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Federated Learning Under Attack: Exposing
Vulnerabilities Through Data Poisoning
Attacks in Computer Networks

Ehsan Nowroozi
Rahim Taheri

Abstract—Federated Learning is an approach that enables
multiple devices to collectively train a shared model without
sharing raw data, thereby preserving data privacy. However, fed-
erated learning systems are vulnerable to data-poisoning attacks
during the training and updating stages. Three data-poisoning
attacks—Ilabel flipping, feature poisoning, and VagueGAN—are
tested on FL models across one out of ten clients using the CIC
and UNSW datasets. For label flipping, we randomly modify
labels of benign data; for feature poisoning, we alter highly
influential features identified by the Random Forest technique;
and for VagueGAN, we generate adversarial examples using
Generative Adversarial Networks. Adversarial samples constitute
a small portion of each dataset. In this study, we vary the
percentages by which adversaries can modify datasets to observe
their impact on the Client and Server sides. Experimental
findings indicate that label flipping and VagueGAN attacks
do not significantly affect server accuracy, as they are easily
detectable by the Server. In contrast, feature poisoning attacks
subtly undermine model performance while maintaining high
accuracy and attack success rates, highlighting their subtlety and
effectiveness. Therefore, feature poisoning attacks manipulate the
server without causing a significant decrease in model accuracy,
underscoring the vulnerability of federated learning systems
to such sophisticated attacks. To mitigate these vulnerabilities,
we explore a recent defensive approach known as Random
Deep Feature Selection, which randomizes server features with
varying sizes (e.g., 50 and 400) during training. This strategy has
proven highly effective in minimizing the impact of such attacks,
particularly on feature poisoning.
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I. INTRODUCTION

N THIS modern era of technology, in which other scientific

disciplines are advancing swiftly, Federated learning (FL)
is also keeping pace and progressing rapidly. FL is a form of
machine learning (ML) that enables the training of a model
using data from data sources without centralizing the data.
Unlike conventional methods, which involve relaying data to
a central server, FL performs the learning process directly on
each device individually. Local data is employed to update the
local models, and these updates are then combined to create a
unified global model on the server. This decentralized method
not only maintains data confidentiality but also facilitates the
interaction and sharing of information across devices. FL has
the potential to be highly effective in areas such as mobile and
IoT devices, where data privacy is vital [1], [2].

FL has demonstrated significant potential in Intrusion
Detection Systems (IDSs). Within this framework, participat-
ing devices, including phones and desktop computers, pool
their individual intrusion detection models to construct a
global model while simultaneously ensuring the confidentiality
of their sensitive data [3], [4], [5]. By facilitating interactive
model training while maintaining data decentralization and
security on individual devices, FL-based IDS presents a
desirable framework [6], [7]. Nevertheless, similar to other
ML models, FL-based IDS models are vulnerable to adver-
sarial attacks, such as poisoning attacks, in which malevolent
data is injected during training to influence the behavior of
the model. These attacks have the potential to compromise
the detection systems and bring significant security risks.
Consequently, it is essential to provide defense systems against
such attacks [8], [9], [10].

The objective of this study is to investigate the effectiveness
of data poisoning attacks in the computer network realm, as
they are simple to set up, yet challenging to detect. Label flip-
ping (LF), feature poisoning (FP), and a novel attack technique
against FL called VagueGAN, and use a unique technique to
apply them. In LF, we randomly altered the labels of benign
data before training the model on the altered data. For FP,
we randomly altered the highly contributing features identified
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using the Random Forest method. For VagueGAN, an adver-
sary simply executes a data-poisoning attack by employing a
Generative Adversarial Network (GAN). This study used com-
puter network datasets from the CIC and UNSW. However, the
use of FL in cybersecurity, particularly with realistic datasets,
such as CIC [11] and UNSW [12], is underexplored. These
datasets contain a variety of characteristics and forms of
attacks that mimic real-world settings, providing the oppor-
tunity to investigate the effects of data-poisoning attacks in
a federated setting. Besides, they closely mimic actual oper-
ational networks, simulating authentic network environments
with a wide range of applications, real user behaviors, and a
wide variety of normal and malicious activities. To make the
FL experimental setup sufficiently realistic, we considered 10
clients and applied the attacks to only one client. We generated
adversarial samples using the two aforementioned methods,
which were applied to a small percentage of the datasets.
Next, we trained and evaluated the accuracy of the model
on adversarial datasets. We report the results for both benign
and manipulated datasets and find significant differences in
the accuracy of the models across the datasets. The results of
the study clearly revealed that the LF attack failed; however,
the FP attack achieved successful outcomes, demonstrating its
importance in deceiving a server.

The implementation code for this study is available at [13],
and the RDFS methodology is available on [14].

A. Contributions

The following points highlight the contributions of this

study:

o This study presents an innovative approach for perform-
ing data-poisoning attacks in the realm of computer
networks, focusing on the impacts of three types of
data-poisoning attacks: LF, FP, and VagueGAN. The
implementation of an FP attack is novel, using the
Random Forest method to locate and change highly
contributing features that affect a classifier’s decision.
This targeted strategy improves our understanding of how
such attacks affect the FL models.

e This study utilizes two well-known datasets, CIC and
UNSW, both of which are highly relevant in computer
networks. Experimentation with these datasets provides
significant insights into the limitations of FL. models.The
originality lies in the choice and combination of these
specific datasets for training and testing neural networks
(NNs) in the context of data poisoning attacks, which
leads to more realistic and practical findings.

o The FL setup with ten clients and a server explores how
data poisoning threats affect the server’s accuracy. By
attacking one client, the study reveals the FL framework’s
weaknesses and mitigations. The novelty here lies in the
analysis of the impact of the attack on the FL system’s
performance and the resilience of the model.

e In our investigation, we recorded the server accuracy
and Attack Success Rate (ASR) across varied poisoning
scenarios for both datasets. Our findings underscore the
effectiveness of data poisoning attacks when implemented

at different percentages, revealing their impact on the
accuracy of the server. Moreover, recording losses for
clients under different poisoning scenarios reveals the
effects of these attacks.

e Develop a novel technique of Random Deep Feature
Selection (RDFS) to enhance server security against FP
attacks. This method demonstrates significant enhance-
ments in model robustness and resilience to poisoning
attacks across several datasets. The research study indi-
cates that when the RDFS method is employed on the
server, the ASR falls considerably when feature random
sizes are between 50 and 400, demonstrating that the
model is more robust.

