
Online Trajectory Planning and Control of a MAV

Payload System in Dynamic Environments
A Non-Linear Model Predictive Control Approach

Nikhil D. Potdar

February 27, 2018

F
a
c
u
lt
y
o
f
A
e
ro

sp
a
c
e
E
n
g
in
e
e
ri
n
g





Online Trajectory Planning and Control of a
MAV Payload System in Dynamic

Environments
A Non-Linear Model Predictive Control Approach

Master of Science Thesis

For obtaining the degree of Master of Science in Aerospace Engineering

at Delft University of Technology

Nikhil D. Potdar

February 27, 2018

Faculty of Aerospace Engineering · Delft University of Technology



Delft University of Technology

Copyright c© Nikhil D. Potdar
All rights reserved.



Delft University Of Technology

Department Of

Control and Simulation

The undersigned hereby certify that they have read and recommend to the Faculty of Ae-
rospace Engineering for acceptance a thesis entitled “Online Trajectory Planning and
Control of a MAV Payload System in Dynamic Environments” by Nikhil D. Pot-
dar in partial fulfillment of the requirements for the degree of Master of Science.

Dated: February 27, 2018

Readers:
Supervisor Dr.ir. G. C. H. E. de Croon

Supervisor
Dr. J. Alonso-Mora

Committee
Dr.ir. C. C. de Visser





Preface

This thesis presents the culmination of my Masters of Aerospace Engineering studies at the
Delft University of Technology. Reflecting back on the past few years, it has been a very
demanding and challenging degree, however, this has made the study an exciting and stimu-
lating experience. I am thankful for the acquaintances and friends I have made along the way
and who have stood by me at every step.

I would like to extend my gratitude to my thesis supervisors Dr. Guido de Croon and
Dr. Javier Alonso-Mora for giving me this opportunity to pursue my topic of interest, and for
taking the time to support my learning process. Our fruitful discussions and meetings have
been invaluable throughout the project and have given me insights into the field and research
that only come with your combined years of experience. Your encouragement and help has
motivated me to push the envelope throughout the thesis and I am proud of the outcome.

Furthermore, this thesis would not have been possible without the help of fellow students who
have assisted me during the research with setting up and performing experiments; their help
and input has been appreciated. I would also like to thank Tobias Naegeli at ETH Zürich
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Chapter 1

Introduction

In recent years, research and development into Micro Aerial Vehicles (MAVs) from the research
community and industry alike has flourished. This is exemplified by the number of articles
published related to the topic of MAVs as shown Figure 1-1.
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Figure 1-1: Number of published articles containing the keywords ‘UAV’ or ‘MAV’ or their full
forms from 2002 to 2017 (Data obtained from Scopus on February 16, 2018)

The MAV is a disruptive technology that can bring about operational cost savings, enhanced
functionality and outperform classical approaches to tasks including payload transportation
(The Economist, 2012). The relatively small size, agility, ease of operation and low costs of
mass-produced MAVs has led to their ubiquity in society as a consumer electronic. Those
same qualities that make MAVs valuable are now being exploited for payload transport known
as MAV Payload (MAVP) systems. These systems have the potential to be rapidly deployable
and operable in situations where items need to be brought to areas that are inaccessible or
dangerous for humans and conventional (aerial) vehicles. Current applications have seen
MAVPs being used in search and rescue (Ryan & Hedrick, 2005), package/cargo delivery and
even construction (T. Lee, 2018). A few exemplary situations where MAVPs could be useful
include;

• delivering first-aid in flooded cities where ground vehicles can no longer operate,
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2 Introduction

• hoisting material up to the construction level of a structure,
• transporting small or even bulky items locally.

Till now most applications of MAVPs have been limited to wide, open spaces where the system
is unhindered or has its own workspace. Operation of MAVPs in urban settings presents itself
with notable challenges given the intricacies of the environment. See Figure 1-2 showing how
a rural and urban setting compare exemplifying the complexities for urban MAVP operation.

(a) Rural scene (Credit: Llee Wu 1) (b) Urban scene

Figure 1-2: Comparison of a open rural space and a moderately dense urban setting showing the
differences in scene complexity. With urban settings there are moving and uncertain obstacles and
the operating space is confined. Obstacle avoidance and proper planning is necessary in urban
settings as the margins of error are much smaller.

Given the dynamic and uncertain nature of urban scenes, it is necessary to perform planning
and control adaptively to account for unforeseen events in the surroundings. Current approa-
ches to MAVP operation have mostly focused on pre-generating (agile) trajectories and then
tracking them (the relevant article have been cited in the literature survey in Chapter 4).
The main limitation of this approach is the reliance on the task-specific full motion planning
making the behaviour inherently non-adaptive at run-time thus precluding the handling of
uncertain, dynamic obstacles. Furthermore, generating lengthy trajectories with a priori kno-
wledge requires considerable computational resources and is only tractable and amendable to
demonstrative purposes in well defined spaces over relatively short durations. Therefore, the
practicality of pre-generating trajectories for MAVPs in real-world applications is questiona-
ble.

To facilitate urban operation of MAVP systems while maintaining the ease of use and rapid
deployability synonymous with MAVs, it is practical to integrate the planning aspect into the
controller design to increase the system’s level of autonomy. With this approach the human
only needs to provide high-level planning objectives, such as the desired goal coordinates,
and the MAVP is able to plan and execute the motion autonomously without requiring a
pre-generated reference trajectory. Traditionally, the higher level of autonomy is achieved
by extending the system’s control design by an outer loop that uses a planning algorithm
to regulate inner loops. In contrast, in this thesis the planning and control is unified in a
Non-linear Model Predictive Control (NMPC) formulation that is able to predict a locally
optimal system trajectory over a fixed time horizon, and in parallel generate control actions
to realise the plan. Furthermore, the algorithm integrates feedback data in closed-loop form

1Llee Wu. “British rural scenery”. Accessed 26 February, 2018. https://flic.kr/p/cWA5Ys
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1-1 Thesis Content and Organisation 3

to facilitate online re-planning and control in dynamic environments. This approach results
in a local motion planner and controller able to achieve trajectory re-planning in real-time
amendable to autonomous operability. The thesis outlines the NMPC based unified planning
and control approach, and shows with demonstration that it works in practice.

1-1 Thesis Content and Organisation

The study addresses the modelling, planning and control of a MAVP system in dynamic
environments. The purpose of this thesis is captured in the following research objective;

‘Demonstrate online, closed-loop, collision-free trajectory generation and control
of a MAV-Payload (MAVP) system in dynamic environments using Non-Linear
Model Predictive Control (NMPC)’

The document has been divided into three parts reflecting the different stages of the study
performed.

In Part I, the Scientific Article is presented outlining the main findings from the thesis
in a succinct manner. The article contains a synopsis of the literature survey performed,
the research contributions made, an outline of the trajectory planning and control algorithm,
simulation and experimental results, and recommendations for future work. The thesis report
supplements the article to elaborate on further studies conducted in support of the outcomes
presented in the article. The scientific article is written in the IEEE Transactions style.

In Part II, the Preliminary Study is presented with supporting material required to develop
the NMPC algorithm explained in the article. It was imperative that the physical model
were accurate as NMPC’s performance is model dependent, therefore, the preliminary study
mainly addresses the derivation and testing of these models. The preliminary study is divided
up into the following chapters;

• Chapter 2 - an introduction to the thesis topic and its relevance,
• Chapter 3 - the research outline presenting the research objective, aim and questions
and putting the preliminary study into the context of the entire thesis project,

• Chapter 4 - a literature survey of the state-of-the-art approaches pertaining to MAVP
system modelling, trajectory planning and control,

• Chapters 5, 6 and 7 - derivation of the physical models, and its verification and validation
using simulated and experimental studies.

The conclusions from the preliminary study are presented in Chapter 9. An executive sum-
mary and abridged literature overview are presented in Appendix A and B.

In Part III, supplementary material to the scientific article is presented. This material provides
a more in-depth analysis and the rationale behind the algorithms and methods used. The
content contained within Part III include;

• Chapter 10 - the configuration of the Non-Linear Model Predictive Controller (NMPC)
and a discussion on optimality and stability,
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4 Introduction

• Chapter 11 - the Cascaded Kalman Filter state estimator design, tuning and simulation
based verification which were necessary to perform experimental trials,

• Chapter 12 - an outline of the software framework developed to perform the simulated
and experimental studies during this research.

The appendices contain additional information, technical data and results that are referred
to in the preliminary study and supplementary material. Appendix J is notable as it presents
the primal-dual interior-point algorithm used to solve the optimisation problem for trajectory
generation and control as implemented in the NMPC algorithm. It is advisable to read the
Scientific Article first and then refer to the thesis report when clarification is required.

1-2 People Involved

The study was performed under the supervision of Dr. ir. G.C.H.E. de Croon (MAVLab de-
partment, Faculty of Aerospace Engineering), and Dr. J. Alonso-Mora (Cognitive Robotics
department, Faculty of Mechanical, Maritime and Materials Engineering) at Delft University
of Technology, Delft, The Netherlands.
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Online Trajectory Planning and Control of a MAV Payload System in
Dynamic Environments using Non-Linear Model Predictive Control

Nikhil D. Potdar1, Guido C.H.E. de Croon2 and Javier Alonso-Mora1

Abstract— Micro Aerial Vehicles (MAVs) are increasingly
being used for aerial transportation in remote and urban
spaces where portability can be exploited to reach previously
inaccessible and inhospitable spaces. Current approaches to
MAV swung payload system path planning have primarily
focused on pre-generating (agile) collision-free, or conservative
minimal-swing trajectories in static environments. However,
these approaches have failed to address the prospect of online
re-planning in uncertain and dynamic environments which is a
prerequisite for real-world deployability. This article describes
a novel Non-Linear Model Predictive Controller (NMPC) for
online, agile and closed-loop local trajectory planning and
control addressing the limitations mentioned of contemporary
approaches. We integrate the controller in a full system frame-
work and demonstrate the algorithm’s effectiveness in simu-
lation and experimental studies. Results show the scalability
and adaptability of our method to various dynamic setups
with repeatable performance over several complex tasks which
include flying through a narrow opening and avoiding moving
humans.

Index Terms— Autonomous Vehicle Navigation, Collision
Avoidance, Optimization and Optimal Control.

I. INTRODUCTION

The small size, agility and low upfront costs of Micro
Aerial Vehicles (MAVs) could instigate their widespread use
and quick deployment for payload transport in areas that
are inaccessible or dangerous for humans and conventional
(aerial) vehicles. Current applications for MAVs with slung
payloads (the MAVP system) include search and rescue [1],
package/cargo delivery and construction [2] primarily in
large, rural, obstacle-free spaces.

Operation of MAVPs in urban settings presents itself
with notable challenges given the complex and dynamic
environment within which it would operate. While preserving
the benefits synonymous with MAVs over traditional aerial
vehicles, we require a system able to quickly, safely and
autonomously navigate an obstacle-ridden space and adapt
to different situations with no arduous system configuration.
Carriage of a swinging payload vastly increases the system’s
spatial footprint making operation in restrictive spaces chal-
lenging. With no direct swing control and the system’s causal
nature, pre-emptive MAV trajectory planning and control is
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necessary to generate the desired swing motions to avoid
potential collisions. Failing to acknowledge the system’s
future response when performing agile flight could result in
inevitable collisions as by the time an obstacle is detected,
the MAV is unable to divert the swinging payload away. Wor-
king around the problem, one may pre-generate trajectories
with fully defined environments or actively minimise swing
to reduce the system’s dynamic response, however, as we will
demonstrate, these undermine the real-world practicalityof
the approaches in dynamic environments.

A. Contributions

Our main contribution is an online local motion planner
and controller for safe, agile and collision-free flight of
a MAVP system in dynamic environments. We base our
approach on constrained optimisation using a finite-horizon
Non-linear Model Predictive Control (NMPC) algorithm. A
full system framework is outlined integrating the NMPC con-
troller in a combined hardware and software based control
loop. The proposed framework is used in simulated and expe-
rimental studies where we showcase our method’s scalability,
adaptability and performance over various complex tasks
in static and dynamic environments. We compare against
contemporary algorithms and emphasise our method’s merits
and limitations.

B. Related Work

Historically, studies of aerial vehicle control with suspen-
ded payloads involved helicopter systems with applications
to load transportation [3] but with the advent of MAVs,
research into MAVP systems has gained traction. This paper
addresses MAVP motion planning for collision-avoidance
which we broadly classify into two types, namely open-
loop planning with feedback control, and unified closed-loop
planning and control; our method contributes to the latter.

1) Open-Loop MAVP Trajectory Planning:Most contem-
porary approaches to collision-free trajectory planning for
MAVP systems have addressed the tracking of pre-generated,
possibly agile, trajectories in static workspaces. We refer to
these as offline, open-loop planning approaches as there is
no online (in-the-loop) dynamic re-planning of trajectories
involved.

Using pre-generated trajectories, planar and spatial
tracking of MAVP trajectories has successfully been de-
monstrated through accurate modelling and stabilisation of
the vehicle [4], [5] sometimes utilising swing minimisation
[6]–[8] to mitigate coupling disturbance effects. The latter
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approach is energetically inefficient and over-conservative
as the vehicle appropriates considerable control effort to
reduce swing resulting in a sluggish system. To accomplish
desirable yet feasible MAV and payload responses, the
pre-generated trajectories are computed taking the MAVP
system model into account. Algorithms to achieve this have
included, amongst others, optimisation and Reinforcement
Learning (RL) techniques. In the former, optimal trajectories
are computed as a cost minimisation problem subject to the
task objectives and the MAVP model, and encoded as full
state evolutions [9], [10], or a reduced dimension state using
differential-flatness [11], [12]. In RL, as used in [13]–[15],
feasible action policies (the trajectory) are generated that
enforce the MAVP model on state transitions.

The main limitation of pre-generating MAVP trajectories
is the reliance on task-specific full motion planning which
is consequently inherently non-adaptive at run-time thus pre-
cluding handling of uncertain, dynamic obstacles. Therefore,
in the aforementioned studies mentioned only fully known
environments with static obstacles were considered.

2) Closed-Loop MAVP Dynamic Trajectory Planning:
Motion planning in dynamic environments requires re-
planning at run-time to accommodate the changing environ-
ment. Closed-loop re-planning of full motion trajectorieson
a global level is intractable for a high-dimensional system,
such as that of a MAVP, thus necessitating the use of local
planners with finite time-horizons [16].

In [17], an agile and collision-free local trajectory ge-
nerator and controller method was demonstrated in simu-
lated and experimental setups with static obstacles using
iterative Linear Quadratic Gaussian (iLQG) control. The
optimal control iLQG method relies on a cost function that
is minimised at every control step such that user-defined
planning objectives are met; the result is a local trajectory
satisfying the objectives and system dynamics. The iLQG’s
iterative algorithm is exploited to generate locally optimal
linear feedback controls to achieve the real-time, closed-
loop performance. Impressive manoeuvres including flight
through a narrow opening as in [11] were demonstrated.
However, dynamic environments were not considered and
system inputs would saturate at run-time as the controller did
not consider physical constraints. In contrast, our approach
takes into account model constraints to ensure the physical
feasibility of generated trajectories.

3) Non-Linear Model Predictive Control and Unified
Planning and Control of MAV(P)s:Early studies have
successfully demonstrated the use of (N)MPC for real-time
MAV [18], [19] and MAVP [8], [20] simple trajectory
tracking. Focussing on the latter, in [8] NMPC for MAVP
trajectory tracking control was addressed with a comparison
to LQR control. The results showed NMPC’s superior physi-
cal constraint handling for feasibility guarantees, and larger
attainable MAVP flight envelope from the non-linear MAVP
model description. Overall NMPC outperformed LQR in
simulated tasks involving swing minimisation and agile
manoeuvres. In [20], studies from [8] were extended to an
experimental setup validating the results. However, unlike
in [17], both studies only addressed the control aspect of

tracking pre-generated trajectories. In contrast, our method
unifies online planning and control, and not just tracking of
a pre-defined plan thus making it a higher level approach.

Traditionally, (N)MPC algorithms for unified motion plan-
ning and control of MAVs have seldom been studied as the
required real-time re-planning was computationally intrac-
table [21]. With today’s improved computing capabilities,
applications have been demonstrated for a MAV without
swung payload [21], [22]. Building on the approach, in this
work we demonstrate the viability of NMPC based unified
motion planning and control for MAVPs.

C. Paper Organisation

We introduce preliminaries in Section II with notations and
our system models. In Section III we describe our method for
online and closed-loop unified motion planning and control
with NMPC. For the simulated and experimental studies
performed, we outline our system setup and framework in
Section IV. In Sections V and VI we present and discuss
our findings followed by concluding remarks in Section VII.

II. PRELIMINAIRES

A. Notation

The following notations are observed; scalarsx, vec-
tors/matricesx, setsX and reference frames{X}. Time
derivatives use dot accenting. Position vectors are denoted
by p ∈ R

3. Unless otherwise stated, vectors are expressed
in the East-North-Up (ENU) inertial frame{I}. For vector
x ∈ R

n and positive semi-definiten×n matrix Q, the
weighted squared norm is‖x‖Q

∆
= x⊤Qx. Rotations from

frame {A} to {B} are denoted by matrixRB
A∈SO(3) and

basic axial rotations aroundx by Rx∈SO(3).

B. Quadrotor with Swung Payload Model

The system is composed of a quadrotor of massmq and
a suspended point massml attached by al length cable
from the quadrotor centroid. Letpq, pl be the quadrotor,
load position andrql = pl − pq. All reference frames
are defined in Fig. 1. The load suspension anglesθl, φl

x

y
z

{I}

x
y

z

z

x
y

p
q

p
l

{E}

{S}


l

Φ
l

{L}

x

y

z

r
ql

x

y

z
{E}

x

yz
{B}

Roll ( Φ
q
 )

Pitch ( 
q
 )

Fig. 1: Quadrotor-Payload system with the following references frames;
{I} inertial ENU, {E} vehicle-carried ENU,{B} vehicle body frame,
{S} is {E} rotated by180◦ about the{E} x-axis and{L} load frame
with z-axis directed away from the cable’s suspension point. Quadrotor and
load positions and relative suspensions angles indicated.Euler anglesφq , θq
parametrise frame{B} to {E}; constant yaw assumed.
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parametrise the orientation of{L} to {S}. Intermediary
frame {S} is used to avoid the singularity for a downward
equilibrium load position when computing a rotation from
{L} to {E} directly. Then let the MAVP configuration and
its time derivative be given by variables

q =
[
p⊤

q , θl, φl

]
∈ R

5

q̇ = d
dt
q =

[

ṗ⊤

q , θ̇l, φ̇l

]

∈ R
5 ,

and let θq, φq be the true quadrotor pitch and roll with
yaw constant. The following additional model assumptions
are adopted;

• rigid, massless cable with free suspension points,
• quadrotor centre of gravity and centroid coincide,
• no aerodynamic drag effects on the cable.

We first describe the quadrotor’s input handling and the
aerodynamic drag model. We then complete the model by
derivation of the coupled quadrotor-load dynamics.

1) Quadrotor Inputs: As in [23], we abstract quadrotor
motor inputs and assume fast attitude and motor control such
that by actuating the quadrotor’s pitch and roll, and setting a
desired vertical velocity, we produce an inertial control force
Fu in any desired direction for realising translational motion.
Therefore, let the inputs be a desired quadrotor pitch, rolland
vertical velocity defined in{E} giving

u =
[
θ̄q, φ̄q, w̄q

]
∈ R

3 .

This input choice is consistent with our chosen Parrot Be-
bop 21 quadrotor that internally controls motors based on
inputsu to achieve full spatial flight; the internal controller
is schematised in Appendix A.

As the hardware-specific internal controller dynamicsu →
Fu are not documented, we empirically model the function.
The quadrotor’s true pitch, roll response and the vertical
control force resulting from the vertical velocity input is
given by

[θq, φq, Fq] =
[
hθ(θ̄q), hφ(φ̄q), hF (w̄q)

]
(1)

where, using the method presented in [24],hθ, hφ, hF are
identified for the fast dynamics and decoupled as three linear
second-order black-box models with model states and state
transition

xc = [xθ,1, xθ,2, xφ,1, xθ,2, xF,1, xF,2] ∈ R
6

ẋc = fc(xc,u) . (2)

Note that withhF we modelw̄q → Fq directly as the in-
ternal vertical velocity stabiliser controls the verticalcontrol
force (in {E}) generated by the motors (See Appendix A).
Then similar to [22], using outputs from (1) and based on
equilibrium relations, the input control force is given by

Fu =
[

m
tan(θq)
cos(φq)

g, −m tan(φq)g, Fq +mg
]

∈ R
3 (3)

wherem = mq +ml andg=9.81m/s2.
The full-form of (1) identified for the Parrot Bebop 2

quadrotor is provided in Appendix B.

