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A B S T R A C T   

In this paper, a method based on Approximate Empirical likelihood ratio and a Deviance function combined with 
bootstrapping (AED-BP) is proposed to construct a confidence curve for the location of a change point. The 
method is compared with a method based on parametric Profile Likelihood and a Deviance function combined 
with Monte Carlo simulation (PLD-MC). A confidence curve provides a representation of the uncertainty in the 
outcome of the change point analysis. To evaluate the practical usability of confidence curves constructed by 
AED-BP, its properties were examined and its performance was compared to that of PLD-MC. The methods were 
applied to both synthetic and real data. Synthetic data were generated from three parametric distributions: 
Fréchet with a constant shape parameter, log-normal, and gamma distributions. The real data are the hydro-
meteorological data analysed in other studies. The change points found in the original publications are used as a 
reference in this present paper. The results show that AED-BP has a performance that is similar to PLD-MC, but 
has an advantage in that it is not necessary to select a distribution family for the data. The AED-BP results on the 
Annual Maximum Runoff series for the stations Yichang and Hankou along the Yangtze river are among the first 
that show a possible effect of the presence of the Three Gorges dam.   

1. Introduction 

While it is clear that climate change affects the hydrological cycle 
(Donat et al., 2017) and that there is an increased risk of extremes in 
precipitation (Lehmann et al., 2015), discharge (Hirabayashi et al., 
2013) and temperature, the effects on a regional scale may vary con-
siderably (Tamaddun et al., 2016). The analysis of time series of pre-
cipitation, temperature, discharge and other variables is an important 
tool in the search for and examination of such changes. However, in 
order to be effective, the analysis must allow for non-stationarity. 
Roughly speaking, there are two types of non-stationarity in hydro-
logical processes to be considered: gradual change and abrupt change. 
The main sources of these changes are human interventions and climate 
variability (Haddeland et al., 2013). Detecting change points con-
tributes to detecting changes in the water cycle due to human and 
natural causes during the Anthropocene, a component of some im-
portant open questions in hydrology (Blöschl et al., 2019). The need for 
more hydrological data that is mentioned in McMillan et al. (2016) 
makes it more important than ever to determine whether or not known 
changes have impacted system response. With a good understanding of 
the size of the impact, better use can be made of long hydrological time 
series that otherwise would need to be treated as two shorter series. To 

do so, it is necessary to establish whether or not a known change has 
caused detectable impact, for instance, in the form of a change point. 

The examination of changes in catchment behaviour is not a purely 
academic exercise: future catchment behaviour is a major factor in all 
decisions on future water management. If one wishes to analyse non- 
stationarity, then a first essential step is finding the abrupt changes, 
because any abrupt change will interfere with the search for gradual 
changes and other statistical properties of the series. Therefore, this 
paper focusses on the detection of abrupt changes in the hydro-
meteorological processes through the analysis of time series. 

The concept of an abrupt change is formalized as follows: a time 
series is said to have a change point when the statistical characteristics 
of the series before and after the change point show a significant dif-
ference. Finding change points has attracted attention from many fields, 
for instance, in oceanography (Killick et al., 2010), economics, finance 
(Chen and Gupta, 2012), biology (Brodsky and Darkhovsky, 1993) and 
meteorology (Beaulieu et al., 2012; Gocic and Trajkovic, 2013). In 
hydrology, change point detection plays an indispensable role in 
homogeneity tests for hydrological observations (Kundzewicz and 
Robson, 2004). 

A number of methods have been developed to find change points; 
some require a parametric description of the probability distribution of 
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the data points in the time series (Chen and Gupta, 2012), others do not 
(Pettitt, 1979; Lee et al., 2003; Hawkins and Zamba, 2005; Gurevich 
and Vexler, 2010). Traditional change point detection methods are 
often designed to accept or reject the null hypothesis at a given sig-
nificance level. If it is rejected, then a point estimate of the location is 
obtained more or less as a by-product. This approach does not offer 
much room for the communication of degrees of uncertainty. Moreover, 
its use of the traditional p-value based approach is a potential weakness 
(Wasserstein et al., 2019). 

In some cases, change point detection may deliver unexpected re-
sults, for instance, when events have taken place that lead hydrologists 
to expect a change, but for the given p-value the null hypothesis is not 
rejected. To be more specific, one might find that the known informa-
tion is that a dam or reservoir was constructed upstream of a gauging 
station at a given year, but no change point is detected in the time series 
beyond that point. With just a hypothesis test no further insight is 
available. This is particularly problematical, because, for some of the 
tests used in hydrology, results may change when different combina-
tions of starting and ending year are used (Zhou et al., 2019). It is 
therefore important to examine new methods for change point detec-
tion that provide more information on the uncertainty of the results. 

In the current study, a new method is developed that represents the 
uncertainty about the location of a change point by providing con-
fidence sets at all confidence levels. A confidence set is a generalization 
of a confidence interval. Our method was inspired by the work on 
confidence curves in connection with change point detection in Cunen 
et al. (2018). Their ‘method B’, which constructs a confidence curve for 
the location of a change point by using a parametric profile likelihood 
function to construct a deviance function, shows considerable promise. 
However, it presupposes that it is known to which family of distribu-
tions the data points belong; this knowledge is used both in the for-
mulation of the deviance function and in a Monte Carlo (MC) procedure 
that draws from that family to approximate the distribution of the de-
viance function. In hydrology, it is not always clear which family 
should be chosen. In addition, the method also involves optimizing a 
fairly large number of profile likelihoods. For some distribution fa-
milies, this may be costly. The method presented in this paper avoids 
these potential drawbacks by using an empirical likelihood ratio instead 
of a parametric profile likelihood function and bootstrapping (BP) 
samples from the original sample. 

There are alternative approaches that can be used to represent the 
uncertainty in the change point location. One is the use of confidence 
intervals instead of point estimates for a given level of significance, but 
this still limits the available information to that for one level of sig-
nificance. Another approach would be to use Bayesian techniques. 
Bayesian techniques are particularly attractive in hydrology (Coles and 
Tawn, 1996; Renard et al., 2010) because of the non-repeatability of 
hydrological observations. An example of a Bayesian change point 
analysis method can be found in Perreault et al. (2000). However, in 
addition to the need to find a proper distribution family for hydro-
logical records, Bayesian approaches also need to find a suitable prior. 

The remainder of this paper is organized as follows: first two dif-
ferent methodologies for confidence curve construction are presented, 
the parametric ‘method B’ from Cunen et al. (2018) and the non- 
parametric method proposed in this study, and indicators are defined 
that can be used to evaluate and compare the performance of the 
curves. Then, the results of the application of the methods to synthetic 
data are analysed. Next, the non-parametric method is applied to sev-
eral hydrometeorological time series and the outcomes are compared to 
results found in the literature. Finally, we discuss the results and pre-
sent our conclusions. Mathematical details can be found in the Ap-
pendices (A–D). 