B. Organization

We outline the rest of our paper as follows: In Section II,
we provide an overview of related works that discuss data-
poisoning attacks and defenses using different datasets. In
Section III, we discuss the datasets and the network archi-
tecture of our BAU1 model. This section also includes the
experimental setup and techniques that we applied to per-
form both data-poisoning attacks and RDFS defense strategy.
Section IV presents the results of our experiments performed
under different scenarios. In Section VI we summarize our
study and its limitations.

II. RELATED WORKS

Data poisoning refers to the modification of data by adver-
saries using various types of attacks. This section provides an
in-depth review of existing literature, organizing its contents
into three sections: GAN, LF, and FP.

Label Flipping (LF): The authors in [15], [16], [17], [18],
investigated extensive strategies for FL with a special focus
on applying and tackling the issue of LF. These studies aim
to strengthen FL models against malicious label alterations
by using a mix of label noise assessment and adversarial
training methods. Xu et al. [19], Zeng et al. [20], and
Tsouvalas et al. [21] employed knowledge obtained from
label noise analyses to detect and measure the influence of
contaminated labels on the efficiency of models. These meth-
ods demonstrate subtle and cooperative security mechanisms,
thereby providing a promising path toward minimizing label-
poisoning attacks in federated environments. The development
of defense tactics incorporates the objective of minimizing
both conventional classification loss and a regularization term
to prevent adversarial label modifications [22], [23]. These
studies provide valuable insights into the subtle connection
between label noise, adversarial training, and challenges posed
by federated systems.

Feature Poisoning (FP): LF attacks are mostly concerned
with the manipulation of labels, whereas FP attacks specif-
ically target features present in the data. Several studies
have investigated the vulnerability of FL models to FP.
Raza et al. [24] employed different data poisoning techniques,
including random LF and FP attacks. Furthermore, more
sophisticated forms of data-poisoning attacks, such as GAN
attacks [25], have been employed. In this form of attack, the
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TABLE I
COMPARING PROPOSED METHODS IN THIS PAPER WITH OTHER
RESEARCH, FL (FEDERATED LEANING), D (DEFENCE METHOD), LF
(LABEL FLIPPING), FP (FEATURE POISONING), GAN (GENERATIVE
ADVERSARIAL NETWORK)

Ref. Technique LF FP D GAN
[15]-[17], [30] FL+ LF+ noise assess v - 7 -
[19]-[21] FL+ LF + noise assess v - - -
[22], [23] FL+ LF + minimizing loss v - v -
[24] FL+ LF + FP v v - -
[25] FP + GAN - v - -
[27] FL + FP + AE - v -
[28] FL + FP + contaminate data - v -
[26], [29] FL + LF + PoisonGAN v - - v

Our’s FL + LF + FP + RDFS v v v v

adversary develops data that closely matches the real data
within a collaborative learning setting. However, there are
several constraints to this approach. The attacker must have
prior knowledge of the victim’s data and all members of the
class must exhibit similarity [26]. Another challenging form
of data-poisoning attack employs auto-encoders (AE). AEs are
NNs that replicate input data. These AEs can be exploited by
adversaries to create poisonous samples that can be employed
for training purposes [27]. Nguyen et al. [28] demonstrated
that IDS for the Internet of Things (IoT) based on FL
are vulnerable to backdoor attacks. Their proposed attack
technique demonstrates how malicious actors can deceive the
detection model by utilizing compromised IoT devices to
add small amounts of contaminated data during the training
process without being detected.

Generative Adversarial Networks (GAN): In recent years,
researchers in the field of ML have shown that GANs are
capable of generating pseudo-examples that are effective
in extracting private features and enhancing data poisoning
attacks. This is the first time that a GAN model is proposed
in an article [26] to derive the private features of local
data from GAN-generated pseudo-data. In [29], researchers
recommended that PoisonGAN, a standard GAN model, be
employed to augment standard LF attacks by utilizing a
discriminator that is set by the global model. This model is
specifically employed to increase the size of local datasets
using authentic pseudo-examples.

In Table I, we list and compare our study with prior studies
on FL, for example, the types of attacks, and defenses.

III. METHODOLOGY

In this study, the CIC and UNSW datasets have been chosen
due to their comprehensive and detailed nature, covering
various network traffic types and attack scenarios. Unlike other
datasets such as the NSL-KDD [31], the DARPA 1998 [32],
or those datasets are discussed in [33], which may focus on a
small number of features or simpler attack types, the CIC and
UNSW datasets offer a comprehensive range of features and
include a variety of attack types that correspond to real-world
network scenarios. This wide range provides a more com-
prehensive and realistic evaluation of data-poisoning attacks
on FL. We trained several DL models on these two datasets
separately and captured their accuracy. In this FL setup, we

erver

\ - Client
Client .

