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A B S T R A C T

This work evaluates the added benefit of using laser altimeter measurements for orbit reconstruction. As a
spacecraft orbits a celestial body, its altimetry swaths progressively cross previous swaths. These locations,
known as crossover points, yield valuable information about the orbited body and the spacecraft trajectory.
The mathematical expressions for the inclusion of crossover measurements into orbit determination algorithms
are presented and evaluated. It is shown that a first-order approximation of these expressions is insufficient
and a more detailed expression is developed. To evaluate the impact of altimetry crossover measurements on
orbit determination, the planetary mission Jupiter Icy moons Explorer (JUICE) by the European Space Agency
(ESA) is used as a case study by means of a covariance analysis. In this initial analysis, the assumption is made
that all altimetry measurements are obtained with nadir pointing which limits the direct applicability of our
method until pointing is accounted for.
1. Introduction

The JUpiter ICy moons Explorer (JUICE) mission has been se-
lected by the European Space Agency (ESA) as the first L-class mission
within its Cosmic Vision Program 2015–2025 with its main goal being
the study and further characterisation of the Galilean satellites, in
particular Ganymede [1].

The JUICE mission aims to build upon previous observations and
missions, such as the Galileo mission launched by the National Aero-
nautics and Space Administration (NASA) [2]. Of those results, the
strong evidence for subsurface oceans within Jupiter’s icy moons is
particularly revolutionary as the existence of liquid water drastically
increases the potential for the moons’ habitability. Thus, a deeper
understanding of the Jovian system would not only provide insights
into the formation of gas giants and their satellites, but also into
the conditions for habitability within icy moons. Further remarkable
results from previous efforts include insights into the Jovian system
atmospheres and magnetospheres, in particular Ganymede’s internal
magnetic field [3–8].

For precise orbit reconstruction the on-board radio science instru-
ment 3GM (Gravity and Geophysics of Jupiter and the Galilean Moons)
is included on JUICE. By using range and range-rate (Doppler) mea-
surements, 3GM also aims to constrain Ganymede’s interior structure
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(H. Hussmann).

by determining its gravity field, tidal Love number 𝑘2 and rotational
variations [9].

The JUICE mission is also equipped with the GALA (Ganymede Laser
Altimeter) instrument. Its functioning is based on the principle of two-
way laser ranging, with its primary task being the determination of the
Jovian moons’ topography. GALA will also measure Ganymede’s tidal
deformation to infer knowledge about its internal structure and rheol-
ogy, in particular through determination of its ℎ2 Love number [10].
Additionally, it will contribute to constraining Ganymede’s rotational
state [11]. GALA is expected to witness radial surface deformations on
Ganymede of up to 7 metres due to Jupiter’s tidal forcing, assuming a
typical value of 1.3 for the Love number ℎ2 [12]. Additionally, GALA is
capable to infer data from the backscattered laser pulses such as surface
roughness, slope and albedo at its wavelength of 1064 nm.

Laser altimetry data allows for the construction of so-called
crossover points, where altimetry arcs cross one another. At a crossover
point, the altitude difference of the spacecraft during the two arcs,
as measured by the instrument, can be constructed. This crossover
observable can be used for the determination of the body’s tidal
deformation [13], as well as for contributing to the orbit determination
of the spacecraft [14–17], since it encodes information on the relative
state of the spacecraft at two epochs.
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Fig. 1. Schematic of altimeter crossover geometry with nadir pointing.

In this article, we provide a description of our estimation model and
the associated partial derivatives to incorporate the altimetry crossover
observables into the orbit determination process, with the calculation
of the individual arc partial derivatives being independent of their
corresponding second arc, unless the crossover times occur during the
same arc. We apply this method to a simulation of the JUICE mission,
and analyse the potential contributions that this data type could have
for the mission and spacecraft missions in general.

2. Altimetry crossovers

An altimetry crossover point refers to the location on a body’s
surface where an altimetry measurement swath crosses another swath
in the body-fixed frame of the orbited body. At these locations, the
crossover observable ℎ⊗ can be obtained which is the altimeter mea-
surement difference between both altimetry swaths, with 𝑡2 and 𝑡1 being
he crossover times on the respective swath, as shown in Eq. (1) and
ig. 1.

⊗(𝑡2, 𝑡1) = ℎ(𝑡2) − ℎ(𝑡1) = ℎ⊗2 − ℎ⊗1 . (1)

f the altimeter’s pointing is strictly nadir, the altimetry swaths coincide
ith the spacecraft’s ground tracks. Under this assumption, the altime-

er measurements coincide with the spacecraft’s altitude difference at
he crossover times. In the scope of this study, we make use of the
ssumption of nadir pointing. It is expected that altimetry swaths are
ff-nadir up to 25 m as discussed further in Section 5 which results in
he altimetry footprint at least partly coinciding with the spacecraft’s
round track as discussed further in Section 3.1. We discuss the impli-
ations and limitations of this assumptions further in Sections 5–7 . The
act that the body-fixed latitude and longitude of the altimetry swaths
re equal at the crossover times 𝑡1 and 𝑡2 is particularly useful as their
ifference in measurements ℎ⊗ yields information about the dynamical
ehaviour of the orbited body, such as the Love number ℎ2, as they link
he body’s tidal response at two different epochs [12,13,18].

Previous studies on interplanetary missions such as the Mars Global
urveyor (MGS) [14,15] and the Lunar Reconnaissance Orbiter (LRO)
16,17,19,20] have shown that the use of altimetry crossover measure-
ents leads to significant improvements in orbit determination and

ttitude estimation. In addition, Earth based studies have shown that
ltimetry crossovers can be used to independently verify corrections for
ystematic pointing errors on time scales of orbital period, weeks and
onths [21].

For MGS, the inclusion of altimetry crossovers did not focus on
sing the height difference at the crossover location. Instead, their
588
more general approach was to minimise the distance between two
ground track arcs at a crossover location using batch least-squares.
These ground track arcs are described by three dimensional polyno-
mials which trace out the measured topography and can account for
pointing adjustments [14,15]. Unfortunately, their altimetry footprints
were widely spaced leading to an undersampling of the terrain and to a
reduction of the quality of crossover observables. Using over 24 million
crossovers, the spacecraft trajectory and attitude were recovered with
accuracy beyond mission specifications showing that seasonal effects
can also be identified, with improved solutions when pointing was also
estimated. Additionally, it was found that the inclusion of crossovers
improved the solution of the Mars gravity field [22].

For LRO, the crossover implementation for orbit determination was
different as its altimetry measurements were obtained using a multi-
beam altimeter with its beams being aligned in an X-shape resulting
in five distinct altimetry tracks [16,19]. With this setup, each LRO
crossover location yields several common measuring locations, sig-
nificantly increasing the number of available crossover observables.
For this precise orbit determination (POD) crossover implementation,
the swath crossovers method was used which estimates the spacecraft
orbit not only from its dynamics but from geometric and topographic
constraints as well. The squared differences of the altimetry observables
between tracks were minimised using purely geometric constraints be-
tween altimeter measurement points. These constraints are dictated by
the points’ total and radial distance, with the radial distance constraint
of neighbouring altimeter spots being particularly strict [19]. This
method demonstrated that a large sample of mid-latitude crossovers is
necessary to prevent degradation in trajectory reconstruction with the
solution being overly constrained near the poles. Results using actual
LRO mission data showed that the inclusion of crossovers strongly
improve solutions for spacecraft trajectory, pointing, lunar body tide,
and the lunar gravity field [13].

Overall, these studies found that the inclusion of crossovers is
highly complex and requires high computational loads [17,20], which
can be lessened by using sparse matrix techniques [15]. They also
found that crossovers with shallow angles between ground-tracks are
unfavourable for orbit determination due to poor information on the
cross-track partials [14,15]. This issue is further exacerbated by the
fact that crossovers are highly sensitive to spacecraft state changes
leading not only to changes in the location of crossovers, but also to
the total number of crossover locations between estimation iterations.
This characteristic is unique to this measurement type which results
from ground tracks no longer crossing after an orbit adjustment, as well
as the emergence of entirely new crossovers. For these reasons, it is
suggested to employ crossovers only after an initial orbit estimation has
been obtained. For an ideal state recovery, crossovers should be evenly
distributed. Conversely, truly polar orbits or truly equatorial orbits
may not yield satisfactory results due to the lack of global coverage.
For planetary missions, orbits with a high inclination are common to
achieve global coverage leading to crossovers being most prominent
at the poles. This is also the case for the case study here, with Fig. 2
showing the available crossover locations during JUICE’s final mission
phase, denoted GCO500 (Ganymede Circular Orbit with an altitude of
500 km).

