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Abstract

Investment projects in railway infrastructure networks are needed to maintain a high condition of
the network, maximize the capacity of the network, and to keep the risk low. Railway organizations
are aiming to achieve these goals, but also want to minimize the costs of the investments. The
desires of stakeholders in railway networks such as the government, passengers, and freight users
are often not aligned. Decision makers in this field need to make trade-offs between the conflicting
objectives. In the decision-making process regarding investment projects, it is important that the
multiple objectives are considered explicitly. A multi-objective optimization problem formulation
is proposed for the investment project portfolio optimization problem. Solving a multi-objective
optimization problem means to identify the set of Pareto optimal solutions. These Pareto optimal
solutions are used by decision makers to gain insight in the effects on the objectives, and to make
well-founded trade-offs.

An approach is proposed to include the uncertain nature of investment projects in the prob-
lem formulation, without increasing the complexity of the problem too much. This is done by
introducing lower and upper bounds for uncertain variables. By optimizing not only the expected
values of the objective functions, but also the lower and upper bound, one is able to identify the
solutions that give satisfactory results for all the scenarios. Project portfolios that are Pareto opti-
mal for the lower bound, expected value, and upper bound, are considered as robust choices with
respect to the uncertainties in the objective values.

Railway infrastructures typically consist of many assets with a long lifespan. The prediction
horizon and the level of detail considered in the optimization problem need to be chosen carefully
to avoid extremely large computation times. Even for a modest level of detail, the problem size is
too large to check all the possible solutions within acceptable time. The computation time is also
dependent on the algorithm that is used to search for the Pareto optimal set. Next to the computa-
tion time, several performance indicators are selected to measure the quality of the approximation
of the Pareto optimal set that is provided by an algorithm.

Two algorithms with different approaches are proposed to approximate the Pareto optimal set,
the repeated e-constraint algorithm and the widely used genetic algorithm NSGA II. Some bench-
mark problems are introduced to gain insight into the working of the proposed algorithms. A case
study is performed for an artificial data set for investment projects in a railway network. The se-
lected performance indicators are used to analyze the results of the case studies for the proposed
algorithms with different settings. The repeated -constraint algorithm is able to find a close repre-
sentation of the Pareto optimal set, and has a very stable performance due to the established search
method of the CPLEX solver. However, obtaining these results requires an excessive amount of
computation time. The genetic algorithm NSGA II is much faster, and for carefully tuned settings,
the quality of the approximation set is fine. The coverage of the NSGA Il is considered sufficient, so
due to the reduced computation time, the NSGA II is recommended to use in the decision support
process of selecting investment project portfolios in railway infrastructure networks.
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Introduction

1.1. Motivation

Railway organizations are under an increasing pressure to improve the performance, safety, and
capacity of the railway infrastructure, while budgets are tightened. This is for example due to a
continuous competition from other modes of transport and tenders between railway companies.
Next to the competition, railway organizations have to deal with high user and governmental ex-
pectations regarding the performance and capacity of railway networks. In Europe, this govern-
mental pressure is a result of the European rail transport objectives (UIC, 2017), that are set by
the European Union (European-Union, 2017). In these long term goals it is stated that in 30 years,
more than half of the medium-distance passenger transport should be via rail, and more than half
of the freight transport should be carried out by rail or waterborne transport. In order to achieve
these goals, railway organizations are forced to improve their decision making strategy. It is of vital
importance to select the investment projects that give the best possible results for the long term
performance of the entire network. However, decision makers in this field are faced with a lot of
information, and it is not evident what the best investment projects are.

Investment projects in the field of railway infrastructure management are often maintenance
and renewal projects, but could also concern for example network expansions, the introduction
of a new signalling system, or building new stations. Typically each year, the infrastructure man-
agers are selecting the projects to be executed. This selection of projects, also called the project
portfolio, is currently often based on the opinion and experiences of experts, or based on the age
of the concerning assets. The assets of the railway infrastructure are deteriorating over time, so to
keep the performance and the condition of the railway network at an acceptable level, it is crucial
to execute maintenance and renewal projects. Both the assets and the maintenance in the railway
infrastructure are very expensive (the maintenance expenditures of ProRail for the Dutch railway
network in 2016 were €523 million), and the maintenance budget of railway organizations is often
limited. Therefore, not all proposed improvement projects can be executed. To make the right
decisions in such project portfolio selection problems, it is crucial to have insight into the prob-
lem. In the case of railway infrastructure management, this means insight into both the assets and
the proposed projects. To gain the required insight into the assets of the infrastructure, there is a
transition in railway organizations from unorganized and decentralized data sheets, to real asset
management systems. The ISO 55.000 standard (ISO, 2014) specifies the requirements and appli-
cations for asset management systems. Railway organizations across the world are making steps
towards such a system. Railway infrastructure managers from different countries are cooperating
in the Asset Management Working Group of UIC, which has been working on issues like a com-
mon interpretation of asset management and sharing good practices. This shows that the railway
organizations realize that they should improve the process of project selection.

To improve the process of project selection, not only insight into the assets is needed, but also
insight into the proposed projects. It should be clear what the expected costs and benefits are
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for each project. The benefits are the positive effects of a project on the strategic goals of the or-
ganization. Furthermore, the infrastructure managers should be aware of dependencies between
projects, that could imply that the total benefit of a portfolio of projects is not equal to the sum of
the individual project benefits (Teng et al., 1996).

The strategic goals of a railway organization are not only based on internal desires, but also on
those of external players. Different objectives can for example arise from different stakeholders,
or from different strategic goals of an organization. These objectives are often conflicting and not
easy to compare due to different measures. The infrastructure manager, who is responsible for
the project selection, needs to consider the opinions of the multiple stakeholders of the railway
network (Tzanakakis, 2013). Examples of railway network stakeholders are the government, local
authorities, passengers, and freight users. Since infrastructure managers would like to optimize
the objectives of all the stakeholders, they are actually trying to solve a multi-objective optimiza-
tion problem. With insight into the effects of projects on the assets and the objectives, it is possible
to solve the individual optimization problems of the infrastructure managers. However, due to the
conflicting objectives, optimizing one objective at the expense of the others, is not preferable. In an
environment with multiple stakeholders and thus multiple objectives, it would be better to select
a solution that is a compromise between the objectives. This should be a well-founded decision,
based on considerations regarding the costs and benefits of the possible solutions.

In the last decades, project portfolio optimization received more and more attention in the
literature. Since organizations in all kinds of industries work with projects, and thus face the prob-
lem of project selection, the application of project portfolio optimization can be quite diverse.
Examples of applications in literature are in Research & Development types of projects (Stummer
et al., 2003; Killen et al., 2007), or in production projects (Walls, 2004), while other researches do
not make any distinction in the type of projects (Ghasemzadeh et al., 2000; Carazo et al., 2010).
The trend in project portfolio optimization is to consider multiple objectives. Due to these mul-

tiple objectives, a single optimal project portfolio might not exist, since there is no unambiguous
way to make a compromise between different objectives. This means that also the selection of
projects in a project portfolio that performs best according to the multiple objectives, is often not
trivial. A simple way to select a compromise, is to give the different objectives weights, and op-
timize the weighted sum of the different objective functions. This however, could only be done
if the objectives are commensurable. As stated in Marler et al. (2004), it is preferable to consider
each objective individually, rather than to optimize a specific compromise. The result of such an
optimization problem would then consist of multiple solutions corresponding to multiple com-
promises. This set of solutions, called the Pareto optimal set, could be the basis of negotiations,
and could be used to support the decision making process. The decision makers could look into
the details of different scenarios to gain insight. The final selection of a project portfolio should be
the result of well-founded considerations, and insight into the effects on the strategic goals of the
different potential portfolios.

There has been a significant amount of research in multi-objective optimization methods to
solve such problems. These methods are designed to provide a set of solutions, all corresponding
to a compromise of objectives, which are called Pareto optimal solutions. Since the selection and
planning of projects is a combinatorial optimization problem, most of the optimization methods
used in literature are not designed to consider all possible solutions. This because considering all
possible solutions would simply take too much time, even on modern computers. In case a large
infrastructure network and a large amount of projects is considered, this is definitely a point of
attention. A large amount of information needs to be processed, and infrastructure managers are
not willing to wait weeks on the results of a multi-objective optimization problem. Therefore, in
the selection of an optimization method there is a trade-off between accuracy of the solutions and
the computation time.
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The information about the projects that is used in the selection process, is often not based
on facts but merely on experience or simulation (Stamelos et al., 2001). Since the information
provided by experts is mostly an expectation rather than a true value, it can be stated that the
information is subject to uncertainty (Ghasemzadeh et al., 1999). Therefore, it would be more
realistic to consider the uncertain nature of the information in the optimization problem, rather
than working solely with expected values. This means that additionally to the large amount of
information already needed for the network, also a lot of information is needed on the uncertain
nature of the project information.

The subject of this thesis is the selection process of investment projects in railway infrastruc-
ture networks. The main research will be in the multi-objective optimization techniques that could
be used to support the decision makers in the selection process. Next to this, different aspects
and performance measures of such an optimization tool will be considered. First, the problem
statement of this thesis will be presented, wehereafter the research questions of the thesis will be
discussed.

1.2. Problem statement

In the previous section, the relevance and complexity of the investment project portfolio selec-
tion process are delineated. The current approach in most railway infrastructure organizations is
sketched, which leads to the following problem statement:

Decision makers in investment project portfolio planning in railway infrastructure networks
do not have sufficient insight into the project portfolio optimization problem to make well-
founded decisions.

The goal of this thesis is to change this situation. To do this, the investment project portfolio op-
timization problem should be formulated mathematically and an optimization method should be
selected to solve this problem. More general, the goal is formulated as:

Design a decision support tool to provide insight into the investment project portfolio planning
problem in infrastructure networks.

This problem statement will be the starting point of this thesis. In the design, the optimization
method will play a central role, but also the visualization and user process will be reviewed. State
of the art optimization methods will be used to provide the Pareto optimal set. The problem will
be formulated mathematically such that it reflects reality as good as possible, while the complexity
of the problem is minimized. Furthermore, the process will be designed such that it is usable in
the business area of railway organizations.

1.3. Research questions

In order to achieve the goal that is set in the previous section, some research questions are com-
posed. These research questions will be guiding in the thesis. In Chapter 5, the findings regarding
these research questions are presented, and it will be reviewed to what extent these questions can
be answered with the insights gained from the findings. The main research question of the gradu-
ation thesis will be:

How can multi-objective optimization be used efficiently in the decision support for
investment project portfolio planning under uncertainty?

In order to answer this main question, some sub-questions are formulated. All the appointed as-
pects of the project portfolio selection process in railway networks, lead tho the following sub-
questions:
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» What is the most suitable way to include uncertainty in parameters and future scenarios in
the optimization of maintenance and asset investment planning?

e In the high-level project portfolio optimization problem, what are the trade-offs between ac-
curacy and computation time when using different time steps, network segments, asset infor-
mation, and number of project dependencies?

* How can we cope with different requirements for the decision support tool in the railway in-
frastructure business, regarding computation time, solution quality, and the process of the
support?

» Which optimization methods are best suited for the multi-objective project portfolio problem,
regarding solution quality and computation time?

1.4. Thesis outline

The four remaining chapters in this thesis are used to guide the reader along the track of the con-
ducted research and way of thinking, to the argumentation for the answers on the research ques-
tions. Chapter 2 covers the required knowledge about the strengths and weaknesses of the exist-
ing literature on project portfolio optimization. The multi-objective project portfolio optimiza-
tion problem is introduced, as well as some multi-objective optimization methods to solve such a
problem. In Chapter 3, the proposed formulation for the investment project portfolio optimiza-
tion problem is presented, containing an approach to include the uncertain nature of investment
projects in the problem formulation. A detailed description of two multi-objective optimization
methods that are selected to be suitable for project portfolio optimization is provided. The results
that are obtained for the railway network case studies by implementing the repeated &-constraint
algorithm and the multi-objective genetic algorithm NSGA II are discussed in Chapter 4. In Chap-
ter 5, the conclusions of the thesis are provided. Some possible improvements of the proposed
methods are presented, along with further research that could be conducted. The thesis ends with
some recommendations for ORTEC in their attempt to collaborate with rail infrastructure organi-
zations to realize a decision support tool for project portfolio optimization.



Literature overview

To justify the novelty of the approach proposed in this thesis, a literature survey has been con-
ducted. Many articles can be found that consider similar and related problems to the investment
project portfolio optimization problem. The strengths and weaknesses of conventional mathe-
matical representations of the project portfolio selection problem are discussed, to identify the
shortcomings of existing approaches. Identified shortcomings are further examined to discover
whether and how these subjects can be improved. Important assumptions that are broadly sup-
ported by the literature are examined, and either rejected or adopted. For example, the need to
include multiple objective functions in the optimization problem is justified, and best practices in
this field are reviewed as well. To make sure the proposed approach performs well, state of the art
optimization techniques are reviewed. There has been research into suitable methods to measure
the performance of multi-objective optimization techniques. Lastly, the visualization and deci-
sion support of project portfolio optimization approaches are reviewed. It is argued that this is an
essential part of an approach to make it useful for the industry. To learn from the findings and the
state of the art methods in literature, in this chapter an overview of the literature is presented.

2.1. Investment project portfolio optimization

Investment project portfolio optimization is a term that is used for a wide variety of optimization
problems. This is mainly because the term project is very general. In this thesis, a project is defined
as an undertaking that requires, time, money, and other resources. The term investment project is
used for projects that contribute to a profitable return, such as interest, income, or an improve-
ment of value. An investment project portfolio is a set of investment projects that are selected to
be executed. In investment project portfolio optimization, one tries to find the set of investment
projects that yields the best results regarding the objectives. If the result of an investment project
portfolio is time-dependent, next to the selection of projects, also the scheduling of the projects
needs to be considered.

Because the generality of the terms, investment project portfolio optimization has many different
applications. In the literature, a lot of research can be found on project portfolio optimization.
Some articles work with general projects, while others consider specific applications of project
portfolio optimization. In this thesis, the application is in maintenance and asset investment of
railway infrastructures. Therefore, both articles with a general point of view and those similar to
the subject of this thesis, are reviewed.

In this section, different aspects of the investment project portfolio selection problem are re-
viewed, that are important for this thesis. First, the desires of decision makers are regarded, which
are the objectives of the optimization problem. Next, an overview of ways to formulate a project
portfolio optimization problem found in the literature is presented. The objectives and formula-
tion of the optimization problem determine what kind of optimization problem is considered.
Then some application-dependent aspects are discussed. The uncertain nature of the input data

5
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of project portfolio optimization in infrastructure management gives rise to the question how un-
certainty is handled in other optimization problems. Next to uncertainty in data, infrastructure
management also has to deal with dependencies between projects.

The goal of investment project portfolio optimization is to support the decision making process in
some way. Then, a review of how project portfolio optimization could support the decision making
process is presented. Lastly, the optimization methods suggested in the literature are discussed.
To summarize, the outline of this section is:

2.1.1 Objectives
2.1.2  Formulation
2.1.3 Level of detail
2.1.4 Uncertainty
2.1.5 Dependencies

2.1.1. Objectives

The investment projects that are proposed for an organization to execute, serve a certain purpose.
This could be creating profit, improving processes, increasing safety, reducing costs, etc. All the
executed projects together are supposed to contribute to the objectives derived from the strategic
goals of the organization. Due to different stakeholders that are interacting with the organization,
the goals might be conflicting to each other. To realize a project portfolio with the best overall
result, the project management and selection should be centralized (Killen et al., 2007), since the
overall optimal solution is often not equal to the combination of individual optima.

Cooper et al. (1997) suggests three main types of goals in project portfolio management: value
maximization, balance, and strategic direction. This means that a project portfolio should max-
imize the overall values, but also should maintain a balance between individual values. This is
to prevent that one part of an organization does very well, at the expense of another part of the
organization. Furthermore, a project portfolio should contribute to the strategic direction of an
organization, even if this portfolio does not yield the maximum value at this time.

Most articles consider only one objective, and other objectives are formulated as constraints.
Morcous et al. (2005) minimizes the total maintenance costs in infrastructure networks. Budai-
Balke (2009) and Nourelfath et al. (2010) minimize the sum of maintenance costs and other costs
related to production. Jafarzadeh et al. (2015) and Grimes (1995) focus completely on the financial
benefits, and thus uses an objective function of profits and losses. Sriskandarajah et al. (1998) min-
imizes the costs of performing maintenance jobs too early or too late. So in fact the goal is to create
a schedule of maintenance jobs that is closest to the due dates for the jobs. Li et al. (2009) consid-
ers an objective function of overall benefits, the sum of individual project benefits. Ghasemzadeh
etal. (1999) actually acknowledges the existence of multiple objectives, but optimizes only a single
objective: net present value. For multiple objectives, a combined objective function is proposed,
obtained by using techniques such as weighted scoring or the analytic hierarchy process. A com-
bined objective function still considers only one objective in the optimization process. However,
it is preferable to explicitly consider the multiple objectives that exist in optimization problems
(Marler et al., 2004). This is because decision makers usually have no knowledge about the effect
on the individual objective functions when a combined objective function is used.

This is the reason that recently more articles identify multiple objectives in the project portfo-
lio optimization problem, and are aiming at a solution that optimizes all objectives. For example,
Fwa et al. (1994) is aiming to minimize maintenance costs, maximize the usage of yearly allocated
budgets, and to minimize fluctuations of year-to-year maintenance activities. Quan et al. (2007)
minimizes two objectives in the scheduling of maintenance: task completion time and the num-
ber of workers needed. Rabbani et al. (2010) considers three financial objectives in the project
selection problem: minimize the total cost, maximize the total benefit, and minimize the total



2.1. Investment project portfolio optimization 7

risk. Berrichi et al. (2010) combines the objectives of production and maintenance: minimize the
makespan for production, and minimize the system unavailability due to maintenance activities.
Engelhardt-Funke et al. (2004), Podofillini et al. (2006), Iniestra et al. (2009), and Bai et al. (2015)
propose different methods for optimizing investments in railway networks. Objectives in this kind
of problem are given by for example minimizing investment costs, minimizing passenger waiting
times, minimizing risk, maximizing social impact, maximizing condition of assets, and maximiz-
ing safety.

2.1.2. Formulation

The formulation of a project portfolio optimization problem is more than only a selection of objec-
tives. In the formulation, the variables and parameters are used to represent the information that
has effect on the objectives. The main goal in formulating the optimization problem is to make
sure that the formulation contains all information to create a good representation of reality, while
omitting information that is not needed in the optimization process. The decision variables repre-
sent the degrees of freedom of the optimization problem, the variables that can be adjusted by the
algorithm. Constraints are used to indicate which solutions are acceptable, and which solutions
are outside the range of realistic solutions.

Project portfolio optimization problems typically have a binary decision variable for each project,
to indicate whether it has been selected or not. In case also the scheduling is included in the opti-
mization problem, the starting period of the project execution is included as decision variable as
well. This decision could be represented by a continuous variable per project, or could be given by
a binary decision variable per project per time period, that is equal to one only for the time period
in which the project starts. Furthermore, some problem-specific decision variables can be present
in the formulation.

Currently, in most organizations the maintenance planning and investment project selection
is done separately. Each department has their own budget, and there is no centralized project
selection process. Investment projects in infrastructure networks usually involve the infrastructure
assets, so they might share resources with routine maintenance. Therefore, it would be preferable
to merge these processes and benefit from the synergies. A centralized process could contribute to
an overview of the effect of projects on the strategic goals, such that projects with the best results
for the entire network can be chosen.