Feature Poisoning

Label Flipping

Fig. 1. Illustration of Data Manipulation: A Server and ten Clients. Trained
Client 1 (CL1) on manipulated data with LF, FP, and VagueGAN attacks.
Other Clients (CL2 to CL10) were trained with the original dataset without
any manipulation.

considered ten clients and a server, applying different data-
poisoning attacks, such as LF, FP, and VagueGAN, to only
one client (Clientl, CL1). In DL, an attacker can modify the
training dataset based on their knowledge and information.
According to the existing literature, there are three scenarios
that an adversary can consider to conduct adversarial attacks:
open-box, gray-box, and closed-box attacks. The adversary
possesses perfect knowledge (PK) about the training data and
model in a open-box setting and can generate adversarial
instances for training and modify the model updates. In the
case of a gray-box scenario, the threat actor has limited
knowledge (LK) of the training data and model. The adversary
does not know the internal information of the system in a
closed-box setup, which is a more viable and complex case
than the other scenarios. Consequently, the attacker employs
recurring inquiries to gather such sensitive data. We carry out
this experiment in a open-box scenario, as we have access
to both the data and the model. Additionally, a very simple
illustration of our methodology is given in Figure 1.

A. Threat Model

The threat model in Adversarial Machine Learning typically
involves the attacker’s knowledge, capability, and goal. In our
problem, these are considered as follows:

Attackers Goal: The attacker’s goal is to introduce mali-
cious data during the training phase in order to disrupt the
reliability and precision of the global FL. model.

Attackers Knowledge: The adversary performs in a open-
box scenario, ensuring that they have PK of the training data,
model architecture, and training procedure.

Attackers Capability: An attacker is a causative adversary
who has the capability to modify training data and model
updates by employing innovative methods to subtly alter
significant features, thereby influencing the model’s behavior.

B. Network Architecture

We adopted a single deep-learning model for both clients
and the server. Initially, this same model was utilized for our
server as well. This model comprises an input layer, where
the number of neurons is set to the feature size. The feature
size represents the number of columns in the dataset minus
one, as one column represents the output label and is not part
of the feature columns. The model also contains two hidden
layers: the first hidden layer has 2048 neurons, and the second
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Input Layer Output Layer

2 Neurons

Data

Hidden Layer1 Hidden Layer2
2048 Neurons 1024 Neurons

Fig. 2. Architecture of the Neural Network Model (Known as BAU1).

TABLE II
ATTACK SCENARIOS ON BAU1 NETWORK WITH DIFFERENT DATASETS

Scenarios Dataset Attack Strategy
UNSW E—
N ’E, '14\11 fS]vT/I F UNSW Label Fthlng (LF)
NeAvi-pp UNSW Feature Poisoning (FP)
N g él\;/sclv_v(; AN UNSW Generative Adversarial Network (GAN)

T R |G
CBI%!”_FP CIC Generative Adversarial Ngetwork (GAN)
BAUI-GAN :

hidden layer has 1024 neurons. Additionally, there are two
output neurons in the third hidden layer, corresponding to
the number of output classes. The model includes two acti-
vation functions: the Rectified Linear Unit (ReLU) activation
function, referred to as ReLU1, applied after the first hidden
layer, and ReLU2, applied after the second hidden layer.
The architecture of the neural network model, named BAU1,
can be easily obtained from Figure 2. Furthermore, batch
normalization applies to both hidden layers. Normalization is
performed during pre-processing to help the neural network
become stable and generalize well. A dropout layer with a
probability (self.dropout_p) is included in the NN architecture
to overcome overfitting. The output activation function is the
log softmax function, which computes the natural logarithm
(base e) of softmax probabilities. The cross-entropy loss
function is used in this network, which is commonly employed
for classification problems to compute the loss between the
predicted probability distribution and the true class labels. The
output layer of our model comprises two neurons, with each
neuron representing one of the binary classes: O for the benign
class and 1 for the malicious class.

C. Experimental Setup

To build the model, we consider 838,861 samples for
training, 104,857 for validation, and 104,857 for the test set.
The dataset is divided as follows: 80% of the data for training
and 20% of the data for testing and validation. Furthermore,
we partition the training dataset into ten segments, allocating
one segment to Clientl (CL1), and the other segments to
Clientl (CL1), and the other to Client2 (CL2),..., Client10
(CL10). In Table II, different attack scenarios are presented.
For instance, N BU /Zl\fglwi 1 represents the NN model named
BAU1, which is trained with the UNSW dataset, to which
the LF attack is applied. Similarly, N Bc;{%k pp indicates
that we trained BAU1 with the CIC dataset that is poisoned
using the FP attack. Another important scenario, N gj%l_ LF»
points to the LF attack on the CIC dataset, which is used to
train the BAUI model, whereas N g jlvﬁlv‘i rp denotes the FP

attack on the UNSW dataset that is fed to the BAU1 model
for training. Additionally, we consider the same scenario
for the VagueGAN approach, such as N B%%l—G 4y and
N gévglwi gan- The number of samples in both datasets is
equal, with 1,048,575 examples in each dataset. Most DL
models are designed to accept images as input, which are
usually three-dimensional, whereas the IDS dataset we use is
one-dimensional. Therefore, to make the model feasible, two
additional dimensions were added. After adding these extra
dimensions, the shape of the np array was changed, which was
done for the clients’ training, testing, and validation data. We
develop an NN using PyTorch, a popular Python library. Our
analysis is performed using the hardware specification MSI
GF65. For the NN model, we consider 20 epochs for training
using the Stochastic Gradient Descent (SGD) optimizer with
a random learning rate between 1 x 10~ and 9.9 x 10~3 and
a momentum of 0.9. The batch size for training and validation
is set to 1000. For the ten clients, we employ the Federated
Averaging (FedAvg) algorithm, a common setup in FL, where
multiple clients with local datasets collaboratively train models
while preserving data privacy.

