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ABSTRACT

Nowadays, transport demand models do not explieitBluate the impacts of service reliability ohisa.
Service reliability of transit systems is adversekperienced by users, as it causes additionatlttame

and unsecure arrival times. Because of this, tessere likely to perceive a higher utility fronghéer
reliable transport systems. In order to mimic anehgure the impacts of service reliability on agitan
demand model a three-step approach is proposed umd@lligent transport systems data. The approach
consists of determining the probabilistic distribotof transit trip times, defining demand patteamsi
estimating the average impacts of unreliability passenger. This approach was successfully tested o
the model of the city of Utrecht in The NetherlanBg adding service reliability as a variable paeten

of transit systems the results of the demand miaggloved showing that the absolute difference betwe
the observed and the estimated demand decreas&8%yIn addition, the proposed approach allows
measuring the effects of expected changes in tEfvedrvice reliability on traveler behavior. Finalthe
authors have identified future research topicsireqguo improve the estimation of those effects.
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1. INTRODUCTION

Service reliability has been researched for a limg for both car traffic and transit, studying dause
and measuring the magnitude of its consequences. cimsequences of unreliability have been
statistically analyzed in terms of probability o€ooirrence and related impacts on operations and
infrastructure performance. It is still not commuoractice, however, to include service reliability @n
explanatory variable in transport demand modelsolider to measure its impacts on the demand
component of the transport netwodR. (

Transit services have proven to represent sustairieensport solutions for mobility. Attention
for studies related to transit quality and effiggns growing for its potential to increase its teos
effectiveness in order to prove financial feasiyilin particular service reliability has been geithout as
a recommended direction to improve transport mo@@lsshowing statistical significance to explain
passenger behavioB)(and as a consequence nowadays several trangtisraim at improving service
reliability.

Transit service reliability is the certainty withhigh service aspects (such as travel time,
departure time and arrival time) match the schetldepects as perceived by the us®r Both
passengers and operators benefit from enhance@eeasliability by predictable travel times and by
lower costs respectively.

Due to the lack of a proper theoretical framewankattenables evaluating and predicting
passenger impacts in a network context, commontyicge reliability is not taken into account in
transport demand models nor in most cost benefityaas §). To the authors’ knowledge currently
transport demand models assume that transit is Jfii¥¢tual and the impacts of unreliability are only
implicitly incorporated. This limits the predictiaccuracy of the models and in addition it is nuggible
to estimate the impacts of expected changes oficeemeliability on transport demand and as a
consequence on (societal) costs and benéjits (

Developments and improvements of data availabilitytransit, such as automated vehicle
location (AVL) and automated passenger countingesys (APC), enable detailed research in order to
develop measures to improve service reliabilitglbevels of transit planning and operations asashin
(4, 7,8and9).

In this paper, a methodology is presented to imtiegthe estimation of the effects of service
reliability on a static transit demand model. Thisject is a first step to harmonize standardseimahd
modeling concerning transit service reliabilityesffs. The paper is organized as follows: the nestien
presents the state of the art of the impact ofisemeliability in discrete choice modeling. Seatiiree
provides the proposed approach developed to incatgdhe effect of transit service reliability in a
transport demand model. In section four the metloggois applied to a case study in the city of dhte
The Netherlands. Section five provides a discussibrthe results and future research and finally
conclusions are presented in section six.

2. STATE OF THE ART OF MODELING SERVICE RELIABILITY

The level of service reliability affects severaloies made by travelers, such as mode, route and
departure time. In literature, much research iglabi@ with regard to passenger choices as a fomaif
service reliability. According tolQ) and (L1) service reliability of transit systems is consatécritically
important by most transit users because passeageesiversely affected by the consequences asbciat
with unreliability such as additional waiting timéte or early arrival at destinations and missed
connections, generating a disutility associatetthécatransport alternatives in question.

