
Program Synthesis from Rewards using Probe and FrAngel
Impact of Exploration-Exploitation Configurations on Probe and FrAngel in Minecraft

Nicolae Filat1

Supervisors: Sebastijan Dumančić 1, Tilman Hinnerichs 1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 23, 2024

Name of the student: Nicolae Filat
Final project course: CSE3000 Research Project
Thesis committee: Sebastijan Dumancic, Tilman Hinnerichs, Wendelin Böhmer

Abstract
Program synthesis involves finding a program that
meets the user intent, typically provided as in-
put/output examples or formal mathematical speci-
fications. This paper explores a novel specification
in program synthesis - learning from rewards. We
explore existing synthesizers, Probe and Frangel, to
solve navigation tasks inside the popular Minecraft
game. The problem formulation is inspired by re-
inforcement learning but was adapted to program
synthesis. Similar to reinforcement learning, bal-
ancing exploration and exploitation is essential for
solving the task efficiently. Excessive exploration
can prevent finding the correct program because the
feedback from the environment is not used. On the
other hand, excessive exploitation is not ideal, as
seemingly promising programs might not lead to
the actual solution. This work compares different
trade-offs between exploration and exploitation of
two state-of-the-art algorithms, Probe and FrAngel
when applied to Minecraft environments.

1 Introduction
Instead of writing code for computers, what if the computers
could write code for us? The field of program synthesis aims
to explore this exact question. If program synthesis were fully
realized for any user specification, this would revolutionize
many fields within computer science. In the field of software
development, instead of manual coding, developers could de-
fine the desired functionality of a system, and the synthesizer
will generate the code for them. This would exponentially in-
crease the efficiency of creating software, leading to massive
technology growth.

Traditionally, program synthesis relies on input-output ex-
amples to define user intent. Defining example-based spec-
ifications for programs interacting with a dynamic environ-
ment is not trivial. This paper explores a novel approach
that uses rewards to define user intent. The goal is to find
a program that completes a user-defined task by observing
the environment’s state and rewards. This could be used to
generate programs in dynamic environments such as playing
video games. In this work, the considered environment is the
Minecraft game. The problem setup is similar to reinforce-
ment learning, where the agent learns a decision policy by
interacting with the environment. Decision policies are often
learned through complex neural networks, making it difficult
to reason about them. However, with program synthesis, the
policy is described as a program (e.g., lines of code), which
is much easier for humans to understand and modify.

Balancing exploration and exploitation is an important as-
pect when interacting with dynamic environments. To illus-
trate this idea, consider a treasure hunt in which the initial
wandering to gather hints represents exploration, and using
those hints to find the treasure represents exploitation. If
one exploits too soon, they risk following misleading hints,
whereas excessive exploration may result in time running
out. Thus, balancing exploration and exploitation is the key

Figure 1: Visual representation of balancing exploration and ex-
ploitation.

to guiding the search effectively. Likewise, in program syn-
thesis, balancing exploration and exploitation is essential for
efficiently searching for the correct program. Figure 1 shows
a visual representation of this tradeoff.

This balance is a fundamental dilemma that arises in many
domains beyond treasure hunting, including decision-making
problems and machine learning tasks [1]. Achieving the de-
sired outcome in decision-making problems requires care-
fully balancing the two extremes [2].

In the context of program synthesis, excessive exploration
can prevent finding the correct program because the search
fails to incorporate the environment’s feedback. On the
other hand, excessive exploitation is not ideal, as seemingly
promising programs might not lead to the actual solution.

This paper explores different exploration-exploitation con-
figurations of two existing state-of-the-art program synthesis
algorithms: Probe [3] and FrAngel [4]. The two algorithms
were chosen because they include exploration and exploita-
tion phases. To understand the impact of different exploration
and exploitation trade-offs, the following research questions
are considered:

• How do we use existing synthesizers to learn from re-
wards?

• How do different exploration-exploitation configura-
tions affect the performance of FrAngel and Probe in
MineRL?

To answer the above questions, the paper makes the fol-
lowing contributions:

• Allow the Probe algorithm to support iterators different
from the systematic bottom-up iterator.

• Enable FrAngel to work with arbitrarily domain-specific
languages (it was only implemented for Java)

• Generalize Probe and FrAngel to allow for reward-based
specifications

• Provide empirical results on the effectiveness of vari-
ous exploration-exploitation configurations in Probe and
FrAngel.