D. Empirical Study

In this experiment, we performed three data-poisoning
attacks on several NN models trained on two different datasets,
namely CIC and UNSW. First, an LF attack was applied.
Before performing this attack, we trained the model with a
benign dataset, captured the results, saved the models, and
tested the accuracy of the saved models using test data. Then,
we poisoned the data by flipping the labels for 1% of the
data. The model was retrained with this malicious data, and
the results and models were saved. To compute the ASR, we
flipped the labels of the complete test data and noted the
accuracy, indicating the strength of the attack. We repeated
the experiment with 2%, 3%, 4%, 5%, 7%, 10%, 15%, 20%,
and 25% poisoned data, documented the results for all these
attack percentages, and computed the ASR for each of them.

Our code is written in such a generic manner that by simply
changing the name of the dataset, the rest of the processes—
such as pre-processing of data, splitting the training data for
ten clients, training the model with/without attack, computing
ASR, and saving the results in an Excel file—are performed for
both datasets without any user interaction. For the FP attack,
we introduced some changes in the code and employed a
random forest algorithm to compute feature importance. From
our perspective, this innovative approach helps identify which
features contribute the most to the classifier. Based on the
random forest outcome, in the CIC dataset, the first column
has the highest feature importance, which we computed using
permutation on the full model. Permutation-based feature
importance involves logically rearranging the values of each
feature, analyzing the influence on the model’s performance,
and determining the impact intensity of each feature in the
decision-making process.

We used a similar strategy to determine the feature impor-
tance in the UNSW dataset and found that the second column
has the highest feature importance.
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Algorithm 1: Feature Poisoning (FP) Attack
Data: D: Feature column values, L: Labels (0 and 1),
att_per: P
Result: Transformed feature values
Step 1: Find min and max values in feature column:
o min_value < min(D)
e maz_value < max(D)
Step 2: Find average for label classes 0 and 1:
e avg_zero < avg(D where L = 0)
e avg_one < avg(D where L = 1)
Step 3: Normalize the values:
o for i in dataset do
if L = 0 then
‘ norm_val <—
else

L norm_val <

avg_zero—min_val
max_val—min_val

avg_one—min_val
max_val—min_val

Update feature value with norm_uval
Step 4: Modify malicious samples to benign samples:
e num < P
e percent < int(len(L) x (num /100))
e for i = I to percent do
rand_indezx < random(0, len(unique_val) — 1) if
L[i] =1 then
| D[:,0,0,col_id] < unique_val[rand_index]

In FP, we manipulate the values of the most important fea-
tures that were determined using the random forest technique.
There were two label classes in both datasets: 0 and 1. First,
we compute the mean of all values where the label is 0 and
then compute the mean of values with label 1. In the next step,
we found the minimum and maximum values in the feature
column that are different for the two datasets. Subsequently,
the values of the most important features are normalized using
the min-max normalization technique. We changed the values
of the column where the label was 0 to random unique values,
where the label was 1. Details regarding FP attack techniques
that we consider in this study is in Algorithm 1. In this
algorithm, D represents a dataset that contains feature column
values. att_per represents the attack percentage, which is also
represented as P in the algorithm, which is the percentage of
values that are to be manipulated. min_value and max_value
represent the minimum and maximum values in the feature
column, respectively. The i represents the iterator value of
the loop, L represents the value of the label that may be
either O or 1, and percent represents the number of values to
be manipulated in the feature column. Additionally, number
represents the user-defined att_per, and column_index is the
index of the target feature column.

The novel VagueGAN approach, which was recently
proposed by [34], is employed in our study as a third type of
attack against an FL-IDS. This approach enables an adversary
to simply execute a data-poisoning attack. In particular, the
adversary initially controls the client ¢;. Next, malicious client

cj generates a contaminated local dataset Df) from the original

J
dataset Dtrain

using VagueGAN and replaces it. Finally, client
¢j trains and sends a contaminated local model 03] to the

server using Df). In contrast to an LF and FP attack, which
only affects specific labels, VagueGAN indirectly targets the
global model, affecting all labels and classes. In this scenario,
we only consider a small percentage of poisoned data, ranging
from 1% to 5%, on CL1 to evaluate the robustness of the
server. From our point of view, other poison percentages will
exhibit the same behavior as the 1% to 5% range.

In contrast, to calculate the ASR, the value of the column
where the label was 0 is replaced with the normalized average
value of label 1, and vice versa. The percentage of attacks
is calculated as the number of values to be manipulated
according to the desired percentage. We set up an array
containing integer values. In every iteration, if the iterator
value is not in that array, then the iterator value is considered
a percentage number. This percentage is multiplied by the
number of labels in the training data of CL1, which is also
equal to the number of samples/rows in the training data. In
equation form, it can be written as:

number_of_values — {len( CL1.Y)- attack_percentageJ )

100

In the above equation, CL1_Y represents the length of the
array of labels of training data for CL1, where /en in Python
is used to determine the length of an array, while _of_attack
represents the percentage number, and the number_of_values
denotes the number of values that we have to change in the
feature column. During computations in Python, this equation
can return the float value, so that it changes to the integer
value for which we have used the floor function.

