
Mining Software Testing Knowledge from Stack Overflow

Dibyendu Gupta

Supervisor(s): Andy Zaidman, Baris Ardic

EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Dibyendu Gupta
Final project course: CSE3000 Research Project
Thesis committee: Andy Zaidman, Baris Ardic, Koen Langendoen

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract
This paper aims to unveil and gather testing-
related information from Stack Overflow, high-
lighting it as a valuable resource for practition-
ers seeking answers and guidance. The study
aims to accumulate knowledge from real-life ex-
periences shared on Stack Overflow and bridge
the knowledge gap between industry practices
and teaching practices. The paper explores dif-
ferent types of software testing, popular frame-
works, temporal trends of testing-related technolo-
gies, controversial opinions, and recommended
practices/advice/suggestions from Stack Overflow
posts. The methodology involves determining
search terms through literature, querying the Stack
Exchange API, conducting frequency analysis of
words from posts, and manually inspecting threads.
Our results show that the most popular frameworks
discussed are Selenium, Spring, JMeter, and React.
Automated testing and JavaScript frameworks have
shown an upward trajectory over the years. The
recommendations made by practitioners were cat-
egorized based on the broad scope of topics cov-
ered. We draw comparisons and parallels with re-
lated previous research and discuss the technical
limitations faced during the study. Overall, this pa-
per uncovers valuable insights from Stack Overflow
and provides practitioners with the current view on
industry practices.

1 Introduction
Software testing is a critical process in software develop-
ment. Identifying defects and bugs in the early stages of
software development prevents glitches and failure, detects
security vulnerabilities, improves the quality of products, in-
creases customer satisfaction and trust, helps with scalability
and saves money in various situations [1]. Acknowledging
the importance of software testing, research states that edu-
cating practitioners on software testing has often been inad-
equate [2]. Practitioners look for resources on the internet
to answer their testing-related questions [3]. A widely recog-
nized forum within the computer science community is Stack
Overflow (SO1). SO is a question-answer forum for prac-
titioners created in 2008 by Jeff Atwood and Joel Spolsky
[4], designed for discussions and sharing knowledge between
peers.

According to the 2022 survey conducted by Stack Over-
flow, 70% of the respondents have completed some form of
higher education (a Bachelor’s degree being the most com-
mon) and 80% of respondents are professionals [5]. This
shows that SO is a good resource predominantly used by prac-
titioners looking to clear their doubts on topics of interest and
learn about new technologies. The survey also mentions that
SO is the 2nd most relied-on online resource for learning how
to code.

The objective of this study is to accumulate knowledge
1SO is the acronym used for Stack Overflow through the paper.

from the real-life experiences of practitioners. This knowl-
edge should help educators identify the software testing top-
ics that are unclear, unaware or misunderstood by practition-
ers. The objective is to bridge the knowledge gap between in-
dustrial practices and teaching practices by providing insights
into the topics discussed on SO. From the stated research di-
rection, the following research questions were formulated:

RQ1: What kind of information regarding types of soft-
ware testing is available on stack overflow?

1. What are the different types of software testing?

2. What are the popular testing frameworks discussed on
SO for different types of software testing?

3. What are the temporal trends concerning popular tech-
nologies/frameworks/tools on SO?

4. What are controversial software testing opinions on
SO?

There is a plethora of information that can be gathered from
SO. Practitioners use SO to answer and discuss the practical
problems they face with various technologies and tools. An-
swering what technologies and tools are used and how much
their importance has changed over time is critical informa-
tion to look at. This research question aims to create a better
understanding for researchers and professionals about which
topics are of relevance and could be included in higher edu-
cation.

RQ2: What are the recommended practices, advice and
suggestions on software testing from stack overflow?
SO users often recommend good practices/advice on how
other practitioners can improve their skills or what the stan-
dard practices are in industries. Numerous well-informed in-
sights could be found in the domain of software testing. Ag-
gregating these recommended practices will allow us to give
an overview of the relevant practices and nuances related to
software testing.

The paper is structured in the following sections: Section 2
discusses related work. Section 3 presents the methodology
used for this research. Section 4 provides the results obtained
and meaningful insights. Section 5 discusses some interesting
insights, limitations and threats to validity. Section 6 contains
the conclusion of the research paper and the potential of fu-
ture research. Finally, Section 7 indicates how the research
was performed responsibly.

2 Related Work
Looking at previous research enables us to adopt techniques
used to gather and analyze valuable data from SO. Other re-
search papers on software testing were explored to improve
our knowledge of the topic. Previously published research
has mined information from different domains of software
testing and curated and analyzed questions from SO.

Kochhar has researched the topic of mining testing knowl-
edge from Stack Overflow between 2009 - 2014. The re-
search yielded knowledge about important topics of discus-
sion, temporal trends, and technical challenges faced by de-
velopers. The results from this research state that testing
frameworks, databases, threads, forms, builds, etc. are among

the commonly discussed issues on SO. Among these cate-
gories, testing frameworks, databases and client servers were
the “hot topics” at the time of the research. Furthermore, mo-
bile development affiliated questions have seen an uptrend in
recent years [6].

