
TU Delft

Bachelor Thesis

Applied mathematics

The influence of location on the
profitability of a charging station

Author:

Matthijs Arnoldus

Supervisor:

Dr. ir. J.T. van Essen

Other committee members:

Prof. dr. ir. A.W. Heemink

November 26, 2021

Preface

This thesis was written for the final project of the bachelor in Applied Mathematics.
It is extended from my bachelor project for my bachelor in Computer Science.

While writing this thesis, I assumed readers to have basic general mathematical knowl-
edge. However, some more knowledge of mathematical optimisation is required to un-
derstand the model developed in Section 4.2.

I would like to thank my supervisor Dr. ir. J.T. van Essen for her supervision and
mathematical support during the writing of this thesis, and my supervisor from the
Computer Science Department Dr. V. Robu for his supervision on my Computer Sci-
ence thesis, which forms a basis for this thesis.

Delft, 17 November 2021
Matthijs Arnoldus

2

Summary

With the increasing number of electric vehicles on the road, the routing problem has
become more complex. As charging electric vehicles takes longer than fueling non-electric
vehicles, congestion can occur at charging stations. This might lead to the shortest route
not being the fastest route, due to long waiting times at the stations. By communicating
the intentions of each vehicle, the vehicles can spread out over multiple stations. This
thesis investigates the effect of such a routing system on the profitability of charging
stations. In particular, the influence of a charging station’s location on its profitability
has been researched. In order to do this, a pricing model has been developed to extend
the routing model. It has become clear that due to the intention-aware routing, the
number of visits at stations is harder to predict, and there is not always a clear pattern
to be found between the location and the number of visits. This research does, however,
propose an optimisation model, which can decide where to build a new charging station,
such that the number of visits will be the highest.

3

Contents

1. Introduction 5

2. Literature 7
2.1. Routing algorithms . 7
2.2. Placing charging stations . 8

3. Routing model 10
3.1. Model . 10
3.2. Routing policy . 10
3.3. Algorithms . 11

4. Methodology 14
4.1. Pricing extension . 14

4.1.1. Pricing model . 14
4.1.2. Utility function . 14

4.2. Determining the most profitable location for a new station 15

5. Results 20
5.1. Most visited location . 20
5.2. Effect of variable pricing . 24
5.3. Optimal location for a new station . 27

6. Conclusions and future work 32

7. Discussion 33

Appendix A. Python code for solving optimisation model 35

4

1. Introduction

In the past years, the number of electric cars has significantly increased with increases
of 40% in 2019, 63% in 2018 and 58% in 2017 [1]. With this increasing number, new
challenges arise. One of the drawbacks of electric vehicles over non-electric vehicles is the
long charging time. This can cause long waiting times at charging stations if multiple
vehicles go to the same station. In order to overcome this issue, De Weerdt et al.[2] have
proposed a way of routing electric vehicles such that they take into account the waiting
times at charging stations. This solution, called Intention-Aware Routing, keeps track of
the intentions of each vehicle connected to the system. These vehicles can then retrieve
the expected waiting times at each station from the system, and calculate their fastest
route.

This, however, is only one way of looking at the electric vehicle routing problem. In
other work that has been done so far, different approaches are considered, such as rout-
ing with minimal energy consumption [3] or routing based only on the competition in
price between buyer and consumer, without taking into account route lengths [4]. What
most of these papers have in common, is that they look at the perspective of the vehi-
cles. But, optimizing the road network itself can also improve the efficiency of routing
and charging those vehicles. Also, looking at the perspective of a charging station can
give insights in how a charging station can raise its profits, or whether multiple charging
stations can change their prices, capacity or queuing policies to reduce congestion.

In this thesis, the relation between the location of a charging station and its profitability
is described. In other words, given a road network with charging stations, we want to
determine which charging stations are more profitable than others. In order to do this,
we extend the model of De Weerdt et al. with a pricing model. This model is then
simulated using various graph topologies to obtain a relation between the location of a
station and its profit.

The research question that will be answered is:

How does the location of a charging station for electric vehicles, within a road network
modelled as a graph, affect its profitability?

This question is divided into four sub-questions, which are:

1. In a situation where prices are not taken into account (i.e. prices are equal in
all stations), how does the location of a charging station influence the number of
times it is visited?

2. How can we add the possibility to charge different prices into the model?

3. What is the effect of charging different prices based on the location of a charging
station?

5

4. Given a road network, how can we determine the most profitable location to build
a new charging station?

This thesis is structured in the following manner. Chapter 2 contains an analysis of the
existing literature on routing and charging electric vehicles. The model of De Weerdt
et al. [2] is explained in Chapter 3. Chapter 4 describes the methodology applied in
this research. In Chapter 5, the obtained results are presented. A discussion of these
results is given in Chapter 6. Finally, Chapter 7 contains the conclusions taken from
this research and suggestions for future work.

6

2. Literature

In the past years, several studies on electric vehicles have been conducted. This chapter
contains a review of the existing literature on routing and charging electric vehicles.
Section 2.1 describes several routing algorithms with different approaches. In Section
2.2, graph theoretical background for finding the optimal location for a charging station
is reviewed.

2.1. Routing algorithms

Routing electric vehicles can be done with different incentives. Minimising the duration
or length in kilometers of a trip is what is usually done in navigation systems. Modern
navigation systems also take into account traffic congestion. The paper by De Weerdt
et al. [2] compares three different algorithms that try to determine the shortest route in
terms of time for a single vehicle. These three algorithms are MIN, short for minimising
the journey time, a randomised variant of MIN that uses a logistic distribution (LOGIT),
and the intention-aware routing system (IARS). Two of these three stragtegies, MIN and
LOGIT, do not care about congestion, whereas their newly proposed algorithm, IARS,
does take into account congestion at charging stations. The routing model behind these
three algorithms is the same, and will be discussed in Chapter 3, as this is used in this
thesis as well. MIN and LOGIT both use this model without any information about
what other cars are doing. Therefore they cannot take into account congestion when
determining the route. The MIN algorithm just determines the shortest route from
origin to destination. LOGIT, on the other hand, adds some randomness to the MIN
algorithm, in order to make sure not all cars go to the same charging stations. Although
LOGIT already performs a bit better than MIN, the IARS algorithm is much better at
reducing congestion at charging stations. This algorithm namely takes into account the
intentions of each vehicle when determining the route. Each vehicle subscribes to a cen-
tral system and sends their initial route to that system. The system then computes the
waiting times at each charging station and returns these to the vehicles. Also, whenever
any waiting time is updated, each vehicle is notified. The individual vehicles then use
these waiting times to recompute their route, such that they avoid crowded charging
stations.

An alternative approach to IARS, is to calculate the optimal route without stations
before-hand, and dynamically update the route if charging is necessary. This is done by
Ghorpade et al. [5]. They have decomposed the electric vehicle routing problem into two
problems, the optimal vehicle routing problem, which already has suitable algorithms,
and a dynamic charging decision problem. The latter is their main contribution, and
is the problem of deciding whether a vehicle has to go to a charging station while it
is driving along the predetermined optimal route. This decision is made based on the
predicted battery level at the next location, and if this is below a certain minimum,
the vehicle is routed to the nearest charging station or the station that has the smallest
deviation from the route, depending on whether that station can be reached.

