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A B S T R A C T

It is estimated that 99 % of the world population is exposed to air pollution above air quality guidelines and this 
is responsible for 6.7 million premature deaths annually. Lung and skin are the first organs exposed to air 
pollution, and this is associated with carcinogenesis, inflammation and atopic disease. Proposed mechanisms of 
adverse health effects in lung and skin include oxidative stress, inflammation, and loss of epithelial barrier 
integrity. Most knowledge has been gained using simple 2D or more complex culture models, however these 
cultures have important limitations, such as a lack of perfusion and stretching and lack of cell-cell crosstalk. 
Organ-on-chip (OoC) technology may be used to overcome limitations of the in vitro models currently used in air 
pollution research and opens possibilities for studying the pathways underlying adverse health effects of air 
pollution on immune-mediated diseases of the lung and skin using more physiologically relevant exposure ex
periments. In this review we discuss currently used in vitro models to study the effect of air pollution on epithelial 
barrier integrity and development of immune-mediated diseases and identify gaps in current knowledge on 
adverse health effects of air pollution. We then focus on how OoC technology can enhance mechanistic studies of 
the skin and lung’s response to air pollution.

1. Introduction

The skin and lungs, both epithelial barrier tissues, are continuously 
exposed to environmental stressors, including air pollutants. Air, soil, 
and water pollution have garnered most attention, as they are believed 
to contribute to approximately 9 million deaths annually, with most 
occurring in developing countries (Fuller et al., 2022). Air pollution is a 
major contributor to these deaths. According to the WHO, ~99 % of the 
global population is exposed to air pollution levels that exceed air 
quality guidelines, leading to 6.7 million premature deaths each year 
(World Health Organisation, 2024). Air pollution is associated with 
cardiovascular disease (Dominski et al., 2021) and an increased risk of 
developing various cancers, including but not limited to acute lym
phocytic leukemia (ALL), acute myeloid leukemia (AML), cancers of the 
upper aerodigestive tract as well as breast and ovarian cancer (Fang 

et al., 2024; Heck et al., 2024; Kentros et al., 2024; Nagel et al., 2024; 
Turner et al., 2020; Madrigal et al., 2024). It is also linked to skin issues 
such as aging, atopic dermatitis, acne, skin cancer, psoriasis, eczema, 
and melasma/hyperpigmentation (Abolhasani et al., 2021; Gu et al., 
2024; Jin et al., 2024; Huls et al., 2019; Patella et al., 2020; Mazur et al., 
2023). In the lungs, air pollution is associated with a higher incidence of 
respiratory diseases (Analitis et al., 2006; Turner et al., 2011; Zanobetti 
et al., 2009), including lung cancer, development and exacerbation of 
chronic obstructive pulmonary disease (COPD) and asthma and 
impaired lung function (Tiotiu et al., 2020; Kyung and Jeong, 2020; 
Garcia et al., 2019; Herbert and Kumar, 2017; Al-Daghri et al., 2013; 
Agache et al., 2024; Loomis et al., 2018; Hvidtfeldt et al., 2021).

Air pollution can be categorized into ambient and household pollu
tion, with both serving as significant sources of pollutants that can 
impact health. Volatile and semi-volatile compounds (VOCs), 
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particulate matter (PM), and gaseous compounds such as carbon mon
oxide (CO), ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2) 
are of particularly large concern to health (Leung, 2015). Airborne PM 
consists of a wide variety of compounds, and its chemical composition is 
significantly influenced by both geographical location and time of year 
(Chen et al., 2023; Zalakeviciute et al., 2020; van Donkelaar et al., 
2019). Polycyclic aromatic hydrocarbons (PAHs), which are often 
bound to PM are a particularly harmful class of VOCs (Saarnio et al., 
2008). PAHs are classified as either group 1 carcinogens (sufficient ev
idence for carcinogenicity), or group 2A/B carcinogens (probable and 
possible carcinogens) (Baird et al., 2005). PM10 (<10 μm) has greater 
impact on human health than larger particles, as these can readily enter 
the body. Respiratory disease prevalence increases with 2.07 % for every 
10 μg/m3 increase in PM10, while mortality increases by 0.58 % (Xing 
et al., 2015).

There are three primary routes through which pollutants can enter 
the body: ingestion (Wu et al., 2022), inhalation (Wu et al., 2022; Luo 
et al., 2021) and absorption through the skin and mucous membranes 
(Luo et al., 2020). Since the skin covers approximately 1.85 m2 of sur
face area, it offers ample opportunity for pollutants to enter the body, 
potentially causing local and systemic effects. Pollutants enter the skin 
through three routes: the intercellular route, the transcellular route and 
via the appendages (i.e., sweat glands, hair follicles). After dermal 
exposure, the intercellular and transcellular routes are considered the 
primary routes (Jin et al., 2018; Larese Filon et al., 2015). The stratum 
corneum, the outermost layer of the epidermis, serves as a protective 
barrier against the external environment. However, substances like 
benzo-a-pyrene (BaP) and other PAHs can easily penetrate the skin and 
are subsequently metabolized in the skin (Kao et al., 1985; Ng et al., 
1992; Kim et al., 2023).

In the lungs, deposition and uptake of PM is primarily determined by 
particle size. PM with different diameters will penetrate to varying 
depths within the respiratory tract (Deng et al., 2019; Morawska and 
Buonanno, 2021). Coarse particles (10–2.5 μm) are primarily deposited 
in the upper airways. Fine particles (2.5–0.1 μm) tend to reach the lower 
respiratory tract. Particles smaller than 0.1 μm behave like gases and can 
exchange through the alveoli into the systemic circulation (Sturm, 2016; 
Yacobi et al., 2010; Oberdorster et al., 2002; Heyder et al., 1986). In 
silico modelling of particle deposition in the human lungs, however, 
suggests that coarse particles (10–2.5 μm) can also penetrate the lower 
airways (Deng et al., 2019). Finally, the penetration of particles into the 
respiratory tract also depends on the route of inhalation (nose versus 
mouth) and age, with children experiencing higher penetration than 
adults (Brown et al., 2013).