The formulation of maintenance optimization problems is quite similar to the formulation
of project portfolio optimization problems. In both formulations, a decision variable indicates
whether the maintenance job or project is executed. In maintenance planning, the scheduling of
the maintenance jobs is always included, while in project selection problems the scheduling could
be omitted. In project portfolio optimization, the projects are not limited by repair and replace-
ment activities, as is the case in maintenance optimization. The set of project characteristics could
be diverse, and not limited to asset or maintenance related characteristics. To optimize the invest-
ment projects in infrastructure networks, maintenance activities could be included, but so could
a lot of different types of projects. For example, purchasing new assets with different deterioration
characteristics, projects for extension of the network, and organizational changes. But it is also
possible to only include maintenance projects in the problem. Thus, maintenance optimization
can be seen as a specific application of project portfolio optimization.

2.1.3. Level of detail
The level of detail considered in the project portfolio optimization problem could be influenced
by for instance:

¢ the number of affected assets
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 the number of time periods in the prediction horizon
¢ the length of these time periods.

Infrastructure maintenance and investment project optimization problems typically consider a
large number of assets, and a long planning and prediction horizon. It depends on the part of the
organization which level of detail in assets and time periods should be considered. In investment
decision-making usually a more high-level overview is considered. For example in some articles
investments are defined per asset-type, rather than per asset. Assets could also be grouped on
geographical location, or on age. Since the long term benefits of investments are considered to in-
vestigate whether a project has to be selected, the scheduling is not very detailed or not considered
at all. Maintenance optimization problems often focus on the scheduling of a set of maintenance
activities, that are all selected for execution. This means that the selection could be omitted from
the problem. Even though often not all the aspects of a problem are considered, infrastructure
maintenance and investment project optimization problems tend to have a large number of pos-
sible solutions because of the combinatorial nature of the problems.

Small-sized optimization problems are possible to solve exactly, for instance by enumerating
all possible solutions. However, for large-sized problems this is often not possible within accept-
able time. The optimal solutions of large-sized problems can be approximated with methods that
give faster and close to optimal results (Marler et al., 2004). In the design of an optimization prob-
lem there is a trade-off between the accuracy and the computational complexity.

In the literature, many articles do not consider the scheduling problem of investments (Liesit
et al., 2007; Engelhardt-Funke et al., 2004; Iniestra et al., 2009; Bai et al., 2015); however, a prior-
itization of the possible investments is provided.The amount of possible solutions is reduced to
2N, where N is the number of possible investments. When the scheduling is included as well,
the number of possible solutions is multiplied by the number of time periods considered. Due
to time-dependent results and constraints within time-periods, it would be preferable to consider
the selection and scheduling of projects together. The following articles include the selection and
scheduling of investment projects together in the problem formulation: (Jafarzadeh et al., 2015;
Ghasemzadeh et al., 1999; Doerner et al., 2006). The prediction horizon of the problems found
in the literature deviates from 4 days to 20 years, and the number of time periods in the hori-
zon deviates from 3 to 365. For investment project planning, it would be best to consider a long
prediction horizon, to include the long-term effects of the investments, such as profits or less re-
peating maintenance jobs. Maintenance planning typically considers a short planning horizon
and detailed asset information, to include urgent and reactive maintenance activities, next to the
planned preventive maintenance activities.

When combining high-level decision-making of maintenance planning and investment plan-
ning, it is highly relevant that a suitable level of detail is chosen to consider in the optimization
problem. For high-level decision-making, a detailed problem formulation might not be necessary.
For example, not every detailed maintenance job should be included, but only maintenance activ-
ities with a large impact on the objectives and feasibility of the project portfolio should be taken
into account. Therefore, the level of detail that is needed is quite problem dependent. As seen in
some articles (Archer et al., 1999; Stummer et al., 2003), it is also possible to have some screening
or pre-processing done prior to the optimization to reduce the size of the solution space. Though
it might still not be possible to use exact methods to optimize the problem, convergence might
be faster. It is also possible to have multiple phases in the decision making process, and perform
investment project portfolio optimization for different prediction horizons with the same infor-
mation. In this way, a balance could be created between long-term and short-term objectives.
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2.1.4. Uncertainty

Not all information needed in the optimization of maintenance and investment project portfolio
is deterministic. Often the information used in optimization problems is based on estimations,
judgment-based, uncertain, or unknown information. In the literature, the uncertainties in the
variables of the optimization problem are often not considered. The uncertain nature of deteri-
oration is often taken into account in the design of the prescribed maintenance intervals, which
are then used as a constraint in the maintenance planning. There are some examples of articles
in which the optimization of maintenance planning is based on Markov-chain models for dete-
rioration (Morcous et al., 2005; Podofillini et al., 2006). Sometimes the occurrence of failures is
represented by a probability, for example from a Poisson distribution (Nourelfath et al., 2010), or
from the exponential probability distribution (Higgins, 1998; Berrichi et al., 2010). However, oth-
ers use deterministic values to include deterioration (Fwa et al., 1994; Grimes, 1995; Sriskandarajah
et al., 1998; Chikezie et al., 2013).

In project portfolio optimization sometimes the risk of the projects is included in the problem
(Rabbani et al., 2010), but often the uncertainty in parameters of the system are not taken into ac-
count (Archer et al., 1999; Ghasemzadeh et al., 1999; Stummer et al., 2003; Iniestra et al., 2009; Bai
etal., 2015; Doerner et al., 2006; Ahern et al., 2007). Costs and benefits of large investments are of-
ten treated as deterministic values, but those values usually involve uncertainty as well. Deviations
in costs and duration of large investment projects in infrastructure networks can have significant
consequences for the feasibility of a project portfolio. Therefore, it is important to make sure the
chosen portfolio of investment projects gives satisfactory results in the case that the estimations
of parameters were correct, and still gives acceptable results when the reality is deviant from the
estimations. The robustness of a project portfolio is considered in Liesi6 et al. (2007), in which
intervals are used for incomplete information.

Different ways to include uncertainty in project parameters are presented in literature. Firstly,
Monte Carlo simulation with a uniform probability could be used to provide estimates of parame-
ters (de Poot, 2013), when a lower and upper bound is known. In some cases the uncertainty in pa-
rameters could be represented by a known probability density function, for example Engelhardt-
Funke et al. (2004) used an exponential probability distribution. When there is no information for
a probability density function, for example Shackles model could be used (Li et al., 2009). Fuzzy
parameter representations are also widely used to deal with uncertainty (Vijayalakshmi Pai, 2016;
Mohagheghi et al., 2015). Fuzzy objectives or fuzzy goals can be used in multi-objective optimiza-
tion as well. The concept of a-Pareto optimality seems promising to include uncertainty in the
presentation of the provided solutions. However, including uncertainty will have effect on the
computation time of an optimization method. There is a trade-off between a good representation
of reality and the computation time that is needed for optimization.

2.1.5. Dependencies

In infrastructure networks, maintenance activities or investment projects can be defined per seg-
ment. These undertakings might influence the performance of other nearby segments as well. The
condition of infrastructure networks is not merely the sum of the condition of the individual as-
sets, but is also determined by the connectivity of the network. The effect of projects on parts of
a network is also affected by the connectivity of the network. Executing combination of projects
might give different results than the sum of the individual results, due to project dependencies.
The dependencies between projects and maintenance activities are often not considered in the
literature (Jafarzadeh et al., 2015; Archer et al., 1999; Ghasemzadeh et al., 1999; Liesio et al., 2007;
Engelhardt-Funke et al., 2004; Bai et al., 2015). This issue already received some attention in the
literature (Carazo et al., 2010), and there are a number of articles that take the network and project
dependencies into account.
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In Teng et al. (1996), different types of dependencies of transportation investment alternatives
are defined. The relevance of a structured judgment process is stressed, for which two stages are
proposed. First a classification should be made on the type of dependency, and the second step is
to define the degree of this dependency.

Independent investment alternatives do not influence the performance of any other investment al-
ternatives on any of the objectives, and vice versa. A visualization of the results of two investments
is shown in Figure 2.1a. Alternative a does not affect @’ and a’ does not affect a, so the result of
selecting both alternatives is given by the sum of the individual results of a and a'.

Two investment alternatives are called complementary investment alternatives if the result of se-
lecting both alternatives is higher than the sum of the individual results, for at least one objective.
In Figure 2.1b, the increased result of the objective is shown in the middle, which will be noted by
@4 - The increased result is given by a + a’ + a4 o, with a positive a, o, if @ and a' are comple-
mentary investment alternatives.

If selecting two investment alternatives implies that they can not achieve their maximal individ-
ual performance for at least one objective, they are called substitutive investment alternatives. The
performance of one alternative is so to say (partly) replaced by the performance of another. This
can be seen in Figure 2.1c. The result of selecting two substitutive investment alternatives a and
a' is also given by a+ a’ + a4 4, but now a,  is negative.

(Il

(a) Independent alternatives (b) Complementary alternatives  (c) Substitutive alternatives

Figure 2.1: Different types of dependencies between projects, adapted from Teng et al. (1996), where a,
is shown in the dotted and striped areas.

Often simple, straightforward dependencies such as complementary alternatives and substi-
tutive alternatives are considered for combinations of two projects (Teng et al., 1996; Doerner et al.,
2006; Rabbani et al., 2010). Only Stummer et al. (2003) and Iniestra et al. (2009) include interde-
pendencies between different types of sets of projects. Since in reality the dependencies can be
very complex, it is interesting to take a closer look at the added value of including more complex
dependencies in large-sized problems. Whether the improved quality of the results compensate
for the increased complexity of the problem, requires further research. However, simple depen-
dencies can easily be implemented for a better representation of reality.

2.2. Multi-objective optimization methods

Since an investment project portfolio optimization problem often includes multiple objectives,
there is aneed to look further than the classical single objective optimization methods, and explore
the possibilities in multi-objective optimization methods. There exist many optimization methods
to solve multi-objective optimization problems, all with different benefits and disadvantages.

What the best multi-objective optimization method would be for the project portfolio opti-
mization problem is discussed in this section. First, the concept of multi-objective optimization
is explained in Section 2.2.1. The definition of a Pareto optimal solution is presented, and an
overview of different approaches to find the Pareto optimal solutions is provided. Two methods
that are considered for further research are explained more thoroughly, repeated e-constraint al-
gorithms and multi-objective optimization based on genetic algorithms. In Section 2.2.4, the pos-
sibilities of including uncertainty in the parameters of a multi-objective optimization problem are
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discussed. Lastly, some performance measures are discussed, to compare different multi-objective
optimization methods.

2.2.1. Multi-objective optimization

In multi-objective optimization, a vector of m objective functions J(x) = [J1(x),..., [ (X)] T needs
to be minimized, where x € X is the parameter vector or vector of decision variables. The feasible
set X < R” consists of all the parameter vectors x which satisfy the constraints g(x) <0 and h(x) =
0. The corresponding set of attainable values of the objective functions is called the objective space,
given by J. The optimal solution that minimizes objective function J,(x) independently, is given
by x, . The optimal value of that objective function is then given by J,(x}). Since a solution that
minimizes all objective functions at the same time might not exist, the concept of Pareto optimality
and efficient solutions are introduced.

Definition 1 (Pareto optimal solution). For a Pareto optimal solution x* € X, it holds that there is
no other feasible solution x € X that performs better on one or more objectives and does not perform
worse on any other objective. So if for objective p it holds that J,(x) < Jp (x*), then there must be
at least one other objective p’ for which it holds that ],y (x) > ],y (x*), presumed that x* is Pareto
optimal. In the literature, Pareto optimal solutions are sometimes called efficient solutions.

The Pareto optimal set is the set of all Pareto optimal solutions, notated by P. The set of corre-
sponding objective values {J(x) € J|x € P}, is referred to as the Pareto optimal front. In Figure
2.2a, the objective space J of two objective functions J; and J, (gray) is presented, and the Pareto
front is shown as a thick line on the border of the objective space, between J(E) and J(F). The fea-
sible solution C € X is not Pareto optimal since J;(A) < J;(C) and J2(A) = J2(C). As can be seen in
Figure 2.2b, where the corresponding solutions are visualized in the solution space, and the gray
area is the feasible solution set X, D is not a feasible solution, so it does not matter that for example
J1(D) < J1(E) and J»(D) < J»(E) for the Pareto optimality of E, as D cannot be a Pareto optimal so-
lution. From these six solutions, A, B, P, Q € P are Pareto optimal solutions. Which Pareto optimal
solution is finally selected, depends on the preference of the decision maker.

]2 A X2 A
b
J(E)
J(D)
J(F)
i Xy
(a) The objective space 7 with the objective values (b) The solution space, where the feasible solution
and the Pareto optimal front. set X is the gray area.

Figure 2.2: Pareto optimality, adapted from De Schutter et al. (2015).

In the case that the objective values are not known for all solutions in the feasible set, Pareto opti-
mality can not be claimed by definition. Since this could happen in reality, an alternative for Pareto
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optimality is introduced, non-dominance.

Definition 2 (Non-dominated solution). Let Xg < X be the reference solution set, such that for
x € X, the objective values ] are known.

For anon-dominated solution x;z € XR, it holds that there is no other feasible solution x € X that
performs better on one or more objectives and does not perform worse on any other objective. So
if for objective p it holds that J,(x) < Jp(x3,), then there must be at least one other objective p' for
which it holds that Jy (x) > ]y (x;;), presumed that x7*z is non-dominated.

Since the concept of Pareto optimality has been introduced by Pareto (in 1906), a large number
of multi-objective optimization methods has been presented in the literature. A distinction can be
made between a priori methods, and a posteriori methods.

In the case that the relative preference between different objectives can be determined on fore-
hand, methods with an a priori preference structure can be used. Methods with an a priori pref-
erence structure are capable of finding a single optimum, rather than the Pareto optimal set. In
methods with an a priori preference structure a general objective function is defined, which is a
combination of all the objective functions in the problem. Often this general objective function
involves mutual preferences or utilities. If the mathematical formulation of a multi-objective op-
timization problem involves only one general objective function, this problem can be solved with
single-objective optimization methods. Examples of a priori methods with a combined global
objective function are the weighted sum method (Zadeh, 1963), the weighted exponential sum
method (Athan et al., 1996), and the weighted product method (Marler et al., 2004). In goal pro-
gramming methods (Charnes et al., 1977) the decision maker can specify the desired goals, that are
handled sequentially. In bounded objective function methods (Haimes et al., 1971), one objective
function is optimized, while the other objectives are bounded by posed constraints.

Often it is not possible or desirable to determine the relative preference between different ob-

jectives on forehand. One approach would be to repeat the a priori optimization method with
different weights on the objective functions, in order to represent the Pareto optimal set (Mar-
ler et al., 2004). Alternatively, there have been formulated several multi-objective optimization
methods with an a posteriori preference structure, where the preferences can be determined with
insight into the resulting solutions.
Repeatedly solving weighted multi-objective optimization problems with varying weights can re-
sult in a set of Pareto optimal solutions, but it may be difficult to select the right weights to achieve
a well-distributed set of Pareto optimal solutions. Therefore, some multi-objective optimization
methods are designed specifically to produce a set of Pareto optimal solutions that closely repre-
sents the complete Pareto optimal set. An example of a posteriori method is physical program-
ming (Messac et al., 2002), a method in which pseudo-preference values are selected such that
they span the objective space, to find all the combinations of preferences that result in Pareto op-
timal solutions. The idea of the normal boundary intersection method (Das et al., 1998) is that the
intersection of the boundary of the objective space and the normal on the convex hull of individ-
ual minima provides the part of the boundary that contains the efficient solutions. However, the
performance of this method is highly dependent on the convexity of the objective space.

Classical multi-objective optimization methods generate a set of Pareto optimal solutions by
modifying the problem such that the solution is obtained by solving multiple single-optimization
problems, such as the repeated e-constraint method. For large-sized multi-objective optimization
problems these exact methods will take a lot of time. In contrast to exact methods, heuristics do
not evaluate the whole search space. A specific search strategy is used to evaluate possible solu-
tions, and with some assumptions they try to identify the most optimal solutions. In a heuristic
approach one tries to create a balance between computational effort and the quality of the solu-
tions. Single-objective heuristics are often modified to be used for the multi-objective case. Often
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this is done by considering vectors of scalars.

Heuristics are often designed for a specific problem, and consequently are only useful for that spe-
cific problem. A metaheuristic can be seen as a solution concept, which is applicable to different
problems. An example of a metaheuristic that can be used for multi-objective optimization prob-
lems is Pareto ant colony optimization (Doerner et al., 2001), which is inspired on the behavior of
ants and their pheromones when they are searching for food. Other examples are genetic algo-
rithms, tabu search, and simulated annealing.

For multi-objective optimization in a decision making process, it is preferred that the output
is the set of Pareto optimal solutions. With the set of Pareto optimal solutions the decision makers
are able to gain insight in the effects of certain solutions, and are supported to make well-founded
decisions. Two methods are explained in more detail. First, a more classical approach is discussed:
the repeated -constraint algorithm. Next, the concept of genetic algorithms is explained, and how
such algorithms could be used for multi-objective optimization problems.

2.2.2. Repeated ¢-constraint algorithm

In the bounded objective function method, only the most important objective function J(x) is in-
cluded in the general objective function. The other objective functions are added in the formula-
tion as constraints, with a lower bound [, and an upper bound ¢,. The optimization problem can
be formulated as follows:

min J(x) 2.1)
xeX
st.ly<Jp(x)<ep, p=1,...m,p#s.

Haimes et al. (1971) introduces a strongly related approach, the e-constraint method. In this ap-
proach the lower limit is omitted. Varying properly selected bounds &, will provide Pareto optimal
solutions (Hwang et al., 1979). A standard for the selection of the bound ¢, is given in Carmichael
(1980):

Jp(xy) < €p < Js(xp). (2.2)

Using the Lagrange multipliers it can be shown that a constraint is active. Active £-constraints in
an optimization problem indicate that the solution is Pareto optimal, since the solution can not
be improved in the direction of J; without worsening one or more of the other objective values.
However, for integer problems this method will be less useful, since the bound &, will often not be
equal to a feasible objective value of an objective J.

In Figure 2.3, the working of the repeated e-constraint algorithm is visualized. Both objectives
J1 and ], are to be minimized. Minimizing J; without constraints results in xi‘,o. The three single-
objective optimization problems with J; as general objective, and the altering constraint J, < €,
results in the three solutions xy ,,x7,, and x; 5 respectively. Since in the £-constraint algorithm
there is no lower bound posed for the remaining objectives, it might happen that two or more
values for the e-bounds result in the same solution. This indicates that the concerning area of J,
values does not contain solutions with lower values for J;.

2.2.3. Multi-objective genetic algorithms

The concept of genetic algorithms is introduced in Holland (1992), and widely used in literature
since. The method owes its name to the similarity to Darwin’s evolution theory. The population
consists of potential solutions. The decision variables that represent these potential solutions can
be seen as the genes of that individual solution. The general idea is that there are parents selected
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Figure 2.3: Visualization of the repeated ¢-constraint algorithm for minimizing J; and J,. The general ob-
jective is J1, and J» is bounded by the e-bounds.

from the population to create a new generation of off-spring, and due to genetic operations the
fittest will survive over generations. An advantage of a genetic algorithm is that it can handle all
kinds of optimization problems. There are no requirements for the type of objective functions,
constraints or objective space. The method does not use gradients but function values only. It
is a metaheuristic, providing good solutions within reasonable computation time, but (Pareto-)
optimality can not always be guaranteed. Next, some important definitions are described.