E. RDFS Strategy Integration for Server Security
Improvement

Our study addresses the vulnerability of an FL server to
poisoning attacks. To mitigate this vulnerability, we applied the
Random Deep Feature Selection (RDFS) technique proposed
in [35]. To improve server security, we integrated the
PRDF technique into the server architecture. This integration
included the use of randomly chosen subsets of features
with sizes of {50, 400} for training. We demonstrate that
this approach enhances the robustness of the model against
poisoning attacks by introducing randomness into the training
process. We applied RDFS before the attack and then checked
the server against the attacks to evaluate the robustness of
the model against poisoning attacks. The RDFS steps are as
follows:

o Let NV represents the Neural Network (NN) architecture
that includes layers {C1, Cs, ..., Ci}. The W; weight
matrix and b; bias vector define each C; layer.

e The representation of the feature space is illustrated
by a feature vector for all inputs z; from the dataset

{(Xs, wi) iy,
¢(XZ) = (fel(l'z‘),f€2($i),‘..,fen(xi)) (2)

e By applying a random selection method, we choose a
subset F C {1, 2,..., n} from the set {50, 400} for the
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TABLE III
RESULTS WITHOUT ATTACK

Scenario Component Avg. Loss | Accuracy
CIC B

N’é‘?gl Client-1 ...10 0.6415 -

N BaL . Server - 0.9680

N%?VUSIW Client-1 ...10 0.6801 -

N A Server - 0.8027

size of F. Choose s features at random from the entire set
of features for a size s that lies between the intervals {50,
400}. This implies that the features fed to the server for
training were random. Therefore, a server trains with a
random feature size separately. Here, we have two sets of
random; therefore, we have for the server that is trained
with {50, 400}.

Fes = {feilaf€i27"°7fei5} C {felvfe27"' afen} (3)

o A shortened feature vector should be built for each input
X, using the given features, therefore,

Ore, (Xi) = (fei, (X;), feir (X5), ..., fei (z3)) (4

e Build a new dataset employing the shortened feature
vectors that we obtained and that we want to deliver to
the server for training, therefore,

{(PFe, (Xi), i) }itq (5)

o Training is performed on N using the shorthand dataset
obtained from the previous step Fe;. The training phase
minimizes the loss function £ with respect to the network
parameters ©:

min LN (@ e, (X0)), i) (6)

The symbol © denotes the weights and biases of each
layer.

IV. RESULTS AND DISCUSSION

In this section, we discuss the results obtained during the
experiment using different scenarios, with and without an
attack.

A. FL in the Absence of Attacks

We trained the BAU1 model using benign datasets. First,
we trained FL on the CIC dataset in the absence of attacks
and reported the results as N 186;116(}1' We used this notation in
Table III to clarify the results. Subsequently, we trained the
BAU1 model with the UNSW dataset without an attack, which
is denoted as N Jg IflV*Ug}/V in Table III, and we report the server
accuracy for both scenarios and the average of losses regarding
ten clients.

In this table, we report the loss from Client-1 to Client-10
(or CL1 to CL10) for the CIC dataset, where the average of
the losses is 0.6415, and save the values obtained after the last
epoch. In the same scenario, the server accuracy was 96.80%.
The high accuracy of the server is due to the fact that we
did not apply any attack and trained the BAUI model on a
clean dataset. In the second scenario without an attack, where

TABLE IV
LF POISON ATTACK FOR THE SCENARIO NgI{‘%ILF ON CIC DATASET
Poison Component Avg. Loss Acc. ASR
1% Client-1 ... 10 0.7360 - -
1% Server - 0.0428 | 0.9564
2% Client-1 ... 10 0.7323 - -
2% Server - 0.0537 | 0.9457
3% Client-1 ... 10 0.6777 - -
3% Server - 0.968 0.0329
4% Client-1 ... 10 0.6717 - -
4% Server - 0.9486 | 0.0539
5% Client-1 ... 10 0.6798 - -
5% Server - 0.7739 | 0.2292
7% Client-1 ... 10 0.7086 - -
7% Server - 0.1256 | 0.8720
10% Client-1 ... 10 0.7499 - -
10% Server - 0.032 0.9670
15% Client-1 ... 10 0.7150 - -
15% Server - 0.0447 | 0.9543
20% Client-1 ... 10 0.7096 - -
20% Server - 0.1281 | 0.8718
25% Client-1 ... 10 0.6706 - -
25% Server - 0.9204 | 0.0797

the model is the same but the dataset is different, specifically
UNSW, the average loss from Client-1 to Client-10 is 0.6801,
and the server accuracy is approximately 80.27%. The purpose
of these scenarios is to establish basic performance metrics
for the BAU1 model on pristine datasets. This enabled us to
evaluate the effects of different types of data poisoning attacks
on the performance of the model.

B. Results With Label Flipping (LF) Attack on CIC Dataset

The LF attack on the CIC dataset is shown in Table IV.
The results show how the attack affected the effectiveness of
the FL. model and how easy it was to spot. When only 1%
of the data are tampered with, the server’s accuracy drops
to 0.0428, and the ASR increases to 0.9564. The large drop
in accuracy and high ASR show that even a small amount
of corrupted data may disrupt the model, which makes the
attack very easy to spot. The server’s precision remains low
at 0.0537, and the ASR remains high at 0.9457 when 2% of
the data have been contaminated in the same way. Given that
it has such a large effect on model performance, these data
prove that the LF attack is easy to detect at low percentages.
As the amount of poisoned data increases to between 3 and 4
percent, an interesting change occurs. While the ASR dropped
drastically to 0.0329 and 0.0539, the server accuracy improved
to 0.9680 and 0.9486, respectively. The fact that precision
returns to normal and ASR values are low indicates that the
FL model is strong enough to withstand these low levels of
LF attacks, making the attack useless. However, when there is
5% poisoned data, the server’s precision falls to 0.7739, and
its ASR increases to 0.2292. By this point, the attack is more
apparent but still not very problematic for the model. It can be
seen that, but not as serious as at lower levels. The results were
quite distinct when the amount of poisoned data increased to
7%, 10%, 15%, 20%, and 25%. In some situations, such as the
10% attack, the server accuracy remains very low at 0.0320,
but the ASR is high at 0.9670, which means that the attack
fails because it is easy to spot. In other cases, the results are
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TABLE V
LF POISON ATTACK FOR THE SCENARIO NgflVg}/V*LF
ON UNSW DATASET