Various animal and tissue models have been used to investigate the 
pathways involved in stress responses and disease processes in the lungs 
and skin. Significant knowledge on how the lungs respond to air 
pollution has been gained using animal studies, while the skin has been 
studied less extensively. In rodents, exposure to different air pollutants 
(DEP, NO2, PM2.5+O3) enhances asthma susceptibility, and results in 
influx of neutrophils into the airways, as well as other immune cell types 
including macrophages, monocytes, lymphocytes and eosinophils (Liu 
et al., 2008; Han et al., 2017; Cassee et al., 2005; Sidwell et al., 2022; 
Valderrama et al., 2022). The specific outcome, and immune cell 
effector functions depends on particle size and chemical composition. 
Induction of oxidative stress has also been reported, however, more 
research is needed to identify the causal components of air pollution 
contributing to oxidative stress (Valderrama et al., 2022). PM as well as 
O3 exposure affected respiratory epithelial barrier integrity in murine 
models (Smyth et al., 2021), but more research is needed to elucidate the 
underlying mechanism and how the specific composition of the 
epithelial layer is affected. Moreover, epithelial-immune cell in
teractions have not been studied extensively in this field. After inhala
tion, cardiovascular effects were also observed, with an increase in 
systemic IL-6 (Watkinson et al., 2001; Lee et al., 2024a; Kodavanti et al., 
2000). Although animal studies often show good concordance with 

human pathophysiology in general, data cannot always be translated to 
the heterogeneous human population. Moreover, in a number of studies, 
intratracheal/intranasal installation was used instead of inhalation. This 
has many advantages, including achievement of an accurate dose, but 
can affect the pattern of particle deposition and downstream intra- and 
extrapulmonary inflammatory responses (Todo, 2017).

In AD-like mice, topical application of PM10 resulted in increased AD 
symptoms and skin inflammation (Woo et al., 2020; Costa et al., 2006; 
Dijkhoff et al., 2020). In murine models, topical application of PM re
sults in decreased expression of epithelial barrier proteins and increased 
oxidative stress. PM penetrates into the skin, and the level of penetration 
increases on disrupted skin. For the development of dermo-protective 
technologies, more mechanistic knowledge needs to be gained 
regarding effects of air pollution on the skin. Rodents are not an ideal 
model for studying human skin responses, as there are important dif
ferences between human and mouse skin that influence how substances 
are absorbed through the skin. For example, mouse skin has more ap
pendages and a thinner epidermis (Huh et al., 2010). Porcine skin is 
more similar to human skin; however, pigs are costly and difficult to 
handle in experiments.

From an ethical perspective it is desirable to move towards relevant 
in vitro models. Cell and tissue culture models have provided valuable 
insights into the health impacts of air pollution on the skin and lungs 
(Further discussed in section 2; Fig. 1). However, traditional cell culture 
techniques often lack crucial biophysical cues. Furthermore, most air 
pollution studies focus on the direct effects of air pollutants by using 
high concentrations (Rynning et al., 2018; Mokrzyński and Szewczyk, 
2024; Institute, 2024). In vitro PM2.5 exposures reported in the literature 
sometimes exceed 300 μg/ml, which is significantly higher than the 
annual average exposure levels, such as ~10 μg/m3 in Western Europe 
and ~50 μg/m3 in India (Klein et al., 2013), as most exposure protocols 
aim to reduce exposure time and increase PM concentration to obtain 
the same results as chronic exposure with low concentrations. Moreover, 
most studies expose the cells to PM by adding these directly to the 
culture medium. These studies have gained valuable insights into the 
pathways underlying harmful effects of PM2.5 exposure. Direct trans
lation of these results to air pollutant exposure in real-world conditions 
is difficult since the used models often do not accurately mimic how the 
skin and lungs are exposed to air pollution Furthermore, long-term and 
repeated exposures beyond 7 days are understudied. Since immortalized 
cell lines often overgrow during extended cell culture periods, primary 
cells and induced pluripotent stem cells (iPSCs) could be used to prevent 
excessive growth. Experiments that utilize physiological pollution levels 
and repeated exposure would provide deeper insights into 
pollution-related diseases. However, to more accurately study the effects 
of long-term air pollutant exposure, more complex models that also 
incorporate immune cells are required (Ryu et al., 2019).

In this review we discuss currently used in vitro models to study the 
effect of air pollution, and identify gaps in current knowledge on how 
exposure to air pollution results in the development of immune- 
mediated diseases of the skin and the lung, as these two epithelial bar
rier tissues are the first to be exposed to air pollution. Furthermore, 
inflammation in the skin affects responses in the lung. For example, 
atopic dermatitis predisposes to the development of asthma, referred to 
as atopic march (Somanunt et al., 2017; Spergel and Paller, 2003). We 
focus in more detail on how organ-on-chip (OoC) technology can 
enhance mechanistic studies of the skin and lung’s response to air 
pollution.

2. Current in vitro models for studying effects of air pollutant 
exposure

2.1. 2-Dimensional (2D) cell culture models

The simplest models used to study the effects of air pollution on the 
development and/or exacerbation of immune-mediated diseases of 
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epithelial barrier tissues such as the skin and the lung are based on 2D 
cell cultures using immortalized cell lines or patient derived cells.

Before the development of more advanced co-culture models for lung 
tissue, lung cell lines were commonly stimulated by adding air pollut
ants to culture medium, resulting in the production of pro-inflammatory 
cytokines and oxidative stress (Engels et al., 2024; Grilli et al., 2018; 
Stringer and Kobzik, 1998). This approach is still used in certain 
experimental contexts, however, more often lung cells/cultures are 
exposed to air pollution at the air-liquid interface.

Insights into the cellular pathways affected by PM2.5 exposure in the 
skin have primarily been obtained by exposing keratinocyte monolayers 
to PM2.5, or PAHs in cell culture medium. These experiments demon
strated the induction of oxidative stress, cell death and senescence, as 
well as decreased barrier integrity and the production of pro- 
inflammatory cytokines (Piao et al., 2018; Zhen et al., 2019, 2024; 
Zhu et al., 2022; Herath et al., 2022; Kim et al., 2017, 2021; Choi et al., 
2020; Liao et al., 2020; Li et al., 2017; Ortiz et al., 2023).

2D cell cultures using cell lines or primary cells are a well-accepted 
method and have significantly advanced understanding of toxicity of 
components of air pollution, and cell-specific responses to exposure to 
air pollution. These models are highly reproducible, suitable for high 
throughput and informative in (cyto)toxicity and metabolic effect 
studies. Furthermore, in 2D cell culture models, elucidating the response 
of individual cell types is more straightforward. However, cells grown in 
2D often display poor differentiation, and altered behavior and 
morphology compared to the source tissue (Duval et al., 2017) and re
sults do not always translate to in vivo exposure in direct comparisons 
(Sayes et al., 2007).

2.2. Air-liquid interface culture models

By combining keratinocytes with fibroblasts and other cell types 
found in the skin, such as adipocytes, endothelial cells, nerve cells, 
melanocytes, immune cells, and appendages, more representative in 
vitro models can be created (Hofmann et al., 2023; Li et al., 1997; Rimal 
et al., 2024). Models featuring a layer of fibroblasts and a layer of ker
atinocytes are considered bilayer models, while adding adipocytes cre
ates trilayer models (Randall et al., 2018; Kim et al., 2019; Huber et al., 
2016; Vidal et al., 2019; Monfort et al., 2013; Bellas et al., 2012; Sanchez 
et al., 2022; Trottier et al., 2008). Both bilayer and trilayer models are 
considered full-thickness models and can be combined with other cell 
types. They are typically cultured at the air-liquid interface (ALI) on 
culture inserts. While full-thickness models offer a more realistic tissue 
architecture and provide an ALI that supports maturation of the 
epidermis, few studies to date have used these models to investigate the 
effects of air pollution on the skin. This is likely due to the longer and 
more complicated culture protocols required.