2 Related work
While recent work in program synthesis has explored defin-
ing specifications as rewards, experimental work on tradeoffs
of exploration exploitation has not yet been done. The work
of Natarajan et al. [5] outlines the concept of programming
by rewards, with the goal of finding a decision function f

Figure 2: Visualization of the program synthesis process. Given a
user specification and a program space to search in, the synthesizer
finds a satisfying program.

that maximizes the expected reward. Furthermore, the study
by Trivedi et al. [6] utilizes program synthesis to generate
programs for reinforcement learning tasks solely based on re-
wards. However, the papers do not motivate the reasoning be-
hind the choice of exploration-exploitation parameters. This
research aims to address the gap in the current literature.

3 Background
This section provides the necessary background to understand
the paper. Section 3.1 describes the field of program syn-
thesis. Sections 3.2 and section 3.3 describe the concepts of
bottom-up search and probabilistic context-free grammars to
ease the understanding of the Probe algorithm. Finally, the
MineRL experiment environment is described in 3.4.

3.1 Program synthesis
In program synthesis, the goal is to find a program that sat-
isfies the user intent. This field is challenging due to the
diversity of user specifications and the large, often infinite,
program search space [7]. Existing work in program syn-
thesis uses specifications defined as input/output examples
[8], incomplete programs [9], traces [10] or even natural
language [11] [12]. Given the user’s intent, a program is
searched to satisfy the specification. The program search
space is usually defined using a grammar G that can either
be a general-purpose programming language (e.g., Python,
Java) or a domain-specific language - a language specifically
designed for a class of problems. The goal is to synthesize
a program p ∈ L(G) that satisfies the user specification E .
A visualization of the program synthesis process is shown in
Figure 2.

Common algorithms for exploring the program space
include using enumeration search (e.g., BFS, DFS, A*),
constraint-based solvers (e.g., SAT, SMT), stochastic search
algorithms (e.g., Genetic algorithms), and machine-learning-
based [11] (e.g., AlphaCode).

3.2 Bottom-up enumeration
One often used method in program synthesis is bottom-up
search. Bottom-up search is a type of enumerative search
that systematically explores the search space in a defined way
(e.g., program depth). The procedure generates programs
starting from terminal symbols and slowly builds up towards
more complex programs. It uses dynamic programming to
remember previously generated programs to efficiently gen-
erate new ones.

3.3 Probabilistic context-free grammars
Some synthesizers use a probabilistic context-free grammar
(PCFG) to explore the program search space. A PCFG ex-

tends context-free grammar (CFG) by assigning probabilities
to each production rule, enabling the grammar to guide the
search process based on these probabilities. The Probe algo-
rithm described in more detail in section 4 uses a PCFG to
guide the search.

3.4 Minecraft Enviornment

MineRL [13] is a research environment based on the popular
game Minecraft, designed to facilitate research in reinforce-
ment learning and artificial intelligence in general. It pro-
vides a platform where agents can learn and perform com-
plex tasks by interacting with a dynamic and rich 3D world.
MineRL includes various predefined tasks and challenges,
such as navigation, resource gathering, and crafting, which
require strategic planning and problem-solving skills. The
observed environment state is represented as an RGB image
of the Minecraft screen. The environment provides actions
that mirror those of human players (e.g., navigation, inven-
tory management, crafting).

The MineRL environment provides many different tasks:
navigating from point A to point, chopping trees, finding di-
amonds, etc. The reward function can either be dense, mean-
ing that rewards are provided frequently (e.g., the agent is
moving closer to target), or sparse, meaning that rewards are
given infrequently, often only upon task completion (e.g., the
agent has mined diamond).

4 Probe algorithm description

The Probe [3] synthesizer is an algorithm that uses a prob-
abilistic grammar to find a program that satisfies an input-
output specification. The probabilistic grammar is updated
on the fly based on programs that partially satisfy the speci-
fication. The insight used is that such programs often share
syntactic similarities with the final solution . The bottom-up
search enumerates programs from the probabilistic grammar
in order of decreasing likelihood (highest probabilities first).
On a high level, the algorithm is a bottom-up search guided
by a probabilistic grammar that favors programs that partially
satisfy the specification (i.e., some tests pass).

To speed up the search process, the algorithm checks if a
program’s execution output matches that of a previous pro-
gram. If that is the case, the two programs are considered
equivalent, and the second program is excluded from fur-
ther consideration. This technique is called observational
equivalence and is a powerful pruning technique employed
in program-synthesis [14].

The number of cycles the bottom-up iterator completes be-
fore updating the grammar is an important setting for balanc-
ing exploration and exploitation. A low setting favors exploit-
ing the grammar probabilities more often, while a high setting
favors exploring new programs. Finding a suitable value for
the cycle length is important for an effective balance of ex-
ploration and exploitation. We believe that no universal cycle
length value fits all problem configurations; instead, the ap-
propriate value should be investigated through experimenta-
tion.