7

Another goal for routing electric vehicles could be to minimise energy consumption.
Zhang et al. [3] have developed a routing algorithm that tries to minimise the total
amount of kWh spent. The problem that this research solves considers a set of electric
vehicles that start at a depot, visit a set of customers, and return to the depot. On their
way, these vehicles might need to charge several times. The proposed optimisation model
considers, among other things, the weight and capacity of the vehicles, the different driv-
ing speeds at different arcs in the graph and the battery capacity of the vehicles. An
ant colony algorithm is used to determine which vehicles to use and their optimal routes.

Another paper, by Chen et al.[6], proposes an optimisation model for a pickup and
delivery system with a fleet of electric vehicles. This model calculates waiting times at
charging stations and tries to minimise the passengers’ travel distance, while maximising
the energy efficiency.

2.2. Placing charging stations

In the previous section, we have seen the perspective of a vehicle, which can also be seen
as the buyer. In this section, we consider the perspective of the seller, or the charging
stations. When building a new charging stations, there are namely also a lot of things
that influence the total traffic flow in the whole road network. Factors as the location,
price or capacity of a charging station influence the amount of congestion in the road
network or the profit of the station itself.

In graph theory, centrality measures can often be used to extract some information
on locations in a graph. There are a lot of such measures, such as betweenness central-
ity or degree centrality [7]. It has been found that betweenness centrality can play a role
in finding congestion in road networks, i.e. nodes with a higher betweenness centrality
are often more congested [8]. The betweenness centrality of a node reflects the number
of shortest paths going through that node and is given by:

g(v) =
∑
s 6=t6=v

σst(v)

σst
,

where σst is the total number of shortest paths between s and t, and σst(v) is the number
of shortest paths between s and t going through v.

Several attempts in finding locations for building charging stations have been made.
Sun et al. [9] have proposed a model that places both slow charging stations and fast
recharging stations with the goal of capturing as much traffic flow as possible. The slow
stations are built on nodes and intended for short distance commuters, whereas the fast
stations are built along paths and intended for long distance commuters.

Another research, by Uslu et al. [10] proposes a mixed integer programming model

8

for deciding where to build electric bus charging stations and their capacity, with the
goal to ensure that all roads in the network can be reached by buses.

9

3. Routing model

The model described by De Weerdt et al. [2] is used as the routing model when inves-
tigating the influence of a charging station’s location on its profitability. In order to
understand the effect of placing stations at certain locations, this routing model and the
algorithms using this routing model should be understood. This chapter describes the
mathematical formulation of the model (Section 3.1) and the policy function (Section
3.2), which determines the decisions of individual vehicles. Next to that, we explain two
routing algorithms that are based on this model (Section 3.3).

3.1. Model

The model describes both the road network with the charging stations, as well as the
state of each car. The domain for the model is described by 〈V,E, T, P, S, C〉, and is
from the perspective of a single car.

The road network is represented as a graph with vertices v ∈ V and edges e = (vi, vj) ∈
E. Both the roads and the charging stations are represented as edges, where a charging
station is represented as a loop from a vertex to itself.

The other four variables in the domain of the model are used to describe the state
of a car. The set T = 1, ..., tmax is used to discretise the time. Each time point t ∈ T is
a moment at which a car can update its decisions on which stations to go to. Also, each
t ∈ T can represent the duration of driving over a road or charging a car, which is used
by the function P . P is a probabilistic function indicating the driving or charging time
for a certain edge. More specifically, P (t|e, tc) is the chance that driving over road e at
time tc, takes t time points (i.e. minutes).

The state of charge of a car is described by the set S. S = 0, ..., smax represents all
possible states of charge, and intuitively this can be seen as a percentage of the battery
that is left. The state of charge changes when a car drives over a road or goes to a
charging station. This change is determined by the function C, where C(e) ∈ S gives
the charging cost of driving over an edge e.

3.2. Routing policy

The decision of a vehicle is determined by a routing policy π : V × T × S → V . The
policy determines, given the current vertex, current time and charging state of a car,
which vertex to drive to. This routing policy determines its decision by maximizing the
expected utility.

The expected utility is the expected reward of making a certain decision at a certain

10

moment. This function is defined recursively and given by

EU(ec = (vc, w), tc, sc|π) =
−∞, if sc ≤ 0∑

∆t∈T P (∆t|ec, tc) · U(tc + ∆t, s′) if w = vdest∑
∆t∈T P (∆t|ec, tc)·

EU((w, π(w, tc + ∆t, s′), tc + ∆t, s′|π) otherwise

Here s′ is the state of charge after taking the edge e, and U(tc, sc) represents the utility
of arriving at time tc with charge sc. This utility function is given by

U(tc, sc) =

{
∞, if sc ≤ 0

−tc, otherwise

In other words, the goal of the utility function is to minimise the travel time.

As can be seen in the equation, the expected utility contains three cases. In the first
case, the utility is set to −∞ if the current charge is smaller or equal to zero. This
represents the fact that the car cannot drive any further due to an empty battery. The
second case represents the expected utility when the considered edge gets the vehicle
to its desired destination. For this edge, we consider all possible travel times ∆t, and
multiply the probability that taking that edge takes ∆t time units with the utility of
arriving after ∆t time units. By taking the sum of all these values, we have the expected
utility for taking the specified edge. In all other cases, the same principle is applied as
in the second case, but the utility is replaced by the expected utility, which defines the
recursive relation.

3.3. Algorithms

In this research, we consider two of the algorithms used by De Weerdt et al. [2]. Both
algorithms work with the same routing model and are only different in the way in which
they handle waiting times.

The first algorithm we consider is the MAX algorithm. In the paper by De Weerdt
et al. [2], this was called MIN as it minimises the expected journey time, but we keep
referring to it as MAX (for maximising utility), since the utility function is changed when
the model is extended with pricing. The MAX algorithm is not used for our results, but
it is the basis for the IARS algorithm, so explaining this helps the understanding of the
IARS algorithm.

The second algorithm is the IARS algorithm, which essentially works in the same way.
The only difference is the fact that IARS dynamically updates the waiting times of each
charging station based on the intentions of each vehicle. Each vehicle sends the stations

11

they intend to use to a central system whenever they change their route. The cen-
tral system then recalculates the waiting times at each station, and notifies each vehicle
of the changes. This algorithm, thus, tries to account for congestion at charging stations.

The algorithm used to determine the route of a vehicle is a dynamic programming
algorithm and keeps track of the expected utilities using a three-dimensional array EU .
This array stores the expected utilities for a single vehicle at every vertex, for every pos-
sible state of charge, at every possible point in time. Another three-dimensional array
is used to keep track of the best node to go to, given a vertex, state of charge and point
in time. In other words, this array stores the policy π of the vehicle.

At the start of a simulation, all values for these two arrays are computed. This is
done in the following manner. Initially, each value in the expected utility array is set
to −∞, the penalty for being out of charge, and the policy array consists of undefined
values, as nothing is known about the policy. The first step for the algorithm is to loop
over all possible time points, from the latest possible time point to the earliest time
point in the simulation. Then, for each time point, it loops over all possible charging
states. Now, given a time point t and a state of charge s, the utility for arriving at the
desired destination vdest, given by EU(vdest, s, t) , is calculated and stored. Using the
same t and s, all possible edges in the road network are considered. For each edge that
is traversable with the current state of charge s, the expected utility of taking that edge
is calculated by multiplying the probabilities for the different durations of that edge by
the values stored in the expected utility array at the resulting vertex, state of charge
and time point. So, if we have an edge e from vfrom to vto with C(e) = 1 and possible
durations 1 with a chance of 10% and 2 with a chance of 90%, the expected utility
becomes the following:

EU(vfrom, s, t) = max{EU(vfrom, s, t), 0.1 ·EU(vto, s−1, t+1)+0.9 ·EU(vto, s−1, t+2)}

That is, if the expected utility of taking edge e is bigger than the value stored at
EU(vfrom, s, t), the algorithm updates the stored value to the newly calculated expected
utility. The policy is then also updated such that

π(vfrom, s, t) = e.