Encoding Before the algorithm can start, an encoding scheme has to be selected. This encoding
scheme is used to represent a vector of decision variables as a genetic string. Such a genetic string
is also referred to as a chromosome. Binary strings (as used in Holland (1992)) are widely used, but
alternatives such as real number or integer encoding are also found in literature.

Generating generations To start the algorithm, an initial population should be generated. For
example a random selection of possible solutions. The population of N solutions is represented
by the set of (binary) strings: {b;, b»,...,by}. A new generation is formed with two types of ge-
netic operations: mutation, in which a new individual arises from a single individual with some
changes in the genes, and crossover, in which the genes of two individuals are used to create a new
individual. The combination of these operations makes that genetic algorithms use both random
and local search. In creating new individuals, it is important that these individuals are still feasible
solutions, or is even a solution to the given problem at all. These issues could arise in the mapping
between the encoding space and the (feasible) solution space. To handle the issue of infeasibility,
a problem that arises often in constrained optimization problems, penalty methods can be used.
For illegality, repair techniques can be used to transform the individual to a solution. Gen et al.
(1997) discuss a third type of technique to handle constraints in genetic algorithms: rejecting tech-
niques. With such a technique, infeasible solutions are not selected in for the next iteration. An
iteration in the algorithm is associated with a generation, which is denoted by ¢. The population
of a generation is then denoted by P(?).

Selection The strength of genetic algorithms lies in the selection method. A selection method
that performs well, leads the search to promising new generations. Gen et al. (1997) discusses
the following type of selection methods: roulette wheel selection, (¢ + A)-selection, tournament
selection, steady-state reproduction, ranking and scaling, and sharing.
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The roulette wheel selection method is a proportional stochastic sampling method. For each
individual solution in the population the fitness value f(b;) is determined. The roulette wheel,
with a bin for each individual in the population proportional to its selection probability (relative
fitness value), is spinned N times. These N (not necessarily different) individuals are selected as
parent.

In ranking methods, also referred to as elitist selection methods, the best individuals in a pop-
ulation are selected as a parent. In (u, A)-selection, the u best off-spring individuals are selected
as a parent. (u+ A)-selection differs in the sense that the best ¢ individuals are selected from the
off-spring and old parents. With an original population of size 1, these methods reduce the size of
populations over generations by selecting u < A. These ranking methods prevent individuals to be
selected multiple times. For combinatorial optimization problems this is very useful.

Tournament selection uses earlier mentioned selection methods on randomly chosen subsets
of the population. From this set of solutions the best is selected (ranking), or roulette wheel selec-
tion could be applied, to continue to the new generation. N tournaments are held to fill the new
population.

Crossover After the selection of the parents, the off-spring is created. To introduce variation in
the new population and to stimulate random search, crossover is conducted. A new genetic string
is composed from the genetic strings of the parent solutions. There exist many different ways to do
this. A widely used method is single-point crossover, in which a single point in the string is selected,
and the parts after that position are interchanged. Other crossover methods are often proposed for
problems with more complex characteristics.

Mutation In the crossover process the genes of the parents are interchanged, but no new genes
are introduced. So if a specific gene is not present in a population, it will not appear in new gener-
ations unless mutation occurs. Mutation is the random change of individual genes. When a binary
encoding is used, mutation is usually interpreted by randomly flipping the bits of the offspring.
Each gene in the offspring is mutated with a chosen probability p;,. When another encoding is
used, random values are selected to replace a mutated gene.

Multi-objective genetic algorithms Genetic algorithms can also be applied to multi-objective
optimization problems, which is then called evolutionary multi-objective optimization or genetic
multi-objective optimization. The main challenge in this application is determining the fitness
value of individuals, regarding multiple objectives. Gen et al. (1997) classifies different methods
for fitness assignment. Pareto-based approaches provide a Pareto ranking for a population, which
is based on non-dominance. The fitness value of an individual depends on the Pareto ranking. A
notable feature of this approach is that non-dominated individuals receive the same fitness value,
which is not the case in all other fitness assignment methods.

2.2.4. Uncertainty in multi-objective optimization

In classical optimization approaches, the values of parameters that are subject to uncertainty are
usually fixed to their average or a typical value. In real-life, it is reasonable to assume that these
values might deviate from the fixed parameters. In case that influential decisions are based on
the results of optimization with these parameters, it would be more realistic to take the uncertain
nature of the parameters into account.

One approach is to simulate realizations of the parameters, and include those in the optimiza-
tion problem (Gabriel et al., 2006). In this approach, that is called Monte Carlo simulation, one
needs to select the probability distributions from which the realizations are drawn. In practice,
usually there are no probability distributions available for the parameters with uncertainty.
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Another approach, mostly used in financial optimization, is to minimize both the expected
return and the variance (risk) (Ghaoui et al., 2003). However, for this approach you also need prob-
ability distributions. Sakawa et al. (1987) states that it would be more appropriate to interpret the
values of judgment-based parameters as fuzzy numbers. These could then be used in fuzzy multi-
objective optimization problems, to find the a-Pareto optimal solutions.

Liesio et al. (2007) uses intervals (a lower and an upper bound) for incomplete information in
optimization problems, which leads to an interval of overall objective values. With some adjust-
ments to the classical definition of dominance, it is possible to represent the dominance relations
of objective intervals in multi-objective optimization.

2.2.5. Performance indicators

To compare the performance of different methods, performance indicators need to be chosen that
are able to represent the quality of the approximation set of a certain method. Zitzler et al. (2003)
deals with the question how the performance of multi-objective optimization methods should be
compared. Decision makers, just like the majority of the people, want the solutions to their prob-
lems as fast as possible. Since the computation time of different optimization algorithms or even
different settings of an algorithm could be far apart, it is important to consider the this in the selec-
tion of a method. The computation time is easy to measure and compare, and therefore is widely
used as performance indicator. Next to the computation time, the quality of the results from the
multi-objective optimization method should be taken into account. Okabe et al. (2003) compares
several performance indicators that can be found in the literature. Performance indicators are di-
vided in cardinality-based indicators, accuracy indicators, and distribution indicators. For better
understanding of the performance of an algorithm, it is wise to consult different types of perfor-
mance indicators, for different test runs of the algorithm. The approximation of a Pareto-optimal
set is considered suitable for comparing the performance in a quantitative manner. For example
the distance to the Pareto-optimal set, the hypervolume measure, or the diversity could be used
as quality indicators. Statements can be made on dominance relations with respect to Pareto-
optimality. However, these statements do not cover the entire optimization method, solely the
dominance of approximation sets.

2.3. Multi-objective project portfolio optimization

2.3.1. Multi-objective optimization methods in project portfolio optimization

In the literature, the multiple objectives in project portfolio optimization are handled in different
ways. In some cases the different objectives are weighted prior to the project portfolio selection
process. In this way the multiple objectives can be written as one global objective function, en-
abling the use of simpler and more explored optimization methods. Examples of articles that use
the weighted sum method to combine multiple objective functions are Fwa et al. (1994), Teng et al.
(1996), Higgins (1998), Liesio et al. (2007), Ahern et al. (2007), and Ghapanchi et al. (2012).

Using a weighted sum of objectives implies a preference structure prior to optimization. De-
cision makers are not able to gain insight in the effects of adjusting the weights they have given,
which is not desirable (Ghasemzadeh et al., 1999). Therefore, the use of multi-objective optimiza-
tion methods with an a posterior preference structure increased during the past decades. Such
multi-objective optimization methods search for Pareto optimal solutions. These can be evalu-
ated after the optimization process. Examples of articles that use a posterior preference methods
in project portfolio optimization are Stummer et al. (2003), Engelhardt-Funke et al. (2004), Do-
erner et al. (2006), Podofillini et al. (2006), Quan et al. (2007), Iniestra et al. (2009), Rabbani et al.
(2010), Berrichi et al. (2010), Chikezie et al. (2013), Bai et al. (2015), and Chen et al. (2015).

Due to the computational effort, that is needed to solve the combinatorial multi-objective op-
timization problems, often (meta-) heuristics are used to obtain satisfactory results within accept-
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able time (Higgins, 1998; Budai et al., 2006). Genetic algorithms are widely accepted as an effi-
cient solution technique for multi-objective optimization problems (Fwa et al., 1994; Grimes, 1995;
Sriskandarajah et al., 1998; Morcous et al., 2005; Quan et al., 2007; Podofillini et al., 2006; Nourelfath
etal,, 2010; Chikezie et al., 2013; Engelhardt-Funke et al., 2004; Iniestra et al., 2009; Bai et al., 2015).
Although some articles provided solution techniques with even faster computation times, in gen-
eral genetic algorithms with reasonable tuned parameters are praised for their computation time.

One of the techniques which is in some articles presented to provide better results than ge-
netic algorithms is Pareto ant colony optimization (Berrichi et al., 2010; Doerner et al., 2006). This
solution technique is less explored in literature, but might be interesting for further research. An-
other technique to find close to optimal solutions with short computation time is to solve the LP-
relaxation of a mixed-integer formulated problem (Budai et al., 2006; de Poot, 2013). The formula-
tion of the problem has more restrictions than for genetic algorithms, which can handle all kinds of
objective functions, constraints and objective spaces. Some other solution techniques used in the
literature are dynamic programming (Liesi6 et al., 2007) and particle swarm optimization (Rabbani
etal., 2010).

2.3.2. Visualization and decision support

For the use of multi-objective optimization in decision support tools, an a posteriori method is
preferred, since the results provide insight into the effects of certain preferences on all the objec-
tives. These effects might not be known or evident, which makes it difficult for a decision maker to
provide preferences a priori.

To support the decision-making process, the set of Pareto optimal solutions that is provided by
an a posteriori method needs to be presented in a clear way. Since in multi-objective optimization
a trade-off has to be made between the objectives, a well-designed visualization of Pareto optimal
solutions can be very helpful. For example the shape and range of the Pareto front can provide in-
sights for decision makers to select their preferred solution. Especially in the comparison between
different approximations of the Pareto front, it is important that the Pareto dominance relations
are clear in the visualization. Furthermore, the visualization method should be simple to under-
stand for decision makers, to really provide good insights.

TuSar et al. (2015) presents a review of visualization methods for Pareto fronts. Properties of visual-
ization methods like robustness, handling of large sets, simplicity, preservation of the dominance
relation, and preservation of the front shape are considered for different methods.

Simplicity is a very important aspect for decision support tools, since users are often not famil-
iar with reading complex plots. Two examples of relatively simple visualization methods are shown
in Figure 2.4. In a scatter plot matrix, the classic 2D representation of a Pareto front for 2 objectives
is presented for all combinations of objectives. A scatter plot matrix is an interesting method, since
the front shape and distribution of solutions are preserved. However, it will be difficult to get an
overview of the solutions, as it is not clear which of the dots belong to the same solution. In a par-
allel coordinates plot, the different objectives are represented by scaled vertical axis. Each solution
is represented by a connection line between the different function values for that solution. A par-
allel coordinates plot is good in terms of scalability, it is easy to extend the visualization for many
objectives. However, the front shape is not clear in the parallel coordinates plot, and the overview
will be lost if too many solutions are plotted.

Even though the visualization methods described are relatively simple, it is still not easy to
understand how the results should be interpreted. Therefore, it might not be sufficient to present
one figure with the results of a complex multi-objective optimization problem. One of the methods
described could be used for an overview, after which other methods could be used to gain insight
into the details of the different solutions.
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Figure 2.4: Visualization methods, as presented in TuSar et al. (2015).

Next to the visualization of the Pareto front, additional information could be provided for de-
cision making. A good example of this is the core index of projects in project portfolio selection.
Liesio et al. (2007) introduced this term, defined as follows:

Definition 3 (Core index). The core index of project a with regard to the reference set R of non-
dominated project portfolios xr is given by:

{xr € Rla € xR}l
IR

Cl(a,R) =

The core index of a project reflects how likely it is that the project is selected in a non-dominated
project portfolio. If the core index is equal to 1, the project is selected in all non-dominated so-
lutions. A project with a high core index reflects a project that scores well on the combination of
considered objectives. If a decision maker wants to force a project to be in the final project portfo-
lio, the core index indicates the fraction of the non-dominated set that is still feasible.

2.4. Summary

The literature on project portfolio optimization is used to identify the best practices and open
issues in this field. For project portfolio optimization in infrastructure networks, maintenance
projects can be included in the problem, from a high-level point of view. It can be concluded that
it is preferable to include multiple objectives in the optimization problem, such that the Pareto
optimal set of solutions could be used in the decision-making process. In the mathematical for-
mulation of the optimization problem it is important to include possible dependencies between
projects and assets. Furthermore, one must be aware of the uncertain nature of some of the vari-
ables in the problem. If possible, it would be wise to include information on these uncertainties,
such that a project portfolio can be selected that performs well, even if the parameters or variables
deviate from their expected values. Different multi-objective optimization methods are discussed,
and what performance indicators might be useful in the selection of a suitable algorithm. Lastly,
the visualization and decision support of project portfolio optimization problems is discussed.
Simple visualizations of the results are desirable, but difficult to realize for problems that regard
three or more objectives.

In Table 2.1, an overview is presented of articles on the optimization of maintenance and in-
vestment projects planning. This could be used for quick insights into the tendency of including
uncertainty, scheduling, and dependencies in the problem formulation, as well as the number of
objectives considered and the optimization techniques used to optimize these.



Article Uncertainty Scheduling Dependencies | Objectives | Decision criteria | Optimization technique
Chen et al. (2015) Not included 10 years, per year Independent 2 A posteriori Dichotomic approach
Fwa et al. (1994) Not included 20 years, per year Independent 3 Weighted sum | Genetic algorithm
Grimes (1995) Not included Not included Independent 1 - Genetic algorithm
Sriskandarajah et al. (1998) Not included 1 year, per day Independent 1 - Genetic algorithm
Morcous et al. (2005) Markov-chain 15 years, per year Independent 1 - Genetic algorithm
Budai-Balke (2009) Not included 2 years, per week Independent 1 - Gene.n(.: alg(?rlthm, tabu seaFch,
heuristics, simulated annealing
Nourelfath et al. (2010) Poisson process | 5 months, per month Independent 1 - Genetlc‘ algorithm, - exhaustive
evaluation
Quan et al. (2007) Not included Minimized horizon Independent 2 Search strategy | Genetic algorithm
Podofillini et al. (2006) Markov-chain Not included Independent 2 A posteriori Genetic algorithm, crude search
Chikezie et al. (2013) Not included 20 years, per year Independent 2 A posteriori Genetic algorithm
Higgins (1998) Efg?:;i?f;ﬁ 4 days, per hour Independent 2 Weighted sum | Tabu search
Berrichi et al. (2010) Exponential Minimized horizon Independent 2 A posteriori Pareto ant colony optimization,
distribution NSGAII, SPEA II
Jafarzadeh et al. (2015) Not included Flexible horizon Independent 1 - Branch & bound
Lietal. (2009) Shackle’s model Not included Independent 1 - LaGrangian relaxation
Teng et al. (1996) Not included Not included 2 projects 4 Weighted sum | Heuristic
Ghasemzadeh et al. (1999) EStlI\tzLee(l risk 10 periods Sets of projects 1 - Branch & bound
Liesi6 et al. (2007) Intervals Not included Independent 4 Weighted sum | Dynamic programming
Stummer et al. (2003) Not included 3 periods Sets of projects 5 A posteriori Brute force algorithm
Probability
Engelhardt-Funke et al. (2004) density Not included Independent 2 A posteriori Genetic algorithm
function
Iniestra et al. (2009) Not included Not included Sets of projects 5 A posteriori Genetic algorithm
Bai et al. (2015) Not included Not included Independent 5 A posteriori Genetic algorithm
Doerner et al. (2006) Not included 3 periods Set of projects 2 A posteriori ;agéfl??giﬁi?;igggrﬁzﬁggn’
Ahern et al. (2007) Not included Not included Independent 9 Weighted sum | Goal programming
Rabbani et al. (2010) Estlrgall:lee(i risk 3 periods 2 projects 3 A posteriori ls);g:i(; swarm - optimization,

Table 2.1: Overview of articles on the optimization of maintenance and investment projects planning.
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Investment project portfolio optimization
method

With the findings and lessons from the literature presented in the previous section, some choices
can be made on the formulation and the optimization method for the investment project port-
folio optimization problem. The choices that are made are presented in this chapter. First, the
general investment project portfolio optimization problem is formulated mathematically in Sec-
tion 3.1, and the railway infrastructure networks specific functions are presented in Section 3.2.
The repeated e-constraint algorithm and the genetic algorithm NSGA II are selected to solve the
investment project portfolio optimization problem. The details of these approaches are discussed
in Section 3.3, as well as the performance indicators that will be used in the comparison between
the algorithms.

3.1. Optimization problem formulation

In this section, the mathematical formulation of the general investment project portfolio optimiza-
tion problem for infrastructure networks will be presented. The notation of Su et al. (2017) will be
used as a guideline for corresponding variables and parameters. The same notation could be used
for other investment project portfolio optimization problems that consider the states of assets or
components, and a set of possible projects to influence these states. An overview of the notation
is presented at the end of Section 3.2.

The optimization problem considered in this thesis concerns the selection and planning of
investment projects in an infrastructure network. The planning horizon, also called the control
horizon, consists of N, time periods. To be able to make well-founded decisions, the state of the
infrastructure network will be predicted for the prediction horizon, consisting of N, time peri-
ods (N, > N,). The investment projects can also be scheduled in time periods after the planning
horizon. However, only the investment projects within the planning horizon will be used for the
detailed planning and execution of the projects. The optimization problem will be reconsidered
after the planning horizon, with updated information and again a prediction horizon of N, time
periods. This concept is called a rolling horizon.

An infrastructure network is considered, consisting of n assets or components (referred to as
assets), that do not necessarily have to be of the same asset type. This set of assets C may also
include some assets that are not yet build or in use. Some static information on the asset could
cover for example the asset type, the installation date of the asset, and the location of the asset.
Time-depending asset information is considered as the state of the asset. The condition of the
j™ asset in time period k is given by x;"n(k) € [0,1]. A condition of 1 means that the concerning
asset is as new, so in full state. An asset with a low condition is expected to fail more often, and
or to deliver lower performance. The condition of an asset may deteriorate over time, but the
deterioration could also depend on for example the environment and the usage. Together with
some auxiliary variables x;ux(k), the state of the j™ asset in time period k is given by:

21



22 3. Investment project portfolio optimization method

con
X (k)

Vjell,...,n},Vkefl,...,Np} (3.1

In the auxiliary variables one could store information on the asset that is relevant for the selection
of investment projects, or information that is needed to compute other variables. Examples of
auxiliary variables are the usage of the asset in a time period, or the operational expenses needed
for that asset in a time period.

Each asset is linked to a set of possible investment alternatives {ay,..., aNj} = A/ € A, where N i
is the number of maintenance or investment alternatives for the jth asset, and A is the set of all
N possible alternatives. Each alternative could represent a maintenance activity a € AM < A, that
could be executed multiple times in the prediction period, or an investment project a € A’ € A,
that could be executed only once. The alternative a € A° represents when no maintenance activ-
ity or investment project is selected. There is no limit for how many times ay could be ’selected’
in a portfolio. Let v, for a € A be the maximum number of times that the alternative a may be ex-
ecuted in the prediction period. Maintenance activities could be repairs or renewals. Investment
projects could be a replacement, building an asset, breaking down an asset, or other reorganiza-
tion projects.

In a time period k, only one alternative could be executed. For qy it is by definition that no
maintenance or investment project could be executed, but also for other alternatives it holds that
a project can not start while another project is being executed. Let u; (k) represent the alternative
a € Al that starts for the j™ asset in time period k. The binary representation of the start periods
of the alternatives are given by:

1 if alternative a starts in time period k

Ya(k) ={ 3.2)

0 ifalternative a does not start in time period k
Vae A Vke{l,...,Np}.

