the scalability of Minecraft-like games? (RQ1)
To improve the scalability of Minecraft-like games it is important to understand the scalability bot-

tlenecks of these games. However, no benchmarks exist to assess the scalability of these games.
This thesis designs and uses Yardstick, the first distributed-large scale benchmark for Minecraft-like
games. The thesis evaluates the scalability of three popular Minecraft-like games using Yardstick. The
development of Yardstick and the evaluation of Minecraft scalability continues as a separate project
under the Opencraft umbrella and is lead by Jerom van der Sar.

Using Yardstick we find that Minecraft-like games scale to hundreds of players. When the server
cannot handle the number of connected players the tick frequency of the server drops below its intended
value and the relative utilization, a novel scalability metric, exceeds 100%. Minecraft-like games use
concurrency, but CPU utilization does not form the bottleneck for the scalability of the game. We find
that servers of Minecraft-like games transmit a large number of packets that increases with the number
of players. The application of Dynamic Conits could reduce the number of packets transmitted by
Minecraft-like game servers by allowing bounded inconsistency between nodes.

How to adapt the Conit consistency model to apply to Minecraft-like games? (RQ2)
The Conit model allows bounded inconsistency between nodes in a distributed system. The Conit

model balances generality and practicality. To keep the model general, it does not consider system
properties such as the network layout or system dynamics such as the change in connected nodes or
dynamic workloads. In principle, the Conit model can be applied to the servers in a distributed virtual
environment, but a number of limitations prevent it from being applied to real-world systems.

In this thesis, we design a new consistency model called Dynamic Conits that is based on the Conit
consistency model and can be applied to Minecraft-like games. This is the first attempt to modify the
Conit consistency model such that it applies to games.

The Dynamic Conit model differs from the original Conit model by supporting additional mecha-
nisms.

1. Dynamic Conits can change their consistency bounds at runtime, adapting to dynamic workloads.

2. Dynamic Conits support optimistic consistency, remaining highly available, but synchronizing up-
dates as soon as consistency bounds are violated.

3. Dynamic Conits can be created or removed during runtime, allowing bounded inconsistency to
be enabled or disabled for new players and servers that join the system.

4. Dynamic Conits can be multi-hop, a mechanism to create a network of Dynamic Conits, forming
a new logical network over the distributed system. This allows the use of Dynamic Conits without
requiring all-to-all communication.

We also conjecture that a mechanism to transfer data instead of updates is needed to bootstrap
new nodes in a network. How this mechanism should work and what the effects are on the consistency
guarantees are left for future work.

How to design a system that improves the scalability of these games? (RQ3)
This thesis uses the KISS principle to reduce the amount of complexity introduced in the system

design phase. Because building distributed systems is labor intensive and error-prone, it is important
not to introduce additional complexity where it is not needed. To this end, Meerkat uses multiple simple
algorithms and single-purpose components to implement the Dynamic Conit model.

To keep Meerkat generic and applicable to Minecraft-like games, the system is designed to synchro-
nize updates based on incoming accesses. This means that the game has to inform Meerkat of which
Dynamic Conits to create and how to configure the allowed inconsistency for each of these Dynamic
Conits. Because Meerkat is responsible for synchronizing data across nodes, the game does not have
to know about how updates are synchronized.

7.2. Future work 61

Meerkat is a system that implements the Dynamic Conit model. Nodes that run a Meerkat instance
connect to each other and synchronize data between each other with bounded inconsistency. Us-
ing policies that dynamically update the consistency bounds, Meerkat enables system maintainers to
control the scalability/consistency trade-off in the system.

How to evaluate such a system experimentally? (RQ4)
The Dynamic Conit model is a consistency model that allows bounded inconsistency between

nodes. Because implementing the Dynamic Conit model in practice introduces a number of technical
challenges, we evaluate its scalability improvements by building a prototype system, avoiding further
challenges introduced by combining the Dynamic Conit model with an already existing Minecraft-like
game.

We evaluateMeerkat using using real-world experiments. Because no large scale traces of Minecraft
workloads are publicly available, the experiments use a combination of synthetic workloads and trace-
based workloads obtained from Yardstick. The stress-test workload is synthetic and is the heaviest
possible workload for Meerkat. We use this workload to evaluate possible improvements in the sys-
tem throughput when using Dynamic Conits. The 50-player trace workload is a trace-based workload
created from the outgoing server traffic of a Minecraft server while hosting 50 players. This workload
is used to evaluate the reduction in synchronization messages when using static and dynamic con-
sistency bounds. The experiments are run on the DAS-5, a distributed super computer for computer
science research designed by the Advanced School for Computing and Imaging [10].

This is the first evaluation of scalability improvements for Minecraft-like games using the Conit or
Dynamic Conit model. We find that low consistency bounds greater than zero can significantly improve
system throughput. This means that throughput can be improved without introducing large inconsis-
tency between nodes, motivating the use of Dynamic Conits. For any static consistency bound, a
workload exists that causes the system to exchange many synchronization messages. Using dynamic
consistency bounds this can be prevented by increasing the consistency bounds under high workloads
and decreasing the consistency bounds under low workloads. We also find evidence for the need of
a data transfer mechanism. Exchanging large amounts of updates at once can halt the processing of
new updates, freezing the system. How to combine such a mechanism with Dynamic Conits is left for
future work.

7.2. Future work
This thesis is part of the ongoing Opencraft research project. Opencraft aims to massivize Minecraft-
like games, bringing entertainment and education to millions of people around the world. This thesis,
Meerkat, and Yardstick are products of the Opencraft project. However, Minecraft-like games do not
yet support millions of players; there is still work to be done. This thesis presents a number of promising
results for Minecraft-like games. Building on these results, we identify three research directions that
can be explored. These are discussed below.

Realistic player behavior
The experiments using the 50-player trace workload give insight in the scalability improvements of

using Dynamic Conits, but this is a trace based on structured player behavior. In future work, it would
be interesting to test these policies with more diverse traces from Minecraft. For instance, traces from
popular Minecraft servers, education servers, or modified servers may show different player behavior.
Thismight lead to changes in update propagation, possibly changing the effect of using Dynamic Conits.

We conclude that 45% of Minecraft packets transmitted by the Minecraft-like game server is caused
by sending entity position data. However, using more realistic workloads can give different results,
because the players interact with the virtual world by placing and removing blocks, starting redstone
simulations, or setting off chain reactions. Intuitively, these dynamic activities are also communicated
between players using other types of packets, reducing the relative frequency of the entity position data
packets.

Evaluating other Dynamic Conit mechanisms
The findings in this thesis give insight into how Dynamic Conits can be applied to Minecraft-like

games. However, Meerkat is a prototype system that cannot be directly applied to games. There are
still a number of modifications that need to be designed, implemented, and evaluated before the full

62 7. Conclusion and future work

benefits of applying Dynamic Conits to games can be assessed. In this thesis, we conclude that policies
that change Dynamic Conit bounds at runtime can keep the number of synchronization messages low.
However, a number of Dynamic Conit mechanisms are not evaluated in this thesis. Furthermore, the
novel mechanisms defined in the Dynamic Conit model are not comprehensive; additional mechanisms
may be required to efficiently apply Dynamic Conits to Minecraft-like games.

The experiments presented in this thesis use a mix of the strict consistency and optimistic consis-
tency settings from Meerkat. The stress-test experiments use strict consistency because it provides
an inherent rate-limiting system that would have to be implemented separately when using the op-
timistic consistency. The other Meerkat experiments use the optimistic consistency setting. Future
research could look at how often the consistency bound would be exceeded when using the optimistic
consistency setting.