Similar to the advanced skin models, lung models used for pollution 
studies often provide an ALI to support the differentiation and matura
tion of airway epithelial cells (Silva et al., 2023; Gerovac et al., 2014). 
These models are typically classified as either alveolar or airway models 
(e.g. bronchiolar) (Eenjes et al., 2021; Lamers et al., 2021; Burgess et al., 
2024). Since these cultures mostly consist of epithelial cells, they lack 
combinations and interaction with other cell types. More advanced 
models are being proposed that incorporate a combination of mesen
chymal, endothelial, epithelial and/or immune cells. Cells used in such 
models can be patient-derived primary cells or commercial cell lines 
(Licciardello et al., 2023; Sellgren et al., 2014). Although establishing 
primary cell cultures is more time-consuming and expensive than using 
commercial cell lines, models derived from primary cells more closely 

Fig. 1. A schematic representation illustrating the impact of various environmental stressors on the lung and skin tissue. Different environmental stressors, 
here subdivided into particulate matter, volatile compounds, and inorganic gasses, are depicted. These exposures trigger cellular stress responses, such as the 
upregulation of cytokines, and a decrease in barrier integrity. Moreover, the Aryl hydrocarbon Receptor pathway is activated by xenobiotic particles like B(a)P, which 
in turn upregulates other pro-inflammatory responses and transcription of cytochrome P450 for the degradation of these particles. Created in BioRender. Koornneef, 
S. (2025) https://BioRender.com/o79w301.
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replicate in vivo conditions and can provide patient-specific insights 
(Kreimendahl et al., 2019).

Differences in response to components of air pollution were shown 
between lung cells exposed submerged or at ALI. For example, A549 
alveolar cells exposed to SiO2 or ZnO showed higher IL-8 release when 
exposed submerged (Lenz et al., 2009; Panas et al., 2014). On the other 
hand, in the bronchial epithelial cell line 16HBE14o, similar IL-8 re
sponses were found after submerged or ALI exposure, while the ALI dose 
was 4x lower (Holder et al., 2008). Possible explanations for the 
observed differences include the differentiation status of the cells, 
properties of the pollutant themselves in solution or in air, and possible 
differences in culture conditions. These observations however underline 
the importance of using relevant in vitro models.

2.3. 3D cell culture models

Organoids are self-organized cell clusters that recapitulate a minia
turized organ, exhibiting properties and functions similar to those of the 
native organ.

Lung organoids are derived from primary lung cells or iPSCs and can 
be classified into two types: 1) bronchial epithelial organoids and 2) 
alveolar organoids (Eenjes et al., 2021; Li et al., 2024a). Primary 
bronchial cells seeded in hydrogel enable robust differentiation towards 
a mucociliary phenotype, whereas alveolar organoids primarily consist 
of AT2-like cells. Alveolar organoids can also be guided towards an 
AT1-like phenotype (Ohnishi et al., 2024). Both organoid models can be 
based on iPSC-derived progenitor cells, however, obtaining a fully 
mature AT2/AT1-like phenotype remains challenging (Tiwari and Rana, 
2023; Stroulios et al., 2022).

Skin organoids are usually generated using iPSCs and can include 
skin appendages (Hong et al., 2023; Sun et al., 2021). While existing 
organoid models do not capture all aspects of the skin, those that include 
appendages are more physiologically relevant than simpler models.

While organoid models could improve the physiological relevance of 
air pollution studies, results can potentially be more accurately extrap
olated from in vitro to in vivo situations and allow for cell-cell crosstalk, 
they have not yet been widely implemented in this field. This is likely 
due to the lengthy and complex culture protocols, which can take several 
months. Additionally, iPSC-derived organoids have limited differentia
tion capabilities due to constraints in the current protocols (Burgess 
et al., 2024). In contrast, primary cells exhibit strong differentiation 
capacities (Eenjes et al., 2021). Although obtaining patient material can 
be challenging, the variation in individual responses to stimuli such as 
cigarette smoke highlights the importance of including multiple donors 
in each experiment to adjust for genetic variability and donor-to-donor 
variation (Katsura et al., 2020). Moreover, for pollution studies 
involving exposure of the apical side, the organoids would need to be 
processed prior to use. Protocols to generate apical-out bronchial 
organoids are available, however these methods often result in reduced 
numbers of secretory cells (Winkler et al., 2022; Sachs et al., 2019). 

Nevertheless, once these challenges are addressed, organoids offer a 
realistic alternative to traditional 2D culture models, more closely 
resembling native tissue. Furthermore, organoids can serve as a cell 
source for exposure experiments, as organoids maintain differentiation 
ability even after being passaged.

3. In vitro air pollutant exposure methods

Various methods can be used to expose cell cultures to pollutants, 
depending on the type of pollutant and the specific culture system 
(Fig. 2). In in vitro experiments, exposures are generally carried out by 
adding air pollutants to the cell culture medium (Liu et al., 2021; Ke 
et al., 2018; Zhang et al., 2017). While this has yielded important in
sights into how pollutants impact individual cell health, it does not 
accurately replicate in vivo exposures. The concentration at the surface 
of submerged cultures differs from that near the cells. Most particles are 
hydrophobic, aggregate and tend to sink to the bottom of the well. 
Consequently, wells with larger volumes or larger culture areas and the 
same pollutant concentration will have more particles interacting with 
the cells at the bottom of the dish. In contrast, buoyant nanoparticles 
may experience the opposite effect, as most particles fail to reach the 
bottom of the well during submerged exposures (Watson et al., 2016). 
Therefore, alternative methods for pollution exposure are required.

Aerosolization or exposure via dry particles can help eliminate dis
crepancies among pollution studies caused by variation in well sizes and 
volumes, as these techniques enable most particles to directly settle on 
the culture surface. Commercial systems for aerosolizing air pollutants 
include the nebulization system Vitrocell Cloud Alpha (formerly known 
as ALICE (Lenz et al., 2014; Chortarea et al., 2017)) and the CelTox 
system (Sengupta et al., 2023). Other nebulization systems developed by 
academic groups and functioning similarly to the Vitrocell system have 
been reported (Ritter et al., 2001; Aufderheide et al., 2002). These de
vices utilize a vibrating mesh at the top of an exposure chamber, through 
which a liquid containing air pollution is vaporized onto the ALI cultures 
placed in the exposure chamber. While this exposure method closely 
replicates in vivo conditions, it is limited by the particles’ ability to 
dissolve without generating aggregates larger than the pore size of the 
nebulizer, making it challenging to expose cultures with hydrophobic 
particulate matter. Alternatively, for exposures involving solid particles, 
commercial systems such as PreciseInhale® and XposeALI® are avail
able. Solid compounds are introduced into a holding chamber using 
compressed air and then delivered onto the ALI cell cultures.