Contrary to previous studies, our approach differs in the way we
include the crossover observables into orbit estimation. While previous
studies directly included the topography surrounding a crossover loca-
tion, we focus on the estimated, single point of the crossover occurrence
and its projected change of location (and therefore change in 𝑡1 and
𝑡2) after the orbit adjustment. Furthermore, we detail the specific
mathematical derivation of our method, demonstrating the minimum
set of derivations necessary, as well as its limitations.

To assess the influence of the crossovers on the orbit determination
process, the settings of which are described in Section 4, we perform
a covariance analysis. Building on this approach, we present a math-

ematical model in Section 5 to incorporate the crossover observable
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Fig. 2. Crossover locations during JUICE’s GCO500 mission phase.
defined in Eq. (1) into orbit determination solutions. As discussed
further in Section 6, we discuss how linking the state estimation of
different estimation periods, conceptually allows improved state recon-
struction during periods of low estimation quality by exploiting the
direct geometrical link to periods with higher-quality estimation. Poor
estimation quality can be a result of, for instance, unfavourable Doppler
observation geometry or lack of line-of-sight observations to Earth.

In the remainder of this article, the assumption is made that all
spacecraft altimetry measurements have nadir pointing leading them
to coincide with the ground tracks. This assumption is made for bet-
ter illustration and simplification of the equations. It is within our
expectations that the obtained results hold in the presence of pointing.

3. Numerical simulation

Since the JUICE mission’s scientific data will only be acquired in the
2030’s, the analysis of its orbit determination is done with synthetic
measurements obtained through numerical simulations. We consider
only the mission’s final phase during which JUICE is in a near-circular
500-km orbit around Ganymede, GCO500. A detailed analysis of JUICE’
orbit determination from Doppler data is presented by [9]. The neces-
sary simulations are set up using the TU Delft Astrodynamics Toolbox
(Tudat) for trajectory propagation and measurement simulation [23–
25]. JUICE’s orbit insertion into its GCO500 orbit marks the initial
epoch of our simulations with JUICE’s state being estimated daily as
detailed further in Section 4.2. While POD is not the goal of JUICE in
GCO500, we have selected this phase as test case as it offers a large
distribution of crossovers, as shown in Fig. 2, to analyse the potential
contribution of crossovers to planetary missions and geodetic parameter
estimation.

JUICE’s nominal state in time and the relevant data of the perturb-
ing celestial bodies are obtained from ESA’s Consolidated Report on
Mission Analysis (CReMA) 3.0 for the JUICE mission [26–28]. While
there are later CReMA versions available, version 3.0 was chosen
due to its high surface coverage which is one of the major scientific
goals of GALA and other instruments. In this study, we use a multi-
arc estimation with an arc length of 1 day and our dynamical model
considers the following perturbations [29]:

• Galilean moons as point masses,
• Synthetic Ganymede 12 × 12 gravity model,
• Jupiter point mass,
• Jupiter zonal coefficient 𝐽2,
• Sun point mass,
• Solar radiation pressure, spacecraft as cannonball.

For the calculation of radiation pressure a reflectivity coefficient of
1.3 is used, with an effective area of 97 m2 and a spacecraft mass of
2000 kg [29]. The values for the other perturbations are obtained from
CReMA 3.0 and are further detailed in Table A.3.
589
3.1. Measurement data

For the orbit reconstruction of planetary missions, the spacecraft
state vector is typically estimated using almost exclusively Doppler
data, as obtained by the 3GM instrument for the JUICE mission.

In this work, we do not consider the contribution of range data
to JUICE’s Ganymede-centred orbit determination, based on the range
quality requirement of 20 cm, which is too high to contribute mean-
ingfully to the POD, considering the exceptionally low Doppler noise,
as discussed further below. Instead, range data is typically used to
estimate signals with much longer periods than the spacecraft’s orbit,
such as the ephemerides of celestial bodies [30]. However, it should
be noted that recent preliminary experiments with the MORE experi-
ment on BepiColombo (which is very similar to 3GM of JUICE) show
that the range data can have an uncertainty of only centimetres in
magnitude [31,32]. If a similarly low noise level can be achieved for
JUICE, the radio range data will be able to contribute to JUICE POD,
in addition to the Doppler data.

A major challenge for the JUICE mission are the strong constraints
regarding its measurement periods since JUICE does not have a steer-
able high-gain antenna for communication and data downlink. This
leads to an alternation between measurement intervals and downlink
periods as the entire spacecraft must be rotated to establish communica-
tion to Earth. Within this alternation, nominal tracking is only available
during downlink periods which have a length of 8 h per day [29]. For a
successful downlink, visibility conditions must be satisfied to establish
communication, such as a minimum elevation angle of 15 degrees [9].
Finally, there must be no bodies occulting the line of sight between
JUICE and the communication ground station, Malargüe (Argentina).
For JUICE, the major occulting bodies to consider are Jupiter and the
Sun. Lastly, all communication windows must be larger than 3.5 h.

Naturally, the frequent spacecraft rotation limits the operation of
instruments which require nadir pointing, such as GALA, as they can
only collect scientific measurements between tracking windows [29].
In addition to the downlink periods, the time required for the slew
of the spacecraft must also be considered for the availability of GALA
measurements. While slew manoeuvres are expected to require an
average of 20 min, an additional 10 min must also be included for
settling-in effects to subside allowing for pointing requirements to
be fulfilled. Furthermore, Wheel-Off-Loading (WOL) manoeuvres must
also be considered. While the final JUICE WOL procedures have not
been established, current planning assumes one WOL manoeuvre before
each tracking period. This choice in design aims at lowering spacecraft
state and pointing uncertainties, as the effects of the WOL on the
spacecraft orbit are estimated immediately after they occur. Taking a
conservative approach, such a WOL manoeuvre is estimated to take
up to 30 min. Unfortunately, these manoeuvres effectively reduce the
average, daily available time for GALA measurements from 16 to
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14.5 h. These constraints on the accumulation of altimeter measure-
ments directly affects the number of available crossover measurements,
as a crossover measurement consists of two independent altimetry
measurements.

GALA takes altimetry measurements at pulse rate of 30 Hz, with
the emitted laser pulse producing a surface footprint of approx. 50 m
at JUICE’s nominal altitude of 500 km. Together with its pulse rate,
this leads to a distance of approx. 50 m between laser-spot centres and
a spot-edge distance of 0 m [10].

3.2. Error sources

The 3GM instrument will use a dual-frequency (X/Ka-band) system.
By combining measurements at these two frequencies, the influence
of dispersive media (Earth and Jupiter ionosphere, solar plasma) can
be calibrated for in the data analysis. Of the remaining non-random
error sources, the noise induced by the troposphere is typically the
largest [33], which can largely be modelled in the data analysis using
meteorological data obtained at the ground station. Although remain-
ing, unmodelled, error sources are not purely Gaussian, nor entirely
free of systematics, past experience has shown that the data properties
are quite close to these ideal conditions [33,34]. Consequently, we
choose to model Doppler data noise as Gaussian uncorrelated, and do
not consider Doppler biases. For 3GM, the expected Doppler precision
is 3 × 10−6 m∕s for an integration time of 1000 s [9]. Such high mea-
surement precision has been proven possible by NASA’s Juno mission
to Jupiter which has attained a precision of 1.5 × 10−5 m∕s for an inte-
gration time of 60 s, which is the Doppler measurement precision used
here [33,35]. Doppler noise levels that are even lower (1.2 × 10−5 m∕s)
have been achieved by BepiColombo [32], and were used in the study
of [9]. We retain the slightly higher value of 1.5 × 10−5 m∕s, stressing
that the conclusions of this work will only be weakly affected by this
small reduction in Doppler noise.