Meerkat supports nodes and Dynamic Conits being added to the system at runtime by using Conit-
Info messages that communicate Dynamic Conit information to other nodes. In practice, new nodes
constantly join the network. These nodes could be either servers that are started to handle increased
workload, or clients from players that start the game. New nodes can either create a new Dynamic
Conit with other nodes, or join an existing Dynamic Conit. This thesis concludes that the wait mech-
anism is not sufficient to prevent synchronizing large numbers of updates from freezing the system in
practice, because nodes cannot be forced to join the system during the initial setup. Currently, the
Dynamic Conit model does not provide a solution to this problem. This thesis suggests transferring a
snapshot of the system state or merging updates as possible solutions, but evaluating these solutions
is left to future work. Additionally, evaluating the overhead of creating and removing large numbers of
Dynamic Conit in real-world systems can teach us more about the overhead of using Dynamic Conit to
synchronize data between nodes.

The classic Conit consistency model assumes all-to-all communication between the nodes that
share Conits. In MMOGs, this behavior is undesirable because not all nodes share the same data, and
the large number of nodes in the system. Most commercially successful games work via a server-client
model. Compatibility between Dynamic Conits and the client-server model increases the applicability
of the model. To this end, this thesis proposes to extend the Conit model with the multi-hop feature.
Multi-hop Conits is the notion that only a subset of the nodes in the network share a particular Dynamic
Conit. By overlapping the nodes that share Dynamic Conits, updates can be propagated from one
Dynamic Conit to the next. This allows synchronization between nodes that are not directly connected
to each other over multiple hops. Multi-hop Dynamic Conits are a conceptual contribution. Evaluating
the effect on the consistency bounds and technical difficulties are left to future work.

Combining the Dynamic Conit model with a Minecraft-like game
The next step for the Opencraft project is to combine the Dynamic Conit model with a Minecraft-

like game. This thesis designs and evaluates Meerkat, the first system that implements the Dynamic
Conit model. Meerkat is a prototype system that evaluates the scalability improvements when using
the Dynamic Conit model and its mechanisms. The thesis concludes that Dynamic Conits can reduce
the communication required between nodes in a Minecraft-like game, improving its scalability.

Combining the Dynamic Conit model with a Minecraft-like game allows evaluating the scalability
improvements in a more realistic scenario. Furthermore, it exposes potential technical concerns, such
as the implementation difficulty of the various Dynamic Conit mechanisms. The resulting scalable
Minecraft-like game can be further used as a research platform, facilitating the evaluation of other
novel scalability techniques for Minecraft-like games.

Bibliography
[1] Minecraft to join Microsoft, 2014. URL https://www.prnewswire.com/news-releases/

minecraft-to-join-microsoft-275112831.html.

[2] Minecraft: Education Edition, 2017. URL https://education.minecraft.net/.

[3] Mustaque Ahamad, Gil Neiger, James E Burns, Prince Kohli, and Phillip W Hutto. Causal Memory:
Definitions, Implementation, and Programming. Distributed Computing, 9(1):37–49, 1995. doi:
10.1007/BF01784241. URL https://doi.org/10.1007/BF01784241.

[4] Ahmed Ali-Eldin, Maria Kihl, Johan Tordsson, and Erik Elmroth. Efficient provisioning of bursty sci-
entific workloads on the cloud using adaptive elasticity control. In Proceedings of the 3rd workshop
on Scientific Cloud Computing, pages 31–40. ACM, 2012.

[5] Ahmed Ali-Eldin, Johan Tordsson, and Erik Elmroth. An adaptive hybrid elasticity controller for
cloud infrastructures. In Filip De Turck, Luciano Paschoal Gaspary, and Deep Medhi, editors,
2012 IEEE Network Operations and Management Symposium, NOMS 2012, Maui, HI, USA, April
16-20, 2012, pages 204–212. IEEE, 2012. ISBN 978-1-4673-0267-8. doi: 10.1109/NOMS.
2012.6211900. URL https://doi.org/10.1109/NOMS.2012.6211900.

[6] Trevor Alstad, J. Riley Dunkin, Simon Detlor, Brad French, Heath Caswell, Zane Ouimet, Youry
Khmelevsky, and Gaétan Hains. Game network traffic simulation by a custom bot. 9th Annual
IEEE International Systems Conference, SysCon 2015 - Proceedings, pages 675–680, 2015. doi:
10.1109/SYSCON.2015.7116828.

[7] Morgan G Ames and Jenna Burrell. ’Connected Learning’ and the Equity Agenda: A Microsociol-
ogy of Minecraft Play. In Charlotte P Lee, Steven E Poltrock, Louise Barkhuus, Marcos Borges,
andWendy A Kellogg, editors, Proceedings of the 2017 ACMConference on Computer Supported
Cooperative Work and Social Computing, CSCW 2017, Portland, OR, USA, February 25 - March
1, 2017, pages 446–457. ACM, 2017. ISBN 978-1-4503-4335-0. doi: 10.1145/2998181. URL
http://dl.acm.org/citation.cfm?id=2998318.

[8] Grenville J Armitage. An experimental estimation of latency sensitivity in multiplayer Quake 3. In
11th IEEE International Conference on Networks, ICON 2003, September 28 - October 1, 2003
Sydney, NSW, Australia., pages 137–141. IEEE, 2003. ISBN 0-7803-7788-5. doi: 10.1109/
ICON.2003.1266180. URL https://doi.org/10.1109/ICON.2003.1266180.

[9] Peter Bailis and Ali Ghodsi. Eventual consistency today: limitations, extensions, and beyond.
Commun. ACM, 56(5):55–63, 2013. doi: 10.1145/2447976.2447992. URL http://doi.
acm.org/10.1145/2447976.2447992.

[10] Henri E Bal, Dick H J Epema, Cees de Laat, Rob van Nieuwpoort, John W Romein, Frank J
Seinstra, Cees Snoek, and Harry A GWijshoff. A Medium-Scale Distributed System for Computer
Science Research: Infrastructure for the Long Term. IEEE Computer, 49(5):54–63, 2016. doi:
10.1109/MC.2016.127. URL https://doi.org/10.1109/MC.2016.127.

[11] Richard A. Bartle. Designing virtual worlds. New Riders Pub, 2004. ISBN 9780131018167. URL
https://books.google.nl/books?redir_esc=y&id=z3VP7MYKqaIC&q=chapter+3#
v=snippet&q=chapter3&f=false.

[12] David Bermbach and Jörn Kuhlenkamp. Consistency in Distributed Storage Systems - An
Overview of Models, Metrics and Measurement Approaches. In Vincent Gramoli and Rachid
Guerraoui, editors, Networked Systems - First International Conference, NETYS 2013, Mar-
rakech, Morocco, May 2-4, 2013, Revised Selected Papers, volume 7853 of Lecture Notes in
Computer Science, pages 175–189. Springer, 2013. ISBN 978-3-642-40147-3. doi: 10.1007/
978-3-642-40148-0_13. URL http://dx.doi.org/10.1007/978-3-642-40148-0_13.

63

https://www.prnewswire.com/news-releases/minecraft-to-join-microsoft-275112831.html
https://www.prnewswire.com/news-releases/minecraft-to-join-microsoft-275112831.html
https://education.minecraft.net/
https://doi.org/10.1007/BF01784241
https://doi.org/10.1109/NOMS.2012.6211900
http://dl.acm.org/citation.cfm?id=2998318
https://doi.org/10.1109/ICON.2003.1266180
http://doi.acm.org/10.1145/2447976.2447992
http://doi.acm.org/10.1145/2447976.2447992
https://doi.org/10.1109/MC.2016.127
https://books.google.nl/books?redir_esc=y&id=z3VP7MYKqaIC&q=chapter+3#v=snippet&q=chapter 3&f=false
https://books.google.nl/books?redir_esc=y&id=z3VP7MYKqaIC&q=chapter+3#v=snippet&q=chapter 3&f=false
http://dx.doi.org/10.1007/978-3-642-40148-0_13

64 Bibliography

[13] Ashwin Bharambe, John R Douceur, Jacob R Lorch, Thomas Moscibroda, Jeffrey Pang, Srini-
vasan Seshan, and Xinyu Zhuang. Peer-to-Peer Games. pages 389–400, 2008.