2. Methodology 

This study introduces a new method to represent and analyse 

uncertainties in change point detection. It should therefore present the 
basic principle behind the method, test its performance, and examine its 
application to real data. To ensure a clear exposition, a simple for-
mulation of the change point detection problem will be used. For details 
of the notation and definitions see Appendix A. 

The formulation of the method and the numerical experiments will 
be limited to the case where there is at most one change (AMOC). All 
time series will be modelled as a vector Y of n independent continuous 
random variables …Y Y Y, , , n1 2 . The null hypothesis H0 will be that the Yi
are independent identically distributed (i.i.d.) random variables. The 
alternative hypothesis H1 will be that there is an index that splits the 
series into two sub-series: a left sub-series where …Y Y Y, , ,1 2 are i.i.d. 
random variables and a right sub-series where …+ +Y Y Y, , , n1 2 are i.i.d. 
random variables, but the distributions of the left sub-series and the 
right sub-series of the series are different. 

Furthermore, it will be assumed that the corresponding distributions 
are from the same family of distributions, and that the individual 
members can be fully specified by a vector of parameters that may 
change and a vector of parameters that stay the same. The probability 
density function (pdf) of a member of the distribution family will be 
referred to as f (·; , ), and the cumulative distribution function (cdf) will 
be denoted by F (·; , ). We will use L for the parameter vector cor-
responding to the left sub-series and R for the parameter vector cor-
responding to the right sub-series. In the remainder of the paper, Y will 
represent the random vector defined here; y will represent a realization 
of Y, and yobs will represent the actual observed time series. 

Both the parametric and the non-parametric change point methods 
need to sample from the sub-series to the left and to the right of the 
change point; for short sub-series this is likely to cause problems. 
Moreover, our non-parametric method which uses an approximate 
empirical likelihood is related to the empirical likelihood method dis-
cussed in Zou et al. (2007) where it is stated that the empirical like-
lihood may not exist for short sub-series, and it is recommended to 
consider only a subset of the possible change points. Finally, the ap-
proximation we use for the empirical log-likelihood does not hold ev-
erywhere, but it does hold for change points at + …n n n n, 1, ,tr tr tr, 
when 

=n n2logtr (1) 

where · denotes rounding down towards the nearest integer. 

2.1. Confidence curves based on the profile log-likelihood 

Cunen et al. (2018) presented a method to construct confidence 
curves (Definition 3 of Appendix A) based on the log-likelihood func-
tion . In the case of change point detection is given by 

= +
= = +

y f y f y( , , , ; ) log ( ; , ) log ( ; , )
i

i
i

n

iL R
1

L
1

R
(2)  

As a first step in the derivation of the method, they introduce a 
profile log-likelihood. In general, a profile log-likelihood is used when 
only part of the parameter vector is of interest. For instance, a vector 

= ( , ) where only is of interest, is a nuisance parameter. In such a 
case, one can take the supremum of the log-likelihood over all , which 
is then called the profile log-likelihood for . According to Murphy and 
van der Vaart (2000), the ‘profile likelihood may be used to a con-
siderable extent as a full likelihood’ for the parameter of interest. If an 
estimate for in (2) is needed, then is the parameter of interest and 

, ,L R are nuisance parameters. Therefore, they define the profile 
log-likelihood by 

=y y( ; ) sup ( , , , ; )prof
, ,

L R
L R (3)  

The notation y y( ; ), ( ; )L R and y( ; ) is used to denote a combi-
nation of values of ,L R and where prof attains its global maximum, 
so 
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=y y y y y( ; ) ( , ( ; ), ( ; ), ( ; ); )prof L R (4)  

The value of for which prof is maximal will be denoted by y( ). 
The values y y( ( ); )L , y y( ( ); )R , and y y( ( ); ) will be used as esti-
mators for the parameters ,L R, and respectively. 

Next, the deviance function D is introduced 

=D y y y y( , ) 2( ( ( ); ) ( ; ))prof prof (5)  

This is then used to define random variables D Y( , ) with 
= … n1, 2, , 1. For a given its distribution is estimated by 

= < =
= =

r K r D Y r y y
y y y y

: ( ) Pr( ( , ) , ( ( ); ),
( ( ); ), ( ( ); ))

L L

R R (6)  

In the case of a discrete parameter , no exact or approximate ex-
pression is known for the distribution K , so it needs to be approxi-
mated by simulation. Note that by definition =D y y( ( ), ) 0. Now for 
each sample there will be at least one k, namely =k y( ) for which 

=D y( , ) 0. As there are only a finite number of values that can take, 
this implies that = =D YPr( ( , ) 0) 0 cannot hold for all . Therefore, 
there is at least one with = >D YPr( ( , ) 0) 0, and so the distribution 
of D Y( , ) has a positive point probability at 0. This implies that 
D Y( , ) is never uniformly distributed, but it is part of the definition of 
a confidence curve that Ycc( ; )true is uniformly distributed on [0, 1]

when true is the true value of (Appendix A). Nevertheless, as in Cunen 
et al. (2018), D will be used to define the function that will be referred 
to as a confidence curve 

=y K D ycc( ; ) ( ( , ))obs obs

where yobs is the observed sample. 
The simulations needed to obtain K are performed as follows:  

1. Obtain estimates of the distribution parameters , ,L R , and by 
determining y( )obs , y y( ( ); )L obs obs , y y( ( ); )R obs obs , and 

y y( ( ); )obs obs respectively.  
2. For each + …k n n n n{ , 1, , }tr tr tr and = …j N1, 2, , , generate a 

sample y j k( , ) where the yi
j k( , ) with = …i k1, 2, , are distributed with 

= y y( ( ); )L obs obs , = y y( ( ); )obs obs , and the yi
j k( , ) with 

= + + …i k k n1, 2, , are distributed with = y y( ( ); )R obs obs , 
= y y( ( ); )obs obs ; ntr is used to avoid calculation of profile log- 

likelihoods based on a handful of points.  
3. Approximate the curve =y K D ycc( ; ) ( ( , ))obs obs by 

= <
=

K D y
N

D y D y( ( , )) 1 ( , ) ( , )N
j

N
j

, obs
1

( , )
obs

(7)  

Fig. 1. Confidence curves for change point location in synthetic data from a log-normal distribution.  
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This method of confidence curve construction uses a parametric 
Profile Likelihood based Deviance function with Monte Carlo simula-
tion (PLD-MC). 

