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Confirmatory Factor Analysis as a Biomechanical
Tool: A Novel Approach to Investigating Different
Fatigue Aspects in Baseball Pitching

Thomas van Hogerwou
Delft University of Technology

Abstract—BACKGROUND: Rising UCL injury rates at both
amateur and professional levels have been linked to fatigue
in baseball pitchers. Repeated pitching has been associated
with changes to Kkinematics, kinetics, and perceived fatigue,
but no statistical model exists which incorporates all the most
common aspects of fatigue into one framework. Confirmatory
factor analysis (CFA) can be used to investigate possible fatigue
frameworks and their plausibility in explaining the multivariate
nature of observed changes occurring with repeated pitching.
AIM: To investigate how multiple fatigue manifestations could be
associated with a shared factor in baseball pitching. METHOD:
Two CFA models were proposed; one a priori model based solely
on previous findings and literature linking commonly found vari-
ables which change with repeated pitching, and one a posteriori
model with added correlation factors between maximum external
shoulder rotation (MER) with perceived fatigue and MER with
triceps EMG activity. RESULTS: Model fitness test performed
on the first a priori model proved plausible, with it passing
some of the tests but failing others. The a posteriori model
showed to be an excellent model for explaining the covariance
of the data, passing all model fitness tests. CONCLUSIONS:
Confirmatory factor analysis can serve to provide a plausible
framework for explaining the covariance measured in kinematic,
kinetic, and other fatigue related changes to baseball pitching
data. Both models would suggest that the shared latent variable
represents an underlying aspect of physiological fatigue. Changes
to MER were determined to not be directly caused by fatigue.
A proper understanding of different fatigue manifestations can
potentially reduce the amount of fatigue related UCL injuries
plaguing baseball pitchers by providing a more accurate proxy
for measuring physiological fatigue.

Index Terms—TFatigue, Baseball, Pitching, Confirmatory factor
analysis, UCL, Injury

PREFACE

This study serves as a follow-up to a previous study titled
Potential Injury Mechanisms In UCL Injuries; The Influence
Of Repetitive Pitching On Within-individual Elbow Load Mag-
nitude And Variability And Elbow Muscle Activation During
Baseball Pitching[1]. In that study we have investigated the
effects of repeated pitching on kinematics, kinetics, and elbow
muscle activation during baseball pitching. We found that
while there is little change to elbow valgus torque at a group
level, there is a group level decrease in elbow muscle acti-
vation and an increase in self perceived fatigue with repeated
pitching. This led to the question of whether these changes we
observed were due to the accumulation of fatigue during the
extended bout. The following study uses data obtained during

the previous research to address this gap in knowledge, and to
propose a new way of researching fatigue in baseball pitchers.

I. INTRODUCTION

Through 2011 and 2016, baseball pitchers accounted for
39.1% of all injuries at major and minor league levels [2].
Their over-representation on the disabled list can be attributed
to the high loading experienced on the throwing arm while
pitching [3], as well as the increased workload a pitcher un-
dergoes relative to other players on the field. One of the most
impactful injuries a pitcher can sustain is an ulnar collateral
ligament (UCL) rupture, occurring in 16% of professional
pitchers [4]. While the chances of a complete recovery from
ulnar collateral ligament reconstruction are estimated to be
between 67 % and 90 % [5], a rehabilitation period of 12 to
15 months is often necessary for pitchers [6].

UCL injuries are becoming more common across both
professional and amateur levels of play. A cross-sectional
study performed by Leland et al.[7] found a significant rise
in the occurrence of UCL injuries at both the MLLB and MiLB
levels of professional play from 2012 to 2018. Furthermore,
between 2003 and 2014, an increase of 343% in the number
of UCL repair surgeries was observed, with a disproportionate
percentage of this growth belonging to youth pitchers (15 —
19 years old) [8].