Openja et al. researched the release engineering (releng)
sub-topic of software engineering from SO. Their research
revolves around the types, popularity, and answerability of
topics related to release engineering. The main findings
show that most questions revolve around continuous integra-
tion/continuous deployment (CI/CD). They also discover the
negative correlation between the popularity and difficulty of
topics, meaning that difficult topics are less likely to be pop-
ular [7].

Bretschneider et al. has conducted research about the
methodological requirements that identify “best practices”.
Their research provides a framework on how to determine
“best practices” and reviews several statistical approaches
that empirically identify “best practices” [8].

Allamanis and Sutton conducted research using topic
modelling to associate programming concepts and identifiers
to types of questions from Stack Overflow. Their research
brings forth important conclusions about how topic mod-
els provide intuitions about the programming languages and
problems faced by practitioners and how questions are simi-
lar across various programming languages [9].

Ardic and Zaidman have researched software testing ed-
ucation by examining higher-education curricula and survey-
ing industry experts. Their research identifies the presence of
dedicated software testing courses in universities, what top-
ics practitioners demand, and how these practitioners acquire
their testing knowledge and skills. Their research highlights
the need to improve courses and practices of software testing
for practitioners [10].

Garousi et al. explores the disjoint nature of collabora-
tion between industry and academia focused on software test-
ing. Their work is based on practitioners’ opinions about the
challenges faced while working and topics they want the re-
search community to investigate [2]. This research provides
the human perspective on the knowledge gap stated for this
research..

3 Methodology
As of May 2023, there are over 24 million posts on SO.
Hundreds of questions and threads are added to SO daily
[11]. The continuous improvement of software and frame-
works along with the influx of information and opinions on
SO makes it critical to research on the latest available data.
Recent data enables the research to be relevant amidst con-
stant change and portrays an up-to-date image of the soft-
ware testing community. This is done by discussing currently
used frameworks and temporal trends in the software testing
realm.

Openja et al. procured the dataset used in their research
from SOTorrent [12]. They used the data dump from 2019
to circumvent the gathering of data. However, the latest data
dump available on SOTorrent is from 2019. Working with a
4-year-old dataset contradicts the objective of this research of

delivering the latest information available. With the reduced
relevance of older data, it was decided to query testing-related
data from January 2017 to May 2023. To gather definitive
data and conduct reliable research, it is essential to devise and
follow a proper methodology. The following section entails
the process of choosing the search terms, creating datasets,
pre-processing the data and analyzing it.

3.1 Listing the search terms
SO is a search-based website. Gathering data begins with
identifying what search terms to query. This was done
by gathering search terms from the literature and cross-
referencing these terms from available online resources. Ac-
cording to ISTQB, types of software testing are different test-
ing activities performed at different levels of the software de-
velopment life cycle (SDLC) [13]. However, it is difficult
to gather consensus about a definitive categorization of the
different types of software testing (even for the ISTQB). Pre-
vious research is used to determine the different types of soft-
ware testing used to create a list of search terms to answer
RQ1.1. Ardic and Zaidman and Silva et al. conducted re-
search that partly discussed the different types of software
testing [10][14]. These terms along with the IEEE catego-
rization of types of software testing enabled us to compile an
extensive and relevant list of search terms [15]. These search
terms were verified from online resources [16][17][18]. The
search terms are stated below.

Types of software testing search terms:
Acceptance Testing, Compatibility Testing, Database
Testing, DB Testing, End To End Testing, e2e Testing,
Endurance Testing, GUI/UI Testing, Integration Testing,
Load Testing, Performance Testing, Regression Testing,
Security Testing, Spike Testing, Stress Testing, System
Testing, Unit Testing

The concept of “best practices” is subjective. Bretschneider
et al. [8] conducted research that examined the underlying
assumptions behind best practices and was able to establish a
set of rules to frame research designs for best practice stud-
ies. The rules revolve around completeness, randomness and
comparability of the dataset. During this research, we were
mindful to align our research with these rules. We also uti-
lized Beyer and Pinzger’s [19] research to understand how
SO tags assign synonymous words under the same category.
Their research provided a renewed perspective on how to for-
mulate synonyms of best practices that would enable us to
gather maximum coverage of posts and hence completeness
of the dataset. We use this research to formulate our search
terms for RQ2.

Search terms for RQ2:
Advice/Advise, Best approach, Benchmark, Best prac-
tices, Good practices, Smart practices, Standard, Soft-
ware testing, Suggestions, Tips

3.2 Gathering Data
For this research paper, we added filters and constraints on the
search terms to allow us to gather and analyze relevant tags,
questions and posts. Gathering data from SO was performed

through two primary means: automated data collection us-
ing Stack Exchange API and manual inspection through SO
posts. A script was written in Python to use the Stack Ex-
change API v2.3 [20] to query different types of information
such as posts, answers, comments, articles, tags, etc. from
SO and stored in CSV files. The datasets were gathered in
batches per year. This enabled us to answer RQ1.3 about
temporal trends in software testing related technology. Each
data point can be sorted based on one of the following met-
rics: activity, relevance, creation, votes, popularity or name.