There are two main approaches to model the effefctervice reliability known as the mean-
variance approach and the scheduling apprag@cifle mean-variance approach represents the £héct
service reliability on mode and route choice asraction of the mean travel time, additional tratiele
and variance of travel time caused by unreliahilithile the scheduling approach studies the impéct
service reliability on the departure time choiceaainction of the probability of early or late schile
adherence. To the authors knowledge there is nergkred theoretical preference for one of these tw
approaches. However, in order to implement serkédi@bility in four step models the mean-variance
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approach is suggested?]. The mean-variance approach consists on additiipiaes of service
reliability to the transit generalized cost funatialong with other transit attributes such as distatravel
time, waiting time, fare, and number of transfers.

For this research the destination and mode choEenadeled simultaneously through a gravity
model using a deterrence function proportionah®deneralized cost function. To model the vanmaitio
preference for route choice the Zenith method fandit assignment as described 18)(is used with a
logit formulation dependent on the generalized @asttion including service reliability attributes.

The following subsection provides an explanatiothef attributes of service reliability to include
in the transit generalized cost function in orderekplain passenger behavior in a transport demand
model.

2.1 Service Reliability Impacts on Passengers

Unreliability causes longer and uncertain passejuygneys 4). Figure 1 shows the passenger trip chain
and its relation to vehicle processes. Transitalehiare scheduled to leave a stop at a depaimeenith

a time interval from its predecessor known as hegdwhe successive part of the trip is the in-viehic
time. In this phase, the passenger time aspectsiraii@ar to those of the vehicle. If a passengekensaa
transfer, a new waiting time for the passenger avibe. This new waiting time is affected by thanpled
synchronization between the two connecting vehitles actual performance of this synchronizatiot an
the waiting regime of the connecting vehicld)(

The magnitude of the delays caused on the passevajéng time by the adherence to the
schedule depends on the passenger arrival paltgrassengers arrive randomly, the headway between
successive vehicles determines the waiting tit®. (If passengers arrive in conformance with the
scheduled departure time, the deviation of the dideeadherence affects the waiting tin®. (For
example if the vehicle departs earlier than schejydassengers have to wait a full headway.
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Due to the stochastic nature, the impacts on iddali passengers are variable; however in an
aggregated way passengers mainly experience tbaviiog three effectsl, 17andL8):

i. Impacts on duration of travel time components, d@irvehicle time and waiting time, which
lead to arriving early or late;

ii. Impacts on passenger perception of the transit edending on the variability of travel time
components, being departure time, arrival timeyehicle time and waiting time, which lead to
uncertainty of the actual travel time;

iii. Impact on the probability of finding a seat anadaiwding, affecting the level of comfort of
the journey.

This paper focuses on the first two aspects, nathelyravel time related aspects. More detailed
research on crowding may be found for instancd ® (

To calculate the passenger effects of unreliabdityual departure times per stop, actual dwell
times, actual headways and actual trip times availdby AVL systems or forecast tools such as
illustrated in R0), are translated to passenger effects using ARL da

In an aggregated way, service reliability leadsioextension of passenger average travel time,
since average waiting time per passenger may me@et due to irregular, early or late vehicles. To
express the effect of service reliability on pagees an indicator called average additional tréivet per
passenger is introducedd). The second effect of service variability is treiance of passenger travel
time.

Figure 2 illustrates the average additional trairak per passenger Tf) and the variability of
actual travel time relative to the scheduled traieé (4). It is important to note that* " *"*“%consists
of the scheduled waiting time and the scheduledelmiele time. The latter is directly related to the
scheduled vehicle trip time and is thus contro#diting a function of schedule design (e.g. tighoose
schedule). Figure 2 shows that the additional trane is distributed, due to variability of theaptions.

In some cases individual passengers may even ageier than scheduled, when waiting and or in-
vehicle time is shorter than planned.

A

-l—joumey, sche

Probability

»

Avg. Time

FIGURE 2 Scheduled passenger time (¥ 5"*Y average additional travel time per passenger
(T* and variance.

Table 1 shows a matrix of four components thatespmt the passenger impacts of service
reliability (4). However, if operations are not controlled in amgy (e.g. by holding vehicles), no
additional in-vehicle trip time arises (compared tt® average trip), so only the three remaining
components shown in the matrix with the numbednd 3 are investigated.
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TABLE 1 Passenger Impacts of Service Reliability

Additional travel time Travel time variance
In-vehicle time na 2

Waiting time 1 3

Finally the passenger impacts of service religbidite represented by three attributes that are
added to the generalized cost function: additiomalting time, in-vehicle travel time variance and
waiting time variance. The proposed generalized foogtion is shown in Equation 1.