2.2. Confidence curves based on the approximate empirical likelihood ratio 

To show the relation between PLD-MC and the method proposed in 
this study, it is necessary to take several intermediate steps. These steps 
are presented in detail in Appendix B. The end result is that the role of 
the profile log-likelihood in the deviance function used in the con-
struction of the confidence curve is taken over by an approximation apn
of the empirical log-likelihood given by 

= = = +

= =( )
( )

y n
n

y y

y y
( ; ) ( ) i i n i

n
i

n i
n

i n j
n

j

apn

1
1

1
1

2

1
1 1

1
1

2
(8)  

To define the corresponding deviation function Dapn, we need to 
introduce y( )apn , the value of for which y( , )apn attains its max-
imum. Now Dapn is 

=D y y y y( ; ) 2( ( ( ); ) ( ; ))apn apn apn apn (9)  

To determine the distribution K r( )apn, of D Y( ; )apn , formally given 
by 

= <K r D Y r( ) Pr( ( ; ) )apn, apn (10) 

we use the following procedure:  

1. Determine = y( )0 apn obs , and split yobs into a left part and a right 
part at 0. 

2. For each candidate position + …n n n n{ , 1, , }tr tr tr , use boot-
strapping to resample yobs and get N new samples y j

res
( )

= …j N( 1, 2, , ). For each j y, j
res
( ) is composed of a sequence of va-

lues drawn from the left part of yobs followed by a sequence of 
n( ) values drawn from the right part of yobs (Hall and Martin, 

1988).  
3. Approximate the curve =y K D ycc( ; ) ( ( , ))obs apn, apn obs by 

<
=N

D y D y1 ( , ) ( , )
j

N
j

1
apn res

( )
apn obs

(11)  

Here ntr is used to avoid calculation of approximate empirical 
likelihoods based on a handful of points. 

Thus the newly developed method is based on the Approximate 
Empirical likelihood ratio that is used in a Deviance function combined 
with Bootstrapping to calculate the confidence curves (AED-BP). 

Fig. 2. Actual coverage probabilities and confidence set size as a function of nominal coverage probabilities for synthetic data.  
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2.3. Properties of confidence curves 

To evaluate the performance of AED-BP and PLD-MC and to com-
pare confidence curves, metrics are needed. For synthetic data series 
objective criteria can be formulated because the true change point is 
known. The results of AED-BP when applied to real data series can only 
be judged by the amount of uncertainty in the result and by comparison 
with other published results. 

The following properties will be examined:  

• Actual versus nominal coverage probability for the confidence sets 
produced by the curves at several confidence levels for synthetic 
data. For the definition of actual and nominal coverage see 
Appendix A.  

• The cumulative distribution of y( ) for PLD-MC and y( )apn for AED- 
BP for the synthetic data experiments when the null hypothesis H0
holds. This provides a measure of possible bias for reporting certain 

Table 1 
Actual coverage probability for given confidence levels (conservative coverage is marked by a grey background).   

Fig. 3. Frequency distribution of the change point estimate for the different 
methods applied to log-normal samples when H0 holds. 
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locations when a type I error is made. Ideally, the distribution 
should be uniform.  

• The cumulative distribution of y( ) and y( )apn for the synthetic 
data experiments when the alternative hypothesis H1 holds. This 
provides a measure of how well the point estimators work. Ideally, 
the distribution should be a step function with the step at the true 
change point location. 

• The similarity index for two confidence curves. In Appendix C a de-
rivation is given for 

= =

=
J

y y
y y

min(1 cc( , ), 1 cc ( , ))
max(1 cc( , ), 1 cc ( , ))

n

n
1 obs obs

1 obs obs (12) 

which will be used to compare the similarity of pairs of confidence 
curves.  

• The slimness of the confidence sets associated with a confidence curve 
as the ratio between the actual number of points contained in a 
confidence set at confidence level and the number n

= R
n

slimness #
(13) 

where R# is the number of points in the set R defined in (A.12). 
For methods that exclude the first and last n 1tr points of the series 

a modified form should be used 

= R
n n

slimness #
( 2( 1))tr (14)  

3. Analysis results for synthetic data 

In order to evaluate the performance of PLD-MC and AED-BP, syn-
thetic time series from three different distributions are generated: the 
log-normal distribution, the gamma distribution, and the Fréchet dis-
tribution with a constant shape parameter. Moreover, three variants of 
PLD-MC will be considered. One using the log-normal pdf (LN-PLD- 
MC), one using the gamma pdf (G-PLD-MC), and one using the Fréchet 
pdf (F-PLD-MC). The parametric distribution functions of the three 
distributions can be found in Appendix D. Notice that in this study, the 
shape parameter of the Fréchet distribution is fixed to avoid over-fitting 
to hydrometeorological data. 

3.1. Data generation 

For each combination consisting of a distribution, a change point at 
= 25, 50, 75, and a change in the mean =µ 1, 2, 4, a set of 1000 

Fig. 4. Frequency distribution of the change point estimate for the different methods under the alternative hypothesis H1 with = 25, 50, 75 and with magnitudes of 
change =µ 1. 
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synthetic time series of length =n 100 were generated. For the cov-
erage analysis, an additional 1000 synthetic time series of length =n 50
with a change at were generated for changes in the mean of 

=µ 1, 2, 4. The used in the generation of the time series will be 
referred to as true. 

The mean of the distribution for the sub-series up to will be 

denoted by µL, and the mean of the distribution for the sub-series be-
yond will be denoted by µR . Similarly, L and R will refer to the 
standard deviation of these distributions. For all series we have 

= = =µ1, 2L R L , and = +µ µ µR L . The scale of change is mea-
sured by µ/ , and in our setup = = 1L R , therefore, for the synthetic 
data the relative size of the change in the sample mean at a change 

Fig. 5. Frequency distribution of the change point estimate for the different methods under the alternative hypothesis H1 with = 25, 50, 75 and with magnitudes of 
change =µ 4. 

Fig. 6. Similarity index J between confidence curves constructed by PLD-MC and AED-BP.  
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point can be represented by µ. 

3.2. Some examples of confidence curves for synthetic data 

Fig. 1 shows four synthetic data sets (a, c, e, g) of length =n 100
drawn from the log-normal distribution, and the corresponding con-
fidence curves (b, d, f, h) for the different methods. To illustrate how 
uncertainty is represented by confidence curves, the 95% confidence 
sets for AED-BP are shown in Fig. 1 (b, d, f, h). Series (a) was generated 
with =µ 0; series (c, e, g) were generated with a change in the mean 
of =µ 1, 2, 4 respectively at = 50. Note that Fig. 1 shows informa-
tion for just four data sets, so it cannot be used to draw conclusions 
about the relative performances of the methods. Fig. 1 (b) suggests that 
when the null hypothesis H0 holds, the confidence sets are much larger 
than when the null hypothesis does not hold, see Fig. 1 (d, f, h). When 

µ is small, in general when µ/ is small, both methods find larger 
confidence sets at the higher confidence levels. It is important to keep in 
mind that confidence intervals at levels below 0.5 are of limited use-
fulness as they need only contain the true change point in less than half 
of all experiments. 

3.3. Performance of confidence curve methods for synthetic data 

For synthetic data, the actual coverage probability will be examined 

as well as the distribution of the estimate of the change point both when 
the null hypothesis H0 holds and when it does not hold. The slimness of 
the confidence sets for = 0.95 will be examined as well. These prop-
erties will be used to determine the relative merits of the methods. 
Finally, the similarity of the curves generated by PLD-MC and AED-BP 
will be examined. 