For RQ1.2&1.3&2, the search terms mentioned in Sec-
tion 3.1 were used to create the dataset by querying the stack
overflow website for posts that contained the search terms ei-
ther in the title or body of the post. The datasets were queried
yearly from 1st Jan to 31st Dec of every year from 2017-2022
and till 31st May 2023 for the final year. The search terms
are either mentioned in the title or the body of the post. The
following filters used for the queries:

1. Sort - Relevance
2. Order - Descending
3. Starting date - 2017-01-01
4. Ending date - 2017-12-31
5. Title - The search terms provided (system testing, inte-

gration testing, etc.)
6. Body - Same search terms provided
7. Additional parameters:

(a) withbody - To query the content of the post
(b) has more - To query the consequent page until the

limit of the search result/limit of the API
RQ1.4 was answered by manual inspection of the thread:
“What’s your most controversial programming opinion?”
[21]. Measuring controversy through community-curated in-
dicators (such as accepted answers, and answer vote) are of-
ten unreliable [22]. This thread was chosen because it en-
capsulated the essence of the research question and we could
avoid using an arbitrary metric for measuring controversy on
SO.

Creation of the dataset for RQ2 was similar to that of RQ1.
Along with the filters mentioned, we added an extra filter
called “tagged”. This filter enabled us to filter posts that were
strictly related to software testing. The tags used were dif-
ferent synonyms of test: tests, testing, software-testing. The
dataset2 is publicly available on the 4TU research data web-
site [23].

3.3 Pre-processing the Data
To allow the gathered data to be useful and accurate for sub-
sequent analysis, it is necessary to discard stop-words from
the dataset. The stop-words include prepositions, articles,
punctuation marks, non-alphabetic characters and error log
statements [24]. Search terms were also omitted from the
dataset as their presence would dominate the frequency anal-
ysis without yielding any useful information. Furthermore,

2https://doi.org/10.4121/1e28497e-00d5-4be2-8533-
0a143922421c.v1

the bodies of the posts contain HTML tags. Similar to search
terms, it is necessary to remove them to avoid any skew dur-
ing analysis. Tags such as <p></p>, <pre></pre>, <a>
and <code></code> were removed.

3.4 Analyzing the Data
Frequency analysis [25] was performed to achieve results for
RQ1.2&1.3. We performed the frequency analysis on words
by counting the occurrence of words in the text. The defi-
nition of a word also includes multiple words combined by
a hyphen (-) to enable frequency analysis on tags. The fre-
quency analysis was done for each dataset (per year) and the
results were compiled into a bigger dataset. The temporal
trends for the popular technology/tool/framework were for-
mulated based on the frequency analysis.

Manual inspection and aggregation of underlying informa-
tion was the analysis method chosen for RQ1.4&2. We chose
not to utilize a data-driven approach because of the limited
availability of relevant data. The expected result was a list
of best practices mentioned by practitioners. This list is or-
dered by the occurrence of the practice/advice across different
posts, followed by the view count of the post. They were then
grouped into broader categories as presented in Section 4.

4 Results
This section contains the results based on the analysis of the
datasets and answers to the research questions.

Popular Frameworks in Software Testing
For RQ1, the most discussed frameworks for each type of
software testing are summarized in Table 1 and all the frame-
works mentioned across the posts are presented in Table 2.
These frameworks are derived from the title, body and tags of
the posts. Some interesting observations were made during
the compilation of this dataset:

• The overlap of frameworks in the tags and contents (ti-
tle and body) of posts is consistent and indicative of the
similarity of the information discussed in the posts and
the tags that the post owners assign to the post. This
accounts for the credibility of tags on SO.

• The posts available on “spike testing” and “endurance
testing” were limited and hence not representative of the
frameworks they discussed (they were omitted from the
table).

• Selenium, Spring, JMeter and React were mentioned in
more than one type of testing category. This indicates
their widespread usage across different testing types.

Temporal Trends
While compiling the datasets year by year from 2017-2023,
specific patterns and trends appeared from the datasets. These
trends concern the different technologies discussed in soft-
ware testing.

Posts concerning test automation have increased over re-
cent years. This was identified through the increased number
of “automated-tests” tags in posts related to software testing.
Additionally, the mention of scripts, scripting and continuous

Testing Type Most discussed Framework
Acceptance Codeception, Flask
Compatibility Selenium, Karate
Database Laravel
End-To-End Protractor, Cypress
GUI/UI Espresso
Integration Spring, .NET, Flutter
Load,Performance,
Stress

JMeter, Locust, Gatling

Regression Selenium,Playwright,Snowflake
Security Owasp ZAP, Sonarqube
System Ruby-on-rails
Unit Angular, Jasmine, React, Spring

Table 1: Summary of most discussed frameworks for different types
of software testing

integration/continuous deployment (CI/CD) in posts is an up-
ward trend over recent years. This is tangled with the usage
of test management and version control technologies.

Frameworks often see a rise or fall in popularity through
time. Documenting such trends gives us a better picture of
the frameworks the industry follows. End-to-end testing has
seen a switch from Protractor to Cypress. This trend is visu-
alized in Figure 1 [26].