So ya(k) = 1 if and only if u;(k) = a, for a € AJ. The duration of alternative a € A in time periods
is given by d,. This means that the alternative is executed in d, periods, starting from time pe-
riod k for which u j (k) = a. Let n,(k) be the binary representation of the execution periods of the
alternatives:

1 if alternative a is being executed in time period k
Na(k) = (3.3)

0 ifalternative a is not executed in time period k

Vae AVke(l,..., Ny},

for which n, (k) = Zf;‘o va(k—1). For each asset, only one alternative could be executed in a time
period. This gives rise to the constraint:
Y nalk)<1 Vjell,...,nhkefl,...,Np} (3.4)
acAl
This constraint and the definition of n,(k) make that it is also impossible that an alternative starts
for the j™ asset starts while another alternative is still being executed. A maintenance or invest-
ment project has effect on the state of the assets from the moment the execution is finished. There-
fore, the binary variable that represents whether the execution of alternative a € A is finished in
time period k is introduced:

1 if the execution of alternative a ends in time period k
Aak) = (3.5)

0 ifthe execution of alternative a does not end in time period k

Vjefl,...,n},,Vke{l,...,Npl,
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for which A4 (k) = y4(k — dg). Similar to u;(k), let w;(k) represent the alternative that ends in time
period k, so for a € A’ it holds that A,(k) =1 if and only if w;j(k) = a. An alternative ends du,(k)
periods after it started: u;(k) = w;(k+ duy; k)

Some alternatives might affect multiple assets. In that case, the alternative needs to be exe-
cuted in the same time periods for all affected assets. So if assets j and j' have a mutual alternative
ae Aln A, then u j(k) = uj(k), and wj(k) = wj (k). This makes sure that an alternative can not
be executed if for one of the concerning assets, another alternative is being executed.

Due to deterioration, the condition of the assets decreases over time, and some auxiliary vari-
ables may also change. Maintenance or investment alternatives may improve the condition of the
assets, and can also have effect on the auxiliary variables. Both the effect of the deterioration pro-
cess and the effect of maintenance and investment alternatives are uncertain, so predictions and
expectations are used in the optimization problem. For a realistic representation, one could in-
clude the uncertain nature of these predictions and expectations in the formulation. Let 8 j (k) e® j
be the realization of the uncertainties related to the condition of the j™ asset in time period k, and
0(k) = [61(k),...,0,(k)] T In general it is assumed that if 6 is added up in the objective function,
the expected value of 8 is 0, or if 8 is a multiplier, that the expected value of 8=1. The generic model
for the state of the assets is then given by:

xj(k+1)=fj(xj(k), w;(k),0;(k)) (3.6)
f(x;(k),0;(k)  if wj(k) = ap € A° (no maintenance)
= f].m(xj(k),ﬂj(k)) ifwjlk)=ace AM (@ is a maintenance project) (3.7)
fji 0;(k)) ifwjk)=ac A! (ais an investment project)

Vjell,...,n},Vkell,...,N,— 1}

In the functions fj, some parameters are included for the effect that an alternative has on the state
of the concerning assets. If no maintenance or investment projects are executed, the change in the
state of assets is only due to deterioration. So the state of an asset in the next time period depends
on the current state and some uncertainties due to for example measurement errors and model
inaccuracies. When a maintenance project is finished, the state of the asset in the next time period
will depend on the expected effect of the alternative as well. Lastly, if a renewal or replacement
project is executed, the condition and auxiliary variables of the asset in the next time period are
given by the "as good as new" condition and corresponding auxiliary variables, and depending on
uncertainties in the exact condition and expected auxiliary variables.

Next to the constraint for the execution of alternatives, also constraints on the states of the
assets must be considered, as well as global constraints for the whole infrastructure network. An
example of a logical local constraint is that the condition of an asset should be in the interval [0, 1],
so deterioration stops if the condition is 0, and maintenance or renewal projects can not result
in a condition higher than 1. Global constraints could arise for example from limited available
resources for the whole infrastructure network. All the constraints that must be met for the whole
system are given by:

g(x(k),y(k),n(k), A(k), u(k), w(k),0(k)) <0 Vkell,...,Np}, (3.8)

where x(k) = [x1(k),..., X, ()17, y(k) = [Yay(K), ..., Yay 1T, n(k) = 4y (K), ..., N4y (K)IT, Alk) =
Nay(5), .., Aay (T, uk) = [ug (K), ..., upy (1T, and w(k) = (w1 (k), ..., wu(k)]T.

Now that the formulation of the states and constraints is presented, the m objectives in the
optimization problem can be denoted by:

Ty, A, w,w,0) = 1%, 7,1, A 1, w,0),..., T (X, 7,1, A, 1, w,0)]7 3.9
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where x = [x(1),..., x(Np)l, y = [y(1),...,y(Np)], n = [n(1),...,n(Np)], A = [A1),..., A(Np)],

u = [u(),...,u(Np)l, w = [w(),...,w(Np)], and 6 = [0(1),...,0(Np)]. In the investment project
portfolio optimization problem, the long term behaviour is considered. Therefore, the objective
functions often consider the states in the entire prediction horizon. This could be by summation
over states in the time periods in the prediction horizon, but also by taking the average of the states.

The set of all possible realizations of the uncertain information, ©, can be very large. Since for
each time period, all those possible realizations might be different, the set of possible realizations
for the entire prediction period @™ will be huge. It might, however, not be necessary to con-
sider all possible realizations. In the end, the goal of the optimization is to support the decision
making process by considering a good variety of possible cases. Although it is useful to include
more information on parameters than just the expected value, to gain more insight, for some ap-
plications it might be sufficient to consider the expected values and the extreme values (lower and
upper bounds of the uncertain variables). To reduce the additional effort of taking into account
the uncertainties, not all sources of uncertainty will be considered in this problem formulation.
The available information about the investment alternatives is often based on the judgment and
expectations of experts. The costs and benefits could deviate from these expected values, due to
for example errors in calculation, non-fulfilled agreements with external parties, and unexpected
delays. Uncertainties in these variables have a great impact on the results, and are therefore se-
lected to be included in the problem formulation. Since deterioration models and measurements
become more and more accurate, the deviations in predicted conditions will not be taken into
account, but only deviations in the conditions that are the result of investment alternatives. This
means that when no investment alternative is executed for an asset, the lower bound, expected
value, and upper bound for the state of that asset are equal.

Let 6 j(k) be the lower bound of the possible realizations, and H_j(k) the upper bound of the
possible realizations. Then the lower and upper bounds of the state of the assets is given by:

f 0(x (k) ifwj(k)=ape€ A% (no maintenance)

ﬁ(k +1) =X f]m(_x_j(k),@(k)) ifwjk)=ace AM (g is a maintenance project) (3.10)
fj" (ﬁ(k)) ifwjk)=ace Al (ais an investment project)
fj@ (x; (k) ifwj(k)=ape€ A (no maintenance)

Xj(k+1) =+ fj’" (x_j(k),B_j(k)) ifwjk)=ae AM (g is a maintenance project) (3.11)
fj" (H_j(k)) ifwjk)=ace Al (ais an investment project)

Vjefl,...,n},Vke(l,...,N,—1}L
Now the lower and upper bound of the objective functions are given by:

J&y,m A u,w,0) =1y, 1A 1, w,0),..., T (57,1 A, u, w,0)] 3.12)
T&y,m A uw,0) =&y, A u,w,0),..., TmE 1,1 A, u, w,0)]. (3.13)

Furthermore, additional constraints can be posed for the lower and upper bounds of the states:
g(x(k), x(k), %(k), y (k),n(k), A(K), u(k), w(k),0(k),0(k),0(k)) < 0. (3.14)

The defined lower and upper bounds of the objectives and constraints can be used in different
ways. The most simple way of including these realizations is to optimize only the expected values
of the objective functions, and use the lower and upper bounds in the evaluation of the Pareto
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optimal or non-dominated solutions. This will provide quick and simple insight into the uncertain
nature of the investment projects. A computationally more expensive way is to optimize three
separate optimization problems. Solutions that are Pareto optimal or non-dominated for each of
the optimization problems is considered a robust choice with respect to the uncertain information
of the investment alternatives. It is possible that the intersection of the non-dominated solution
sets is empty. In that case, some additional performance indicators are needed to compare the
effects of a certain project portfolio on the different scenarios for the objective values.

3.2. Railway network representation

The application of investment project portfolio optimization that is considered in this thesis is
the selection and planning of investment projects in railway infrastructure networks. The opti-
mization problem for project portfolio optimization in railway infrastructure networks will be pre-
sented in this section, following the general formulation as described in the previous section. An
overview of the notation of all sets, indices, parameters, and variables is presented at the end of
this section.

Prediction horizon

The investment project portfolio optimization problem in railway infrastructure networks can be
considered for different levels. Due to the long lifespan of assets in the railway infrastructure, for
a high-level point of view typically a prediction horizon of 20 years will be considered, and the
planning horizon could be for example 1 year. For a detailed planning, time periods could be for
example 1 hour. Then a prediction horizon should be only a couple of days.

Assets and states

Railway organizations store information on all assets and components in the railway infrastructure
network. Some static information on the assets is stored, which is needed in the investment project
portfolio optimization problem. Examples of the static data used in railway networks are the asset
type ¢;, the railway segment in which the asset is located, the start and end location of the asset, the
length of the asset / i, the neighbour assets C ;( , and the installation date (if installed). The dynamic
information on the assets are given by the states:

'x;on(k)'
x4 (k)
x4 (k)

xj(k)=| x;(k) Vje(l,...,n,Vkell,...,Np}, (3.15)

x5(k)

xf(k)

L

where x;?(k) is the amount of operational expenses (OPEX), x;.’(k) € [0,100] the percentage of out-

age, and x]r. (k) € [0,1000] the risk score, all for the j™ asset in time period k. For assets with the
asset type ’track’, some additional states are defined. The maximum speed at a track segment
xj. (k) (km/h) and the expected number of passengers per time period x;’ (k) are used to compute
the capacity of a railway infrastructure network for passenger transport. The capacity of a track
segment is given by x;{’(k). For assets of other types than asset type track, the speed, passengers,
and capacity are 0 at all times.

In this formulation, x;(k) could also represent the state of a group of assets. These groups could
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for example be based on asset type or age. This enables a high-level view, and could be used if the
set of assets is very large, which is often the case in railway infrastructure networks.

For assets in railway networks there exist many advanced deterioration models (Sadeghi et al.,
2010) that can be used to predict the condition. It is highly important for the results of the opti-
mization problem that the predictions are as accurate as possible. However, research into the best
deterioration models is out of scope for this thesis. For sake of simplicity, the deterioration of the
assets is considered linear. For each asset type, a deterioration rate §, is provided. The condition
of the j! asset, with asset type tj, in time period k + 1 is then given by:

x;on(k+ 1):max(x;°n(k)—6tj,0) Vjefl,...,n},Vke(l,...,N,—1}L (3.16)

Furthermore, the assumption is made that the operational expenses, the percentage of outage, the
risk score, and the maximum speed have an affine relationship with the condition of the asset.
The expected number of passengers is linearly depending on the speed of the asset, so indirectly
also on the condition of the asset. For each asset j and each characteristic & € {e, 0,1, 5, p}, a basic
characteristic value b; ;, is defined as the characteristic value when the asset is in full condition.
The relations for the auxiliary variables e, o, 1, s, p are defined as follows:

) =bjp- By + @y n 20| heleo,rs), (3.17)
) =bj - (g, x500) Vjiedl,...,n,Ykell,...,N,}, (3.18)

where the parameters «a; j, B, are the slope and the intercept of the relations respectively, defined
for each asset type t and each characteristic h € {e, o, 1, 5, p}.

Investment alternatives

The set of all investment alternatives is given by A. Each alternative a € A, is either an alternative
without (maintenance) actions a € A%, a maintenance action a € AM , OI an investment project or
replacement action a € A, Alternatives in the set A i €A Aj=Aaog,...,an;} have effect on the jth
asset. The cardinality of this setis N; + 1.

For each alternative a, the costs ¢4, duration d,;, and man hours needed m, are specified. The
effect of an alternative on the concerning assets is given by e, con and e, , for h € {e,0,1,s}. The
effect starts as soon as the execution of the alternative ends. The definition of u, w,y,n, and A1 is
the same as in Section 3.1. The states of the assets are given by:

max (x%" (k) - 6,,,0) w;(k) = ag € A°
x;7(k+1) ={ min (max(x§°“(k) —6tj,0) + €4,con» 1) wjk)=ae AM (3.19)
€a,con w]'(k) =age Al
bjpn- ﬁ[,h+a;,h-maX(x§°n(k)—5tj,0)) w;(k) = ag € A°
x;l(k+1)=< ik ,B,h+ath-(min(max(x§°n(k)—5tj,0)+ea,con,1))) wj(k):aeAM (3.20)
€a,h" (,Bth+ath eacon) LUj(k)ZLlEAI
iy (atp c X (k)) Wj(k)=6l()€A0
X (k+1) =1 b]p (a (x (k)+eas)) wj(k)=ae AM (3.21)
€ap: (“tp eas) wj(k):aeAI

Vjefl,...,n},Vkell,...,N,—1},Vhe{eo,r, s}
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Constraints

For the investment project portfolio optimization problem, many constraints can be posed, that
are mostly organization specific. In this general railway network representation, only a few of those
are taken into account.

First, a constraint is posed on the amount of man hours, since there are a limited amount of
workers to execute the projects. The maximum amount of man hours that can be scheduled per
time period is given by m™?*. For each time period, the amount of scheduled man hours should
be less than, or equal to m™:

g1(x(k), y(k),n(k), A(k), u(k), w(k),0(k)) = Y nalk) - mg—m™> <0 (3.22)
acA
Vkefl,...,Np}.

Next, a local constraint could be considered for the states of the assets, for example to meet the
safety requirements of the railway organization. The condition of each asset should be at least
xOm™MN in each time period:

81+ (x(k), y (k) (k), Ak), u(k), w(k),0(k)) =xO™mn — XMk =0 (3.23)
Vjiefl,...,n},Vke{l,...,Np}.

Lastly, a constraint on the scheduling of the alternatives is given by a minimal time period in which
an alternative could start. For all alternatives a; € A\ ay, the period in which it starts should not
be before the first possible start period k; min-

g1n+q(x(K), Y (k),n(k), A(k), u(k), w(k),0(k)) =Y q, (k) - (k = kg min) <0 (3.24)
Vkefl,...,Npl

Objectives

The set of feasible solutions is bounded by the constraints. Now the goal is to find the best possible
solutions in this set. In this goal, the best possible solutions are those that score best according to
the multiple objectives, so the Pareto optimal solutions. For the general railway network represen-
tation, 4 objectives are defined to be most suitable: costs, condition, capacity, and risk.

The costs of the investment project portfolio for the railway network consist of two parts. The
costs for the executed maintenance and investment projects, and the operational costs needed for
all the assets in the network. The first objective is thus to minimize:

Ly, Auwd) = ) Z(ca-ya(k))+2(xji(k))), (3.25)

kefl,...,Np} \acA JeCH

where C* is the set of assets that are currently in use, so for which the installation date is in the past.
Next to minimizing the costs of the investment project portfolio, an important goal is to maximize
the condition of the railway network. For sake of simplicity, all the objectives in the optimization
problem are to be minimized. Therefore, the objective function for the capacity of the network
is included with a minus sign. The condition of the railway network is considered as the average
condition of an asset in one time period. For the investment project portfolio, the negative version
of the average condition is given by:
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Y ke(l,..,N,} 2 jeCH (xﬁon(k))
]Z(X)Y,n; A/) u, w, 0) == . (326)
n- Ny

A railway organization can make more profit if the capacity of the railway network is higher. There-
fore, another goal of the organization is to maximize the capacity of the network. This could be
achieved for example by expanding the network, or by maintaining a good quality network. The
capacity of a railway network can be fully utilized if the condition is high. In this railway network
representation, the capacity is defined for passenger transport. The capacity is measured in pas-
senger kilometers. Because passengers are more likely to travel at a certain railway segment if that
segment has good connections, the capacity of a track type asset j in time period k is given by:

=Py | P P
k) = | ) (k)+j§x(xj,(k) 1) (3.27)

o = (o) 1, (3.28)
VjeCtnChVke(l,...,Np},

where ¥ represents a shadow variable to prevent a loop in the definition of the expected num-
ber of passengers of neighbouring assets. The negative average amount of kilometers traveled by
passengers in one time period is given by:

Y kefl,...N,} (X;{)(k))
Np

]3(X,Y, T]’ //t’ u, w, 9) = - ) (3~29)

where the minus sign is inserted to invert the objective function to one that should be minimized.
Lastly, an objective is defined to minimize the risk profile of the assets. The average risk score of
an asset in a time period is to be minimized:

A u,w,0) = . 3.30
Ja(x,y,n, A, u, w,0) 7N, ( )

Lower and upper bounds

The optimization problem for the railway network representation defined so far, is the optimiza-
tion problem with expected values. For the effect of the investment alternatives on the assets,
lower bounds e, and upper bounds e, are considered. Also lower and upper bounds for the costs,
duration, and man hours needed for the investment alternatives are included. The lower and up-
per bounds for the man hours can be used to pose additional constraints that could be seen as the
maximum amount of man hours that can be deployed, including over hours.

All the lower and upper bounds of the asset states are defined as explained in the previous
section. With the lower and upper bounds for the effects of the investment alternatives, the lower
and upper bounds for the states of the assets are given by:
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max(xgon(k) —6[].,0) w;(k) = ap € A°
ﬁ(k+l):<min(max(x?on(k)—5tj,0)+m,1) wi(k)=ae AM (3.31)
€a,con o wi(k)=ae A
b B+ e max x50 -6, w; (k) = ag € A°
x_?(k+1):<bj'h~(ﬁt,h+at'h ( ( (Con(k) 80 )+eacon,l))) wj(k) = ae AM
(,Bth"'ath eacon) - wi(k)=ae Al
(3.32)
bjp- (a - xS (k)) w;(k) = ag € A°
X+ =1p;, (a[p (x (k)+eas)) wi(k)=aec AM (333)
ea,p- (atp eas) wj(k)=ac A
max(x;on(k)—étj, ) w;(k) = ap € A°
20 (k+ 1) = min (max (xP7(k) = 5, 0) + Zacon 1) wj(k)=aeAM (3.34)
€a,con wj(k)=ae Al
B bjn- ,Bt'h+at,h-max(@(k)—6t].,0)) w;(k) = ap € A°
x;’(k+1)=< i ,Bth+ath-(min(max(xjon(k)—é}j,o)+%,1))) wj(lc)zaEAM (3.35)
ne(Ben+ @eh - €acon) wj(k)=ac Al
B b],, s %5 (K) w;(k) = ag € A°
x?(k+1)=< bjp- %atp (x;(k)+%)) wj(k):aEAM (3.36)
eap-(ap-€as) wj(k)=ae Al

Vjell,...,n},Vkefl,...,N,—1},Yhe{eo,r,s}

The lower and upper bounds for the costs ¢, and ¢, are used to compute the upper and lower
bound of the costs objective. Furthermore, the lower and upper bounds for the states are used to
compute the lower and upper bounds for the objective values:

Lxy,nAuwd= Y (Z (cu m(k))+ > (x (k))) (3.37)
kefl,...,Np} \acA jeCH
nEymAuwd= Y (Z (Ca-va))+ Y. (x_;?(k))) (3.38)
ke{l,..,Np} \aeA JjeCH
Zk(—:{l ..... Ny} X jecn | X ( n(k))
Lxy,nAu wb) = A (3.39)
_ _ Zke{l ..... N}ZJEC/‘( Con(k))
J2(x,y,m A u, w,0) = (3.40)
n- Ny

BEy,nAuwd=- ) (x‘f’(k)) (3.41)
Ny}
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BEynAuwd=- Y (xf(k)) (3.42)
kefl,...,Np}
Y kel,...N,} 2 jecH (x]r-(k))

) ) JA/) ) !0 = — 3-43
Ja(x,v,n A u, w,0) "N, (3.43)
- — Xkell,..,N,} X jecr (x_]r-(k))

Ja(x,y,m A u, w,0) = (3.44)
n-Ny

The lower and upper bounds for the duration of the investment alternatives can be used in the
multi-objective optimization problems with the lower and upper bounds of the objective functions
respectively. In this way, the lower bound four the objectives is really the best case scenario, and
the upper bound the worst case scenario. Projects that are analyzed to be non-dominated in all
three scenarios are considered as robust choices with respect to the uncertainty in the effects of
the investment alternatives.