[14] Ashwin R Bharambe, Jeffrey Pang, and Srinivasan Seshan. Colyseus: A Distributed Architecture
for Online Multiplayer Games. In Larry L Peterson and Timothy Roscoe, editors, 3rd Symposium
on Networked Systems Design and Implementation (NSDI 2006), May 8-10, 2007, San Jose, Cali-
fornia, USA, Proceedings. USENIX, 2006. URL http://www.usenix.org/events/nsdi06/
tech/bharambe.html.

[15] Ashwin R Bharambe, John R Douceur, Jacob R Lorch, Thomas Moscibroda, Jeffrey Pang,
Srinivasan Seshan, and Xinyu Zhuang. Donnybrook: enabling large-scale, high-speed, peer-
to-peer games. In Victor Bahl, David Wetherall, Stefan Savage, and Ion Stoica, editors, Pro-
ceedings of the ACM SIGCOMM 2008 Conference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communications, Seattle, WA, USA, August 17-22, 2008,
pages 389–400, New York, New York, USA, 2008. ACM Press. ISBN 9781605581750.
doi: 10.1145/1402958.1403002. URL http://portal.acm.org/citation.cfm?doid=
1402958.1403002http://doi.acm.org/10.1145/1402958.1403002.

[16] Tushar Deepak Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an engi-
neering perspective. In Indranil Gupta and RogerWattenhofer, editors, Proceedings of the Twenty-
Sixth Annual ACM Symposium on Principles of Distributed Computing, PODC 2007, Portland,
Oregon, USA, August 12-15, 2007, pages 398–407. ACM, 2007. ISBN 978-1-59593-616-5. doi:
10.1145/1281100.1281103. URL http://doi.acm.org/10.1145/1281100.1281103.

[17] Mark Claypool and Kajal T Claypool. Latency and player actions in online games. Commun.
ACM, 49(11):40–45, 2006. doi: 10.1145/1167860. URL http://doi.acm.org/10.1145/
1167860.

[18] Brian F Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. PVLDB, 1(2):1277–1288, 2008. URL http://www.vldb.org/pvldb/
1/1454167.pdf.

[19] Susan B Davidson, Hector Garcia-Molina, and Dale Skeen. Consistency in Partitioned Networks.
ACMComput. Surv., 17(3):341–370, 1985. doi: 10.1145/5505.5508. URL http://doi.acm.
org/10.1145/5505.5508.

[20] Raluca Diaconu and Joaqu�́Keller. Kiwano: A scalable distributed infrastructure for virtual worlds.
In International Conference on High Performance Computing & Simulation, HPCS 2013, Helsinki,
Finland, July 1-5, 2013, pages 664–667. IEEE, 2013. ISBN 978-1-4799-0836-3. doi: 10.1109/
HPCSim.2013.6641489. URL http://dx.doi.org/10.1109/HPCSim.2013.6641489.

[21] Raluca Diaconu, Joaquin Joaqu�́Keller, and Mathieu Valero. Manycraft: Scaling
Minecraft to Millions. In Annual Workshop on Network and Systems Support for
Games, NetGames ’13, Denver, CO, USA, December 9-10, 2013, pages 1:1—-1:6.
IEEE/ACM, dec 2013. ISBN 978-1-4799-2961-0. doi: 10.1109/NetGames.2013.
6820617. URL http://dl.acm.org/citation.cfm?id=2664635http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6820617.

[22] Herman A. Engelbrecht and Gregor Schiele. Transforming Minecraft into a research platform. In
2014 IEEE 11th Consumer Communications and Networking Conference (CCNC), pages 257–
262. IEEE, jan 2014. ISBN 978-1-4799-2355-7. doi: 10.1109/CCNC.2014.6866580. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6866580.

[23] ESA. 2017 Essential Facts About the computer and video game industry. Technical re-
port, 2017. URL http://www.theesa.com/wp-content/uploads/2017/04/EF2017_
FinalDigital.pdf.

[24] Travis Faas and Chaolan Lin. Self-Directed Learning in Teacher-Lead Minecraft Classrooms.
In Gloria Mark, Susan R Fussell, Cliff Lampe, M. c. schraefel, Juan Pablo Hourcade, Caroline

http://www.usenix.org/events/nsdi06/tech/bharambe.html
http://www.usenix.org/events/nsdi06/tech/bharambe.html
http://portal.acm.org/citation.cfm?doid=1402958.1403002 http://doi.acm.org/10.1145/1402958.1403002
http://portal.acm.org/citation.cfm?doid=1402958.1403002 http://doi.acm.org/10.1145/1402958.1403002
http://doi.acm.org/10.1145/1281100.1281103
http://doi.acm.org/10.1145/1167860
http://doi.acm.org/10.1145/1167860
http://www.vldb.org/pvldb/1/1454167.pdf
http://www.vldb.org/pvldb/1/1454167.pdf
http://doi.acm.org/10.1145/5505.5508
http://doi.acm.org/10.1145/5505.5508
http://dx.doi.org/10.1109/HPCSim.2013.6641489
http://dl.acm.org/citation.cfm?id=2664635 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6820617
http://dl.acm.org/citation.cfm?id=2664635 http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6820617
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6866580
http://www.theesa.com/wp-content/uploads/2017/04/EF2017_FinalDigital.pdf
http://www.theesa.com/wp-content/uploads/2017/04/EF2017_FinalDigital.pdf

Bibliography 65

Appert, and Daniel Wigdor, editors, Proceedings of the 2017 CHI Conference on Human Factors
in Computing Systems, Denver, CO, USA, May 06-11, 2017, Extended Abstracts., pages 2569–
2575. ACM, 2017. ISBN 978-1-4503-4656-6. doi: 10.1145/3027063.3053269. URL http:
//doi.acm.org/10.1145/3027063.3053269.

[25] Hector Garcia-Molina and Boris Kogan. Achieving High Availability in Distributed Databases. In
Proceedings of the Third International Conference on Data Engineering, February 3-5, 1987, Los
Angeles, California, USA, pages 430–440. IEEE Computer Society, 1987. ISBN 0-8186-0762-
9. doi: 10.1109/ICDE.1987.7272409. URL https://doi.org/10.1109/ICDE.1987.
7272409.

[26] Seth Gilbert and Nancy A Lynch. Brewer’s conjecture and the feasibility of consistent, avail-
able, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002. doi: 10.1145/564585.
564601. URL http://doi.acm.org/10.1145/564585.564601.

[27] Wojciech M Golab, Xiaozhou Li, and Mehul A Shah. Analyzing consistency properties for fun and
profit. In Cyril Gavoille and Pierre Fraigniaud, editors, Proceedings of the 30th Annual ACM Sym-
posium on Principles of Distributed Computing, PODC 2011, San Jose, CA, USA, June 6-8, 2011,
pages 197–206. ACM, 2011. ISBN 978-1-4503-0719-2. doi: 10.1145/1993806.1993834. URL
http://doi.acm.org/10.1145/1993806.1993834.

[28] Yong Guo and Alexandru Iosup. The Game Trace Archive. In 11th Annual Workshop on Network
and Systems Support for Games, NetGames 2012, Venice, Italy, November 22-23, 2012, pages
1–6. IEEE, 2012. ISBN 978-1-4673-4576-7. doi: 10.1109/NetGames.2012.6404027. URL
http://dx.doi.org/10.1109/NetGames.2012.6404027.

[29] Corentin Haidon, Adrien Ecrepont, Benoit Girard, and Bob-Antoine J. Menelas. A Driving Sim-
ulator Designed for the Care of Trucker Suffering from Post-Traumatic Stress Disorder. In Se-
rious Games and Edutainment Applications, pages 411–431. Springer International Publishing,
Cham, 2017. doi: 10.1007/978-3-319-51645-5_19. URL http://link.springer.com/
10.1007/978-3-319-51645-5_19.

[30] Maurice Herlihy and Jeannette M Wing. Linearizability: A Correctness Condition for Concurrent
Objects. ACM Trans. Program. Lang. Syst., 12(3):463–492, 1990. doi: 10.1145/78969.78972.
URL http://doi.acm.org/10.1145/78969.78972.