Figure 1: Rise of Cypress vs. Fall of Protractor

Other frameworks have endured the test of time and are pre-
dominant in their field. JMeter and Locust for performance
testing and Espresso for GUI/UI testing are the epitomai of
frameworks that have been constantly popular through the
years.

An interesting uptrend of JavaScript frameworks has been
noted. NodeJS, JestJS, NestJS and VueJS have proliferated
into software testing. This trend is visualized in Figure 2 [26].

Figure 2: Uptrend of JavaScript Frameworks

Controversial Threads
A few controversial opinions regarding software testing from
a SO thread regarding “controversial opinions from program-
mers” [21] are discussed below. This is a closed thread that
has over 400 opinions from practitioners, a majority of which
discuss software engineering and computer science topics.

Unit testing is NOT helpful. This thread states that test-
driven development (TDD) and unit testing are not good
methodologies in software development. The argument given
for justifying this opinion was, writing test cases before writ-
ing code limits the developer’s capacity to identify edge cases
that were not identified when writing test cases. The opin-
ion suggests that testing should always be performed after
the code is written (Figure 3). Another thread reiterated a
similar opinion on unit testing. However, this thread argues
that systems are often intertwined and creating loopholes for
developing a comprehensive unit testing suite is unnecessary
and complex (Figure 4).

Figure 3: Thread 1 of unit testing related controversial opinion

Figure 4: Thread 2 of unit testing related controversial opinion

Developers testing their own code. There are conflicting
opinions on whether developers should test the code they
write. One thread argues that the communication over-
head between developing and testing teams is too high (Fig-

Type of Software Testing Most occurring technology from post (ti-
tle and body)

Most occurring technology from tag

Acceptance Testing Codeception, Flask, Yii, Selenium, Key-
cloak, Ember, Joomla, Rails, Sonarqube,
Mocha, Cucumber, Couchbase, Apache

Codeception, Selenium, Ruby-On-Rails,
Cucumber, Couchbase, JestJS, Sonarqube,
Magneto, Ember.js, Netty, Behat

Compatibility Testing Selenium, Openshift, Karate, Kafka, Angu-
lar, Firebase

Selenium, Firebase, Karate, Apache-Kafka

Database Testing Laravel, Kafka, Jest, Selenium, PHPUnit,
Spring, JMeter, Cucumber

Laravel, Selenium, Spring-Boot, Cucum-
ber, PHPUnit, JUnit

End-to-end Testing Protractor, Cypress, Playwright, npm, An-
gular, Detox, React, Nightwatch, Testcafe,
NestJS, Spring, Selenium

Angular, Cypress, Protractor, Playwright,
ReactJS, NestJS, JestJS, Puppeteer, Sele-
nium, NodeJS, Detox, React-Native

GUI/UI Testing Espresso, Android, iOS, Xcode, Xamarin,
Swift, Selenium, Karate, React, .NET

Swift, iOS, Selenium, Espresso, Android,
Karate, Cucumber

Integration Testing Spring, .NET, Flutter, JUnit, React, Jest Spring-Boot, ASP.NET-Core, Flutter,
Mockito, JUnit, JestJS, Ruby-on-Rails,
NodeJS, Maven, Angular, Netty, ReactJS

Load Testing JMeter, Locust, Apache, Gatling, Spring JMeter, Locust, NodeJS, Gatling, Sele-
nium, Spring, Blazemeter, Apache-Kafka

Performance Testing JMeter, Apache, Kafka, Selenium, Locust,
Gatling, Karate, Gradle

JMeter, Gatling, Locust, Selenium,
Apache-Kafka, Blazemeter, Karate,
Groovy, NodeJS, Spring

Regression Testing Selenium, React, Playwright, Snowflake,
Percy, Angular, Loki, Maven, .NET, Sen-
cha, TestNG

Automated-Tests, Playwright, Android,
Selenium, LokiJS, R-Caret, VueJS,
BackstopJS, TestNG, Maven, ReactJS,
Snowflake, Spring, ASP.Net-Core, Pandas,
Puppeteer

Security Testing JMeter, Owasp ZAP, Selenium, Ajax,
Burp, Spring, Sonarqube, Apache, Cucum-
ber, Flutter, ReactJS, JUnit

Owasp ZAP, Sonarqube, Flutter, Spring,
Selenium, Jquery, NodeJS, Android, Burp,
Laravel

Stress Testing JMeter, Apache, Cassandra, Spring,
ASP.NET, NodeJS, StressNG,

JMeter, NodeJS, Android, ASP.Net-Core,
Cassandra, Spring, Apache-Kafka

System Testing Rails, Mongoose, Spring, Capybara, Harf-
buzz, Databricks, Firebird, Gremlin, JUnit

Ruby-on-rails, Capybara, Firebird, Maven,
Apache-Spark, NodeJS, Ahoy, Jquery, Pys-
park

Unit Testing Angular, Jasmine, Mock, Jest, React,
Spring, Flutter, VueJS

Angular, Karma-Jasmine, Mockito,
NodeJS, ReactJS, JestJS, Junit, Spring

Table 2: All testing-related technology mentioned for different types of software testing derived from tags and contents (title and body) of the
post.

ure 5) while another argues that development and testing are
two different disciplines that follow different principles (Fig-
ure 6).