Sets and indices

k  Time periods, {1,..., Np}
Jj Assets, {1,...,n}

ctccC Assets with asset type track

C;.‘ cC Neighbouring track type assets of j asset, j € Ct

CtcC Assets that are currently in use

T t Assettypes, {track, switch, signalling}

H h  Asset characteristics, {OPEX, outage, risk, speed;}

S s Railway segments

A a Investment alternatives, {ay,..., an}

AjcA Investment alternatives for j™ asset

A'c A No (maintenance) actions

AMc A Maintenance (repair) projects

Alc A Replacement or renewal investment projects
Parameters

N, Control horizon

Ny Prediction horizon

Ca Costs of alternative a

Ca Lower bound for costs of alternative a

c:a Upper bound for costs of alternative a

dg Duration of alternative a in periods

dg Lower bound for duration of alternative a in periods

d, Upper bound for duration of alternative a in periods

eah Effect of alternative a on asset characteristic & € {e, o, 1, s}
euh Lower bound for effect of alternative a on asset characteristic h € {e, o, 1, s}

euh Upper bound for effect of alternative a on asset characteristic & € {e, o, r, s}

mg Man hours needed for alternative a per period

Mg Lower bound for man hours needed for alternative a per period
mg Upper bound for man hours needed for alternative a per period
m™&  Maximum amount of man hours per period

mm&X  Maximum amount of man hours per period, including overtime
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Variables

x;on( k)
ﬁ (k)
x;on( k)
x]e. (k)
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= =X
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Length of asset j, in km

Type of asset j

Railway segment of asset j

Binary parameter, indicating whether asset j is currently in use

Basic value of characteristic h € {¢, 0, 1, 5, p} for asset j

Deterioration rate for asset type ¢

Slope for condition in multiplier definition for asset type ¢ and characteristic & €
{e,o, 1,5, p}

Intercept multiplier definition for asset type ¢ and characteristic h € {e, 0,1, s}

The condition of asset j in time period k
Lower bound for the condition of asset j in time period k

Upper bound for the condition of asset j in time period k
The amount of operational expenses for asset j in time period k
Lower bound for the amount of operational expenses for asset j in time period k

Upper bound for the amount of operational expenses for asset j in time period k
The percentage of outage of asset j in time period k
Lower bound for the percentage of outage of asset j in time period k

Upper bound for the percentage of outage of asset j in time period k
The risk score of asset j in time period k
Lower bound for the risk score of asset j in time period k

Upper bound for the risk score of asset j in time period k
The maximum speed for asset j € C’ in time period k
Lower bound for the maximum speed for asset j € C’ in time period k

Upper bound for the maximum speed for asset j € C! in time period k
The number of passengers for asset j € C’ in time period k
Lower bound for the number of passengers for asset j € C’ in time period k

Upper bound for the number of passengers for asset j € C’ in time period k

The number of passengers for asset j € C! in time period k, without additional
passengers due to connectivity advantages

Lower bound for the number of passengers for asset j € C’ in time period k, with-
out additional passengers due to connectivity advantages

Upper bound for the number of passengers for asset j € C' in time period k, with-
out additional passengers due to connectivity advantages
The capacity asset j € C’ in time period k

Lower bound for the capacity asset j € C! in time period k

Upper bound for the capacity asset j € C’ in time period k

The alternative a that starts for asset j in time period k

The alternative a that ends for asset j in time period k

Binary variable that indicates whether alternative a starts in time period k

Binary variable that indicates whether alternative a is being executed in time pe-
riod k

Binary variable that indicates whether alternative a ends in time period k
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3.3. Multi-objective optimization methods

Many multi-objective optimization methods are presented in the literature. The selected opti-
mization method should be able to solve problem formulation, but other than that, the selec-
tion of an optimization method is mostly based on preferences. In project portfolio optimization,
the output of the optimization is used in the decision-making process. Therefore, an a posteri-
ori method is preferred. Decision makers are often interested in optimization methods that are
fast, such that they are able to run the optimization for different scenarios. Because of the high
impact of the solutions that are provided by the optimization method, decision makers want to
be sure that the selected solution is optimal. Because the investment project portfolio problem in
infrastructure networks is a combinatorial optimization problem that often considers many possi-
ble projects, there will be a trade-off between the computation time and the solution quality. Two
multi-objective optimization methods are selected to solve the investment project portfolio prob-
lem as defined in the previous sections. Genetic algorithms are known to be fast, but because it is
ametaheuristic search technique, no information can be provided whether the obtained solutions
are optimal. The repeated e-constraint algorithm is a method in which multiple single-objective
optimization methods are solved. For these single-objective problems, optimality can often be
guaranteed. The general idea of the algorithms is explained in more detail, specified for the in-
vestment project portfolio optimization problem. The process of the algorithms is clarified with
some pseudocode.

Repeated ¢-constraint algorithm

The main idea of the repeated e-constraint algorithm is to solve many single-objective problems.
One of the objectives in the optimization problem is optimized, while for the others, the objective
value is bounded by a constraint. Each of the objectives can be chosen to be the main objective.
To determine appropriate boundaries for the other objectives, first the so called extreme points
are generated by optimizing the individual objectives without e-bounds. Now that the ranges for
each of the objective functions are determined, these ranges are divided into g intervals. For each
objective function region, a different amount of intervals could be used. For sake of simplicity,
but without loss of generality, in the proposed algorithm the same amount of intervals is used for
all bounded objectives. All the € boundaries start at the maximum objective values, and move in
different for-loops to the minimum objective values. The pseudocode for the repeated £-constraint
algorithm applied to the case study is presented here:

for all objectives do
Minimize objective p
Save all objective values
end for
Determine minimum and maximum objective values
for all remaining objectives p do
Set £, = max(Jp)
for index-p=1:gdo
for all remaining objectives p’ do
Set €p =max(/y)
for index-p' =1:g do

Minimize objective J;

st. Jp<ep, Vpei2,...,m}
g=<0.

Save solution
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(max(Jp) —min(Jp))
g

Set £, = max(Jp) —index—p-

end for
end for
end for
end for

In this algorithm, the single-objective optimization problems are mixed integer linear program-
ming problems (MILP), or mixed integer non-linear programming problems (MINLP). In case that
a combination of boundaries ¢, creates an infeasible problem, the 'solution’ is not used for further
analysis. This also indicates that other problems in which one or more of the boundaries is even
more tight, will also be infeasible. To save computation time, one could use this in an exit strategy,
as proposed in Mavrotas (2009). In this way, these subsequent infeasible problems will be skipped.

For optimization problems with a very large solution set, it might not be sufficient to use an
exit strategy for subsequent infeasible problems in terms of computation time. Stopping criteria
could be used to terminate an optimization statement. For high-level problems, the distance to
the Pareto front could be less important. In that case, for a MILP, one could use a relative stop-
ping criterion that terminates the optimization if the current best solution is within a specified
region from the current best Linear Programming (LP) bound. Another option is to set a maxi-
mum optimization time, and let the optimization terminate in case the solving takes longer than
the specified time. In both cases, the real optimal solution might not have been found. This means
that using stopping criteria has effect on the performance criteria regarding the distance to the real
Pareto front. This will thus only be used if reduced computation time is more important than the
distance to the Pareto set. An overview of performance indicators is provided in Section 3.4.

Multi-objective genetic algorithm

The widely used genetic algorithm, NSGA II, for multi-objective optimization problems is used to
search for the Pareto front with an entirely different approach in comparison with the repeated
e-constraint algorithm. The search strategy as presented in Section 2.2.3 has some settings to tune
the genetic algorithm for the specific optimization problem. The NSGA II is a non-sorted genetic
algorithm, proposed in Deb et al. (2002).

The improved non-dominated sorting algorithm (NSGA II) owes its name to the fitness assign-
ment. The fitness of each of the solutions in the solution set is based on a non-dominated sorting.
This non-dominated sorting means that Pareto optimal (non-dominated) solutions get a better
rank than solutions that are dominated by other solutions. The NSGA II can be used with different
types of encoding schemes. Since the investment project portfolio optimization problem is a com-
binatorial optimization problem, a binary string is used for the chromosomes of the individuals in
the population.

The pseudocode of the main loop of the implemented algorithm is presented here:

Initialize random population
Compute the objective values of individuals in the initial population
Compute the error of individuals in the initial population
Compute non-dominated sorting
for each generation do
Use tournament selection to select the parent population
Use crossover and mutation to create the offspring population
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Compute the objective values and the error of individuals in the offspring population
Compute non-dominated sorting of combined parent and offspring population
Select the best individuals for the next generation

end for

The tournament selection is implemented with a tournament size of two. For crossover, a fwo-
point crossover is used, for which two random points in the binary string are selected. The two
children will exist of the binary strings of the parents, with the part between the two points ex-
changed. The non-dominated sorting approach is adopted from (Deb et al., 2002). The approach
makes use of the partial order <, for non-domination.

Definition 4 (Partial order for non-domination). Let b and b’

ank’ Lank e the non-domination rank
of individuals b and b', and b ... ., b. ... their crowding distance indicator. The partial order
<p for non-domination of individual b with respect to individual b' is defined by:
> b

b<, b if (b k< b, 1) or (b cdistance

ran

b andb

rank — “ran

) (3.45)

ran cdistance

Now the pseudocode for the non-dominated sorting approach is presented:

for all feasible solutions in the population, b € P(¢) do
Initialize set of solutions S, that is dominated by b
Initialize the number of solutions that dominate b, n(b)
for each other feasible solution in the population, b’ € P(t) do
if b <, b', b dominates b’ then
Sp =S, U b, add the solution b’ to the set of solutions dominated by b
elseif b’ <, b, b’ dominates b then
n(b) = n(b) + 1, increase the number of solutions that dominate b
end if
end for
rank =1
Add all individuals b with n(b) = 0 to the first front fr(1)
while front fr(rank) is not empty do
for all b € fr(rank) do
Drank = rank
for all b’ that are dominated by b do
n(b) =n(b) -1
end for
rank = rank+1
Add all individuals b with n(b) = 0 to the front fr(rank)
end for
end while
end for
for all infeasible solutions b € P(t) do
Add all individuals to the front fr(rank)
end for
Sort population on rank

To clarify the process of how generations in NSGA II evolve, process of the algorithm to obtain the
next parent population from the current parent population is visualized in Figure 3.1.
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Figure 3.1: Visualization of how the next parent population is obtained from the combined parent and
offspring population, adapted from Deb et al. (2002).

3.4. Performance indicators

To answer the research question 'Which solution techniques are best suited for the multi-objective
investment project portfolio problem, regarding solution quality and computation time?’, there is
a need for a definition of solution quality. A number of possible performance indicators are dis-
cussed in Section 2.2.5. The selected performance indicators to compare the performance of the
repeated e-constraint algorithms and the NSGA 1II algorithms will be presented here. Each algo-
rithm with unique settings will be tested multiple times to make sure the outcomes are reliable.
The performance indicators will be presented either as the average of the runs, or the average and
the standard deviation of the runs.

First, let S be the set of solutions obtained by a certain algorithm, which can be seen as an
approximation set of the Pareto set P. The real Pareto optimal solutions in P are not known in
any problem. Therefore, for the case studies, a reference Pareto set R is used. This set R consists
of all non-dominated solutions that exists in the union of all approximation sets S. This could be
equal to the Pareto optimal set, R = P, but it could just as well be the case that real Pareto optimal
solutions are not found by any of the algorithms.

The average computation time that is needed to obtain the approximation set S is given by
frun- The number of (not necessarily unique) solutions in the solution set S is given by the cardi-
nality |S|. Due to constraints in the problem, infeasible solutions could be present in the solution
set. The number of feasible solutions in the solution set is given by |S£|. If the real Pareto set P is
known, the average number of Pareto optimal solutions in the approximation set is noted by |Sp|.
In the case that P is not known, the average number of solutions that are in the union of the ap-
proximation set and the reference set SN'R are noted by |Sz|. The number of real Pareto optimal
solutions, |P|, or the number of non-dominated solutions , |R], is used to compute the average
percentage of the reference set that is covered by a certain algorithm. This percentage is noted by
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cpp or cpy. For the coverage, the standard deviation (s.d.) is included for comparison as well.
This indicates how constant the algorithm performs. Lastly, the generational distance as defined
in Van Veldhuizen et al. (2000), is used to compute the average distance from the approximation
sets S to the reference set R. The generational distance is the average of the distance from each
solution s € S to the nearest solution in the reference set, r € R, based on Euclidean distance. The
generational distance of S to R is defined by:

S < .||
2 min p;(si,p—ri,p)

G= . 3.46
B (3.46)

Since the different objective functions all could have a very different scale, the values for all ob-
jective functions p are normalized with respect to the minimum and maximum value of objective
p that are present in the union of all solution sets. For the generational distance, the standard
deviation is considered as well.

The selected performance indicators can be used when selecting an appropriate algorithm to
solve a combinatorial multi-objective optimization method. It would be preferable for an algo-
rithm to have a short computation time, a large number of solutions in the Pareto set or reference
set, a high percentage of P or R coverage, and a small generational distance to the reference set or
Pareto set. Since there might not exist an algorithm that gives optimal results for all performance
indicators, the problem of selecting an algorithm is a multi-objective problem itself. A trade-off
has to be made between the different performance indicators, based on the preferences of the
user.

3.5. Visualization and decision support

To make sure that there is a connection between the investment project portfolio optimization
approach and the user interface of a decision support tool, and that the combination really meets
the needs of the users, a global design is proposed for the user interface of a decision support
tool. The scatter plot matrix and the parallel coordinates plot as described in Section 2.3.2 are
used to visualize the solutions of the investment project portfolio optimization problem. For 2 or
3 objectives, it would be sufficient to consider the scatter plot matrix of the solutions. In the case
that 4 or more objectives are considered, both a scatter plot matrix and a parallel coordinates plot
could be provided. A parallel coordinate plot is better to link the different objective values that
belong to one solution, whereas the scatter plot matrix is better to get an overview of the shape
of the non-dominated front. It is recommended that the selection of visualization methods for a
decision support tool is done in cooperation with the final users.

For both visualization methods, it is difficult to distinguish the individual solutions. There-
fore, in a decision support tool, it is strongly recommended to include filtering features. Decision
makers are able to gain insight in the interval of objective values, after which they can select an
objective for which a part of the interval contains objective values that are unacceptable or un-
desirable. Then, a filter could be used to filter out the unacceptable or undesirable solutions. In
this way, the amount of visualized non-dominated solutions can be reduces, to obtain a clearer
overview of the interesting results. Another option to reduce the amount of visualized solutions, is
to filter for project portfolios that contain a specific solution that is desired in the portfolio. If the
project that is used for this filter option is not selected in any of the non-dominated project portfo-
lios, so with a core index of 0, the problem should be re-optimized while that project is forced to be
in the project portfolio. This leads to a completely new non-dominated front, since the problem
is adapted. The new non-dominated front will only contain solutions that were dominated in the
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previous non-dominated set of solutions. However, it still might be a good solution for the organi-
zation due to for example social values of a certain project, while the social value is not explicitly
taken into account as objective in the optimization problem.

Another feature that is recommended to include in a decision support tool for investment
project portfolio optimization, is that decision makers should be able to examine the details of the
non-dominated project portfolios. The details of a portfolio would include an overview of which
projects are selected in the selected portfolio, with the planning. Also the objective values and
their lower and upper bounds should be obtainable. It could happen that a decision maker detects
a combination or planning of projects that is inconvenient or even not possible at all. This could
for example occur if the constraints that the decision maker handles, are not considered in the
problem formulation, or if the first possible start period of a project is not entered correctly. After
concluding that a certain project portfolio is not feasible, either the input data should be adapted,
or a constraint should be added. A scenario page is included to add or adjust constraint, or to force
certain projects to be included in the solutions.

Since it is already difficult to distinguish individual solutions in a scatter plot matrix or parallel
coordinates plot, it is not recommended that the lower and upper bounds of the objective values
are visualized in a combined plot with the expected values. The lower and upper bounds should
be visualized for a few selected solutions, or three separate plots should be provided for the lower
bounds, the expected values, and the upper bounds respectively.

For obtaining detailed insight into the non-dominated solutions, interaction with the decision
support tool is needed. Multiple pages, containing different information and visualizations, are
used to do this. In the comparison of the results in this thesis, no interaction is possible. Therefore,
most of the visualizations will be in a parallel coordinates plot. Distinctive appearances of the
solutions are used to distinguish different algorithms, different settings, or different domination
information. Solutions in a solution set that are Pareto optimal or selected in the non-dominated
reference set R, are visualized with solid markers and solid lines. Solutions that are dominated by
other solutions are visualized with unfilled markers and dashed lines.

3.6. Summary

The mathematical formulation of the investment project portfolio optimization problem is pre-
sented for both general purposes, as for the railway infrastructure network representation. An
extensive number of sets, indices, parameters, variables, and objective functions is introduced,
along with some general relations.

The available information about the investment alternatives is often uncertain. For different
realizations of the uncertainty, the set of non-dominated solutions might be completely different.
Decision makers need to have insight in the possible realizations to be able to select a project
portfolio that is also satisfactory for other realizations than the expected values. For the costs and
benefits of investment alternatives, lower and upper bounds are introduced. The lower and upper
bounds of the states of the assets and the final objective values are defined as well. Solving the
multi-objective optimization problem for the three scenarios makes it possible for decision makers
to make well-founded decisions, and gain insight into which project portfolios are robust choices.

The repeated e-constraint algorithm and the multi-objective genetic algorithm NSGA II are
selected to solve the investment project portfolio optimization problem. The general approach
of the different algorithms is explained, and some pseudocode is presented to get an idea of the
structure of the algorithms.

A number of performance indicators are selected for comparison of the proposed algorithms.
Examples are the computation time, the number of non-dominated solutions, the coverage of the
reference set, and the generational distance.