A possible cause for the rise in UCL injury rates is fatigue.
Several epidemiological studies have been performed which
highlighted the association between fatigue and injuries in
youth [9] and high school players [10], finding that increased
fatigue is associated with increase UCL injury rates. Most
youth baseball pitchers experience arm muscular fatigue and
arm pain during regular play, and are even encouraged to
continue playing through it [9]. In this case, fatigue is defined
as the physical and mental weariness resulting from repeated
pitching, which eventually results in an a deterioration in
performance or inability to continue pitching with the same
level of intensity.

Two of the typical aspects of fatigue seen in baseball
pitchers are perceived fatigue and physiological fatigue. Per-
ceived fatigue describes the self reported perceived difficulty
of performing a task. It can be experienced as as a sense
of tiredness, lack of energy, or feeling of exhaustion. It
differs from physiological fatigue in which the focus is on
the muscle and it’s ability to generate and maintain force



[11], instead focusing on how the subject experiences their
perceived difficulty performing a task. Physiological fatigue
can be split into contributions based on their position along the
neuromuscular chain. Neurological aspects which include the
cortex and spinal cord are also known as central fatigue, while
the processes distal to the spinal cord are called peripheral
fatigue. The peripheral processes include contributions from
the peripheral nerve, the neuromuscular junction, and the
crossbridge functionality itself [12]. Repeated muscle activa-
tion reduces the effectiveness of future muscle activation by
acting on crossbridge functionality and Ca®* release, and is
considered muscular fatigue.

A systematic review regarding the manifestations of fatigue
in baseball pitchers performed by Birfer and Sonne[13] found
that kinematic changes due to fatigue occurred even at the
highest level of play. Murray et al. observed a decrease in
maximum external rotation of the shoulder during pitching,
while Erikson et al. observed an increase in shoulder external
range of motion post pitching. While investigating the effects
of extended pitching bouts on elbow loading and elbow muscle
activity, we found that repeated pitching is associated with
both a decrease in elbow muscle activity, and an increase in
self-reported fatigue [1]. Together, these findings suggest that
pitchers experience multiple of the typical aspects of fatigue.
The increase in self-reported fatigue we observed indicates that
pitchers experience perceived fatigue, while the kinematic and
muscle activation changes summarized by Birfer et al. and our
research suggest an increase in physiological fatigue.

A proposed method for researching multiple aspects of
fatigue is the use of a confirmatory factor analysis (CFA),
sometimes referred to as a common factor model. CFAs are
a form of structural equation modelling stemming from the
psychology field that allow for the analysis of latent variables
by measuring multivariate data present in observed variables.
The latent variables represent immeasurable constructs which
act as a common factor shared between the observed variables.
The observed variables are assumed to be influenced by the
latent variable, and as such are assumed to covary together
with changes to the latent variable.

An example of a CFA used in the diagnosis of major
depression can be seen in Figure 1. CFA models typically
represent latent variables as ellipses, observed variables as
rectangles, and factors such as correlations connecting two
variables as directional arrows, where arrow direction implies
a cause-effect relationship. In the example CFA, the observed
variables such as depressed mood and loss of interest are
measured or determined by experts. The covariance matrix
of the observed variables can then be analysed to determine
whether the variance could be attributed to a shared common
factor “major depression”.

A hypothesized similar model could be constructed which
describes the multifaceted relationship between fatigue and the
multiple manifestations thereof in baseball pitching. Such a
model would allow for investigating which of the typically
reported manifestations of pitching fatigue could share a
common latent change, and which manifestations appear to
develop independently. A better understanding of how differ-
ent fatigue manifestations develop in baseball pitchers could

Major depression

Fig. 1: An example of a confirmatory factor analysis used
in the diagnosis of major depression. Arrows point in the
direction of influence, indicating that the latent variable "Major
Depression” causes the covariance measured in the observed
variables [14].

play an important role in identifying which fatigue aspects
influence UCL injury risk. Therefore, the aim of this study
is to investigate how multiple fatigue manifestations could be
associated with a shared factor in baseball pitching.

II. METHODOLOGY

Kinematics, self reported fatigue, and EMG data were
collected as part of a previous study investigating the effect
of repeated pitching on elbow valgus torque and arm muscle
activity [1]. The sections Participants, Procedure, and Data
acquisition describe characteristics of the data set and brief
descriptions of how the data were acquired. The section Ad-
ditional data processing describes additional data processing
steps taken as part of this study.