// #1. (10, 9) -> []
// #2. (10, 10) -> []
// #3. (10, 11) -> [10]
// #4. (10, 12) -> [10, 11]
// #5. (-2, 2) -> [-2, -1, 0, 1]
List<Integer> getRange(int start, int end) {
ArrayList <Integer> list = new ArrayList <>();
for (int i = 0; start + i < end; i++)
list.add(Integer.valueOf(start + I));
return list;

}

Listing 1: Example of program synthesized by FrAngel with 5
input/output examples given in comments. This example was taken
from the original FrAngel paper.

5 FrAngel algorithm description
FrAngel [4] is a component-based synthesis algorithm
that synthesizes Java functions with complex conditionals.
FrAngel uses input-output examples and the function signa-
ture to find the correct program. The core idea of the algo-
rithm is to use random search to explore programs that par-
tially satisfy the specification and reuse them to guide the
search. The algorithm mines useful fragments from partial
solutions, which are then used to bias the random program
generator towards more promising programs. This process
guides the search towards exploiting partially successful pro-
grams.

FrAngel utilizes a concept called angelic conditions to han-
dle conditions within the generated programs. These con-
ditions are optimistically evaluated during the initial search
phase, meaning that the most favorable outcome for the con-
dition is assumed. Once a potential solution is identified,
these conditions are refined and validated to ensure the final
program handles all conditions correctly.

5.1 Example synthesis
As an example of the capabilities of the FrAngel synthesizer,
consider the code example in 1 that was taken from the orig-
inal paper [4]. In this task, the synthesizer is asked to write a
function getRange(int start, int end) that returns the
number in the interval [start, end). Besides the function
signature, input-output examples are provided as input to the
algorithm. FrAngel deduces from the function signature that
it can use List, Integer, and all their superclasses within
the function body. Additionally, the user specifies that the
ArrayList class is also permitted. Despite the large search
space, FrAngel finds the correct solution in seconds. This ex-
ample proves the efficiency of FrAngel in synthesizing com-
plex Java programs.

5.2 Fragment mining
Similar to Probe, FrAngel uses the insight that partially suc-
cessful programs often share syntactic similarities with the
complete solution. To leverage this insight, FrAngel extracts
subprograms from the found partials solution called frag-
ments. The random program generation procedure works
by recursively selecting grammar rules to construct a pro-
gram. It begins by selecting a rule, which could be a

statement, expression, or a constant. If the rule has chil-
dren (e.g., the body of a loop or branches of a condi-
tional statement), the procedure calls itself recursively to
generate the child components. This recursive process
continues until all terminal components are created. At
each recursive step, based on use fragment probability,
the procedure chooses to either use a fragment or gener-
ate a random child from scratch. If fragments are to be
used, they can either be used entirely (i.e., copy-paste),
or random modifications can be made. With probability
use entire fragment probability fragments are used;
otherwise, random modifications are made to the fragment
using mutation probability.

5.3 Configuration variables for
exploration-exploitation

There are a few configuration variables in the fragment min-
ing generation to tune exploration and exploitation:

• use fragments chance – A value of 0 indicates ran-
dom search, meaning constant exploration, while a value
of 1 represents continuous exploitation of previously
mined fragments (if any). The original paper uses a
value of 0.5 to have an equal trade-off between random
search and mining fragments.

• use entire fragment chance – A value of 0 implies
modifications can be made to fragments when inserted,
whereas a value of 1 indicates that fragments never
use random mutations. Depending on the structure of
the fragments and the problem type, random mutations
might help. However, mutating fragments too often
could lead to excessive exploration and misuse of par-
tially correct programs.

6 Methodology
The main contributions of this paper are:

1. Generalize Probe to allow for iterators other than the
bottom-up search.

2. Modify the Probe algorithm to learn from rewards in-
stead of examples.

3. Generalize FrAngel to allow arbitrary grammars and use
different iterators.

4. Use FrAngel with reward-based specifications.

5. Experiment with different exploration-exploitation
trade-offs for Probe and MineRL within MineRL
environments.

Steps 1 and 2 were conducted together with Nils Marten Mikk
and Timur Mukminov while steps 3 and 4 were implemented
by George Latsev and Alperen Guncan.