For laser altimetry measurements three significant error contribu-
tors have been established: Instrument intrinsic errors, pointing and
alignment errors and interpolation errors [12]. The determination of
the magnitudes of these errors is performed using GALA’s instrument
requirements which define the nominal measurement conditions as:
surface slope < 8 degrees, albedo > 44% and a pointing error of < 10
arcsec.

The previous missions to the Jupiter system, Voyager and Galileo,
found that roughly 90% of slopes on Ganymede are between 3.5 to
8 degrees, with these slopes being on a larger scale than GALA’s
footprint [36]. Using these estimates, Ganymede’s average global slope
is approximated statistically by a surface slope of 𝛼 = (3.5◦ × 90% +
20◦×10%)∕100% = 5.15◦, vastly simplifying Ganymede’s surface slope to
an average. Recent investigations based on Galileo data for Europa re-
vealed that surface roughness values in specific terrains can reach high
values [37]. Thus, it is possible that for Ganymede the apportionment
performed above is underestimating the average surface slopes.

For this study, GALA’s instrument intrinsic errors are assumed to
be limited to a 1𝜎 uncertainty of:

ℎ𝐺𝐴𝐿𝐴 = 0.5 m (2)

uring JUICE’s final mission phase, GCO500 [10].
Errors in pointing and alignment are assumed to originate from

hermo-elastic distortions on GALA’s optical bench, the accuracy of the
tar trackers, spacecraft manoeuvres and oscillations (particularly on
ts solar panels). We point out that the pointing error 𝛥ℎ𝑝 discussed
elow describes the post-mission pointing uncertainty of altimetry mea-
urements. Noticeably, this uncertainty differs from off-nadir pointing
nowledge. Here, we assume strict nadir pointing, as mentioned in
ection 2. For errors in pointing knowledge the assumption is made
hat they jitter randomly around nadir as their direction and mag-
itude is changed randomly after each of the frequently occurring
lew manoeuvres. We make the approximation that pointing errors can
590
e treated as having a Gaussian distribution around nadir pointing
ith these errors being uncorrelated. While it can be expected that

he mission’s altimetry measurements will have correlations, we make
he assumption that the spacecraft’s daily slew manoeuvres decouple
ltimetry measurements after each day. This assumption is further
trengthened by the vast majority of crossover measurements treated
ere having individual altimetry measurements at 𝑡1 and 𝑡2 that are
ore than 20 days apart. Furthermore, we point out that a persistent

ias in the pointing knowledge would not produce correlated crossover
bservables. Each new crossover represents a new measurement of the
ointing bias, independent of the measurement performed by another
rossover. Even if three profiles cross exactly at the same location the
orrelation between two crossover observables cannot be the same. For
ltimetry measurements, the pointing error 𝛥ℎ𝑝 can be described as a
unction of pointing angle error 𝛥𝜙, altitude 𝐻 and surface slope 𝛼 as:

ℎ𝑝 = 𝐻 tan(𝛥𝜙) tan(𝛼) . (3)

hile a nominal altimetry measurement of 500 km is expected during
UICE’s GCO500 mission phase, rapid changes in slope due to surface
eatures such as rims, ridges or cracks among others can strongly affect
easurements. With an average surface slope of 5.15 degrees and a
aximum error in pointing knowledge of 10 arcsec Eq. (3) yields 1𝜎
ointing and alignment errors of 𝛥ℎ𝑝 = 2.18 m.

Finally, the error contribution due to interpolation errors must also
e considered for the calculation of the surface’s height profile. Interpo-
ation is necessary when describing the planetary surface continuously
ince altimeter measurements are only given at discrete epochs, making
he interpolation error inherent to the measurement frequency. Taking
nto account GALA’s measurement frequency 𝑓𝑞 of 30 Hz, interpolation
rrors 𝛥ℎ𝑖 can be calculated via [12]:

ℎ𝑖 =
𝑣𝑠𝑢𝑟𝑓
2𝑓𝑞

tan 𝛼 , (4)

with 𝑣𝑠𝑢𝑟𝑓 being JUICE’s velocity with respect to the surface. Approx-
imating JUICE’s GCO500 trajectory as a circular orbit to obtain its
projected velocity at Ganymede’s surface leads to interpolation errors
with a magnitude of 𝛥ℎ𝑖 = 2.24 m on average. In Eq. (4) we have
ssumed the worst-case, where the crossover point is exactly at the mid-
oint between two footprints. This is attributed to the poor knowledge
n the surface and the fact that the crossover geometry is subject to
hanges during each iteration.

Due to the assumption that GALA’s instrument, pointing and inter-
olation errors are independent from one another their total contribu-
ion to GALA’s error budget can be calculated as:

ℎ =
√

𝛥ℎ2𝐺𝐴𝐿𝐴 + 𝛥ℎ2𝑝 + 𝛥ℎ2𝑖 . (5)

Using Eq. (5) and the error magnitudes defined above a total altimetry
measurement error budget of 3.17 m is established, with a Gaussian
distribution and a mean value of zero.

The two individual altimetry measurements that make up a
crossover measurement can be regarded as independent from one
another due to the spacecraft rotation manoeuvres discussed above,
since the second altimetry measurement is obtained at least one space-
craft orbit later in time. Thus, for a crossover measurement the error
contribution of individual altimetry measurements is obtained as:

𝛥ℎ⊗ =
√

𝛥ℎ2 + 𝛥ℎ2 =
√

2𝛥ℎ , (6)

leading to a crossover measurement error budget of 4.48 m. For the
calculation of these error budgets a conservative approach is chosen. It
can be expected that for the actual measurements spacecraft pointing
might be better than required and that improvements in the crossover
analysis will mitigate interpolation errors.
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4. Covariance analysis

4.1. Methodology

In this work, we use covariance analysis to ascertain the state
and parameter uncertainty for the JUICE mission during its GCO500
orbit phase. We consider the case of Doppler-only estimation, and the
case where both Doppler and altimetry crossover data is used. This
work’s analysis does not aim to evaluate the ultimately attainable esti-
mate precision for orbit determination procedures, as is done in detail
by [9]. Instead, our test case is a broad analysis of the contribution
of crossovers for further guidance on where to focus future efforts.
Moreover, our first analysis serves as a guide on whether, and where, to
focus efforts to include such high-fidelity models in future simulation
studies and more importantly: in data analysis when the JUICE mission
is orbiting Ganymede. This contribution is measured by analysing the
covariance matrix P𝑥 of the estimated parameters (see Section 4.2 for

list) which is defined as

𝑥 = (HTP−1𝑦 H + 𝛬)−1 , (7)

with 𝛬 being the a priori covariance of the estimated parameters. H is
the so-called design matrix and P𝑦 is the measurement covariance ma-
trix which contains the measurement uncertainties 𝜎 which determine
the measurements’ weight for the parameter estimation. Assuming all
measurement errors are uncorrelated and have a Gaussian distribution
with zero mean, P𝑦 is a diagonal matrix, with its elements 𝜎𝑖 being the
uncertainty of the measurements 𝑖. Our measurement uncertainties for
the Doppler and crossover observables are described in Section 3.1.

Additionally, for the estimated parameter ℎ2 its measurement sen-
sitivity is evaluated as [12]:

𝛥ℎ2 =
√

2(𝑃𝑥)ℎ2 ⋅ 𝛥ℎ , (8)

with (𝑃𝑥)ℎ2 being the ℎ2 matrix element within 𝑃𝑥, and the altimetry
easurement uncertainty 𝛥ℎ as defined in Eq. (6).