Benchmarks & railway network case
studies

In the previous chapters, the theory behind project portfolio optimization is discussed. In this
chapter, the proposed formulation, optimization methods, and visualizations are put into practice.
The multi-objective optimization methods as described in Chapter 3, the repeated e-constraint al-
gorithm and the multi-objective genetic algorithm NSGA II, are used to solve some simple bench-
mark problems, and finally also to solve the investment project portfolio optimization problem for
railway infrastructure networks. The benchmark problems are used for quick insight into the dif-
ferences of the proposed methods. Since the multi-objective benchmark problems are very simple,
the real Pareto front is known, which makes the comparison of the performance of the methods
more reliable. For some in-depth examination of the performance of the repeated e-constraint al-
gorithm and the multi-objective genetic algorithm NSGA II to solve the project portfolio optimiza-
tion problem in practice, a railway network case for investment project portfolio optimization is
introduced. The results obtained by the repeated e-constraint algorithm and the multi-objective
genetic algorithm NSGA II for the benchmark problems and the railway network case studies are
presented and discussed in this chapter. The repeated e-constraint algorithm is implemented in
the optimization software AIMMS!. Each of the single-objective problems is solved with CPLEX? in
the MIP cases, and with the AIMMS Outer Approximation algorithm in combination with CPLEX
in the MINLP case. The multi-objective genetic algorithm NSGA II is implemented in the mathe-
matical software MATLAB 3. All tests are executed on the same computer*

4.1. Benchmark problem 1

The first benchmark problem is a convex problem, consisting of two objective functions of two
integer variables x; € {1,...,32},x € {1,...,32}. The variable 8, indicates the uncertain nature of J,.
The expected value of 8 is 1. The two objective functions J;, J» are given by:

J1(x1, X2) = (21 — 10)? + (x2 — 13)* (4.1)
Jo(x1,%2,0) =0-(2x1 +3x2). 4.2)

There are no additional constraints g posed in the optimization problem, besides 1 < x; <32,1 <
X2 < 32. The feasible set X consists of 1024 possible solutions (x, x2), of which 47 are Pareto opti-
mal solutions in the Pareto optimal set P. These Pareto optimal solutions are not equally spread
in the objective space.

1AIMMS, Version 4.37.4.1024 64 bit

2IBM ILOG CPLEX Optimization Studio, Version 12.6.3.0

3MathWorks MATLAB R2017a (9.2.0.556344) 64-bit

“4Intel(R) Core(TM) i7-5600U CPU @ 2.60GHz, 8.00GB RAM, 64 bit operating system.
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One of the objective functions is considered to be subject to uncertainty, that is represented by
0. Let the lower and upper bounds of 8 be given by § = 0.95 and 6 = 1.05. The lower and upper
bounds for the objective function J, are then given by:

Jo(x1,%2,0) = 0.95- (21 +3x) (4.3)
To(x1, X%2,0) = 1.05- (2x] +3x2). (4.4)

The Pareto optimal set P for the objective function J, with expected value 8 = 1 is shown in Figure
4.1b, in blue. The Pareto optimal sets for the lower bounds of J, are in green, and the upper bounds
in red. It can be seen that for this problem, the Pareto optimal sets are equal. For /5, J», and /5, the
corresponding Pareto optimal front is shown in Figure 4.1a. o
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Figure 4.1: Pareto sets P and corresponding Pareto optimal fronts for benchmark problem 1.

4.1.1. Repeated ¢-constraint algorithm

The first objective function J; is chosen as the main objective function, that is minimized in the
single-objective optimization problems. The second objective function, J;, is bounded by €,. The
maximum value is /> =2-32+3-32 = 160, and the minimum value is J, = 2-1+3-1 = 5. The objective
value will always be integer due to the two integer variables. The most thorough way to search
for the Pareto optimal set is to consider 155 single-objective optimization problems, in which &;
takes all integer values between 160 and 5. The output of the repeated e-constraint algorithm,
the solution set S, consists of 155 solutions. In this case, with only one e-bound, all the single-
objective optimization problems will be feasible, by definition of the £,. For the objective values
of /> the minimum and maximum are given by /> = 0.95-5 and /> = 0.95-160. Equally for J», the

minimum and maximum are given by /, = 0.95-5 and J, = 0.95-160. The number of possible values
for the objective does not change in this problem for the lower or upper bound in comparison with
the expected value. Therefore, using 155 bounds is still sufficient to find the entire Pareto optimal
set, albeit with different values.

The number of bounds, and thus cardinality of the solution set |S|, could also be lower, but
then there is no guarantee that all the Pareto optimal solutions will be included in the solution
set. It does however saves computation time. For this simple benchmark problem, this might not
be necessary because the computation time for all 155 problems is only 0.84 seconds on average.
Although the computation time of the repeated e-constraint algorithm with 100 bounds is only
0.58 seconds on average, the performance in terms of percentage of the Pareto front that is found
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is much lower. On average, only 42.55% of the Pareto front has been found with the 100 bounds, in
contrast to 100% that has been found with 155 bounds. An overview of the performance measures
can be found in Table 4.1.

| ISI | Algorithm || #run | ISFI | ISpl | cpp [ sd.cpp G s.d. G
100 | BMI-¢-1 [[ 0.58s | 100 | 98.0 | 42.55% | 0.00 | 0.000262 | 0.000000
155 | BM1-e-2 || 0.84s | 155 | 152.0 | 100.00% | 0.00 [ 0.000164 | 0.000000

Table 4.1: Performance indicators for different settings of the repeated e-constraint algorithm, for the con-
vex benchmark problem.

The standard deviations of the coverage and the generational distance are 0 for the repeated ¢-
constraint algorithm, because the same search strategy is used in every run. Only the computation
time differs for the runs.

4.1.2. Multi-objective genetic algorithm

The NSGA II has been used to approximate the Pareto optimal set of the convex benchmark prob-
lem. For this simple benchmark function with a relatively small feasible set, only a small number
of generations is needed to provide good approximations. Experiments have been conducted for
the same size of solution sets as for the repeated e-constraint algorithm, so a population size of
100 and 155. The cardinality of the solution set S is equal to the population size. With only 10
generations the algorithm managed to give some satisfactory results. Increasing the number of
generations to 20 even improves the results. For a population size of 155 and 20 generations, in
every run the final population consisted only of Pareto optimal solutions, and the coverage was
99.36% on average.

’ |S| ‘ Gen ‘ Pm ‘ Algorithm H trun ‘ [SF| ‘ |Sp| ‘ Cpp s.d. cpp G s.d. G
100 10 | 0.1 | BM1-GA-1 || 0.28s | 100 | 99.1 | 96.17% 3.59 0.000084 | 0.000126
20 | 0.1 | BM1-GA-2 || 0.50s | 100 | 99.4 | 98.51% 2.02 0.000063 | 0.000136
155 10 | 0.1 | BM1-GA-3 || 0.42s | 155 | 154.2 | 98.09% 2.73 0.000045 | 0.000086
20 0.1 | BM1-GA-4 || 0.70s | 155 | 155.0 | 99.36% 1.03 0.000000 | 0.000000

Table 4.2: Performance indicators for different settings of the NSGA II, for the convex benchmark problem.

(a) Solution set of the BM1-¢-1 algorithm.

(b) One solution set of the BM1-GA-1 algorithm.

Figure 4.2: Comparison of the repeated e-constraint algorithm and NSGAII for benchmark problem 1.
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4.1.3. Comparison

The performance indicators as discussed in Section 3.4, are presented for the repeated e-constraint
algorithm and the NSGA II for 10 runs, and presented in Table 4.1 and Table 4.2.

In Figure 4.2, two solution sets with |S| = 100 from the repeated e-constraint algorithm and from
the NSGA II are plotted. In these plots, the Pareto optimal set is represented in large gray dots, and
the orange dots indicate the solutions in the solution set. For the NSGA II, the run of BM1-GA-
1 with the lowest number of Pareto optimal solutions is selected. Still the coverage of this run is
much better than that of the BM1-¢-1 algorithm, while the computation is twice as fast.

4.2. Benchmark problem 2

For the second benchmark function, only the uncertainty of the second objective function will
change with respect to the first benchmark problem. This benchmark is presented so we can ana-
lyze the differences in uncertainty. In this case, the uncertainty is not indicated with a changing 8,
but as some functions that are the result of § and 6.

J1(x1, X2) = (21 — 10)? + (x2 — 13)* (4.5)
Jo(x1,x2,0) = (2x1 +3x2) (4.6)
J2(x1,X2,0) =2x, 4.7
7> (x1, %2,8) = 76— (xlzi” 4.8)

The lower and upper bounds of the objective function J, are quite different. In the Pareto fronts,
shown in Figure 4.3a, it seems like the objective values are only shifted, just as in the previous
benchmark function. However, in Figure 4.3b, it can be seen that the Pareto sets for these upper
and lower bounds are completely different from the Pareto set of the expected value of /. In this
case, there is exactly one solution that is Pareto optimal for all three optimization problems of Js,
J2, and Jo. This would reflect the most robust choice if the upper and lower bounds resemble
the upper and lower bounds of all different possible scenarios. In the case that this solution that is
Pareto optimal for each of the three scenarios would not be Pareto optimal for one of the objectives,
the generational distance and other performance indices could show that the region around x; =
10, xo = 13 is a suitable range of solutions with respect to the lower bound, the expected value, and
the upper bound of /5.
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(a) Pareto optimal fronts for J5, /2, J». (b) Pareto sets P in the solution space.

Figure 4.3: Pareto sets P and corresponding Pareto optimal fronts for benchmark problem 2.
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4.3. Case studies

In this section, the investment project portfolio optimization approach will be tested on a rail-
way network case study. For this case study, a part of the Dutch railway network is considered,
that is visualized in Figure 4.4. The assets in this network are not considered individually. Twenty
groups of assets are defined, based on asset type or location. Three asset types are considered,
with different deterioration rates: track, switches, and railway signalling. A medium-level point of
view is chosen. Time periods consist of two weeks (14 days), and the prediction horizon is set as 2
years. The computational effort that is needed to compute the states for all Nj, = 52 time periods
of 14 days, is hardly influenced by the length of the time periods, but mostly by the number of
considered time periods. Therefore, the performance of the repeated e-constraint algorithm and
the multi-objective genetic algorithm NSGA II for the chosen prediction horizon are representa-
tive for a prediction horizon of 52 time periods of for example 1 hour or 1 year. For this network,
31 investment alternatives are defined. Some of the alternatives affect multiple groups of assets.
Examples of these investment alternatives are tamping, track renewals, switch renewals, and the
implementation of ERTMS®. For each of the investment alternatives, all the specified information
is presented with a lower bound, an expected value, and an upper bound. With this information,
three different optimization problems can be solved, and it can be analyzed with performance
indices for all three optimization problems, whether project portfolios are expected to give satis-
factory results in all scenarios.
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Figure 4.4: Part of the Dutch railway network that is used for the case study.

For the case study, an artificial data set is used that is based on information from the IBM
Maximo asset management tool® that is available for this thesis. The multi-objective investment

5The European Rail Traffic Management System, http://www.ertms.net/.
Shttps://www.ibm.com/nl-en/marketplace/maximo
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project portfolio optimization problem for railway infrastructure networks, as formulated in Sec-
tion 3.2, is implemented in both AIMMS and MATLAB.

For both the repeated e-constraint algorithm and the multi-objective genetic algorithm NSGA
I1, different settings are tested for their performance. It is expected that even better results can be
obtained by further tuning of the different settings. The obtained results are considered sufficient
for comparison. The reliability of the algorithms is tested by considering the consistency of the al-
gorithm over 10 runs. The results for the selected performance indices for these runs are presented
in tables, where the average computation time ., that is needed to obtain the approximation set,
is in minutes. The general performance of the algorithms for the case studies are discussed. More
details are provided for some algorithms with remarkable results. The visualizations of the ob-
tained solution sets that are used for comparison are presented in parallel coordinate plots, such
that individual solutions can be distinguished. The objective values are all normalized with respect
to their minimum and maximum values that are present in the set of all feasible solutions that are
obtained by the different algorithms. Solid markers and lines represent non-dominated solutions,
and empty markers with dashed lines represent dominated solutions. For both the repeated e-
constraint algorithm and the multi-objective genetic algorithm NSGA II, the different settings are
evaluated, after which a comparison of the two approaches is presented.
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Figure 4.5: Scatter plot matrix for the non-dominated reference set R of the railway network case studies.

Since the real Pareto optimal set for the investment project portfolio optimization problem is not
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known or easy to obtain, a reference set R is used. All the feasible solutions that are obtained by
the executed algorithms are stored in the solution set Xz. The non-dominated solutions in Xr
are selected to be in R. This set is used as a reference for all the algorithm tests to compute the
performance indicators that regard the quality of the obtained solution sets. The reference set R
is visualized in a scatter plot matrix in Figure 4.5, and in parallel coordinates plot in Figure 4.6. In
both visualizations, it is clearly visible that for the non-dominated set R is divided into separate
parts. This is due to two investment alternatives with exceptionally high costs. Project portfolios
that include those costly investment alternatives can be non-dominated because of their good
results for other objectives. A decision maker needs to judge whether the benefits for the other
objectives outweigh the high costs.
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Figure 4.6: Parallel coordinates plot for the non-dominated reference set R of the railway network case
studies.

4.3.1. Repeated ¢-constraint algorithm

In the investment project portfolio optimization problem in railway infrastructure networks, 4 ob-
jectives are considered. For the case studies, the costs are chosen as main objective. This means
that the size of the solution set S is dependent on the number of e-bounds for the three bounded
objectives. If for each objective, the same number g, of e-bounds is posed, the size of the solution
set is given by |S| = 4 + g. The first 4 solutions are obtained by the single-objective optimization
of each of the objectives, without e-bounds. These 4 solutions, the extreme points of the Pareto
optimal set, are used for the minimum and maximum values of the e-bounds. The combination of
the three e-bounds does not necessarily result in a feasible solution. This means that the number
of resulting feasible solutions could be lower than |S].

Solving many large-sized optimization problems could require high computational effort. Stop-
ping criteria are introduced to bound the total running time of the algorithm. Next to full opti-
mization, the algorithm will also be tested with a relative optimality tolerance stopping criterion.
This means that the solution procedure stops as soon as the solver can guarantee that the best so-
lution is within a percentage 7 of the MIP relative optimality tolerance from the global optimum.
The MIP relative optimality tolerance from the global optimum can be computed by comparison
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of the best linear programming (LP) bound, and the best integer solution of the MIP problem.
A drawback of such a method, is that the single-objective optimization problem is less likely to
produce a Pareto optimal, or non-dominated solution. However, the generational distance to the
reference set could be very small, while the computation time often reduces significantly if the
solver does not have to guarantee a full optimum.

Furthermore, some combinations of e-bounds result in a solution set with a feasible region
that is difficult to reach for the CPLEX solver. This means that these combinations could require
an excessive amount of computation time. This phenomenon can already be witnessed in the in-
dividual optimization problems for the four objectives. It depends on which objective function
is optimized, how fast the solver can find the optimal solution. Full optimization of the second
objective function J,, regarding the condition of the railway network, takes over 50 minutes, while
for the other objectives it takes about 1 minute to find the optimal solution. Since an important
performance indicator is the computation time that is needed to obtain the solution set, it is not
desirable that the solver searches hours for one particular solution. Therefore, an additional stop-
ping criterion could be used. This stopping criterion is time-based. The solver stops searching
for the optimal solution when it exceeds the maximum computation time, that is set to 3600 sec-
onds (one hour) for the investment project portfolio optimization problem. Once it is known that
a particular combination of e-bounds results in an infeasible solution, or exceeds the maximum
computation time, one could choose to skip that optimization problem if the algorithm is repeated
with the same settings. This also holds for e-bounds that are all smaller or equal to the bounds that
did not result in a satisfactory solution. The exit strategy as presented in Mavrotas (2009) is imple-
mented to reduce computation time of the algorithm, not only for infeasible problems but also for
the problems that were not solved within one hour. The computation time is reduced in compar-
ison with the case that each of the computationally expensive ¢ combinations would have been
addressed, but the computation is still time-consuming. Since it is not clear on forehand which
combination of e-bounds results in a computationally expensive optimization problem, it takes as
long as the maximum computation time to identify such combinations. If the problem is adapted,
the results regarding computation time might be totally different, so one can not assume that the
combination of e-bounds for two similar optimization problems are equally computationally ex-
pensive.

| ISI [ 7 [ Algorithm || fun | ISFI [ ISRl | cpr | sd. cpg G s.d. G
0% | CS-¢-1 142.22 | 22 [12.0 | 3.29% [ 0.00 [ 0.005401 | 0.000000

g1 | 1% | CS-e-2 1946 | 31 | 40 | 2.63% | 0.00 [ 0.014171 | 0.000000
2% | CS-¢-3 1446 | 31 [ 2.0 | 1.32% | 0.00 [ 0.014579 | 0.000000

5% | CS-¢-4 9.88 | 31 | 5.0 [ 3.29% | 0.0 | 0.014811 | 0.000000

0% | CS-£-5 22924 | 68 | 48.0 | 11.84% | 0.00 | 0.002491 | 0.000000

cg | 1% | CS-e-6 55.90 | 68 | 13.0 | 8.55% | 0.00 | 0.006778 | 0.000000
2% | CS-¢-7 3863 | 68 | 6.0 [ 3.95% | 0.00 | 0.006901 | 0.000000

5% | CS-£-8 31.65 | 68 | 11.0 | 7.24% | 0.00 | 0.007232 | 0.000000

0% | CS-£-9 42733 | 128 | 99.0 [ 21.05% | 0.00 | 0.001898 | 0.000000

log | 1% [ CS-¢-10 [/ 148.37 [ 129 [ 13.0 | 855% | 0.00 [ 0.003741 | 0.000000
2% | CS-¢-11 75.77 | 129 | 29.0 | 18.42% | 0.00 [ 0.003883 | 0.000000

5% | CS-g-12 63.68 | 129 | 28.0 | 17.76% | 0.00 | 0.004052 | 0.000000

Table 4.3: Settings and results of the repeated e-constraint algorithm in the case studies.

All the settings that are used for the repeated e-constraint algorithm in the case studies are
presented in Table 4.3, along with the results of the 10 tests that have been performed in the last
7 columns. The selected performance indicators can be reviewed in Section 3.4. Most remarkable
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about the performance indicators for the repeated e-constraint algorithm is that the standard de-
viation of the reference set coverage and the standard deviation of the generational distance are
0.00. Due to the fixed search method of the CPLEX solver, the repeated e-constraint algorithm
provides very constant results.

The computation time of the full optimization algorithms, in which 7 = 0%, is three to seven
times as high as the computation time of the algorithms with 7 = 1%. In return for the high com-
putation time, the number of non-dominated solutions that are found is also higher. For the al-
gorithm CS-¢-1, the solver has some difficulties finding the optimal solutions for the lowest value
of €3, the constraint for the risk objective. This results in only 22 feasible solutions, and therefore
the number of non-dominated solutions is not that high. The result is that the computation time
is disproportionately high, over seven times as high as for the algorithm with 7 = 1, while only
producing three times as many non-dominated solutions. This is due to the computationally ex-
pensive combinations of e-bounds. However, the generational distance is much lower than that of
algorithms with higher values for 7. This means that the solutions in the solution set of CS-¢-1 are
closer to the reference set than the solutions provided by other algorithms with g = 3. The gener-
ational distance G to the reference set R is also lower for the algorithms with 7 =0 and g =4 or
g =5, than the algorithms with higher values for 7. Especially the generational distance of CS-¢-9
is very low. This is because of algorithm found relatively more non-dominated solutions. The com-
putation time of this algorithm is just so high, that repeating the optimization takes a lot of time.
Especially when one wants to consider multiple scenarios or re-optimize after certain projects are
selected without waiting for hours, this algorithm is not suitable.

Costs Condition Capacity Risk

Figure 4.7: Solution sets for the repeated e-constraint algorithm with 7 = 0%, for g =3, g =4, and g =5.