6.1 Program synthesis from rewards
A formal description is provided to understand the extension
of both algorithms to reward-based formulations. The prob-
lem description is inspired by reinforcement learning and is
adapted to program synthesis. The specification E is phrased
as solving a user-defined task in a given environment. The

environment E is described by a finite set A of actions and
a set of states S. To guide the search, a reward function
R : S ×A → R is provided by the environment. The reward
function R indicates the reward that the agent receives when
performing the action a in state s. The goal is to find a pro-
gram p from the given grammar G that, after being executed,
achieves the highest possible reward in the environment E.
Formally, the goal is defined as maxp∈L(G) reward(p) where
reward(p) is the achieved reward when executing program p
in the environment E .

6.2 Probe generalization
The generalization of the Probe algorithm we implemented
enables the usage of different iterators beyond the bottom-up
iterator. This feature improves the flexibility of the algorithm
but also enables the execution of more creative experiments.
Using this generalization, an iterator that alternates between
random search and systematic bottom-up search was imple-
mented. The alternating iterator generates a random program
with probability p, and with probability 1− p, it uses the sys-
tematic bottom-up iterator. The alternating iterator was used
to allow for a greater degree of exploration in the Probe algo-
rithm.

6.3 Probe learning from rewards
There are a few questions that need to be answered when gen-
eralizing the implementation to allow reward-based specifica-
tions:

• How to define partial solutions? (e.g. When does a pro-
gram qualify as partially satisfying the specification?”)

• How to define observational equivalence with rewards?

• How to update the grammar based on partial solutions?

Firstly, there are multiple options to consider when defin-
ing a partial solution. One option could be to define a partial
solution as a program that achieves a reward r with r > 0.
However, this is not viable since many programs can achieve
positive rewards. Ideally, the set of partial solutions is small
and guides the search towards solving the task. We have de-
fined a partial solution as a program with a reward higher than
the previously best achieved reward. Using this approach, the
considered partial solutions will always perform better than
previous programs and thus guide the search toward achiev-
ing higher rewards.

Secondly, the environment state can be used to define the
observational equivalence of programs. If the output of two
programs results in the same environment state s, they are
considered equivalent. The state definition is specific to each
environment E.

Thirdly, the probabilistic grammar needs to be updated af-
ter each synthesis cycle to bias the found partial solutions.
The formula used in the original Probe paper updates the
probability of rules in terms of the computed fitness for each
rule. The fitness of a grammar rule indicates how well that
rule performs in partial solutions that use it. Since Probe uses
input-output examples, the fitness is computed as the highest
number of input-output examples that partial solutions using
that rule satisfy. The insight used is that grammar rules used

in partial solutions that satisfy a large subset of the specifica-
tion are more likely to appear in programs that satisfy the en-
tire specification. In our approach, we leverage the same idea
but use the ratio of the achieved reward to the best possible re-
ward instead of the ratio of correct solved examples to a total
number of examples. The best reward is a constant specific
to each environment and represents the maximum achievable
reward.

6.4 FrAngel generalization
This section describes the improvement made to the FrAngel
algorithm to broaden its applications for synthesizing code
beyond the Java programming language. The generalization
of the algorithm also enables other iterators to make use of
fragment mining and angelic conditions.

Arbitrary grammar definition
A major limitation of FrAngel is that it can only generate pro-
grams for the Java programming language. Given its effec-
tiveness when used for Java programs, the algorithm is ex-
pected to generalize well to other programming languages
or domain-specific languages. For this reason, we have re-
implemented the algorithm to allow for arbitrary grammars as
input. While most algorithm steps remain independent of the
grammar choice, the choice becomes important when using
angelic conditions. Identifying which grammar rule might
represent a conditional statement is challenging, especially
for user-defined languages. For this reason, we require the
user to specify which grammar rules actually represent con-
ditionals. This addition broadens the algorithm’s application,
allowing it to synthesize code for other languages, such as
Python or user-defined languages.

Learning from rewards
To adapt the FrAngel algorithm to work with reward-based
specifications, the reward space was discretized into evenly
spaced thresholds to form test cases. Each test case checks
whether the program achieves a reward higher than the re-
spective test case threshold. This approach reformulates a
reward-based formulation in terms of test cases to allow us-
ing FrAngel on reward-based specifications.

Generalize the iterator
FrAngel uses random search as its primary iteration method.
However, this is not a requirement, as alternative iterators can
also be used. This generalization enables iterators other than
random search to use the core FrAngel ideas: fragment min-
ing and angelic conditions. Additionally, iterators can receive
information about mined fragments to enable novel uses of
fragments. This could enable other stochastic iterators (e.g.
Metropolis-Hastings, Genetic search) to utilize fragments.