1Parrot.http://developer.parrot.com/docs/SDK3/

2) Aerodynamic Drag Effects:We derive the drag induced
forces on the MAVP system. As in [23], assuming relatively
low quadrotor velocitieṡpq, we model a proportional linear
drag force on the quadrotor with drag constantkDq giving

FDq = kDqṗq . (4)

Also as in [23], for the payload we only consider the rota-
tional load motion relative to the quadrotor, hence, its drag
force is assumed to always be perpendicular to the moment
arm (the rigid cable). This simplifies the model complexity
enabling us to model quadratic drag as an induced moment
on the load suspension angles. Additionally, following from
our free suspension point assumption, there are no payload
drag induced reactive forces or moments on the quadrotor.
Under these simplifications, the load’s signed quadratic drag
force, with drag constantkDl, is given by

FDl = kDlv
2 v
|v|

≡ kDll
2ω2 ω

|ω|
(5)

wherev = ωl for circular motion withv, ω the linear, angular
load velocities andl the cable length. Substitutingω in (5)
by the load’s suspension angular rates and computing the
induced moment at the suspension point we obtain

[τθ, τφ] = kDll
3
[

ω2
θ

ωθ

|ωθ|
, ω2

φ
ωφ

|ωφ|

]

(6)

whereωθ = θ̇l, ωφ = φ̇l andτθ, τφ are the load’s drag force
induced moments affecting suspension anglesθl, φl. With
(4) and (6), the total exogenous system drag term is

D(q̇) =
[
F⊤

Dq, τθ, τφ
]⊤

. (7)

3) System Kinematics and Dynamics:The MAVP Equa-
tions of Motion (EOMs) are derived in frame{I} according
to Lagrangian mechanics. With frame transformations

RS
L = Ry(φl)Rx(θl) (8)

RE
S = Rx(π) , (9)

and l = [0, 0, l]
⊤ the rigid cable vector in{L}, we define

the load position as

pl = pq + rql = pq +RE
SR

S
Ll . (10)

The payload velocity is then given by

ṗl =
d
dt
pl = ṗq +RE

S Ṙ
S
Ll . (11)

The Lagrangian in terms of the system kinetic and potential
energies is

L = 0.5
∥
∥
∥[ṗq, ṗl]

⊤

∥
∥
∥
E

︸ ︷︷ ︸

kinetic energy

− g
(
mqṗ

⊤

q e3 +mlṗ
⊤

l e3
)

︸ ︷︷ ︸

potential energy

(12)

whereE = diag(mq(1×3), ml(1×3)) ande3 = [0, 0, 1]
⊤.

Using Lagrange’s equations according to D’Alembert’s
principle, the non-linear EOMs describing the MAVP dy-
namics in compacted form are given by

q̈ = M−1(q) (F −D(q̇)−C(q, q̇)−G(q)) (13)

with force F = [Fu, 0, 0]
⊤ ∈ R

5, and massM , drag
D from (7), CoriolisC and gravitationalG matrix terms.

3
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Equation (13) in full form is presented in [23]. Using (13),
the system state and state transition is given by

xq = [q, q̇] ∈ R
10

ẋq = [q̇, q̈] = fq(xq,Fu) . (14)

4) Full MAVP Model: Combining the quadrotor input and
system model from (2) and (14), we denote the full MAVP
state and state transition by

x = [xc, xq] ∈ R
16

ẋ = [ẋc, ẋq] = f(x,u) . (15)

Important MAVP model related variables and parameters
that we often refer to are summarised in Table I.

C. Obstacle Model

Obstacles, with each positionpo, are user-specified as
cuboids and subsequently modelled by enclosing ellipsoids.
Human obstacles are also specified as a cuboid of similar
size. Ellipsoids create smooth convex bounding volumes
for (non-convex) obstacles making them appropriate for
representing objects including trees, humans and pillars.Ad-
ditionally, computationally efficient collision checks against
the ellipsoid’s quadric exist [25] and is thus favourable for
real-time applications.

1) Obstacle Ellipsoid Definitions:Let the ellipsoid semi-
principal axes(ao, bo, co) be proportional to the specified
cuboid dimensions(uo, vo, wo) such that there is surface
contact at all cuboid corners, hence

(ao, bo, co) =
√

3
2 (uo, vo, wo) .

We define two ellipsoids with buffersβ as shown in Fig. 2;

1) the bounding ellipsoid So with dimensions
(ao + βo, bo + βo, co + βo) models the obstacle
against which collisions are checked,

2) the expanded ellipsoid Se with dimensions
(ao + βe, bo + βe, co + βe) represents a padding
used for planning safer trajectories.

Note by settingβ, a minimum cuboid to ellipsoid separa-
tion of β is warranted. Buffersβo, βe are used for collision-
avoidance purposes as will become clear later.

2) Obstacle Motion Prediction:Static obstacle positions
are assumed to be readily available for planning. As in [22],
we assume a constant velocity model for dynamic obstacles
and predict their future positions based on a velocity estimate
produced by a linear Kalman Filter using measured obstacle
position data.

TABLE I: MAVP system variables and parameters

Notation Definition
mq ,ml; g ∈ R Mass of quadrotor, load; Gravitational acceleration
l; θl, φl ∈ R Cable length; Payload suspension angles
pq ,pl ∈ R

3 Position of quadrotor, payload in{I}
q, q̇ ∈ R

5 MAVP configuration, and its time derivative
u ∈ R

3 Quadrotor input commands
F ,Fu ∈ R

n General, control input force in{I}
xc,xq ,x ∈ R

n Quad. input, system and full MAVP model state

S
o

S
e


o


e p

o
p

o

v
o

Fig. 2: Cuboid obstacle (left) with fixed positionpo or dynamic (human)
obstacle (right) with constant velocityvo each modelled by boundingSo

and expandedSe ellipsoid with dimensional buffersβ.

D. MAVP-Obstacle Collision Avoidance Requirements

Imperative to collision avoidance is ensuring separation
between the MAVP and obstacles. By quantifying the qua-
drotor, load and cable’s proximity to an obstacle, we present
mathematical requirements to guarantee a collision-free sy-
stem.

1) Point to Ellipsoid Distance:The point to an ellipsoid
signed distance is approximated as the true value cannot be
expressed in closed form [25]. For a generic ellipsoidS with
buffered dimensions(ao + β, bo + β, co + β) and position
po, the approximate signed distance to a pointp based on
the ellipsoid equation is

do(p, S) = ‖p− po‖Ω − 1 (16)

whereΩ = diag(1/(ao + β)2, 1/(bo + β)2, 1/(co + β)2).
When p is inside or onS, do ≤ 0, and asp is further

away fromS, do increases from 0 to infinity.
2) Quadrotor and Payload Proximity:We model the

quadrotor and payload each by a bounding sphere with an
associated radiusrc. Without loss of generality, we assume
an equalrc for the quadrotor and payload. Consider the
quadrotor; using the obstacle’s bounding ellipsoidSo, and
setting βo > rc and p = pq, then using (16) we can
guarantee the quadrotor does not collide with the cuboid
shaped obstacle provided

do(pq, So) > 0 . (17)

Similarly, considering the payload associated bounding sp-
here and positionpl gives

do(pl, So) > 0 . (18)

3) Rigid Cable Proximity: Modelling the cable as a
mobile finite line segment, we identify the cable’s Closest
Point of Approach (CPA) toSo denoted byp∗

c ; this is the
cable’s most critical point for collisions. Given the cable
cross-section dimensions are negligible, no buffer is required
so βo = 0. Using (16),p∗

c is computed by

p∗

c = argmin
pc

(do(pc, So)) (19)

with pc ∈ {p|p = pq + s(pl − pq), s ∈ [0, 1]}. Appen-
dix. C shows (19) is analytically solvable. Using (19) the
cable is guaranteed to be collision-free with respect to the
cuboid obstacle provided,

do(p
∗

c , So) > 0 . (20)

Requirements (17-18,20) must be satisfied with respect to
each obstacle to guarantee a collision-free MAVP system.
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III. ONLINE AND CLOSED-LOOP MAVP
TRAJECTORY GENERATION

A. Method Overview

The planning and control objective is to navigate the
MAVP system from an initial positionpstart to a user-
definable goal positionpgoal in a safe, agile and collision-
free manner. To accommodate the dynamic environment,
we perform dynamic and closed-loop local motion planning
using NMPC which is a receding finite-horizon controller.

1) Receding Horizon Dynamic Planning:Denote by∆t
the time-step, byk the stage index, and byN the finite
planning horizon (number of stages). At every sampling
instancet, we generate a local trajectory of durationN∆t
encoded as a sequence ofN+1 states that includes the initial
statex0, the transition statesxk and a terminal statexN and
is denoted by

x̃ := [x0, . . . ,xN ] . (21)

For state realisation, the associated input sequence up to the
terminal state is denoted by

ũ := [u0, . . . ,uN−1] . (22)

Following execution ofu0, the planning is receded by∆t
to t + ∆t. At the next sampling instance, the new obstacle
positions and a new initial state estimatex0 is obtained. Then
a local trajectory is re-generated by initialising the solver
with a time-shifted version of the previous solution. This
approach results in computationally efficient and closed-loop
performance with robustness to model uncertainties [22]. We
illustrate the process in Fig. 3.

2) Local Trajectory Generation:At every sampling in-
stance we solve a constrained optimisation problem. The de-
signer encodes the desired planning objectives in anobjective
function using costs to quantify the generated trajectory’s
performance. The costs are designed to lower with an in-
creasing satisfaction of the objective. For every trajectory
stagek, we evaluate an associated scalar cost giving a cost
sequence

c̃ := [c0, . . . , cN ] . (23)

Within (23), the trajectorystagecosts are given by

ck = cs(xk,uk, ∗k), k ∈ [0, N − 1] (24)

where functioncs is evaluated on the predicted state, input
and any additional variables (obstacle positions, navigation

p
q

p
o

p
goal

p
start

p
l

NMPC Planned

Local Trajectory

v
o

Time t
1

p
q

p
o

p
goal

p
start

p
l

NMPC Planned

Local Trajectory

v
o

Time t
2

Fig. 3: System moves towardspgoal with t2 > t1; planned local trajectory
(grey) at current time (left) that is updated in a future time (right) with the
new state and obstacle data. Schematic projected top view with illustrative
obstacle ellipsoids shown.

goal, slacks etc.) that we denote by∗. The terminal cost is
given by

cN = ct(xN , ∗N ) (25)

where functionct is evaluated on variables of the terminal
stage. Terminal costs are used to achieve closed-loop stability
of the finite-horizon planner [26].

We then quantify the full trajectory’s performance by the
objective functiondefined as

J =
∑N

k=0
ck . (26)

Constraints are introduced to limit the solution space for the
trajectory encoded iñx and ũ thus providing (feasibility)
guarantees for the computed trajectory. To make sure the
optimiser always returns a solution at run-time, we may tole-
rate minor constraint violations by introducing non-negative
slack variables thatsoftenthe constraint [27]. Then the slack
variables associated to the trajectory are encoded in

s̃ := [s0, . . . , sN ] . (27)

A planning violation occurs when the optimiser produces
positive entries of̃s. A physical violationonly occurs when
the real system breaches constraints; i.e., the current slack s0
of s̃ is positive. By associating a high slack related cost in the
optimisation objective function, we avoid positive entries of
s̃ and accordingly any planning and physical violations [27].

During optimal trajectory generation we minimise (26)
respecting the constraints resulting in aN∆t length locally
feasible trajectory. In subsequent sections we introduce the
costs and constraints after which we formalise the optimisa-
tion algorithm in Section. III-D.

B. Costs

We introduce cost terms derived from our planning ob-
jectives presented in Section III-A. We use our weighted
square norm definition from Section II-A with ann × n
identity matrix denoted byIn to make all cost terms scalar
and positive.

1) Point-to-Point Navigation:For navigation, we mini-
mise the displacement between the quadrotor position and
goalpgoal. Let pstart be the start position, then we normalise
the cost to treat all start to goal distances equally. The cost
term is given by

cnav =
‖pgoal− pq‖I3
‖pgoal− pstart‖I3

. (28)

Making (28) a stage cost would mean the shortest path
(straight line) is always preferred, this may result in dead-
locks when it is necessary to go around an obtrusive obstacle.
Therefore, we use (28) only as a terminal cost thus allowing
curved paths to be generated such that locally and terminally
the system reaches a more favourable position.
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2) Potential Field based Obstacle Separation:For obsta-
cle separation, we employ a MAVP to obstacle proximity
related cost analogous to a reactive potential field [28].
We combine this with constraints to guarantee collision-free
trajectories as will be presented in Section III-C.3. This two
layered approach, similar to [22], enhances the operational
safety by pro-actively reducing the collision risk, especially
for unmodelled system and obstacle dynamics.

Let p be the quadrotor, load or cable’s CPA [see (19)]
position; for each we compute a cost. Letpo be the obstacle’s
predicted position, then the potential cost term activateswhen
p is in the obstacle’s expanded ellipsoidSe; i.e., using (16),
do(p, Se) < 0. We choose theSe associated bufferβe such
that βe ≫ βo. Observing that|do(p, Se)| increases from
zero to one as pointp moves from the ellipsoid surface
towards its centre, by penalising ap more towards the centre,
we naturally discouragep from getting closer to the smaller
bounding ellipsoidSo. GivenSo models the actual obstacle,
using this method we promote obstacle separation. With this
insight, and using (16), the cost is formalised as

cpf =

{
‖do(p, Se)‖I1 , if do(p, Se) < 0,
0 , otherwise.

(29)

3) Goal Directed Assistive Steering:Optionally we can
augment collision-free trajectory generation for low planning
horizons using assistive steering; the idea is inspired from
Vector Field Histograms [29]. The quadrotor position and
obstacle ellipsoids are projected onto the world horizontal
planeP by the transformationTP : R3 → R

2 whereTP =
diag(1, 1, 0). OnP , we define a set ofnd candidate angular
directions for steering

D =
{

γ| γ = i 2π
nd

, i ∈ {1, . . . , nd} ⊂ N

}

originating from our projected quadrotor positionTPpq.
Checking allγ ∈ D, we determineDfree ⊆ D which are all
the non-obstructed (free) directions inP up to a maximum
omnidirectional range fromTPpq. With γgoal the heading
of the goal position from the quadrotor position, the steering
direction is chosen to minimise the angular offset to the goal
as given by

γ∗ = argmin
γ

|γ − γgoal| , γ ∈ Dfree . (30)

With ∠TP ṗq the quadrotor’s heading, the cost is evaluated
as its deviation fromγ∗ by

csteer= ‖∠TP ṗq − γ∗‖
I1

. (31)

In our results we demonstrate the utility of steering only
when using low planning horizons. As theR2 steering
method is only amendable to planar obstacle avoidance, for
R

3 spatial avoidance we disable steering. Extension toR
3

could be done analogously.
4) Input Magnitude Regulation:The input magnitude

associated cost is given by

cin =
∥
∥u⊤

∥
∥
I3

. (32)

For our agile manoeuvres, we weight this cost low. Associa-
ting a high cost will improve the system’s energy-efficiency
by the conservative use of large inputs.

5) Payload Suspension Angles Regulation:The suspen-
sion angle associated cost is given by

cswing =
∥
∥
∥[θl, φl]

⊤

∥
∥
∥
I2

. (33)

For our agile manoeuvres, we weight this cost low. Associ-
ating a high cost will minimise the swing angles if desired.

C. Constraints

We derive constraints from our system and setup limits,
and planning objectives.

1) MAVP Dynamics:The process model state transition
given by (15) is discretised and enforced on the trajectory
state evolution by an inter-stage equality constraint

xk+1 = f(xk,uk) (34)

wherek is the stage index.
2) State and Input Limits:The state and input values are

bound to the system allowable ranges. LetXmin, Xmax and
Umin, Umax denote the state and input range limits, then the
following inequalities must be satisfied

Xmin ≤ x ≤ Xmax (35)

Umin ≤ u ≤ Umax . (36)

We specify the hardware-specific limits in Section IV.
3) Collision-Free Planning: Collision-free trajectory

planning is guaranteed by constraining the allowable sy-
stem’s spatial states. Letp be the quadrotor, load or cable’s
CPA [see (19)] position; for each we define a constraint.
Adopting the requirements (17-18, 20) for a collision-free
MAVP system as presented in Section II-D, and using (16),
the associated constraint is formalised as

do(p, So) + sc > 0 (37)

with the non-negative scalar slacksc.
4) Workspace Limits:For confined (indoor) operation,

the quadrotor and load position is limited to the workspace
limits. Assume a cuboid workspace, then letWmin, Wmax

denote the minimum and maximum workspace coordinates
in frame{I}, and between which the cuboid’s space diagonal
is defined, then the following inequalities must be satisfied

pq + 13sq ≥ Wmin and pq − 13sq ≤ Wmax (38)

pl + 13sl ≥ Wmin and pl − 13sl ≤ Wmax (39)

with 13 = [1, 1, 1]
⊤ and the non-negative scalar slackssq,

sl.When a constraint violation occurs, the slacks assume the
highest value required to satisfy the associated workspace
inequalities. Under workspace convexity, we also guarantee
the rigid cable remains insideW. Note that the inequalities
are written in short form, however, for implementation each
vector dimension would each have an individually defined
inequality.

5) Scalability to Large Obstacle Rich Workspaces:We
set a maximum omnidirectional obstacle detection range
originating from the quadrotor position whereby we disre-
gard any obstacles beyond the range for planning purposes.
Therefore, the previously introduced obstacle related costs
and constraints are dynamically implemented.
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D. Optimisation Algorithm

Local trajectory generation is formulated as a constrained
optimisation problem subject to the following costs and
constraint definitions;

1) Costs:We define the stage and terminal cost functions
based on the cost term definitions (28-29, 31, 32-33). Let
w denote a user-definable weighting used to assign relative
importance to costs and their associated objective, then the
stage cost function is given by

cs = wincin+wswingcswing+wsteercsteer+w⊤

pfcpf+w⊤

slacks (40)

wherewpf andcpf are vectors of weights and costs equal in
size to the number of obstacles, andw⊤

slacks all the slacks
associated cost. The terminal cost function is given by

ct = wnavcnav+ wincin + wswingcswing+ wsteercsteer

+w⊤

pfcpf +w⊤

slacks .
(41)

2) Constraints: We impose the system dynamics, and
state/input constraints, as introduced in Section III-C, on the
optimiser. By functiong we denote all additional inequality
constraints defined in (37-39). The constraint associated
slackss = [sc, sq, sl] ∈ R

3 must be non-negative.

Combining our previously introduced trajectory variables
(21-22, 27), we denote the optimisation variable by

z̃ = [x0, . . . ,xN ,u0, . . . ,uN−1, s0, . . . , sN ]

≡ [x̃, ũ, s̃] .
(42)

With the estimated initial statex0, we optimisez̃ such
that the objective function (26) is minimised resulting in
a locally optimal and feasible trajectory. With costs and
constraints stacked together over all stages and obstacles, the
optimisation problem that is solved at every planning time
instancet is formally defined as

min
z̃

J = ct(xN , ∗N ) + Σ
N−1
k=0 cs(xk,uk, ∗k)

s.t. x0 = x(t) (Initial Estimated State)

xk+1 = f(xk,uk) (Discretised Dynamics)

g(xk,uk, ∗k) ≥ 0 (Inequality Constraints)

xk ∈ X (State Constraints)

uk ∈ U (Input Constraints)

sk ≥ 0 (Slack Constraints).

(43)

E. Theoretical Analysis

1) Problem Dimensionality:Variable z̃ is optimised at
every planning time instance encoding the optimised local
trajectory in its solution. As given by (42),̃z comprises a
sequence ofN + 1 statesx ∈ R

16, N inputsu ∈ R
3 and

N + 1 slackss ∈ R
3, hencez̃ ∈ R

22N+19.
2) Optimality and Feasibility:We use a fast non-linear

programming based optimiser, namely FORCES PRO [30],
on our non-convex optimal control problem. Consequently,
the computed trajectories are only locally optimal over the
planning horizonN with the possibility of deadlocks when

the planned trajectory converges to any local optima in the
solution space.

Planning feasibility is warranted over the fullN stages
when all optimised slacks̃s are zero. When full planning
feasibility is not realised, provided that at least the current
slacks0 is zero, the current system state and inputs will be
feasible. Re-planning at a future instance can re-establish full
planning feasibility.

A comprehensive overview of the optimality and stability
of (N)MPC algorithms is available in [26].

IV. SYSTEM SETUP AND FRAMEWORK

We outline our particular implementation of the system
model and NMPC controller for simulated and experimental
studies. For the latter, we also present a state estimator.

A. System Properties and Hardware

The MAVP system properties used for all studies are given
in Table II. The MAVP hardware is shown in Fig. 4.

B. Workspace

We perform studies in a simulated and real workspace
measuring6.0 × 3.0 × 2.6m (L×W×H). The real ind-
oor workspace has a OptiTrack2 Motion Capturing System
(MCS) that can track markers for obtaining rigid-body pose
measurements inSE(3) at around 120 Hz.

C. Programmed Control System Framework

The control framework is schematised in Fig. 5; in Ap-
pendix A the on-board control component is expanded upon.
The off-board components run on an Intel i7 Quad Core
3.3GHz processor PC, and is programmed in MATLAB with
an efficient C language solver FORCES PRO performing the
online NMPC computations [30]. All studies are performed
on the same computer with at maximum one core being
utilised by FORCES PRO at run-time. The on-board com-
ponents run on the MAVP hardware; for simulated studies
we replicate this with our system model. In experiments,
communication between hardware is performed over a ROS

2OptiTrack Prime 17W.http://www.optitrack.com

Payload

Cable

4 x Markers

4 x Markers

Quadrotor

Fig. 4: Parrot Bebop 2 quadrotor with cable suspended load and attached
tracking markers.

TABLE II: MAVP system properties as used for study

Quad. Mass 500 g Quad. Drag Const.kDq 0.28
Load Mass 11 g Load Drag Const.kDl 1.77×10−3

Cable Length 0.77 m Max.
∣

∣θ̄q
∣

∣,
∣

∣φ̄q

∣

∣ Input 15◦

Detection Range 3.5 m Max. |v̄q | Input 1 m/s
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Input

Controller
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q 

MAVP Model
On-Board

q Φq

Internal Feedback

Fig. 5: Control system framework with the off-board NMPC controller and
state estimator sharing a MAVP model, and the on-board MAVP system.
Quadrotor input controller performs closed-loop low-levelcontrol. External
motion capturing produces measurements necessary for state estimation.

based network. For simulation and controller design, Runge-
Kutta 2nd order discretisation of the system model is used
resulting in sufficient run-time stability and performance. The
implemented NMPC cost weights are given in Table III.