[31] Ibe van Geel. MMOData blog: MMOData Charts version 4.1 is Live !, 2013. URL http://
mmodata.blogspot.nl/2013/12/mmodata-charts-version-41-is-live.html.

[32] Alexandru Iosup. POGGI: generating puzzle instances for online games on grid infrastruc-
tures. Concurrency and Computation: Practice and Experience, 23(2):158–171, feb 2011. ISSN
15320626. doi: 10.1002/cpe.1638. URL http://doi.wiley.com/10.1002/cpe.1638.

[33] Alexandru Iosup, Siqi Shen, Yong Guo, Stefan Hugtenburg, Jesse Donkervliet, and Radu Pro-
dan. Massivizing online games using cloud computing: A vision. In 2014 IEEE International
Conference on Multimedia and Expo Workshops (ICMEW), pages 1–4. IEEE, jul 2014. ISBN 978-
1-4799-4717-1. doi: 10.1109/ICMEW.2014.6890684. URL http://ieeexplore.ieee.
org/document/6890684/.

[34] Won Kim. Highly Available Systems for Database Applications. ACM Comput. Surv., 16(1):71–98,
1984. doi: 10.1145/861.866. URL http://doi.acm.org/10.1145/861.866.

[35] Sudha Krishnamurthy, William H Sanders, and Michel Cukier. An Adaptive Framework for Tun-
able Consistency and Timeliness Using Replication. In 2002 International Conference on Depend-
able Systems and Networks (DSN 2002), 23-26 June 2002, Bethesda, MD, USA, Proceedings,
pages 17–26. IEEE Computer Society, 2002. ISBN 0-7695-1597-5. doi: 10.1109/DSN.2002.
1028882. URL http://dx.doi.org/10.1109/DSN.2002.1028882.

[36] Leslie Lamport. How to Make a Multiprocessor Computer That Correctly Executes Multiprocess
Programs. IEEE Trans. Computers, 28(9):690–691, 1979. doi: 10.1109/TC.1979.1675439.
URL http://dx.doi.org/10.1109/TC.1979.1675439.

http://doi.acm.org/10.1145/3027063.3053269
http://doi.acm.org/10.1145/3027063.3053269
https://doi.org/10.1109/ICDE.1987.7272409
https://doi.org/10.1109/ICDE.1987.7272409
http://doi.acm.org/10.1145/564585.564601
http://doi.acm.org/10.1145/1993806.1993834
http://dx.doi.org/10.1109/NetGames.2012.6404027
http://link.springer.com/10.1007/978-3-319-51645-5_19
http://link.springer.com/10.1007/978-3-319-51645-5_19
http://doi.acm.org/10.1145/78969.78972
http://mmodata.blogspot.nl/2013/12/mmodata-charts-version-41-is-live.html
http://mmodata.blogspot.nl/2013/12/mmodata-charts-version-41-is-live.html
http://doi.wiley.com/10.1002/cpe.1638
http://ieeexplore.ieee.org/document/6890684/
http://ieeexplore.ieee.org/document/6890684/
http://doi.acm.org/10.1145/861.866
http://dx.doi.org/10.1109/DSN.2002.1028882
http://dx.doi.org/10.1109/TC.1979.1675439

66 Bibliography

[37] Leslie Lamport. The Part-Time Parliament. ACM Trans. Comput. Syst., 16(2):133–169, 1998. doi:
10.1145/279227.279229. URL http://doi.acm.org/10.1145/279227.279229.

[38] Huiguang Liang, Ian Tay, Ming Feng Neo, Wei Tsang Ooi, and Mehul Motani. Avatar Mobility in
Networked Virtual Environments: Measurements, Analysis, and Implications. CoRR, abs/0807.2,
2008. URL http://arxiv.org/abs/0807.2328.

[39] David J Lilja. Cache Coherence in Large-Scale Shared-Memory Multiprocessors: Issues and
Comparisons. ACM Comput. Surv., 25(3):303–338, 1993. doi: 10.1145/158439.158907. URL
http://doi.acm.org/10.1145/158439.158907.

[40] Elvis S Liu and Georgios K Theodoropoulos. Interest management for distributed virtual environ-
ments: A survey. ACM Comput. Surv., 46(4):51:1—-51:42, 2014. doi: 10.1145/2535417. URL
http://doi.acm.org/10.1145/2535417.

[41] Wyatt Lloyd, Michael J Freedman, Michael Kaminsky, and David G Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area storage with COPS. In Ted Wobber and
Peter Druschel, editors, Proceedings of the 23rd ACM Symposium on Operating Systems Prin-
ciples 2011, SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 401–416. ACM, 2011.
ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.2043593. URL http://doi.acm.org/
10.1145/2043556.2043593.

[42] Alexandru Losup, Ruud van de Bovenkamp, Siqi Shen, Adele Lu Jia, and Fernando Kuipers.
Analyzing Implicit Social Networks in Multiplayer Online Games. IEEE Internet Computing, 18(3):
36–44, may 2014. ISSN 1089-7801. doi: 10.1109/MIC.2014.19. URL http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6756709.

[43] Betty Love, Victor Winter, Cindy Corritore, and Davina Faimon. Creating an Environment in which
Elementary Educators Can Teach Coding. In Janet C Read and Phil Stenton, editors, Proceedings
of the The 15th International Conference on Interaction Design and Children, IDC ’16, Manchester,
United Kingdom, June 21-24, 2016, pages 643–648. ACM, 2016. ISBN 978-1-4503-4313-8. doi:
10.1145/2930674.2936008. URL http://doi.acm.org/10.1145/2930674.2936008.

[44] Prince Mahajan, Lorenzo Alvisi, Mike Dahlin, and Others. Consistency, availability, and conver-
gence. University of Texas at Austin Tech Report, 11, 2011.

[45] Simon Mayr, Wolfgang Horleinsberger, and Paolo Petta. The Trauma Treatment Game: Design
Constraints for Serious Games in Psychotherapy. In 2014 6th International Conference on Games
and Virtual Worlds for Serious Applications (VS-GAMES), pages 1–6. IEEE, sep 2014. ISBN
978-1-4799-4056-1. doi: 10.1109/VS-Games.2014.7012171. URL http://ieeexplore.
ieee.org/document/7012171/.

[46] Pamela McClintock. 2016 Box Office Revenue Hits $11.17B for Another Record
Year | Hollywood Reporter, 2016. URL http://www.hollywoodreporter.com/news/
2016-box-office-record-year-crosses-11-billion-959300.

[47] Mike Schramm. Chinese WoW hits 1 million concurrent players, 2008. URL https://www.
engadget.com/2008/04/11/chinese-wow-hits-1-million-concurrent-players/.

[48] Stephan Mueller, Mubbasir Kapadia, Seth Frey, Severin Klingler, Richard P Mann, Barbara Solen-
thaler, Robert W Sumner, andMarkus HGross. Statistical Analysis of Player Behavior in Minecraft.
In José Pablo Zagal, Esther MacCallum-Stewart, and Julian Togelius, editors, Proceedings of the
10th International Conference on the Foundations of Digital Games, FDG 2015, Pacific Grove,
CA, USA, June 22-25, 2015. Society for the Advancement of the Science of Digital Games, 2015.
URL http://www.fdg2015.org/papers/fdg2015_paper_39.pdf.