.2. Estimated parameters

To single out the added value of including altimetry crossovers for
OD, this work treats two distinctive scenarios:

• JUICE’s POD using Doppler measurements only
• JUICE’s POD using both Doppler and crossover measurements

ithin both scenarios the exact same simulation settings are used, with
oth scenarios estimating the same parameters at the same epochs. To
acilitate our primary goal, the study of the relative contribution of
rossover data for orbit and parameter estimation, we have chosen to
onsider a reduced, but representative, set of estimation parameters:

• JUICE’s state,
• JUICE’s accelerometer biases as global parameter,
• Ganymede’s gravity field up to degree and order 12,
• Ganymede’s Love number 𝑘2,

ith only JUICE’s state being an arc-wise parameter, estimated daily
ver the simulation period of 160 days. This simulation period equals
he length of the GCO500 mission phase as per CReMA 3.0. Our list
f parameters differs from that considered by [9], who study in detail
he performance of the 3GM instrument. Accelerometer biases are
stimated as a global parameter under the assumption that JUICE’s
ccelerometer is turned on continuously throughout the analysed mis-
ion phase. For the gravity field we only consider the coefficients up to
egree and order 12 (equal to the requirements of the JUICE missions),
s crossovers’ influence onto high-degree coefficient estimation is ex-
ected (and corroborated in Section 6) to be small. For the estimation
f JUICE’s state the used a priori covariances are 1 km for position and
m/s for velocity, for accelerometer biases they are 10−5 m/s2. The

estimation of the Love number ℎ2 is treated as an additional case to
maintain comparability between the main scenarios, as this parameter
cannot be estimated using Doppler data only.
591
5. Crossover partial derivatives

In this section we present the mathematical framework for the inclu-
sion of altimetry crossover measurements into an orbit determination
scheme. Specifically, the crossover partial derivatives are elaborated
upon which are necessary to predict changes in their measurements
from changes at the linearisation points through the design matrix H.

As shown in Eq. (1), a crossover observable describes the mea-
surement difference at the crossing between two altimetry swaths
over the same location on the surface. For the general description of
our algorithm, we focus on the description of crossover sensitivity to
changes in spacecraft state. Changes in the footprint coordinates due
to variability of the central body (Ganymede) itself, due to effects
such as tidal deformation are considered by the modelling of the tidal
potential (𝑘2) and the estimation of the Love number ℎ2. As discussed
in Section 4.2, the estimation of ℎ2 is treated as an additional case to
maintain comparability between results with and without crossovers.

As shown in Eq. (9), at the crossover point Ganymede’s static
topography 𝑇 can also be discarded as it is, by definition of a crossover,
the same for both arcs:

ℎ⊗ = ℎ⊗2 − ℎ⊗1 = (𝑟2 − 𝑇 ) − (𝑟1 − 𝑇 ) = 𝑟2 − 𝑟1 , (9)

with 𝑟1 and 𝑟2 being JUICE’s radial distance to Ganymede’s centre of
mass at the first and second arc, respectively. To calculate the required
crossover measurement partial derivatives, Eq. (1) is rewritten as:

ℎ⊗(𝒓(𝑡1), 𝒓(𝑡2)) = |𝒓(𝑡2)| − |𝒓(𝑡1)| = |𝒓2| − |𝒓1| . (10)

For Eq. (10) to be applicable the following condition must be satisfied:

𝒓̂𝐵(𝑡1) = 𝒓̂𝐵(𝑡2) , (11)

with 𝒓̂ being the unit vector of the position vector 𝒓 and the superscript
𝐵 indicating that the vector is expressed in the body-fixed frame of
Ganymede. The condition described in Eq. (11) ensures that both
crossovers arc-components (at 𝑡1 and 𝑡2) occur at the same longitude
and latitude of the body 𝐵. The underlying assumption behind this
method is that the spacecraft is purely nadir-pointing during altimetry
measurement periods. We discuss the influence of this assumption on
our method in general, and our work specifically, at the end of this
section. In short, the assumption limits the direct applicability of the
method to simulation studies. The incorporation of pointing error into
the model will require the consideration of additional terms in our
governing equations.

To a first approximation, the partial derivative of a crossover ob-
servable w.r.t. the change in the initial state vector of arc 𝑖, denoted
𝒔
((

𝑡0
)

𝑖
)

of the spacecraft can be described as:

𝜕ℎ⊗(𝑡)

𝜕𝒔
((

𝑡0
)

𝑖
) =

𝜕ℎ⊗
𝜕𝒔(𝑡1)

𝜕𝒔(𝑡1)
𝜕𝒔

((

𝑡0
)

𝑖
) +

𝜕ℎ⊗
𝜕𝒔(𝑡2)

𝜕𝒔(𝑡2)
𝜕𝒔

((

𝑡0
)

𝑖
) , (12)

here
(

𝑡0
)

𝑖 is the initial epoch of the 𝑖th arc over which the spacecraft
tate is to be estimated. The crossovers will have non-zero partial
erivatives to two initial states 𝐬(𝑡0)𝑖 (if 𝑡2 and 𝑡1 fall in different arcs)
r a single non-zero derivative if both crossover times fall in the same
rc. In what follows we will, without loss of generality, present the
ormulation for a single 𝑡0, omitting the 𝑖 subscript.

The change in a later state vector 𝒔(𝑡1) due to a change in the initial
tate 𝒔(𝑡0) is calculated by making use of the conventional state transition
atrix. As shown in Eq. (10), a crossover measurement is only explicitly
ependent on the spacecraft position, not on the spacecraft velocity,
aking it possible to reduce Eq. (12) to:
𝜕ℎ⊗
𝜕𝒔(𝑡0)

=
𝜕ℎ⊗
𝜕𝒓(𝑡1)

𝜕𝒓(𝑡1)
𝜕𝒔(𝑡0)

+
𝜕ℎ⊗
𝜕𝒓(𝑡2)

𝜕𝒓(𝑡2)
𝜕𝒔(𝑡0)

. (13)

Importantly, the crossover times 𝑡1 and 𝑡2 in Eq. (12) do not need to

occur in the same arc, dramatically increasing the number of available
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crossover points for estimation. Evaluating Eq. (13) using Eq. (10) for
ℎ⊗ yields:
𝜕ℎ⊗
𝜕𝒔(𝑡0)

= −
𝜕|𝒓(𝑡1)|
𝜕𝒓(𝑡1)

𝜕𝒓(𝑡1)
𝜕𝒔(𝑡0)

+
𝜕|𝒓(𝑡2)|
𝜕𝒓(𝑡2)

𝜕𝒓(𝑡2)
𝜕𝒔(𝑡0)

. (14)

We have tested the model of Eq. (14), by comparing the analysis’
partial derivatives it produced with numerical partial derivatives. Un-
fortunately, we find that the results obtained by this first approximation
do not capture the majority of the sensitivity of crossovers to spacecraft
state, with errors of the derivatives averaged over a single arc in the
range of ≳100% for most state elements (results for a single representa-
tive estimation arc are shown in Table 1). These results are discussed
in more details later in this section.

For a more detailed linearised model for sensitivity of crossover ob-
servable to initial state, the changes in the crossover location, and thus
also changes in the crossover times 𝑡1 and 𝑡2, have to be incorporated.
These are obtained by first rewriting Eq. (1) as:

ℎ⊗(𝒓1, 𝒓2, 𝑡1, 𝑡2) = |𝒓2(𝑡2(𝒓1, 𝒓2))| − |𝒓1(𝑡1(𝒓1, 𝒓2))| . (15)

This expression takes into account the crossover times 𝑡1 and 𝑡2, which
heavily depend on the crossover location at 𝒓̂𝐵(𝑡1) = 𝒓̂𝐵(𝑡2). Using
Eq. (15) the crossover partial derivative w.r.t. its current position vector
𝒓1 is:
𝜕ℎ⊗
𝜕𝒓1

=
𝜕|𝒓2|
𝜕𝑡2

𝜕𝑡2
𝜕𝒓1

−
𝜕|𝒓1|
𝜕𝒓1

−
𝜕|𝒓1|
𝜕𝑡1

𝜕𝑡1
𝜕𝒓1

. (16)

The derivatives for the times 𝑡1 and 𝑡2 w.r.t. 𝒓1 are

𝜕𝑡2
𝜕𝒓1

=
𝜕𝑡2
𝜕𝒓𝐵1

𝜕𝒓𝐵1
𝜕𝒓1

, (17)

𝜕𝑡1
𝜕𝒓1

=
𝜕𝑡1
𝜕𝒓𝐵1

𝜕𝒓𝐵1
𝜕𝒓1

. (18)

Of the terms above, the following can be obtained directly:
𝜕|𝒓2|
𝜕𝑡2

= 𝒗2 ⋅ 𝒓2 ;
𝜕|𝒓1|
𝜕𝑡1

= 𝒗1 ⋅ 𝒓1 , (19)

𝜕|𝒓2|
𝜕𝒓2

= (𝒓2)𝑇 , (20)

𝜕𝒓𝐵1
𝜕𝒓1

= R𝐵∕𝐼 (𝑡1) ;
𝜕𝒓𝐵2
𝜕𝒓2

= R𝐵∕𝐼 (𝑡2) , (21)

with 𝑅𝐵∕𝐼 (𝑡) being the rotation matrix from the inertial frame to the
body-fixed frame at time 𝑡. Now, only the terms 𝜕𝑡2∕𝜕𝒓𝐵1 and 𝜕𝑡1∕𝜕𝒓𝐵1
must be defined. To define the independent elements of this derivative
(derivatives w.r.t. 𝑥𝐵1 , 𝑦

𝐵
1 , 𝑧

𝐵
1 ), three conditions are defined below and

depicted in Fig. 3.