D. Cascaded Kalman Filter State Estimator

Kalman Filtering (KF) based state estimation ofx is
performed using the system process model, and MCS based
sub-millimetre measurements of the quadrotor and load’s
pose in SE(3) [31]. As the Parrot Bebop’s standard in-
terface lacks a high frequency output of internal sensor
measures to off-board clients, they were unusable for our
state estimation routine. The MAVP system for which we
present process models in Section II-B comprises (i) a
quadrotor specific input controller, and (ii) the general non-
linear MAVP system. We distribute the state estimation over
two KFs permitting individual treatment of the subsystems
and maintaining modularity.

A Linear KF is used to estimate statexc of the quadrotor
input model (2). The MCS provides measures of real pitchθq
and roll φq for estimating statesxθ1 , xθ2 , xφ1

, xφ2
. Lacking

necessary measurements of the vertical control forceFq,
statesxF,1, xF,2 are only predicted without performing the
KF measurement update step. Similar to [32], a non-linear
Unscented KF is used to estimate the MAVP statesxq of the
system model (14). Measures for state variableq are directly
reconstructed from MCS data using the kinematic relations
introduced in Section II-B.3. Using the process model, the
Unscented KF is primarily tuned to provide noise reduced
estimates of the time derivatives ofq in xq. The Unscented
KF directly uses the non-linear and observable process model
for state prediction without performing linear approximations
as traditionally required by the Extended KF thus usually
improving the prediction accuracy [33]. The full cascaded
KF based estimator design is schematised in Fig. 6.

V. SIMULATION STUDY

We showcase our method’s scalability, robustness and
performance in simulated studies. The following metrics are

TABLE III: Implemented default cost term weights

Navigationwnav 1.0 Inputswin 0.01
Potential Fieldwpf 1.2 Swing Angleswswing 0.001
Steeringwsteer 0.05 Slackswslack 10000

Linear
Kalman
Filter

Unscented
Kalman
Filterq wq

q Φq

Fqq

q

xcΦq

Φq

Measured

Inputs

Measured xq
Fu x

Control Force Transform

Fig. 6: Cascaded state estimation using Linear and UnscentedKF and
measured MCS data. Linear KF estimatesxc based on the quadrotor input
model, measured true pitch, roll and inputs. Unscented KF estimatesxq

based on MAVP model, measured MAVP configurationq and control force
inputs computed by (3) using the Linear KF outputs.

used; let the system’sdistance-to-goalbe defined as

dgoal = |pq − pgoal| , (44)

then thetime-to-goalis the elapsed run-time such thatdgoal

strictly remains below 0.2 m.

A. Scalability of The Optimisation Problem

1) Scaling with Number of Planning Stages:The qua-
drotor, with a randomised initial swingθl, φl <10◦, starts
at (−2.0, 0.0, 1.1) with the dynamic obstacle at(2.0, 0.0).
A collinear position swap is performed with the obstacle
moving at 0.5 m/s such that the head-on paths critically tests
the predictive planning behaviour. The number of planning
stagesN is increased from 10 by 4 to 26. Using∆t=0.05 s,
default cost weights and with assistive steering enabled or
disabled (with 8 pre-defined steering directionsnd), we
perform 16 runs per case.

Results in Fig. 7a show the scaling of the NMPC solve
time with N using no assistive steering. It shows an in-
creasing trend which is expected as every additional stage
results in an increase of the optimisation variable given by
z̃ ∈ R

22N+19 increasing the problem dimension. The major
drawback of a lowN are physical violations as the system
is too late to respond to the incoming obstacle, leading to a
collision. The late response means the attempted aggressive
evasive behaviour causes the system to move far off-track,
sometimes leading to workspace limit violations, and overall
increasing the time-to-goal. With a higherN , collisions are
averted with a quicker task completion by a smooth agile
motion as depicted in Fig. 8a. However, withN=26, the
time-to-goal increases as the planner increases the MAVP
to obstacle separation lowering the potential field associated
cost resulting in a more optimal route according to the
objective function definition; this behaviour is tunable by
the cost weights to achieve a different behaviour.

To address the underperformance with a lowN , assistive
steering is used to guide the MAVP towards obstacle-free
regions without compromising on run-time performance. As
shown in Fig. 7b, the NMPC solve times are minimally
affected by enabling steering. Referring to Fig. 8b for the
N=10 case, observe how the steering assisted trajectory
is guided away from the obstacle resulting in a collision-
free task completion. In general, application of the steering
command over the entire planning length makes the path
more conservative thus increasing the time-to-goal especially
for the higherN when compared to no steering. The benefits
of steering are greater for low stage (N ) counts where
the guidance is used to improve local planning. A lowN
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10 14 18 22 26
Number of Stages

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

N
M

P
C

 S
ol

ve
 T

im
e 

[s
]

10 14 18 22 26
Number of Stages

3.0

3.5

4.0

4.5

5.0

5.5

6.0

T
im

e 
to

 G
oa

l [
s]

(b) With assistive steering (no violations)

Fig. 7: Simulated NMPC solve time, time-to-goal and physical violations (collisions or breach of workspace limits) per run with increasing planning stages,
assistive steering enabled or disabled, and 16 runs per case.
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(a) N=26 and no assistive steering; the long horizon pre-emptively guides the system away from the incoming obstacle’s path.
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(b) N=10 and with assistive steering; quadrotor’s planned heading is steered towards obstacle free direction for avoidance.

Fig. 8: Point-to-point navigation with collinear dynamic obstacle; showing planned and executed trajectory and current quadrotor position. Top down view.

with steering is a viable method to maintain a reasonable
run-time frequency and collision-free performance. In our
simulation, we always used default cost weights, however,
by fine-tuning the weights to accommodate a shorter/longer
prediction length, better performance may be realised.

Based on the results and qualitative observations,N = 18
was used for all subsequent studies as it balances run-time
and planning performance. As mentioned in Section III-B,
assistive steering is limited to planar motion, therefore,to
maintain the applicability of our results to spatial motionwe
have disabled steering for all subsequent studies.

2) Scaling with Number of Dynamic Obstacles:We
perform a navigation task from(−2.5,−1.0, 1.0) to
(2.5, 1.0, 1.0) amongstno randomly placed obstacles with
randomised velocities≤1 m/s. We increaseno from 2 by
2 to 8 with ∆t = 0.05 s, N=18, default cost weights, no
steering, and perform 16 runs per case.

Results in Fig. 9 indicate a positive trend in MPC solve
time with no resulting from the additional cost and con-
straints introduced into the optimisation problem per additi-
onal obstacle. The time-to-goal shows an increasing spread
with no as the obstacles are more likely to obstruct the
system’s path resulting in a lengthier route. In Fig. 10 we
show one run demonstrating the MAVP’s agile response
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Fig. 9: Simulated NMPC solve time and time-to-goal with increasing
number of dynamic obstacles usingN = 18 and 16 runs per case. No
violations/collisions occurred. Outlier for time-to-goalat 6 obstacles is for
a run that temporarily entered deadlock resulting in a longerpath.

amongst 8 dynamic obstacles. The outlier at six obstacles is
the result of a temporary deadlock situation that is resolved
by a lengthier planned route. As mentioned, NMPC is locally
optimal, therefore, the deadlock situation arises from a local
minimum of the objective function that occurs when several
obstacles corner or obstruct the MAVP’s path. In those cases,
the planning may not be able to detour around the obstruction
as the objective function over the planning length may only
have a positive gradient. This local optimality is a limitation
characteristic to local planning algorithms [34].
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Fig. 10: Point-to-point navigation usingN=18 amongst 8 randomised dynamic obstacles moving at≤ 1m/s. The dynamically planned and agile executed
trajectories of the quadrotor and payload are shown with thecurrent quadrotor position indicated. Top down view.
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(b) Pre-Generated; Simple task

-3.0 -1.5 0.0 1.5 3.0
x [m]

-1.5

0.0

1.5

y
 [
m

] t
0

t
2t

1

t
3

(c) Minimal Swing; Simple task
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(d) NMPC; Difficult task
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(e) Pre-Generated; Difficult task
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(f) Minimal Swing; Difficult task

Fig. 11: Comparison of executed trajectories for manoeuvringaround an obstacle (simple) and completing a slalom course (difficult) using NMPC with
N=18, pre-generated and minimal swing planning and control. Observe that pre-generation leads to the smoothest, most optimalpath resulting from
the global planning scope. NMPC response resembles pre-generation and only initially reacts later to the presence of obstacles due to local planning.
Minimal-swing response is sluggish as the turning motions aremore suited for agile behaviour. Top down view witht3 > t2 > t1 > t0 shown.

B. Performance Comparison to Contemporary Approaches

We compare the total task completion time for three
methods; (i) our NMPC (ii) pre-generated and (iii) minimal
swing trajectory planning and control. A navigation task is
performed for a simple static obstacle and a difficult slalom
setup. For (i) we useN=18 and default cost weights, for
(ii) we use our optimiser withN=200 for sufficient stages
to pre-plan the entire trajectory and then simply track it, and
for (iii) we useN=18 with a high swing costwswing = 1.
We use∆t=0.05, no steering and perform 4 repeated runs.

Table IV shows a comparison of the total task completion
times (off-line computation and trajectory execution), and
Fig. 11 depicts the executed trajectories using the three
approaches. As expected, the pre-generated trajectory has
the shortest time-to-goal for both tasks due to its highly
optimised planning which requires large off-line computation
times. The minimal swing approach results in sharp turns
as the system accelerates and decelerates at the turning
points making the motion slow and space inefficient as
substantial effort is required to maintain a low swing angle
through the turns. The NMPC based trajectory is marginally
slower and less optimal than pre-generation, however, direct
deployability means the simple task is completed within
2.65 s, a48% reduction, and the difficult task within 5.35 s, a

TABLE IV: Comparison of NMPC to pre-generated and minimal swing
approach for mean off-line computation, trajectory execution (time-to-goal)
and total task completion time over 4 repeated runs.

Algorithm Off-line [s] Time-to-goal [s] Total [s]
Simple task
NMPC N/A 2.65 2.65
Pre-Generated 2.91 2.25 5.16
Minimal Swing N/A 7.10 7.10
Difficult task
NMPC N/A 5.35 5.35
Pre-Generated 10.54 4.85 15.39
Minimal Swing N/A 18.55 18.55

sizeable65% reduction compared to pre-generation. Unlike
pre-generation where a task-specific trajectory is generated,
our NMPC method adapts to both tasks without any re-
configuration. With increasing task complexity and duration,
greater reductions can be realised making NMPC’s scalabi-
lity unparalleled. Furthermore, our NMPC method applies to
dynamic scenarios.

C. Robustness to Change in Control Time Step and Lags

We demonstrate the robustness of our method by (i)
increasing∆t from 0.05 s to 0.20 s to simulate a slower
NMPC controller (on a less-powerful computer), and (ii)
artificially adding a 0.1 s lag between NMPC generated input
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(a) ∆t=0.05 s, no lag (standard)
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(b) ∆t=0.20 s, no lag
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(c) ∆t=0.05 s, 0.10 s lag

Fig. 12: Distance-to-goal for a simple point-to-point navigation task, load suspension angles and NMPC generated pitchand roll inputs withN=18 and
an increased NMPC time-step from∆t=0.05 s to 0.20 s and control to execution time lag of 0.10 s. In (b), observe that NMPC compensates for the long
time-step over which inputs are executed by reducing the input magnitudes resulting in a stable yet slower, less agile motion. Comparing (a) and (c),
observe that even with a high time lag, the MAVP responds in a stable and agile manner.

commands and actually executing them. We use the simple
task from Section V-B for analysis andN=18, default cost
weights and no steering.

Comparing Fig. 12a and 12b with the different∆t, notice
that NMPC automatically adjusts and reduces the computed
input magnitudes for the longer time step resulting in a
slower, less agile system; this is apparent from the distance-
to-goal and load angles plots. With∆t=0.20 s, agile manoeu-
vres are inconceivable as large inputs over the long time-
step would result in excessive accelerations with detrimental
consequences on overall performance. Using the process
model, NMPC is able to appropriately adapt its planning and
control to the time-step size to realise the desired motion.

With a 0.10 s lag, notice in Fig. 12c that the system’s
distance-to-goal and load angles are similar to those with no
lag in Fig. 12a. Due to our method’s closed-loop setup, the
true system behaviour is continually used to re-initialisethe
planning instance thus modelling errors do not accumulate.
If pre-generated trajectories were used, any unaccounted lag
would result in significant deviations of the real system from
the planned path due to model mismatch. NMPC is therefore
more robust to small modelling inaccuracies making it a safer
and more practical method for real-world applications.

Increasing∆t further to 0.25 s and lag to 0.15 s destabili-
ses the NMPC controller in simulation. We attribute this to
several causes; first large time-steps used in combination with
NMPC’s discretised process model can result in prediction
error divergence. Second, unmodelled time lags result in the
prolonged execution of the large magnitude inputs required
for agile flight resulting in excessive, destabilising accelerati-
ons; for short lags, the closed-loop control is able to prevent
this from occurring. By acknowledging the presence of a long
time-step and/or lag in the controller design, the method’s
prediction accuracy can be improved; this is future work.

VI. EXPERIMENTAL STUDY

We showcase complex, agile behaviour in static and
dynamic experimental setups. The same distance/time-
to-goal definitions as introduced in Section V are
used. Videos of the experiments performed are at
https://youtu.be/2VtYjS3_6Gs.

A. Agile Acrobatic Manoeuvres

Two complex agile manoeuvres are performed; (i) the
MAVP must fly over a high bar at 0.95 m with a virtual
ceiling of 1.8 m, and (ii) similar to [11] and [17], the
MAVP must fly through a narrow0.7× 0.7m opening. For
both manoeuvres, three passes over/through the obstacle are
performed in a rapid, successive and bidirectional manner.
The tasks are impossible to execute without reducing the
system’s total vertical dimension (0.9 m when stationary)
by swinging the load. The NMPC uses the real time-step,
N=18, default cost weights and no steering. For the narrow
opening, the maximum pitch/roll input is increased to20◦.

In Fig. 13 the two agile manoeuvres and the obstacle to
MAVP clearance over all passes is shown. As the planning
must excite the load’s swing over a relatively short distance,
large rapid inputs are commanded. Following the manoeuvre,
the controller is able to stabilise the system at the goal
position. As we do all computations online, and perform
the passes in rapid succession, the clearances over the three
passes differ while maintaining acceptable separation to the
obstacle(s). For both manoeuvres, the entire system setup is
identical with only the obstacles changed exemplifying our
method’s adaptability to different tasks.

Of the 48 tests performed over both tasks, 77% were
successfully executed. In cases where the manoeuvre was
not successful, the MAVP would either end up in a deadlock
in front of the obstacle or make momentary contact with
the obstacle. Flight was recoverable following the contact
with only four tests where this was not the case. The likely
culprits for the unsuccessful tests are the local planning ap-
proach, and inaccuracies in the model resulting in a sub-par
prediction that leads to a discrepancy between the observed
and planned motion. In a deadlock, the planning horizon is
insufficient to plan a successful agile motion over/throughthe
obstacle, however, increasing the horizon could rectify this.
The obstacle contact was only observed when flying through
the opening as the margins of error were small, so prediction
inaccuracies have a noticeable effect on task performance.

The setup was extended to the case of a moving high bar
manoeuvre for agile dynamic obstacle avoidance (see video).
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Fig. 15: MAVP follows an elliptical path avoiding two randomly walking human obstacles modelled as ellipsoids moving at a mean0.5 m/s with max.
1.2 m/s. As shown in (c), the 0.2 m buffered collision avoidance limit is never violated. The system only intermittently enters the larger potential field
ellipsoids with a 1.0 m buffer. In (d), observe the steady loop times for the full framework (mean 66 ms) which includes the NMPCcontroller (mean
44 ms); brief spiking arises from situations where significant re-planning was required.

B. MAVP Human Obstacle Avoidance

Obstacle avoidance performance is demonstrated amongst
dynamic human obstacles with (i) test cases involving in-
tersecting MAVP-human paths, and (ii) random motion in a
shared MAVP-human space. The humans are represented by
ellipsoids with buffersβo=0.2 m,βe=1.0 m, and are tracked
to estimate their velocities for planning. The NMPC uses the
real time-step, default cost weights,N=18 and no steering.
Note that we define the MAVP’s closest approach to the
human’s associated ellipsoid as the smallest value of either
the quadrotor to ellipsoid, or load to ellipsoid distance.

1) One Human with Crossing Paths:A human walks per-
pendicularly and diagonally on a path crossing the MAV per-
forming a navigation task from(−1.5, 0, 1.9) to (1.5, 0, 1.9).

In Fig. 14 we show a snapshot and the full executed
trajectory for both cases. Observe the MAVP’s smooth, safe
and agile execution of the task which includes the use of
full spatial avoidance exploiting the available horizontal and

vertical space around the obstacle (video shows this clearly).
NMPC’s predictive capability means load is actively swung
away from the human’s direction of motion to avoid a po-
tential load-human collision. The minimum MAVP to human
separations for the perpendicular and diagonal crossing task
were 0.45 m and 0.61 m.

2) Two Humans Walking Randomly:Two humans walk
for 150 s in random directions crossing the MAVP’s path.
The MAVP autonomously follows a goal position moving
anti-clockwise with a 8 s period along an ellipse with semi-
principal axes(1.6, 0.4)m and a constant 1.4 m height.

In Fig. 15 we show a snapshot from our experiment
alongside the system’s closest approach to the humans and
the framework/NMPC loop time. As shown in Fig. 15c, a
safe distance is maintained by the MAVP from the humans
with no collisions over the entire run; the minimum observed
separation was 0.35 m from to the human’s collision avoi-
dance limit. Observe from Fig. 15d that the NMPC solve
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time resembles the statistics obtained from the simulated
study with 2 dynamic obstacles as shown in Fig. 9, the-
refore, the NMPC computation performance is preserved
going from a simulation to the experimental setup. As
the optimiser is initialised using the time-shifted previous
solution, a roughly constant solve time is achieved. Spiking
occurs when the optimiser’s iterative solver requires more
time to computed solutions which primarily occurs when
considerable re-planning is required. Examples where we
observed spikes included situations where the humans would
inhibit the NMPC planner from feasibly planning a path to
go to the goal position, or the MAVP would be trapped.
The spikes only lasted one to two time-steps so observations
showed the overall performance was not degraded. Specific
to experiments is a mean 22 ms overhead (on top of NMPC
solve time) associated with the framework’s state estimation,
communication and data parsing. The low overhead means
controller’s performance is not severely affected.

Thanks to its online and receding-horizon nature, our met-
hod can execute continuous manoeuvres and avoid dynamic
obstacles. To the best of our knowledge, the experimentally
demonstrated agile and safe MAVP manoeuvrability amongst
humans in proximity is unprecedented. Our method is ex-
tendable to larger spaces with more humans/obstacles as we
have already demonstrated in simulation with eight obstacles.

VII. CONCLUSION

In this paper, we presented a novel optimisation based
unified motion planner and controller to accomplish online,
closed-loop and agile flight of a Micro Aerial Vehicle slung
payload system. We aptly formulated the optimisation ob-
jective function and constraints to achieve safe and collision-
free flight in dynamic environments over various complex
tasks including flying through a narrow opening and avoiding
moving humans. With simulation and experimental studies
we demonstrate the method’s (i) scalability with the plan-
ning stages and the number of obstacles, (ii) robustness to
different controller time-step durations and input execution
lags, (iii) adaptability and repeatability over various complex
tasks, and (iv) fast online performance in experimental
conditions. For future studies we recommend the method’s
extension to non-rigid cables, improving the model’s rea-
lism, accuracy and consequentially the NMPC prediction
performance. Furthermore, a study involving variations of
the model parameters would showcase the generality of the
approach to different systems and setups. Also, due to our re-
liance on off-board NMPC control and motion capturing we
limited our experiments to indoor spaces, however, with the
controller frequency achieved off-board, we believe on-board
computations would be feasible with hardware available
today. Combining our method with contemporary obstacle
detection, localisation and state estimation techniques could
make urban MAVP operation a reality.

APPENDIX A
QUADROTOR ON-BOARD CONTROLLER

Figure. 16 shows an expanded schematic of the quadrotor’s
on-board controller. The pitch, roll input̄θq, φ̄q are tracked

by the fast attitude controller resulting in longitudinal and
lateral control forcesFx, Fy. From our observations, the
Parrot Bebop quadrotor can perform level flight under a
pitch/roll tilt suggesting the absence of an additional vertical
force component. The quadrotor vertical velocity is stabilised
by a controller based on reference inputw̄q resulting in
vertical control forceFz trimmed for weight. All forcesF
are in the world East-North-Up inertial frame.