[49] Stephan Mueller, Barbara Solenthaler, Mubbasir Kapadia, Seth Frey, Severin Klingler, Richard P
Mann, Robert W Sumner, and Markus H Gross. HeapCraft: interactive data exploration and
visualization tools for understanding and influencing player behavior in Minecraft. In Proceedings
of the 8th ACMSIGGRAPHConference on Motion in Games, MIG 2015, Paris, France, November
16-18, 2015, pages 237–241. ACM, 2015. ISBN 978-1-4503-3991-9. doi: 10.1145/2822013.
2822033. URL http://doi.acm.org/10.1145/2822013.2822033.

http://doi.acm.org/10.1145/279227.279229
http://arxiv.org/abs/0807.2328
http://doi.acm.org/10.1145/158439.158907
http://doi.acm.org/10.1145/2535417
http://doi.acm.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6756709
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6756709
http://doi.acm.org/10.1145/2930674.2936008
http://ieeexplore.ieee.org/document/7012171/
http://ieeexplore.ieee.org/document/7012171/
http://www.hollywoodreporter.com/news/2016-box-office-record-year-crosses-11-billion-959300
http://www.hollywoodreporter.com/news/2016-box-office-record-year-crosses-11-billion-959300
https://www.engadget.com/2008/04/11/chinese-wow-hits-1-million-concurrent-players/
https://www.engadget.com/2008/04/11/chinese-wow-hits-1-million-concurrent-players/
http://www.fdg2015.org/papers/fdg2015_paper_39.pdf
http://doi.acm.org/10.1145/2822013.2822033

Bibliography 67

[50] Vlad Nae, Alexandru Iosup, and Radu Prodan. Dynamic Resource Provisioning in Massively
Multiplayer Online Games. IEEE Trans. Parallel Distrib. Syst., 22(3):380–395, 2011. doi: 10.
1109/TPDS.2010.82. URL http://dx.doi.org/10.1109/TPDS.2010.82.

[51] Steve Nebel, Sascha Schneider, and Günter Daniel Rey. Mining Learning and Crafting Scientific
Experiments: A Literature Review on the Use of Minecraft in Education and Research. Educational
Technology & Society, 19(2):355–366, 2016. URL http://www.ifets.info/journals/19_
2/26.pdf.

[52] Karin Petersen, Mike Spreitzer, Douglas B Terry, Marvin Theimer, and Alan J Demers. Flexible
Update Propagation for Weakly Consistent Replication. In Michel Banâtre, Henry M Levy, and
William M Waite, editors, Proceedings of the Sixteenth ACM Symposium on Operating System
Principles, SOSP 1997, St. Malo, France, October 5-8, 1997, pages 288–301. ACM, 1997. ISBN
0-89791-916-5. doi: 10.1145/268998.266711. URL http://doi.acm.org/10.1145/
268998.266711.

[53] Marc Prensky. Digital game-based learning. Computers in Entertainment, 1(1):21, oct 2003. ISSN
15443574. doi: 10.1145/950566.950596. URL http://portal.acm.org/citation.
cfm?doid=950566.950596.

[54] Peter Quax, Patrick Monsieurs, Wim Lamotte, Danny De Vleeschauwer, and Natalie Degrande.
Objective and subjective evaluation of the influence of small amounts of delay and jitter on a
recent first person shooter game. In Wu-chang Feng, editor, Proceedings of the 3rd Workshop on
Network and System Support for Games, NETGAMES 2004, Portland, Oregon, USA, August 30,
2004, pages 152–156. ACM, 2004. ISBN 1-58113-942-X. doi: 10.1145/1016540.1016557.
URL http://doi.acm.org/10.1145/1016540.1016557.

[55] Kjetil Raaen, Ragnhild Eg, and Carsten Griwodz. Can gamers detect cloud delay? In Yu-
taka Ishibashi and Adrian David Cheok, editors, 13th Annual Workshop on Network and Sys-
tems Support for Games, NetGames 2014, Nagoya, Japan, December 4-5, 2014, pages 1–
3. IEEE, 2014. ISBN 978-1-4799-6882-4. doi: 10.1109/NetGames.2014.7008962. URL
http://dx.doi.org/10.1109/NetGames.2014.7008962.

[56] Michal Ries, Philipp Svoboda, and Markus Rupp. Empirical study of subjective quality for massive
multiplayer games. Proceedings of IWSSIP 2008 - 15th International Conference on Systems,
Signals and Image Processing, pages 181–184, 2008. doi: 10.1109/IWSSIP.2008.4604397.

[57] José Manuel Sáez-López, John Miller, Esteban Vázquez-Cano, and María Concepción
Domínguez-Garrido. Exploring application, attitudes and integration of video games: Minecraftedu
in middle school. Educational Technology and Society, 18(3):114–128, 2015. ISSN 14364522.
URL http://www.ifets.info/journals/18_3/9.pdf.

[58] Nuno Santos, Luís Veiga, and Paulo Ferreira. Vector-Field Consistency for Ad-Hoc Gaming. In
Renato Cerqueira and Roy H Campbell, editors,Middleware 2007, ACM/IFIP/USENIX 8th Interna-
tional Middleware Conference, Newport Beach, CA, USA, November 26-30, 2007, Proceedings,
volume 4834 of Lecture Notes in Computer Science, pages 80–100. Springer, 2007. ISBN 978-3-
540-76777-0. doi: 10.1007/978-3-540-76778-7_5. URL http://dx.doi.org/10.1007/
978-3-540-76778-7_5.

[59] Nathan Sheldon, Eric Girard, Seth Borg, Mark Claypool, and Emmanuel Agu. The effect of
latency on user performance in Warcraft III. In Proceedings of the 2nd Workshop on Net-
work and System Support for Games, NETGAMES 2003, Redwood City, California, USA,
May 22-23, 2003, pages 3–14. ACM, 2003. ISBN 1-58113-734-6. doi: 10.1145/963900.
963901. URL http://doi.acm.org/10.1145/963900.963901http://portal.acm.
org/citation.cfm?doid=963900.963901.

[60] Siqi Shen and Alexandru Iosup. Modeling Avatar Mobility of Networked Virtual Environments. In
Proceedings of InternationalWorkshop onMassively Multiuser Virtual Environments, MMVE 2014,
Singapore, March 19-21, 2014, pages 2:1—-2:6. ACM, 2014. ISBN 978-1-4503-2708-4. doi:
10.1145/2577387.2577396. URL http://doi.acm.org/10.1145/2577387.2577396.

http://dx.doi.org/10.1109/TPDS.2010.82
http://www.ifets.info/journals/19_2/26.pdf
http://www.ifets.info/journals/19_2/26.pdf
http://doi.acm.org/10.1145/268998.266711
http://doi.acm.org/10.1145/268998.266711
http://portal.acm.org/citation.cfm?doid=950566.950596
http://portal.acm.org/citation.cfm?doid=950566.950596
http://doi.acm.org/10.1145/1016540.1016557
http://dx.doi.org/10.1109/NetGames.2014.7008962
http://www.ifets.info/journals/18_3/9.pdf
http://dx.doi.org/10.1007/978-3-540-76778-7_5
http://dx.doi.org/10.1007/978-3-540-76778-7_5
http://doi.acm.org/10.1145/963900.963901 http://portal.acm.org/citation.cfm?doid=963900.963901
http://doi.acm.org/10.1145/963900.963901 http://portal.acm.org/citation.cfm?doid=963900.963901
http://doi.acm.org/10.1145/2577387.2577396

68 Bibliography

[61] Aman Singla, Umakishore Ramachandran, and Jessica K Hodgins. Temporal Notions of Synchro-
nization and Consistency in Beehive. In SPAA, pages 211–220, 1997. doi: 10.1145/258492.
258513. URL http://doi.acm.org/10.1145/258492.258513.

[62] Siqi Shen, Alexandru Iosup, and Dick Epema. Massivizing Multi-player Online Games on Clouds.
In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, pages
152–155. IEEE, may 2013. ISBN 978-0-7695-4996-5. doi: 10.1109/CCGrid.2013.23. URL
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6546073.

[63] Dale Skeen and David D Wright. Increasing Availability in Partitioned Database Systems. In
Daniel J Rosenkrantz and Ronald Fagin, editors, Proceedings of the Third ACMSIGACT-SIGMOD
Symposium on Principles of Database Systems, April 2-4, 1984, Waterloo, Ontario, Canada,
pages 290–299. ACM, 1984. ISBN 0-89791-128-8. doi: 10.1145/588011.588054. URL
http://doi.acm.org/10.1145/588011.588054.