By repeating this procedure for every possible state of charge and each time point, we
obtain all expected utility values and the policy of a vehicle. It is important to loop
backwards over all time points, since the expected utility is computed using time points
in the future.

The above procedure shows the exact working of the MAX algorithm. The IARS al-
gorithm uses this procedure but adds another element to it. The above procedure is
namely only calculated at the start of the algorithm, so influences of other vehicles in
the network are not taken into account. For the IARS algorithm, however, the routes of

12

other vehicles are essential for the performance of the algorithm. Therefore, the compu-
tation of the expected utility array and the policy array is done multiple times. Every
time a vehicle arrives at a new vertex, all vehicles that arrive at a vertex at the same
time point recompute their expected utilities and their policy in the same way as before.
The only difference here is that the charging edges now have a computed waiting time.
Therefore, the new policy is based upon the queues that occur at charging stations. The
waiting times are stored as a distribution per station per time point, where each distri-
bution is based on the number of vehicles arriving at that station at that time point.
This number of vehicles is determined using the intentions of each vehicle, which are
shared with the system in IARS.

13

4. Methodology

This chapter aims to describe what models we used to obtain the results to our research
questions. In Section 4.1, the pricing extension to the routing model by De Weerdt et al.
[2] is presented. Next to that, the optimisation model used to obtain the most profitable
location is developed in Section 4.2

4.1. Pricing extension

In this section, we extend the routing model by De Weerdt et al. [2] (described in
Chapter 3), such that it can handle variable pricing per station. This extended model
can then be used to determine the effect of charging different prices based on the location
of a charging station. In order to extend the model with a pricing scheme, we have to
extend the domain of the model (Subsection 4.1.1), and we have to update the utility
function (Subsection 4.1.2).

4.1.1. Pricing model

The original domain of the model was described by 〈V,E, T, P, S, C〉. In order to extend
the model with a pricing scheme, we need to extend this domain.

First, we add the set M = 1, 2, ...,mmax, which represents the set of possible values
of amount of money spent. The state of a vehicle is, therefore, also extended with a
variable mc indicating the amount of money the vehicle has spent at that moment.

In order to update the money spent of a vehicle when it charges, a function F is added
to the domain. This function represents the cost of fully charging a vehicle at a certain
station and is given by

F (e) =

{
0, for all e ∈ Eroads

me, for all e ∈ Estations

where me ∈ M is a fixed price which is determined by the station. Note that me can
easily be replaced by a function of time to represent a dynamic pricing system.

4.1.2. Utility function

As the domain of the model has been extended, the routing policy should be updated
accordingly. With the addition of the amount of money spent, the routing policy now
becomes π : V × T × S ×M → V . The current amount of money spent is added as a
factor which plays a role in determining the next edge to take.

This policy still maximises the expected utility, which does not change, apart from
the fact that the current amount of money spent is passed along. This, thus, results in

14

the following expected utility function.

EU(ec = (vc, w), tc, sc,mc|π) =
−∞, if sc ≤ 0∑

∆t∈T P (∆t|ec, tc) · U(tc + ∆t, s′,m′) if w = vdest∑
∆t∈T P (∆t|ec, tc)·

EU((w, π(w, tc + ∆t, s′,m′), tc + ∆t, s′,m′|π) otherwise

Just like with s′, m′ is the amount of money spent after taking the edge e.

The biggest differences occur in the utility function itself. Here, we want to model
the trade-off between the time spent to reach the destination and the money spent on
charging. Three approaches are considered on how to do this. The first approach is that
every vehicle determines its budget for the journey, and time is minimised as long as
you stay within that budget. The second approach uses a time deadline, and as long
as the arrival is earlier than the deadline, the cost is minimised. The third approach
models a trade-off between time and money, so every vehicle has a certain preference
on whether they give more importance to time or to price and the utility is based upon
that. This last option seems to fit the model best, as the other two approaches have
significant drawbacks. The first approach, for instance, can spend all of the budget for
a very small time benefit, whereas for the second approach it is hard to determine what
to do when it is not possible to meet the deadline.

As a result of choosing the third approach, the time/money trade-off is modelled us-
ing the following utility function which has to be maximised:

U(tc, sc,mc) ={
−∞, if sc < 0

γ ∗ Tmax−tc
Tmax−Tmin

+ (1− γ) ∗ Mmax−mc

Mmax−Mmin
otherwise

In this function, γ represents the weights for price and travel time. γ equal to one
indicates that the driver only cares about time, whereas γ equal to zero indicates a full
preference for price. Mmin and Mmax are the minimum and maximum possible cost of the
journey, respectively. The maximum possible cost could also be replaced by opportunity
costs to obtain a more realistic value. Tmin and Tmax are the minimum possible journey
time and the maximum arrival time, respectively. Both Mmin and Mmax, as well as Tmin

and Tmax are normalisation factors. By normalising both the time and money spent,
they are of equal importance. One could, therefore, see γ as a percentage of how much
one favours time over price.

4.2. Determining the most profitable location for a new station

The last research question has the aim of finding the best location in a road network to
build a new charging station. This section proposes an optimisation model with which

15

we can find such a location if all vehicles use the IARS algorithm [2]. Appendix A shows
an implementation of the model in Python. Within this model, we represent the graph of
the road network with two sets. V is the set of all vertices, and E is the set of all edges.
A subset C ⊆ V consists of all vertices that are already occupied by a charging station.
Furthermore, we have the set of vehicles represented by F , and the set of discrete time
points given by T .

For each vehicle f ∈ F , we know the origin of its route of , the destination of its route
df , and the maximum value of the state of charge zfmax. For each edge (i, j) ∈ E, the
travel time tij and the charge loss cij are known. Furthermore, for each vertex i ∈ V , we
know the price pi and the amount of vehicles that can charge at the same time qi. These
values also need to be present for vertices which are not a station, as a station can still
be built there. We assume the charging time tcharge to be equal for every vehicle, as this
is also done by the IARS algorithm. Finally, we use the values Tmin, Tmax, Mmin and
Mmax, as described before, and the value M is used to represent a large positive number.

In order to determine the routes of every single vehicle f ∈ F , we introduce binary
variables xfij, which are one when vehicle f has edge (i, j) ∈ E on its route, and zero
otherwise. Next to that, for each vehicle, we keep track of its arrival time at every
vertex with tfi , its waiting time at every vertex with tfwait,i, and its state of charge at

every vertex with zfi . Moreover, we also use the binary variables hfit and bfit, which are
one when vehicle f starts charging at station i at time point t ∈ T and when vehicle f
is busy charging at station i at time point t, respectively, and zero otherwise. The final
decision variable is the binary variable si, which is one when the newly placed station is
located at vertex i, and zero otherwise.