Farticipants

All tested participants were male baseball pitchers with
no recent (past 6 months) injuries and no history of elbow
surgery. Data were collected and shared in accordance with
the Declaration of Helsinki and was approved by the Ethics
Committee of the Delft University of Technology (HREC).
Participants were informed of the procedure before the start
of the data collections. Informed consent was obtained before
the involvement of the study. Table I gives an overview of
participant demographic data.

Demographic Mean Standard Dev. Range

Age [years] 24.5 7.5 17 - 44
Weight [kg] 79.4 9.2 62.7 - 102.5
Height [cm] 191 5 183 - 199
Level [1 = highest] 4.1 2 1-8

TABLE I: Participant demographics. N = 13

Procedure

Fourteen reflective markers were placed on the anatomical
bony landmarks as described in Appendix A, Section Data
analysis. EMG electrodes were affixed on the shaved skin
of the throwing arm, and an accelerometer was attached to
the thorax near the incisura jugularis. Maximum voluntary
contractions were performed prior to pitching. After their
normal warm-up, pitchers were asked to throw maximal effort



fastballs in blocks of 10 pitches at a regulation distance (18.44
m) and strike zone, simulating a game environment. After each
block of 10 pitches, participants were asked to place a mark
on a VAS scale indicating how fatigued they felt. The VAS
scale ranged from totally not fatigued (0%) to as fatigued
as possible (100%). Pitchers threw until either 110 pitches
were thrown, or a VAS score of 80 was reached as further
fatiguing the subjects was seen as dangerous (max pitch count
:p=85,0==+18 R =[60— 110)).

Data acquisition and processing

All data processing was performed in Python [15]. The
inverse dynamic model and EMG analysis software is available
at https://github.com/ThomasBTHL/BTHL_public.

Kinematics: Marker trajectories were recorded with a
twelve-camera Optitrack motion capture system [16] with
a sampling frequency of 120 Hz. The Optitrack system
was calibrated to define camera position and orientation,
and to construct a global coordinate system. A right-handed
global coordinate system consisted of an Xgiobai, YGioba: and
ZGiobal aXis. The Zgiopa axis pointed upwards, the Yaioval
axis was directed forward, from the pitching mound towards
the strike zone, and the Xgjopq; axis was perpendicular to the
Yciobar and Zgiobar axis.

Shoulder angles were determined following an intrinsic
Yiocal = Xiocai = Yiocal decomposition order [17]. External
rotation was defined as the first rotation about the local y-axis.
Maximum external rotation (MER) was taken at the moment
the shoulder was most externally rotated during the pitch.

EMG: Muscle activity was measured using bipolar surface
Electromyography (EMG) using a plux system with a sam-
pling frequency of 1000 Hz. The flexor pronator mass (FPM),
biceps brachii (BIC), and triceps brachii (TRI) were measured
using electrodes placed based on SENIAM guidelines [18].

Biceps, triceps, and FPM EMG data were analysed ac-
cording to guidelines established in the European Recom-
mendations for Surface ElectroMyoGraphy [19]. Data were
first rectified, then filtered with a low-pass 20Hz 2nd order
bi-directional Butterworth filter. The MVC EMG value was
determined by taking the peak value from a 0.2s rolling mean
window applied over the MVC contraction data. This value
was then used to normalise trial data for each muscle.

Due to their role in shielding the UCL during the acceler-
ation phase, muscle activity of the biceps, triceps, and flexor
pronator mass was analysed over the whole phase. In order
to represent muscle activity during the whole acceleration
phase, the area under the curve (AUC) of the EMG signal
was calculated for each muscle. The AUC was defined as the
integral of the pre-processed EMG signal from foot contact
(approximated as 0.1s before ball release) until ball release.