GC=a+ﬁld+ﬁz(T+W+?VJ+ﬁ4f+ﬁ5N (1)
2

Where:

GC = generalized cost i@

d = distance ifrkKm

T = average travel time imours

W =W + T2 average waiting time ihours
v =V +V, variance of both in-vehicle and waiting timehiours
f

N

a

in—vehicle waiting ?

= fare in€

= number of transfers
= alternative specific constanth

B, = elasticity measure of distance€ifiKm

B, = elasticity measure of travel time a.k.a. valtigroe in€/hour

Bs = elasticity measure of variance of travel timea.value of reliability ir€/hour
é = reliability ratio

22

B, = elasticity measure of transit fares

B = elasticity measure of the number of transfe&transfer

In order to calculate the additional waiting timengonent, two situations have to be
distinguished: high frequency transit systems (wghdom arrivals of passengers at the stop) and low
frequency transit systems (with planned arrivalpadsengers at the stop).

If passengers arrive randomly, exact departurestiama punctuality are not relevant anymore,
because passengers do not use a schedule. Ircématrio, the additional travel time is calculatethg

the coefficient of variation (CoV) of the actualddsvays ﬁﬁ?). A generic formulation to estimate the
expected waiting time per passenger is given byako 2(L5, 21and22), according to the following
assumptions:

- The examined period is homogeneous concerning adwdieparture times, trip times and
headways (for instance rush-hour on working days rimonth);

- The passenger pattern on the line is assumedfirdae

- All passengers are able to board to the first sngivehicle.

T waitin E(H a(':t)
E(rl,j ") = 2

Where:
T waiting
T

*(L+CoV?(H") ()

)]

= passenger waiting time for lihat stop
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l'_Tagt
hi = actual headway of linleat stop)

act
COV(H ) = coefficient of variation of actual headwaysioEll at stop

If the service is regular, the coefficient of véina equals zero and the average waiting time will
be equal to half the headway. In the case of iteggservice, the additional waiting time may then b
calculated using Equation 3. Assuming no changéhénactual vehicle trip times, the total average
additional travel time per passenger will be eqoahe average additional waiting time per passenge

o waitin E( H |aCt) ac
E(T, ) = —_L2x (CoVA(HY)
3)
Where:
E(T = Add, wamng)
= average additional waiting time per passenger tduunreliability of linel at

stopj

For low frequency services it is assumed that paggs plan their arrival at the first stop of their
trip according to the schedule and therefore amothethod of calculating additional travel time is
necessary. Equations 4 and 5 show this metBpdPassengers are assumed to arrive randomly vathin

range of the scheduled departure time minys, and plug,,, and if the vehicle departs within this time
window it is assumed that passengers do not experiany additional waiting time. Research about
empirical values ofr_,, and 7, is presented in4j. It is important to note that there is a diffezen
between driving ahead of schedule and driving IBtéving ahead (i.e. departing before the scheduled
departure time minus,, ) leads to a waiting time equal to the headwéd>{"?; assuming punctual

departure of the successive vehicle). Especialthéncase of low frequencies, this leads to a auhiat
increase in passenger waiting time. Arriving lateates an additional waiting time equal to the ylela

(dl",efa”“’e). Just as before, the additional waiting timerist ftalculated per stop.

early

d departure< -7

T, fjvaiing = sehed i i) carty
-|-| ;A?d waiting — ) if - Tearly dldlejparture< Tiate (4)
T| ,Imiid waiting — dldleinarture If dldlejparture_ Tlate
Z E(Tl ,I'-\(;id wamng
E(T| /]\dd waitingy — i nl (5)
J
Where:

E(ﬁf‘fd'w”““”g) = average additional waiting time per passengee da unreliability of vehicle i
of line | at stop |

H Sehed = scheduled headway at line |

dlcfejpa”“’e = departure deviation of vehicle i at stop j ondih

Teany = lower bound of arrival bandwidth of passengatsieparture stop
T ate = upper bound of arrival bandwidth of passengatrsleparture stop

n, = number of vehicles i on line |
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Based on the average additional travel time pesqragr per stop of a line, the average
additional travel time per passenger on the coragiet is calculated. To do this, the proportion or
percentage of boarding passengers per stop is(asedl as shown by Equation 6. Please note that using

the proportion of passengers makes the indicatlpendent of the actual number of passengers.