3.3.1. Actual versus nominal coverage probability of confidence curves 
Fig. 2 presents plots of both confidence set size and actual coverage 

as a function of confidence level. Plots (c, f, i) show clearly that for 
certain coverage levels there is no corresponding set with an actual 
coverage close to the nominal coverage. This can be explained as fol-
lows. The change point location is an integer, therefore the smallest 
non-empty confidence set is a set that contains just one point. For a one 
point set, the confidence level of the set can never be lower than the 
probability that this point is the change point. Plots (c, f, i) show that 
for =µ 4 this probability is often above 90%. For =µ 1, 2 and 
confidence levels of 80% or higher, both PLD-MC and AED-BP deliver 
reasonable actual coverage probabilities. 

For the nominal coverage probabilities = 0.90, 0.95, 0.99, esti-
mates of the actual coverage probability of the confidence curves 
constructed by the PLD-MC variants and AED-BP are listed in Table 1. 
For =µ 1, the actual coverage probabilities are somewhat lower than 
the nominal coverage probabilities, so the sets are permissive. For 

Fig. 7. An example to show the cumulative frequency distribution of the slimness of 95% confidence sets for synthetic time series generated from the gamma 
distribution. 

Table 2 
The mean value of slimness of confidence sets for PLD-MC and AED-BP at three different confidence levels.           

0.90 0.95 0.99 

Distribution µ n PLD-MC AED-BP PLD-MC AED-BP PLD-MC AED-BP  

gamma 1 50 0.29 0.32 0.37 0.40 0.55 0.57 
100 0.12 0.16 0.16 0.20 0.26 0.32 

2 50 0.07 0.08 0.09 0.10 0.14 0.16 
100 0.03 0.03 0.04 0.04 0.06 0.07 

4 50 0.03 0.03 0.03 0.03 0.04 0.04 
100 0.01 0.01 0.01 0.01 0.02 0.02          

Fréchet 1 50 0.15 0.31 0.19 0.39 0.31 0.55 
100 0.02 0.16 0.03 0.21 0.04 0.33 

2 50 0.04 0.08 0.06 0.12 0.09 0.19 
100 0.02 0.03 0.02 0.05 0.03 0.09 

4 50 0.03 0.03 0.03 0.03 0.04 0.05 
100 0.01 0.01 0.01 0.01 0.02 0.02          

log-normal 1 50 0.23 0.33 0.30 0.41 0.47 0.56 
100 0.10 0.16 0.13 0.21 0.20 0.33 

2 50 0.06 0.08 0.08 0.11 0.12 0.17 
100 0.03 0.03 0.03 0.05 0.05 0.08 

4 50 0.03 0.03 0.03 0.03 0.04 0.04 
100 0.01 0.01 0.01 0.01 0.02 0.02 
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Fig. 8. Location of four gauge stations and two dams on the Yangtze River (China).  

Fig. 9. Change point analysis of hydrometeorological time series from published papers.  
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=µ 4, the actual coverage for = 0.90 and = 0.95 is often higher 
than the nominal coverage, the corresponding sets are conservative (see 
Appendix A). Actual coverage tends to be closer to the nominal value 
for longer time series. The actual coverage was estimated as follows: for 

= …m M1, 2, , synthetic time series were generated, and for each time 
series m the confidence curve and the confidence set R m, at confidence 
level were determined. The actual coverage was estimated by 

dividing the number k of sets for which R mtrue , by M. If the actual 
coverage were equal to the nominal coverage, then the number k of sets 
R ( )m, that contained the true change point would be distributed ac-
cording to a binomial distribution 

=k M
kPr( ) (1 )k M k

(15) 

Table 3 
Change points found in the hydrometeorological series and statistical properties of the series.          

Time series from to ref y( )apn obs µ slimness  

Tucumán 1884 1996 1956 1955 18 mm 0.76 0.24
Tuscaloosa 1940 1986 1957 1957 °0.61 C 1.3 0.16

Itaipu 1931 2015 1971 1971 ×2.5 10 m /s3 3 1.3 0.046
Cuntan 1893 2014 not found 1966 ×12 10 m /s3 3 0.45 1.0
Yichang 1946 2014 1962, 1966 2005 ×8.6 10 m /s3 3 1.3 0.10

Yichang ‘short’ 1946 2010 n/a 1962 ×8.3 10 m /s3 3 0.87 0.83
Hankou 1952 2014 not found 2005 ×8.9 10 m /s3 3 0.89 0.49
Datong 1950 2014 not found 2003 ×11 10 m /s3 3 0.76 1.0

Fig. 10. Change point analysis of annual maximum discharge time series in Yangtze River.  
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so the distribution of the coverages k M/ found by an experiment with M 
realizations is known. For the binomial distribution the variance is 
M (1 ), so the standard deviation of k M/ is M(1 )/ . For 

=M 1000, the standard deviation of the distribution of k for = 0.9 is 
0.009; for = 0.95 it is 0.007, and for = 0.99 it is 0.003. When combining 
this information with Table 1, please keep in mind that the location of the 
change point is a discrete random variable, so for some confidence levels it 
might not be possible to define a confidence set with that exact coverage. 

3.3.2. The frequency distribution of the estimated change points when the 
null hypothesis holds 

Fig. 3 shows the frequency distribution of the change point esti-
mates when the null hypothesis H0 holds ( =µ 0) for all methods. 
Results are shown for log-normal samples; the results for other sample 
types are very similar. For both PLD-MC and AED-BP, the frequency 
distribution is close to uniform, except near the endpoints of the series. 
Moreover, under the null hypothesis, the type of parametric distribu-
tion used in the PLD-MC method has little or no effect on the outcome 
for the distributions considered here. 

3.3.3. The frequency distribution of the estimated change points when the 
alternative hypothesis holds 

Figs. 4 and 5 show the frequency distribution of the change point 
estimates when the alternative hypothesis holds for the different 
methods for =µ 1 and =µ 4 respectively. The plots for =µ 2 were 
omitted as the curves lie between those for =µ 1 and =µ 4. The 
results are very similar for all three change point locations 
( = 25, 50, 75). Moreover, the frequency distributions of y( )apn for the 
AED-BP are very close to y( ) for the PLD-MC variant based on the 
distribution that matches the data source. 

When we compare Figs. 4 and 5, it is clear that LN-PLD-MC, G-PLD- 
MC, and AED-BP perform very well for =µ 1 and =µ 4 on all data, 
while F-PLD-MC struggles with data from the log-normal and the 
gamma distribution even for =µ 4. Because we expected this effect, 
samples were taken from two distributions with a shared fixed support 
[0, ), namely the log-normal and the gamma distribution, and one 
distribution with a parameter dependent support, the Fréchet dis-
tribution. 

3.3.4. Similarity of confidence curves 
The similarity of PLD-MC and AED-BP confidence curves was 

measured by the similarity index J (12). Fig. 6 shows examples of the 
resulting frequency distribution. The sample length has very limited 
influence on the similarity index, but the size of the change strongly 
influences the result. When =µ 1, for half of the time series the si-
milarity index is below 0.25 and according to Fig. 6, this is very low. 
When =µ 4, for most of the time series, the similarity index is above 
0.8, which indicates that both methods obtain very similar results. For 

=µ 2 results vary, for 30% of the time series the similarity index 
exceeds 0.7. 