Poison Component Avg. Loss Acc. ASR
1% Client-1 ... 10 0.6789 - -
1% Server - 0.8554 | 0.1423
2% Client-1 ... 10 0.7313 - -
2% Server - 0.0951 | 0.9052
3% Client-1 ... 10 0.7264 - -
3% Server - 0.1000 | 0.8997
4% Client-1 ... 10 0.6759 - -
4% Server - 0.8072 | 0.1918
5% Client-1 ... 10 0.7044 - -
5% Server - 0.2815 | 0.7193
7% Client-1 ...10 0.6777 - -
7% Server - 0.8253 | 0.1757
10% Client-1 ... 10 0.6692 - -
10% Server - 0.8816 | 0.1181
15% Client-1 ... 10 0.6844 - -
15% Server - 0.6793 | 0.3186
20% Client-1 ... 10 0.7045 - -
20% Server - 0.1795 | 0.8212
25% Client-1 ... 10 0.6841 - -
25% Server - 0.7097 | 0.2920

more mixed, with server accuracy sometimes improving and
ASR values not meeting the requirements for an attack to be
successful. For example, when 25% of the data are poisoned,
the server accuracy increases to 0.9204, but the ASR decreases
to 0.0797. This indicates that even high percentages of LF
attacks may not be able to deceive the system without being
detected.

These findings verify the robustness of the FL. model to the
LF data percentages. Low-percentage attacks are readily appar-
ent owing to significant decreases in server accuracy, whereas
in-between percentage attacks highlight the model’s durability,
regaining accuracy, and low ASR. A high percentage of attacks
fail because they have either too low accuracy, making them
traceable, or the ASR is too low. Thus, the LF attack on
the CIC dataset fails to degrade the models sustainably and
undetectably, demonstrating the necessity for more advanced
attack tactics, such as FP or VagueGAN, to have a significant
impact.

C. Results With Label Flipping (LF) Attack on UNSW
Dataset

The outcomes of the LF attack on the UNSW dataset,
shown in Table V, demonstrate the influence of the attack
on the accuracy and detectability of the FL. model. Starting
with a 1% LF attack, the server’s accuracy is quite acceptable
at 0.8554, but the ASR is reduced to 0.1423, suggesting a
failed attack because the ASR does not satisfy the criteria
for success. As the attack strength increases to 2% or 3%,
the server accuracy falls to approximately 0.1, but the ASR
rises to approximately 0.9, indicating that the attack is readily
apparent owing to the considerable reduction in accuracy and
high ASR. At 4%, the server accuracy slightly increases to
0.8072, but the ASR decreases to 0.1918, failing to fulfill
the requirements for a successful attack. A 5% LF attack
decreased the server accuracy to 0.2815 and the ASR to
0.7193, showing an evident but less severe attack compared

TABLE VI
FEATURE POISON (Ff;g ATTACK FOR THE SCENARIO
NEIC—FP o\ CIC DATASET

BAU1
Poison Component Avg. Loss Acc. ASR
1% Client-1 ... 10 0.6507 - -
1% Server - 0.9642 | 0.9628
4% Client-1 ... 10 0.6754 - -
4% Server - 0.8611 | 0.8616
20% Client-1 ... 10 0.6787 - -
20% Server - 0.7427 | 0.7763
25% Client-1 ... 10 0.6321 - -
25% Server - 0.9680 | 0.9671

to lower percentages. Higher attack percentages (7, 10, 15,
20, and 25%) resulted in different outcomes. The 7% and
10% attacks have significant server accuracy but low ASR,
suggesting unsuccessful attacks, whereas the 15% attack has
moderate effects. The 20% attack reduces the server accuracy
to 0.1795 and has an ASR of 0.8212, indicating that it is
noticeable, but not completely successful. Furthermore, a 25%
attack increases the server accuracy to 0.7097, resulting in an
ASR of 0.2920, indicating an unsuccessful attack.

These findings demonstrate that data poisoning ratios con-
siderably affect the efficacy and detectability of LF attacks,
even in the UNSW dataset. Low percentages have no effect on
the model, while other percentages degrade the performance
and make the attack more detectable. High percentages indi-
cate varying results, with low ASR attacks failing and others
resulting in reduced accuracy.

D. Results With Feature Poisoning (FP) Attack on CIC
Dataset

In this section, the FP Attack on CIC Dataset and the results
are presented in Table VI, which shows the effectiveness
as well as the effect of FP attacks on the FL. model. The
experiment demonstrated that even small amounts of poisoned
data can have significant effects on the performance of the
model. For instance, even with only 1% of the data poisoned,
the server’s precision remains high at 0.9642 and the ASR
remains high at 0.9628, implying a successful and undetectable
attack. This pattern remained in the 4% poisoned scenario,
which had a server accuracy of 0.8611 and an ASR of 0.8616,
demonstrating the efficacy of the attack. However, when the
amount of poisoned data increased to 20% and 25%, the
server accuracy and ASR continued to represent successful
attacks, with values of 0.7427 and 0.7763 for 20% and 0.9680
and 0.9671 for 25%, respectively. These findings indicate
the model’s sensitivity to FP attacks because attacks remain
successful and difficult to detect as the amount of poisoned
data increases.