APPENDIX B
IDENTIFIED PARROT BEBOP2 INPUT MODEL

The quadrotor pitchθq, roll φq and vertical control force
Fq response to inputs pitch̄θq, roll φ̄q and vertical velocity
w̄q are identified using the MATLAB system identification
toolbox. The linear second-order, state-space, black-boxmo-
dels, which we denote byhθ, hφ, hF , are given by equations
(45) (46) and (47) respectively;

ẋθ =

[

−4.301 −2.877
10.92 −10.37

]

xθ +

[

−0.6893
−16.32

]

θ̄q

θq =
[

1.763 4.586× 10
−3

]

xθ +
[

0
]

θ̄q

(45)

ẋφ =

[

−2.789 −4.978
9.302 −13.72

]

xφ +

[

−5.41
−18.04

]

φ̄q

φq =
[

1.996 0.4657
]

xφ +
[

0
]

φ̄q

(46)

ẋF =

[

−6.767 −6.546
3.031 0.311

]

xF +

[

38.75
1.841

]

w̄q

Fq =
[

0.310 2.03× 10
−2

]

xF +
[

−0.121
]

w̄q .

(47)

The statesxθ = [xθ,1, xθ,2], xφ = [xφ,1, xφ,2] andxF =
[xF,1, xF,2] are combined asxc = [xθ,xφ,xF ].

For system identification, we experimentally collected two
datasets (estimation and validation) of the Parrot Bebop 2
response on a 5◦ amplitude 0.5 Hz square wave pitch/roll
input over 15 s, and a 1 m/s pulse of width 1 s for the vertical
control force. Table V shows the quadrotor input model’s
fit. We use NRMSE (MATLAB’s definition) to facilitate
comparison; a 100% NRMSE means a perfect fit.
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Fig. 16: On-board quadrotor input controller showing innerattitude and
vertical velocity stabiliser loops. Motor inputsc are generated by controllers,
resulting in forcesF and momentsM . Internally stabilised quadrotor
attitude is perturbed byM ; control forceFu affects MAVP dynamics.

TABLE V: Normalised Root Mean Squared Error (NRMSE) to estimation
and validation dataset for empirically identified linear second-order quadro-
tor input control model.

System Model fit as NRMSE [%]
Estimation dataset Validation dataset

Pitch 94.59 93.81
Roll 91.09 89.09
Vertical Control Force 91.38 91.56
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APPENDIX C
DERIVATION OF THE CLOSESTPOINT OF APPROACH

(CPA) OF A FINITE L INE SEGMENT TO AN ELLIPSOID

Consider an ellipsoid of dimensions(a, b, c), at po-
sition po and a parametrised finite line segmentL =
{p|p = pq + s(pl − pq), s ∈ [0, 1]} where pq and pl are
the end-points. Let[u, v, w]⊤ ≡ pl − pq and rqo = po −
pq. SubstitutingL in the ellipsoid equation and expanding
vectors intox, y, z components, we approximate the signed
line to ellipsoid distance function by

d(s) =
(xqo + su)

2

a2
+
(yqo + sv)

2

b2
+
(zqo + sw)

2

c2
−1 . (48)

Minimising (48) with respect tos, we get the closest point
to the ellipsoid along the infinite expansion of lineL

ŝ = argmin
ŝ∈R

d(s) = −
xqoub

2c2 + yqova
2c2 + zqowa

2b2

u2b2c2 + v2a2c2 + w2a2b2
.

(49)
Then on the finite line segment we obtain the Closest Point
of Approach (CPA)

p∗

c = [xq + s∗u, yq + s∗v, zq + s∗w]
⊤

wheres∗ = min{max{ŝ, 0}, 1}.
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Preliminary Study of the System
Dynamics Model
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Chapter 2

Introduction to the Preliminary Study

In recent years, there has been growing interest from the research community and industry
alike in the Unmanned Aerial Vehicles (UAVs) potential of carrying payload/cargo. UAVs
are a disruptive technology that can bring operational cost savings, enhanced functionality
and outperform classical approaches to certain tasks including payload transportation (The
Economist, 2012). UAV’s relatively small form factor, agility and low upfront costs could
result in widespread and simple deployment of UAVs for payload transport in areas that are
inaccessible or dangerous for humans and/or conventional (aerial) vehicles. Current applica-
tions have seen UAVs being used in search and rescue (Ryan & Hedrick, 2005), package/cargo
delivery (Jain, 2015) and construction (T. Lee, 2018). However, most applications have been
limited to wide, open-spaces where the UAV is unhindered or confined to its own space.

Enabling UAVs to carry payloads in cluttered uncertain dynamic environments, such as a
city, presents itself with many challenges. There are four high-level tasks that must occur
to enable autonomous motion, namely Perception, to locate oneself, Planning, to have an
objective, Control, to perform actions, and Coordination, to realise the objective (Pendleton
et al., 2017). The focus of this entire research project will be to address the challenges related
to path planning and control for collision/obstacle avoidance of UAV-swung Payload (UAVP)
systems. Briefly stated, this thesis addresses the design of a closed-loop trajectory generation
control architecture for a UAVP system through dynamic uncertain environments quickly
and safely without complete environmental knowledge and with modelling imperfections. To
achieve this final outcome, it is reasonable to start with a preliminary study of the UAVP
dynamics as to understand the physical system characteristics and its physics. During this
preliminary study, a thorough investigation of the UAVP system and its modelling was perfor-
med to garner insights about the system behaviour and fill knowledge gaps with simulation
and experimental studies where necessary. The outcome of this study is a comprehensive
system model and foundational framework to perform future simulation and experimental
studies. The knowledge gained from preparing, setting up and experimenting with the har-
dware also provided insights into the possibilities and limitations of experimental studies as
will be presented in this report. Summarising, the system modelling theory, simulation and
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experimental setup, and results presented in this study establish the necessary groundwork
for subsequent studies for the control of UAVP systems for collision/obstacle avoidance.

Chapter 3 introduces the preliminary study’s content in detail, puts it into the context of the
entire research project and presents the subsequent steps for completing the study. Chapter
4 provides an overview of literature relevant to the preliminary study performed. Chapter 5
presents the derivation of the UAVP system kinematics and dynamics using first-principles.
Chapter 6 outlines the simulation and experimental methodology for verifying and validating
the UAVP model. Additionally, details of the hardware and software used is presented for
future duplicability. A discussion of the relevant results is presented in Chapter 7 with the
intent of fully identifying, verifying and validating the UAVP dynamics model. Chapter 8
provides an overview of the research planning with an outlook for the remainder of the research
project. Chapter 9 concludes and highlights the main research outcomes of the preliminary
study.
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Chapter 3

Research Outline

To put the research project into context, an overview of the research objective, questions and
hypothesis is provided in Section 3-1. From this the main research themes are discussed in
Section 3-2 identifying the research questions that are addressed in this preliminary study. In
Section 3-3 an update of the latest research objective is provided.

3-1 Research Objective, Aim and Questions

The objective of the research thesis project is to:

‘Demonstrate closed-loop collision-free planning, for an imperfectly modelled
UAV-payload system, through dynamic uncertain environments by using Model
Predictive Control (MPC) combined with Learning Based System Identification
(LBSI)’

To address and steer the thesis towards the research objective, several (sub-) research ques-
tions (RQ) are formulated that provide an indication of the knowledge required.

1. Can MPC be used for the closed-loop collision-free trajectory generation for a UAV-
payload system?

(a) Which theories are available for modelling the UAV-payload system dynamics while
considering the limitation and assumptions made?

(b) Which reactive collision avoidance methods have been researched in dynamic en-
vironments?

(c) How should the MPC be setup such that the controlled system’s motion is collision-
free?

(d) To what extent does simulation verify MPC’s capability of closed-loop collision-free
motion?
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(e) To what extent do the simulation results translate to real-life experiments for
validation?

2. Does the MPC with LBSI model show improved collision-avoidance performance in
comparison to using the EOMs?

(a) Which previous studies have explored the use of LBSI in the context of UAV-
payload systems?

(b) Which LBSI method is most suitable given the MPC control structure used?
(c) How should the LBSI be trained such that it remains representative of the physical

system?
(d) To what extent do experimental results show collision-avoidance performance im-

provements made using LBSI?

The relevance of these research questions to the study are addressed in Section 3-2. The
purpose of this research is to prove the following hypothesis. The research questions are used
to guide the research towards addressing the hypothesis presented.

‘The use of Model Predictive Control (MPC) combined with Learning Based Sy-
stem Identification (LBSI) enables closed-loop collision-free trajectory generation
under system modelling uncertainties for UAV-Payload systems’

3-2 Preliminary Study within Research Context

Three areas of knowledge are derived from this research objective where each will be progres-
sively addressed during the studies conducted.

• UAV-Payload (UAVP) system dynamics modelling
• Model Predictive Control (MPC) for closed-loop collision-free planning and control
• Learning Based System Identification (LBSI) to learn for imperfectly modelled UAVP
systems

This preliminary study contributes to the first area of knowledge; namely UAVP system
dynamics modelling. This research will be necessary for the second knowledge area concerning
the design of a model-based MPC controller. The performance of a model-based controller is
dependent on the model’s accuracy as control computations are derived from how the system
is expected to respond based on predictions made using the model. The reason of deriving
an accurate model becomes clear from understanding how MPC works.

Model Predictive Control (MPC) also referred to as Receding Horizon Control (RHC) is an
optimal control theory in which system control inputs are optimised, with respect to costs
and constraints, and executed in discrete time (Olsder, Woude, Maks, & Jeltsema, 2011).
The cost function (usually quadratic) and constraints are carefully designed to promote a
certain type of system behaviour that is feasible (constrained by physical limits). In MPC
a constrained open-loop Optimal Control Problem (OCP) is solved over a set time horizon
that generates a set of system inputs to achieve a locally optimal predicted system response.
Only the first action from the generated optimal control sequence is performed after which
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the entire time horizon is shifted by one time-step (recessed) and the process is repeated
(J. H. Lee, 2011; Olsder et al., 2011). Due to this ‘receding horizon’ principle, closed-loop
control is achieved as feedback is implicitly introduced by solving the OCP every time-step.
For a more thorough explanation of MPC, refer to Appendix D.

Two time horizons are defined in MPC, the control horizon which is how far into the future the
control inputs are to be optimised such that the predicted system response over the prediction
horizon length, using the model, deviates the least from the reference response (J. H. Lee,
2011). The prediction horizon length drives the required model accuracy over sustained time
periods as it require a model to predict the future UAVP states given only the actual measured
initial state. It is expected that over longer time horizons, the predicted system response will
increasingly deviate from the true response due to accumulation of errors. As the prediction
horizon is generally in the order of 10−1 to 100 seconds, the model only needs to capture the
system’s local behaviour accurately and over short time periods.

Having shown the relevance of this preliminary study for MPC, returning to the global research
scope, this report addresses two research questions that were initially identified in the research
planning. The first question requests the ways in which to identify and define the UAVP model
while the second requests how to verify and validate the model.

• RQ1a ’Which theories are available for modelling the UAV-Payload system dynamics
while considering the limitation and assumptions made?’

• RQ1b ’To what extent do the simulation results translate to real-life experiments for
validation?’

To identify, verify and validate the UAVP system dynamics model, a preliminary study was
performed using simulation and experiments results. The simulation was used to verify the
derived system dynamics model and build a framework to perform simulated studies using
the MPC high-level controller in subsequent stages of the research. Experimental data was
collected for identification of unknown system dynamics and validation of the simulated re-
sponses. The multifaceted approach ensured that the obtained UAVP model was fully iden-
tified, verified and validated such that it would provide sufficient predictive performance for
implementation in the model-based MPC.

3-3 Final Research Objective

Throughout the thesis, the research objective became clearer and focused. Following the
preliminary study, it became apparent that adding the Learning Based System Identification
on top of the closed-loop collision-free trajectory planning would be infeasible in the time
available. Also, by concentrating on one aspect and evaluating the planning and control, a
thorough and well-developed contribution could be made. Therefore, the research objective
was reworded as follows;

‘Demonstrate online, closed-loop, collision-free trajectory generation and control
of a MAV-Payload (MAVP) system in dynamic environments using Non-Linear
Model Predictive Control (NMPC)’
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Chapter 4

Literature Survey

The literature survey presents the state-of-the-art in concepts and techniques in the field of
collision-avoidance for UAV control and planning combined with insights into modelling the
Unmanned Aerial Vehicle - Payload (UAVP) dynamics. Within this scope, core concepts
from trajectory planning, and UAVP system modelling and control are treated with reference
to classical and contemporary techniques from literature and scholarly articles. The sections
are structured to provide the readers with a core understanding of concepts diving into more
detail, later on, to help substantiate the reason why the research proposed in this thesis is
relevant. Note that to the best of the writer’s knowledge, this is the state-of-the-art at the
time of writing of August 2017. A condensed overview of this literature survey is presented
in Appendix B.

Section 4-1 discusses the contemporary approaches to modelling the UAVP system highlig-
hting the complexity and limitations of models that are necessary to design effective control
techniques. Section 4-2 introduces core concepts from collision avoidance and highlights the
difference between open- and closed-loop collision avoidance. Section 4-3 discusses contem-
porary control techniques for UAVP system with an extended treatment of Model Predictive
Control (MPC) due to its relevance to this research’s topic. Section 4-2 elaborates on colli-
sion avoidance algorithms as used for UAVP system with their implementation and results in
empirical studies. Finally, Section 4-5 expands on adaptive control techniques by introducing
learning based system identification schemes that support parametric uncertainties in the
UAVP model.

4-1 UAV-Payload System Modelling

The modelling and control of aerial vehicles carrying suspended payloads was originally trea-
ted for helicopters (Cicolani & Kanning, 1992).The NASA Technical Paper from 1992 covered
the Equations of Motion (EOMs) of slung-load systems including multi-lift systems (multiple
vehicles) with different single/multiple suspension points with the intention of helicopter-
like vehicles being the suspension point(s). The study helped in the understanding of aerial
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vehicle assisted payload carriage and the disturbance effects that slung-payloads introduce
to the carrying vehicle. However, the theory of helicopter-payload dynamics do not directly
translate to UAVP dynamic systems; UAVs have fast, non-linear, unstable dynamics that are
only complicated by introducing a swung payload resulting in external disturbances (Palunko,
Fierro, & Cruz, 2012).

4-1-1 Types of Payload Attachment

When considering aerial vehicles such as a UAV with payload, there are two ways by which
payload can be carried. The stand-alone UAV is the combination of all the components
necessary for the UAV to fly independently; this includes the basic airframe and necessary
battery resulting in the vehicle’s Operating Empty Weight (OEW). The payload is defined as
any additional, non-essential mass that is internally/externally attached to the UAV that does
not serve any functional purpose related to flying the UAV. For the purpose of this research
only externally attached payloads will be considered given that small-size UAVs will be used.
An important assumption is that the payload can not directly contribute to additional thrust
forces on the system will complicate the system dynamics significantly.

In literature, two problems for UAVP are studied namely, grasped loads whereby the payload
is rigidly attached to the airframe (Palunko, Cruz, & Fierro, 2012) and more often suspended
loads whereby the payload is (freely) swung under the vehicle (Feng, Rabbath, & Su, 2014).
In the external grasping case, the payload can be seen as a protruding extension of the vehicle
body itself that alters the vehicle’s inertial and physical properties. Provided the payload is a
rigid body, the grasped payload’s position relative to the vehicle is unchanged during all flight
manoeuvres (Palunko, Cruz, & Fierro, 2012). In the suspension case for a point load, the
payload moves in R

3 relative to the suspension point on the vehicle significantly increasing
the complexity of modelling the dynamics.

With regards to this thesis’ research, the first case of grasping a payload is not interesting as
for the trajectory generation, the planning must only account for an expanded UAV shape
with an altered dynamics model. In the suspended payload case, the trajectory generation
problem will have to account for the UAV and relative payload dynamics which is more
interesting.

4-1-2 Types of UAVs

Modelling the system dynamics involves understanding the carrier vehicle dynamics, therefore,
a short introduction to UAVs is given highlighting the motivation for choosing the quadrotor
type UAV. The Unmanned Aerial Vehicle (UAV) is a category of aerial vehicles that are piloted
remotely or (semi-) autonomously with the absence of a human operator on-board. Within the
UAV category, there are two main types of vehicles; commercially popular single/multi-rotor
systems (e.g. helicopter, quadrotor/quadcopters, hexacopter, octocopters) and fixed-wing
systems (e.g. General Atomics MQ-9 Predator (General Atomics Aeronautical, 2017)). More
niche types of vehicles include the flapping-wing systems e.g. DelFly (De Croon et al., 2012),
or hybrids of such systems (e.g. the ATMOS UAV Marlyn that combines a conventional
quadrotor setup for take-off/landing with a fixed-wing flight mode (ATMOS UAV, 2017)).
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This literature study will focus on modelling the UAV as a multi-rotor system and specifically
a quadrotor.

A quadrotor is a four rotor Vertical Take-off and Landing (VTOL) vehicle. Quadrotors are
able to perform stationary hovering which is in contrast to fixed-wing UAVs that require a
continuous motion to generate lift which is not desirable especially in indoor conditions where
space is limited. Consequently, a quadrotor is able to perform agile motions in confined
spaces as it has the ability to fly without forward motion. The quadrotor is an under-
actuated system (non-holonomic) as it has six Degrees of Freedom (DOF) and only four
degrees of control/actuation (four rotors) (De Crousaz, Farshidian, & Buchli, 2014). Adding
a suspended payload to the system increases the system’s DOF by two (pendulum’s polar
coordinates in vehicle reference frame) and including a flexible rope by a further one (De
Crousaz et al., 2014).

4-1-3 UAV-Payload Setup

The UAVP systems that have been treated in literature are either a single UAV or multiple
UAVs cooperatively carrying a suspended payload. Both modelling cases will be addressed
in this section.

Single UAV-Payload Setup

The basic UAVP setup consists of a single UAV with one suspended point payload. This
problem is usually broken down into a two rigid-body problem where the bodies are coupled
through interaction forces. The two body approach allows the UAV and payload dynamics
to be treated separately coupling them through the interaction tensile force as shown in
the left of Figure 4-1. Subsequently, cascaded control systems may be designed whereby
the payload dynamics drive the quadrotor dynamics and vice versa as is done frequently in
research (Gonzalez et al., 2015; Jain, 2015; Palunko, Cruz, & Fierro, 2012; Pizetta, Brandao,
& Sarcinelli-Filho, 2015, 2016; Trachte, Gonzalez, & McFadyen, 2014). The single UAVP
setup has been studied for both planar (R2) and Three Dimensional(3D) (R3) motion cases.
The point load pendulum dynamics are analogous to a simple (in the case of planar motion)
or spherical (three-dimensional case) pendulum attached to a moving suspension point. The
Equations of Motion (EOM) are derived using the Newton-Euler or more often the Euler-
Lagrange formulation due to more straightforward computation and resulting complexity of
the EOMs.

T T/2 T/2 T/2 T/2

Figure 4-1: The UAVP configuration for single UAV - point load (left), multiple UAV - point
(centre) and rigid (right) load.
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Planar UAVP motion in the XZ plane studies the motion of a quadrotor with a cable suspen-
ded load (always in tension) where the system state/configuration will evolve in SE(2)× S1;
for the 3D case, the state evolves in SE(3) × S2 (Sreenath, Michael, & Kumar, 2013). In
(Pizetta et al., 2015), a dynamics model for the planar UAV-point payload model is derived
using the Euler-Lagrange equations whereby the payload’s effect on the vehicle is considered
as external disturbances. The paper proposes the non-linear modelling and control strategy
for the system through feedback linearisation for performing trajectory tracking. In the study
the aim was not to make the payload follow a specific trajectory, but rather for a controller to
be designed that allows the vehicle to counteract disturbances introduced by the pendulum
such that the vehicle could perform trajectory tracking.

In (Feng et al., 2014), and in (Palunko, Cruz, & Fierro, 2012) the planar UAVP case is genera-
lised to the 3D case for achieving perfect UAV trajectory tracking under payload disturbances
as in (Pizetta et al., 2015). The EOMs are derived using the Euler-Lagrange formulation. In
(Feng et al., 2014), the quadrotor UAV dynamics are also derived and interested readers can
follow-up on the article. In (Feng et al., 2014), simulation studies were performed to show the
UAVs tracking performance under the payload disturbance while (Palunko, Cruz, & Fierro,
2012) shows experimental studies with the inclusion of achieving swing-free payload motion.
The studies demonstrate the model’s validity by successfully being able to reject the payload
disturbance forces and effectively control the vehicle.

In (Sreenath et al., 2013), a planning approach is proposed where the purpose was to design
trajectories for the payload, rather than the vehicle, and then to control the vehicle (UAV)
such that the payload would track its trajectory. This is in contrast to the works (Pizetta et al.,
2015) and (Feng et al., 2014) where the payload was not actively controlled to follow a certain
trajectory. Designing a payload trajectory is challenging as the pendulum dynamics are
coupled to the vehicle dynamics and is only controlled through the UAV’s inputs. Considering
the planar XZ case, (Sreenath et al., 2013) establishes that the system is a differentially flat
hybrid system. The approach in (Sreenath et al., 2013) enables the pendulum swing to be
exploited for dynamic agile motions rather than just suppressing the disturbances introduced
by the swing. Using this approach, the differential flatness property is used to generate a
UAV trajectory that must be precisely tracked such that the payload follows the arbitrarily
designed trajectory. The hybrid characteristic is required to address the case of wire slackening
(coupling forces becoming zero) where the system dynamics switch; this will be explained in
detail in Section 4-1-4. In (Sreenath et al., 2013), using the differentiable flatness property, it
was successfully demonstrated that agile payload trajectory tracking is possible in the planar
and 3D case.