As can be seen in Figure 4.7 and Figure 4.8, the solution sets of the algorithms with different
numbers of e-bounds really provide different solutions. This means that using 5 e-bounds per
objective is not enough to capture the entire Pareto set. It seems therefore interesting to increase
the number of bounds per objective. For g = 6 the solution set will consist of |S| = 220 solutions,
which will increase the computation time even further. And unfortunately, for g = 6, the same
problems as for g = 3 will appear since some e-bounds will be equal. It is possible to increase the
number of e-bounds until the number of non-dominated solutions does not change anymore, but
the extremely high computation time makes that such an approach is not recommended to use
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Costs Condition Gapacity Risk

(a) Solution set for CS-¢-1, (b) Solution set for CS-¢-5, (c) Solution set for CS-¢-9,
£=3,7=0%. £=4,7=0%. g£=5,17=0%.

Figure 4.8: Non-dominated solution sets for the repeated e-constraint algorithm.

in an interactive decision support tool, even though the results for other performance indicators
will be very good. If the decision maker is not interested in re-optimizing repeatedly, or in quick
results, but prefers to obtain a solution set that reflects the non-dominated reference set as well as
possible, the repeated e-constraint algorithm can be used with a higher number of e-bounds. This
could be the last step before the final decision-making. It is recommended to use an algorithm
with less intensive settings to check the results for possible modelling errors, and to determine
whether all constraints are implemented correctly.

Costs Condition Capacity Risk Costs Condition Capacity Risk

(a) Solution set for 7 = 0%. (b) Solution set for 7 = 1%.

Costs Condition Capacity Risk Costs Condition Capacity Risk

(c) Solution set for 7 = 2%. (d) Solution set for 7 = 5%.

Figure 4.9: Solution sets for the repeated e-constraint algorithm with 5 constraints per objective, g = 5.

Another option to obtain more unique non-dominated solutions, is to subsequently execute
algorithms with different values for 7. Although one would expect that an algorithm with a stop-
ping criterion that causes the algorithm to stop before full optimization is reached, would not
result in non-dominated solutions in the reference set, it is possible. It should be noted however,
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that there is no guarantee that the solutions obtained with positive values of 7 are in fact non-
dominated or Pareto optimal. Adjusting the MIP relative tolerance to the global optimum 7 makes
that the algorithm stops for a value that might not be optimal for the single-objective optimiza-
tion problem that the solver is trying to solve, but the solution could result in a non-dominated
solution in the union of all obtained solution sets. The solution sets of the algorithms CS-¢-9 till
CS-&-12 are shown individually in Figure 4.9. The solution sets are quite similar, but some differ-
ences can be spotted for the solution with the lowest value for the capacity objective. The solutions
for the capacity optimization problem with positive values for T are dominated by the solution for
the same problem with 7 = 0. A curious observation is that CS-¢-10 with 7 = 1 obtained only 13
solutions that are included in the non-dominated set R, while the two algorithms with 7 =2 and
7 =5 obtain 29 and 28 non-dominated solutions respectively. The algorithms CS-¢-3 and CS-¢-7
also obtain less non-dominated solutions in comparison with algorithms with higher values for 7.

The non-dominated solutions obtained by the algorithms with g = 5, CS-¢-9 till CS-¢-12 are
shown in different shades of blue, together in Figure 4.10. Solutions for 7 = 0% are in light blue,
T = 1% in mid blue, T = 2% in mid-dark blue, and for 7 = 5% in dark blue. Different sized square
markers make it is possible to see which solutions are equal, and which are different. Although it is
still difficult to really indicate which solutions belong to which algorithm, it can be distinguished
that the algorithms with positive values for 7 provide additional non-dominated solutions to the
ones obtained with CS-e-9. For example the solutions with a normalized risk value around 0.1
are not obtained with T = 0. Data analysis shows that CS-¢-9 obtains 32 unique non-dominated
solutions, so a reference set coverage of 21.05%, and that the combination of the algorithms CS-£-9
till CS-e-12 provide a respectable number of 93 unique non-dominated solutions, which is 61.18%
of the reference set. It takes a significant amount of time to run the four algorithms, almost 12
hours, but the performance in terms of reference set coverage is very high.
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Figure 4.10: Non-dominated solution sets for the repeated e-constraint algorithm with g = 5 and different
shades of blue for different values of 7.

4.3.2. Multi-objective genetic algorithms
Next to the repeated e-constraint algorithm, genetic algorithms are selected to approximate the
Pareto optimal set of the investment project portfolio problem. Genetic algorithms are often cho-
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sen because of their ability to handle non-convex problems, but definitely also because genetic
algorithms are known to be fast and produce satisfactory results.

For the case studies, the binary strings for the chromosomes consists of two parts. The first
part is a binary representation of which alternative is selected for each of the investments. Then
for each investment, a binary representation is included of the time period in which the selected
alternative will start. Since the amount of alternatives and time periods for each investment might
not be equal to the number of possibilities in a binary representation, there might exist some in-
feasible solutions in the set of binary strings. To minimize the number of infeasible solutions,
the binary representation for alternative selection consists of a minimal number of bits. The con-
straints posed in the formulation can also lead to a smaller number of feasible solutions. It is also
possible to map the remainder of the binary representations to a feasible solution, but this will
create a sort of preference for these solutions in the genetic algorithm. So in stead of a repair tech-
nique, a rejecting technique is used. This means that for all solutions (binary strings) that appear
in the algorithm, the error is computed. In the non-dominated sorting, the solutions with an error
receive a lower rank than feasible solutions. Due to the low ranking, infeasible solutions are not
likely to be selected for the next generation. Extinction of infeasible solutions follows. The total
number of bits in the chromosomes is 100.

As discussed in Section 3.3, the multi-objective genetic algorithm NSGA I is used to search for
non-dominated solutions. The algorithms are tested for different settings. For the population size,
|S| =100, |S| =200, and |S| = 400 are tested. For each of these population sizes, tests are conducted
with 100 generations and with 200 generations. The effect of the mutation probability p,, is tested
for each of the combinations of population size and number of generations, with the proposed
values of p,, = 0.005, p;, = 0.01, p,,, = 0.02, and p,,, = 0.05. An overview of the settings for NSGA 11
that are used to solve the investment project portfolio optimization problem can be seen in the first
three columns of Table 4.4. The results for the performance indicators after testing these settings
10 times are presented in the last seven columns of this table.

In the column of |Sr| it can be noticed that each of the tested multi-objective genetic algo-
rithms provides as many feasible solutions as there are solutions in the population. This means
that each of the algorithms is capable of rejecting the infeasible solutions.

The fast computation that was expected, can be confirmed. The computation time of the ge-
netic algorithms is mostly affected by the population size and the number of generations. The
computation time of the most computationally expensive tested genetic algorithms are for the
settings with a population size of |S| = 400 and 200 generations, with a maximum of an average of
5.05 minutes.

Remarkable is that all the tests with a mutation probability of p,, = 0.05 failed to find any non-
dominated solution. This indicates that the value is so high, that even when good solutions are
selected as parent, the process of creating the offspring population is not able to maintain and
improve the quality of the selected parents. Because the length of the binary string is 100, the
proposed value for the mutation probability is ﬁ (Deb et al., 2002), so with this information in
mind it, the results for p,, = 0.05 are not striking. Algorithms with the setting p,, = 0.05 score
by far lowest on the number of non-dominated solutions |Sz | and the generational distance G of
all the tested genetic algorithms. Since the computation time of these algorithms are not lower,
there is no performance indicator that favours this setting. Therefore, the mutation probability
pm = 0.05 can be rejected.

In figure 4.11, the solution sets of the 10 runs are visualized in the parallel coordinates plot
together, for CS-GA-1 to CS-GA-4. The solution sets for the algorithms with p,,;, = 0.005, p,;, =0.01,
and p,, = 0.02 contain some non-dominated solutions, shown by the solid lines and markers, in
contrast to the setting p,;, = 0.05. The algorithms with lower values for the mutation probability
provide a more dense solution set, so less unique solutions. In the visualization all the 10 runs
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’ |S| ‘ Gen ‘ Pm ‘ Algorithm H Lrun ‘ [SF| ‘ ISR ‘ CPr ‘ s.d. cp G s.d. G

0.005 | CS-GA-1 0.55 | 100 | 35.3 | 2.24% 3.03 0.000436 | 0.000542

100 0.01 | CS-GA-2 0.56 | 100 | 51.0 | 3.16% 2.72 0.000439 | 0.000420

0.02 | CS-GA-3 0.55 | 100 5.9 | 0.72% 1.53 0.003116 | 0.001651

100 0.05 | CS-GA-4 0.56 | 100 0 0.00% 0.00 0.006841 | 0.001884
0.005 | CS-GA-5 1.10 | 100 | 36.1 | 2.30% 3.03 0.000165 | 0.000158

200 0.01 | CS-GA-6 1.11 | 100 | 51.5 | 3.49% 3.07 0.000208 | 0.000267

0.02 | CS-GA-7 1.10 | 100 | 91.0 | 6.05% 0.81 0.000095 | 0.000105

0.05 | CS-GA-8 1.11 | 100 0 0.00% 0.00 0.005088 | 0.001062

0.005 | CS-GA-9 1.23 | 200 | 192.5 | 6.18% 0.99 0.000078 | 0.000139

100 0.01 | CS-GA-10 || 1.12 | 200 | 147.5 | 5.07% 1.99 0.000305 | 0.000526

0.02 | CS-GA-11 || 1.23 | 200 7.7 1.12% 1.58 0.002343 | 0.001389

200 0.05 | CS-GA-12 || 1.12 | 200 0 0.00% 0.00 0.004669 | 0.001051
0.005 | CS-GA-13 || 2.39 | 200 | 176.6 | 5.92% 2.21 0.000022 | 0.000030

200 0.01 | CS-GA-14 || 2.37 | 200 | 138.2 | 4.87% 3.15 0.000026 | 0.000055

0.02 | CS-GA-15 || 2.42 | 200 | 192.9 | 6.97% 0.55 0.000033 | 0.000098

0.05 | CS-GA-16 || 2.40 | 200 0 0.00% 0.00 0.003649 | 0.001189

0.005 | CS-GA-17 || 2.48 | 400 | 390.1 | 6.38% 0.82 0.000014 | 0.000018

100 0.01 | CS-GA-18 || 2.47 | 400 | 356.9 | 6.12% 2.22 0.000012 | 0.000023

0.02 | CS-GA-19 || 2.48 | 400 | 68.7 | 4.67% 2.25 0.001420 | 0.000489

400 0.05 | CS-GA-20 || 2.48 | 400 0 0.00% 0.00 0.002741 | 0.000410
0.005 | CS-GA-21 || 5.05 | 400 | 396.2 | 6.71% 0.60 0.000009 | 0.000015

200 0.01 | CS-GA-22 || 4.49 | 400 | 397.7 | 7.17% 0.65 0.000012 | 0.000035

0.02 | CS-GA-23 || 4.48 | 400 | 397.5 | 7.30% 0.58 0.000113 | 0.000357

0.05 | CS-GA-24 || 4.41 | 400 0 0.00% 0.00 0.002446 | 0.000380

Table 4.4: Settings and performance indices for the NSGA II in the case studies.

are combined, so it is not clear from the figure whether the results are the same in the different
runs. However, in Table 4.2 it can be noted that the standard deviation of the coverage is quite
high. Actually, some of the runs do not contain non-dominated solutions at all. For CS-GA-1, the
maximum number of non-dominated solutions in the solution set is 11, and in 6 of the 10 runs no
non-dominated solution was found. The algorithm CS-GA-2 has a maximum of 10, and 3 times no
non-dominated solutions, and lastly CS-GA-3 has a maximum of 6, but 8 times no non-dominated
solutions. Based on these results, one would select a mutation probability of p,, = 0.01, since this
results in the highest average coverage.

The cause of the large differences in the results of an algorithm with exactly the same set-
tings, is the random initial population. If all the 100 solutions in the initial solutions are non-
dominated, perfect results would be obtained. But if all the 100 solutions in the initial population
are far from the non-dominated set, the algorithm depends on the crossover and mutation oper-
ators to obtain solutions with an improved non-domination rank. The total performance of the
genetic algorithms are dependent on random variables selected for the initial population, and on
random variables used for tournament selection,crossover, and mutation. To increase the proba-
bility that there are non-dominated solutions in the initial population, the population size could
be increased. In Figure 4.12, the results for three individual runs of the NSGA II are presented, with
different population sizes. For CS-GA-2, CS-GA-10, and CS-GA-18, the best runs are selected. It
can be seen that the number of non-dominated solutions is not growing very fast. For |S| = 100,
10 unique non-dominated solutions are found, while for |S| = 200, and |S| = 400, 11 unique non-
dominated solutions are found. This improvement is quite low. However, the algorithm becomes
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(c) Solution set for p,,; = 0.02. (d) Solution set for p,, = 0.05.

Figure 4.11: Solution sets for the NSGA II with |S| = 100 and gen= 100.

more consistent if the population size is larger. For CS-GA-2, three of the ten runs do not provide
any non-dominated solutions, while for the other two algorithms, this only happens once. If in-
creasing the computation time a bit more does not create any problems, one could test even larger
population sizes.

Costs Condition Capacity Risk Costs Condition Capacity Risk Costs Condition Capacity Risk

(a) Solution set for |S| = 100. (b) Solution set for | S| = 200. (c) Solution set for | S| = 400.

Figure 4.12: Solution sets for the NSGA II with gen= 100, and p,,, = 0.01.

Lastly, the influence of the number of generations is considered. The algorithms are tested
with 100 generations and with 200 generations. Interesting is that overall, the number of non-
dominated solutions provided by the algorithm is not increasing significantly for doubling the
number of generations. Only for p,, = 0.02, we see that the performance improves a lot if the
number of generations is doubled. So if 200 generations are considered, p;, = 0.02 would be pre-
ferred. In Figure 4.13, it can be seen that the best individual runs of CS-GA-11 and CS-GA-15 are
quite different. CS-GA-15 provides much more unique non-dominated solutions, and is also more
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consistent, since the number of unique non-dominated solutions varies between 9 and 12, while
for CS-GA-11, this varies between 0 and 7, with multiple times 0.

Costs Condition Capacity Risk Costs Condition Capacity Risk

(a) Solution set for Gen=100. (b) Solution set for Gen=200.

Figure 4.13: Solution sets for the NSGA II with |S| = 200, and p,, = 0.02.

4.3.3. Comparison

The performance of the repeated e-constraint algorithm and the multi-objective genetic algorithm
NSGA 1I are quite different. The repeated e-constraint algorithm requires an excessive amount
of computation time, but provides constant results. A higher number of e-bounds indicates that
more computation time is needed to find the optimal value for the main objective. The repeated
e-constraint algorithm provides satisfactory results for the performance indices of CS-¢-9, except
for the computation time.

The highest coverage of the NSGA Il case studies are for CS-GA-23, but still the highest coverage
is only about a third of that of the repeated e-constraint algorithm. The good thing about the NSGA
II is the computation time. As can be seen in Table 4.5, the computation time of some algorithms
with similar coverage, CS-¢-8, CS-GA-15, and CS-GA-23, the computation time of CS-£-8 is seven
times higher, while the coverage is lower than that of CS-GA-23. The four algorithms presented
in Table 4.5, are all good options for optimizing the multi-objective project portfolio optimization
problem, depending on the preferences of the decision maker for the performance indices.

Algorithm || trun [ IS#I [ ISkl | cpr | sd.cpg G s.d. G
CS-z-8 31.65 | 68 | 11.0 | 7.24% [ 0.00 [ 0.007232 | 0.000000
CS-£-9 427.33 | 128 | 99.0 | 21.05% | 0.00 [ 0.001898 | 0.000000

CS-GA-15 2.42 | 200 | 1929 | 6.97% 0.55 0.000033 | 0.000098
CS-GA-23 4.48 | 400 | 397.5 | 7.30% 0.58 0.000113 | 0.000357

Table 4.5: Comparison of performance indices for the repeated e-constraint algorithm and the NSGA II.

What is not captured in the current performance indices, is the spread of the approximation set.
None of the visualizations of the solutions sets of the NSGA II algorithms includes a project port-
folio that minimizes the risk or maximizes the capacity (minimize J3). As was already discussed
for the repeated e-constraint method, it seems that a solutions minimizing the risk score is very
hard to obtain, and probably only a few solutions that give similar good results for the risk score.
Since the extreme points of the non-dominated front are used in the initialization of the repeated
e-constraint algorithm, this method will always score very good on spread. For the NSGA 1II algo-
rithms, this depends on the initial population, and how well the settings allow for new results. This
difference can be eliminated if for the NSGA 1II algorithms, the extreme points will be used in the
initialization of the population. But this will increase the computation time.
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4.4. Decision support

The mathematical formulation and optimization technique for the investment project portfolio
optimization problem are very important for the decision-making process. However, these as-
pects are included in the back end of a decision support tool. For a decision support tool to work
successfully, the front end of the tool has to be designed carefully, and adjusted for the specific
needs of an organization. Although the complete design of such a decision support tool is out of
scope for this thesis, some thought has put into the decision-making process.

In Section 3.5, some statements regarding the decision support tool are presented. Some of
the desired features are implemented in a decision support tool demo that has been developed in
AIMMS. In Appendix A, some of the screens of the user interface are presented. Some remarks on
the functionality and other points of attention are included in the conclusions.

4.5. Summary

In this chapter, the proposed investment project portfolio optimization approach is put into prac-
tice. The performance of the repeated e-constraint algorithm and the multi-objective genetic al-
gorithm NSGA 1II are examined. First some simple benchmark problems, for which the Pareto
optimal set is known, are used to gain insight in the effect of the different settings of the proposed
algorithms on the performance. For the benchmark problems, the use of lower and upper bounds
in the problem formulation is also analyzed.

The problem formulation as proposed in Chapter 3, is used as a case study with an artificial
data set, for the investment project portfolio optimization problem in railway infrastructure net-
works. Since the set of Pareto optimal solutions for this case study is unknown, the set of all ob-
tained solutions is used as a reference set. The repeated e-constraint algorithm, implemented in
AIMMS, provides constant results. The different settings for the algorithm score very well on the
coverage of the non-dominated set and the generational distance to the non-dominated set, es-
pecially for a large number of e-bounds. However, optimizing many single-objective optimization
problems is time consuming.

The multi-objective genetic algorithm NSGA II, implemented in MATLAB, is less consistent
than the repeated e-constraint algorithm. A genetic algorithm is dependent on the randomly cho-
sen initial population, and also on the random genetic operators. For a large initial population
and many generations the coverage of the NSGA II algorithms is acceptable. The tested settings
provide less unique non-dominated solutions than most of the tested settings for the repeated ¢-
constraint algorithm. The biggest advantage of using genetic algorithms to approximate the Pareto
optimal set of project portfolios, is that the computation time is very good.



Conclusions and recommendations

In this chapter, the findings of this thesis are presented. First some general remarks and insights
that are gathered throughout the thesis project are listed. The research questions that are intro-
duced in Section 1.3 are reviewed. Answers to the research questions are formulated according to
the findings and results of this thesis. Then, a discussion on some of the assumptions and results
are presented. Lastly, the findings of this thesis that are relevant for further expanding this thesis
project to a usable decision support tool, are presented as recommendations for ORTEC.

5.1. Conclusions
The assessment of different aspects of the decision-making process in investment project portfolio
planning is presented in this section.

5.1.1. Problem formulation

In the decision-making for project portfolio optimization in infrastructure networks, multiple ob-
jectives are considered due to multiple stakeholders in the infrastructure network with different
desires. It is therefore strongly recommended to include a multi-objective optimization problem
in a decision support tool. Only the most important objectives with respect to the strategical goals
of an organization should be included as objective in the optimization problem. A situation with
strong differences in the preference of Pareto optimal solutions exist, should be avoided. Insight
into the less important objectives can be obtained in the evaluation phase of Pareto optimal project
portfolios.