Lastly, cell cultures can be exposed to gases by flushing humidified 
gaseous pollutants into an incubator or culture chamber (Guenette et al., 
2022; Horstmann et al., 2021). To protect lab workers from harmful 
gases, small sized, air-tight exposure chambers can be used. A modified 
Vitrocell VC 10 Smoking Robot, for example, can be used for gaseous 
exposure experiments, including combination with cigarette smoke 
(Breheny et al., 2014). Gaseous exposure methods can be applied to both 
skin and lung in vitro cultures (Ji et al., 2017; Upadhyay et al., 2022a). 

Fig. 2. Schematic overview of different in vitro exposure methods visualized using transwell inserts. A: Submerged exposure: Cultures are exposed to 
particulate matter by dissolving the environmental stressor in the culture medium. B: Nebulization exposure: Pollutants are aerosolized and delivered to ALI cultures 
using sedimentation of the droplets. C: Solid particle exposure: Solid particles are brought into a pressurized holding chamber and delivered on top of ALI cultures. D: 
Gaseous exposure: Cultures are brought into a chamber that holds various gas pollutants. Created in BioRender. Koornneef, S. (2025) https://BioRender. 
com/x48j138.
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These exposure methods could theoretically be integrated in OoC 
models. In lung-on-chip devices, aerosols are already used to expose the 
tissues to harmful particles (Todo, 2017; Dwivedi et al., 2018). To our 
knowledge, these methods have not yet been applied to skin-on-chip 
devices.

4. Pathobiological pathways/mechanisms underlying adverse 
effects of air pollution

Pathobiological mechanisms underlying the adverse effects on lung 
and skin tissues and cells have been studied in in vivo rodent models and 
in in vitro systems. Extensive literature is available on effects of in vivo 
exposure on the respiratory tract, whereas effects on the skin have been 
studied less extensively. Animal studies, controlled exposure in healthy 
volunteers, and ex vivo analysis of human samples suggest that oxidative 
stress, inflammation and allergic responses, as well as impaired 
epithelial barrier function, play significant roles in developing immune 
mediated disease in these barrier tissues. For instance, controlled 
exposure to PM2.5 in both healthy volunteers and rodents led to an 
accumulation of neutrophils into the lung (Ghio et al., 2000; Li et al., 
1999, 2024b; He et al., 2017; Salvi et al., 1999). Exposure to diesel 
exhaust particles (DEP) resulted in increased levels of eosinophil 
cationic protein, histamine and IgE in the nasal wash fluid of healthy 
volunteers (Lee et al., 2024b; Diaz-Sanchez et al., 1996, 2000a; Dia
z-Sanchez et al., 2000b). In skin, air pollutants can both exacerbate and 
result in the development of skin disease. For example, in an atopic 
dermatitis mouse model, PM10 application to the skin resulted in 
increased severity, with increased expression of proinflammatory genes 
such as Il1b (Watkinson et al., 2001).

4.1. Aryl hydrocarbon receptor signaling

Aryl Hydrocarbon Receptor (AhR) signaling contributes significantly 

to the body’s response to air pollution (Fig. 3). AhR is a ubiquitously 
expressed cytosolic receptor, with its expression levels varying across 
and within tissues. AhR is activated by exposure to atmospheric PM, as 
shown in reporter cell lines, in vivo and in vitro lung exposure models and 
in vitro skin models (Barhoumi et al., 2020; McDonough et al., 2019; 
Aryal et al., 2024; Hartung et al., 2025) and its ligands include envi
ronmental chemicals, food constituents and endogenous substances. As 
a result, AhR serves not only as a key regulator of xenobiotic metabolism 
but also a regulator of various physiologic processes (Abel and 
Haarmann-Stemmann, 2010). The differences in mechanisms between 
physiological ligands and xenobiotics are still poorly understood 
(Stockinger et al., 2024), and investigating these mechanisms in relevant 
skin and lung models after exposure to air pollution and how this affects 
surrounding cells would be important in increasing our understanding of 
the role of AhR signalling in adverse health effects, oxidative stress and 
inflammation. Exposure to xenobiotic AhR-ligands leads to oxidative 
stress. For instance, exposure to dioxin or benzo(a)pyrene (BaP) in
creases the gene and protein expression of AhR, CYP1A1, and CYP1B1 
(Ghosh et al., 2018). This is followed by an increase in CYP1A1 and 
-1B1-mediated generation of reactive oxygen species (ROS), a decline in 
mitochondrial function, and ultimately, apoptosis in different cell types, 
including lung cell lines (Zhou et al., 2017; Elbekai et al., 2004; Huang 
et al., 2021; Bansal et al., 2014). Furthermore, AhR-mediated metabolic 
activation of PAHs results in the formation of mutagenic DNA and 
protein adducts (Dipple et al., 1999). The number of DNA adducts cor
relates with PAH exposure in vivo, a relationship already evident in 
blood samples of newborns (Perera et al., 2005). On the other hand, 
overexpression of AhR in in lung adenocarcinoma cells resulted in 
reduced ROS levels and DNA damage following cigarette smoke expo
sure (Cheng et al., 2012). Additionally, in the skin, UV exposure induces 
expression of the endogenous AhR ligand FICZ, improving DNA pro
tection (Cheng et al., 2012). Finally, AhR signaling enhances inflam
matory responses, as evident in both lung and skin cell lines after 

Fig. 3. Aryl hydrocarbon receptor signaling on activation via xenobiotic particles. In its inactive form, AhR complexes with heat shock protein (HSP)90, AhR- 
interacting protein (AIP), p23 and SRC. After ligand binding, AIP dissociates and AhR translocates to the nucleus, where it binds to ARNT. This complex binds to 
xenobiotic responsive elements (XREs) in the DNA, regulating gene expression of for example the cytochrome p450 (CYP) enzymes CYP1A1 and CYP1B1 (Abel and 
Haarmann-Stemmann, 2010; Lag et al., 2020; Rothhammer and Quintana, 2019) and downstream antioxidant genes such as Nrf2, and HMOX1 (Wang et al., 2019). 
AhR also regulates gene expression of genes that do not have XREs, by interacting with estrogen receptor (Wang et al., 2019), or by controlling the activation of other 
transcription factors such as NF-κB (Vogel et al., 2014; Ohtake et al., 2003). Created in BioRender. Koornneef, S. (2025) https://BioRender.com/s31m666.
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exposure to AhR ligands (Bocheva et al., 2023; Yu et al., 2025).

4.2. Inflammation

In general, exposure of lung and skin models to PM, but also 
pollutant gases, triggers inflammation (Fitoussi et al., 2022; Zou et al., 
2020), with the specific outcome varying, depending on the tissue 
context.