The single UAVP system has been treated in (Trachte et al., 2014; Trachte, Toro, & McFadyen,
2015; Feng et al., 2014; Palunko, Cruz, & Fierro, 2012) and follows the same two rigid
body approach to modelling the UAVP system arriving at same or similar models. The
contributions of these papers relate more to the control aspect which will be discussed later.
Later in Chapter 5, a complete derivation of the 3D UAV suspended point payload dynamics
is provided based on the models presented in literature as referenced in this section.
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Multiple UAV-Payload Setup

The payload suspension problem has also been extended to multiple UAVs cooperatively
carrying a single payload. In this case, the problem is broken down into a n + 1 rigid body
problem where n is the number of vehicles carrying the payload. For two UAVs carrying one
payload, the configuration is similar to the schematic representation in Figure 4-1.

Extending from the single UAVP planar models, two UAVs cooperatively carrying a suspended
point load was proposed in (Pizetta et al., 2016). As in their previous work (Pizetta et
al., 2015), the purpose was to only design and track trajectories for the UAVs and reject
all disturbances introduced by the payload. The tensile disturbance force on each UAV is
computed by considering the payload suspension angle with respect to the UAV and the
payload weight. In (Pizetta et al., 2016) also acknowledge the switching dynamics introduced
by slackening cables and possible rope stretching. They also consider the suspension cable
to be elastic and introduce a hybrid system model to account for the case when the cables
become slack.

The idea of differential flatness for payload trajectory generation in (Sreenath et al., 2013)
was extended to multiple UAVs cooperatively carrying a point or rigid body payload in
(Sreenath & Kumar, 2013). In this case, instead of one UAV being affected by the tensile
force induced by the suspended payload, it is split over the n vehicles depending on the
current system configuration. The case of a rigid body payload suspended by n UAVs is also
considered where the payload is suspended at n points on its body as in the right of Figure
4-1. Simulation and experimental studies showed that given the UAVs can precisely track
their generated trajectories, the suspended payload will track its designed trajectory.

In (Bisgaard, 2008) and the publication (Bisgaard, Bendtsen, & Cour-Harbo, 2009), a compre-
hensive overview of modelling the single and multi-UAV payload system with full derivations
of the dynamic EOMs and approaches for including wire slackening and drag effects is pro-
vided. For the purpose of this thesis’ research, the concepts introduced in this section and
the derivation provided in Appendix 5 for the single UAVP problem is sufficient for an initial
literature study and further research can be performed should the scope of the research be
expanded to the multi-UAVP problem.

4-1-4 Wire Slackening and Rigidity

As previously mentioned, the studies (Sreenath et al., 2013; Sreenath & Kumar, 2013) and
(Pizetta et al., 2016) considered the switching dynamics introduced by wire slackening re-
sulting in a hybrid system dynamics model. Initial studies of single UAVP systems including
the work (Palunko, Cruz, & Fierro, 2012), (Feng et al., 2014) and others (Pizetta et al., 2015;
Jain, 2015; Trachte et al., 2014) considered an always non-zero tensile force. For that mo-
delling assumption to be true, the cable must always be taut (fully stretched) so the rope is
comparable to a rigid link. Rope slackening fundamentally alters the system dynamics as the
two bodies (UAV and payload) become independent in their motion as there is no coupling
force, therefore, the uncontrolled payload enters a free-fall under gravity while the UAV is
controllable. Consequently, the system EOMs are defined by a hybrid system model where
the system EOMs switch between two equation sets; the non-zero and zero coupling tensile
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force case. When considering slackening of the rope, the 3D dynamics no longer evolve in
SE(3)× S2 but rather SE(3)× R

3 as the rope length becomes one DOF.

Alternative modelling approaches that do not require hybrid system models also exist. In
(Dai, Lee, & Bernstein, 2014), a binary state of slack or taut is not used, but rather models
the catenary curve formed by the rope going from taut to slack. This allows the EOMs to
describe the continuous transition to a slack state eliminating the need for a hybrid system
model. To achieve this, they model the suspension wire as a series of rigid mass links with an
associated state qi where each link’s dynamics is modelled by an EOM. Combining the EOM
for each link gives the system of EOMs describing the full wire’s motion. This method is
computationally expensive as the set of EOMs grows with increasing granularity in modelling
the wire. Therefore, considering real-time motion planning, this method can more accurately
capture the wire’s behaviour at the high cost of increased computation.

4-1-5 Aerodynamic Drag

Besides wire slackening, aerodynamic drag has a prominent effect on the UAVP dynamics.
Studies into UAVP motion have generally addressed only low-speed experiments such that
the relative effect of aerodynamic drag when compared to the most significant external force,
gravity, is negligible. However, when considering rigid body loads (large surface areas) and/or
high-speed motions the drag force is significant as the force is proportional to the surface area
perpendicular to the velocity vector and quadratically increases with the velocity magnitude
(Bisgaard et al., 2009).

In (Bisgaard et al., 2009), the quadratic form of aerodynamic drag with velocity in R
3 for

the slung payload EOMs is considered. The quadratic form of drag for one axis is given by
Eq. 4-1 where FDx

is the drag force along axis x, CD is the aerodynamic drag coefficient
corresponding to the object’s shape, ρ the air density, Sx is the surface area perpendicular to
the velocity vector Vx.

FDx
= CDx

· 0.5ρSxV
2
x (4-1)

In (Klausen, Fossen, & Johansen, 2015), aerodynamic drag is also considered, however, due
to the relatively slow motion of the system (even at what is considered high speed in indoor
cases; around ‖V ‖ ≤ 2m/s), the quadratic function of V in this range can be estimated by
the linear V function. Therefore, the drag force along axis x can be written in the form given
in Eq. 4-2 where Dx is a combined drag coefficient that depends on the object’s shape, the
air density and surface area. As velocity, and not velocity squared, is usually a system state,
the drag force equation can be directly included in the system EOMs using the kinematic
relation (as provided in Appendix 5) that describes the payload position in polar coordinates
with respect to the vehicle rather than Cartesian coordinates.

FDx
= Dx · Vx (4-2)

4-2 Collision Avoidance Techniques

This section covers collision avoidance techniques for robotic systems in static, dynamic and
uncertain (shared) workspace discussing the merits and drawbacks of different approaches to
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collision avoidance. First, an introduction to generic motion planning is given followed by
a discussion of global and local planning approaches which is further expanded upon with
deliberative and reactive techniques.

4-2-1 Configuration Space

Enabling autonomous motion in obstacle rich environments requires collision-free path plan-
ning as the traversable space must be shared with other objects including vehicles. The con-
cept of configuration space (C-space) is fundamental to understanding robot motion planning,
it involves encoding the robot’s configuration in a configuration vector q (Pan & Manocha,
2015). The C-space is the set of all attainable robot configurations; for example, for a 3D
rigid-body robot with position and orientation encoded into q, C-space is the special Eucli-
dean group SE(3). For the 3D UAVP system with wire slackening, the configuration space is
SE(3)×R

3 as previously discussed. Two subspaces can be identified in the C-space namely;

• Cfree Free space - All configurations q that are not occupied by other object(s) in the
C-space

• Cobs Obstacle Space - All configurations causing the robot to occupy the same configu-
rations as another object/obstacle which is the Cfree complement

The purpose of path planning is to compute a feasible, possibly optimal continuous curve in
Cfree from an initial qI to goal qG configuration as shown in Figure 4-2 (LaValle, 2006). Plan-
ning algorithms generally fall under two main approaches that use a discrete representation
of the C-space connectivity (Pan & Manocha, 2015);

• Combinatorial Planning - “constructs structures in the C-space that discretely and
completely capture all information needed to perform planning.” (LaValle, 2006)

• Sampling-based Planning - “uses collision detection algorithms to probe and incremen-
tally search the C-space for a solution, rather than completely characterizing all of the
Cfree structure.” (LaValle, 2006)

For a comprehensive explanation of both concepts including examples refer to Appendix C.

4-2-2 Global and Local Planning

The purpose of this thesis is to perform closed-loop collision-free flight with a UAVP system
and to achieve this it is imperative that the collision-free path planning is done in real-time.
Path planning for real-time systems is generally performed using a hierarchical approach
consisting of a global and local planner that perform planning at different frequencies to
achieve real-time performance (Burgard, Stachniss, Bennewitz, & Arras, 2011).

• Global planner - Low frequency - “computes paths ignoring the kinematic and dynamic
vehicle constraints” (Burgard et al., 2011)
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Figure 4-2: C-space showing obstacle free Cfree and obstructed Cobs configurations and collision
free path from qI to qG (LaValle, 2006)

• Local planner - High frequency - “accounts for the constraints and generates (sets of)
feasible local trajectories (collision avoidance) ” (Burgard et al., 2011)

The global planner uses a planning method, as introduced in Section 4-2-1, to generate an
‘optimal’ path from qI to qG. The path optimality is with respect to one or many user-defined
objectives against which the resulting path is evaluated (LaValle, 2006). Depending on the
objective(s) the path should satisfy, the global planner requires global information from the
C-space to be able to produce a solution. Global information for a collision avoidance planner
will generally include complete information of Cobs (Pan & Manocha, 2015). As the global
planner must consider the global scope, the computational cost is high and any changes to
the C−Space usually requires a full re-computation of the global path (LaValle, 2011). This
makes global planning impractical for highly dynamic environments as the computational
resources required for (re-)planning means the algorithm can only run at low frequencies.
Therefore, an off-line initial trajectory plan is pre-computed considering a static environment
after which that is used as a reference for a local planner resulting in the hierarchical approach
(Burgard et al., 2011).

A local planner is only concerned with a small subspace of the C-space that is locally relevant
to the system’s current configuration qi. The local planner generates a path to get from qi
to qi+1 driven by the system dynamic constraints and pre-computed global path. As local
planning only addresses a small sub-space of C-space, the computational cost is significantly
reduced and the algorithm can run at much higher frequencies enabling its use for real-time
planning (Burgard et al., 2011). As local planners run in-the-loop, any local changes to
the C-space are accounted for in the local planning altering the pre-defined global path to
accommodate any change. This quality is important and necessary for planning in highly
dynamic environments; for avoiding collisions, the system is usually only concerned with
changes in the immediate vicinity and not in the entire environment. Only local planning
without global planning generally does not meet planning objectives as it is usually the case
that the system must get from an initial to goal configuration that is far apart. To account
for both terminal configuration, a global scope for planning is required. In the hierarchical
setup, the local planner can complement the global planner improving the flexibility of the
planning to unforeseen or changing environments.

As will be discussed in Section 4-4, the state-of-the-art for UAVP collision avoidance algo-
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rithms generally leave out the local planner by pre-computing collision-free global paths in
static environments, accounting for the system dynamics, and feeding the generated input
sequence to a simple tracking UAV controller. For the remainder of the literature survey,
an important distinction is made between open-loop and closed-loop collision-free trajectory
generation. Open-loop trajectories are generated off-line (before performing any motion) and
used as a reference trajectory to be precisely tracked by the robot. Closed-loop trajectories
are generated online (while performing motion) and are continuously updated to serve as a
dynamic reference trajectory that the robot must follow. Closed-loop planning is performed
based on the hierarchical planning approach.

4-2-3 Deliberative and Reactive Collision Avoidance Planning

Planning for collision avoidance of robots in shared workspaces (single or multi-agent environ-
ments) has been approached using two approaches, the deliberative paradigm, or the reactive
paradigm (Čáp, Gregoire, & Frazzoli, 2016). This section will refer to any robot or moving
object in the workspace by the term agent for consistency with research papers addressing
this field.

• Deliberative - Open-loop planning -Globally coordinated trajectories are pre-computed
for all agents sharing the workspace from their initial to goal configuration. Conse-
quently, the agents must precisely track these trajectories in space and time for the
resulting motion to be collision free (Čáp et al., 2016). This problem quickly becomes
intractable with an increasing number of agents and more complex environments.

• Reactive - Closed-loop planning - Locally resolves collisions by an agent observing the
immediate surroundings and re-planning the immediate locally relevant trajectory (Čáp
et al., 2016).

Deliberative

Deliberative collision avoidance theories postulate that collision-free motion is achieved given
that trajectory plans are precisely followed in space and time (Čáp et al., 2016). Additionally,
to pre-compute the globally coordinated trajectories the intended initial and goal configura-
tions for all agents, their dynamics and full environmental knowledge must be known a priori
which is impractical in many cases. For example, only considering homogeneous agents, all
agent dynamics are equal, however, for non-homogeneous agents, the problem complexity can
become intractable. To address this, heuristic approaches including prioritised planning are
used whereby the path for agents are planned in decreasing order of priority (Čáp, Novak,
Kleiner, & Selecky, 2015). In this approach, an agent with a given priority rank only consi-
ders the paths of all agents ranked higher in its planning. So, the highest priority agent path
is first computed not considering any other agents’ intentions. The second highest priority
agent path is then computed considering the first agent’s path for collision avoidance and so
on. Given that the algorithm is able to compute feasible paths for all agents, the resulting
globally coordinated trajectories are guaranteed to be collision-free.

Including unpredictable agents (such as a human) can make global coordinated planning im-
possible as it cannot be said that the unpredictable agent precisely follows their trajectory as
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assumed in deliberative planning (Čáp et al., 2016). The assumption of a precise plan execu-
tion on which deliberative planning is based makes it impractical for real-world applications
with dynamic, uncertain environments.

To handle unforeseen obstructions in deliberative planning, an ALLSTOP method can be used
where the planning must be paused until the obstruction clears. For example, if any event
obstructs an agent from proceeding with their pre-planned trajectory, all agents in the system
must stop (pausing the planning). Once the event has passed, the plan can be resumed, with
the planning still valid yet just shifted in time by the pause. However, if only the obstructed
agent stops, the coordinated plan is no longer valid as each agent has an assigned trajectory
in space and time; this could lead to potential collisions. In (Čáp et al., 2016), a strategy is
introduced that is able to scale the planning time component for executing the coordinated
trajectories to account for unpredictable changes in the environment. The strategy involves
discretising the pre-planned collision-free trajectories by time into way-points after which
conflicting way-points in space (not time) are identified. During the plan execution, if one
agent stops, the remaining agent proceed with their trajectories. Once the stationary agent
starts moving again the online planning will stop other agents as necessary such that no
agent ever reaches a conflicting way-point in space. This strategy is a step towards including
uncertainties in the environment, however, initially finding globally coordinated trajectories
remains a computationally expensive and sometimes impossible task.

Reactive

In collision avoidance, acknowledging that the agents with which the workspace is shared are
also decision-making, and therefore unpredictable, changes the required collision avoidance
approach. If an agent A considers all other moving agents simply as moving obstacles, the
collision avoidance scheme of A does not consider that the other agent will also re-plan based
on A’s motion. This can result in oscillatory behaviour and deadlock situations as agents
wait for each-other (Berg, Guy, Lin, & Manocha, 2009). Therefore, the theory postulates
that agents must be reactive to each-other in order to perform mutual collision avoidance.

A popular and widely used reactive collision avoidance method for multi-agent environments
utilises the concept of Velocity Obstacles (VO) introduced in (Fiorini & Shiller, 1998). In VO,
the complete set of feasible and physically attainable robot velocity inputs for each robot is
partitioned into a subset that will result in a collision and its complement valid for a given
time horizon. The complement is identified by considering the velocities of all objects and
agent that are or will be reachable in the specified time frame for which the VO is computed.
This VO is continuously re-computed to enable dynamic collision avoidance (Fiorini & Shiller,
1998). The limitation of VO is that collision-free motion is only guaranteed under specific
conditions. For example, the VO space may become too restrictive for certain vehicles such
as cars that are not as agile as a UAV resulting in no possible velocities that can be executed.
In (Berg et al., 2009), the VO idea is extended to Optimal Reciprocal Collision Avoidance
(ORCA) that includes optimal reciprocity that can always guarantee collision-free navigation
even in highly dense environments. The agent is able to independently (without inter-agent
communication) compute an optimal velocity to avoid collisions with all relevant agents over
a fixed planning time frame (Berg et al., 2009). This property is very useful for collision-free
navigation in multi-agent and obstacle rich environments where all the agents themselves are
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also decision-making. Reciprocity also shares the collision avoidance task making the VO
space less restrictive on an individual vehicle. However, reactive collision avoidance methods
such as ORCA are prone to deadlocks where two or more agents wait for each other resulting
in no conflict resolution (Čáp, Voḱınek, & Kleiner, 2015).

Artificial potential fields (APF) as introduced in (Khatib, 1986) are another popular approach
to reactive collision avoidance due to their conceptual simplicity and favourable characteristics
for collision avoidance in continuous space. Each agent/obstacle in the environment genera-
tes a virtual repulsive force that drives agents away from each other and any static/moving
obstacles (Shim, Kim, & Sastry, 2003). The closer two objects are, the stronger the virtual
repulsive force for both objects so indirectly there is reciprocity in the collision avoidance be-
haviour similar to ORCA (Shim et al., 2003). Following from the superposition principle, the
effect of all APFs originating from all objects in C-space are superimposed to give a resultant
APF that causes the agent to move away from all other objects. However, APF approaches
are prone to local minima, live-lock and deadlock situations when troughs (local-minima) are
formed in the virtual potential fields (Shim et al., 2003). For example, consider two agent
approaching and trying to pass each other in a narrow corridor; they will hinder each-others
progress due to the repulsive force resulting in a deadlock situation. Also, no hard guarantees
of a collision-free motion is provided by APF as the virtual repulsive force simply guides the
agent’s desired velocity unlike in ORCA where a set of guaranteed collision-free velocities
are generated. To counteract such a situation, In (Kamel, Alonso-Mora, Siegwart, & Nieto,
2017), a hard constraint is introduced for the planned trajectories that guarantees no collision
can occur by including a required minimum separation between objects. This approach has
been successfully demonstrated in experiments performed in the work (Kamel et al., 2017)
with two drones performing inter-collision avoidance. In (Naegeli, Alonso-Mora, Domahidi,
Rus, & Hilliges, 2017) a collision avoidance involving a single/multiple drones with moving
human obstacles is successfully demonstrated. In both studies, an optimal controller was
used in combination with the APF collision technique to successfully demonstrate collision-
free motion for UAVs provided that the position and velocity data from the agents/obstacles
are available.

The discussion on deliberative and reactive collision avoidance approaches makes it clear that
for performing collision avoidance in highly dynamic and uncertain environments, reactive
methods are more suitable and tractable. The book (LaValle, 2006) provides an excellent
overview of many other approaches to planning and collision avoidance, however, for brevity
only the ideas that will be relevant to this thesis are presented.

4-3 Control Techniques for UAV-Payload Systems

The previous section covered the modelling of UAVP dynamics and introduced collision avoi-
dance techniques. Control techniques that have been tested in simulation and experiments as
presented in the literature are discussed in this section. A brief introduction to the UAV low-
level system is given followed by a discussion of commonly used control techniques for UAVP
systems. Control techniques to handle the UAVP hybrid system model and modelling un-
certainties are also treated followed by a discussion of interesting vision-based techniques for
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payload state estimations. Finally, a discussion on high-level control approaches for collision
avoidance of UAVP systems is introduced.

4-3-1 UAV Low-Level Control

As low-level attitude control is not the primary objective of UAVP control design, it is gene-
rally assumed that there is low-level UAV control system available onboard. The high-level
planning based controller generates system inputs u for the low-level controller as to achieve a
certain objective such as trajectory tracking (Palunko, Fierro, & Cruz, 2012; Sreenath et al.,
2013; Klausen et al., 2015; T. Lee, 2018). Figure 4-3 shows a simple schematic of the division
of high and low-level control as presented in literature (Gonzalez et al., 2015; Trachte et al.,
2014). The control inputs given to the quadrotor are generally the required thrust (to move
position) and torques (to change orientation) in order to move the vehicle in SE(3) space
(Mahony, Kumar, & Corke, 2012).

High-level
Controller

Mission
planning Motor

Dynamics
Quadrotor

System

Slung Load
System

Low-level
Controller

UAV-Payload System

u c

State Feedback

Figure 4-3: Schematic control architecture for UAV-payload system control

The research presented in this thesis treats only the design of the high-level controller. The-
refore, the controllers discussed in the following sections discuss trajectory controllers rather
than low-level attitude controllers for the UAV. For modelling the lower level systems (for
simulation), simplified models are available and interested readers can refer to Mahony et al.
work on multi-rotor aerial vehicle modelling, estimation and control in (Mahony et al., 2012).

4-3-2 Proportional-Integral-Derivative (PID) Control

Proportional-Integral-Derivative (PID) control is a classical feedback control technique for
continuous dynamic systems where the objective is error minimisation with respect to a set-
point/reference. PID control techniques have been around for many years and their simplicity
enables high frequency computations for real-time applications. PID control has been used in
UAVP systems to achieve trajectory tracking tasks provided a collision-free reference trajec-
tory is pre-computed (Trachte et al., 2014; Dai et al., 2014; Pounds, Bersak, & Dollar, 2012).
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PID control is conceptually simple and able to accurately perform tracking tasks even under
(mild) disturbances. However, PID control must be carefully tuned and re-tuned every time
the system changes to maintain/guarantee robustness and stability. PID tuning is a time
intensive and difficult process requiring multiple design iterations before acceptable perfor-
mance is achieved. Additionally, PID has no inherent constraint handling so control signals
to the UAV system may get saturated resulting in subpar tracking performance. As high-
lighted in (Trachte et al., 2014) regarding UAVP systems, “significant feedback forces may
be induced on the vehicle [UAV] during certain flight manoeuvres . . . constant variation in
the reference operating point, induced by the slung load, causes conventional controllers to
demand increased control effort”.