[64] Mirko Suznjevic, Lea Skorin-Kapov, and Maja Matijasevic. The Impact of User, System, and
Context factors on Gaming QoE: a Case Study Involving MMORPGs. In Annual Workshop on
Network and Systems Support for Games, NetGames ’13, Denver, CO, USA, December 9-10,
2013, pages 3:1—-3:6. IEEE/ACM, 2013. ISBN 978-1-4799-2961-0. URL http://dl.acm.
org/citation.cfm?id=2664637.

[65] Francisco J Torres-Rojas and Esteban Meneses. Convergence Through a Weak Consistency
Model: Timed Causal Consistency. CLEI Electron. J., 8(2), 2005. URL http://www.clei.
org/cleiej/paper.php?id=110.

[66] Francisco J Torres-Rojas, Mustaque Ahamad, and Michel Raynal. Timed Consistency for Shared
Distributed Objects. In Brian A Coan and Jennifer L Welch, editors, Proceedings of the Eighteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC, ’99Atlanta, Georgia,
USA, May 3-6, 1999, pages 163–172. ACM, 1999. ISBN 1-58113-099-6. doi: 10.1145/301308.
301350. URL http://doi.acm.org/10.1145/301308.301350.

[67] E. van der Hoeven. Scaling Distributed Virtual Environments using Socially Aware Load
Partitioning and Interest Management, 2017. URL https://repository.tudelft.
nl/islandora/object/uuid%3A3e8a66e5-80f4-466d-b6bb-961f9896b800?
collection=education.

[68] Paolo Viotti and Marko Vukolić. Consistency in Non-Transactional Distributed Storage Systems.
dec 2015. URL http://arxiv.org/abs/1512.00168.

[69] Fang You, Yuxin Tan, Jinsong Feng, Linshen Li, Jing Lin, and Xin Liu. Research on Virtual Train-
ing System in Aerospace Based on Interactive Environment. pages 50–62. Springer, Cham,
apr 2016. doi: 10.1007/978-3-319-40259-8_5. URL http://link.springer.com/10.
1007/978-3-319-40259-8_5.

[70] Haifeng Yu and Amin Vahdat. Design and evaluation of a conit-based continuous consistency
model for replicated services. ACM Trans. Comput. Syst., 20(3):239–282, aug 2002. ISSN
07342071. doi: 10.1145/566340.566342. URL http://portal.acm.org/citation.
cfm?doid=566340.566342http://doi.acm.org/10.1145/566340.566342.

http://doi.acm.org/10.1145/258492.258513
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6546073
http://doi.acm.org/10.1145/588011.588054
http://dl.acm.org/citation.cfm?id=2664637
http://dl.acm.org/citation.cfm?id=2664637
http://www.clei.org/cleiej/paper.php?id=110
http://www.clei.org/cleiej/paper.php?id=110
http://doi.acm.org/10.1145/301308.301350
https://repository.tudelft.nl/islandora/object/uuid%3A3e8a66e5-80f4-466d-b6bb-961f9896b800?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3A3e8a66e5-80f4-466d-b6bb-961f9896b800?collection=education
https://repository.tudelft.nl/islandora/object/uuid%3A3e8a66e5-80f4-466d-b6bb-961f9896b800?collection=education
http://arxiv.org/abs/1512.00168
http://link.springer.com/10.1007/978-3-319-40259-8_5
http://link.springer.com/10.1007/978-3-319-40259-8_5
http://portal.acm.org/citation.cfm?doid=566340.566342 http://doi.acm.org/10.1145/566340.566342
http://portal.acm.org/citation.cfm?doid=566340.566342 http://doi.acm.org/10.1145/566340.566342

Appendices

69

A
Minecraft-like game configurations

A.1. Vanilla configurations
A.1.1. server.properties
#Minecraft server properties
#Thu Jun 15 08:09:40 CEST 2017
spawn-protection=2
max-tick-time=60000
generator-settings=
force-gamemode=false
allow-nether=true
gamemode=0
broadcast-console-to-ops=true
enable-query=false
player-idle-timeout=0
difficulty=0
spawn-monsters=true
op-permission-level=4
announce-player-achievements=true
pvp=true
snooper-enabled=false
level-type=LARGEBIOMES
hardcore=false
enable-command-block=false
max-players=500
network-compression-threshold=256
resource-pack-sha1=
max-world-size=29999984
server-port=25565
texture-pack=
server-ip=
spawn-npcs=true
allow-flight=true
level-name=mcpworld
view-distance=8
resource-pack=
spawn-animals=true
white-list=false
generate-structures=true
online-mode=false
max-build-height=256

71

72 A. Minecraft-like game configurations

level-seed=MCP 8.02
prevent-proxy-connections=false
motd=Mod Coder Pack
enable-rcon=false

A.2. Spigot configurations
A.2.1. server.properties
#Minecraft server properties
#Thu Jun 15 08:03:12 CEST 2017
generator-settings=
op-permission-level=4
allow-nether=true
level-name=world
enable-query=false
allow-flight=false
announce-player-achievements=true
prevent-proxy-connections=false
server-port=25565
max-world-size=29999984
level-type=DEFAULT
enable-rcon=false
force-gamemode=false
level-seed=
server-ip=
network-compression-threshold=256
max-build-height=256
spawn-npcs=true
white-list=false
spawn-animals=true
snooper-enabled=true
hardcore=false
resource-pack-sha1=
online-mode=false
resource-pack=
pvp=true
difficulty=0
enable-command-block=false
player-idle-timeout=0
gamemode=0
max-players=500
spawn-monsters=true
view-distance=10
generate-structures=true
motd=A Minecraft Server

A.2.2. bukkit.yml
This is the main configuration file for Bukkit.
As you can see, there’s actually not that much to configure without any plugins.
For a reference for any variable inside this file, check out the Bukkit Wiki at
http://wiki.bukkit.org/Bukkit.yml
#
If you need help on this file, feel free to join us on irc or leave a message
on the forums asking for advice.
#
IRC: #spigot @ irc.spi.gt

A.2. Spigot configurations 73

(If this means nothing to you, just go to http://www.spigotmc.org/pages/irc/)
Forums: http://www.spigotmc.org/
Bug tracker: http://www.spigotmc.org/go/bugs

settings:
allow-end: true
warn-on-overload: true
permissions-file: permissions.yml
update-folder: update
plugin-profiling: false
connection-throttle: 0
query-plugins: true
deprecated-verbose: default
shutdown-message: Server closed

spawn-limits:
monsters: 70
animals: 15
water-animals: 5
ambient: 15

chunk-gc:
period-in-ticks: 600
load-threshold: 0

ticks-per:
animal-spawns: 400
monster-spawns: 1
autosave: 6000

aliases: now-in-commands.yml
database:

username: bukkit
isolation: SERIALIZABLE
driver: org.sqlite.JDBC
password: walrus
url: jdbc:sqlite:{DIR}{NAME}.db

A.2.3. spigot.yml
This is the main configuration file for Spigot.
As you can see, there’s tons to configure. Some options may impact gameplay, so use
with caution, and make sure you know what each option does before configuring.
For a reference for any variable inside this file, check out the Spigot wiki at
http://www.spigotmc.org/wiki/spigot-configuration/
#
If you need help with the configuration or have any questions related to Spigot,
join us at the IRC or drop by our forums and leave a post.
#
IRC: #spigot @ irc.spi.gt (http://www.spigotmc.org/pages/irc/)
Forums: http://www.spigotmc.org/

config-version: 11
settings:

debug: false
save-user-cache-on-stop-only: false
item-dirty-ticks: 20
user-cache-size: 1000
timeout-time: 60
restart-on-crash: true