Configurable probabilities
The original description of FrAngel includes numerous hard-
coded probability values that impact fragment mining and
angelic condition generation, therefore influencing the bal-
ance between exploration and exploitation. Our implementa-
tion introduces a modular configuration for these probabili-
ties. This flexibility facilitated experimentation with various
exploration-exploitation configurations.

Figure 3: The starting position of the MineRL environment with
seed 4231. On the left, the metadata about the environment is
shown, while on the right, the view of the player is shown.

7 Experimental Setup and Results
This section outlines the experiments conducted with vari-
ous exploration-exploitation trade-offs. First, the experimen-
tal setup is described in detail, followed by the presentation
of results for Probe and FrAngel.

7.1 Experiment setup
The code was implemented in the Julia programming lan-
guage using the Herb.jl [15] library. Instructions on how to
setup the environment and run the experiments are available
on Github 1.

Navigate Task
The MineRLNavigateDense-v0 environment was used for
experimentation because it provides an appropriate difficulty
level for synthesizing programs from rewards only. The task
is to navigate to a diamond block that is 64 blocks away
from the initial position of the player. The rewards are dense,
meaning that the reward is defined as how much closer the
agent is to the target compared to the previous frame.

Environment simplifications
Extracting information from image frames is a challenging
task that typically involves the use of machine learning. Al-
though pre-trained machine learning models can be used to
detect objects such as blocks and trees, integrating these fea-
tures into the synthesis algorithm would also pose significant
difficulties. Therefore, we have decided to only use the envi-
ronment’s rewards to guide the search process. This approach
essentially treats the Minecraft environment as a black-box
that provides rewards for each action. A few environment
simplifications were made because the synthesizer does not
use visual information. Firstly, the player was given infinite
life and stamina to prevent the player from dying while a pro-
gram was being executed. Secondly, animals were removed
from the environment to prevent them from obstructing the
target location. Thirdly, when simulating a Minecraft run,
the player was hard-coded to jump and sprint to increase the
chances of reaching the goal.

1https://github.com/Herb-AI/HerbSearch.jl/tree/
exploration-vs-exploitation-in-frangel-and-probe/

Figure 4: Plot of the maximum achieved reward when running Probe
with different cycle lengths. For each seed, the cycle lengths are
shown in order. The red line (y = 70) corresponds to a program
that reaches very close to the diamond block but does not touch it.
When the diamond block is touched, the environment awards an ad-
ditional reward of 100. Hence, any bar above 100 indicates that the
navigation task was solved.

Methodology
Many navigation tasks can be created by providing a seed to
the Minecraft world generation. Each world has different start
and target positions. The following environment seeds were
chosen: 1234, 4123, 4231, 9581, 9999 because they generate
worlds with different difficulty levels (e.g., hills, forests, wa-
ter, sand). As a visual representation of a potential world con-
figuration, Figure 3 shows the starting position of the player
for environment 4231.

The experiments were run on an Aspire 7 laptop run-
ning Ubuntu with AMD Ryzen 7 5700U processor and
16GB of RAM. All experiments involved running dif-
ferent configurations of exploration-exploitation for the
MineRLNavigateDense-v0. To account for randomness,
each configuration was run 3 times per world seed, and the
average and standard deviation of the runtimes for each seed
were plotted. The reason behind the low number of runs is
that the MineRL simulation environment is slow, and it was
not feasible to run more experiments within the time limit.

7.2 Probe Results
Grammar definition
The grammar used by the Probe algorithm to synthesize pro-
grams for the MineRL environment is shown in Figure 5. The
starting point of the grammar is the Seq symbol, which rep-
resents a sequence of actions that the program can take. Each
action is defined as a direction and a multiplier that indicates
how many times to go in that direction. Eight directions are
considered: forward, back, left, right, forward-right, forward-
left, back-left, and back-right.

Because of the increased difficulty of synthesizing a
program that reaches the end goal from the beginning,

https://github.com/Herb-AI/HerbSearch.jl/tree/exploration-vs-exploitation-in-frangel-and-probe/
https://github.com/Herb-AI/HerbSearch.jl/tree/exploration-vs-exploitation-in-frangel-and-probe/

Seq → best,M
best → ∅
M → M,A | M → A
A → (T,Dict(move→ D))

D → forward | back | left | right | forward-left
D → forward-right | back-left | back-right
T → 5 | 10 | 25 | 50 | 75 | 100

Figure 5: The grammar definition used by the Probe algorithm in the
MineRL environment

checkpointing is used. After each synthesis cycle, the pro-
gram that achieves the best reward is saved as a checkpoint in
the grammar using the best rule. Later generated programs
will include the actions of the best program and start explor-
ing from the saved checkpoint. The checkpointing technique
assumes that reaching the target goal starting from the last
checkpoint is easier than starting from the initial position.