Additional data processing

It was chosen to take any changes measured in the observed
variables between the first pitches thrown in an unfatigued
state, and the last pitches thrown once fully fatigued as the
input for the CFA models. To ensure the most fatigued pitches
were used for the analysis, the average values for the observed

variables were taken over a five-pitch window, as it was
assumed that the small amount of rest given between pitching
blocks would allow for a slight amount of recovery. Taking
the last five pitches of the last pitching block ensured that the
most fatigued pitches were used in the analysis. The average
values measured during the first five pitches were taken to
represent an unfatigued state. For any set of pitches with max
pitch count N, the input variables (OBS) therefore adhered to
the following definition:

. OBSy_i <= OBS,
5 ; 5

i=1 7j=1

AOBS =

(1

CFA models

Two CFA models were constructed for this study. An a
priori CFA model was hypothesized to explain the covariance
seen during pitching fatigue based on previously identified
factors relating repeated pitching to changes in observed
variables. After initial results of the first fatigue model were
obtained, an a posteriori model was constructed based on
recommended respecifications.

Model 1: pitching fatigue model: The pitching fatigue
model (Figure 2) included the observed variables: AVAS,
AMER, ATRI, ABIC, and AFPM. AVAS was included
in the model to represent the change in perceived fatigue,
while the other observed variables were included in order to
capture physiological fatigue. Only direct correlations between
the latent shared variable and the observed variables were
included in the model. Residual error terms were included
for all observed variables. The correlation between the shared
variable and AVAS was fixed to 1. The choice to set the
nonstandardized correlation of AVAS to 1 determined the
scale of the model so that nonstandardized model results could
be more easily interpreted.

Model 2: adapted pitching fatigue model: The adapted
pitching fatigue model was constructed after analysis of the
first models’ residual covariance matrix (Table III), model-fit
tests, and proposed modification indices. The model (Figure 3)
includes all the factors of the first model, but with additional
correlation factors between AMER with AVAS and AMER
with ATRI EMG. These additional factors were added after
initial observation of Model 1 results, where a low CFI
and high SRMR score indicated that covariance between the
observed variables was reducing model fitness.

Statistical analysis

The observed variables were tested for normality using a
visual inspection and Shaprio-Wilk normality test in R. A P-
value larger than 0.05 was held as a threshold to indicate a
normally distributed variable.

Model analyses were performed in the structural equa-
tion modelling tool Mplus [20]. An MLR (robust maximum
likelihood) estimator was used due to its ability to handle
non-normally distributed data. The model ran until either the
convergence criterion (5.0x107?) was met, or 20 random starts
failed to do so within 1000 iterations. Standardized model



AVAS  ABIC  ATRI AFPM  AMER M SD w P-Value
Self Reported Fatigue on a Visual Analog Scale (AVAS) 458.1 51.20 2227 0.957 0.706
Biceps EMG AUC (ABIC) -0.153  0.001 -0.002  0.031 0.886 0.085
Triceps EMG AUC (ATRI) -0.113  0.001 0.005 -0.037  0.070 0.835 0.018*
Flexor Pronator Mass EMG AUC (AFPM) -0.265  0.001 0.001 0.002 0.006  0.047 0.932 0.366
Maximum External Rotation (AMER) -1004  0.004 0.335 0.045 197.224  -4.126 14.62 0.721 9E-4*

TABLE II: Covariance matrix of the dataset used by the CFA models. Normality testing threshold of 0.05 showed two sources

of non-normal data (*).

results and their standard deviations were estimated for all
parameters.

The following model-fit information was estimated for all
models following guidelines established by Kline and Rex in
Principles and Practice of Structural Equation Modelling [21]:

o 2 Test of Model Fit

o Steiger-Lind Root Mean Square Error of Approximation

(RMSEA)

« Bentler Comparative Fit Index (CFI)

o Standardized root mean square residual (SRMR)

Four model-fit tests were performed to determine whether
the proposed models were plausible explanations for the
multivariate data. An exact-fit test checked P-Values from the
x? test together with the lower bound from RMSEA testing to
determine if the model could be an exact fit for the measured
data. A less demanding close-fit test checked RMSEA P-
Values to determine if the total error of fit could be less than
5%. The upper bound of the RMSEA 90% confidence interval
was checked to see whether the poor-fit hypothesis could be
rejected, and a goodness-of-fit test checked the SRMR to
determine how much residual covariance was not explained
by the proposed model. Individually none of these model-fit
tests can determine the plausibility of a model, but together
they can give insight into model performance. Passing none
of the four tests would indicate a poorly performing model
which does not do a sufficient job at modelling the multivariate
data, while passing all four could indicate a very good model.
Passing just some of the model fit tests can still indicate a
plausible model, as some of the tests can be quite strict and
only serve to strength model plausibility.