Figure 5: In-favour argument of developers testing their own code

Figure 6: Opposing argument that developers should not test their
own code

Recommended Practices
For RQ2, the results for the recommended practices/advice/
suggestions that practitioners give to other practitioners are
compiled and presented in this section. Many posts empha-
sised test-driven development (TDD). It was considered an
ideal approach towards software development. The recom-
mendations mentioned are in no particular order.

Writing Test Cases
Similar to writing production code, keeping test cases sim-
ple allows for easy debugging. Ideally, the test case should
not require debugging. The names of test cases and variables
used should be indicative of their purpose in the code.

Test cases should serve the purpose of validating the func-
tion of the software on valid and invalid inputs. Unit testing
with branch coverage often gives a good score for edge cases.
Subsequently, pairwise combinatorial testing helps reduce the

number of test cases without compromising the branch cov-
erage.

Avoiding code duplication through refactoring code and
extracting common elements from test cases creates an un-
complicated test structure. Positive/negative test cases can be
compiled into one test case. It is important to define a test
suite architecture for maintenance, debugging, and coherence
across the test suite.

Stubbing and mocking are good testing techniques to cre-
ate data points for edge-case test cases. Constraints in test-
ing data can be introduced using these techniques. Mocking
could be a good technique when testing the user interface (UI)
and functionality of the system by mocking HTTP requests.

Separate Test Suite and Main Application
Creating a testing environment and separating testing from
production is an important step in test suite architecture de-
sign. Create separate folders/packages/directories to separate
files. Use factories to produce real-time object instances for
testing. Common elements from test cases can be refactored
as the setup for the test environment.

Test Automation
One of the widely discussed topics is automating test cases
for medium to large-scale applications that are developed by
a team (not individual). It is essential to discuss the trade-offs
in the variables that are chosen for automation. Using tools
such as dynamic pipelines and CI/CD (Continuous Integra-
tion/Continuous Deployment) are useful tools when automat-
ing test cases. Adopting the practice of automating regression
tests is very efficient when deploying multiple versions of the
application and cautions the creation of new bugs from exist-
ing code. A good methodology indicated:

How much time should be spent on testing?
It is impossible to receive 100% test coverage and one should
not aim to test their code with that motive. Writing tests is
useful when looking for bug fixes, understanding the problem
and creating a non-flaky solution. About 10-50% of the de-
velopment time should be spent on testing (depending on the
criticality of the system). Software used in high-risk environ-
ments such as aeroplanes, nuclear plants or operation rooms
must be tested more extensively to reduce the probability of
failure.

Testing Databases
When testing databases, it is important to determine the or-
der of tests to avoid mishaps when dealing with data points.
Addition of multiple files while testing is acceptable as long
as the database is not altered while reacting to added files.
It is vital to check the validity and integrity of the database.
Selenium provides data-validation options and suggestions.

Importance of log creation during testing
Logs are artifacts created during test execution that contains
comprehensive information about the various processes and
stages of software execution. Logs are important to identify
problems and trace the issue to its source. The usefulness of

logs can be attributed to how well it is written and which stage
of testing they are used (system-wide integration testing bugs
would be easier to trace in comparison to unit testing bugs).
Logs can be written in the form of assertions, print statements
or log files. They can be helpful in duplicating the scenario
that caused the error. Furthermore, log analysis tools (like
Logwatch) can help in indicating the status of test runs, how
efficient they are, infrastructure impact and display location
of errors.

Recommended resources for software testing
Dedicated internet resources that discuss software testing are
mentioned in a few posts. Some testing blogs are Test-
ingReflections, Abakas, Satisfice.com and Google Testing
Blog. Other active forums that discuss software testing are
QAForums, OneStopTesting, SQAForums and SoftwareTest-
ingClub.com.

5 Discussion
This section highlights interesting insights that can be gath-
ered from the data. It also contains a comparison to the past
research and limitations faced during the research.

5.1 Interesting Insights
Whilst compiling the list of popular frameworks discussed
under different types of software testing, other technologies,
techniques and concepts emerged during the frequency anal-
ysis.

• Test management and version control technologies such
as AWS, Azure, Jenkins, Kubernetes, Docker, Gitlab,
and Github were often mentioned. This could show the
reliance on such technologies to manage and maintain
test suites across projects.

• One of the other popular techniques mentioned across
various posts was “mocking”. Mocking is a common
technique used throughout all types of software testing.
This conclusion is further solidified by the presence of
frameworks such as Mockito across different types of
software testing.

• A commonly discussed topic that is mentioned in all
types of software testing is terminology and debugging.
This shows that SO users are confused about nomencla-
ture pertaining to software testing. It could indicate a
lack of awareness regarding software testing terminol-
ogy. Furthermore, users often post screenshots and code
snippets of their code asking for help debugging it. This
could prove that amateurs do not get enough exposure to
testing/debugging and are unaware of how to go about
it.