Experiments
Figure 4 shows a plot with the maximum achieved reward
when running using different cycle lengths. The graph indi-
cates that cycle lengths of 5 and 6 achieve the best perfor-
mance. Both configurations get very close to the target but
do not manage to touch it in the first and last world. Addi-
tionally, in the world seed 9581, the configuration with cycle
length 6 succeeds in completing the task. We believe that
cycle lengths with lower values perform better because they
exploit partial programs more often. In every synthesis cycle,
the closest position to the target is saved, and future programs
start from there. Faster synthesis cycles imply faster use of
checkpointing and, thus, more efficient navigation.

However, Probe’s performance is relatively poor, solving
only 2 out of 5 tasks within the time limit. This could be
attributed to its use of the bottom-up iterator. The difficulty
of the navigation task lies in finding the correct direction to
move in as fast as possible. Because the systematic bottom-up
iterator explores each direction sequentially, finding the cor-
rect direction of movement is inefficient. In world seed 4231,
all Probe runs get stuck in a forest dead-end, from which it
takes too much time to get out. Random search might fix this
issue by allowing the algorithm to ”guess” a correct direction
sooner, but also to escape local maximum. The hypothesis is
that the efficiency could improve if a percentage p of the gen-
erated programs is random.

To investigate this idea, experiments were run using an al-
ternating iterator with probabilities p to 0.3, 0.5, and 1 as
shown in Figure 6. The plot shows the average runtime for
solving the same world seeds as before. It can be seen the first
world seed is solved compared to the previous experiment.
Based on the average runtime and frequency of appearing in
the graph, the best alternating random configuration is with
p = 0.3. Configurations with p = 0.5 and p = 1 decrease the
performance due to excessive exploration. This experiment
suggests that using random search for 30% of the time pro-
vides a good balance between exploration and exploitation.

Figure 6: Box plot of the runtime solve time when running Probe
with different alternating random probabilities p. The time limit is
300 seconds. When a run does not manage to solve the task, the
average runtime is 300 seconds, and a small yellow line is shown.

The downside of adding random exploration is that the
standard deviation increases. The same configuration can
solve the task one time but fail next time. Out of the 3 runs on
world seed 9999 for the configuration with p = 0.3, at least
one of them has timed out as the blue bar touches the y = 300
line. However, when running without randomness, the num-
ber of solved attempts is consistent: either all the runs lead to
the solution, or no run leads to the solution.

7.3 FrAngel results
The grammar used for integrating FrAngel with the Minecraft
environment is similar to that used in Figure 5. To utilize the
strengths of FrAngel, the grammar was extended to allow for
while loops and conditions. The number of iterations a while
loop makes is restricted to prevent infinite looping programs.
All the experiments with FrAngel had a timeout of 200 sec-
onds.

Figure 7 shows the mean, maximum, and minimum run-
time values when running FrAngel with different mutation
probabilities. It can be observed that the configuration with
no mutation (i.e., mutation prob = 0) generally performs
better than other configurations across all world seeds. The
exception is seed 4231, where the configuration with a muta-
tion probability of 0.5 yields the best performance, being the
only one to solve the seed. This environment, represented by
this seed, is a dense forest with many trees, making navigation
challenging. Hence, allowing more exploration with a higher
mutation probability improves the performance in this case.
However, this is the only environment seed where increased
mutation proves more efficient.

Using fragments less often proves to be more efficient on
the first 3 world seeds, as can be seen by Figure 8. The con-
figurations with lower probabilities 0.2 and 0.4 have a lower
average solve time than those with probabilities 0.6 and 0.8.
This could be because the structure of the Minecraft navi-

Figure 7: Plot with the maximum, minimum, and mean runtime of
FrAngel when using different mutation probabilities and a constant
probability of 0.4 for using fragments. The timeout is 200 seconds.

Figure 8: Plot that shows the maximum, minimum,
and mean runtime of FrAngel when using different
use entire fragment probabilities and a constant mu-
tation probability of 0.25. The timeout is 200 seconds.

gation task does not benefit from reusing fragments. If the
Minecraft world is similar to a maze, using fragments is not
effective; however, if the land is mostly flat and there are
few obstacles, reusing fragments proves more effective. As
the worlds described by seeds 9581 and 9999 are mostly flat
and predictable, configurations with probabilities 0.6 and 0.8
achieve better performance. Interestingly, on seed 9581, the
configuration with a probability of 0.8 performs much worse
than the one with 0.6, suggesting that exploiting fragments
too early may cause the player to get stuck near obstacles,
such as trees, preventing further progress.