For example, exposure of bronchial epithelial cells cultured at ALI to 
PM2.5, carbon nanotubes or DEP triggered production of IL-6, IL-8, IL-1β, 
NF-κB, and TNFα (Lenz et al., 2014; Ji et al., 2017; Zou et al., 2020). This 
heightened inflammatory response after air pollution exposure may 
partly be attributed to epigenetic changes, as seen in Treg at the FOXP3 
locus and in bronchial and nasal epithelial cells (Nadeau et al., 2010; Li 
et al., 2024c; Irizar et al., 2024; Sordillo et al., 2021). However, when 
bronchial epithelial cells cultured at ALI were exposed to urban aerosols, 
no differences in DNA methylation were observed in the promotor re
gions of four selected genes (IL18, AHR, CYP1A1 and CYP1B1) (Santoro 
et al., 2024).

In keratinocytes, exposure to PM2.5 led to increased gene expression 
of IL1A and IL1B (Liao et al., 2020; Kim et al., 2017), as well as elevated 
protein levels of GM-CSF, TSLP, TNFα, IL-1α, IL-6 and IL-8 (Choi et al., 
2020; Li et al., 2017). However, in these experiments, keratinocytes 
were exposed submerged. In vitro culture of alveolar macrophages with 
PM or BaP results in reduced cell viability and increased levels of TNFα, 
IL-6, GM-CSF, MIP-1α and IL-1β (Ghio et al., 2000; Jalava et al., 2007; 
van Eeden et al., 2001; Lecureur et al., 2005; Al et al., 2019; Becker 
et al., 2003; Mukae et al., 2000).

Especially for skin, as responses can be vastly different between 
submerged and ALI exposure, future studies should include exposure at 
the ALI as this is the relevant route of exposure for the skin. Further
more, while it is important to study inflammatory responses to indi
vidual components of air pollution, as ambient air consists of a complex 
mixture of different pollutants, more research should focus on assessing 
effects of combined stressors.

4.3. Epithelial barrier function

The epithelium of both the skin and the lung act as a barrier to the 
outside environment. Exposure to PM adversely affects tissue barrier 
integrity (Celebi Sozener et al., 2020), where exposure to substances 
including air pollution results in damage of the epithelium, contributing 
to inflammation and sensitization (Sun et al., 2024). Epithelial damage 
to the skin and lung, and the resulting induction of type 2 driven 
inflammation can ultimately lead to the development of allergic con
ditions, such as AD, asthma and allergic rhinitis (Reynolds et al., 2023; 
Celebi Sozener et al., 2022; Zhao et al., 2020).

In the lungs, O3, DEP and house-dust organic contaminants disturbed 
the membrane integrity of bronchial epithelial cells in vitro (Woo et al., 
2020; Reynolds et al., 2023). Further, nasal mucosa downregulated the 
expression of ZO-1 and vascular endothelial cadherin upon exposure to 
PM (Marques Dos Santos et al., 2022; Byun et al., 2019). In lung 
epithelial cells, this resulted in decreased barrier integrity as measured 
using FITC-dextran transit (Smyth et al., 2020).

In keratinocytes PM exposure decreased expression of structural 
proteins such as. Filaggrin (Kim et al., 2021) and zonula occludens 
(ZO)-1 (Choi et al., 2020). Full thickness skin showed a reduction in 
thickness of the stratum corneum and decreased Filaggrin expression. 
(Kim et al., 2021; Sun et al., 2024). Additionally, markers for prolifer
ation were decreased upon PM exposure, both in full thickness skin as in 
2D models (Dijkhoff et al., 2020).

Again here, effects of pollutants on epithelial barrier integrity of lung 
and skin models should be assessed at ALI, in addition to effects of 
exposure to multiple pollutants, and repeated exposures. Furthermore, 
research should focus on in vitro models using cells from patients with 
respiratory disease (Asthma, COPD for example) or skin disease (atopic 

dermatitis, psoriasis), to determine how air pollution exposure affects an 
already perturbed barrier.

4.4. Exposure to combined stressors

Most in vitro studies on the health effects of environmental stressors 
focused on the impact of a single stressor. However, in reality, human 
tissues are co-exposed to multiple environmental factors simulta
neously, which could amplify the harmful effects of air pollutants. Thus 
although important, the health effects of stressor combinations and the 
underlying molecular mechanisms remain largely unexplored.

The most studied stressor combination in skin research is photo- 
pollution, particularly the combination of PAHs and UV light. UVB 
light enhances the genotoxicity of PAHs and the resulting phototoxicity 
is characterized by oxidative stress, mitochondrial damage and impaired 
DNA-repair (Mokrzyński and Szewczyk, 2024; Larnac et al., 2024). To 
the best of our knowledge, only one study has explored the combined 
impact of humidity and air pollution on skin. In this study, semi-dry 
airflow (45 % relative humidity) exacerbated the negative effects of 
air pollutants on cellular functionality. However, the impact of humidity 
on the release of cytokines and chemokines varied depending on the 
specific pollutant involved (Seurat et al., 2021).

In the lungs, exposure to PM or gases have received most attention. 
While co-exposure studies of PM with other stressors, such as gaseous 
compounds, are often overlooked, research shows that exposure to a 
combination of stressors in the form of DEP in combination with gaseous 
pollutants has synergistic effects (Upadhyay et al., 2022b).

5. Organ-on-chip technology for future research into the effects 
of pollution

Future research into air-pollution-induced immunological diseases of 
epithelial barrier tissues should focus on exploring the combined impact 
of multiple environmental stressors and/or the impact of long term/ 
repeated exposures. Importantly this should be explored in more com
plex cellular in vitro settings than done previously to more accurately 
mimic the native organ and to facilitate in vitro-in vivo extrapolation. 
More complex models would facilitate the characterization of cell-cell 
and cell-tissue interactions. This would align with the 3 R principle to 
reduce, refine and replace animal studies.

As pointed-out before, cell and tissue models can be improved by co- 
culturing lung or skin cells with other cell types, which facilitates cell- 
cell interactions and mimics more complex in vivo environments. How
ever, traditional cell culture techniques still lack crucial biophysical 
cues, most notably perfusion and mechanical actuation, limiting their 
physiological relevance (Table 1). Moreover, the detection of bio
markers is often restricted to end-point measurements, which makes it 
challenging to study the dynamic kinetics of gene and protein expression 
over time.