These studies employ the CIC dataset to determine how FP
attacks affect FL models and their detectability. The research
effort evaluates server precision and ASR at different data
poisoning rates to determine how vulnerable the model is to
attacks like this and how well they may compromise model
consistency without detection. Previously, LF attacks on the
CIC dataset induced large accuracy decreases, making them
more apparent, whereas FP attacks maintained high accuracy
and ASR, making them more invisible and successful on
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TABLE VII
FEATURE POISON ATTACK FOR THE SCENARIO N};J}évgi/vaP
ON UNSW DATASET

Poison Component Avg. Loss Acc. ASR
1% Client-1 ... 10 0.6779 - -
1% Server - 0.8195 | 0.8231
2% Client-1 ... 10 0.6769 - -
2% Server - 0.8527 | 0.8722
3% Client-1 ... 10 0.6720 - -
3% Server - 0.8433 | 0.8194
5% Client-1 ... 10 0.6728 - -
5% Server - 0.8620 | 0.8491
7% Client-1 ... 10 0.6690 - -
7% Server - 0.9017 | 0.9009
10% Client-1 ... 10 0.6720 - -
10% Server - 0.8725 | 0.8944
15% Client-1 ... 10 0.6458 - -
15% Server - 0.9066 | 0.9086
20% Client-1 ... 10 0.6939 - -
20% Server - 0.4682 | 0.4824
25% Client-1 ... 10 0.6644 - -
25% Server - 0.9018 | 0.9064

the CIC dataset. This comparison shows the need for better
defenses against the subtlety of FP assaults.

E. Results With Feature Poisoning (FP) Attack on UNSW
Dataset

Table VII provides the findings of the FP attacks on the
UNSW dataset, demonstrating the different consequences of
the attack on the performance and visibility of the FL. model.
With a 1% FP attack, the server precision is 0.8195 and
the ASR is 0.8231, revealing that the attack is successful
and subtle. As the amount of poisoned data increases to
2% and 3%, the server precision increases to 0.8527 and
0.8433, respectively, while the ASR values remain high at
0.8722 and 0.8194, confirming successful attacks that are
difficult to detect. Even at higher percentages, such as 5%,
7%, and 10%, the server precision remains above 0.86, and
ASR values are continually high, proving that the attack is
effective. In particular, for 20% and 25% poisoned data, the
server accuracy also reveals an effective impact with values
of 0.4682 and 0.9018, as well as ASR values of 0.4824 and
0.9064, respectively. These findings highlight the efficacy and
stealthiness of FP attacks, which pose a significant threat to
model precision.

The objective of this evaluation is to see how varying
percentages of data poisoning from FP attacks affect the
performance and detectability of FL models on the UNSW
dataset. By studying server precision and ASR, this study aims
to achieve a better understanding of the model’s sensitivity to
FP attacks and how these attacks might subtly but effectively
impact model integrity. A comparison of the FP attack results
(Table VII) to the LF attack results (Table V) on the UNSW
dataset proves that FP attacks are typically more successful
and difficult to detect. Although LF attacks frequently cause
significant decreases in server precision, making them identi-
fiable, FP attacks maintain high accuracy and ASR, resulting
in successful but less apparent disruptions. This comparison
emphasizes the need for improved protection systems that
safeguard against the subtleties of FP attacks.

TABLE VIII
VAGUEGAN ATTACK FOR THE SCENARIO Ngfl%; GAN ON CIC DATASET

Poison Component Avg. Loss Acc. ASR
1% Client-1 ... 10 0.6581 - -
1% Server - 0.1961 | 0.9752
2% Client-1 ... 10 0.7101 -
2% Server 0.2872 | 0.9213
3% Client-1 ... 10 0.7227 - -
3% Server - 0.1765 | 0.8193
4% Client-1 ... 10 0.7195 - -
4% Server - 0.2801 | 0.8095
5% Client-1 ... 10 0.7034 - -
5% Server - 0.1201 | 0.7820

TABLE IX
VAGUEGAN ATTACK FOR THE SCENARIO Ngﬁ]g}/[/_ GAN
ON UNSW DATASET

Poison Component Avg. Loss Acc. ASR
1% Client-1 ... 10 0.6890 - -
1% Server - 0.1760 | 0.9872
2% Client-1 ... 10 0.6387 - -
2% Server - 0.2310 | 0.9020
3% Client-1 ... 10 0.7139 - -
3% Server - 0.3141 | 0.8493
4% Client-1 ... 10 0.7090 - -
4% Server - 0.2628 | 0.8193
5% Client-1 ... 10 0.6812 - -
5% Server - 0.1787 | 0.8957

F. Results With VagueGAN Attack on CIC and UNSW
Datasets

As shown in Tables VIII and IX, The VagueGAN attack has
a significant effect on the performance of the FL models on
the CIC and UNSW datasets. Low server accuracies (0.1961 at
1% poisoning and 0.1201 at 5% poisoning) while maintaining
high ASR (0.9752 and 0.7820, respectively) are the outcomes
of VagueGAN attacks on the CIC dataset. Similarly, with high
ASR values of 0.9872 and 0.8957, the UNSW dataset reveals
that server accuracies declined to 0.1760 at 1% poisoning and
remained low up to 5%. With such a high ASR, these findings
demonstrate that VagueGAN successfully creates adversarial
attacks that significantly affect the performance of the model.
A server can recognize a VagueGAN attack as it impacts
all features, unlike FP and LF attacks, which change only
one feature and may remain undetected. When comparing the
VagueGAN findings to FP and LF attacks, it is evident that
VagueGAN attacks are more generally effective and have a
higher ASR, but they are also easier to identify.