4-3-3 Linear Quadratic Gaussian (LQG) Control

Linear Quadratic Gaussian (LQG) control is an optimal control technique for linear time-
(in)variant (LTV/LTI) systems that combine a Linear-Quadratic Estimator (LQE), such as
a Kalman Filter (KF), as state observer and Linear-Quadratic Regulator (LQR) for control
allocation. LQR can also be used in the absence of an LQE when the full state information
is available as feedback.

LQR control has been successfully used for controlling the UAVP system by linearising the
system dynamics about a nominal UAVP state, usually hover with the pendulum at the
downward equilibrium position. The obtained LTI system is then used to design and tune
the KF and LQR such that the control system is able to perform tracking tasks for the
UAVP system. Studies demonstrating the use of LQG/LQR control for the UAVP system in
simulation and experiments have been performed in several studies (De Crousaz et al., 2014;
Omar, 2009; Bisgaard, 2008; Feng et al., 2014).

As LQG control relies on an LTI model, the controller is able to be run in real-time on systems
with limited computational capabilities such as embedded micro-controllers. However, due
to the reliance on linearised system dynamics, fast, agile manoeuvres far beyond the lineari-
sation nominal state are not modelled accurately which affects the controller robustness and
possible stability (Trachte et al., 2014). In comparison to PID control where gain tuning is
necessary, LQG requires tuning of optimal control parameters that include the cost matrices.
Cost matrices are more intuitive to tune compared to PID gains as they associate relative
importance to different desired control objectives. However, just like PID control, LQG has
no inherent constraint handling, therefore, the commanded systems inputs from LQG may
not be attainable by the UAV leading to input saturation and consequent sub-par tracking
performance.

4-3-4 Model Predictive Control (MPC)

Historically, MPC has been very popular in industrial process engineering due to the relati-
vely slow process dynamics involved (conventional MPC solvers are computationally costly)
and requirement to handle system constraints and non-linearities (Pendleton et al., 2017).
However, with the advent of smaller, efficient and powerful micro-controllers, MPC is beco-
ming more viable for controlling fast, non-linear, smaller systems such as quadrotors (Tzes,

Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments Nikhil D. Potdar



42 Literature Survey

Nikolakopoulos, & Alexis, 2012; Kunz, Huck, & Summers, 2013; Kamel et al., 2017; Trachte
et al., 2015).

Model Predictive Control (MPC) also referred to as Receding Horizon Control (RHC) is an
optimal control theory in which control is performed in discrete time (Olsder et al., 2011).
Optimisation is performed with respect to a cost function (usually quadratic) that is carefully
designed to promote a certain type of system behaviour. In MPC a constrained open-loop
Optimal Control Problem (OCP) is solved over a set time horizon that generates a set of
system inputs to achieve a locally optimal predicted system response. Only the first action
from the generated optimal control sequence is performed after which the entire time horizon
is shifted by one time-step (recessed) and the process is repeated (J. H. Lee, 2011; Olsder et
al., 2011). Due to this ‘receding horizon’ principle, closed-loop control is achieved as feedback
is implicitly introduced by solving the OCP every time-step. For a more thorough explanation
of MPC, refer to Appendix D.

As LQR and MPC control are both optimal control schemes, comparative studies have been
performed in (Gonzalez et al., 2015; Trachte et al., 2014, 2015). In (Trachte et al., 2014) the
control performance of non-linear MPC to LQR is compared and improved performance for
MPC was found “over a larger flight envelope, including aggressive manoeuvres and large slung
load displacements”. The simulation studies performed showed tests using MPC and LQR
control for wind disturbance rejection, step responses and slung load damping. The study
concluded that LQR is sufficient for small displacements from the equilibrium from which
the LTI model is derived and provides a simpler and faster solution than MPC. However,
MPC outperforms LQR for high load displacements at increased computational cost as the
non-linear dynamics are considered. In (Gonzalez et al., 2015) and (Trachte et al., 2015)
which build on the work of (Trachte et al., 2014), the importance of considering the non-linear
system dynamics and constraints as done in MPC is highlighted demonstrating the robustness
of MPC for time varying references and aggressive control. The studies demonstrate a clear
improvement in tracking performance when using MPC rather than LQR in those cases.

The continuous optimisation in MPC makes it a relatively computationally expensive control
method, especially when the system dynamics are complex and (highly) non-linear (Trachte et
al., 2015). In contrast to PID and LQG control, the optimisation in MPC handles input and
state constraints so that the generated control inputs and trajectories are also guaranteed
to be physically feasible (Gonzalez et al., 2015). MPC is attractive due to its predictive
nature enabling proactive control design and inherent constraint handling which is necessary
for systems with limited control inputs.

4-3-5 Accounting for Cable Slackening using Switching Mode Control (SMC)

As introduced in Section 4-1-4, cable slackening results in a hybrid system model description of
the UAVP dynamics. As the control techniques are model based, a hybrid system model also
necessitates a Switching Mode Control (SMC) framework. In SMC two separate controllers
are derived, one for each EOM set and the switching is performed by an algorithm that
detects the wire slackening. An SMC formulation has been used by in (Sreenath et al., 2013)
for the single UAVP case, and for the multi-UAVP case in (Sreenath & Kumar, 2013) and
for performing aggressive control using LQG in (De Crousaz et al., 2014).
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As introduced in Section 4-1-4, recent UAVP modelling techniques consider the continuous
transition from taut to slack in one model thus eliminating the need for SMC. In (Foehn, Fa-
langa, Kuppuswamy, Tedrake, & Scaramuzza, 2017) a novel approach to handling the hybrid
system dynamics of the UAVP system is presented considering a Linear Complementarity
Problem (LCP) in their optimal trajectory generation algorithm. The LCP approach is made
possible by using constraints on the OCP which is possible also in MPC. Using LCP, hybrid
models are avoided by considering a non-penetration/contact force that activates when two
rigid bodies are in contact. The optimisation constraints are defined such that the contact
force only becomes non-zero when a certain non-penetration constraint φ(q) (a function of
configuration q) becomes zero. In the case of UAVP systems, the tensile force is analogous
to the contact force for LCP and is non-zero only when the suspension rope is taut. For an
in-depth explanation of the LCP formulation for general rigid-body dynamics refer to (Posa
& Tedrake, 2013).

4-3-6 Adaptive Control Techniques for Parametric Uncertainties

Many control techniques including MPC are model-based techniques meaning their control
performance is governed by the model accuracy. As presented in Section 4-1, for practical
purposes simplified system dynamic models are derived. With simplified models, it is implied
that the model complexity is limited to the significant physical phenomenon relevant to the
swinging payload problem to make the dynamics simulation tractable. The majority of state-
of-the-art literature on UAVP systems address the fundamental that include the inter-body
kinematics and in some cases the rope slackening problem.

Adaptive control is any technique that account for parametric uncertainties in the model.
Adaptive techniques for the following uncertainties have been addressed; a misplaced suspen-
sion point (Palunko, Cruz, & Fierro, 2012), changes in the system centre of gravity (Palunko,
Cruz, & Fierro, 2012), unknown pendulum length (Bisgaard, Cour-Harbo, & Dimon Bendt-
sen, 2010) and unknown payload mass (Dai et al., 2014; Min, Hong, & Matson, 2011). System
identification and parameter estimation techniques including the Kalman Filter (KF) have
been used to identify the uncertain parameters in the model. In Section 4-5, learning based
approaches to UAVP parametric uncertainties will be discussed as the state-of-the-art UAVP
literature has not addressed this.

4-3-7 Vision Based State Estimation for Slung-Load

The state of the slung load is generally described relative to the UAV reference frame by
two angular displacements in 3D and possibly a linear displacement when cable slackening is
included. See also Appendix 5 for a derivation of the UAVP model. Most studies use external
motion capturing systems to obtain the 3D Cartesian location of the payload which can be
transformed into polar coordinates used in the state definition. Even though state estimation
of the slung load is not the primary focus of this thesis, for interested readers vision based
slung payload state estimators have been formulated.

In (Bisgaard et al., 2010) a downward facing pinhole camera on the UAV is used to esti-
mate the load position by identifying the marked payload in the image. Using the payload
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kinematics with respect to the UAV and the 2D positional information gathered from the
image, the 3D payload position can be derived assuming the cable does not slack. In (Zürn
et al., 2016), similar experimental studies were performed showing a mean error of only ∼ 3◦

in the suspension angle when comparing the vision based method to external tracking for a
60cm pendulum . Both studies demonstrate that vision based state estimation is a promising
method when compared to information gathered from an external motion capture system as
long as the cable remains taut (as this is necessary to perform 3D state estimation).

4-4 Control Techniques for Collision Avoidance of UAV-Payload
Systems

The high-level collision avoidance control techniques introduced in literature are of particular
interest for the research to be performed in this thesis. It will be shown that for UAVP
systems, the research has focussed on globally planning collision-free trajectories (open-loop)
and utilising the control techniques presented for performing accurate trajectory tracking.
This has been practical for the experiments researchers have performed in static environments
and demonstrated impressive manoeuvres including 3D path following and flying through
openings. However, as discussed before global planning only works when the environment is
static or highly predictable enabling the use of deliberative planning techniques. In the case
of uncertain, dynamic environments a reactive collision avoidance approach must be used for
closed-loop trajectory generation. The following section will discuss the current approaches
to open-loop collision-free trajectory generation of UAVP systems followed by the state-of-
the-art in closed-loop collision-free trajectory generation. For completeness, some references
to works made in previous sections of the literature study are repeated.

4-4-1 Open-loop Collision-free Trajectory Generation

In the open-loop case, reference trajectories are generated in Cfree space given a known
environment. UAVP system controllers have generally been designed to achieve swing-free
manoeuvres with the intention of stabilising the payload under motion such that a reference
trajectory is precisely followed (Trachte et al., 2015). Reference trajectories are pre-computed
using methods which have included dynamic programming approach for swing and collision-
free trajectories in (Palunko, Fierro, & Cruz, 2012; Palunko, Cruz, & Fierro, 2012) and
reinforcement-learning approach for swing-free motion in (Faust, Palunko, Cruz, Fierro, &
Tapia, 2013). These reference trajectories are then followed using tracking controller that
minimise tracking error such as a PID (Palunko, Cruz, & Fierro, 2012). In (Trachte et al.,
2015) the use of non-linear MPC and LQR for swing minimisation and trajectory tracking is
demonstrated. Swing minimisation research has tackled the collision-free motion problem by
combining accurate tracking controllers with algorithmically generated open-loop collision-
free trajectories. In these studies, minimising swing is the main control objective so the
overall UAVP motion is gradual as high-speed motion causes the payload to lag behind the
vehicle or perform an aggressive motion.

Recent research has also looked at performing aggressive payload manoeuvres utilising, rat-
her than suppressing, swing. As mentioned, the work (Sreenath et al., 2013) successfully
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demonstrated in simulation and experiments a motion controller that accurately tracks the
generated reference trajectories even under high swing loads. The motion controller and dif-
ferential flatness property were also derived for the case of multi-UAV payload systems in
(Sreenath et al., 2013).

The work (Foehn et al., 2017) demonstrates in simulation and experiments a fast trajectory
optimisation for agile manoeuvres using UAVP systems. In their work, an optimal control
formulation using LCP (as explained in Section 4-3-5 ) is formulated to generate an open-loop
collision-free trajectory offline for multiple tasks including collision avoidance with a static
obstacle. The UAVP system state encodes the UAV and payload’s pose in 3D space so the
generated trajectory includes a trajectory for both the UAV and payload. The generated
UAV trajectory consists of a sequence of desired positions, velocities and accelerations that
must be executed by the vehicle using a position controller that translates the trajectory data
to UAV attitude and thrust inputs. However, this method still relies on an off-line trajectory
generation that takes around 30s using 50 nodes for a single obstacle avoidance task(Foehn
et al., 2017).

As highlighted in the preceding discussion and sections, the majority of UAVP research has
focussed on pre-computing open-loop collision-free trajectories and building accurate motion
tracking controllers. The main limitation is the absence of a feedback mechanism so any
changes during runtime to the C-space are not considered for planning or control. For UAVP
operation outside of a confined experimental setup, the C-space is dynamics and always chan-
ging which would render the pre-generated open-loop trajectory invalid causing a potential
UAV collision. This highlights the necessity for closed-loop collision-free control of the UAVP
system.

4-4-2 Towards Closed-loop Collision-free Control

Research involving only UAVs have already tackled the closed-loop collision-free control pro-
blem using various approaches, however, most have not been applied to a UAVP system.
Collision avoidance in the presence of uncertain environments has been performed using a
group of reactive collision avoidance techniques enabling trajectories to be shaped/modified
on a local scale to perform quick avoidance manoeuvres (Čáp et al., 2016; Alonso-Mora,
Naegeli, Siegwart, & Beardsley, 2015). In (Fiorini & Shiller, 1998) the concept of Velocity
Obstacles (VO) space for performing reactive collision avoidance was introduced. In (Alonso-
Mora et al., 2015), the VO idea has been extended to demonstrate, in simulation, collision-free
motion for multiple agents sharing a workspace by using a potential function that discourages
vehicles getting too close to each other. Recently in (Naegeli et al., 2017), a similar approach
is demonstrated using potential functions to perform real-time collision avoidance for static
and dynamic obstacles on a single quadrotor using MPC control. The UAV is driven away
from collision by including an MPC cost term that increases based on the UAV’s proximity
to obstacles. Also in (Naegeli et al., 2017), position and velocity of moving obstacles are
used to forward simulate obstacle motion allowing changes in Cfree to be accounted for in
the trajectory generation. Even though only an unaltered UAV system was considered, the
research done shows promising applications for a UAVP system as proposed in this thesis.
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Similar to this thesis proposal, the work (De Crousaz et al., 2014) has tackled the closed-loop
UAVP trajectory generation and control optimisation using an iterative Linear Quadratic
Gaussian (iLQG) optimal controller that adapts the system dynamics model for parametric
uncertainty using Kalman Filtering . Adaptation is performed using a sampling based learning
algorithm which works in parallel with the iLQG controller. The iterative aspect of iLQG
allows it to “return locally optimal linear feedback controller able to work with arbitrary non-
linear cost functions” (De Crousaz et al., 2014) as to optimise a sequence of control inputs
accounting for changing system dynamics thus enabling more aggressive control beyond the
nominal linearisation point. An SMC formulation must be used as they use a hybrid system
model description for the UAVP system. Successful demonstration of trajectory generation
and flight through a narrow opening with the UAV and payload was achieved by designing the
iLQG cost function. As mentioned previously, this was also demoed in (Mellinger, Michael,
& Kumar, 2012), however, in that case, the trajectory was designed beforehand rather than
performing the generation online. In (De Crousaz et al., 2014) a high-cost term was associated
with UAV configurations that would be in Cobs thus guiding the algorithm to collision-free
trajectories. However, the study did not consider dynamic obstacles, which could have been
an extension, and it must be noted that iLQG does not explicitly consider system input
constraints so there were cases in their experimental study where the required UAV input
was saturated so the response was not as expected. Input saturation is generally not a
problem with MPC as it readily handles system constraints making it more robust, however,
this makes MPC more computationally expensive. Also, it is important to remember that
constraining the MCP too aggressively may result in frequent infeasible solutions. Compared
to iLQG, the benefit of MPC is that it is predictive which enables collision-avoidance planning
to be proactive; the predicted trajectory can be collision-checked over the set time-horizon so
that evasive manoeuvres are performed as a contingent before the obstacle gets too close.

Summarising, similar to (Foehn et al., 2017) for open-loop and (De Crousaz et al., 2014;
Naegeli et al., 2017) for closed-loop collision avoidance, the purpose of this thesis is to de-
monstrate MPC based control for active real-time collision-free control of a UAVP system in
environments with uncertain/unknown static and dynamic obstacles. Contrary to the study
(Foehn et al., 2017), the collision avoidance trajectory generation will also be done in closed-
loop (real-time). Contrary to both (Foehn et al., 2017) and (De Crousaz et al., 2014), however
as addressed by (Naegeli et al., 2017), dynamic obstacles for the UAVP system will be con-
sidered using an MPC control formulation using the MPC s predictive nature and constraint
handling.

4-5 Learning Based System Identification

As mentioned in Section 4-3-6, researchers have looked at adaptive control techniques that
involve a parameter estimation scheme to addresses parametric uncertainties in the system
dynamical model. This section discusses learning techniques for handling parametric uncer-
tainties using a Learning Based System Identification (LBSI) scheme.
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4-5-1 Types of Learning

Three high-level approaches to learning are identified in literature with the possibility of
sub-classifications for specific algorithms(Du & Swamy, 2013);

• Supervised learning - Given a set of inputs (independent variables) and associated out-
puts (dependent variables), the algorithm captures the functional mapping between the
inputs and outputs

• Unsupervised learning - Given only the set of inputs, the algorithm attempts to auto-
associate the information to find significant patterns or features

• Reinforcement learning - Generates a policy to perform certain actions sequentially to
maximise a total expected reward. It is a form of supervised learning, due to the reward
process, where the desired output is unknown

Supervised Learning is commonly used when a certain input-output data relation exists, ho-
wever, the functional mapping must be identified. During learning, the algorithm’s primary
goal is to minimise the residual error between the predicted (learnt) and actual output given a
certain input taken from the entire input set (Du & Swamy, 2013). Examples of supervised le-
arning algorithms include regression analysis and neural network non-linear fitting/regression.
Supervised learning is useful for identifying system dynamics models provided input-output
data is obtainable from empirical studies.

Unsupervised Learning is used when a data set does not have an inherent relational construct
(with an output) is available. The goal is to identify patterns and features in the data set
that can result in data dimensionality reduction or reduce the total data to be processed
(Du & Swamy, 2013). Examples of unsupervised learning algorithms include clustering using
k-means and neural network based classification.

Reinforcement Learning (RL) is neither a supervised or unsupervised learning method, rather
it uses a ‘learning by interaction’ approach. RL involves having a ‘learner’ that performs
actions and observes rewards as to determine a sequence of actions to maximise the cumulative
expected reward. As explained in (Sutton & Barto, 1998), different from supervised learning
there is no example data set (input-output data) to be reproduced so the learner must explore
uncharted territory to gain knowledge. Also, it is not unsupervised learning as there is a
reward system associated with being in every state and performing a certain action which is
guiding the learner’s decision. RL generally involves a trial-and-error approach to identifying
a policy (sequence of actions) resulting in the highest cumulative reward (Sutton & Barto,
1998). The trial-and-error nature means learning RL learning is generally performed online
for slowly evolving systems or completely offline.

4-5-2 Learning for Parametric Uncertainties

The modelling of system dynamics involves knowledge of the model structures and parameters.
System modelling categories are identified based on the information available and occurs on a
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Figure 4-4: Model classification based on prior information available (Horváth, 2003)

spectrum and ranging from black-box to white-box modelling as shown in Figure 4-4 (Horváth,
2003). A model generally lies between the two extremes and is known as a grey-box model.

Non-parametric models (black-box models) are derived when no definite model structure can
be obtained, however, considering the UAVP system, it was shown in Section 4-1 that the
fundamental structure based on first-principles is derivable. It was shown that the model has
a parametric dependency on the UAV and payload mass, and wire length. The full model
is derived in Appendix 5. The UAVP modelling is generally white-box as it is assumed that
all parameters are known or measurable. However, to include some modelling adaptability
a grey-box approach is more appropriate. To address the uncertain parameters, a common
parametric identifier that relies on the system structure is used which includes the (extended)
Kalman Filter (Qin, Su, & McAvoy, 1992).

If there are system dynamics for which the model structure cannot be derived or is too com-
plex, a black-box approach is generally appropriate. As shown in Section 4-1, the UAVP
model is applicable on the basis of assumptions being valid which is necessary to limit the
model’s complexity. However, these assumptions only remain valid under certain UAVP sy-
stem setups, for example, when the payload becomes a large flat plate, the point load and
negligible drag assumptions become invalid. Also, if the payload contains a fluid substance,
the dynamics modelling becomes complicated and mathematically complex. In these cases,
a data rather than a physics driven model is more appropriate for which black-box model-
ling is required (Horváth, 2003; Qin et al., 1992). With data driven modelling, the system’s
input-output data is collected empirically and the functional mapping must be captured by
the model. Among many black-box system identification approaches, Neural Networks (NN)
have seen considerable application from the research community due to their “simple ar-
chitecture [and] their universal approximation capability” (Horváth, 2003; Qin et al., 1992).
Neural networks are “distributed information processing systems made up of a greater number
of highly interconnected identical or similar simple processing units” (Horváth, 2003). Each
‘processing unit’, technically referred to as a neuron, produces an output which is a linear
weighted combination of the neuron inputs processed through an activation function. Various
activations functions exist which include (piece-wise) linear and logistic functions. Combi-
ning many of these neurons (with same/different activation functions) in parallel and series
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and associating each inter-neuron connection with weights results in the NN. The process of
modifying the NN weights enables the network to be configured for representing a functional
mapping. For an in-depth explanation of the NN structure, refer to the work (Horváth, 2003).