OoC technologies have the potential to drive significant advances in 
this field. These microfluidic devices maintain cells, tissue explants or 
organ models under controlled physiological conditions for continuous 
monitoring. By incorporating features such as perfusion, mechanical 
stretching and biosensing within the microfluidic system, OoCs can 
more realistically replicate the native environment of tissues and enable 
real-time tracking of biomarkers (Fig. 4). Air pollutant exposure tech
nologies can also be incorporated into microfluidic platforms, facili
tating long-term/chronic exposure studies and exposure to multiple 
environmental stressors. While there have been significant advance
ments in the OoC field, its application in air pollution research remains 
limited, with few studies using lung and skin models exploring this area 
(Table 2). This section will discuss the potential of OoC models to 
investigate the health effects of pollutants on the skin and lungs, as well 
as the challenges to effectively integrating these technologies into 
research on air pollution’s effects on human health.
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6. Organ-on-chip: external cues and sensing

6.1. Perfusion and air flow

Both the skin and the lungs are exposed to air on their apical tissue 
surfaces and are supplied with blood by the cardiovascular system on 
their basal side. In the lungs, gas exchange occurs between the alveolar 
air and blood in the pulmonary capillaries, facilitating the oxygenation 
of the blood. In both tissues, blood circulation serves as a route for im
mune cell recruitment, the supply of nutrients and the removal of 
metabolic waste, but also the dissemination of biomarkers indicative of a 
disturbance in tissue homeostasis.

Conventional ALI cultures are static models of air and blood, lacking 
flow cues for the cultured cells. In contrast, various lung-on-chip and 
skin-on-chip models have been developed to incorporate liquid and/or 
air flow, separated by a microporous membrane. The liquid component 
or basolateral side is usually perfused with medium via a pump, while 
the air compartment or apical side can be either actively or passively 
ventilated.

In lung-on-chip models, medium flow and airflow cues promote the 
maturation of blood vessels and the airway epithelium, respectively 

(Katoh, 2023; Stucki et al., 2015; Meng et al., 2022; Nawroth et al., 
2023; Sengupta et al., 2022). The basolateral flow of medium interacts 
with the endothelial cells and mimics the capillary blood flow. The shear 
stress generated by this flow modifies endothelial cell permeability and 
can also influence endothelial cell viability (Smyth et al., 2020; Larnac 
et al., 2024; Upadhyay et al., 2022b; Zeng et al., 2022). The commercial 
Emulate lung-on-chip, based on the work published by Huh et al. (Todo, 
2017), combines airflow and mechanical stretch. These factors support 
the maturation of the tissue and aid in the directionality of mucociliary 
clearance (Seurat et al., 2021). Another alveolar chip model, produced 
by AlveoliX, demonstrated that a 3D stretchable membrane enhanced 
the expression of alveolar markers, like AQP5 and SFTPC (Katoh, 2023). 
Moreover, stress levels decrease over time when stretch or airflow are 
applied to endothelial or epithelial cultures (Seurat et al., 2021; Katoh, 
2023; Meng et al., 2022). However, the barrier integrity of epithelial 
cells appears to weaken and becomes more sensitive to nanoparticle 
environmental stressors, such as ZnO and TiO2, when combined with 
stretch (Sengupta et al., 2023).

To our knowledge, no studies have directly compared skin epithelial 
tissue culture with active air flow to static air culture. However, medium 
flow cues can promote maturation of epithelial tissue in skin models, 
with higher shear stress levels influencing keratinocyte morphology 
(Meng et al., 2022; Nawroth et al., 2023; Agarwal et al., 2019). 
Furthermore, shear stress induced by liquid flow promotes fibroblast 
migration and organization, with high shear stress leading to cell 
rounding (Meng et al., 2022; Nawroth et al., 2023). This imposes a limit 
on the acceptable shear stress levels in microfluidic devices designed for 
skin culture, while also offering opportunities for improving culture 
conditions. Perfusion could extend culture duration. However, 
full-thickness skin models have been cultured in inserts for up to 50 
days, whereas skin-on-chip tissues are usually cultured up to 28 days 
(Zoio et al., 2021a). Therefore, it remains unclear to what extent 
perfusion improves survival and quality of skin-on-chip models during 
long term culture, compared to static ALI culture.

In addition to facilitating tissue maturation, more accurately repli
cating native tissue, flow cues can impact the dynamics of pollutant 
uptake and downstream responses, likely better replicating in vivo up
take dynamics. For example, the uptake of nanoparticles by endothelial 
cells exposed to flow-induced shear decreases as shear force increases 
(Charwat et al., 2018). Therefore, fluid mechanics could influence the 
distribution, bioaccumulation, and clearance of nanoparticles. More
over, the design of flow channels affects how cells and tissue interact 
with environmental pollutants. For example, pollutant accumulation in 
chips with rectangular channels is different compared to the more 
naturally shaped circular channels (Zhang et al., 2018). Moreover, 
potentially the improved culture conditions will allow for long-term 
and/or repeated exposure experiments (Lu and Radisic, 2021) to more 
accurately mimic real-life situations.

6.2. Mechanical cues

Conventional tissue culture does not include tensile or compressive 
loads. However, in daily life, both the skin and lungs are subjected to 
cyclic tensile and compressive forces.

In the lungs, stretching begins in utero, due to internal pressure from 
internal fluid flow, or later through fetal breathing movements. In 
mammals, the respiratory muscles periodically contract to alter the 
volume of the lungs, facilitating the exchange of oxygen and carbon 
dioxide through changes in pulmonary pressure (Novak et al., 2021). In 
the healthy lungs, stretching-mediated mechanotransduction promotes 
pulmonary cell differentiation. For instance, stretching induces the dif
ferentiation of alveolar bipotent progenitor cells into AT1 alveolar cells 
during lung development in a fetal mouse model (Nguyen et al., 2021). 
In lung-on-chip models, mechanical stretch can be applied to more 
accurately replicate physiological conditions. Several commercial sys
tems, such as those developed by Emulate and Alveolix, incorporate 

Table 1 
Summary of the different models used for studying adverse health effects of air 
pollution.

Model Advantages Disadvantages
2D cell 
culture

• Simple protocol; low 
cost

• Highly reproducible
• Useful for (cyto) 

toxicity studies
• More homogeneous 

response to stimuli
• Accepted in 

regulatory instances

• Cells often display 
altered morphology 
and behaviour 
compared to native 
tissue, as well as gene 
and protein 
expression profiles

• Often more sensitive 
to stimuli

• Often poor cell 
differentiation

• Lacks cell-cell 
crosstalk

ALI-culture • Mimics exposure to 
air

• Mucociliary 
differentiation

• Moderate cell-cell 
interactions

• Static condition
• Limited cell diversity
• Complicated and 

lengthy culture 
protocols

• Lacks biological cues 
like flow and stretch

Advanced 
co-culture 
models

• Incorporates multiple 
different cell types

• Cell-cell interactions
• ECM remodeling 

studies

• Static conditions
• Complex setup
• Lacks biological cues 

like flow and stretch

Organoid 
cultures

• Moderate Cell-Cell 
interactions

• 3D self-organizing 
structure

• Improved 
physiological 
relevance

• Static condition
• No waste transport, 

necrotic centers
• Long term growth 

difficult
• Intricate and lengthy 

culture protocol
• Requires expensive 

factors
• Usually outside-in.