Route

As every vehicle needs to follow a route from its origin to its destination, a couple of
constraints are formulated to ensure that every vehicle follows such a route. To model
these constraints, we followed the approach of Chen et al.[6] Each route starts at the
origin vertex, so from the origin vertex there should be exactly one outgoing edge. This
is ensured by the following constraint.∑

j∈V \{of}

xfij = 1, i ∈ {of},∀f ∈ F (1)

The opposite of this, the destination vertex has exactly one incoming edge, is modelled
with the next constraint. ∑

i∈V \{df}

xfij = 1, j ∈ {df}, ∀f ∈ F (2)

For all other vertices, we should have that the number of incoming edges is equal to the
number of outgoing edges, since this ensures that we will get a closed path from the

16

origin to the destination. The following constraint ensures this.∑
i∈V

xfij =
∑
k∈V

xfjk, ∀j ∈ V \ ({of} ∪ {df}),∀f ∈ F (3)

With the above three constraints, every vehicle is guaranteed to have a route from its
origin to its destination. Similar to the routing model described in Chapter 3, charging
at a charging station is represented by taking the edge from a vertex to itself. As this
adds up to both the incoming and outgoing edges, this is still possible in the formulation
of the constraints, except for the origin and destination vertex (this is not necessary as
a vehicle has maximum charge at its origin, and does not need to charge anymore at its
destination). Also, visiting a station twice is possible, but this will not be expected to
happen since the objective function will punish longer routes.

Time progression

To find out the duration of a trip of a vehicle, we need to keep track of the arrival and
waiting times at every vertex for each vehicle. This is done with three sets of constraints,
which we modelled according to the approach of Chen et al.[6]

tfwait,i ≤Mxfii, ∀i ∈ V, ∀f ∈ F (4)

The above constraints enforce that a vehicle can only wait at a station if it also charges
there. Next to that, we need to update the arrival times of vehicles based on the route
lengths, waiting times and charging time. We split this up into two cases. The first
constraints account for the situation where a vehicle travels from vertex i to vertex j
without having charged at vertex i. In this case, the arrival time at vertex j should be
the arrival time at vertex i plus the travel time between i and j. This is modelled with
the following set of constraints.

−M(1− xfij + xfii) ≤ tfi + tij − tfj ≤M(1− xfij + xfii), ∀i, j ∈ V, ∀f ∈ F (5)

The other situation, in which the vehicle does charge at station i, also adds the waiting
time and the charging time to the arrival time at station j. This results in the following.

−M(2−xfij−x
f
ii) ≤ tfi +tfwait,i+tcharge+tij−tfj ≤M(2−xfij−x

f
ii), ∀i, j ∈ V, ∀f ∈ F

(6)
With these three sets of constraints, we are able to determine the arrival time of every
vehicle at its destination.

State of charge

Similar to the time progression, we need to keep track of the state of charge of every
vehicle. This is necessary in order to make sure no vehicle ends up being stuck with no
charge left. In order to model this, we need two constraints. One for when the vehicle
does not charge, and one for when the vehicle does charge. If the vehicle does not charge,

17

the charge is only updated with the charge loss of taking the edge (i, j) and we get the
following.

−M(1−xfij+x
f
ii) ≤ zfi −cij−z

f
j ≤M(1−xfij+x

f
ii), ∀i, j ∈ V with i 6= j,∀f ∈ F (7)

If the vehicle does charge, it just resets to its maximum charge and only loses the charge
of taking the edge (i, j). This results into the next set of constraints.

−M(2−xfii−x
f
ij) ≤ zfmax− cij−z

f
j ≤M(2−xfii−x

f
ij), ∀i, j ∈ V with i 6= j,∀f ∈ F

(8)
In the implementation, we assume that each vehicle is fully charged at its origin.

Charging capacity

Since each charging station has limited capacity, the model needs to account for this.
In order to do this, we followed the approach of Van Essen et al.[11] We first find out
when each vehicle starts charging at a certain vertex, which is given by hfit. Note that
it is never beneficial to charge twice at the same station, so we make sure this is not
possible with the following constraints.∑

t∈T

hfit ≤ 1, ∀i ∈ V, ∀f ∈ F (9)

Since we now have that hfit is only 1 at one point in time, we can make sure that each
vehicle only starts charging after having arrived and having waited. This is done by the
constraints below.∑

t∈T

hfit · t−M(1− xfii) ≤ tfi + tfwait,i ≤
∑
t∈T

hfit · t+M(1− xfii), ∀i ∈ V, ∀f ∈ F (10)

Now we know when each vehicle starts charging at every vertex, we can find out whether
a vehicle is still charging at a certain time point using the charging time. This is necessary
to find out how many vehicles are charging at the same time at the same station. The
following constraints set the value bfit to 1 if vehicle f is busy charging at station i at
time point t.

bfit =
t∑

t̂=t−tcharge+1

hf
it̂
, ∀i ∈ V, ∀f ∈ F, ∀t ∈ T (11)

We can now enforce that at any point in time no more than qi vehicles (the capacity
of the station) are charging at the same time with the next set of constraints.∑

f∈F

bfit ≤ qi, ∀i ∈ V, ∀t ∈ T (12)

18

New station

Since the goal of this model is to find the best location for a new station, we also need
to include the possibility to add a station in our model. In order to do this we use
the binary decision variable si. Since we only want to add one station, we apply the
following constraint to ensure this. ∑

i∈V \C

si ≤ 1 (13)

Note that this can be easily extended to adding more stations at the same time, by
changing the 1 into a parameter.

We also need to make sure that a vehicle can only charge at a station if it is selected as
the new station. The following constraints enforce this.

xii ≤ si, ∀i ∈ V \ C (14)

Objective function

The objective of our model is directly related to the objective of each vehicle in the IARS
model [2]. Since each vehicle wants to maximise their own utility function, our model
maximises the sum of the utility functions. This results into the following objective
function.

max
∑
f∈F

(
γ
Tmax − tfdf
Tmax − Tmin

+ (1− γ)
Mmax −

∑
i∈V x

f
iipi

Mmax −Mmin

)
(15)

By applying this objective, the system starts to place a charging station at a certain
vertex, such that the total utility of all vehicles is optimal. We can then retrieve this
location from the results, which represents the best location to place a new station. Note
that this objective function maximises the sum of all utilities, whereas in reality each
individual vehicle maximises its own utility.

19

5. Results

This chapter shows the results of running the models presented in the previous two
chapters on two different graph topologies. The first section (Section 5.1) shows the
results of running the IARS algorithm [2] on two different topologies. In Section 5.2, the
IARS with the pricing extension is run, whereas Section 5.3 shows the results of running
the optimisation model presented in Section 4.2.

5.1. Most visited location

In order to answer the first research question, which is about determining the most
frequently visited station with equal pricing, we run the IARS algorithm [2] several
times, on two different types of graph topologies. For each topology, we experiment with
different parameters, such as the length of the edges. By doing this, we can determine
whether certain locations in a network are visited more often than others. We also
calculate the betweenness centrality of all stations in order to find out if there is a
relation between the centrality and the number of visits.

Bottleneck topology

The first graph topology we investigate is the bottleneck topology. This is a very simple
graph with one origin, one destination, and one column with stations. A visualisation
of this graph with four stations in the column, can be seen in Figure 1 below.

Figure 1: Bottleneck graph with four charging stations

When running the algorithm, each vehicle thus has to make a choice between the four
stations, which might be on longer or shorter routes.