8 Responsible Research
Conducting research on learning exploration and exploitation
trade-offs in program synthesis has few ethical implications.
However, ensuring that the presented results are reproducible
by other researchers is crucial. For that purpose, all the im-
plementation details and the experiment data are available on

Github2 as part of the Herb framework. The Github wiki doc-
umentation contains detailed instructions on how to set up
the environment and install the project dependencies. Addi-
tionally, the random number generator used was given a fixed
seed to ensure the reproducibility of experiments.

9 Discussion and Limitations
It can be seen that combining random search with the vanilla
algorithm increases its performance. We believe this is the
case because the Minecraft navigation task requires more ex-
ploration of different movements than a systematic search.
The bottom-up iterator of grammar used in experiments
(Figure 5) first iterates the multiplier and then different di-
rections meaning (5,"forward"), (10,"forward"), . . . (100,
"forward"), (5, "back"), (10, "back")) Changing the
grammar to iterate first over direction and over multipliers
could improve the performance of the Probe algorithm.

Most of the time, the synthesizer struggles to avoid obsta-
cles in the environment. Lacking information about nearby
objects, the algorithms frequently attempt to move into trees
or blocks. This issue is particularly seen with Probe. If
moving forward increases the reward, Probe is more likely
to reuse that direction. However, if a tree is directly in front
of the player, Probe will continue to generate programs that
attempt to move forward. Only after all directions that go for-
ward have been exhausted will the algorithm try to turn right
or left. This issue could be resolved if image processing is
incorporated into the algorithm.

During experimentation, we noticed that the chosen ran-
dom seed influences the outcome of the run. Sometimes
changing the seed could make the difference between solv-
ing the task or not. Because of time constraints, each con-
figuration was run only 3 times for each world seed. Future
research should aim to run experiments for longer periods of
time and on larger sets of seeds to further reduce the impact
of randomness.

10 Conclusions and Future Work
This work aimed to explore using existing synthesis algo-
rithms for reward-based specifications and investigate how
different exploration-exploitation configurations affect the
performance of FrAngel and Probe. The implementation of
both algorithms had to be generalized to enable learning from
rewards. For Probe, the changes included redefining partial
solutions, observational equivalence, and the function that up-
dates the grammar rules. For FrAngel, the algorithm was gen-
eralized to allow arbitrary grammars, and the reward space
was discretized to enable learning from rewards. Further-
more, both generalizations allow for using different iterators
other than the ones included in the original papers.

Both algorithms proved effective when applied to
Minecraft navigation tasks. By modifying different config-
uration variables of the two algorithms, experiments were
conducted with different exploration-exploitation trade-offs.
For Probe, experiments were conducted with different cycle

2https://github.com/Herb-AI/HerbSearch.jl/tree/
exploration-vs-exploitation-in-frangel-and-probe/

https://github.com/Herb-AI/HerbSearch.jl/tree/exploration-vs-exploitation-in-frangel-and-probe/
https://github.com/Herb-AI/HerbSearch.jl/tree/exploration-vs-exploitation-in-frangel-and-probe/

lengths and various probabilities for the alternating iterator.
For FrAngel, the experiments involved changing the frag-
ment mutation and usage probabilities to explore different
exploration-exploitation strategies. In both algorithms, in-
creased exploration appears to enhance the performance of
Minecraft navigation tasks. Since the algorithms lack aware-
ness of the environment’s structure and rely only on rewards,
avoiding obstacles is challenging. Hence, more exploration
often results in better performance.

There are several ideas that can be further researched when
synthesizing programs from rewards using MineRL:

• Use traces of human players to guide the search process.

• Integrate the visual feedback from the environment into
the algorithm’s decision process.

• Use random exploration or backtrack to the previous
checkpoint when the reward cannot improve because the
agent is stuck. This improvement could allow programs
to navigate the environment more efficiently.

• Enhance the agent’s ability to reason about directions.
For instance, if moving right increases the reward, there
is no reason to generate programs that move in the op-
posite direction.

References
[1] O. Berger-Tal, J. Nathan, E. Meron, and D. Saltz, “The

exploration-exploitation dilemma: a multidisciplinary
framework,” PloS one, vol. 9, no. 4, p. e95693, 2014.