Organ-on- 
Chip

• Tissue-Tissue 
interactions

• Real time monitoring
• Microphysiological 

cues (flow, stretch, 
ALI)

• Limited tissue 
interactions

• Technically complex
• Limited scalability 

and reproducibility
• High costs

Animal 
models

• Physiologically 
relevant

• systemic response 
studies

• Accepted in 
regulatory instances

• Moderate prediction 
of drug responses

• Ethical concerns
• Requires specialized 

facilities
• Often limited human 

relevance
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mechanical stretching (Sengupta et al., 2023; Stucki et al., 2015; 
Nawroth et al., 2023). Studies using these systems have demonstrated 
that mechanical stretching promotes the maturation of rat AT2 cells 
(Sanchez-Esteban et al., 2001) and human airway bronchial cells 
(Nawroth et al., 2023). Mechanical stretching could also influence the 
response to nanoparticles. For example, the generation of ROS by 
alveolar cells exposed to silica particles was significantly elevated in the 
presence of mechanical strain (Todo, 2017). We propose the introduc
tion of mechanical cues will result in more accurate replication of native 
tissue responses and will facilitate in vitro-in vivo extrapolation.

In the skin, stretching affects keratinocyte proliferation, migration 
and survival (Sanchez-Esteban et al., 2001) and stimulates fibroblast 
proliferation and collagen production (Lu et al., 2013). Several 
skin-on-chip studies have incorporated stretching or compression (van 
Haasterecht et al., 2023; Kim et al., 2022; Lim et al., 2018; Mori et al., 
2018; Tokuyama et al., 2015; Wahlsten et al., 2021; Varone et al., 2021; 

Jeong et al., 2021; Kaiser et al., 2024) to enhance the physiological 
relevance of the culture conditions. Although the skin is continuously 
exposed to cycles of stretching and relaxation in vivo, and skin-on-chip 
models incorporating mechanical actuation exist, this factor is typi
cally excluded from skin studies, especially in those investigating the 
effects of air pollution. To our knowledge, only one study has addressed 
the combination of pollutant exposure and mechanical tension in a 
short-term culture study with skin explants cultured under tension 
(Pambianchi et al., 2023). In this study, static tension modulated 
ozone-induced antimicrobial peptide (AMP) levels (CAMP, LL-37, hBD2, 
hBD3), as well as the kinetics of inflammatory molecule expression 
(COX2, AhR, MMP9 and 4HNE).

6.3. Real-time monitoring of biomarkers

The integration of sensors into in vitro culture systems can reduce 

Fig. 4. Various cues and real-time monitoring can be integrated in lung- and skin-on-chip technologies. Mechanical cues: cyclic stretching mimics breathing 
movements in lung-on-chip systems or mechanical forces in skin-on-chip models. Perfusion and airflow: Controlled media flow mimics blood flow and provides shear 
stress to endothelial cells. Bi-or unidirectional airflow can be introduced to epithelial cells, enhancing physiological relevance. Realtime Measurements: TEER, 
aptamer-based sensors, or protein array based biosensing enables continues measurements of dynamic changes within organ-on-chip. Created in BioRender. 
Koornneef, S. (2025) https://BioRender.com/v11w112.

Table 2 
Lung- and skin-on chip air pollution studies to date.

Tissue Cell type Type of pollutant Exposure duration Exposure method Ref. Year

Lung Cell lines 12 nm Silica nanoparticles 5 h Thin layer–> submerged 10.1126/science.1188302 2010
Lung Cell line/primary cells TiO2, ZnO2 nanoparticles 24 h Submerged 10.1039/c8tx00156a 2018
Lung Cell line/primary cells Polystyrene nanoparticles 24 h Submerged 10.1016/j.jhazmat.2023.131962 2023
Lung Cell line/primary cells TiO2, ZnO2 nanoparticles 48 h Nebulization 10.3389/fphar.2023.1114739 2023
Lung Cell line/primary cells ZnO2 and CCP nanoparticles 48 h Submerged 10.1021/acs.est.3c03678 2023
Lung Cell line/primary cells PM2.5 72 h Submerged 10.1021/acsbiomaterials.0c00221 2020
Lung Cell line/primary cells PM2.5 24 h Submerged 10.1016/j.ecoenv.2021.112601 2021
Lung primary cells PM2.5 96 h Submerged 10.1007/s13206-022-00068-x 2022
Lung Primary cells polystyrene particles 48 h Nebulization 10.3389/fbioe.2020.00091 2020
Lung Cell line PM2.5 24 h Nebulization 10.1016/j.scitotenv.2020.143200 2021
Lung Cell line PM2.5 24 h Nebulization 10.1016/j.ecoenv.2022.114318 2022
Lung Cell line PM2.5 24 h Nebulization 10.1021/acssensors.3c01744 2022
Lung Cell line, tissue slices PM2.5 72 h Submerged 10.1111/all.16179 2024
Skin Cell line PM2.5 24 h Submerged 10.1016/j.tiv.2017.04.018 2017
Skin Cell line Combustion PM 24 h Submerged 10.1016/j.chemosphere.2018.06.058 2018
Skin Cell line UV 0.5 h N/A (ALI) 10.1039/C6LC00229C 2016
Skin Cell line UV 48 h N/A (ALI) 10.1002/bit.27320 2020
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time spent on sample taking and processing while enabling noninvasive 
real-time monitoring of cellular biomarkers and culture conditions. 
While sensors can be integrated into both conventional tissue culture 
and OoC, sensor miniaturization and design freedom in OoC platforms 
create flexibility in sensor placement and optimization of the sensing 
conditions compared to conventional culture. Various optical, physical 
and electrochemical sensors have been developed for OoC (Shinde et al., 
2023). Optical sensors often employ fluorescence, surface plasmon 
resonance (SPR) or optical coherence tomography. Electrical and elec
trochemical sensors are usually based on potentiometry/amperometry, 
field effect transistors or impedance. Physical sensors include pressure 
gauges, strain gauges and cantilevers. Sensors have also been developed 
for omics applications and are based on enzymes, antibodies or aptamers 
with various transducer types.