3.3.5. The slimness of confidence sets 
The slimness of the confidence sets R provides an indication of the 

reduction of uncertainty that the methods are capable of. By con-
struction a set R at a higher confidence level will include the sets at 
lower confidence levels, so from < < <0 1 it follows that R R . 
As mentioned in Appendix A, a set with n points randomly chosen 
from … n{1, 2, , } will have coverage probability . Therefore, a slimness 
value well below one indicates that the curve is more informative than 
a random guess, while a slimness value of one or more indicates it does 
not do better than a random guess at that confidence level. Slimness of 
confidence sets at confidence levels of 90%, 95% and 99% are con-
sidered for synthetic data, but only 95% confidence sets are taken into 

account for the real data. We calculated the slimness of confidence sets  
(13) at different confidence levels for 1000 synthetic time series. Fig. 7 
gives the frequency distribution of the slimness of the confidence sets 
with = 0.95 constructed for gamma distributed samples with 

=µ 1, 2, 4 and sample length =n 50, 100. Fig. 7 shows that the con-
fidence sets for =n 100 are slimmer than those for =n 50, so the sets 
tend to be slimmer for longer time series. If we compare (a), (b) and (c) 
then we see that the slimness decreases rapidly with increasing µ and 
the remaining uncertainty for =µ 4 is very low. In fact, if we convert 
the slimness for =µ 4 back to the set size, then we see that for =n 50
and =n 100, most 95% confidence sets contain 3 or fewer points. The 
differences in slimness between G-PLD-MC and AED-BP are minor. In  
Table 2 mean values for slimness are presented. For each distribution, 
the corresponding PLD-MC method was applied. For =µ 4 all 
methods deliver similar mean slimness. For =µ 1 results were similar 
for G-PLD-MC and AED-BP, but on samples from the Fréchet and log- 
normal distribution the matching parametric method did better than 
AED-BP. 

4. Analysis results for hydrometeorological data 

The results of AED-BP for synthetic data series are promising. The 
next step is the application of the method to hydrometeorological time 
series that have been examined in previous studies and the comparison 
of our results with those of previous studies. 

4.1. Data source 

The time series used for analysis are the following:  

• The annual average rainfall data from Tucumán in Argentina for the 
years 1884 to 1996. The time series is well documented, and in  
Jandhyala et al. (2010), a change point in the time series was found 
near 1956 by a Bayesian method. Wu et al. (2001) also studied this 
series, and they state: ‘[C.] Lamelas [a meteorologist from the 
Agricultural Experimental Station Obispo Colombres, Tucumán] 
believes that there was a change in the mean, caused by the con-
struction of a dam in Tucumán from 1952 to 1962’.  

• The annual average temperature time series from a station in 
Tuscaloosa, Alabama (USA). The time series in Tuscaloosa from 
1940 to 1986 was selected because during this period, there was 
only one documented reason for a change point, namely in 
November 1957 (Reeves et al., 2007). All eight methods used in that 
study found a change point in the year of 1957.  

• Conte et al. (2019) used the bootstrap Pettitt test to detect change 
points in the annual average naturalized flow of the Itaipu Hydro-
electric Plant in Brazil from 1931 to 2015. They found a significant 
change point for the naturalized flow in 1971.  

• Time series of annual maximum run-off (AMR) for four stations on 
the Yangtze River in China were analysed in Zhou et al. (2019). The 
four stations are of interest because they are located on Yangtze 
River, a river that has gone through many alterations over the past 
100 years, notably the construction of the Three Gorges project. The 
stations are: Cuntan (1893–2014) upstream of the Three Gorges 
dam, and Yichang (1946–2014), Hankou (1952–2014), and Datong 
(1950–2014) downstream of the Gezhouba dam, see Fig. 8. In Zhou 
et al. (2019) of the four stations only Yichang station yielded change 
points. The paper applied three methods to this series: the Pettitt 
method, a method based on the Cramér von Mises test, and a variant 
on the CUSUM method. CUSUM found a change point in 1962 with 

=µ/ 0.91 and the other two methods found a change point in 
1966 with =µ/ 0.84 . 
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4.2. Analysis results 

For the Tucumán, Tuscaloosa, and Itaipu, time series shown in Fig. 9 
(a, c, e), the confidence curves generated by AED-BP are shown in Fig. 9 
(b, d, f). These curves show that, for each of the change points, the 
uncertainty is low. Table 3 lists the change points ref found in the re-
ferences, y( )apn obs for AED-BP, and the slimness of the 95% confidence 
sets found by AED-BP. For Tuscaloosa and Itaipu, the estimate y( )apn obs
coincides with the point found in the references. For Tucumán y( )apn obs
is off by one year, but well within the 95% confidence set. 

For Cuntan, Zhou et al. (2019) did not find a significant change 
point. This agrees with the results of AED-BP: the shape of the con-
fidence curve in Fig. 9 (h) suggests there is little or no reliable in-
formation on the change point location. The difficulty in finding a 
change point might also be due to the relative smallness of the putative 
change, see Table 3. 

For Yichang station, AED-BP strongly suggests that there is a change 
point near 2005, see Fig. 10 (a). For this station, the slimness is ac-
ceptable, according to Fig. 10 (b) or Table 3, but the discrepancy be-
tween the current and the earlier study is intriguing. To further examine 
it, a sub-series of the time series was analysed. Fig. 10 (f) shows that for 
the time series from 1946 to 2010 (Yichang ‘short’) AED-BP found a 
change point in 1962, but the size of the 95% confidence set is now 
much larger. The size of the change is also smaller. To see whether 
there might be a second change point, years were successively dropped 
from the series. It turned out that 2005 was selected until it was masked 
by ntr (which was 8 in this case). Table 3 shows that when 2005 was 
masked, 1962 was found, but with a much wider 95% confidence set 
and therefore uncertainty. 

For Hankou, downstream of Yichang, Fig. 10 (d) suggests there may 
be a change point in 2005. The uncertainty is bigger than for Yichang. 
The putative change is a bit smaller, which may explain part of the 
additional uncertainty (Table 3). The methods used in the reference did 
not find a significant change point at this station. 

Further downstream lies Datong station, but, while there is a drop in 
the confidence curve around 2003, the 95% confidence interval with 
slimness 1.0 (Table 3) is completely uninformative, see also Fig. 10 (h). 
The methods used in the reference did not find a significant change 
point at this station. 

From Table 3 and Fig. 10 (d, f, h) it would seem that, if the con-
struction of the dam did indeed cause changes in extreme discharges, 
then these are less visible further downstream. 