G. RDFS Defense Strategy for Improving Server Security

We prove that FP is more effective than LF and VagueGAN
attacks. Therefore, regarding the defense system, we consider
the recent strategy RDFS, which is based on random deep
feature selection. This method has recently proven quite
effective in different domains, such as multimedia forensics
and security [36], and in computer networks [35]. Applying
the RDFS defense technique to the CIC dataset with random
feature sizes of 50 and 400 shows significant effectiveness
against diverse percentages of poisoned data (Table X). For
1% poisoned data, both feature sizes retain high server
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TABLE X
PERCENTAGE OF RANDOM INDEX RESULTS FOR Ngfl%;FP
ON CIC DATASET

Poison | RFS Acc. ASR RFS Acc. ASR
1% 50 0.9016 | 0.3423 400 | 0.9550 | 0.1430
4% 50 0.9020 | 0.2816 | 400 | 0.9601 | 0.1209
20% 50 0.9127 | 0.2627 400 | 0.9780 | 0.1022
25% 50 0.9042 | 0.2711 400 | 0.9817 | 0.0117

TABLE XI
PERCENTAGE OF RANDOM INDEX RESULTS FOR Ngﬁ/g}/V—FP
ON UNSW DATASET

Poison | RFS Acc. ASR RFS Acc. ASR
1% 50 0.8290 | 0.2516 | 400 | 0.8763 | 0.1371
2% 50 0.8422 | 0.2301 400 | 0.8809 | 0.1916
3% 50 0.8228 | 0.3012 | 400 | 0.9056 | 0.1837
5% 50 0.8631 | 0.2501 400 | 0.8820 | 0.1400
7% 50 0.8305 | 0.2012 | 400 | 0.9166 | 0.1677
10% 50 0.8930 | 0.1900 | 400 | 0.8956 | 0.1562
15% 50 0.8421 | 0.2385 400 | 0.9054 | 0.1920
25% 50 0.8729 | 0.2078 400 | 0.9026 | 0.1757

accuracy and low ASR, proving that RDFS is effective. When
the poisoning percentage increases to 4%, 20%, and 25%, the
server accuracy improves, while the ASR decreases slightly,
showing RDFS defensive resistance. Both feature sizes of 50
and 400 in the UNSW dataset (Table XI) at 1% poisoned
data exhibit high server accuracy and low ASR, comparable to
the CIC dataset, indicating good early defense. As poisoning
grows to 2%, 3%, 5%, 7%, 10%, 15%, and 25%, the server
accuracy remains high and ASR remains low, demonstrating
the strength of the RFS strategy.

V. DISCUSSION AND LIMITATIONS

Our research provided novel insights into the vulnerability
of FL models to data poisoning attacks by emphasizing the
more effective nature of FP attacks compared to LF and
VagueGAN attacks. Our research highlighted the importance
and details of these attacks in the context of FL-based
IDS by employing them specifically on computer network
datasets, namely CIC and UNSW. We proposed an innovative
method to conduct FP attacks by employing Random Forests
to identify and manipulate highly contributing features. The
experimental results demonstrated the significant vulnerability
of FL models to FP attacks, as well as the efficacy and subtle
nature of these attacks. Model precision was significantly
reduced by even small modifications to features. In contrast,
LF attacks were significantly easier to identify than other
types of attacks, despite their significant impact, due to the
substantial reductions in precision they caused. Additionally,
the VagueGAN attack, which utilized Generative Adversarial
Networks (GANs) to introduce adversarial examples into
datasets, significantly reduced model accuracy while main-
taining a high Attack Success Rate (ASR). The controlled
experimental configuration involved ten clients, enabling a
comprehensive analysis of the attack structure. This analysis
revealed that FP and VagueGAN attacks were more capable of
evading detection than LF attacks. This innovative application
of feature importance analysis in FP attacks has enabled a
more thorough understanding of how adversaries may exploit

specific data attributes to undermine FL models. Moreover, our
study developed the Random Deep Feature Selection (RDFS)
strategy, which randomizes server features during training.
This strategy is an effective defense mechanism against FP
attacks and, as we demonstrated, is also effective against LF
and VagueGAN attacks, proving its efficacy in maintaining
model integrity under attack conditions.

This study has some limitations:

Attack Scope: This study targeted LF, FP, and VagueGAN
attacks. Although these are prevalent, more complex attacks,
such as backdoors and evasion techniques, were not consid-
ered. Future research should investigate a broader range of
attack vectors.

Defense Mechanisms: While the study emphasized the
vulnerabilities and efficacy of three different types of attacks,
it also developed and evaluated RDFS defense mechanisms
against FP. Future research should investigate a general
defense model against all possible poisoning and evasion
attacks.

Generalizability: These studies were conducted using
specific real-world datasets related to computer networks.
Although these datasets are important, the generalizability of
the findings to other fields is unknown. Future research should
use a variety of datasets to confirm the strength of the results.

VI. CONCLUSION REMARKS

In this study, we evaluated the efficacy of the RDFS defense
system in the computer network domain and examined the
vulnerability of FL models to LF, FP, and the recently intro-
duced VagueGAN attacks. Our experiments focused on these
attacks on the CIC and UNSW datasets. They demonstrated
that LF attacks were ineffective due to visible accuracy drops,
whereas FP attacks significantly deceived the server in various
scenarios. Furthermore, our results underlined the potential
threat to the integrity of FL models posed by VagueGAN
attacks. The analysis of feature importance revealed that
dataset features are vulnerable to manipulation in FP attacks,
highlighting the significant effectiveness of FP attacks. The
integrated defense mechanism of the RDFS defense strategy
is demonstrated by its promising performance in mitigating
some FP attacks. The objective of future research should be to
develop a comprehensive defense strategy that can mitigate a
broader range of attack vectors and enhance the robustness of
FL models in practical settings by incorporating more complex
threats such as backdoors and evasion techniques.
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