We can also comment on the popularity of unit, integration,
load, performance, GUI/UI and end-to-end testing over the
other types of testing (Figure 7 omits unit testing because it
skews the picture and makes a nuanced comparison of other
types of testing harder). It could draw focus on the types of
software testing the industry focuses on. The tags on posts
concerning one type of testing were often intertwined with
another type of testing. This could indicate that types of soft-
ware testing are not isolated and are often linked to each other.

Figure 7: Number of posts per year for different types of software
testing
Controversial answers mentioned in the thread often give in-
sights into the complicated nature of the industry [21]. How-
ever, it is difficult to measure and model controversy from
sources such as SO. The conflicting arguments about whether
developers should test their own code show the diverse range
of opinions among the software testing community. These
opinions may derive from personal experiences and circum-
stances. It also displays the variety of situations SO users
encounter during their work and the absence of a universal
principle/strategy that addresses all problems.

5.2 Comparison to past research
Research conducted by Kochhar [6] and Openja et al. [7]
are of significant importance in inspiring this research. Their
work can be used to compare and draw parallels to the results
of this research.

RQ1.2&1.3 concerning popular frameworks and tempo-
ral trends were directly inspired by Kochhar’s research.
Kochhar’s research results in discovering testing frameworks
and databases as popularly discussed topics from 2009-2014.
This paper expands on the previous research and identifies
which frameworks are popularly discussed in the realm of
software testing. Subsequently, this paper recognizes trends
of such frameworks. Both papers share the conclusion that
multiple posts concern clarity in terminology. In contrast, this
paper adopts frequency analysis as the methodology instead
of Latent Dirichlet Allocation (LDA) to recognize the major
concept/technology discussed in posts.

The results from Openja et al. are incompatible and in-
comparable with the ones from this paper due to the differ-
ence in the subject (release engineering vs. software testing).
However, the research methodology concerning the collec-
tion, pre-processing and analysis of the data is inspired by
Openja et al.’s research. The analysis of tags is an important
technique used in both papers.

5.3 Limitations
A technical limitation faced during this research while us-
ing the Stack Exchange API was that it had a limit on the

number of requests made daily (10,000). The aggregated data
points queried would exceed the limit on some days. In such
cases, changing the IP address by moving to a different net-
work or waiting till the next day to query the remainder of the
data allowed us to work around this limitation. Additionally,
the Stack Exchange API is intentionally limited for querying
posts. To prevent crashes and excessive querying, the API
implements this policy. To circumvent this, the datasets were
queried yearly.

6 Conclusion and Future Work
This paper aims at aggregating software testing knowledge
and provide insights from Stack Overflow posts that could be
valuable to educators and the computer science community.
Previously conducted research from Kochhar and Openja et
al. played a major role in shaping the direction of this re-
search. The results of this paper add to the narrative of soft-
ware testing from 2009-2014. This research opted for au-
tomating the querying process from SO using the Stack Ex-
change API and developed a script for doing so. The data col-
lected [23] was used for answering the following: the popular
frameworks for different types of software testing, the tem-
poral trends for various technologies and the best practices
discussed among practitioners. The datasets were collected
yearly from 2017-2023 using the filters mentioned in Sec-
tion 3.2. Manual inspection was chosen to identify nuanced
controversial opinions on testing from a thread on SO.

The results for the popular frameworks were compiled us-
ing frequency analysis of words from the title and contents of
the posts and the tags related to the posts. Selenium, Spring,
JMeter and React were the commonly mentioned frameworks
across all types of testing and they are summarized in Ta-
ble 1. Automated testing and JavaScript frameworks have
seen an uptrend in recent years. Other frameworks have seen
a reduction in popularity (Protractor) due to the rise of an-
other (Cypress) in the domain of end-to-end testing. Practi-
tioners provide advice and suggestions on how to go about
simple testing activities. This paper aggregated recommen-
dations/best practices mentioned by practitioners on writing
test cases, test suite architecture, test automation, database
testing, time spent on testing, and log creation during testing.

Test management and version control software and tools
have become key components in software testing. Addition-
ally, controversial opinions give an interesting insight into
a wide variety of experiences and situations that practition-
ers draw their opinions from. All these results paint a com-
prehensive picture of modern practices in software testing
from SO. The picture could be skewed because of the knowl-
edge accumulated from a single source (Stack Overflow) or it
might not be the full picture (other aspects of software test-
ing may be missed or not discussed). Thus, it is important to
mention the potential for further research on this topic.

Approaching the research on software testing using open
coding or NLP would reveal other interesting topics that
are specifically discussed on SO. The categorization created
through this method would determine natural areas of discus-
sion. These topics could be compared with topics taught in
higher education institutions to create a qualitative compari-

son between industry discussion and academic syllabus.
Furthermore, collectives are a recent addition to SO. Col-

lectives are dedicated spaces around a specific technology or
product (Example: AWS, CI/CD, Google Cloud). Research-
ing them would allow us to gather technology-specific infor-
mation in the domain of testing.

Measuring controversy is a field of research in itself. A fu-
ture study of creating a metric for controversy on SO could
help gather posts that discuss controversy. Such a study can
expand our knowledge of disputed topics in software testing.