5. Conclusion 

This study provides a distribution-free way to construct confidence 
curves for change points. The method is based on an Approximation of 
the Empirical likelihood function, which is used to construct a Deviance 
function. The bootstrap method is used to construct an approximation 
of the probability distribution of the deviance (AED-BP). The method 
introduced by Cunen et al. (2018) is used as an alternate source of 
confidence curves. It combines a Parametric Likelihood function with a 
Deviance function and Monte Carlo simulation (PLD-MC). Both 
methods intrinsically provide confidence sets at all confidence levels 
that quantify the uncertainty in the results of change point detection. 
This is an advantage over classical change point detection methods that 
do not have this feature. Bayesian methods do provide a representation 
of uncertainty, but they need a prior distribution. The advantage of 
AED-BP over PLD-MC is that it is non-parametric. This frees the user 

from the need to select of a distribution family for the time series. 
Simulations with synthetic data show that the confidence curves can 

correctly represent the uncertainty in results of change point detection. 
Moreover, the performance of the AED-BP is similar to that of PLD-MC. 
The similarity between confidence curves constructed by AED-BP and 
PLD-MC is very high when the jump in the mean is large. For the ex-
periments done in this paper, the sample length does not have much 
influence on the similarity between two confidence curves. For both 
parametric and non-parametric methods, uncertainty of the change 
point results decreases with increasing series length. In the experiments 
with synthetic data, the uncertainty also decreases as the ratio of the 
change in the mean to the standard deviation increases. 

Experiments with real data show that the AED-BP is applicable for 
hydrometeorological data, but as most non-parametric methods, it may 
be somewhat less effective than a parametric method with the correct 
underlying distribution. This needs further investigation. The AED-BP 
results on the AMR series for the stations Yichang and Hankou along the 
Yangtze river are among the first that show a possible change point due 
to the Three Gorges dam on the AMR after the first generator became 
operational in 2003. From the results of the real data, it seems that 
there might be multiple change points in a time series. Therefore, we 
plan to extend the distribution-free method to a multiple change point 
problem in a future study. 
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Appendix A. Notation and definitions 

A.1. Basic notation 

There is a wide range of notations in use in statistics. Here, the notation and terminology used in this paper are specified. Random variables are 
denoted by capital letters and realizations of random variables by the corresponding lower case letters. Parameters of distributions are denoted by 
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lower case Greek letters. If E is an event then 

EPr( ) (A.1) 

denotes the probability of that event. A sequence of n independent identically distributed random variables …X X X, , , n1 2 is a random sample of size n. 
The sample as a whole may be referred to as X. 

Traditionally, probability theory and statistics make use of the indicator function of a set, which is a function that takes the value one on points in 
the set and zero elsewhere. There is a simpler and more general approach proposed by Knuth (1992), who in turn cites Iverson (1962) as the original 
source of the idea. This approach uses special brackets to translate an expression that is false or true into 0 or 1 respectively. Here are used. 
Examples are: 

=1 4 3 0 (A.2)  

=1 2 3 1 (A.3)  

=
<

>
x

x
x

x
1 3

0 1
1 1 3
0 3 (A.4)  

The indicator function of a set A applied to a variable x can now be written as x A . For the empirical cumulative distribution function (ecdf) 
Fn of a random sample of size n, one can write 

=
=

F t
n

X t( ) 1
n

i

n

i
1 (A.5)  

Please note that for each fixed value of t the expression F t( )n is itself a random variable. 

A.2. Definitions of confidence curves 

In the literature confidence curves have been defined in several different ways. The following definition provides a starting point. As in Cunen 
et al. (2018), is used to denote a confidence level. 

Definition 1. A confidence interval with confidence level (also known as confidence coefficient) for a statistic of a random sample X is an interval 
with random endpoints u X( ) and v X( ) such that for the true value 0

=u X v XPr( ( ) ( ))0 (A.6)  

For a confidence interval, the nominal coverage probability equals the confidence level. If one of the assumptions used in the derivation of the 
endpoints does not hold, then the actual coverage probability may well be different. 

While very useful, traditional confidence intervals are somewhat restrictive. For instance, if we have a bimodal distribution, then a combination 
of two intervals, each centred on a mode, may contain fewer values and therefore be more informative than any single interval at the same 
confidence level. Therefore a more general concept was introduced: the confidence set. 

Definition 2. A confidence set with confidence level for a parameter is a random set R X( ) such that 

=R XPr( ( )) (A.7) 

Here is the nominal coverage probability of the set. In the calculation of assumptions are made on the distribution of X that may or may not hold for 
a specific application. If they do not hold, then it becomes necessary to distinguish between the nominal and the actual coverage probability. The 
actual coverage probability of the set is the probability that the parameter is in the set for a given application. It can be approximated by a Monte Carlo 
experiment. If the actual coverage probability exceeds , then the true value lies in the set with probability greater than . Usually, this means we 
will err on the side of caution. In this case, the set is called conservative. If the actual coverage probability is lower than , then the set is called anti- 
conservative or permissive. 

Definition 2 contains an undefined term, namely ‘random set’. A general definition can be found in, for instance, Molchanov (2017). For the 
purposes of this study a definition by analogy is perhaps more helpful. Just like a random variable represents an aspect of an event as a real number, 
a random set represents an aspect of an event as a set, for instance, a set of real numbers. Note, that a confidence interval is a special case of a random 
set. 

The confidence curve concept has evolved over time. An early definition was given by Birnbaum (1961) who defined a confidence curve as ‘a set 
of upper and lower confidence limits, at each confidence coefficient from 0.5 to 1, inclusive’. As stated earlier, in some cases it might be ad-
vantageous to use confidence sets instead of confidence intervals. To that end, Schweder and Hjort (2016, Definition 4.3) gave a more general 
abstract definition of a confidence curve. Here we give a variation on that definition. 

Definition 3. Suppose X is a random sample of size n, and is a property of the underlying distribution with values in a value set V. A function 
g x( , ) with range [0, 1] that is continuous in x for fixed is a confidence curve when:  

1. There is a point estimator for such that 

= =g x g x xmin ( , ) ( ( ), ) 0
V (A.8) 
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for all realizations x of X.  
2. For the true value true of the property , the random variable g X( , )true has the uniform distribution on the unit interval. 

It is important to note that point 2 in Definition 3 means that the value of g X( , )true need not be the minimum of g x( , ). It is not the minimum of 
the curve, but the curve as a whole that is meaningful. The estimate x( ) is merely a reference point that, in the case of a confidence curve with only 
one minimum, has a role similar to that of the median in the case of a probability distribution for . 

Example 1. If X is a sample of size n from the normal distribution then could, for instance, be the mean or the variance, and the values of x, 
realizations of X, would lie in n. If we take to be the mean, and the underlying distribution is a normal distribution with unknown mean µtrue and 
known variance , then g could, for instance, be 

=
<

>

=

=

=

=

g x
x

x
( ; )

1 2

2 1

x
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i
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n n
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1
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n i
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1
1

1
1

(A.9) 

where is the cumulative distribution function of the standard normal distribution and 

=
=

x
n

x( ) 1

i

n

i
1 (A.10) 

For the case with unknown , see, for example, Schweder and Hjort (2016, page 73). 