III. RESULTS
Data Descriptives

The covariance matrix of the dataset, along with means,
standard deviations, and the results of normality testing can
be found in Table II. Normality testing results from the
visual inspection and the Shapiro-Wilk test showed that the
AMER and ATRI variables failed to show normal distribution,
and thus a more robust maximum likelihood estimator was
required.

Model 1: pitching fatigue model (Figure 2)

All variables correlated highly with their preassigned factors
with the exception of an insignificant correlation (-0.18) for
AMER.

It was inconclusive if the model could be deemed a plausible
framework for explaining the covariance of the measurements,

as the model passed the exact-fit test (p,, > 0.05 and e, = 0)
and the close-fit test (p.<o.05 > 0.05). However, approximate
fit indexes (Table V) indicate a mixed picture. The value
of SRMR (0.092) is close to passing the goodness-of-fit
test threshold of 0.8, but the upper bound of the RMSEA
90% confidence interval of 0.431 is so high that the poor-fit
hypothesis can not be rejected. The CFI of .772 could indicate
that high co-variances between the observed variables could
be responsible for lower model fitness scores, as covariance
between observed variables can decrease CFI scores if the
covariance can not be associated to the latent variable [21].

Model 2: adapted pitching fatigue model (Figure 3)

The a posteriori pitching fatigue model with added corre-
lations between AMER with AVAS, and AMER with ATRI
showed to be a plausible model for explaining the covariance
of the data. It passed both the previously passed tests: the
exact-fit test (p, > 0.05 and erp = 0) and the close-
fit test (pe<o.05 > 0.05), as well as the two previously
failed tests: the poor-fit test (eyp < 0.1) and the goodness-
of-fit test (SRMR < 0.08). The previously already weak
correlation determined between the latent Fatigue variable and
AMER correlated even weaker in the adapted model (-0.044).
However the two newly added correlations between AMER
with AVAS (-0.366), and AMER with ATRI (0.394) showed
to be of moderate strength.

Model Fit Statistics

Model fit statistics for both models are summarized in
Table V. While both models could be seen as plausible
frameworks to explain the covariation of fatigue aspects in
baseball pitching, having both passed some model-fit tests, the
adapted pitching fatigue model showed a better global fit to
the measured data. Residual covariance Tables III and IV show
that after addition of the additional factors, the high residual
covariances seen with AMER were reduced in the adapted
model. This can further be seen in the reduction of SRMR and
increase in CFI seen when comparing the two model fitness
tests.

IV. DISCUSSION
Model interpretation

The first confirmatory factor analysis model was constructed
using only observed changes that occurred with repeated
pitching. It served to cross validate previous findings which
suggested that the latent cause of observed kinematic / EMG
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0.337(272)
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Fig. 2: Model 1: The pitching fatigue model. Standardized
parameter estimates are shown for each unknown factor along
with their corresponding standard deviations (between paren-
thesis). Standardized parameter estimates range between fully
negatively correlated (-1) and fully correlated (1).

Notes: x? = 6.33, DoF = 5, P-Value = 0.2754

AVAS €— 0.887(183)

0337 (272)
AFPM  |€— 0.454(308)

-0.739 (209)

-0.366 (138)
Shared Factor -0.729 (200} ABIC  |€— 0471(292)
-0.429 (178)
ATRI  |€— 0816(153)
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SN 0.394(210)

ﬁ AMER <— 0.998(011)

Fig. 3: Model 2: the adapted pitching fatigue model. Standard-
ized parameter estimates are shown for each unknown factor
along with their corresponding standard deviations (between
parenthesis). Standardized parameter estimates range between
fully negatively correlated (-1) and fully correlated (1).