4-5-3 Learning Implementation in Control Architectures

Neural networks, specifically for fitting, are data driven models that rely on supervised lear-
ning to recreate the input-output mapping observed from a dynamical system that takes the
form of a non-linear function given by Equation 4-3 where y is the output, x is the state and
u the input. Note that both the state and input vectors are inputs to the NN that models f .

y = f(x,u) (4-3)

NNs demonstrate adaptability through learning which is a process by which the network
weights are modified (Horváth, 2003). A global output error function is defined, usually in
the form of a least squares error over the entire data set, that quantifies the model’s accuracy
with respect to the observed system dynamics (the training set). The error is computed using
the difference between the network and actual output for a given input. The global error is
then back-propagated to compute the error contribution of every neuron and recompute the
inter-neuron weights iteratively (see (Qin et al., 1992) for details). After many iterations,
the global error value will converge and the network will accurately, to a certain extent,
reproduce the training set provided the network size is sufficient. In (Cybenko, 1989) the
universal approximation theory is formulated stating that given a finite number of neurons in
a feed-forward NN, the network can approximate any continuous function under certain mild
conditions imposed on the activation functions. This is an important theorem as it proves
that provided the network size is sufficient, the continuous modelling function, as given by
Equation 4-3, can be accurately reproduced by the NN. This allows NNs to be used as a
replacement for the system dynamics model required by model-based controllers. However, a
commonly cited drawback of NN is its black-box nature, thus not exposing the structure and
parameters, which prevents further analysis and hard guarantees of its stability and accuracy
(Åkesson & Toivonen, 2006). Also, over-fitting must be checked which occurs when the
network perfectly reproduces the training set, but given new ‘unseen’ input data, the output
is poorly predicted. To ensure the model generalises to the full range of input data, over-
fitting and validation checks are commonly performed by checking the network performance
with new empirically collected data (Åkesson & Toivonen, 2006).

The NN identified model can be used in combination with a model-based control technique, as
introduced in Section 4-3, to perform high-level UAVP control. This approach enables UAVP
control when there are parametric uncertainties in the model and/or modelling the UAVP
dynamics becomes too complicated due to the introduction of complex physical phenomenon.
An NNmodel is able to adapt online using the back-propagation learning method whereby new
data collected during runtime can be to adjust the network weights incrementally achieving
adaptability to changing system dynamics. Figure 4-5 shows an expanded form of the UAVP
control schematic, originally introduced Figure 4-3, with an NN identified UAVP system
model. The schematic shows how the UAVP system output is used to compute an error
and back-propagate that for learning the NN weights. The NN identified model is then used
to update the controller’s internal model to achieve adaptive control. The system state, as
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obtained from sensors, and input generated by the controller is used by the NN model to
compute a predicted model output yNN .

High-level
Model-based
Controller

Mission
planning UAVP

System

u

UAVP
NN Model
Identifier

y

y
NN
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Back-propagation 
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Figure 4-5: Schematic control architecture for UAV-Payload system with Neural Network iden-
tified model used for enabling adaptation
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Chapter 5

Derivation of UAV-Payload System
Kinematics and Dynamics

This chapter describes the derivation of the UAV-Payload (UAVP) model in detail. The
derived model is not specific to the hardware used during the experiment so it generalises to
other setups provided the assumptions remain valid. This model is derived from literature
presented in published articles as introduced in Chapter 4.

Section 5-1 introduces the UAVP system and the reference frames used in the derivation.
Section 5-2 introduces the relevant kinematic relations while Section 5-3 treats the deri-
vations of the system dynamic equations. Section 5-4 then looks at extending the UAVP
model with the inclusion of aerodynamic drag on the UAV and payload. Note that a general
parametric model is derived; the actual parameter values are provided in Section 6-1 that
discusses the experimental hardware used. Please note that the following subscripts are used
interchangeably throughout the report; for quadrotor Q and q and for payload L and l.

5-1 System Model and Reference Frames

The UAVP system studied comprises a Vertical Take-off and Landing (VTOL) quadrotor
UAV with a suspended point mass payload attached using a rigid massless link (the cable).
The payload, modelled as a point mass, is attached to the cable’s end with the other end
being the suspension point attached at the quadrotor’s center of mass. As presented later in
this preliminary study, slackening behaviour of the cable was studied over the full range of
manoeuvres and it was determined that the cable remains taut throughout the flight. Should
slackening of the cable be observed in future experimental studies, the behaviour can be
implemented in the model at a later stage. To limit the complexity of the derived UAVP
model, the following assumptions are adopted;

• Payload is a point mass
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• Quadrotor center of gravity and centroid coincide
• Suspension cable is a rigid massless link attached on a free suspension/pivot point
coincident with the quadrotor’s center of mass (origin of Vehicle carried normal Earth
reference frame {E})

• No aerodynamic drag effects on the suspension cable / rigid link due to massless as-
sumption

• Standard sea level conditions for atmospheric and gravitational effects

The Equations Of Motions (EOMs) are derived in the three-dimensional inertial frame {I},
as shown in Figure 5-1, using Lagrangian mechanics theory. The generalised coordinates q,
is defined as

q = [xQ yQ zQ θL φL]
⊤ (5-1)

The time derivative is given by,

q̇ =
[

ẋQ ẏQ żQ θ̇L φ̇L

]⊤

(5-2)

Then the system state is denoted by,

xq = [q, q̇] (5-3)

The load position pL = [xL yL zL]
⊤ is fully described by the Quadrotor position pQ =

[xQ yQ zQ]
⊤ in combination with the suspension angles θL (x-axis {S} frame) and φL (y-

axis {S} frame) defined in the Quadrotor attached {S} frame as shown in Figure 5-1. The
specific choice of coordinate frames, specifically the {S} frame, ensures there is no singularity
in the derived EOMs for the pendulum’s equilibrium position (Jain, 2015). The derivation
of the EOMs also closely follows that of Jain in (Jain, 2015; Klausen et al., 2015) with some
modifications and extensions to include aerodynamic drag.
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Figure 5-1: Schematic of UAV-Payload system and quadrotor showing reference frames and
payload suspension angles
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This system is modelled as a spherical pendulum under aerodynamic drag disturbance at-
tached to a mobile pivot point on a three-dimensionally translatable vehicle. Inputs to the
system are three forces fu = [Fx Fy Fz]

⊤ defined in {E} and acting directly on the quadro-
tor center. Reference frames are defined and presented in Figure 5-1 are itemised with an
explanation;

• {I} - Inertial East, North, Up (ENU) reference frame taken on Earth surface

• {E} - Vehicle carried ENU reference frame; origin coinciding with the Quadrotor centre
of gravity and x orientated with vehicle’s front facing camera axis

• {S} - The {E} frame rotated by 180◦ degrees about the {E} x-axis

• {B} - The vehicle body frame which is the {E} frame rotated by the yaw (ψ), pitch (θ)
and roll (φ) Euler angles in that specific order.

• {L} - Payload reference frame; origin coinciding with payload’s position, z-axis aligned
away from link’s suspension point. In equilibrium the x and y axes are parallel to the
x and y axes of frame {S}.

The Euler angles expressing the UAV’s orientation (frame {B}) in frame {E} is given in
Figure 5-1 which shows the definition of yaw, pitch, roll. The ZYX rotation convention, i.e.
first yaw, then pitch, then roll, is followed to describe the orientation of {B} with respect to
{E}. The transformation is mathematically expressed in terms of rotation matrix given by
Eq. 5-4 where the rotation axis is sub-scripted.

RB
E = Rx(φ)Ry(θ)Rz(ψ) (5-4)

5-2 Kinematic Relations

The load position in absolute coordinates ({I} frame) and as a function of the generalised
coordinates q is given by Eq. 5-5. Vector pQ is the UAV’s position and vector [0 0 l]⊤ is the
cable link vector of length l defined in frame {L}.

pL = pQ +RE
SR

S
S′(φL)R

S′

L (θL)





0
0
l



 (5-5)

The rotation matrices as used in Eq. 5-5 are given below. Note that the body attached frame
{E} has the same orientation as frame {I}, therefore no rotation transformation is necessary.
The intermediary {S′} frame is necessary to perform the payload suspension angle based
transformation.

RS′

L (θL) =





1 0 0
0 cos θL − sin θL
0 sin θL cos θL



 (5-6)
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RS
S′(φL) =





cosφL 0 sinφL
0 1 0

− sinφL 0 cosφL



 (5-7)

RE
S =





1 0 0
0 −1 0
0 0 −1



 (5-8)

The load velocity, given by Eq. 5-9, is derived by taking the time derivative of Eq. 5-5 for xL.

ṗL = ṗQ +RE
S (π) ·

d

dt
RS

S′(φL) ·R
S′

L (θL)





0
0
l



+RE
S (π) ·R

S
S′(φL) ·

d

dt
RS′

L (θL)





0
0
l



 (5-9)

5-3 System Dynamics

The payload suspension cable is assumed to be a massless rigid link. Under this assumption,
the attachment is a three-dimensional free pivot so there is no torque transfer from the payload
to the quadrotor and vice versa. To derive the EOMs using Lagrangian mechanics, the total
system kinetic and potential energy is derived from which the Lagrangian L can be computed.

The kinetic energy K of the system is given by Eq. 5-10 where diag(m, 3) denotes a diagonal
matrix of dimension 3 × 3 with entries m. Variables mQ and mL are the UAV and payload
mass, respectively.

K =
1

2
· [ṗQ ṗL] ·

[
diag(mQ, 3) 0

0 diag(mL, 3)

]

· [ṗQ ṗL]
⊤ (5-10)

The potential energy P of the system, given by Eq. 5-11, includes only the UAV and payload’s
gravitational potential energy.

P = mQgzQ +mLgzL (5-11)

The Lagrangian L is given by Eq. 5-12 from which the EOMs are derived by the Euler-
Lagrange equations in terms of the generalised coordinates.

L = K − P (5-12)

Equation 5-13 is constructed for every generalised coordinate qi of vector q. fi represents a ge-
neralised conservative external force or torque defined on the generalised coordinate directions
qi.

d

dt

(
∂L

∂q̇i

)

−
∂L

∂qi
= Qi (5-13)
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Let the general external input force vector be denoted by f given by Equation 5-14. No direct
external force/torque affects the θL or φL angles, therefore, those entries in f are zero.

f = [ fu 0 0 ]⊤ = [ Fx Fy Fz 0 0 ]⊤ (5-14)

The resulting system of equations gives the EOMs and are in the form given by Eq. 5-15
which is rearranged to solve for q̈ in Eq. 5-16. M represents the Mass matrix, C the Coriolis
matrix and G the gravitational matrix.

f = M(q)q̈+C(q, q̇) +G(q) (5-15)

q̈ = M−1(q)(f −C(q, q̇)−G(q)) (5-16)

The resulting EOMs are lengthy, therefore, they have not been included in this report in the
expanded form. See (Klausen et al., 2015) for the full form. The EOMs have been derived
using the symbolic manipulation toolbox in MATLAB following the derivation steps outlined
in this report. The code and resulting computed EOMs are available digitally in MATLAB
code form.

5-4 Drag Inclusion in Dynamics

Drag effects on the UAV and payload are included in the EOMs and this section outlines the
theory and implementation procedure. The drag force on the UAV with velocities ṗQ is given
by the linear drag form Eq. 5-17. The drag force fD,Q is given by the multiplication of drag
constant kD,Q, and ṗQ, the UAV’s velocity. Assuming the UAV moves relatively slow, the
linear drag formulation should sufficiently capture the drag dynamics on the vehicle (Klausen
et al., 2015).

fD,Q = 1
2kD,QṗQ (5-17)

5-4-1 Payload Drag in Quadratic Form

Payload drag for the preliminary study is computed using quadratic drag theory as the payload
moves at higher velocities due to the combined translational and rotational velocity. The drag
force always acts in the −ṗL direction and will be estimated using the drag Equation 5-18
where CD,L is the drag coefficient, S the payload drag affected reference area and ρ the sea-
level air density of 1.225kg/m2. Simplifying the notation, all constant terms in Equation 5-18
are denoted by drag constant kD,L.

fD,L =
1

2
CDρS(ṗ

⊤
L ṗL) ·

ṗL

|ṗL|
= −kD,L(ṗ

⊤
L ṗL) ·

ṗL

|ṗL|
(5-18)

As the payload drag always acts perpendicular to r (the link vector), no component of fD,L

acts radially, therefore, the force is purely tangential. The payload drag is included in the
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EOM as an external torque τ such that it acts on the system’s states θL and φL; the computed
torque value is given by Eq. 5-19.

τ = rQL × fD,L (5-19)

Vector r is the moment arm from the suspension point pQ to the payload pL and is given by
Eq. 5-20.

rQL = pL − pQ (5-20)

As the angles θL and φL are defined in the {S} frame it is necessary to transform the com-
puted torques from the {E} frame to the {S} frame using the transformation RE

S given by
equation 5-8.

τS = RE
S

−1
τ (5-21)

5-4-2 Payload Drag Induced Moment

An alternative method is to describe the payload drag induced moment on the payload sus-
pension angles. In the previous section, the quadratic drag was translated into a torque,
however, using the linear to angular velocity relation, the torque, given by Equation 5-19 can
be directly computed by Equation 5-22.

[τx, τy]
⊤ = kD,Ll

3

[

θ̇2L
θ̇L

|θ̇L|
, φ̇2L

φ̇L

|φ̇L|

]⊤

(5-22)

This is a simplification as only the rotational dynamics of the payload relative to the quadro-
tor are considered and not the translational. Therefore, this approach is only valid for agile
motions where the payload rotational dynamics are more prominent. If the entire system
translates for sustained periods of time in one direction, the payload would lift up behind
the quadrotor due to drag, this cannot be modelled using this approach. The benefit of this
approach is that θ̇L and φ̇L are part of q̇ making the drag implementation in the EOMs com-
putationally simple. For the quadratic drag implementation, the term ṗL must be computed
by Equation 5-9 from q, q̇ making the EOMs more computationally expensive.

5-4-3 Drag Implementation in Equations of Motion

The external aerodynamic drag induced torque acting on the payload is divided into its
components τS = [τx τy τz]

⊤ which are then included in the EOMs. The torque τx acts
on θL and τy on φL. Note that τz has been ignored as it is generally a very small torque
component. In general τz is an order of magnitude smaller than τx or τy, therefore, it is
assumed to have minimal effect on the motion. Therefore, τz is insignificant for the derived
UAVP model. An appropriate way to include this in the dynamics may be considered in a
future study.

The total system drag is abbreviated by the drag term D(q̇) as defined below. The complete
EOMs with drag is given by Equation 5-24.

D(q̇) = [ fD,Q τx τy ]⊤ (5-23)
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q̈ = M−1(q)(f −D(q̇)−C(q, q̇)−G(q)) (5-24)

Having defined the EOMs, the subsequent step involved verifying and validating the model
through simulation and experimental studies. The necessary method and steps to achieve
this will be outlined in Chapter 6.
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Chapter 6

Simulation and Experimental Setup
and Methodology

To verify and validate the UAVP model, both simulation and experimental data was collected
to ensure the model is representative of observed UAVP behaviour. Section 6-1 describes
the experimental hardware used throughout the study. Section 6-2 describes the simulation
environment coded for the study while Section 6-3 explains the indoor workspace environment.
Section 6-4 describes the experimental procedure in detail with the necessary theoretical
content. Finally, Section 6-5 outlines how experimental data was collected and post-processed
for performing the study.

6-1 Experimental Hardware and Control System

The hardware described in this section will be used throughout the study for both simulation
and experiments. The methodology and setup described generalises to other hardware, with
possibly some minor modifications, provided the interfaces between the hardware components
is comparable.

6-1-1 Quadrotor with Suspended Payload

A Parrot Bebop 2 quad-rotor1 with a suspended spherical payload was used with the physical
characteristics outlined in Table 6-1. The only modifications made to the Bebop 2 hardware
was the attachment of four light-weight rotor guards and four retro-reflective markers. Fi-
gure 6-1 shows the quadrotor and payload with the attached markers necessary for tracking
the their pose using external motion capturing.

The quadrotor’s drag constant was taken to be that of a blunt bullet head cylindrical object
(Bebop’s body is of similar shape) (Scott, Jeff, 2005) and increased to account for the rotors

1Parrot. Bebop 2. Accessed September 26 2017. https://www.parrot.com/us/drones/parrot-bebop-2
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Payload

Parrot Bebop 2

Cable

4 x Markers

4 x Markers

Figure 6-1: Photo of Parrot Bebop 2 and suspended payload with motion capturing retro-
reflective marker locations indicated

and guards. The payload’s drag constant is computed assuming a spherical object with a
contact surface of 0.025 m2 (cross-section dimension). The quadrotor’s mass is taken from
the published technical specifications and the payload mass was measured on a digital scale
with a precision of 0.1 grams.

Table 6-1: Physical characteristics of Parrot Bebop 2 quadrotor and attached payload

System Characteristic Value

Parrot Bebop 2 Quadrotor
Mass 500 g
Drag constant kD,Q 0.28

Payload

Mass 11.1 g
Massless Cable Length 0.77 m
Drag constant kD,L 1.77 ×10−3

The Parrot Bebop 2 runs on a proprietary Operating System (OS) and interfaces with other
hardware over a Wi-Fi based network. The OS handles all low-level control and regulation
tasks while accepting high-level commands sent to it processed through the Parrot Bebop’s
Software Development Kit (SDK). The SDK is the only available interface with the UAV,
therefore, the user can only internally reconfigure the UAV to the extent the SDK allows
it. The piloting functions included in the SDK allow a user to execute pitch θu, roll φu and
vertical velocity żu commands,

u = [θu, φu, żu]
⊤

Note: In the paper, the entries of u are denoted by equivalent notation
[
θ̄q, φ̄q, w̄q

]
.

Yaw commands may also be executed, however, the quadrotor is able to move in R
3 wit-

hout yaw so it help constant and not considered for control. For a comprehensive list of all
configurable variables, functions and commands, refer to the Parrot SDK 2.

2Parrot. “ARDroneSDK3”. Accessed September 26, 2017. http://developer.parrot.com/docs/bebop/
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6-1-2 Full Control System Design
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NMPC
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Figure 6-2: High-level schematic control architecture system showing division into subsystems,
namely high-level (NMPC) controller, Quadrotor Controller, the UAVP plant and State Estimator

The full control system design is divided into four subsystems namely,

1. High-Level Controller - Non-linear Model Predictive Controller (NMPC) that generates
commands u for the quadrotor that are sent via the SDK to the Parrot Bebop 2

2. Quadrotor (Inputs) Controller - accepts u commands that can then be transformed to
control input force commands f acting on the UAVP system

3. UAV-Payload (UAVP) System - accepts control input force commands f that then are
used to model the UAVP dynamics resulting in the UAVP state; q and its derivative.

4. State Estimator - using u and the state feedback from the system through the Motion
Capturing System, a filtered/estimated state estimate x is computed

See Figure 6-2 schematising the control system.

The High-Level Controller generates the piloting command u. The generation is based on
optimising the predicted system response according to the mission planning and system model;
this will be part of the subsequent study. The Quadrotor Controller generates motor inputs
derived from commanded high-level inputs u such that a control force input f is generated
acting on the UAVP system. The UAVP system’s dynamic response to f is given by the
system’s state which is subsequently used as feedback to the high-level controller closing the
loop. The off-board state estimator design was part of the subsequent study and is discussed
in Chapter 11. Note that the internal low-level quadrotor controller generally runs at a
very high frequency (order 101 to 102 Hz) allowing the high-level controller to run at lower
frequencies as it only generates reference input commands without directly controlling the
UAV rotors.

The quadrotor controller as implemented on the Parrot Bebop 2 has not been documented by
the manufacturer, however, to be able to predict the UAVP system response it was necessary
to derive a model for these internal dynamics. In the subsequent section the Parrot Bebop 2
specific controller model is briefly introduced. In the remainder of the preliminary study, the
identification, verification and validation of the quadrotor and UAVP model from empirical
data is discussed. Using the derived models, the subsequent study will discuss the high-level
NMPC controller design.
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6-1-3 Quadrotor (Inputs) Controller

In the most primitive form, a quadrotor may be modelled as four individually controlled thrust
and torque inputs that transform to the quadrotor dynamics evolving in SE(3). Readers
interested in modelling with motor inputs can refer to (Mahony et al., 2012) for the quadrotor
model. As mentioned, the quadrotor does not require any yaw commands to perform full R3

translational motion, hence it is set to a constant and assumed to be zero degrees.

Parrot Bebop 2 Internal Control Design

Considering only the quadrotor (no payload), this section describes a model for the internal
controller adopted by the Parrot Bebop 2. This is the best guess of what the actual dynamics
are considering there is no documentation available. Similar to (Chen & Wang, 2013), the
model considers the attitude (pitch/roll) dynamics to be decoupled from the translational
dynamics as the executed pitch/roll angles are relatively small and over short time periods.
All inputs are trimmed to the equilibrium hover condition which is a zero pitch, roll and
vertical velocity. Similar to (Klausen et al., 2015), assuming fast attitude dynamics, the UAV
is controllable by roll, pitch and a vertical velocity commands in u such that a resulting
control input force,

fu = [Fx, Fy, Fz]
⊤ (6-1)

defined in the inertial world axes is generated for performing translational motion.

In Figure 6-3 the quadrotor’s internal control design is shown. With the input pitch and
roll commands θu and φu, motor commands c are generated that result in a moment M and
forces Fx and Fy on the quadrotor. As observed from the system response in trials, the
quadrotor maintains altitude when executing a pitch and/or roll command hence there is
no contribution to Fz. The quadrotor’s true pitch θq and roll φq response to moment M is
internally used as feedback to compute the error signal sent to the attitude controller. With
the input vertical velocity command żu motor commands c are generated that results in a force
Fz defined on the inertial z axis. As observed from the system response in trials, the system
only ascends and descends, even under a pitch/roll angle, when żu is non-zero. Therefore, this
input only affects the quadrotor translational dynamics in the inertial z axis. The quadrotor’s
true vertical velocity response żq to the generated Fz input is internally used as feedback to
compute the error signal sent to the vertical velocity controller. The combined forces Fx,
Fy and Fz are the control input forces by which the quadrotor translational dynamics evolve
giving the system velocities ṗq and accelerations p̈q.