If cc(·,·) is a confidence curve according to Definition 3, then for fixed 0, the function Xcc( , )0 is measurable and a random variable. Hence, we 
can speak of the distribution of Xcc( , )0 . For a given confidence level [0, 1] and a given property value , it is possible to determine 

XPr(cc( , ) ) (A.11)  

Next, define the sets 

=R x x( ) { : cc( , ) } (A.12)  

If true is the true value of the parameter, then according to Definition 3, the random variable Xcc( , )true is uniformly distributed on [0, 1], and 
therefore 

=XPr(cc( , ) )true (A.13)  

Next, consider the probability R XPr( ( ))true . By definition, R X( )true , if and only if xcc( , )true . It follows that 

=R X XPr( ( )) Pr(cc( , ) )true true (A.14)  

Combined with the fact that Xcc( , )true is uniformly distributed on [0, 1], it now follows that the R X( ) is a confidence set with confidence level 
. This suggests that in practice one way to test the validity of a confidence curve is to obtain a large number m of independent realizations of the 

sample X, say …x x x, , , m(1) (2) ( ) from a distribution with known = 0, and check that 

=m
x1 cc( , )

j

m
j

1
0

( )

(A.15) 

goes to zero as m increases. 
In the case of a change point in a time series of length n, the property of interest is the location of the change which is an element of the set 

… n{1, 2, , 1}. This takes the role of . There is only a finite number of subsets of = …V n{1, 2, , 1}, so only a finite number of possible choices for 
R x( ). Moreover, the sets R x( ) derived from a confidence curve are nested, which further limits the number of available sets. As each subset will 
correspond to one confidence level , and there are infinitely many confidence levels, the best we can hope to achieve is XPr{cc( , ) }true , so 

XPr{cc( , ) }true (A.16) 

cannot be zero for all , and therefore (A.15) cannot go to zero for all , but should be small. 
Please keep in mind, that confidence curves represent confidence in an outcome, and this is not the same as probability. That being said, if we 

have a small set with high confidence, then the particular sample strongly suggests that we look for the change point in that set. 
One way to illustrate this relation is the following. If the series contains a change point, and a set S of approximately n( 1) points is selected at 

random from … n{1, 2, , 1}, then the probability that the actual change point true lies in that set is approximately . This suggests that a set R x( )
that contains more points than n( 1) indicates large uncertainty at that confidence level, while sets R x( ) that are much smaller correspond to 
low uncertainty at that confidence level. In such a way the size of the sets R x( )obs for the observed sample xobs can be linked to the uncertainty in the 
location of the change. 

Appendix B. From confidence curves based on parametric likelihood to confidence curves based on approximate empirical likelihood 

To show the relations between the method proposed by Cunen et al. (2018) and the method proposed in this study, it is necessary to make a few 
intermediate steps. The first step is to relate the deviance function to the log-likelihood ratio. 
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B.1. The log-likelihood ratio 

It is useful to start with the log-likelihood ratio for the parametric case, which is also used in change point detection (Csörgö and Horváth, 1997). 
The likelihood ratio for the AMOC problem is given by 

=
=

= = +
y

f y

f y f y
( )

sup ( ; , )

sup ( ; , ) ( ; , )

i
n

i

i i i
n

i

,
1

, ,
1 L 1 R

L R (B.1)  

Note, that the numerator represents the null hypothesis of no change, and the denominator represents one of n 1 alternative hypotheses, 
namely the one where the change occurs at . 

Csörgö and Horváth (1997) state that it is now natural to consider 

=
= …

Z y y( ) max 2log ( )n
n1,2, , 1 (B.2) 

and reject the null hypothesis of no change when this is large. From (2) and (B.1) it follows that 

=y y y2log ( ) 2( sup ( , , , ; ) sup ( , , , ; ))
, ,

L R
,L R (B.3) 

or, using (3), 

=y y y2log ( ) 2( ( ; ) sup ( , , , ; ))prof
, (B.4)  

The value of 

ysup ( , , , ; )
, (B.5) 

is independent of , so 

+ = = =y y y y y y y y y y y D y2log ( ) 2log ( ) 2( ( ( ); ) sup ( ( ), , , ; )) 2( ( ; ) sup ( , , , ; )) 2( ( ( ); ) ( ; )) ( , )y( ) prof
,

prof
,

prof prof

(B.6)  

One problem that needs to be addressed is that for close to the start or end of the series, the optimization problem may not have a solution. It is 
therefore necessary to avoid calculations near the start or end of the series. 

B.2. Confidence curves based on the empirical likelihood ratio 

The parametric form of the distribution underlying an environmental time series is not known, therefore the approach based on the profile 
likelihood always involves a choice of distribution family. There is an alternative: an approach based on the empirical likelihood (Owen, 1988; 
Owen, 1990). For a change point in the mean, such an approach is presented, for instance, in Zou et al. (2007) and Shen (2013). In Hall and La Scala 
(1990) the empirical likelihood for a distribution property is defined as follows. Suppose …X X X, , , n1 2 form a random sample of size n. To define the 
empirical likelihood we need the set 

= =
=

p p[0, 1] : 1n

i

n

i
1

S
(B.7) 

of all probability mass functions on the set … n{1, 2, , }. Now suppose p x( , ) is an estimator for when …x x x, , , n1 2 is a sample from a discrete 
distribution, where xi has probability of occurrence pi. The empirical likelihood L for a given value 0 of is defined as 

= =
=

L x p p x( , ) max : ( , )
p i

n

i0
1

0
S (B.8)  

The empirical likelihood ratio is derived by dividing L by 

=
pmax

p i

n

i
1S (B.9) 

which is achieved at = = …= =p p p n1/n1 2 , this follows from the arithmetic geometric mean inequality. Therefore the empirical likelihood ratio is 

= =
=

x np p x( , ) max : ( , )
p i

n

iemp 0
1

0
S (B.10) 

Example 2. Suppose the distribution property of interest is the mean. In that case 

=
=
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and 
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with likelihood ratio 

=
= =
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p i

n

i
i
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i i
1 1

0
S (B.13)  

For the change point problem with a change in the mean, Zou et al. (2007) proposed the empirical likelihood ratio 

=
== = = +

=
y

p p y p y

p
( ; )

sup { : }

sup
p

i
n

i i i i i
n

i i
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i
n

i
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1 1 1

1

S

S (B.14) 

where 

= = =
= = +

p p p[0, 1] : 1 ; 1n

i
i

i

n

i
1 1

S
(B.15)  

As in the parametric case, the numerator represents the null hypothesis of no change, and the denominator represents one of n 1 alternative 
hypotheses, namely, the one where a change occurs at . 

The optimization problem in the denominator of (B.14) has as its solution = = … =p p p, 1/1 2 and = = … =+ +p p p n, 1/( )n1 2 . Note, that 
the optimization problem in the numerator is solvable only if the convex hull of …y y y{ , , , }k1 2 and …+ +y y y{ , , , }k k n1 2 overlap. 