E(flAdd,waiting) - Z(al,j *E(-I:I"?dd,waiting) ) with Zalyi -1 (6)
J J

Where:

ai = proportion of passengers of line | boardings#op |

The following section describes the proposed amrda obtain to translate operational data into
the reliability attributes described on this settin order to be able to estimate the impacts ofice
reliability in a transport demand model.

3. THREE-STEP APPROACH
The objective in this paper is to incorporate sarvieliability in transit modeling in a static tsgort
demand model by including the impacts of servidebéity on passenger behavior. Therefore a three-
step approach is proposed. Figure 3 shows the stepe consisting of:
Step 1Analysis of transit schedule adherence, using A¥tag
Step 2Calculation of passenger impacts caused by semdliability, using APC data and
determination of the average additional travel time
Step 3Translation of passenger impacts into travel timigsy

After the three steps are completed, the resuttsnaported into existing static transport demand
models that are able to calculate the effectsamsit demand and on network performance.

AVL data APC dat‘ Reliability ratio

Operatlon . Destination,
performance Passenger Tr_avel time mode and route
(vehicles) impacts Impacts choice

Additional travel tims
and variance in trave
time units

Additional travel
time and variance

Schedule adherance

FIGURE 3 Three-step approach for incorporating service reliability in a transport model
(consisting of vehicle performance analysis, calation of passenger impacts and translation of
these into travel time units)

Step oneprovides insight into performance characteristiushsas trip time, dwell time and
schedule adherence by comparing the schedule topegtional performance obtained from AVL data.
Early or late departures and the difference betveebrduled and actual headways are determined.

In Step twahe travel time impacts are estimated by defirihmg average additional travel time,
the waiting time standard deviation and the in-gehtravel time standard deviation. Depending an th
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passenger arrival pattern the average additiongingdime is calculated with either Equations 2i&@nor
4 and 5.

In step threghe average additional travel time can be direatlgled to théase in-vehicle travel
time (which in the transport demand model is estimatedultiplying the vehicle speed by the travelled
distance) providing aaverage travel timg T ). The estimation of the standard deviation of theefa
time and waiting time depends on the probabilistritiution function of the travel time pattern. @rtbe
standard deviations caused by the unreliabilityehlaeen determined they are multiplied brekability
ratio to transform the standard deviations into traweetunits. Various values for this reliability ratre
found in literature ranging from 0.7@7) to 1.40 23).

The effects of service reliability as obtained fretap three, may be added to the network in the
transport demand model. For this purpose the fatlgwwo strategies are proposed:

Reliability effects at the stop lev&eliability data is calculated for every secticgtvieeen two
stops and for every stop. The reliability thatiperienced within the in-vehicle travel time islumed on
each section. The impacts of unreliability thatexperienced at the boarding stop are includeldeastop
in the model as a boarding additional waiting tilG@nsequently, when searching a route through the
transit network, the boarding penalty applies topalssengers boarding at a specific stop, while the
section reliability applies to all passengers trawey this section. Therefore, on a journey on wassit
line, a passenger experiences exactly one boapginglty and several reliability effects on all s&us.

In figure 4a an example trip is shown: if a passergpards at stop 1 and alights at stop 3, he @r sh
experiences the reliability at stop 1 and 2 antiansections.

Reliability effects at the line level value of reliability is estimated for the tran$ine as a
whole, by using Equation 6. This value is attactethe network as an unreliability factor)(Fvhich is
applied to the travel time for every transit line.figure 4b an example trip is shown: if a passeng
boards at stop 1 and alights at stop 3, a relighiilue proportional to the travel time betweeost two
stops is applied.

dd add
TS L T )
f=1= j=2 : f=31
g ~ add = wada
4 Ta+T0% T, +T%, b @
j=1: J=2 : j=3z
% j »
—— R Ty
i=1 (b)

FIGURE 4 Reliability effects at the stop level &) and reliability effects at the line level ).