The most common sensor in studies with barrier tissues, such as the 
lungs and skin, measures physiological barrier function by assessing the 
resistance across the barrier. This transendothelial/epithelial electrical 
resistance (TEER) reflects the integrity of the epithelial barrier and is 
influenced by factors such as cell junctions, cell layer thickness, and 
state of confluency [203,204]. TEER is often performed with probes 
connected to a Voltohmmeter in both conventional culture and OoC but 
integrated sensors are increasingly common (Nazari et al., 2023a). 
Several skin-on-chip (Srinivasan et al., 2015; Alexander et al., 2018; 
Nguyen et al., 2024) and lung-on-chip (Zoio et al., 2021b; Khalid et al., 
2020) devices have been reported in the literature with integrated TEER 
sensors. To measure TEER, the electric circuit must be closed by sub
merging all electrodes. This is easily achieved in submerged conven
tional and OoC cultures, however, in ALI cultures, the apical side of the 
tissue must be periodically flooded for short-duration TEER measure
ments at specific time-points. Automatic flooding and aspiration of ALI 
cultures is easier to integrate into OoC platforms than conventional 
culture plates due to the presence of fluid flow and the flexibility of 
microfluidic design in OoC. Further, TEER electrode placement is 
limited to the culture chamber and preferably close to the tissue being 
studied. Due to the design flexibility of OoC, the space between the 
sensors and the tissues can be minimized and thin electrodes with 
optimized geometry can be fabricated using microfabrication techniques 
(Nazari et al., 2023a). While the existing TEER electrodes in 
skin-on-chip are opaque, transparent electrodes have been reported in 
lung-on-chip devices, which facilitates macroscopic and microscopical 
analysis of the culture (Zoio et al., 2021b; Khalid et al., 2020). Inte
grating biosensors for other biomarkers, such as proteins and cytokines, 
could capture fluctuations in markers that are often missed by conven
tional omics-based and imaging-based end-point analysis at predefined 
time intervals, hence offering deeper insights into cellular responses and 
disease mechanisms. By avoiding or simplifying sample taking and 
processing they also facilitate high throughput applications. Such sen
sors are prevalent in OoC for diagnostics and therapeutics (Shinde et al., 
2023). Various sensors have been integrated in the lung-on-chip for 
rapid detection of RNAs, and proteins (Ding et al., 2021), however to our 
knowledge these systems are not used routinely in air pollution research 
yet. One skin-on-chip study reported an integrated sensor for studying 
the effects of air pollution on skin (Liu et al., 2021), using an integrated 
photonic protein array system for studying PM2.5-induced cytotoxicity 
in human keratinocytes, revealing activation of NF-κB and NALP3 
signaling pathways and increased production of IL-6 and IL-1β. The 
latter findings correlated well with results obtained from ELISA, high
lighting the system’s ability to accurately monitor cellular responses to 
pollution with proteomics (Zhang et al., 2017).

An important downside of antibody-based biorecognition elements 
like the photonic protein array system is the accumulation of the bio
markers on the sensor, which reduces its sensitivity. This issue could be 
resolved by using aptamers, which can regenerate to their unbound 
state, enabling the measurement of new molecules (Zhao et al., 2011). 
Aptamers can be designed for various targets, including proteins and 
nucleic acids (Dunn et al., 2017) with successful applications in OoC 

(Nguyen et al., 2018).
Additionally, culture conditions on-chip can be monitored by addi

tional sensors. For instance, changes in the pH of the cell culture medium 
can be optically assessed by measuring the change in phenol red in 
medium flowing through a separate transparent tube (Khalid et al., 
2020). Furthermore, integrated oxygen-sensitive microparticle-based 
sensor spots allow for continuous optical sensing of oxygen concentra
tion on-chip (Zargartalebi et al., 2024), providing real-time monitoring 
of oxygen levels within the culture.

More than conventional culture systems, OoC platforms provide the 
flexibility to combine multiple sensing modalities or to combine sensing 
with actuation. Despite this flexibility, none of the reported studies with 
skin- and lung-on-chip models combined TEER measurements with 
stretching. Since stretching affects tissue maturation and function, 
including barrier function and uptake of particles, in the lung and skin, 
integrating TEER sensing with stretching could offer valuable insights 
into the effects of mechanical load on these tissues and on their response 
to (air) pollutants. Furthermore, none of the studies referenced above 
have incorporated TEER alongside other types of biosensors to measure 
biomarkers involved in stress response of the skin and lungs.

7. Challenges to effectively integrate organ-on-chip technology 
for pollution research

Scalability and reproducibility remain significant challenges in all 
organ-on-chip systems, including lung- and skin-on-chip systems (Zirath 
et al., 2018). Some OoCs, such as the OrganoPlates from Mimetas, are 
already actively assisting with FDA IND application for drug safety and 
effectiveness. The systems initially did not support the ALI conditions 
required for the differentiation of airway and skin cells. Some academic 
solutions designed plate variations to create ALI for lung cells (Jung 
et al., 2022). Increased scalability for dynamically co-culturing inserts 
have also been proposed, such as Simple-flow: multiple linked cell in
serts to increase fluidic flow in the basolateral compartment of the cell 
insert (Leung et al., 2022). However, chips with more advanced me
chanics, such as stretch or airflow, often face difficulties in scaling up. As 
a result, standardization in the field remains limited due to the chal
lenges of achieving scalability and reproducibility. Various organiza
tions, such as ISO, CENELEC, 3RC and ECVAM and nationwide 
collaboratives such as the Dutch hDMT, are actively collaborating to 
establish tissue-specific functional parameters. However, for these sys
tems to gain formal acceptance, alignment with established regulatory 
frameworks is essential. Therefore, EU focus groups and intergovern
mental organisation OECD have recently developed a roadmap with 
guidelines towards developing standards for OoC technology (OECD, 
2021). Other considerable research worldwide is contributing to 
addressing such challenges, paving the way to solid establishment of the 
technology (Iriondo et al., 2024; Mastrangeli and van den Eijnden-van 
Raaij, 2021). So far, standardization efforts, like ISO/TC 276/SC 2, 
have marked 4 standards but are not yet published (ISO). Addressing 
these regulatory considerations and performance critertia, like repro
ducibility, is crucial for broader adoption of OoC. Once standards are 
available, researchers, such as in industry and acedamics, may revise or 
validate their OoC work to meet the criteria set by the regulatory groups. 
If these demands are met, industry and regulators, including organiza
tions such as EMA, FDA, and EPA, OoC could fullfill a valuable role in air 
pollution studies and serve as a replacement model for animal studies.

8. Conclusion

The molecular mechanisms behind air pollution-induced adverse 
health effects on the lungs and skin remain relatively poorly understood, 
despite valuable insights gained from simple 2D and more complex 3D 
culture experiments. However, these culture methods often lack key 
tissue features such as perfusion, mechanical stretching, and the 
necessary cell-cell crosstalk between the multiple cell types present in 

S. Koornneef et al.                                                                                                                                                                                                                              Environmental Research 285 (2025) 122289 

9 



native lung or skin tissue. We propose to bridge these knowledge gaps in 
studies on adverse health effects of air pollution by utilizing skin and 
lung OoC models. OoC platforms can integrate lung or skin cells, tissue 
models or patient-derived tissues with critical cues such as flow and 
mechanical stretching, enhancing the (patho)physiological relevance of 
the models. By incorporating sensors, the culture conditions can be 
further optimized, and cellular responses can be monitored in real-time, 
providing a more comprehensive understanding of pollution’s impact.

Studies investigating the health effects of air pollution typically 
expose cells via the culture medium, whereas in reality, both the skin 
and lungs are exposed to air. PM exposures can be simulated using 
nebulization systems, whereas gaseous exposures can be replicated 
using gas chambers. These exposure systems can also be integrated into 
OoC platforms. By using realistic dosages, combinations of stressors, and 
mimicking long-term and/or repeated exposures, the field could prog
ress towards more physiological models of air pollution exposure.
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