20

For our first run, we consider that all edges take 1 unit of time to travel along them, so
each route from start to finish takes 2 units of driving time. We made sure every car has
to charge on its route, by setting the charging capacity of a vehicle to 1. The amount of
vehicles in this run is 500 and each station has a capacity of 2 vehicles that can charge
at the same time. As the edge lengths are all 1, each node has a betweenness centrality
of 1

4
. Table 1 shows the results of running the algorithm with the described setup.

Table 1: Station visits for bottleneck graph with equal edge lengths

Station Betweenness centrality Number of visits
1 0.25 125
2 0.25 125
3 0.25 125
4 0.25 125

We observe that each station is visited 125 times, so the vehicles equally spread out
over all stations in order to reduce waiting times. This is a logical result, as all paths are
equally long, so the driving time does not depend on which charging station the vehicle
chooses. Also, the betweenness centrality is equal for every station, so in this situation
this corresponds to the distribution over the stations.

It is more interesting to see what happens when some stations are on longer routes
than others. For the bottleneck graph, we can investigate this by having different edge
lengths. For the next run, we again have 500 vehicles and a capacity of 2 vehicles per
charging station. This time, however, we have different edge lengths for each edge, which
are random lengths between 1 and 10 time units. Table 2 shows the number of visits
per station for a single run. Moreover, the route length indicates the sum of the driving
times if you take the two roads that the vehicle takes if it charges at the corresponding
station.

Table 2: Station visits for bottleneck graph with different edge lengths

Station Route length Betweenness centrality Visits (IARS)
1 10 0 138
2 18 0 55
3 9 1 169
4 10 0 138

As there is only one shortest path from origin to destination, station 3 has a between-
ness of 1, while the other stations have a betweenness of 0. However, not all vehicles go
to the station with the highest betweenness. The reason for this is the fact that conges-
tion will occur at station 3 if all vehicles go to that station. So in order to reduce their
waiting time, and thus their total travel time, several vehicles also charge at another
station. The influence of the waiting times thus reduces the number of visits for the

21

station on the shorter route.

Although the waiting times make sure that the vehicles spread out over all stations,
there does seem to be a relation between the route length and the number of visits. We
can investigate this effect further by running the algorithm multiple times with different
edge lengths. Again, the edges are taken randomly between 1 and 10 time units, and all
other parameters stay the same. Figure 2 shows the results of 5 runs with different edge
lengths. On the x-axis the route length through a certain station divided by the sum
of all route lengths is displayed. The y-axis shows the number of visits of that station
divided by the total number of visits for that simulation is displayed. The total number
of visits is always 500 as every car has to charge to reach the goal.

Figure 2: Results for simulations on bottleneck graph with different edge lengths

The graph in Figure 2 shows a clear downward trend, which means that a station on a
longer route is visited less often. Even throughout different simulations, this trend is still
clearly visible. This is as expected, but it does show that although charging capacity is
a major blocking factor, with 500 cars and only 2 charging spots per station, the route
length still has a big influence on the number of visits per station.

One more thing we can investigate for the bottleneck graph is the influence of the
charging capacity parameter. We use the same edge lengths and parameters as for the
results in Table 2, but we change the charging capacity parameter. This change is made
for each station, so in every run all stations have the same capacity. Figure 3 shows the
results for 7 runs with different charging capacities. The x-axis shows the capacity at
each station, whereas the y-axis shows the number of visits per station.

22

Figure 3: Results for simulations on bottleneck graph with different station capacities

These results clearly support the fact that waiting time has a large influence on the
decisions taken by the vehicles using IARS. The general trend in these results is that
with a bigger capacity, the stations on shorter routes get visited more often, until only
the station on the shortest route is being visited. This indicates that stations on a
shorter route benefit from expanding their capacity, whereas for stations on a longer
route, this would only increase their costs.

Grid topology

The second topology, the grid topology, contains multiple origins and multiple destina-
tions. Also several columns of stations seperate the column of origins and destinations.
Each node connects with the adjacent nodes in the next column. In Figure 4, a grid
graph with two columns of four stations is shown.

Figure 4: Grid graph with two columns of four stations

23

What can be seen from this graph, is that the stations in the middle rows have a higher
number of routes going from any origin to any destination. Therefore, it is interesting to
see whether these stations will have more visits than the stations in the top or bottom
row.

We ran the algorithm ten times with different edge lengths, taken random between
1 and 10. For each run, all other factors stay the same, and are as before. So, the num-
ber of cars is 500 and the charging capacity of a station is 2. Each vehicle starts driving
at the same time, and all vehicles are equally divided over the origins and the destina-
tions, so one quarter of the vehicles starts at each origin. For each run, we determine
the betweenness centrality of each station and compare this to the number of visits. As
each run gave a similar result, we show the result of a single run in the following graph
(Figure 5).

Figure 5: Comparison between the number of visits of a station and its betweenness

From these results, it becomes clear that there is no clear relation between the number
of visits and the betweenness centrality. No clear pattern can be obtained from these
results, and the reason for this could be that the large amount of possibilities cannot be
captured by the betweenness centrality, as too many factors play a role. As betweenness
centrality only looks at the number of shortest paths going through a station, factors as
the charging capacities and waiting time are not taken into account. Also, the lengths
of the routes that are an alternative to the shortest route for a vehicle might play a role
in whether a certain station is visited or not.

5.2. Effect of variable pricing

With the newly added pricing model (Section 4.2), we can determine the effect of sta-
tions being able to charge different prices. A station in a better location might decide
to charge a higher price to increase its profit. The goal here is to find out for which

24

locations this could be successful.

Again we run the algorithm for the bottleneck and grid topologies, and calculate the
profits obtained for each station. In each of the runs, one station has a different price
from all other stations, which charge the same price. This station is either the station
which originally had the highest number of visits or the station which originally had
the lowest number of visits. In case it is the one with the highest number of visits, we
increase its price, and we decrease it otherwise. Furthermore, each vehicle has λ = 0.5,
so they equally value money and time.

By comparing the results to those in the previous section (Section 5.1), we can de-
termine whether it is beneficial for a certain station to start charging a higher or lower
price.

Bottleneck topology

Again, we first run the algorithm on the bottleneck topology. We use the exact same
parameters and edge lengths as for the results in Table 2. So, we have 500 vehicles and
each station has a capacity of 2. The only change, is that each station now charges a
price of 50, instead of not charging price at all. As station 3 was the station that had the
highest number of visits, we increase its price to see the effect on the number of visits.
Figure 6 shows the result of these increases.

Figure 6: Increasing the price of the station on the shortest route

It can be seen that only a small increase in price, already leads to a strong decrease
in number of visits. This might be due to the fact that the travel time does not increase
that much, as the vehicles can spread over three other stations. It is also interesting to
see that the station with the lowest number of visits profits the least from the increase
in price by station 3.

Apart from increasing the price of the most profitable station, we can also decrease

25

the price of the least profitable station. Figure 7 shows the result of decreasing the
price.

Figure 7: Decreasing the price of the station on the longest route

Again, we see a strong increase in number of visits for a small decrease in the price.
So, for a station on a long route, it can be beneficial to lower the price to generate a
higher profit, while a station on a short route does not benefit as much from setting a
higher price.

Grid topology

For the grid topology, we do the same as for the bottleneck topology. So, we have one
run in which we increase the price of the most profitable station, and one run in which
we decrease the price of the least profitable station. As IARS with pricing has a longer
run time, we reduce the number of vehicles to 100. The rest of the parameters stay the
same. Also, we use a graph with random edge lengths, but of course the same graph is
used when we change the price. Figure 8 shows the results of increasing the price of the
most profitable station, which was station 6.