After the service reliability data is incorporatezkisting modeling techniques are applied to
calculate expected ridership. The following sectitascribes the application of this approach toseca
study in Utrecht, The Netherlands.
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4. CASE STUDY: CITY OF UTRECHT

The first approach of incorporating service reliéapiin a demand model was applied in the transport
model of the Utrecht region in The Netherlandsethit is the fourth largest city in The Netherlandth
over 300,000 inhabitants and is facing severallehgés with regards to transit. Funding is reduced,
while quality is required to increase. The maimuésghile planning and designing transit is predigtihe
impact of service reliability on demand and its dféga (). Although a transport model (VRU3.0) is
available, service reliability was not accounteduotil recently.

The VRU3.0 model is a multimodal transport modelntaining car, bicycle and transit (train,
tram and bus). Its study area consists of the Qaipatities cooperating in the region of Utrechithwan
influence area that covers the Netherlands and quars of Belgium and Germany. It contains 4,400
transportation zones, approximately 50,000 linkB08 transit stops and 900 transit lines.

To deal with the research question concerning seméliability the proposed three-step approach
was applied as follows.

The first step is to analyze historical operatiaith AVL data. AVL systems are of great help to
provide databases of historical performance withards to travel time and reliability and APC data
allows obtaining an exact demand pattern over mistaand over time. Although such data has already
been available for many operators, it is just sineeently that this valuable data is also becoming
available to Dutch transit authorities, researclard developers. Most transit operators and auditb®ri
are involved with the initiative calle@iransit Information without Border@GOVI in Dutch), aiming at
making a wide range of transit information avaiafsbm planned timetables, fares, vehicle locatind
punctuality @4).

GOVI was designed to facilitate data communicalietween vehicles and the land side enabling
dynamic passenger information. An additional benifithat all the actual and scheduled vehicle
positions and times are logged in a database. Adfhhdhis database was not the objective of the GOVI
system, it is extremely helpful to monitor and gmal transit performance through statistical analysi
making it possible to compute travel time distribns. Figure 5 shows an example of the processied da
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FIGURES Example graph, punctuality development, budine 7 Utrecht, evening rush hour.

The second step is to transform the findings gb stee into the average additional travel time
and standard deviations. Depending on the typeaobit line and the passenger arrival pattern Eousit
2 and 3 or 4 and 5 were used to calculate the geaadditional waiting time. The standard deviatibn
additional waiting times was calculated as suggeste(l1 and 25) and the standard deviation of in-
vehicle travel time is derived from operationaladaf the vehicle trip time variance assuming a rarm
distribution.

In order to estimate the reliability ratio (steped) for this study the value of time (VOT) and the
value of reliability (VOR) were used. The values taken fromZ6) which were corrected by inflation to
year 2011, as shown in Table 2.
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TABLE 2 Value of Time and Value of Reliability in 2011

Value Value
Travel purpose of time of reliability

(€/hour) (€/hour)
Business 10.00 14.00
Commuter 17.44 24.42
Other 6.33 8.86

This survey states that service reliability is ealu40% higher than travel time. Using these
insights, the values of standard deviation wheré#iptied by a 1.4 factor to be added in travel tioéts
to the generalized cost functions of the demandainothe waiting time portion of the travel time
includes now the reliability effects consisting stheduled waiting time, average additional waitinge
and additional waiting caused by variance.

Similarly, in-vehicle travel times were calculatamhnsisting of scheduled in-vehicle time and
additional in-vehicle travel time caused by varianéfter all the calculation of new waiting and in-
vehicle times for all stops and links were perfodnfmth strategies were tested by incorporatingethes
values in the transport model in the generalizest awatrix for all origin and destination pairs. &g
regular calculations on expected transit demana werformed.