x? = 0.252, DoF = 3, P-Value = 0.9687

changes were in fact due to a shared factor. Model fit testing
could not conclude whether it was a plausible model for
explaining the covariance of measured variables, as it failed
to pass all applied model fit tests. However, passing both the
exact-fit and the close-fit tests would indicate that the models’
plausibility should not be rejected. The model indicated a
range of latent factor correlations ranging from weak negative
correlations with AMER (-0.181) to strong negative correla-

AVAS ABIC ATRI AFPM AMER
AVAS 0
ABIC 0.03 0
ATRI 0.347 0 0
AFPM -0.022 0.046 -0.06 0
AMER -1.568 -1.014 0.696 -1.211 0

TABLE III: Residual covariance matrix of the pitching fatigue
model. High residuals are seen between AMER with AVAS,
and AMER with the three EMG variables.

AVAS ABIC ATRI AFPM AMER
AVAS 0
ABIC 0.021 0
ATRI 0.272 0 0
AFPM -0.121 0 0.06 0
AMER 0.171 -0.21 -0.067 0.707 -0.035

TABLE IV: Residual covariance matrix of the adapted pitching
fatigue model. Previously high residuals have been reduced
with the introduction of additional factors.

tions with AFPM (-0.754) and ABIC (-0.689).

The inclusion of the additional correlation factors in the
adapted model resulted in a large decrease in the measured
correlation between the shared factor and AMER, and a slight
increase in correlation with the other observed variables. This
would suggest that the weak correlation previously present
between the shared factor and AMER is no longer estimated
via a direct correlation. Instead the variance in AMER can be
achieved using the newly added correlation factors. Allowing
for AMER to be associated with these other variables has
“freed up” the latent variable to better correlate with the
remaining observed variables, hence the higher correlations
with the remaining factors.

The weak correlation between the shared factor and AMER
highlight an ongoing topic in baseball fatigue research. Many
studies have attempted to find kinematic and kinetic changes
occurring in baseball pitchers with fatigue; oftentimes finding
inconclusive or little changes occurring [22][23]. AMER was
included in the model based on findings by Murray et al. who
found a change of -9°in MER among major league pitchers
during the course of a normal game [24]. Many other studies
investigating fatigue related kinematic changes have failed to
measure such a significant change to MER [13], suggesting
that the relationship between fatigue and changes to MER may
be weak or non-existent.

It is possible that the changes in MER observed by Murray
et al. were not in fact caused by a rise in fatigue, and
instead were caused by a different source. The other fatigue
studies highlighted by Birfer’s review [13] performed their
data collections in laboratory environments and on lower level
athletes (Table VI), where real game pitching situations do not
arise. These studies all failed to confirm the changes to MER
that Murray observed, suggesting that the changes in MER
observed by Murray et al. were in fact not due to fatigue, but
may have been caused by changes to the game state which
called for a change in pitch delivery. Confirmatory factor
analysis might prove useful in isolating fatigue from other



Model ‘ x2 Test of Model Fit ‘ RMSEA ‘ CFI ‘ x2 Test of Baseline Model Fit ‘ SRMR
Value DoF  P-Value Estimate  90% CI P-RMSEA <= .05 Value DoF  P-Value Value
P. Fatigue 6.330 5 0.2754 0.143 [0, 0.431] 0.294 0.772 15.837 10 0.1044 0.092
Adapted P. Fatigue | 0.252 3 0.9687 0 [0, 0] 0.970 1 15.837 10 0.1044 0.021

TABLE V: Model fit statistics of the two models. DoF: Degrees of freedom. CI: Confidence interval

such sources of kinematic change in real game situations.

Despite the lack of conclusive kinematic changes observed
in baseball pitchers, it may be possible that there is still
physiological fatigue occurring. The strong correlations found
between the shared factor and the various included EMG
sources suggest that even in what appear to be constant
kinematics, there are muscle activation changes occurring.
These changes suggest an increase in an underlying fatigue
mechanism which acts as a precursor to the kinematic changes
associated with extreme physiological fatigue. Further analysis
utilizing oxygen uptake (V' Oz) measurements could support
the theory that physiological fatigue is occurring with repeated
pitching, but has yet to effect pitching kinematics. Proper un-
derstanding of the development of this pre-kinematic-change
physiological fatigue could help determine safe pitching limits
and rehabilitation periods for pitchers and coaches.