• Any change in radial direction 𝒓̂𝐵1 = 𝒓̂𝐵2 has no effect on either 𝑡1
or 𝑡2, as the condition presented in Eq. (11) remains unaffected.
Therein, only the magnitude of the crossover measurement is
affected, while the crossover location remains the same.
𝜕𝑡2
𝜕𝒓𝐵1

⋅ 𝒓̂𝐵1 = 0 . (22)

• Any change of 𝒓𝐵1 in the direction of 𝒗̂𝐵1 has no effect on the
crossover time 𝑡2, as the crossover point on the arc of 𝑡2 remains
the same, while only inducing a change in 𝑡1:
𝜕𝑡2
𝜕𝒓𝐵1

⋅ 𝒗̂𝐵1 = 0 . (23)

• Lastly, a change of 𝒓𝐵1 in the direction of 𝒗̂𝐵2 induces a change
in 𝑡2. This change in 𝑡2 is directly proportional to the magnitude
of the horizontal component of 𝒗̂𝐵2 = |𝒗̂𝐵2,𝐻 | which gives the
time/distance from a given measurement to the crossover itself.
Hereby no changes are introduced to 𝑡1
𝜕𝑡2

𝐵 ⋅ 𝒗̂𝐵2 = 1
𝐵 . (24)
592

𝜕𝒓1 |𝒗̂2,𝐻 |
Fig. 3. Depiction of a change of crossover measurement in radial direction (top,
Eq. (22)), in the direction of 𝒗̂𝐵1 (middle, Eq. (23)) and in the direction of 𝒗̂𝐵2 (bottom,
Eq. (24)).

The horizontal component of 𝒗̂𝐵2 is obtained via subtracting its
radial velocity component

𝒗̂𝐵2,𝐻 = 𝒗̂𝐵2 − 𝒗̂𝐵2 ⋅ 𝒓̂𝐵2 . (25)
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The conditions detailed in Eq. (22), Eq. (23) and Eq. (24) can be
summarised as

A𝑡2𝑟1 ⋅
𝜕𝑡2
𝜕𝒓𝐵1

= 𝒃𝑡2𝑟1 (26)

with A𝑡2𝑟1 =
(

(𝒓̂𝐵2 )
𝑇 , (𝒗̂𝐵1 )

𝑇 , (𝒗̂𝐵2 )
𝑇
)

and , 𝒃𝑡2𝑟1 =
(

0, 0, |𝒗̂𝐵2,𝐻 |

−1)𝑇

(27)

By inverting this linear equation we obtain the needed partial deriva-
tives
𝜕𝑡2
𝜕𝒓𝐵1

= A−1
𝑡2𝑟1𝒃𝑡2𝑟1 . (28)

Equally, the three independent elements of 𝒓𝐵1 for 𝜕𝑡1∕𝜕𝒓𝐵1 can be
constrained with the following conditions:
𝜕𝑡1
𝜕𝒓𝐵1

⋅ 𝒓̂𝐵1 = 0 .; (29)

𝜕𝑡1
𝜕𝒓𝐵1

⋅ 𝒗̂𝐵2 = 0 . (30)

𝜕𝑡1
𝜕𝒓𝐵1

⋅ 𝒗̂𝐵1 = −|𝒗̂𝐵1,𝐻 |

−1
. (31)

ontrary to Eq. (24), if 𝒓𝐵1 experiences a change in the direction in
he in-plane direction of 𝒗𝐵1 , i.e. along its own arc, the new crossover
ocation will occur earlier in time. Therein, 𝑡2 experiences no changes
hile 𝑡1 becomes smaller, resulting in a negative derivative as shown

n Eq. (31). These conditions lead to
𝜕𝑡2
𝜕𝒓𝐵1

= A−1
𝑡1𝑟1𝒃𝑡1𝑟1 (32)

with A𝑡1𝑟1 =
(

(𝒓̂𝐵1 )
𝑇 , (𝒗̂𝐵2 )

𝑇 , (𝒗̂𝐵1 )
𝑇
)

and 𝒃𝑡1𝑟1 =
(

0 , 0 ,−|𝒗̂𝐵1,𝐻 |

−1)𝑇
.

(33)

aking use of the equations above, Eq. (16) can be rewritten as:

𝜕ℎ⊗
𝜕𝒓1

=
𝜕|𝒓2|
𝜕𝑡2

(

𝜕𝑡2
𝜕𝒓𝐵1

𝜕𝒓𝐵1
𝜕𝒓1

)

−
𝜕|𝒓1|
𝜕𝒓1

−
𝜕|𝒓1|
𝜕𝑡1

(

𝜕𝑡1
𝜕𝒓𝐵1

𝜕𝒓𝐵1
𝜕𝒓1

)

, (34)

= (𝒗2 ⋅ 𝒓̂2) ⋅ ((A−1
𝑡2𝑟1 ⋅ 𝒃𝑡2𝑟1) ⋅ R

𝐵∕𝐼 (𝑡2))𝒓̂
𝑇
1 − 𝒓̂𝑇1

− (𝒗1 ⋅ 𝒓̂1) ⋅ ((A−1
𝑡1𝑟1 ⋅ 𝒃𝑡1𝑟1) ⋅ R

𝐵∕𝐼 (𝑡1)) . (35)

Equally, the partial derivative of the crossover observable w.r.t. a
change in 𝒓2 is obtained symmetrically yielding:

𝜕ℎ⊗
𝜕𝒓2

=
𝜕|𝒓2|
𝜕𝒓2

+
𝜕|𝒓2|
𝜕𝑡2

(

𝜕𝑡2
𝜕𝒓𝐵2

𝜕𝒓𝐵2
𝜕𝒓2

)

−
𝜕|𝒓1|
𝜕𝑡1

(

𝜕𝑡1
𝜕𝒓𝐵2

𝜕𝒓𝐵2
𝜕𝒓2

)

, (36)

= 𝒓̂𝑇2 + (𝒗2 ⋅ 𝒓̂2) ⋅ ((A−1
𝑡2𝑟2 ⋅ 𝒃𝑡2𝑟2) ⋅ R

𝐵∕𝐼 (𝑡2))

− (𝒗1 ⋅ 𝒓̂1) ⋅ ((A−1
𝑡1𝑟2 ⋅ 𝒃𝑡1𝑟2) ⋅ R

𝐵∕𝐼 (𝑡1)) , (37)

ith A𝑡2𝑟2 =
(

(𝒓̂𝐵2 )
𝑇 , (𝒗̂𝐵1 )

𝑇 , (𝒗̂𝐵2 )
𝑇
)

, 𝒃𝑡2𝑟2 =
(

0, 0, −|𝒗̂𝐵2,𝐻 |

−1)
, (38)

𝑡1𝑟2 =
(

(𝒓̂𝐵1 )
𝑇 , (𝒗̂𝐵2 )

𝑇 , (𝒗̂𝐵1 )
𝑇
)

and 𝒃𝑡1𝑟2 =
(

0, 0, |𝒗̂𝐵1,𝐻 |

−1)
. (39)

hese expressions describe the change of a crossover measurement due
o a change in either 𝒓1 or 𝒓2. Only by using these more detailed
artial derivatives is it possible to include crossover measurements into
he design matrix H and to make use of altimetry crossovers for orbit
etermination.