They define the empirical log-likelihood ratio as 

=y y( ; ) 2log ( ; )emp emp (B.16) 

and their statistic is 

=
<

Z ymax ( ; )
n

emp
1

emp (B.17)  

The link between y2log ( ) and D y( , ) in the parametric likelihood case now suggests that it might be possible to build a confidence curve by 
taking y( )emp to be the value of for which y( ; )emp attains the maximum value, and then defining an empirical deviation function 

=D y y y y( , ) 2( ( ( ); ) ( ; ))emp emp emp emp (B.18)  

But this leaves a problem: determining the distribution function Kemp, of D Y( , )emp that is the values of 

= <K r D Y r( ) Pr( ( , ) )emp, emp (B.19)  

If we approximate Kemp, by repeated sampling, then this involves solving many optimization problems that may or may not have a solution. This 
makes it attractive to search for an alternative to emp. Shen (2013) derived the following approximation formula for the logarithm of the empirical 
likelihood ratio for scalar yi

= += = +

= =( )
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y n
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y y

y y
O n2log ( ; ) ( ) ( )i i n i
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i

n i
n

i n j
n
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pemp

1
1

1
1

2

1
1 1

1
1

2 tr
1/2

(B.20) 

for < <n n ntr tr where ntr tends to infinity as n tends to infinity. The approximate formula holds under the assumption that the higher-order 
moments of Y exists: <E Y 3 ( · is the Euclidean norm). The term O n( )p tr

1/2 is present because the approximation does not hold for near the 
start or the end of the series. We will use ntr as given by (1). For the distributions used in the tests in this paper the condition on the third moment is 
always satisfied for the log-normal and the gamma distribution; for Fréchet as parametrized in (D.5) it holds because = <0.139 1/3. 

We felt it would be interesting to see what would happen if we introduced the approximation apn of emp given by 

= = = +

= =( )
( )

y n
n

y y

y y
( ; ) ( ) i i n i

n
i

n i
n

i n j
n
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1

1
1

2

1
1 1

1
1

2

One reason to assume that this might work is that a similar formula is given as the basis for a test statistic for change point detection in Csörgö 
and Horváth (1997, page 85). 

Appendix C. Similarity index between randomly generated confidence curves 

If different methods are applied to the same data, it can be of interest to compare the resulting confidence curves. This is of special interest for the 
case of real data. For the real time series, we wish to know whether the methods agree or not: that is how similar the confidence curves are. As a 
starting point, we take the Jaccard index, see Schubert and Telcs (2014) who in turn refer to Jaccard (1901). For two sets, = …A a a a{ , , , }n1 2 A and 

= …B b b b{ , , , }n1 2 B , the Jaccard index is given by 
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=J A B A B
A B

, #( )
#( ) (C.1) 

where S# denotes the number of elements in a finite set S. 
For two confidence curves cc(.,.) and cc (.,.) and a fixed this index can serve to compare the sets =R y{ : cc( , ) }obs and 
=R y{ : cc ( , ) }obs as follows 

=R R y y{ : max(cc( , ), cc ( , )) }obs obs (C.2) 

and 

=R R y y{ : min(cc( , ), cc ( , )) }obs obs (C.3)  

One way to extend this to the entire curve is to integrate over . For R R this results in 

= =

=

=

=

=
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1 0
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where the summation could be moved through the integral because the individual terms in the sum under the integral are integrable, so linearity of 
integration could be used. A single integral in this expression can be rewritten as follows 

=

=

y y d

d

y y

max (cc( , ), cc ( , ))

1 max (cc( , ), cc ( , ))

0
1
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1

obs obs

obs obs

and 

=a b a b1 max( , ) min(1 , 1 )

so 

=
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R R d y y# min(1 cc( , ), 1 cc ( , ))
n

0

1

1
obs obs

A similar approach can be applied to the denominator, and we get the following similarity index 

= =

=
J

y y
y y

min(1 cc( , ), 1 cc ( , ))
max(1 cc( , ), 1 cc ( , ))

n

n
1 obs obs

1 obs obs (C.4) 

which will be used to compare the similarity of pairs of confidence curves. It is similar to the Ružička index (Schubert and Telcs, 2014). This index is 
one for identical curves and smaller than one for curves that differ. 

To get an impression of how the value of similarity index (C.4) relates to similarity, the following experiment was performed. For n = 10, 20, 
…,100 we generated 5000 pairs of i.i.d. samples of size n drawn from a uniform distribution on [0, 1]. While such a sample may not bear much 
resemblance to a confidence curve, they share domain and range. The distribution of J for these pairs provides some indication of the range of values 
of J that may occur for curves that were constructed to be unrelated to each other. 

Fig. C.11 shows the cumulative frequency distribution of J for different sample lengths n. For a larger n, the distribution of J approaches a step 
function. Fig. C.12 shows the 90%, 95%, and 99% quantiles for J as a function of sample size. To aid in the interpretation of Fig. C.12, Table C.4 is 
provided. For instance, if we have two random data sets with sample length =n 100, then the 95% quantile of the similarity index J is 0.55. The 
actual similarity index Jactual between two confidence curves with a sample length =n 100 follows from (12). If Jactual is higher than 0.55, then we can 
be reasonably confident that the curves are similar. 

Fig. C.11. Cumulative frequency for values of similarity index J for pairs of randomly generated curves for different sample lengths.  
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Appendix D. Parametric distribution functions for log-normal, gamma and Fréchet distributions 

The probability density functions of the three distributions: log-normal, gamma and Fréchet are given together with the relation between the 
distribution parameters and the mean and the standard deviation of the distributions.  

• For the log-normal distribution (LN), the pdf is a 

= >( )f x
x

x( , , )
0 0

exp 0x
x1

2
(ln )

2

2
2 (D.1) 

The parameters are linked to the mean µ and standard deviation by 

= + = +µ
µ µ

ln 1
2

ln 1 ; ln 1
2

2

2

2 (D.2)   

• For the gamma distribution (G), the pdf is 

= >( )f x k
x

x x( , , )
0 0

exp 0
k

k x1
( )

1
k (D.3) 

The parameters are linked to the mean and standard deviation by 

= =k µ
µ

;
2

2

2

(D.4)   

• For the Fréchet distribution (F) in the Generalized Extreme Value parametrization, the pdf is 

=
+ >

+ ( )( )f x m s

x m

x m
, , ,

0

exp 1s
x m

s

1 x m
s

1 1
1

(D.5) 

where we fix the shape parameter to = 0.139, a value recommended by Ragulina and Reitan (2017) for a global data set of extreme precipitation 
data. As <0.139 1/3 the third moment exists. The parameters are linked to the mean and standard deviation by 

=m µ (1 ) 1
(1 2 ) ( (1 ))2 (D.6)  

Fig. C.12. Quantiles for values of similarity index J for pairs of randomly generated curves for different sample lengths.  

Table C.4 
Quantiles of similarity index J for random pairs of curves for different sample lengths.             

⧹n 10 20 30 40 50 60 70 80 90 100  

0.9 0.62 0.59 0.57 0.56 0.55 0.55 0.55 0.55 0.54 0.54 
0.95 0.66 0.61 0.59 0.58 0.57 0.57 0.56 0.56 0.55 0.55 
0.99 0.72 0.66 0.63 0.61 0.6 0.59 0.59 0.58 0.57 0.57    
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