Figure 8: Increasing the price of the station with the highest number of visits

26

In comparison to the bottleneck topology, we see that increasing the price has a smaller
effect on the number of visits. However, there is still a significant decrease. The reason
for the smaller decrease could be that the alternative options for the vehicles charging
at station 6 are significantly worse, but we cannot be sure of this.

Again, we also investigate what happens if we decrease the price of the least profitable
station. The results of this are shown in Figure 9.

Figure 9: Decreasing the price of the station with the lowest number of visits

These results show a similar pattern as the previous figure (Figure 8). The increase
in number of visits due to the lower price, is namely not as strong as for the bottleneck
graph. What is also interesting, is the fact that some stations that do not change their
price, also get a higher number of visits. This might be caused by the fact that different
vehicles have different origin-destination pairs, which makes some stations unreachable
by certain vehicles. Thus, when a change occurs at a certain station, this influences all
other stations.

5.3. Optimal location for a new station

This section shows the results of running the optimisation model that finds the best
location to build a new station, which has been described in Section 4.4. We then com-
pare these results to simulations with the IARS model [2]. By doing this, we investigate
whether we have developed a suitable model for finding the best location for a new
charging station if all vehicles use the Intention-Aware Routing System.

As the optimisation model can take quite some time to run on larger graphs, we set
a time limit of 15 minutes. This might lead to a sub-optimal solution, but since the
model also optimises the routes of every vehicle, a sub-optimal solution could also mean
that the utility functions of every vehicle are not completely optimised, but the right
station is still chosen. We also show the optimality gap which is output of CPLEX.
This gap shows the percentage difference between the best solution found within the

27

time limit and the best bound found within the time limit. Here, the best bound is the
maximal value any integer solution could still have, based on the information the solver
has already discovered during the branch-and-bound.

Apart from the time limit, there are a couple of parameters that remain constant
throughout all simulations of the model in order to isolate the effect of changing the
other parameters. First of all, the charging capacity of a station is one in every simula-
tion. Also the time it takes to charge is one, as well as the charge loss for every edge in
the graph.

Bottleneck topology

The first graph topology we test our optimisation model on, is again the bottleneck
graph. This graph has one origin node, one destination node, and four nodes in between
the origin and destination node. In all our simulations, we started with one station,
and tried to find which of the other three locations was most suitable to build an extra
station. The initial situation is shown in the figure below.

Figure 10: Bottleneck graph with one charging station and three possible locations for
a new station

We first ran the model ten times with ten vehicles where price did not vary, but the
length of the edges did. Each edge length is a random number between 1 and 10 time
units. For each run, our optimisation model gave the best location to build the new
station, and the average utility of the vehicles. We then used the same edge lengths in
the IARS algorithm to find out which of the stations gets the most visits. This means
that we ran the IARS algorithm three times, one time for each possible new station. We
compared the optimal results of our model to the station that gave the best outcome in
IARS, and found that in nine out of the ten simulations the chosen station by our model

28

gave the best result in the IARS simulation. In the other run, all stations gave an equal
result using IARS, and our model picked one of the three. Note that in only one run,
the model reached the time limit and had an optimality gap of 3.20%. In all other runs
the result was proven to be optimal.

We also compared the computed utilities of our model and the IARS algorithm in each
simulation. Figure 11 shows the average utility per vehicle given by both the model and
the IARS simulation.

Figure 11: Comparison of the utilities given by the optimisation model and the simula-
tions with IARS

Figure 11 shows that the utilities of both models lie quite close together. This is also
supported by the fact that the maximum difference over all ten runs is 0.05, and the
average difference is 0.024.

Next, we added random prices. Each station gets a random price between 1 and 5
that it charges, and we repeat the same experiment as above. We did 3 runs and each
time, the model and IARS chose the same station as the one with the highest number
of visits. In none of the runs, the model reached the time limit. The figure below shows
the comparison of the utilities.

29

Figure 12: Comparison of the utilities given by the optimisation model and the simula-
tions with IARS for the bottleneck graph with variable pricing

The utilities now show a bit more differences, but are still quite close together.

Grid topology

As in previous sections, we also run the model on the grid graph. This time, however,
we use a smaller grid to account for the long runtime of the optimisation model. The
graph is shown in Figure 13 and has two possible locations to open a new station.

Figure 13: Grid graph with two charging stations and two possible locations for a new
station

We ran the model three times with eight vehicles. For every origin-destination pair,
there are exactly two vehicles that have that pair. We again used random prices and
random edge lengths, and did the same comparison as for the bottleneck graph. In all
runs, the model and IARS chose the same station as the optimal location. This time,
however, all runs reached the time limit, and the optimality gaps varied between 4 and
30%. The following figure shows the comparison of the utililties.

30

Figure 14: Comparison of the utilities given by the optimisation model and the simula-
tions with IARS for the grid graph graph with variable pricing

We now see a greater difference between the utilities, especially for the third simula-
tion, but this might have to do with the optimality gap. It is interesting to see that,
althought the utilities are less accurate, the correct station is still chosen.

31

6. Conclusions and future work

The goal of this thesis was to investigate the effect of a charging station’s location on
its profitability, given that the vehicles use the IARS routing algorithm. This goal has
been split up into several parts, which are investigating the effect of location without
pricing, the addition of a pricing model, investigating the effects of pricing, and finding
the best location to build a new station.

The analysis of the profitability of charging stations in the context of their location
has led to several conclusions. First of all, in a situation without pricing, it became
clear that for a small bottleneck graph there was a clear pattern, where a station on
a longer route had a lower number of visits. However, for the grid graph, this pattern
was not clear anymore. Although there were differences there was no relation between
the number of visits and the betweenness centrality. When adding the pricing model,
we have seen that a small change in price had a large influence. This was especially the
case for the bottleneck graph. Thus, a station with a low number of visits can decrease
its price to gain a lot of visitors.

The pricing extension also opens opportunities for new research. We have already seen
the extension being used for the IARS algorithm, but it could also be used as an inspira-
tion for alternative routing algorithms. It could be interesting to compare how different
routing algorithms are influenced by changes in price. Also, many more relations could
be investigated, such as the influence of the price/money trade-off parameter γ, or even
the possibility to reduce congestion by setting different prices at different stations. Also,
the pricing model could easily be improved to add the possibility of dynamic pricing
based on time of day or current number of vehicles at a station.

The last contribution of this thesis is the optimisation model that finds the best lo-
cation for a new charging station. From the runs with this model, we can conclude that
the model accurately predicts the location that will obtain the highest number of visits
if a station were to be built there, on small graphs. On the bottleneck topology, it also
accurately predicted the utilities of the vehicles if a new station was built. Also, with
varying prices, the model still predicted the station correctly.

For future work, the optimisation model could be very interesting. Especially improving
the efficiency of the model could give interesting insights on larger graphs. Also, the
model can easily be extended with dynamic pricing, and different strategies, such as
reducing congestion, could be implemented by changing the objective function.

32

7. Discussion

This thesis has shown several results, of which the reliability is discussed in this chapter.
The three main results that are discussed are the results of the runs in which pricing
was not taken into account, the large effect of pricing, and the results produced by the
optimisation model.

Without pricing, only a pattern was found for the bottleneck graph and not for the
grid graph. However, it cannot be concluded already that such a relation does not exist.
As the grid graph is larger than the bottleneck graph, the number of visits is affected by
all other stations. This might be the cause that a clear pattern could not be observed.
However, one could isolate each factor and find a pattern for every single factor.