To evaluate the validity of the crossover partial derivatives, we have
ompared our results from these analytical formulations to numerically
btained partial derivatives. Table 1 shows the average error of the
rossover partial derivatives when using Eq. (14), referred to as Basic,
nd the more detailed expressions for 𝜕ℎ⊗∕𝜕𝒓1 and 𝜕ℎ⊗∕𝜕𝒓2 derived
bove, referred to as Detailed. This table shows the results for a single
epresentative estimation arc. While the specific numbers are different
or other arcs, their order of magnitude is not. The Basic derivatives’
593
able 1
verage relative difference for Basic, from Eq. (14) and Detailed, incorporating Eqs.

16) and (37), analytical crossover measurement partial derivatives with respect to
umerical partial derivatives. These results are averaged over a single representative
stimation batch.
Average relative difference of analytical and numerical partials

Basic [%] Detailed [%]

𝜕ℎ⊗∕𝜕𝐱0 47.593 0.265
𝜕ℎ⊗∕𝜕𝐲0 283.902 0.229
𝜕ℎ⊗∕𝜕𝐳0 556.824 0.419
𝜕ℎ⊗∕𝜕𝐯𝑥0 1357.759 1.608
𝜕ℎ⊗∕𝜕𝐯𝑦0 443.710 0.378
𝜕ℎ⊗∕𝜕𝐯𝑧0 152.499 0.139

inability to accurately calculate changes in crossover measurements
originates in their failure to address changes in crossover locations.
Instead, they only focus on the radial orbit changes over a location
where the evaluated crossover can no longer be found. Due to the large
discrepancy between the results of numerically obtained partial deriva-
tives and those obtained with Eq. (14), any analysis which relies on
this first approximation should be regarded critically. Finally, we note
that the remaining differences between our analytical and numerical
partials for the Detailed model (here ∼ 1%) largely stem from numerical
errors: We have used a simple central-difference method to compute the
numerical partials, for which we have not fully optimised the time step
used.

An important limitation of the method we present here is the funda-
mental assumption that Eq. (9) is valid: Nadir-pointing is assumed. In
reality, this assumption will not hold exactly, for which three aspects
need to be considered. Firstly, the fact that the spacecraft’s body-
fixed latitude and longitude will not be exactly equal to the altimetry
crossover location will require additional terms to be incorporated into
our formulation. The absence of off-nadir pointing in our formulation
means that the equations as given cannot be used directly for the
analysis of crossover data as additional terms need to be added to incor-
porate this fact. The absence of exact nadir pointing does not influence
the validity of Eqs. (16)–(21), none of which rely on the assumption
in Eq. (11). However, the assumption does influence our manner of
determining the conditions for 𝜕𝑡2∕𝜕(𝐫𝐵1 ) and 𝜕𝑡2∕𝜕(𝐫𝐵1 ). Specifically, the
hree conditions in Eqs. (22)–(24), and similarly (29)–(31), rely on the
adir assumption. One set of exceptions, where the influence of off-
adir pointing may be amplified, is when Eqs. (28) and (32) become
lose to singular. In those cases, even small off-nadir pointing angles
ay induce an error that is amplified to large changes in the crossover
artial derivatives. However, in cases where the solution to either of
hese equations is close to ill-posed, the crossovers should be discarded
n any event, as they would represent cases where the two tracks are
lose to parallel (or either track is vertical, which is a pathological case
hat will not be observed in reality).

Secondly, since the location of the crossovers is slightly
is-identified by omitting any off-nadir pointing in the model, the

iming of the crossover will also be slightly in error. An off-nadir
ointing of 10 arcseconds corresponds to a ∼25 m offset between
he spacecraft ground track and the altimetry swath, resulting in a
rossover timing error of up to ∼14 ms. Should the pointing vector be
nown, it is possible to account for it by shifting the epoch where the
rossover is evaluated on each of both swaths. As with Eq. (23), for arc
only the along-track component of the crossover location shift has

n effect in 𝑡2. Naturally, this applies equally to arc 1 and 𝑡1, Eq. (31).
owever, the major variations in the partial derivatives are expected

o occur with a period on the order of the spacecraft’s orbital period,
nd the very small partial derivative timing evaluation error (14 ms)
ill not unduly influence the results of our covariance analysis.

Thirdly, even if pointing is accounted for, as discussed in the
revious point, pointing knowledge is not perfect with GALA having a
ominal 1-𝜎 pointing knowledge uncertainty of 10 arcseconds. At the
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Fig. 4. Arc initial position uncertainty using Doppler data only.
Fig. 5. Arc initial position uncertainty using both Doppler data and altimetry crossovers.
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JUICE altitude of 500 km, this corresponds to an average measurement
error of up to 2.18 m for each altimetry measurement (Eq. (3)). In our
simulations, this pointing knowledge uncertainty is taken into account
in the altimetry crossover error budget (Section 3.2) which determines
the weighting of the crossover data, see Eq. (7).

As a result of the points raised above, our formulation technically
is only valid for pure nadir pointing. For the case of JUICE, this
assumption will very nearly hold throughout the mission, and the
stated equations that are influenced by the nadir-pointing assump-
tion all remain very nearly true, even when incorporating off-nadir
pointing. Consequently, the formulation we provide here is adequate
for a covariance analysis to predict the performance of the altimetry
crossovers.

Finally, the derivatives w.r.t. ℎ2 are directly derived by computing
he associated derivatives of 𝑇 in Eq. (9) at the crossover times 𝑡2 and
1. The influence of the libration amplitude (or any other rotational
haracteristic) on the term is obtained through following the same
cheme as above (taking the direct derivatives, as well as the deriva-
ives of the crossover times, w.r.t. rotational parameter), and evaluating
he resulting partial derivatives of the rotation matrices 𝑅𝐵∕𝐼 w.r.t.
otational parameter at crossover times 𝑡2 and 𝑡1. Thus, the crossover
bservables provide an additional approach for the measurement of the
otational state, which can be compared to estimates obtained from
ther methods [11].

. Results

The presented results are the formal estimation errors of the POD
cheme which are obtained from the covariance matrix of the estimated
arameters 𝑃𝑥. These errors are denoted formal, since they represent
he attainable errors under certain mathematical model assumptions,
pecifically the fact that all noise is Gaussian, unbiased and uncor-
elated, and that simulation model and truth model of the dynamics
re equal. Unfortunately, such a perfect recreation of JUICE’s force
nvironment is not feasible using actual measurements, resulting in
stimation errors which must be regarded as too optimistic. Further
etails on the effects of remaining accelerometer noise on JUICE’s orbit
etermination can be found in [9].
594
.1. Doppler data only

Using 65,000 simulated Doppler measurements (see Section 3.1),
e obtained the formal JUICE position uncertainties shown in Fig. 4.

n this figure, the most prominent features are the five peaks in es-
imation uncertainty. These peaks are a direct result of periods with
o available Doppler data. The large Doppler gap from day 32 until
ay 46 after GCO500 orbit insertion originates partly in an occultation
y the Sun with Doppler measurements around it being discarded due
o high plasma noise. It is worth mentioning that more recent JUICE
rajectories (CReMA) do not encounter this occultation by the sun and
re more beneficial for tracking, see Section 3. The minor occultations
t days 0–2, 9, 81 and 117 are due to Jupiter occultations. In these
ases, the postfit uncertainty reverts to the a priori information.

Another prominent feature of Fig. 4 is the degradation of the estima-
ion uncertainty in radial direction, which even becomes temporarily
orse than the estimation uncertainty in cross-track direction. This
egradation is assigned to the orientation of JUICE’s orbital plane as
een from Earth, shown as viewing angle in Fig. 6. The viewing angle
epresents the angle between a vector perpendicular to JUICE’s orbital
lane and the vector between Earth and Ganymede. As the viewing
ngle decreases, JUICE’s orbit becomes close to perpendicular to Earth’s
ine of sight. As a result, the Doppler measurements’ sensitivity to the
n-plane motion of the spacecraft is significantly reduced.