The muscle activation changes could also be significant in
altering the internal load distribution at the ligament level,
without altering segment kinematics. Within the context of
UCL loading in baseball pitchers, this could mean that previ-
ous studies have concluded that there are no kinematic, and
therefore no kinetic, changes occurring in the elbow due to
fatigue. These studies then wrongfully conclude that there is
no change in loading to the UCL. However, the strong negative
correlations between the shared factor and arm muscle EMG
suggest otherwise. As fatigue increase and arm muscle activity
decreases, the UCL may be subjected to higher loads as the
effect of stress shielding by the muscles is diminished. The
constant kinematics and reduced stress shielding effect could
result in increased UCL loading with increased fatigue.

Model selection

The inclusion of the additional correlations factors in the
adapted model served to improve the model fit substantially.
The decrease in SRMR value from 0.092 to 0.021 indicates
that there is very little residual covariance which the adapted
model does not describe. Additionally, the RMSEA 90 %
confidence interval upper bound of 0 would suggest a very
close fit to the multivariate data. Thus, the adapted model
can therefore be declared a excellent model for explaining the
covariance seen in the data set. However, with the inclusion of
additional correlation factors in the adapted model, overfitting
may be an issue.

The additional factors added to the adapted model were
based on modification indices which represent the amount a
x? test value would improve if an additional factor were to be
added to a model. It follows that adding respecifications which
have high modification indices will create a better model fit
for a particular data set. However, the proposed modifications
may only serve to improve the model fit so significantly for

the exact data set they were calculated with. If the first model
had been tested with a different data set, then it is likely that
entirely different respecifications would have been suggested.
The original hypothesized model already did a good job
of explaining the covariance of the data set, while still being
entirely based on theorized fatigue aspects and associations.
The SRMR value of 0.092 only slightly exceeded the desired
threshold of 0.08, indicating that the original model, while
technically failing the goodness-of-fit test, still accounted for
more than 90% of the measured covariance. To avoid the issue
of using an overfit model with unexplained factors, future
studies should move forward and build upon the original pitch-
ing fatigue model. Additional hypothesized fatigue aspects
such as performance fatigue or psychological fatigue could be
included to further improve the model, and help identify the
most critical aspects of fatigue relevant to baseball pitching.

Limitations and recommendations

Previous studies have often used self reported fatigue or rate
of perceived fatigue as a proxy measurement for physiologi-
cal fatigue [22][25]. However, the only moderate correlation
between AVAS and the shared factor suggest that it does
not develop together with the physiological factors, and is
therefore an inadequate proxy for physiological fatigue factors.
This is further supported by analyzing the individual VAS
development plots (Figure 4), which show that some subjects
perceive their physiological fatigue very differently from other
subjects. Despite that no single subject exhibited the significant
kinematic changes which come with extreme fatigue, several
subjects reported multiple pitch blocks of high fatigue (VAS
of 60+). A much more accurate representation of the buildup
of physiological fatigue can be derived from the EMG changes
observed among the subjects. Future studies should strive to
incorporate multiple aspects of fatigue into their quantification
of subject physiological fatigue, and should no longer solely
use perceived fatigue as a proxy for physiological fatigue.
As there is a known association between fatigue and injury
likelihood, it remains unethical to fully fatigue subjects to
the point of kinematic changes. Future studies can use V Os
analysis to validate the buildup of neurological fatigue as a
proxy for physiological fatigue.