74 A. Minecraft-like game configurations

restart-script: ./start.sh
bungeecord: false
int-cache-limit: 1024
sample-count: 12
netty-threads: 4
player-shuffle: 0
attribute:

maxHealth:
max: 2048.0

movementSpeed:
max: 2048.0

attackDamage:
max: 2048.0

late-bind: false
filter-creative-items: true
moved-wrongly-threshold: 0.0625
moved-too-quickly-multiplier: 10.0

messages:
whitelist: You are not whitelisted on this server!
unknown-command: Unknown command. Type ”/help” for help.
server-full: The server is full!
outdated-client: Outdated client! Please use {0}
outdated-server: Outdated server! I’m still on {0}
restart: Server is restarting

commands:
tab-complete: 0
replace-commands:
- setblock
- summon
- testforblock
- tellraw
log: true
spam-exclusions:
- /skill
silent-commandblock-console: false

stats:
disable-saving: false
forced-stats: {}

world-settings:
default:

verbose: true
item-despawn-rate: 6000
merge-radius:

item: 2.5
exp: 3.0

arrow-despawn-rate: 1200
mob-spawn-range: 4
growth:

cactus-modifier: 100
cane-modifier: 100
melon-modifier: 100
mushroom-modifier: 100
pumpkin-modifier: 100
sapling-modifier: 100
wheat-modifier: 100
netherwart-modifier: 100

A.3. Glowstone configurations 75

vine-modifier: 100
cocoa-modifier: 100

ticks-per:
hopper-transfer: 8
hopper-check: 1

hopper-amount: 1
entity-activation-range:

animals: 32
monsters: 32
misc: 16

max-tnt-per-tick: 100
entity-tracking-range:

players: 48
animals: 48
monsters: 48
misc: 32
other: 64

hunger:
jump-walk-exhaustion: 0.05
jump-sprint-exhaustion: 0.2
combat-exhaustion: 0.1
regen-exhaustion: 6.0
swim-multiplier: 0.01
sprint-multiplier: 0.1
other-multiplier: 0.0

max-tick-time:
tile: 50
entity: 50

random-light-updates: false
save-structure-info: true
enable-zombie-pigmen-portal-spawns: true
wither-spawn-sound-radius: 0
nerf-spawner-mobs: false
view-distance: 10
zombie-aggressive-towards-villager: true
hanging-tick-frequency: 100
seed-village: 10387312
seed-feature: 14357617
seed-monument: 10387313
seed-slime: 987234911
dragon-death-sound-radius: 0

A.3. Glowstone configurations
A.3.1. glowstone.yml
glowstone.yml is the main configuration file for a Glowstone server
It contains everything from server.properties and bukkit.yml in a
normal CraftBukkit installation.
#
For help, join us on Discord: https://discord.gg/TFJqhsC
server:

ip: ’’
port: 25565
name: Glowstone Server
log-file: logs/log-%D.txt
online-mode: false

76 A. Minecraft-like game configurations

max-players: 500
whitelisted: false
motd: A Glowstone server
shutdown-message: Server shutting down.
allow-client-mods: true
snooper-enabled: false

console:
use-jline: true
prompt: ’>’
date-format: HH:mm:ss
log-date-format: yyyy/MM/dd HH:mm:ss

game:
gamemode: SURVIVAL
gamemode-force: false
difficulty: PEACEFUL
hardcore: false
pvp: true
max-build-height: 256
announce-achievements: true
allow-flight: false
command-blocks: false
resource-pack: ’’
resource-pack-hash: ’’

creatures:
enable:

monsters: true
animals: true
npcs: true

limit:
monsters: 70
animals: 15
water: 5
ambient: 15

ticks:
monsters: 1
animal: 400

folders:
plugins: plugins
update: update
worlds: .

files:
permissions: permissions.yml
commands: commands.yml
help: help.yml

advanced:
connection-throttle: 0
idle-timeout: 0
warn-on-overload: true
exact-login-location: false
plugin-profiling: false
deprecated-verbose: ’false’
compression-threshold: 256
proxy-support: false
player-sample-count: 12
metrics: true
metrics-server-uuid: d48fc677-3296-44b3-b079-1ae74a1e42c2

A.3. Glowstone configurations 77

gpgpu: false
gpgpu-use-any-device: false
run-glowclient: false

extras:
query-enabled: false
query-port: 25614
query-plugins: true
rcon-enabled: false
rcon-password: glowstone
rcon-port: 25575
rcon-colors: true

world:
name: world
seed: ’’
level-type: DEFAULT
spawn-radius: 16
view-distance: 8
gen-structures: true
allow-nether: true
allow-end: true
keep-spawn-loaded: true
populate-anchored-chunks: true
classic-style-water: false
disable-generation: false

database:
driver: org.sqlite.JDBC
url: jdbc:sqlite:config/database.db
username: glowstone
password: nether
isolation: SERIALIZABLE

A.3.2. worlds.yml
general:

sea_level: 64
overworld:

coordinate-scale: 684.412
height:

scale: 684.412
noise-scale:

x: 200.0
z: 200.0

detail:
noise-scale:

x: 80.0
y: 160.0
z: 80.0

surface-scale: 0.0625
base-size: 8.5
stretch-y: 12.0
biome:

height-offset: 0.0
height-weight: 1.0
scale-offset: 0.0
scale-weight: 1.0
height:

default: 0.1

78 A. Minecraft-like game configurations

flat-shore: 0.0
high-plateau: 1.5
flatlands: 0.125
swampland: -0.2
mid-plains: 0.2
flatlands-hills: 0.275
swampland-hills: -0.1
low-hills: 0.2
hills: 0.45
mid-hills2: 0.1
default-hills: 0.2
mid-hills: 0.3
big-hills: 0.525
big-hills2: 0.55
extreme-hills: 1.0
rocky-shore: 0.1
low-spikes: 0.4125
high-spikes: 1.1
river: -0.5
ocean: -1.0
deep-ocean: -1.8

scale:
default: 0.2
flat-shore: 0.025
high-plateau: 0.025
flatlands: 0.05
swampland: 0.1
mid-plains: 0.2
flatlands-hills: 0.25
swampland-hills: 0.3
low-hills: 0.3
hills: 0.3
mid-hills2: 0.4
default-hills: 0.4
mid-hills: 0.4
big-hills: 0.55
big-hills2: 0.5
extreme-hills: 0.5
rocky-shore: 0.8
low-spikes: 1.325
high-spikes: 1.3125
river: 0.0
ocean: 0.1
deep-ocean: 0.1

density:
fill:

mode: 0
sea-mode: 0
offset: 0.0

nether:
coordinate-scale: 684.412
height:

scale: 2053.236
noise-scale:

x: 100.0
z: 100.0

A.3. Glowstone configurations 79

detail:
noise-scale:

x: 80.0
y: 60.0
z: 80.0

surface-scale: 0.0625
end:

coordinate-scale: 684.412
height:

scale: 1368.824
detail:

noise-scale:
x: 80.0
y: 160.0
z: 80.0

B
Experimental results

B.1. Minecraft scalability experiments

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0 Bytes

50 kB

100 kB

150 kB

200 kB

av
er

ag
e

nu
m

be
r o

f b
yt

es
 p

er
 s

ec
on

d

server implementation
glowstone
spigot
vanilla

(a) Effect of the increasing players workload

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0 Bytes

50 kB

100 kB

150 kB

200 kB

250 kB

300 kB

av
er

ag
e

nu
m

be
r o

f b
yt

es
 p

er
 s

ec
on

d

number of players
glowstone
spigot
vanilla

(b) Effect of the fixed players workload

Figure B.1: Additional experimental result: Minecraft incoming bytes throughput under the increasing players workload and
fixed players workload.

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0 Bytes

5 MB

10 MB

15 MB

20 MB

25 MB

30 MB

35 MB

av
er

ag
e

nu
m

be
r o

f b
yt

es
 p

er
 s

ec
on

d

server implementation
glowstone
spigot
vanilla

(a) Effect of the increasing players workload

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0 Bytes

10 MB

20 MB

30 MB

40 MB

av
er

ag
e

nu
m

be
r o

f b
yt

es
 p

er
 s

ec
on

d

number of players
glowstone
spigot
vanilla

(b) Effect of the fixed players workload

Figure B.2: Additional experimental result: Minecraft outgoing bytes throughput under the increasing players workload and
fixed players workload.