7 Responsible Research
SO is a public platform that contains various types of data
(questions, answers, opinions, user profiles, etc.). Research
using publicly available data must be handled and analyzed
carefully. Since they are not facts of the pertaining domain,
their presence and inclusion must be rationally argued. The
research was conducted responsibly and ethically with pure
academic intent. All credits to previous papers and sources
used during this research have been referenced. There are
aspects of this research that could raise questions about trace-
ability, data trimming and reproducibility. The following sec-
tion discusses these issues in detail.

Traceability All the data collected are information that is
stated or opinionated by SO users. To remove any bias against
any group of users, the researcher never queried, collected or
stored any information regarding the user. The lack of data
collection related to users should allow the users regarding
the posts to remain anonymous.

Data Trimming When manually examining a large pub-
lic dataset such as SO, it might be easy to forget or leave
out available information. During this research, the exclusion
process of data points was methodical and strict to avoid ac-
cidental exclusions. The filters that were applied through the
Python script were explicitly documented and reasoned.

Reproducibility The process of conducting this research
is well documented in Section 3. The filters used for query-
ing and the original script can be used for reproducing the
datasets. The datasets and other metadata used in this re-
search are publicly available on the 4TU website [23].

References
[1] Kinza Yasar. Software Testing. Accessed: 06-05-2023.

URL: https://www.techtarget.com/whatis/definition/
software-testing.

[2] Vahid Garousi et al. “What industry wants from
academia in software testing? Hearing practitioners’
opinions”. In: June 2017. DOI: 10 . 1145 / 3084226 .
3084264.

[3] Stefanie Beyer et al. “What kind of questions do devel-
opers ask on Stack Overflow? A comparison of auto-
mated approaches to classify posts into question cate-
gories.” In: vol. 25. 2020, pp. 2258–2301. URL: https:
//doi.org/10.1007/s10664-019-09758-x.

[4] Stack overflow. 2008 Accessed: 16-05-2023. URL:
https://stackoverflow.com/.

[5] 2022 Stack Overflow Developer Survey. Accessed: 21-
06-2023. URL: https://survey.stackoverflow.co/2022#
developer-profile-education.

[6] Pavneet Singh Kochhar. “Mining Testing Questions
on Stack Overflow”. In: Proceedings of the 5th
International Workshop on Software Mining. Soft-
wareMining 2016. Singapore, Singapore: Association
for Computing Machinery, 2016, pp. 32–38. ISBN:
9781450345118. DOI: 10.1145/2975961.2975966.

[7] Moses Openja, Bram Adams, and Foutse Khomh.
“Analysis of Modern Release Engineering Topics : – A
Large-Scale Study using StackOverflow –”. In: 2020
IEEE International Conference on Software Mainte-
nance and Evolution (ICSME). 2020, pp. 104–114.
DOI: 10.1109/ICSME46990.2020.00020.

[8] Stuart Bretschneider, Frederick J. Marc-Aurele Jr., and
Jiannan Wu. ““Best Practices” Research: A Method-
ological Guide for the Perplexed”. In: Journal of Pub-
lic Administration Research and Theory 15.2 (Dec.
2004), pp. 307–323. ISSN: 1053-1858. URL: https : / /
doi.org/10.1093/jopart/mui017.

[9] Miltiadis Allamanis and Charles Sutton. “Why, when,
and what: Analyzing Stack Overflow questions by
topic, type, and code”. In: 2013 10th Working Confer-
ence on Mining Software Repositories (MSR). 2013,
pp. 53–56. DOI: 10.1109/MSR.2013.6624004.

[10] Ardic Baris and Zaidman Andy. “Hey Teachers, Teach
Those Kids Some Software Testing”. In: (2023). To
appear in: IEEE/ACM 5th International Workshop on
Software Engineering Education for the Next Genera-
tion (SEENG).

[11] Stack Overflow Traffic. Accessed: 17-06-2023. URL:
https://stackexchange.com/sites#traffic.

[12] Sebastian Baltes et al. “SOTorrent: reconstructing and
analyzing the evolution of stack overflow posts”. In:
Proceedings of the 15th International Conference on
Mining Software Repositories, MSR 2018, Gothen-
burg, Sweden, May 28-29, 2018. Ed. by Andy Zaid-
man, Yasutaka Kamei, and Emily Hill. ACM, 2018,
pp. 319–330. DOI: 10.1145/3196398.3196430.

[13] Sita Shreeraman. ISTQB – Different Test Types.
Accessed: 20-06-2023. URL: https : / / www .
getsoftwareservice.com/different-test-types/.

[14] Roshali Silva et al. “Effective use of test types for soft-
ware development”. In: 17th International Conference
on Advances in ICT for Emerging Regions, ICTer 2017
- Proceedings. Vol. 2018. 2017, pp. 7–12. DOI: 10 .
1109/ICTER.2017.8257795.

[15] Harrine Freeman. “Software Testing”. In: vol. 5. 3.
2002, pp. 48–50. DOI: 10.1109/MIM.2002.1028373.