This approach is one step towards a full incorponabf service reliability in transit modeling.
The next section presents the results from bothogghes and demonstrates the success of this method

5. DISCUSSION OF RESULTS

To illustrate the added value of this approach réselts of the synthetic model (the model reshdfore
calibration) with and without taking service reliitp impacts into account are compared. Theseltgsu
indicate that the explanatory power of the modsldteanged and the method was beneficial.

For an area in the southern part of the Utrectd,arainly consisting of the town of Nieuwegein,
we compared the synthetic model results with 24ntowlues, using both strategies to incorporate
reliability. Data was available for the buses araant lines operated by the region of Utrecht. Belthe,
main findings of applying the three-step approaehpsesented. Table 3 summarizes them.

TABLE 3 Results of applied approach (including serice reliability) in Utrecht model compared to
case without service reliability

Strategy 1 Strategy 2

Impacts Reliability effects at the Reliability effects at the line
stop level level

Transit counts

Improved fit 15 13

Worse fit 9 11

Absolute difference observed values 18% improvement No improvement

and model results

Possibility of calculating Possibility of calculating
Other impacts impacts of  improved impacts of  improved
service reliability service reliability

Data provision for costData provision for cost
benefit analyses (withbenefit analyses  (wit
regard to service reliability regard to service reliability
impacts) impacts)

=)

Other impacts
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Strategy 1: Reliability effects at the stop level

From the 24 transit count values, 15 synthetic rhoggults show an improved fit and 9 results show a
worse fit. In total, the absolute difference betwesbserved values and the synthetic model results
decreased by 18% (from 3,300 to 2,700; on a totaiuant of 9,300).

Strategy 2. Reliability effects at the line level

From the 24 count values, 13 synthetic model resliibw an improved fit and 11 results show a worse
fit. In total the absolute difference between obsdrand synthetic model results is at a similaellef
approximately 3,300.

Both strategies show a slight improvement concerttie fit of the synthetic model data to count
data. Further, the assignment showed that a stk place from less reliable bus lines to morealdé
tram lines, which is in line with the expectations.

In addition to improved prediction quality, thispgpach also yields other valuable opportunities.
Since we succeeded in incorporating service rdiiplinpacts in the transport model, we are nowoals
able to calculate the impacts of expected changeisel service reliability on transit demand. Thisof
great help to find optimal choices in both netwarkd timetable design. The third benefit of our apph
is that the result of the service reliability impaon passengers are directly available as inputdst
benefit analysis which was hardly possible untivr(s).

From the literature review, the approach of inahgdboth travel time extension and standard
deviation in the transport demand model seems tiwt appropriate choice in static modeling. However,
this will be subject to future research.

Research is still needed on the value of the réitibatio. In this research an estimate based on
the ration between the value of time and the vafueliability has been used. However, other redesns
found that the variation of this ratio is rathemgke, depending on the purpose of the trip andthh@isocio
economical characteristics of the passenger.

Ultimately it is recommended to apply the methodglpresented in this article to more transit
lines to determine if in general a stop or line rapph, or maybe even a mode approach, yields better
results.

6. CONCLUSIONS

This paper dealt with service reliability in trangimodeling). Service reliability is considered yer
important, both from a passenger and an operat@peetive. Surprisingly, this quality aspect is not
explicitly considered in transport demand modelsici limits the prediction accuracy of the modeid a
in addition, it is not possible to calculate thepamts of expected changes in level of service lriilia
Finally, service reliability time impacts that amecessary for cost benefit analyses are not aleik
model output.

In the long term, improvements of transport models be necessary, but to deal with service
reliability and ridership on the short term, we eeped a three-step approach to incorporate service
reliability when calculating expected ridership. \Maplied this approach with success in a case study
the city of Utrecht in The Netherlands. The threspsapproach consists of analyzing operational
performance, calculating passenger impacts andlyfite@nsforming these into travel time impacts.
Transport models are able to deal with these aacttbre all their standard functionalities can kecu
The three-step approach proved to be a promisipgoaph for the short term. We will continue our
research to deal with service reliability in a mdegailed way. To achieve that, utility functiorsutd be
adjusted in a way that service reliability will digitly taken into account in the choice processestead
of the presented approach where service relialiitipacts are translated into travel time units.
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