When applying the formulated pricing extension, we found that price had a huge ef-
fect on the station choice, even though the drivers equally valued price and time. This
indicates that a station’s location has a lower influence than its price, but care needs to
be taken when concluding this. Especially the influence of the normalisation factors in
the pricing model has to be taken into account. Since these normalisation factors are
based on the road network itself (i.e. Mmax is the maximum possible price to pay on
the route), a change in a station not on the route could change the utility of a vehicle.
For instance, when a station that is not used by any of the vehicles increases its price
significantly, the vehicles might start to value time a bit more due to the fact that the
price factor is divided by a larger Mmax. Therefore, the influence of these normalisation
parameters should be researched more in order to verify the conclusions on the effect of
price in this paper.

The optimisation model gave some promising results. The choices for the new sta-
tion were always in line with the results the IARS algorithm gave. Also, the calculated
utilities were fairly close for the bottleneck graph. For the grid graph, however, these
utilities were not as close, but this is likely to be caused by the high optimality gap due
to the model not finishing within the allocated run time. Also, since we were only able
to run the model on simple and small graphs, one cannot say yet if such model would
work in a practical situation. This would require more experiments on larger and more
complex graph topologies.

33

References

[1] Global EV Outlook 2020. (2020). doi:10.1787/d394399e-en

[2] de Weerdt, M. M., Stein, S., Gerding, E. H., Robu, V., & Jen-
nings, N. R. (2016). Intention-Aware Routing of Electric Vehicles. IEEE
Transactions on Intelligent Transportation Systems, 17(5), 1472–1482.
https://doi.org/10.1109/tits.2015.2506900

[3] Zhang, S., Gajpal, Y., Appadoo, S. S., & Abdulkader, M. M. S. (2018).
Electric vehicle routing problem with recharging stations for minimizing en-
ergy consumption. International Journal of Production Economics, 203, 404–413.
https://doi.org/10.1016/j.ijpe.2018.07.016

[4] Gerding, E., Stein, S., Robu, V., Zhao, D. and Jennings, N. R. (2013). Two-sided on-
line markets for electric vehicle charging. Proc. 12th Int. Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS 2013), St. Paul, Minnesota, pp. 989-996.

[5] Ghorpade, T., Rangaraj, N., & Singh, T. (2020). Real-time charging decision with
Stochastic battery performance for Commercial Electric Vehicles. Transportation
Research Procedia, 47, 267-274. doi: 10.1016/j.trpro.2020.03.098

[6] Chen, T., Zhang, B., Pourbabak, H., Kavousi-Fard, A., & Su, W. (2018). Op-
timal Routing and Charging of an Electric Vehicle Fleet for High-Efficiency Dy-
namic Transit Systems. IEEE Transactions On Smart Grid, 9(4), 3563-3572. doi:
10.1109/tsg.2016.2635025

[7] Klein, D. J. (2010). Centrality measure in graphs. Journal of mathematical chemistry,
47(4), 1209-1223.

[8] Zhao, L., Lai, Y., Park, K., & Ye, N. (2005). Onset of traffic congestion in complex
networks. Physical Review E, 71(2). doi: 10.1103/physreve.71.026125

[9] Sun, Z., Gao, W., Li, B., & Wang, L. (2020). Locating charging stations for electric
vehicles. Transport Policy, 98, 48-54. doi: 10.1016/j.tranpol.2018.07.009

[10] Uslu, T., & Kaya, O. (2021). Location and capacity decisions for electric bus charg-
ing stations considering waiting times. Transportation Research Part D: Transport
And Environment, 90, 102645. doi: 10.1016/j.trd.2020.102645

[11] van Essen, J., Hurink, J., Hartholt, W., & van den Akker, B. (2012). Decision sup-
port system for the operating room rescheduling problem. Health Care Management
Science, 15(4), 355-372. doi: 10.1007/s10729-012-9202-2

34

A. Python code for solving optimisation model

from pulp import ∗
import random

Input parameters

Bot t l eneck graph

nVer t i c e s = 6
nVeh ic l e s = 10
C = [1]
t t r a v e l = [[−1] ∗ nVer t i c e s for i in range (nVer t i c e s)]
for i in range (nVer t i c e s) :

t t r a v e l [i] [i] = 0
t t r a v e l [0] [1] = 3
t t r a v e l [0] [2] = 7
t t r a v e l [0] [3] = 6
t t r a v e l [0] [4] = 7
t t r a v e l [1] [5] = 3
t t r a v e l [2] [5] = 7
t t r a v e l [3] [5] = 5
t t r a v e l [4] [5] = 7
o = [0] ∗ nVeh ic l e s
d = [5] ∗ nVeh ic l e s
c cap = [1] ∗ nVer t i c e s
c l = [[−1] ∗ nVer t i c e s for i in range (nVer t i c e s)]
for i in range (nVer t i c e s) :

c l [i] [i] = 0
c l [0] [1] = 1
c l [0] [2] = 1
c l [0] [3] = 1
c l [0] [4] = 1
c l [1] [5] = 1
c l [2] [5] = 1
c l [3] [5] = 1
c l [4] [5] = 1

t cha rge = 1
z max = [1] ∗ nVeh ic l e s
p = [1 , random . rand int (1 , 10) , random . rand int (1 , 10) , random .

rand int (1 , 10) , random . randint (1 , 10) , 1]
print (p)

35

T min = 7
T max = 16
M min = min(p)
M max = max(p)
gamma = 1
M = 10000

Grid graph

nVer t i ces = 8
nVehic l e s = 8
C = [2 , 3]
t t r a v e l = [[−1] ∗ nVer t i ces f o r i in range (nVer t i ces)]
fo r i in range (nVer t i ces) :
t t r a v e l [i] [i] = 0
t t r a v e l [0] [2] = 4
t t r a v e l [0] [3] = 5
t t r a v e l [1] [2] = 3
t t r a v e l [1] [3] = 4
t t r a v e l [2] [4] = 4
t t r a v e l [2] [5] = 3
t t r a v e l [3] [4] = 3
t t r a v e l [3] [5] = 1
t t r a v e l [4] [6] = 3
t t r a v e l [4] [7] = 2
t t r a v e l [5] [6] = 3
t t r a v e l [5] [7] = 5
#
o = [0 , 0 , 0 , 0 , 1 , 1 , 1 , 1]
d = [6 , 6 , 7 , 7 , 6 , 6 , 7 , 7]
#
pr in t (o)
pr i n t (d)
c cap = [1] ∗ nVer t i ces
c l = [[−1] ∗ nVer t i ces f o r i in range (nVer t i ces)]
fo r i in range (nVer t i ces) :
c l [i] [i] = 0
c l [0] [2] = 1
c l [0] [3] = 1
c l [1] [2] = 1
c l [1] [3] = 1
c l [2] [4] = 1
c l [2] [5] = 1
c l [3] [4] = 1

36

c l [3] [5] = 1
c l [4] [6] = 1
c l [4] [7] = 1
c l [5] [6] = 1
c l [5] [7] = 1
#
t cha r g e = 1
z max = [2] ∗ nVehic l e s
p = [0 , 0 , 1 , 1 , 2 , 1 , 0 , 0]
T min = 9
T max = 15
M min = 0
M max = 2
gamma = 1
M = 10000

problem = LpProblem (” F a c i l i t y L o c a t i o n ” , LpMaximize)