[16] Pittet Sten. Atlassian: The different types of software
testing. Accessed: 26-05-2023. URL: https : / / www .
atlassian.com/continuous- delivery/software- testing/
types-of-software-testing.

https://www.techtarget.com/whatis/definition/software-testing
https://www.techtarget.com/whatis/definition/software-testing
https://doi.org/10.1145/3084226.3084264
https://doi.org/10.1145/3084226.3084264
https://doi.org/10.1007/s10664-019-09758-x
https://doi.org/10.1007/s10664-019-09758-x
https://stackoverflow.com/
https://survey.stackoverflow.co/2022#developer-profile-education
https://survey.stackoverflow.co/2022#developer-profile-education
https://doi.org/10.1145/2975961.2975966
https://doi.org/10.1109/ICSME46990.2020.00020
https://doi.org/10.1093/jopart/mui017
https://doi.org/10.1093/jopart/mui017
https://doi.org/10.1109/MSR.2013.6624004
https://stackexchange.com/sites#traffic
https://doi.org/10.1145/3196398.3196430
https://www.getsoftwareservice.com/different-test-types/
https://www.getsoftwareservice.com/different-test-types/
https://doi.org/10.1109/ICTER.2017.8257795
https://doi.org/10.1109/ICTER.2017.8257795
https://doi.org/10.1109/MIM.2002.1028373
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing
https://www.atlassian.com/continuous-delivery/software-testing/types-of-software-testing

[17] Leseu Yan. SENLA: The Main Types of Software Test-
ing Methodologies and Testing Based on Business Ob-
jectives. Accessed: 26-05-2023. 2021. URL: https : / /
senlainc . com / blog / the - main - types - of - software -
testing - methodologies - and - testing - based - on -
business-objectives/.

[18] Thomas Hamilton. Types of Software Testing (100 Ex-
amples). Accessed: 20-06-2023. 2023. URL: https : / /
www.guru99.com/types-of-software-testing.html.

[19] Stefanie Beyer and Martin Pinzger. “Synonym Sug-
gestion for Tags on Stack Overflow”. In: May 2015,
pp. 94–103. DOI: 10.1109/ICPC.2015.18.

[20] Stack Exchange API v2.3 Documentation. Accessed:
13-06-2023. URL: https://api.stackexchange.com/.

[21] What’s your most controversial programming opinion?
Accessed: 19-06-2023. URL: https : / / stackoverflow.
com / questions / 406760 / whats - your - most -
controversial-programming-opinion.

[22] Xiaoxue Ren et al. “Discovering, Explaining and Sum-
marizing Controversial Discussions in Community QA
Sites”. In: 2019 34th IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE). 2019,
pp. 151–162. DOI: 10.1109/ASE.2019.00024.

[23] Dibyendu Gupta. Data underlying the publication:
Mining Software Testing Knowledge from Stack Over-
flow. 2023. DOI: https://doi.org/10.4121/1e28497e-
00d5-4be2-8533-0a143922421c.v1.

[24] Anton Barua, Stephen W. Thomas, and Ahmed E. Has-
san. “What are developers talking about? An analysis
of topics and trends in Stack Overflow”. In: vol. 19.
2014, pp. 619–654. URL: https : / / doi . org / 10 . 1007 /
s10664-012-9231-y.

[25] 101computing.net. Frequency Analysis. Accessed: 20-
06-2023. 2009. URL: https://www.101computing.net/
frequency-analysis/.

[26] Stack Overflow Insights - Trends. Accessed: 10-06-
2023. URL: https://insights.stackoverflow.com/trends?
tags=.

https://senlainc.com/blog/the-main-types-of-software-testing-methodologies-and-testing-based-on-business-objectives/
https://senlainc.com/blog/the-main-types-of-software-testing-methodologies-and-testing-based-on-business-objectives/
https://senlainc.com/blog/the-main-types-of-software-testing-methodologies-and-testing-based-on-business-objectives/
https://senlainc.com/blog/the-main-types-of-software-testing-methodologies-and-testing-based-on-business-objectives/
https://www.guru99.com/types-of-software-testing.html
https://www.guru99.com/types-of-software-testing.html
https://doi.org/10.1109/ICPC.2015.18
https://api.stackexchange.com/
https://stackoverflow.com/questions/406760/whats-your-most-controversial-programming-opinion
https://stackoverflow.com/questions/406760/whats-your-most-controversial-programming-opinion
https://stackoverflow.com/questions/406760/whats-your-most-controversial-programming-opinion
https://doi.org/10.1109/ASE.2019.00024
https://doi.org/https://doi.org/10.4121/1e28497e-00d5-4be2-8533-0a143922421c.v1
https://doi.org/https://doi.org/10.4121/1e28497e-00d5-4be2-8533-0a143922421c.v1
https://doi.org/10.1007/s10664-012-9231-y
https://doi.org/10.1007/s10664-012-9231-y
https://www.101computing.net/frequency-analysis/
https://www.101computing.net/frequency-analysis/
https://insights.stackoverflow.com/trends?tags=
https://insights.stackoverflow.com/trends?tags=

	Introduction
	Related Work
	Methodology
	Listing the search terms
	Gathering Data
	Pre-processing the Data
	Analyzing the Data

	Results
	Discussion
	Interesting Insights
	Comparison to past research
	Limitations

	Conclusion and Future Work
	Responsible Research