.2. Inclusion of crossovers

When both Doppler and 631,000 crossover measurements are used
or orbit determination, estimation uncertainties during periods with-
ut Doppler data drastically improve as can be seen in Fig. 5. This
riginates in the availability of measurements for every estimation
rc. Although there are more crossover than Doppler measurements,
rossovers do not have an overwhelming effect on the estimation results
s crossovers have a substantially higher measurement uncertainty. For
eriods without Doppler data, including crossovers leads to average
ncertainties of approx. 5 m radially, 36 m cross-track and 870 m
long-track, as shown in Fig. 5. Due to our idealised simulation and
oise environment, these are not specific numbers that we expect but
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rather magnitude ranges in estimation. For readability, Fig. 6 only
shows uncertainty improvements for periods not afflicted by occul-
tations which represents nominal POD cases. A noticeable feature of
Fig. 6 is the large increase in uncertainty improvement towards the
later estimation epochs. As with the degradation of state uncertainty
discussed in Section 6.1, this estimation improvement originates in the
viewing angle of JUICE’s orbit from Earth. As Doppler measurements
become less conclusive, the use of crossover measurements significantly
aids in constraining JUICE’s orbit. These uncertainty improvements
towards later periods are further detailed in Table 2.

For periods without Doppler data, Fig. 5 and Table 2 both show
that crossover measurements improve position uncertainty in radial
direction the strongest, with uncertainty improvements in along-track
direction being lowest. These improvements demonstrate that crossover
altitude differences can effectively constrain the size and shape of a
spacecraft orbit.

Moreover, the use of crossovers allows information from periods
with tracking data to be transferred to periods without tracking data,
if 𝑡1 lies in an arc without Doppler data, and 𝑡2 in a period with
Doppler data (or vice versa). We point out that this situation, in which
low-quality POD arcs benefit from high-quality POD arcs, represents
an ideal situation. Achieving an optimal inclusion of crossovers will
require a detailed analysis of the data sets, with careful weighting of
the crossover data. Specifically, if the crossover data is ‘overweighted’
(e.g. noise properties are assessed too optimistically), the situation may
become reversed, with the orbit quality for arcs with high-accuracy
Doppler data being degraded by the incorporation of the crossover link
to low-accuracy arcs. The orbit quality (quantified by e.g. arc overlaps)
when incorporating the crossovers should be carefully assessed in this
process, to ensure that no orbit degradation is introduced. In the
present analysis, we omit this step, and interpret our results as being
an idealised situation, consistent with our choice of covariance study
as an analysis method.

For the estimation of global parameters, estimation improvements
are consistently low as the estimation of global parameters uses mea-
surements of all estimation arcs, leading to a much larger number of
available Doppler measurements for their estimation. The uncertain-
ties of accelerometer biases have magnitudes of 10−8 m/s2 for the

oppler-only estimation, with the addition of crossover measurements
owering their uncertainty by 1.3% radially and 1.6% in cross-track and
long-track direction. For the estimation of gravity field parameters
ncertainty improvements of up to 11% are found for low-degree
oefficients. However, uncertainty improvements rapidly decrease with
n increase of the coefficients’ degree resulting in improvements of
ess than 1% for harmonics of higher degree and order. The resulting
verage improvement for all gravity field coefficients is 0.8%. Similarly,
he estimation improvement for the estimation of the Love number 𝑘2
s 5.3%. No significant improvement in correlations between estimated
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arameters was found when crossover measurements are included.
Table 2
Position uncertainty improvement with altimetry crossovers.
Average improvement in position uncertainty [%]

Radial Cross-track Along-track

avg. max. avg. max. avg. max.

pre day 100 1.819 2.442 1.859 3.071 1.855 3.049
post day 100 4.885 32.64 4.334 35.218 4.628 35.347
total 3.03 32.64 2.895 35.218 3.016 35.347

6.3. Variation in parameters

In addition to our nominal estimation case described in Section 4.2,
a number of additional cases was studied which employed different
measurement uncertainties, estimation arc lengths, and sets of esti-
mated parameters whose results are briefly presented. In such one case,
the Love number ℎ2 is estimated as it cannot be estimated using Doppler
ata only. Using crossovers, we obtain an ℎ2 estimation uncertainty of
.00153 which is expectedly lower than in previous studies due to the
arger number of crossover measurements we employ [11,12].

In an additional case, a degraded Doppler precision of 5 × 10−5 m∕s
was used resulting in higher uncertainty improvements when crossover
are included. Such a decrease in Doppler noise levels would be repre-
sentative of missions that employ a single-frequency (X-band) tracking
system, as opposed to the dual-frequency system employed by 3GM.
The resulting average state estimation improvements are 42%, 56%
and 56% in radial, cross and along-track direction during nominal
estimation periods and up to 89%, 90% and 92% in radial, cross and
along-track direction for periods with unfavourable Earth viewing an-
gles. These results are expected as this work uses a weighted estimation
scheme, see Section 4.

While not the expected case for JUICE, in another case the assump-
tion was made that JUICE’s accelerometer is not turned on continuously
but only outside tracking periods. In this scenario it is necessary to
estimate accelerometer biases after each accelerometer restart, result-
ing in an increase from 1129 to 1606 estimated parameters. We found
that estimating accelerometer biases in an arc/wise fashion, instead of
globally, leads to an increase in the crossover’s contribution. However,
For state estimation, the average improvements then become 21%, 5%
and 5% for nominal estimation periods and 56%, 19% and 16% for
periods with unfavourable Doppler data in radial, cross and along-
track direction, respectively. For empirical accelerations, the average
improvements become 9%, 20% and 9% for nominal estimation periods
and 33%, 54% and 34% for periods with unfavourable Doppler data
in radial, cross and along-track direction, respectively. While these
results seem indicative of crossovers being a stronger contributor to
local parameters, a wider variety of test cases need to be analysed to
determine whether this is a general fact.

An increase in arc length, up to arcs consisting of 10 days, was
found to decrease crossovers’ uncertainty improvements, which orig-
inates from the larger number of Doppler measurements available for

parameter estimation of a single arc. However, large estimation arcs
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are unfeasible as measurement fitting will rapidly degrade until major
factors have been sufficiently characterised such as JUICE’s attitude,
environment or WOL manoeuvres.

These findings show the benefits of including altimetry crossovers
for a mission’s POD, in particular when a degradation or absence
of traditional tracking methods is encountered. Furthermore, if lo-
cal parameters need to be estimated in addition to the spacecraft’s
state, crossovers provide an independent data set that can be useful
in decoupling these additional local parameters from the spacecraft
state. This characteristic is particularly valuable should accelerometer
biases not be estimated as a global parameter (considered here) but
as local parameters due to the necessity to switch accelerometers off
and on during the GCO500 mission phase. While not treated here,
previous studies have shown that the inclusion of crossover data can
also improve pointing estimation [14,15,17].

7. Discussion

Consistent with previous studies [14,15,17], the results of this work
show that crossover measurements can improve parameter estimation
uncertainty. In particular, parameter uncertainty improvements due
to crossovers become noticeably higher during periods with degra-
dation or absence of Doppler measurements, such as during occulta-
tions or when the spacecraft orbital plane is perpendicular to Earth’s
line of sight, making crossover measurements particularly valuable for
improved orbit estimation during such periods. Although spacecraft
position knowledge during occultation periods (where only crossover
measurements are available) is not as accurate as in periods where
there is Doppler data, crossovers do provide orbit constraints in these
periods. Furthermore, inter-arc crossovers uniquely allow information
from Doppler data to be indirectly used to constrain the orbit during
occultations, by transferring state knowledge between non-contiguous
arcs.

The added value of crossovers also depends on the total number,
and more specifically the type, of estimated parameters with crossover
contribution being lower if accelerometer biases are estimated as a
single parameter, instead of arc-wise. When these biases are estimated
arc-wise, estimation improvements due to crossovers increase from
under 5% in all directions to average 21% radially and 5% in cross
and along-track direction. In our nominal case study, the assumption
is made that accelerometers are on continuously and their bias can
be estimated as a global parameter. For more comprehensive future
studies a larger number of estimated local parameters may need to be
included (accelerometer bias drift, wheel off-loading manoeuvres, etc.).
While modifications in Doppler data quality (see Section 3.2), or an
improved Doppler data analysis strategy, such as a constrained multi-
arc estimation method [31], are expected to decrease the contribution
of altimetry crossovers, their inclusion is nonetheless expected to aid
in constraining orbit reconstruction and parameter estimation. Further
improvements are expected once our method is extended to account
for off-nadir pointing and the estimation of the rotational state of the
orbited body is included. Crucially, our method allows itself to be
extended to the estimation of the ℎ2 Love number. By combining the
estimation of state and ℎ2, this will allow for a fully consistent and
realistic estimate of how state errors propagate into ℎ2 errors, providing
a more robust uncertainty bound for this crucial parameter.