A large limitation of this CFA study is the limited sample
size of our obtained data. Complete data was only available for
13 subjects. In relation to other fatigue studies performed on
baseball pitchers (Table VI), 13 pitchers is adequate. However,
CFA guidelines suggest a recommended sample size of 250
to 300 observations [21]. A smaller sample size is much
more heavily influenced by outliers, and may not be a true
representation of a general population. Confirmatory factor
analysis as a statistical tool is often used in social fields
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Fig. 4: VAS development per pitch block. Subjects were asked
after each block of 10 pitches to place a mark on the VAS
scale ranging from totally not fatigued (0%) to as fatigued as
possible (100%)

such as psychology where observations are easily obtained
via questionnaire. Until recently, biomechanical data has been
much more difficult to obtain, and has made such sample
sizes impossible. With the rise of markerless motion capture
technology and wearable EMG markers, quality biomechanical
data has become more obtainable. Future studies which use
CFA as a tool to analyse fatigue should consider the use of
such developing technologies in order to obtain a more desir-
able sample size, and improve the quality of their findings.

Study Sample Population Sample Size
Escamilla et al. (2007) [22] Collegiate 10

Murray et al. (2001) [24] Major league 7

Erickson et al. (2016) [26] Adolescent 28
Mullaney et al. (2005) [27] University 13

Keeley, Barber & Oliver (2010) [28] Collegiate 10

Chou et al. (2015) [29] High School 16

Oliver and Plummer (2009) [30] High School 14

Oliver, Weimar & Henning (2016) [31]  Youth 23

van Trigt & van Hogerwou (2022) [1]  Collegiate 13

TABLE VI: Various studies investigating the effect of fatigue
on baseball pitchers.

A possible bias exists in both of the proposed models. Of the
five observed variables used in the construction of the models,
three are from EMG sources. The relative over representation
of EMG sources may bias the model towards measuring the
shared covariance of a latent neurological variable instead of
a general fatigue variable. This possible bias can be addressed
with the inclusion of other aspects of fatigue seen in baseball
pitchers. One of the most interesting aspects of fatigue not
included in the two proposed models is performance fatigue.
Much work has been done investigating the effect of fatigue on
performance indicators such as ball velocity or strike percent-
age. However, as we were unable to conclude any significant
change to ball velocity in the previous study, it was chosen
to not be included in the two proposed models. Previous

studies [28][24][26] have found a reduction in ball velocity
with repeated pitching, and the inclusion of such factors would
help address the issue of bias. Future research could use CFA
to provide the framework necessary for determining whether
performance changes observed in extended bouts are in fact
due to fatigue, or if they are caused by some other latent
variable such as ’game state”.

V. CONCLUSION

Confirmatory factor analysis can identify suitable frame-
works for measuring the multivariate nature of fatigue in
baseball pitchers. It can provide plausible models which in-
corporate multiple aspects of fatigue, and it can help identify
which aspects do not develop simultaneously. With the incor-
poration of additional fatigue aspects such as performance,
psychological, or muscular fatigue, an even better represen-
tation of pitching fatigue can be achieved. Future research
should avoid using VAS or other measures of perceived fatigue
as a proxy for physiological fatigue, and should instead attempt
to incorporate aspects such as neurological fatigue in their
analysis.

The hypothesized a priori pitching fatigue model was a
plausible fit to the data set, and can function as an example on
how to incorporate multiple aspects of fatigue into an analysis.
With the addition of two respecifications, the a posteriori
adapted pitching fatigue model was capable of fitting the data
excellently, but the original model may be preferred due to the
fact that it is constructed using only theorized associations with
fatigue. Both models would suggest that the shared factor at
the center of the CFA models represents an underlying aspect
of physiological fatigue.

Changes to MER were determined to not be directly caused
by fatigue. Previous findings which reported on fatigue related
changes to MER may have misinterpreted the sources of
measured changes. The effect of another latent variable such
as “game state” could be influencing measured kinematics in
real game situations, and would be an interesting topic for
continued CFA studies.

The strong association between fatigue and arm muscle
activity indicates that while kinematics may remain consistent
throughout extended pitching bouts, there is still a chance of
increased UCL load due to a reduced effect of stress shielding
during the acceleration phase of the pitch. A proper under-
standing of different fatigue manifestations can potentially
reduce the amount of fatigue related UCL injuries plaguing
baseball pitchers.
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