In infrastructure networks, investment projects are often related to the assets. Since mainte-
nance projects and investment projects often make use of the same resources, and effect the same
organizational objectives, it is suggested that these type of projects are considered in the same
planning problem. In the formulation for these projects, maintenance objectives can be selected
multiple times in the prediction horizon, whereas investment projects are allowed to start only
once. The effect of a maintenance project is considered as an improvement of the current asset
states, whereas an investment project might change the behavior of the asset.

Assets in infrastructure networks can not be considered as an individual, the connectivity of
the assets should be taken into account. For example in the proposed formulation for project
portfolio optimization in railway networks, the capacity of the assets is influenced by the states
of neighboring assets. Furthermore, a combination of multiple executed projects does not neces-
sarily result in the sum of all individual project benefits. The effect of executing complementary
projects and substitutive projects should be taken into account, to what extent they can be esti-
mated.

Due to the long lifespan of assets in infrastructure networks, and that the nature of an invest-
ment is that it provides long-term benefits, a high-level point of view should be considered in the
project portfolio optimization problem. This means a long prediction horizon and corresponding
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long time periods. Since the resulting project portfolios cannot be used for daily project manage-
ment and execution, low-level optimization could be used to obtain daily schedules, based on the
results of the high-level planning.

The available information about the costs, duration, and benefits of investment projects is of-
ten based on the judgment and expectations of experts. The realizations could deviate from the
expected values for costs and benefits, due to for example errors in calculation, non-fulfilled agree-
ments with external parties, and unexpected delays. To obtain a set of solutions that could be the
basis for confident decision making, it is preferable that uncertainty is included in the problem
formulation. However, regarding the computation time, it is not recommended to include all pos-
sible realizations of the uncertainties. An approach is proposed to include the uncertain nature of
investment projects in the problem formulation, without increasing the complexity of the problem
too much. This is done by introducing lower and upper bounds for the uncertain variables. By op-
timizing not only the expected values of the objective functions, but also the lower and the upper
bounds for these values, one is able to identify solutions that give satisfactory results for the three
considered scenarios. Project portfolios that are Pareto optimal or non-dominated for the lower
bounds, the expected values, and the upper bounds of the objective functions, are considered as
robust choices with respect to the uncertainties in the objective values.

5.1.2. Multi-objective optimization methods

In the optimization of multiple objectives for the decision support of project portfolio selection, it
is preferable to explicitly consider the multiple objectives. This means that an a posteriori prefer-
ence structure is used in the optimization method. In the selection of an optimization method, a
trade-off has to be made regarding the computation time and the quality of the approximation of
the Pareto optimal set. This trade-off has to be made according to the preferences of the users or
the organization. Here it is argued that the results regarding the solution quality of the repeated
e-constraint algorithm is not sufficient for any combination of settings, to outweigh the excessive
amount of computation time that is needed to obtain the solution set. Since for large-sized opti-
mization problems the set of Pareto optimal solutions is not attainable within acceptable time, a
reference set is used for comparison of the methods.The multi-objective genetic algorithm NSGA
Il is proposed, at the expense of the repeated £-constraint algorithm. The genetic algorithm NSGA
II obtained the approximation set within 5 minutes, for all tested settings. The optimal settings
might be different for other problems, but for the railway network case studies, a population size
of 400 is selected, with 200 generations and a mutation probability of 0.01 or 0.02. The compu-
tation time is important in the decision support tool, especially since the proposed formulation
includes three optimization problems, that for the lower bounds of the objectives, the expected
values, and the upper bounds. The computation of the repeated e-constraint algorithm is not
suitable for optimizing multiple scenarios and giving the user the opportunity to re-optimize the
problem with different constraints.

5.1.3. Visualization and decision support

The investment project portfolio optimization approach is intended to be used to support the
decision-making process. A well designed user interface, with the right amount of detailed in-
formation, easy to understand visualizations, and an intuitive user flow is crucial for the success
of a decision support tool. A fully operating decision support tool that meets all the requirements
that are posed here is out of scope for this thesis. However, a demo version has been developed
in AIMMS, including some general requirements. Some screenshots of this demo version are pre-
sented in Appendix A.

The decision support tool should be interactive in the sense that multiple scenarios regarding
local and general constraints can be optimized, and that the problem can be adapted after the de-
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cision maker gains insight in the possible solutions. During the decision-making process, a set of
non-dominated solutions is provided to the decision maker. To prevent that an excessive amount
of data creates the issue that the overview is lost, the decision maker should be able to use some
features such as filtering and selecting solutions for detailed information. Also additional informa-
tion should be provided for decision-making, such as the core index of the projects. The decision
maker should be able to adjust constraints, and re-optimize the problem. Interaction with the
tool should lead the decision maker step-by-step towards the final project portfolio selection. By
considering the lower and upper bounds of multiple objectives, it is considered that the decision
maker is able to gain sufficient insight into the possible solutions to make well-founded decisions
and select a robust project portfolio.

A point of concern is the easy to understand visualization of the obtained set of non-dominated
project portfolios. Visualizations for 4 objectives tend to be less intuitive or do not fully manage
to provide a clear overview of the solutions. This is especially the case if many possible solutions
are included in the visualization. Therefore, including the lower bound, expected value, and upper
bounds for the objective values of many solutions in the same visualization is not recommended.
Examples of possible options are to provide the three visualizations next to each other, or to select
a single solution for which the upper and lower bound are visualized.

5.1.4. Research questions
The main research question of this thesis is given by:

How can multi-objective optimization be used efficiently in the decision support for
investment project portfolio planning under uncertainty?

In order to answer the main research question, the sub-questions are addressed and reflected on,
with the findings that are presented in the previous sections.

* What is the most suitable way to include uncertainty in parameters and future scenarios in
the optimization of maintenance and investment project planning?

Considering more than just the expected values of variables increases the computation time
of algorithms. Including uncertainty in the problem would help the credibility of the pro-
vided solutions, but another desire for a decision support approach is that the computation
time is not extravagant. To make sure the computation time does not suffer too much, only
three realizations of each uncertain variable are considered. Next to the expected value of
that variable 6, also the lower bound 6 and the upper bound 6 are considered. Solving three
optimization problems, one for the lower bounds of the objective values, one for the ex-
pected values of the objective values, and one for the upper bounds of the objective values,
will provide insight in which solutions are robust choices. One would typically prefer a solu-
tion that is Pareto optimal (or non-dominated) for all three problems, since such a solution
is considered to be a robust project portfolio planning.

* In the high-level project portfolio optimization problem, what are the trade-offs between ac-
curacy and computation time when using different time steps, network segments, asset infor-
mation, and number of project dependencies?

When a high-level project portfolio selection and planning problem is considered, it goes
without saying that the information used in optimization should not be too detailed. For re-
alistic, accurate results one would expect that it is valuable to consider the states of all assets
individually, and for a large number of time steps. However, this will imply that large compu-
tational effort is needed to compute all the states for the time steps in the prediction horizon.
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For the sake of computation time, it is better to combine individual assets into groups of as-
sets based on for example asset type, location, and age. Furthermore, the combined states
of the assets in a group are likely to be closer to their expected values, since deviations are
averaged. Project dependencies are considered too important for the accuracy to omit.

How can we cope with different requirements for the decision support tool in the railway in-
frastructure business, regarding computation time, solution quality, and the process of the
support?

A trade-off needs to be made for the computation time and the solution quality. The prefer-
ence of different organizations in this trade-off could be different, but for the general high-
level investment project portfolio optimization problem in railway infrastructure networks,
it is considered that there exists a fast optimization method that provides a sufficient level
of solution quality. By selecting an optimization method that is computationally inexpen-
sive, the decision makers in the railway infrastructure business are able to consider mul-
tiple scenarios and realizations of uncertainty. The settings for the selected optimization
method could be tuned to provide the best possible solution quality in terms of for exam-
ple the coverage of the non-dominated set of solutions, and the generational distance to the
non-dominated set.

Which optimization methods are best suited for the multi-objective project portfolio problem,
regarding solution quality and computation time?

The repeated e-constraint algorithm is considered suitable for the final optimization of a
project portfolio, but too computationally expensive to use in an interactive decision sup-
port tool. The solution quality in optimizing different scenarios of constraints, and different
realizations of uncertainty, is considered to be less important than the computation time
to obtain these results. For a fast and interactive decision support tool, the multi-objective
genetic algorithm NSGA Il is proposed. The solution quality of the genetic algorithm is influ-
enced by the settings for population size, number of generations, and mutation probability.
These settings can be tuned for a specific problem to meet the preferences of the organiza-
tion.

5.2. Discussion and further research
Some issues that would benefit from some more attention are discussed here, as well as the possi-
bilities to conduct further research in this area.

* Realistic railway network representation

The deterioration of the condition and states of the assets, as well as the dependencies be-
tween the states, are highly simplified in the railway network representation in this thesis.
Improving the behavior of the states is out of the scope for this thesis, but it would certainly
improve the accuracy of the model, so it should be implemented. It is proposed that the
decision support tool and the optimization part are connected to an asset management tool
such as Maximo. In Maximo, the deterioration models, risk assignment, and all the asset
relations are recorded.

Including uncertainty

In the problem formulation for investment project portfolio optimization, the uncertainties
in expected results of investment projects are considered. The railway network representa-
tion is subject to more uncertain influences than just the effects of investment projects. Even
if the deterioration models are more accurate, there still might be some modelling errors or
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noise. The proposed problem formulation can be adapted to include other uncertainties as
well. However, attention must be paid that the lower and upper bounds do not diverge over
time. If for each condition in each time period, a lower and an upper bound is considered
that is depending on the values of the previous time period, the interval between the lower
and the upper bound will grow very fast.

* Real life case study data

The best possible way to investigate whether a decision support tool, or any tool for that
matter, works properly, is by testing the methods with real life data. Real life data was ex-
pected, but due to procurement rules at the concerning railway organization, this was not
possible. The current case study data is based on other infrastructure data that was available
from the IBM Maximo Asset Management tool. Unfortunately, the size of the artificial data
set is not representative for a real life railway network case study.

e Comparison of different software tools

The repeated e-constraint algorithm and the multi-objective genetic algorithm NSGA II are
not implemented in the same software tool. The reason for this is AIMMS is the standard
optimization software for ORTEC Consulting, so a suitable choice for a demo version of a
tool with single-objective optimization problems. However, it is not straightforward to in-
clude multi-objective genetic algorithms in AIMMS. For sake fast implementation, MATLAB
is selected for the implementation of NSGA II. The drawback of this choice is that the two op-
timizers are not equally able to adress the cores of the processor of the computer. So despite
that all the results are obtained with the same computer, without other computationally ex-
pensive processes to influence the results, the computation time that is needed for the op-
timization is not representative for the computational effort that is needed. However, since
NSGA 1II actually performs better than the repeated €-constraint algorithm in terms of com-
putation time, this did not influence the selection for the best suited optimization method.
If the MATLAB implementation would be adapted such that the used computational power
of the computer would be increased, NSGA 11 would perform even better with respect to the
computation time.

¢ Optimization method improvements

Tuning the settings of an algorithm could further improve the performance of an algorithm
to meet the preferences of the decision makers. Just recently, a MATLAB Platform for Evo-
lutionary Multi-Objective Optimization (PlatEMO) is published (Tian et al., 2017). This plat-
form will make future implementations of genetic algorithms such as NSGA II a lot easier, as
well as tuning the settings. In this platform, the selection of different visualization methods
and performance indices is expected to be well supported. If this platform is able to keep
up with the state of the art optimization methods, it will be a very valuable and widely used
MATLAB-based platform. The current version of PlatEMO includes 50 multi-objective op-
timization algorithms. Other methods can therefore be easily tested for their performance.
A method that has not been tested thoroughly for the case studies, but is expected to give
good results is to include the extreme points in the initial population of the multi-objective
genetic algorithm NSGA II. Other methods that could be compared in future research are for
example Pareto ant colony optimization and multi-objective evolutionary algorithm based
on e-dominance.

¢ Visualization method

It is stated in this thesis that a decision support tool would benefit from a simple, clear vi-
sualization of the Pareto optimal or non-dominated solutions. Also for comparison of case
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study results in this thesis, a clear visualization is desirable. However, it has been found that
distinguishing individual solutions in the parallel coordinates plot requires a good pair of
eyes. This issue could be solved partly by increasing the height of the figure. But still it will
not be clear if the lower and upper bounds of the objective values are included in the visu-
alization. Therefore, it is suggested that some further research could be conducted to find
or develop a clear, intuitive way of visualizing the values of multiple objective values, for
multiple scenarios.

* Application

The application of investment project portfolio optimization in this thesis is selected to be
railway infrastructures. The capacity of the railway network is presented for passenger trans-
port. For use in a network with combined passenger and cargo transport, the capacity cal-
culation should be adjusted accordingly. The infrastructure network representation of other
infrastructures such as road networks, water networks, or electricity networks is expected
to be only slightly different than that of a railway infrastructure network. It would there-
fore be interesting to dedicate some research in these other fields, and investigate whether
the requirements for such a decision support tool are similar. Next to other infrastructure
networks, also more general project portfolio optimization problems can be addressed. The
network specific dependencies can be replaced by other problem specific adjustments.

* Hierarchical decision-making process

In the proposed problem formulation and solution process, different objectives are checked
for non-dominance. So the optimization problem is solved for the lower bounds of the ob-
jectives, the expected values of the objectives, and the upper bounds for the objectives. With
the aim to provide even more robust solutions, the problem can be extended in the following
way. The solutions are now checked for non-dominance for a long-term prediction horizon.
It would be interesting to consider the set of non-dominated solutions, and use these solu-
tions to compute the objective values for a medium-term prediction horizon or a short-term
prediction horizon. Since only the number of non-dominated solutions that are provided
for the initial problem have to be checked for the objectives, this step is not expected to be
computationally expensive. If the solutions are then checked for non-dominance regarding
the objectives for a shorter prediction horizon, the non-dominated solutions of this set are
considered to be robust in the sense that both the long-term goals as the short-term goals
are considered. The problem for the short term prediction horizon could also be solved for
all possible solutions, but this will take more time and will probably does not provide the
same solutions as the initial problem.

5.3. Recommendations for ORTEC

It would be a huge success if the proposed formulation and decision support tool outline from
this thesis are used in the development of a real life user application. This attempt is of-course
supported and encouraged, and here are some recommendations presented for ORTEC.

First of all, the experiences of a two-day conference of the UIC Railway Asset Management
Conference, has led to the conclusions that organizations are definitely interested in the optimiza-
tion of their maintenance planning, by using asset data. However, most railway organizations are
not there yet. The railway industry is quite conservative, and often limited in their expenses be-
cause of government cuts. Some people are really willing, and convinced that some innovation
should take place, but in most organizations this is not widely supported yet. Furthermore, the
railway organizations do not have all the required data present. Therefore, it is recommended to
use this thesis as an ultimate goal, but guide the organization step by step to achieve this goal. A
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data-maturity assessment could be used to check what data is available in the organization, and
what are the possibilities for optimization with this data.

Even if the optimization problem is less complex, and other optimization methods could be
used, it is important for the decision-making process that the optimization problem formulation
reflects reality as good as possible. Decision makers need to trust the results obtained by the op-
timization method. So it will be good to cooperate with the decision makers when creating the
mathematical formulation.

Furthermore, it is suggested that a professional user interface designer is involved in the de-
velopment of a real life decision support tool. Firstly, selling a good looking, intuitive decision
support tool would be a lot easier. And if decision makers need to work with a tool that is not user
friendly, they are not likely to consider other ORTEC solutions, and the long term relationship is
damaged.

Lastly, if some complex optimization problems need to be solved, and the client does not want
to make sacrifices regarding the computation time, it could be an option to use cloud computing.






Decision support tool

The mail goal of a decision support tool for project portfolio optimization in infrastructure net-
works is to gain insight into the possible scenarios, such that a well-founded, robust project port-
folio can be selected. Before this can be realized, the decision maker first needs to have insight into
the current situation, so insight into the current states of the network and the possible projects.
Then, some interaction with the tool is needed to include the preferences of the decision maker,
and to make sure the results are fully aligned with the concerned organization. Here the features
that are deemed necessary, and some basic user interface pages that are implemented in AIMMS,
are presented.

A.1. Insight into the current situation

For insight into the current situation, data is needed. It would be most convenient if the decision
support tool is linked to an Asset Management system such as Maximo, such that the information
in the tool is always up to date and less sensitive to human errors in data import or export. If this
is not done automatically, the data has to be imported by the user. In that case, some guidance
is recommended to make sure the right data is submitted. This can be accomplished with some
checks and feedback to the user. In Figure A.1, a data import page is showed. Some checks are
performed to make sure that all the data is imported and up to date.

Timestamp last import
2017-10-02 15:25
2017-10-02 15:25
holds 2017-10-02 15:25
2017-10-02 15:25

Figure A.1: Data import page from the decision support tool demo in AIMMS.

In presenting the current situation, a network overview is very helpful. Figure A.2 shows a very
simple network representation, with some basic data. The attractiveness of the representation
should be improved, as well as the use of colors and graphs for quick insight.

In Figure A.3, an overview of the proposed projects is shown. This is just a very basic representa-
tion, but could be used to check the imported data. Furthermore, this page could be used to enter

63



64 A. Decision support tool

new project proposals. It would also be possible to let regional managers enter all their proposed
projects, along with the expected costs and benefits of those projects, such that all the projects are
entered in the same way and can be used for analysis by the decision maker.

Compare Scenarios

Node size [ ]

cdam Centraal __ shownetwork_|

Are size []
Amsterdam Slotel

Selected line (Den Haag Centraal, Gouda)
Initial condtion H 0.63
Length [lkm] H 323
Currently in use 1
Age [days] 5,905
Initial daily OPEX 924

Haarlem

Heemstede

Utrecht Centraal

Leiden

(otterdam Alexander

otterdam Centraal

Figure A.2: Network visualization page from the decision support tool demo in AIMMS.
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Figure A.3: Projects overview page from the decision support tool demo in AIMMS.

A.2. Creating insight into different scenarios

Figure A.4 shows a page at which the preferences of the decision maker can be entered. Con-
straints can be created, the main objective can be chosen, and some alternatives can be fixed. This
page could be extended with many more options for scenarios. The optimization settings and the

overview of optimized scenarios are presented at the Optimization page, as presented in Figure
AL,

Pairwise scatterplots of the objective values of the provided solutions to the multi-objective opti-
mization problem can be found on the Results page, as shown in Figure A.6. Since this visualiza-
tion is mainly used to show an overview, some more detailed visualizations of the results can be
found on the Planning page in Figure A.7, the core index on the Projects page in Figure A.8, and
the Comparison page in Figure A.9, where two project portfolios can be compared.
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Figure A.4: Scenarios overview page from the decision support tool demo in AIMMS.
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Figure A.5: Optimization settings page from the decision support tool demo in AIMMS.
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Figure A.6: Results in pairwise comparison plots, included on the results overview page from the decision

support tool demo in AIMMS.
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Figure A.7: Planning of projects of a selected project portfolio, included on the detailed results page from
the decision support tool demo in AIMMS.
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Figure A.8: The core index listed for the projects, included on the decision support page from the decision
support tool demo in AIMMS.
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Figure A.9: Comparison of the planning and objective values for two project portfolios, included on one of
the detailed results pages from the decision support tool demo in AIMMS.
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