Decis ion v a r i a b l e s
x = LpVariable . d i c t s (” route ” , (range (nVeh ic l e s) , range (

nVer t i c e s) , range (nVer t i c e s)) , 0 , 1 , LpInteger)
s = LpVariable . d i c t s (” new stat ion ” , (range (nVer t i c e s)) , 0 , 1 ,

LpInteger)
t a r r i v a l = LpVariable . d i c t s (” a r r i v a l t i m e ” , (range (nVeh ic l e s) ,

range (nVer t i c e s)) , 0 , None , LpInteger)
t wa i t = LpVariable . d i c t s (” wa i t ing t ime ” , (range (nVeh ic l e s) ,

range (nVer t i c e s)) , 0 , None , LpInteger)
z = LpVariable . d i c t s (” s t a t e o f c h a r g e ” , (range (nVeh ic l e s) ,

range (nVer t i c e s)) , 0 , None , LpInteger)
c = LpVariable . d i c t s (” c h a r g e s t a r t ” , (range (nVeh ic l e s) , range (

nVer t i c e s) , range (T max)) , 0 , 1 , LpInteger)
b = LpVariable . d i c t s (” cha rge cu r r en t ” , (range (nVeh ic l e s) , range

(nVer t i c e s) , range (T max)) , 0 , 1 , LpInteger)

Obj e c t i v e func t i on
problem += lpSum ([gamma ∗ (T max − t a r r i v a l [f] [d [f]]) / (T max

− T min) + (1 − gamma) ∗ (M max − lpSum ([x [f] [i] [i] ∗ p [i]
for i in range (nVer t i c e s)])) / (M max − M min) for f in
range (nVeh ic l e s)]) , ” U t i l i t y ”

Cons t ra in t s :

Making sure t r a v e l from i to j i s on ly p o s s i b l e i f t h e r e i s
an edge

37

for f in range (nVeh ic l e s) :
for i in range (nVer t i c e s) :

for j in range (nVer t i c e s) :
i f t t r a v e l [i] [j] == −1 and i != j :

problem += x [f] [i] [j] == 0

Origin on ly has one outgo ing edge
for f in range (nVeh ic l e s) :

problem += lpSum ([x [f] [o [f]] [j] for j in range (nVer t i c e s)
i f j != o [f]]) == 1

Des t ina t ion only has one incoming edge
for f in range (nVeh ic l e s) :

problem += lpSum ([x [f] [i] [d [f]] for i in range (nVer t i c e s)
i f i != d [f]]) == 1

Every v e r t e x has as many incoming edges as outgo ing edges
for f in range (nVeh ic l e s) :

for j in range (nVer t i c e s) :
i f j == o [f] or j == d [f] :

continue
problem += lpSum ([x [f] [i] [j] for i in range (nVer t i c e s)

]) == lpSum ([x [f] [j] [k] for k in range (nVer t i c e s)])

A ve h i c l e can only have a wa i t ing time at a s t a t i o n i f i t
charges t h e r e

for f in range (nVeh ic l e s) :
for i in range (nVer t i c e s) :

problem += t wa i t [f] [i] <= M ∗ x [f] [i] [i]

Cons t ra in t s f o r time prog re s s i on
for f in range (nVeh ic l e s) :

for i in range (nVer t i c e s) :
for j in range (nVer t i c e s) :

i f i == j :
continue

problem += −M ∗ (1 − x [f] [i] [j] + x [f] [i] [i]) <=
t a r r i v a l [f] [i] + t wa i t [f] [i] + t t r a v e l [i] [j]
− t a r r i v a l [f] [j]

problem += t a r r i v a l [f] [i] + t wa i t [f] [i] +
t t r a v e l [i] [j] − t a r r i v a l [f] [j] <= M ∗ (1 − x [f
] [i] [j] + x [f] [i] [i])

problem += −M ∗ (2 − x [f] [i] [j] − x [f] [i] [i]) <=
t a r r i v a l [f] [i] + t wa i t [f] [i] + t cha rge +

38

t t r a v e l [i] [j] − t a r r i v a l [f] [j]
problem += t a r r i v a l [f] [i] + t wa i t [f] [i] +

t cha rge + t t r a v e l [i] [j] − t a r r i v a l [f] [j] <= M
∗ (2 − x [f] [i] [j] − x [f] [i] [i])

Cons t ra in t s used f o r charg ing capac i t y
for f in range (nVeh ic l e s) :

for i in range (nVer t i c e s) :
problem += t a r r i v a l [f] [i] + t wa i t [f] [i] >= lpSum (c [f

] [i] [t] ∗ t for t in range (T max)) − M ∗ (1 − x [f] [i
] [i])

problem += t a r r i v a l [f] [i] + t wa i t [f] [i] <= lpSum (c [f
] [i] [t] ∗ t for t in range (T max)) + M ∗ (1 − x [f] [i
] [i])

for f in range (nVeh ic l e s) :
for i in range (nVer t i c e s) :

problem += lpSum (c [f] [i] [t] for t in range (T max)) <= 1

for f in range (nVeh ic l e s) :
for i in range (nVer t i c e s) :

for t in range (T max) :
problem += b [f] [i] [t] == lpSum (c [f] [i] [t ha t] for

t ha t in range (max(0 , t − t cha rge + 1) , t + 1))

for i in range (nVer t i c e s) :
for t in range (T max) :

problem += lpSum (b [f] [i] [t] for f in range (nVeh ic l e s))
<= c cap [i]

Cons t ra in t s f o r p rog re s s i on o f s t a t e o f charge
for f in range (nVeh ic l e s) :

for i in range (nVer t i c e s) :
for j in range (nVer t i c e s) :

i f i == j :
continue

problem += z [f] [i] − z [f] [j] − c l [i] [j] <= M ∗ (1
− x [f] [i] [j] + x [f] [i] [i])

problem += −M ∗ (1 − x [f] [i] [j] + x [f] [i] [i]) <= z [
f] [i] − z [f] [j] − c l [i] [j]

problem += z max [f] − z [f] [j] − c l [i] [j] <= M ∗ (2
− x [f] [i] [j] − x [f] [i] [i])

problem += −M ∗ (2 − x [f] [i] [j] − x [f] [i] [i]) <=
z max [f] − z [f] [j] − c l [i] [j]

39

Making sure on ly one s t a t i o n i s b u i l t
problem += lpSum (s [i] for i in range (nVer t i c e s)) <= 1

Making sure non−charg ing s t a t i o n s can only charge i f the new
s t a t i o n i s b u i l t t h e r e

for f in range (nVeh ic l e s) :
for i in range (nVer t i c e s) :

i f i in C:
continue

problem += x [f] [i] [i] <= s [i]

Making sure v e h i c l e s do not go above maximum charge
for f in range (nVeh ic l e s) :

for i in range (nVer t i c e s) :
problem += z [f] [i] <= z max [f]

Solve problem
problem . s o l v e (CPLEX CMD(timeLimit =900))

40

	Introduction
	Literature
	Routing algorithms
	Placing charging stations

	Routing model
	Model
	Routing policy
	Algorithms

	Methodology
	Pricing extension
	Pricing model
	Utility function

	Determining the most profitable location for a new station

	Results
	Most visited location
	Effect of variable pricing
	Optimal location for a new station

	Conclusions and future work
	Discussion
	Appendix Python code for solving optimisation model