To effectively use crossovers for POD, global coverage is ideal
with their quadratic increase with the number of orbit revolutions
quickly resulting in more individual measurements than with conven-
tional tracking methods. However, due to crossovers’ inherently larger
measurement uncertainty, even a much larger number of crossovers
will not majorly alter estimation results due to the respective lower
measurement weighting. As sufficient crossovers only become available
after a certain number of available arcs, they cannot be reliably used
for orbit estimation during early JUICE missing phases. Limit cases
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for which the inclusion of crossovers is not recommended are truly p
polar, or equatorial orbits, where the definition of crossovers becomes
degenerate.

The inclusion of crossovers is computationally intensive as their de-
termination requires checking all individual ground tracks for crossings
with other arcs. Larger computational efforts of up to a tenfold were
also noted during estimation, due to the exceptionally high number of
available crossover measurements as their number grows quadratically
with the number of orbit revolutions [15]. Additionally, estimation
design matrix setup may be complicated, as a single observation can be
sensitive to local parameters that are separated in time by an arbitrary
interval. This is distinct from typical observables (e.g. Doppler), where
a single observation is sensitive to local parameters in a single arc only.
This can complicate the implementation of the model, and reduces the
sparsity of the associated matrices.

For the effective use of crossovers for POD, necessary algorithm
improvements include the use of a crossover tagging system to ensure
that the same arcs are used for a given crossover measurement after
each orbit adjustment. Iterative orbit adjustments can not only alter
the chronological order of crossovers, they can also lead to crossover lo-
cations vanishing and new crossovers appearing. Naturally, additional
computational loads also arise from crossover locations having to be
recalculated after each iteration. To lessen these loads, it is recom-
mended to use previous crossover locations as a priori information.
Performing a representative test using a subset of only 5,900 crossover
measurements, it was observed that the variation in the total number
of crossovers was ∼5%, which shows that neglecting such a tagging
ystem can heavily impair estimation convergence due to crossover
easurement mismatches between estimation iterations.

An additional challenge that is likely to come up in the practical
pplication of our method is a correct data weighting scheme for the
ultiple data types. For instance, separate crossover observables will
ave errors that are unlikely to be truly independent. This fact can
e incorporated into our scheme by applying a crossover weighting
atrix that is non-diagonal, and will require meticulous analysis of the

rossover data properties. Similarly, the uncertainty in the crossover
ata is unlikely to have a (near) perfectly Gaussian distribution with
ero mean. This may be in part corrected for by the inclusion of obser-
ation biases and/or data pre-processing. We do note, however, that
hese aspects will reduce the influence of the crossover observables,
ompared to our analysis given here (as discussed in Section 6.2).

Unlike previous works [14,15,17], the use of crossovers presented
ere does not discriminate measurements depending on the ground
ntersection angle between ground tracks. The dependency is directly
ncorporated into our definition of the partial derivatives. We do point
ut however, that independently of the estimation method used such
ocations are highly sensitive to changes at the linearisation points,
otentially leading to large changes in the crossover location. When
sing actual data, it is necessary to discard problematic crossover
easurements as they might negatively impact convergence. Altimetry
easurements with large pointing uncertainty should be discarded due

o their inherent uncertainty on any respective crossover locations.
lso, large measurement uncertainties over unfavourable surface slopes
ight lead to unaccounted, rapid changes in topography which is
articularly critical should the pointing uncertainty lead to altimetry
rc shifts larger than the altimetry footprint radius.

Another critical characteristic of laser altimetry measurements is
heir spacing between consecutive footprints. If measured over sloped
errain, the necessary interpolation of the topography at the crossover
ocation can rapidly lead to a large error contribution. Known off-
adir pointing can be accounted for by respective epoch shifts on both
rcs making up a crossover. Since our method is obtained using nadir
ointing assumption, for its use measurements with large off-nadir
ointing should nevertheless also be discarded as the respective partials
re still missing in our formulations. The uncertainty of altimetry
rossover locations depends both on spacecraft location uncertainty and

ointing uncertainty. Here, the in-plane spacecraft uncertainty has a
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magnitude of ∼2 m while pointing uncertainty results in an arc shift of
up to ∼25 m. This difference in magnitude further emphasises the need
of further efforts to enable pointing estimation when using crossovers.

Lastly, since the partial derivatives for the two interpolated al-
timetry measurements which make up one crossover measurement are
independent from one another and only depend on the respective
linearisation point for estimation, altimetry crossovers can be used on
a multitude of spacecraft over the same body. This could be especially
advantageous for missions made up of several spacecraft around highly
unconstrained bodies. However, combining such data from multiple
missions/spacecraft will require the calibration of the different instru-
ments on different spacecraft to be critically assessed and compared, to
prevent measurement biases from being introduced into the crossover
observations.

8. Conclusion

This paper presents a mathematical formulation to include crossover
measurements into orbit determination in detail, by using analytical
partial derivatives under the assumption of nadir-pointing. It is shown
that a simplified, first-order approximation is insufficient for the in-
clusion of crossovers into orbit determination procedures and that
a more elaborate expression is required, which includes the change
in crossover location due to changes in the crossover times 𝑡1 and
2. The inclusion of crossover measurements is shown to improve
pacecraft position only marginally (∼1.8%) due to advancements in
oppler precision, with noticeable estimation improvements in case
f Doppler data degradation or unavailability. Such cases occur if
he spacecraft orbital plane become perpendicular to Earth’s viewing
ector or if they are viewing occultations. Additionally, the inclusion of
rossovers allowed spacecraft state estimations for occultation periods
ith average uncertainties of 3 m, 30 m and 870 m in radial, cross
nd along-track direction, respectively. Uncertainty improvements are
lso attained for global parameters such as 𝑘2 (5.3%), accelerometer

biases (∼1.5%) and spherical harmonics (0.8% in average, up to 11%
for low-degree coefficients) with improvements rapidly decreasing for
harmonics of increasing degree and order. Should accelerometer biases
be estimated as local parameters, altimetry crossovers lead to larger
average estimation improvements of 21% radially, and 5% in along
and cross-track directions for state estimation and 9%, 20% and 9%
in radial, cross and along-track direction for empirical accelerations.
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Appendix. Ganymede gravity field
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See Table A.3.
Table A.3
Normalised Ganymede gravity field coefficients. 𝑛 stands for degree, 𝑚 for order, 𝐶
for cosine coefficients and 𝑆 for sine coefficients. Reference radius: 2634.0 km; 𝜇:
9887.83445333 km3 s−2. Values for coefficients up to degree and order 10 as in
[26,29,38].
𝑛 𝑚 𝐶 𝑆

11 0 3.92 × 10−7 0
11 1 2.94 × 10−7 −4.55 × 10−7

11 2 −9.04 × 10−8 −7.50 × 10−8

11 3 −2.75 × 10−7 1.26 × 10−7

11 4 1.28 × 10−8 4.70 × 10−7

11 5 −1.08 × 10−7 5.31 × 10−7

11 6 3.23 × 10−7 −2.62 × 10−8

11 7 −2.24 × 10−7 4.16 × 10−7

11 8 −2.66 × 10−8 −2.73 × 10−7

11 9 9.49 × 10−8 3.47 × 10−7

11 10 4.65 × 10−7 5.55 × 10−8

11 11 5.34e−09 −5.53 × 10−7

12 0 −2.09 × 10−7 0
12 1 2.45 × 10−7 2.10 × 10−7

12 2 1.13 × 10−7 −9.68 × 10−8

12 3 −2.39 × 10−7 3.11 × 10−7

12 4 3.92 × 10−7 1.61 × 10−7

12 5 4.62 × 10−7 −4.77 × 10−7

12 6 2.97 × 10−7 −6.14e−09
12 7 3.85 × 10−7 3.52 × 10−7

12 8 −1.82 × 10−7 −2.45 × 10−7

12 9 2.20 × 10−7 −1.67 × 10−7

12 10 3.82 × 10−7 3.54 × 10−7

12 11 1.76 × 10−7 −2.96 × 10−7

12 12 −2.67 × 10−8 6.46 × 10−8
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