81

82 B. Experimental results

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

2000

4000

6000

8000
av

er
ag

e
nu

m
be

r o
f p

ac
ke

ts
 p

er
 s

ec
on

d
server implementation

glowstone
spigot
vanilla

(a) Effect of the increasing players workload

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0

2000

4000

6000

8000

av
er

ag
e

nu
m

be
r o

f p
ac

ke
ts

 p
er

 s
ec

on
d

number of players
glowstone
spigot
vanilla

(b) Effect of the fixed players workload

Figure B.3: Additional experimental result: Minecraft incoming packets throughput under the increasing players workload and
fixed players workload.

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0 Bytes

5 GB

10 GB

15 GB

20 GB

25 GB

m
em

or
y

us
ed server implementation

glowstone
spigot
vanilla

(a) Effect of the increasing players workload

25 50 75 100 125 150 175 200 225 250 275 300
number of players

0 Bytes

5 GB

10 GB

15 GB

20 GB

25 GB

30 GB
m

em
or

y
us

ed
number of players

glowstone
spigot
vanilla

(b) Effect of the fixed players workload

Figure B.4: Additional experimental result: Minecraft memory usage under the increasing players workload and fixed players
workload.

B.2. Meerkat experiments 83

B.2. Meerkat experiments

0

25

50

75

100

125

150

175

200

N
um

be
r o

f p
la
ye

rs

2 4 8
Number of nodes

0

500

1000

1500

2000

2500

3000

3500

N
um

be
r o

f u
pd

at
es

 p
er
 s
ec

on
d

Bound
0
1

2
3

4
5

(a) Effect of small staleness bounds on update through-
put

0

500

1000

1500

2000

2500

3000

N
um

be
r o

f p
la
ye

rs

2 4 8
Number of nodes

0

10000

20000

30000

40000

50000

N
um

be
r o

f u
pd

at
es

 p
er
 s
ec

on
d

Bound
0
50

100
150

200
250

(b) Effect of large numerical bounds on update through-
put

Figure B.5: Additional result from experiment 6.2.2. The top of the bars indicate the median value, and the whiskers indicate a
100% confidence interval.

2 4 8
Number of nodes

10
0

10
1

10
2

10
3

10
4

10
5

N
um

be
r o

f s
yn

ch
ro
ni
za

tio
n
m
es

sa
ge

s
pe

r s
ec

on
d

Bound
0
1

2
3

4
5

(a) Effect of small staleness bounds on synchronization
throughput

2 4 8
Number of nodes

10
0

10
1

10
2

10
3

10
4

10
5

N
um

be
r o

f s
yn

ch
ro
ni
za

tio
n
m
es

sa
ge

s
pe

r s
ec

on
d

Bound
0
50

100
150

200
250

(b) Effect of large numerical bounds on synchronization
throughput

Figure B.6: Additional result from experiment 6.2.3. The top of the bars indicate the median value, and the whiskers indicate a
100% confidence interval.

84 B. Experimental results

0

25

50

nu
m

be
r o

f p
la

ye
rs

0 200 400 600 800 1000 1200 1400
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput

0 200 400 600 800 1000 1200 1400
time (s)

0.00

0.02

0.04

nu
m

er
ic

al
 b

ou
nd inconsistency area: 0

Figure B.7: Additional experimental result: using static bound of 0 on increasing workload on 2 nodes.

0

25

50

nu
m

be
r o

f p
la

ye
rs

0 200 400 600 800 1000 1200 1400
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput
max. synchronization throughput

0 200 400 600 800 1000 1200 1400
time (s)

0

20

40

nu
m

er
ic

al
 b

ou
nd inconsistency area: 34250

Figure B.8: Additional experimental result: using ADMI policy on increasing workload on 2 nodes.

0

25

50

nu
m

be
r o

f p
la

ye
rs

0 200 400 600 800 1000 1200 1400
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput
max. synchronization throughput

0 200 400 600 800 1000 1200 1400
time (s)

0

5

10

nu
m

er
ic

al
 b

ou
nd inconsistency area: 7110

Figure B.9: Additional experimental result: using PM-P policy on increasing workload on 2 nodes.

B.2. Meerkat experiments 85

0 100 200 300 400 500 600
time (s)

0

250

500

750

1000

m
es

sa
ge

s
pe

r s
ec

on
d

player update throughput
synchronization throughput

0 100 200 300 400 500 600
time (s)

0.00

0.02

0.04

nu
m

er
ic

al
 b

ou
nd inconsistency area: 0

Figure B.10: Additional results from experiment 6.2.4. The effect of a numerical bound of 0 on the synchronization throughput
running the 50-player trace workload on 2 nodes.

0 50 100 150 200 250 300
time (s)

0

10000

20000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(a) stress-test workload without wait mechanism.

0 50 100 150 200 250 300
time (s)

0

5000

10000

15000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(b) stress-test workload with wait mechanism.

0 50 100 150 200 250 300
time (s)

0

20000

40000

60000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(c) stress-test workload without wait mechanism.

0 50 100 150 200 250 300
time (s)

0

50000

100000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(d) stress-test workload with wait mechanism.

0 50 100 150 200 250 300
time (s)

0

10000

20000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(e) stress-test workload without wait mechanism.

0 50 100 150 200 250 300
time (s)

0

20000

40000

60000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(f) stress-test workload with wait mechanism.

0 50 100 150 200 250 300
time (s)

0

5000

10000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(g) stress-test workload without wait mechanism.

0 50 100 150 200 250 300
time (s)

0

20000

40000

m
es

sa
ge

s
pe

r s
ec

on
d

update throughput
sync throughput

(h) stress-test workload with wait mechanism.

Figure B.11: Additional results from experiment 6.2.5. The effect of the wait-mechanism on system throughput using the stress-
test workload and a varying number of nodes.

	List of Figures
	List of Tables
	Introduction
	What is Minecraft?
	Problem statement and main research questions
	Research-oriented approach
	Main contributions
	Structure of this thesis

	Background
	Minecraft-related research
	A brief introduction to consistency
	The Conit consistency model
	Important features
	Conits and consistency dimensions

	Similar consistency models
	Consistency model research
	Games and distributed systems research

	Dynamic Conit model for Minecraft-like games
	Dynamic Conit model requirements
	Conit model extensions
	Dynamically changing Conit bounds
	Optimistic consistency
	Conit update messages
	Multi-hop Conits
	Speculation error

	Application to Minecraft-like games
	Guaranteed consistency between servers
	Guaranteed consistency between clients and servers

	Dynamic Conit performance model
	Synchronization controlled by staleness bound
	Synchronization controlled by numerical error bound
	Synchronization controlled by order error bound

	Meerkat: design of a Dynamic Conit system
	Design overview
	Consistency bounding
	Bounding staleness
	Bounding numerical error
	Bounding order error

	Dynamic Conit mechanisms
	Dynamic bound policies
	Pipeline for strict and optimistic consistency
	Dynamic Conit information message

	Meerkat performance model

	Experimental setup
	Experiments overview
	Yardstick: design of a Minecraft-like game benchmarking tool
	System requirements
	Design overview
	Player behavior model
	Player emulation
	Yardstick collector
	Data publishing

	Experiment workloads
	Yardstick experiment workloads
	Meerkat experiment workloads

	Environment
	DAS-5 distributed supercomputer
	Akka framework

	Metrics and data collection
	Main metrics
	Relative utilization metric (Jerom van der Sar)
	Akka Logging
	Prometheus monitoring

	Experimental results
	Minecraft scalability experiments
	Main findings
	Analysis of finding 1
	Analysis of finding 2
	Analysis of finding 3
	Discussion

	Meerkat experimental evaluation
	Main findings
	Analysis of finding 1
	Analysis of finding 2
	Analysis of finding 3
	Analysis of finding 4
	Analysis of finding 5
	Discussion

	Conclusion and future work
	Main contributions
	Future work

	Bibliography
	Appendices
	Minecraft-like game configurations
	Vanilla configurations
	server.properties

	Spigot configurations
	server.properties
	bukkit.yml
	spigot.yml

	Glowstone configurations
	glowstone.yml
	worlds.yml

	Experimental results
	Minecraft scalability experiments
	Meerkat experiments