[2] G. E. Flaspohler, “Balancing exploration and exploita-
tion: Task-targeted exploration for scientific decision-
making,” Ph.D. dissertation, Massachusetts Institute of
Technology, 2022.

[3] S. Barke, H. Peleg, and N. Polikarpova, “Just-in-
time learning for bottom-up enumerative synthesis,”
Proceedings of the ACM on Programming Languages,
vol. 4, no. OOPSLA, p. 1–29, Nov. 2020. [Online].
Available: http://dx.doi.org/10.1145/3428295

[4] K. Shi, J. Steinhardt, and P. Liang, “Frangel:
component-based synthesis with control structures,”
Proceedings of the ACM on Programming Languages,
vol. 3, no. POPL, p. 1–29, Jan. 2019. [Online].
Available: http://dx.doi.org/10.1145/3290386

[5] N. Natarajan, A. Karthikeyan, P. Jain, I. Radicek, S. Ra-
jamani, S. Gulwani, and J. Gehrke, “Programming by
rewards,” arXiv preprint arXiv:2007.06835, 2020.

[6] D. Trivedi, J. Zhang, S.-H. Sun, and J. J. Lim,
“Learning to synthesize programs as interpretable and
generalizable policies,” in Advances in Neural Infor-
mation Processing Systems, vol. 34, 2021. [Online].
Available: https://arxiv.org/pdf/2108.13643.pdf

[7] S. Gulwani, O. Polozov, R. Singh et al., “Program syn-
thesis,” Foundations and Trends® in Programming Lan-
guages, vol. 4, no. 1-2, pp. 3–4, 2017.

[8] S. Gulwani, “Programming by examples: Applications,
algorithms, and ambiguity resolution,” in Automated

Reasoning, N. Olivetti and A. Tiwari, Eds. Cham:
Springer International Publishing, 2016, pp. 9–14.

[9] A. Solar-Lezama, Program synthesis by sketching.
University of California, Berkeley, 2008.

[10] K. T. Yessenov, “Program synthesis from execution
traces and demonstrations,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, 2016.

[11] Y. Li, D. Choi, J. Chung, N. Kushman, J. Schrit-
twieser, R. Leblond, T. Eccles, J. Keeling, F. Gimeno,
A. Dal Lago et al., “Competition-level code generation
with alphacode,” Science, vol. 378, no. 6624, pp. 1092–
1097, 2022.

[12] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare,
M. Marron, S. R, and S. Roy, “Program synthesis
using natural language,” in Proceedings of the 38th
International Conference on Software Engineering, ser.
ICSE ’16. New York, NY, USA: Association for
Computing Machinery, 2016, p. 345–356. [Online].
Available: https://doi.org/10.1145/2884781.2884786

[13] W. H. Guss, C. Codel, K. Hofmann, B. Houghton,
N. Kuno, S. Milani, S. Mohanty, D. P. Liebana,
R. Salakhutdinov, N. Topin, M. Veloso, and P. Wang,
“The minerl 2019 competition on sample efficient rein-
forcement learning using human priors,” 2021.

[14] C. Smith and A. Albarghouthi, “Program synthesis with
equivalence reduction,” in Verification, Model Check-
ing, and Abstract Interpretation, C. Enea and R. Piskac,
Eds. Cham: Springer International Publishing, 2019,
pp. 24–47.

[15] T. Hinnerichs and S. Dumancic, “Herb.jl: A library for
defining and efficiently solving program synthesis tasks
in julia,” 2024, gitHub repository. [Online]. Available:
https://github.com/Herb-AI/Herb.jl

http://dx.doi.org/10.1145/3428295
http://dx.doi.org/10.1145/3290386
https://arxiv.org/pdf/2108.13643.pdf
https://doi.org/10.1145/2884781.2884786
https://github.com/Herb-AI/Herb.jl

	Introduction
	Related work
	Background
	Program synthesis
	Bottom-up enumeration
	Probabilistic context-free grammars
	Minecraft Enviornment

	Probe algorithm description
	FrAngel algorithm description
	Example synthesis
	Fragment mining
	Configuration variables for exploration-exploitation

	Methodology
	Program synthesis from rewards
	Probe generalization
	Probe learning from rewards
	FrAngel generalization
	Arbitrary grammar definition
	Learning from rewards
	Generalize the iterator
	Configurable probabilities

	Experimental Setup and Results
	Experiment setup
	Navigate Task
	Environment simplifications
	Methodology

	Probe Results
	Grammar definition
	Experiments

	FrAngel results

	Responsible Research
	Discussion and Limitations
	Conclusions and Future Work