All internal feedback is derived from the Parrot Bebop’s built-in sensors (Full list of sensors
available in (PaparazziUAV, 2017)). As Parrot does not officially release the Bebop 2’s internal
controller design, this is the best guess of what the actual system looks like. To be able to
perform predictions of the system response, it was necessary to identify the relation u → fu
which is discussed in the next section.

Derivation of Input Commands to Control Input Force Transformation

As observed from flying the Parrot Bebop 2, the quadrotor is able to perform horizontal
manoeuvres while maintaining altitude, hence the total vertical thrust component must be
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Figure 6-3: Parrot Bebop 2 specific internal control system design showing the handling of
inputs u and the transformation to control input forces fu resulting in the MAV(P) dynamics.
The internal inner-loop quadrotor attitude controller with feedback is shown and is used to stabilise
the quadrotor pitch and roll to the commanded inputs. Internal feedback of vertical velocity is
used to stabilise the system’s vertical velocity to the commanded input.

sufficient to counteract gravity. With the system mass m, transforming the thrust vector
T = [0, 0, T ]⊤ by the quadrotor attitude given by RB

E gives Equation 6-2 for the horizontal
thrust components. Let the following notations for true pitch and roll be equivalent, θ ≡ θq
and φ ≡ φq [

Fx

Fy

]

= diag(1, 1, 0)(RB
ET) = T

[
sin(θ)

− cos(θ) sin(φ)

]

(6-2)

Additionally, Equation 6-3 must be satisfied for maintaining altitude.

(RB
ET)⊤ [0, 0, 1]⊤ −mg = 0 (6-3)

Solving for T in Equation 6-3,

T =
mg

cos(φ)cos(θ)
(6-4)

Substituting T in Equation 6-2, the horizontal force components are given in terms of the
quadrotor’s true roll φ and pitch θ angle.

[
Fx

Fy

]

= mg

[
tan(θ)/ cos(φ)

− tan(φ)

]

(6-5)

For determining Fz, the commanded vertical velocity żu results in the true system vertical
velocity response which when differentiated gives the system’s acceleration input response z̈u.
Equation 6-6 then describes the UAV’s vertical input force in terms of the resulting vertical
acceleration input z̈u and system mass m.

Fz = m(z̈u + g) = Fq +mg (6-6)

where Fq = mz̈u. When there is no z̈u input, Fz = mg to counteract the gravitational force.

Using the Eqs. 6-5 and 6-6 to define f as given by Eq. 5-14, the quadrotor controller model’s
output is defined. For the UAVP system considered m = mQ +mL which is the sum of the
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quadrotor and payload mass. This approach to modelling the inputs to force transformation
was previously used in (Tobias, Alonso-mora, Domahidi, Rus, & Hilliges, 2017) for research
also conducted using a Parrot Bebop 2 quadrotor.

Note that Eqs. 6-5 and 6-6 are in terms of the actual quadrotor pitch, roll and vertical
acceleration. To transform the commanded inputs to the quadrotor’s true response, the
Parrot Bebop 2 specific quadrotor dynamics were identified as Linear Time Invariant (LTI)
models denoted by Eqs. 6-7, 6-8 and 6-9. The states of the LTI models is denoted by xc. The
specific LTI model state definition and structure as well as the black-box identification from
empirical data collected using a Parrot Bebop 2 will be a major part of the preliminary study
and is discussed in Section 6-4-1.

The attitude dynamic response for pitch and roll is given by Eqs. 6-7 and 6-8 (as mentioned
before, yaw is not considered). The quadrotor’s resultant vertical acceleration input z̈u is
modelled as a LTI system with input żu as defined by Eq. 6-9.

θ = hθ(θu) (6-7)

φ = hφ(φu) (6-8)

z̈u = hz̈(żu) (6-9)

Substituting the quadrotor dynamics given by Eqs. 6-7 to 6-9 in Eqs. 6-5 and 6-6, the relation
u → f is obtained,

f = [Fx, Fy, Fz, 0, 0]
⊤ where





Fx

Fy

Fz



 = mg





tan(hθ(θu))/ cos(hφ(φu))
− tan(hφ(φu))
m(hz̈(żu) + g)



 (6-10)

Note that for this study it is assumed that the definition of f given by Equation 6-10 is always
substituted in the EOMs given by Equation 5-24. Unless otherwise stated when referring to
the UAVP system model it is assumed to refer to both the quadrotor input controller model
and UAVP system model.

6-2 Simulation Environment and Model Discretisation

Simulation studies of the UAVP dynamics were performed to verify the model for use in
the model-based MPC that follows after this preliminary study. A simulated environment
is built in MATLAB that is used to perform desk-based research using the derived model
from Chapter 5. The simulation environment enables rapid development and testing of new
concepts before they are implemented on a real-life setup as performing multiple runs and
iterations in experimental setups is time consuming, costly and not always tractable. Also
having a simulation setup allows comparative studies to be performed with experiments as to
quantify how realistic a simulated model is.

To discretise the continuous-time dynamics, given by Equation 5-24, numerical integration
is used. The next system state is explicitly solved using the forward Euler method. More
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accurate methods such as Runge-Kutta are not used as they require multiple function evalu-
ations of ẋ per simulation cycle while forward Euler only requires one. The drawback is that
the first-order numerical procedure, such as forward Euler, start deviating from the actual
solution quickly with a global error proportional to the step size used for simulation. Ho-
wever, considering the future application of the UAVP model in MPC, where the prediction
horizon is generally in order of 1 second, the global error over the full horizon should be
acceptable. Other integrator methods may be easily implemented with higher order Taylor
expansions should the explicit Euler method not suffice in later studies. Equation 6-11 defines
the forward Euler based computation of the next state xi+1 and derivative in discrete form
where ∆t is the simulation step size (set at 0.05 seconds to match the experimental control
frequency).

xi+1 = xi + ẋi∆t (6-11)

The simulation may be initialised at any desired state vector x. For most cases, the quadrotor
position states xq, yq, zq are pre-defined for the user with all other states zero to be in an
equilibrium condition.

6-3 Experimental Environment and Workspace

Experimental studies were performed in the an indoor specially built environment with equip-
ment used for commanding, controlling and communicating between different hardware. The
experiments took place at the Network Embedded Robotics Laboratory at TU Delft.

6-3-1 Physical Space and Motion Capturing System

The indoor setup comprises a 3.0 × 6.0 × 2.6m (width × length × height) usable workspace
contained within an outer perimeter netting wall for safety. Figure 6-4 shows a schematic of
the workspace dimensions and layout of the Motion Capture System (MCS) cameras. The
MCS system comprises of 10 Optitrack Prime 17W3 infrared based optical motion tracking
cameras positioned overhead along the outer perimeter of the workspace. The maximum
usable workspace is determined by all physical locations that can at least be captured by four
cameras. This was determined by taking a retro-reflective marker and collecting a point cloud
of tracked marker locations. Markers are tracked when at least three cameras have it in sight
with the fourth camera necessary for redundancy. Figure 6-4 also shows the orientation and
positioning of the inertial reference frame {I} which is defined at the ground-level centroid of
the usable workspace. The MCS provides rigid-body information in SE(3) of the quadrotor,
payload and any tracked obstacles. Prior to performing experiments the MCS was tuned and
calibrated. The calibration results and error margins are presented in Appendix E.

6-3-2 Command, Control and Communication Architecture

To perform experiments a command, control and communication architecture was established
enabling execution of controlled experiments and collection of data. The following section
outlines some characteristics of the hardware and software used.

3Optitrack. “Prime 17W”. Accessed September 19 2017. http://optitrack.com/products/prime-17w/
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Figure 6-4: Schematic showing indoor usable workspace dimensions with inertial frame {I}
marked in center and the Motion Capture System cameras (orange triangles) laid out

Central Computer Hardware and Software

All commands, control computations and communications during the experiments were per-
formed on a central host computer with the hardware and software itemised below;

• Hardware: Laptop with Intel Core i7-3610QM Quad-core at 2.30 GHz (3.30 GHz max),
8 GB RAM and 2.4/5 GHz capable Wi-Fi card

• Operating System and Software: Ubuntu 16.04, ROS Kinetic Kame, MATLAB R2017a

In addition to the software outlined above, several MATLAB toolboxes and ROS packages are
required which have been itemised in Appendix F. An additional computer was necessary to
run the Optitrack provided Motive software that controls and communicates with the MCS
cameras to makes its data available on the ROS network.

System Architecture

Referring to Figure 6-5, all communications were hosted on the central computer. The MCS
data outputs 3D rigid-body data which includes the quadrotor’s pose (position and orienta-
tion), and the payload’s position. The central computer was running the ROS master with
packages loaded to enable the MCS rigid-body data to be read, and commands to be sent to
the quadrotor. Control computations were done in real-time using a MATLAB script that
published commands to a ROS topic that interfaced with the Bebop SDK. A physical game-
console controller was used to facilitate manual control and override the MATLAB generated
commands should that be necessary.

6-4 Experimental Procedure

Three experiments were conducted for the complete identification, verification and validation
of the UAVP dynamics. Each experiment and its relevance will be outlined in more detail in
its own section.
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Figure 6-5: Data flow between digital systems in the experimental setup

• Identification of the UAV pitch, roll and vertical velocity dynamics
• Analysis of the cable slackening during manoeuvres
• Validation through comparison of simulated and experimental system dynamics respon-
ses

6-4-1 System Identification Method for Quadrotor Pitch, Roll and Vertical Velo-
city Dynamics

As mentioned in Section 6-1-3, to complete the model it is necessary to identify the UAV’s
attitude and vertical velocity dynamics as given by Eqs. 6-7, 6-8 and 6-9. System identification
is performed using the MATLAB System Identification Toolbox that uses recorded input-
output time traces to identify a process model, of arbitrary degree n, in an innovations
state-space form as presented in Eq. 6-12. As the particular model structure implemented
on the on-board controller is not known, a black box modelling approach is used where the
primary model purpose is to fit the data. Therefore, the states of the identified models have
no physical meaning, but rather represent abstract model parameters. The output measure
is denoted by a placeholder notation Θ ∈ R which in this experiment’s case is either pitch,
roll or vertical velocity. Let u(t) ∈ R be the reference pitch, roll or vertical velocity input.
Input delay may be added to the system by setting a positive non-zero td. The intermediate
state-space variables are encoded in vector xΘ ∈ R

n for which the size depends on the model
order n. As experimental data is used, a disturbance component is included by signal e(t)
and the disturbance matrix given by KΘ capturing dynamics unrelated to the process being
identified.

ẋΘ = AΘxΘ(t) +BΘu(t− td) +KΘe(t)
Θ = CΘxΘ(t) +BΘu(t− td) + e(t)

(6-12)

The pitch, roll and vertical velocity models were identified individually using the same process.
Two runs of the same experiment were selected to create a estimation and validation dataset.
The former dataset is used by the toolbox to identify a (delayed) first, second and third
order state-space model. The validation dataset is used to measure the fit/performance of
the generated model through simulation of the model response to the recorded inputs in the
dataset. The toolbox was configured to estimate the state-space models using Prediction
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Error Minimisation (PEM) with a focus on simulation and zero initial state. Note that
achieving a constant perfectly zero initial state is impossible due to the experimental nature
of the data.

Only linear, low order models were identified as the resulting model accuracy was found to
be sufficient while keeping the computational demand low for real-time implementation. A
discrete state-space model would be more appropriate for simulation and control purposes due
to the use of digital computers for performing both tasks, however, this requires the model
sample time to be constant. This is achievable in simulation, however, for implementation
purpose in a real-time system, the sample time constantly varies. Therefore, a continuous time
model is identified which can then be forward simulated using numerical integrator methods.

6-4-2 Analysis of Cable Slackening During Manoeuvres

As mentioned in Chapter 5, it is necessary to verify whether cable slackening occurs when the
UAV undergoes inputs under the full range. For the purpose of modelling the UAVP system,
it is important to know whether the cable always remains taut (in tension) throughout the
motion or there are instances where it becomes slack; if the cable switches between the slack
and taut state, a switching UAVP dynamics model would be necessary. Consequently a
switching-mode controller or modelling of the continuous cable dynamics would be required
for proper modelling and validation of the UAVP dynamics.

It is presumed that a cable never slackens if the vector between its two end-points remains of a
constant known length. From experimentally collected data, the cable length l is computed by
Eq. 6-13 using the MCS provided payload and UAV positional data pL and pQ respectively.
During experiments it was noted that the MCS collects the quadrotor’s position at the centroid
of the polygon formed by the four markers attached while it is assumed pQ is the UAV’s center
of gravity. Also, the cable suspension point is under the UAV’s actual center of gravity as it
is physically impossible to attach the cable at the centre. To account for the offset between
the measured MCS based UAV position and the actual suspension point, Eq. 6-13 is modified
giving Eq. 6-14 where the offset is included in vector roff.

l = ‖pL − pQ‖ (6-13)

l = ‖pL − (pQ + roff)‖ (6-14)

Under the premise that a taut cable corresponds to a constant cable length, with some
deviations for measurement errors, the results can show if slackening ever occurs.

6-4-3 Validation Through Comparison of Simulated and Experimental System
Responses using Configuration State Reconstruction

To facilitate validation of the simulated system dynamics, it was necessary to reconstruct
the state vector q = [xQ yQ zQ θL φL]

⊤ from experimentally collected measurements. The
first three states of q are the UAV’s position which is directly available from the MCS. The
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remaining states are the suspension angles φL and θL which are computed using Eqs. 6-15 and
6-16 respectively. The computation of these angles uses the MCS positional data of pL and
pQ. The equations are derived by inverting the kinematics describing the payload position
pL with respect to the UAV position pQ as given by Eq. 5-5.

φL = tan−1

(
−(xL − xQ)

zL − zQ

)

(6-15)

θL = sin−1

(
yL − yQ

‖pL − pQ‖

)

(6-16)

The simulated and experimentally derived states time traces are then compared to identify
whether the responses are consistent and/or whether there are any (significant) deviations.

6-5 Collection and Post-processing of Experimental Data

Data collected during experimentation was post-processed for noise and systematic errors to
be usable for performing the system identification and validation described in the preceding
sections. Both procedures are described in detail hereafter.

6-5-1 Data Collection

As presented in section 6-3-2, all communications lines in the experimental setup either start
or end at the central computer, therefore, logging of all data occurred there. Data logging
was performed during the experiment as part of the MATLAB control algorithm that was
receiving data from ROS topics published by the MCS and quadrotor. As data was logged
in-the-loop, the data sampling frequency was inherently linked to the high-level control loop
frequency. This was not a problem considering the control frequency was consistently 19 Hz.
Future iterations of the code will likely benefit from separating control and logging into two
independent scripts running as two processes.

The type of odometry data and metrics collected included;

• Real-time clock samples (MATLAB on host computer)
• Quadrotor’s pose which includes position and orientation in Euler angles (MCS)
• Payload’s position (MCS)
• Quadrotor commanded pitch, roll and vertical velocity inputs (MATLAB on host com-
puter)

Important to note is that commanded inputs are recorded at the time they are generated
by the MATLAB control script running on the host computer. The UAV will execute this
command once it is received and may have earlier commands buffered till then so there is a
time lag component. Additionally, the UAV may skip inputs if they are received at a higher
rate than can be physically executed. Unfortunately, it is currently not possible to obtain the
timed UAV executed inputs due to limitations of the Bebop SDK. Therefore, from here on
forward it is assumed that all inputs sent to the UAV are executed within a reasonable time
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period. Additionally, the quadrotor’s orientation in Euler angles may also be obtained from
the built-in gyroscopes, however, the current transmission rate from the UAV is limited to
5 Hz using the SDK and ROS (Monajjemi, Mani, 2015). This sampling frequency is too low
for reconstructing the continuous system dynamics for system identification purposes (as will
become clear in Chapter 7).

6-5-2 Data Post-processing

Data collected was directly logged into MATLAB arrays that could readily be imported into
the workspace and manipulated in MATLAB. First an analysis was performed to identify any
missing data points or outliers resulting from to the digital nature of recording the metrics.
Any issues were rectified by removing or estimating the missing value through interpolation
using locally relevant data points. This step ensured that erroneous data was not used for
the system identification and validation procedure adversely affecting the results obtained.

The data was then processed using low-pass filtering to remove high-frequency noise com-
ponents. The data was filtered/smoothed using the MATLAB smooth function which is a
simple moving average filter with a span of 5 measurement points. The simple filter was suf-
ficient for the purposes of this study, however, one may explore more advanced low-pass filter
constructions and/or finely tune the moving average span based on the expected frequency
components in the data.

Additional de-trending post-processing was performed on the estimation and validation da-
taset for the UAV pitch and roll system identification. The details of this is outlined in
Appendix G.
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Chapter 7

Results and Discussion

Three sets of experiments were performed as described in Section 6-4. Section 7-1 presents
the system identification results for the pitch, roll and vertical velocity dynamics of the Parrot
Bebop 2 quadrotor. Section 7-2 looks at the results to answer whether cable slackening occurs
for inputs over the allowable range. Lastly, Section 7-3 addresses the comparison of simulation
and experimental studies of the UAVP response dynamics to validate the model.

7-1 Identified Quadrotor Pitch, Roll and Vertical Velocity Models

The identification of the Parrot Bebop UAV pitch, roll and vertical velocity dynamics using
the method outlined in Section 6-4 is described concluding with the derived models. First
the UAV step response is assessed to gain some insights into the system.

7-1-1 Step Response and System Bandwidth

To identify basic time-domain characteristics of the system pitch, roll and vertical velocity
response, experiments involving step inputs were performed to collect system response data.
The following experimental runs were performed:

• Pitch and Roll, 10◦ and 15◦ step inputs individually for 1 second duration
• Vertical velocity 1 m/s step input for 1 second duration

Due to limitations imposed by the available indoor workspace, it was not possible to perform
step input experiments at higher pitch and roll angles as there was insufficient translational
space available. Due to the same reasons, it was not possible to lengthen the input duration.

The experimentally derived rise time for the step response is summarised in Table 7-1. The
rise time definition followed is the time taken for the response to go from 10% to 90% of the
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final steady-state value which is set as the commanded input angle. As the quadrotor is not
fully symmetrical along all axes, it is expected that the pitch and roll dynamics are similar
but not equal. The results show that the pitch response rise time is more consistent than
the roll response, however, on average the rise time of both pitch and roll are comparable at
around 0.33s. The roll response is slightly slower which is consistent with the expectation
as the quadrotor is generally designed to be most agile along the body x axis. From the
relatively long pitch and roll rise times, it can be concluded that the pitch and roll inputs are
not instantly tracked by the attitude stabilisation system of the UAV. Therefore, modelling
the pitch and roll dynamics is necessary for developing an accurate UAVP model. The same
conclusions can be drawn for the vertical velocity input response which has an average rise
time of 0.42s which is relatively slow. The vertical velocity response is slow as it requires all
four motors to increase their rotational velocity such that extra thrust is generated.

Table 7-1: Rise time of Parrot Bebop 2 quadrotor’s pitch, roll and vertical velocity response for
multiple runs

Run
Step Response Rise Time [s]
Pitch 10◦ Pitch 15◦ Roll 10◦ Roll 15◦ Vertical velocity 1m/s

1 0.32 0.33 0.34 0.30 0.42

2 0.34 0.33 0.32 0.40 0.44

3 0.34 0.30 0.46 0.29 0.41

Average 0.33 0.32 0.37 0.33 0.42

The rise times also give insight into the frequency response bandwidth of the pitch and
roll attitude stabilisation system. As a rule of thumb, the step rise time relates to the
system bandwidth BW by Eq. 7-1 (National Instruments, 2007). Therefore, the pitch and
roll system bandwidth is 1.1 Hz (rounded to two significant figures). The bandwidth for the
vertical velocity control system is 0.83 Hz. The bandwidth is important for designing the
system identification input signals and setting the required sampling frequency to recreate
the continuous-time dynamics from sampled data.

BW [Hz] =
0.35

rise time [s]
(7-1)

As a continuous-time response is captured by discrete samples, it is also necessary to achieve a
sampling rate greater or equal to the Nyquist rate. According to Nyquist-Shannon’s sampling
theorem, the minimum sampling rate is equal to two times the signal bandwidth, therefore,
sampling must occur at a minimum of 2.2 Hz to capture the continuous time system dynamics.
Given the pitch and roll system bandwidth is higher than for vertical velocity, achieving the
stricter sampling rate automatically guarantees the sampling rate is sufficient for the latter
system. From experimental trials, the minimum observed sampling rate using the workspace
setup as described in Section 6-3 is 19 Hz which is well above the required sampling rate.
Intuitively the sampling rate seems low, however, this rate is achieved as the higher frequency
MCS data is communicated over the ROS network and processed in MATLAB before being
logged into a data file. The in-the-loop processing also converts the external MCS data into
relevant measures including the UAV Euler angles. Therefore, the control loop speed of
MATLAB restricts the logging/sampling speed. Unfortunately, the high frequency MCS data

Nikhil D. Potdar Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments



7-1 Identified Quadrotor Pitch, Roll and Vertical Velocity Models 73

that is sent at around 60 Hz to MATLAB between logging instances is lost. For the purposes
of the experiments performed, the current 19 Hz sampling rate is sufficient. To significantly
increase the attained sampling rate, raw data from the MCS would need to be externally (not
within MATLAB) be logged. The data will then need to be post-processed into the required
measures.

7-1-2 System Identification of UAV Pitch and Roll Dynamics

Considering the pitch and roll system bandwidth of 1.1 Hz, a square wave input was designed
to excite the system to collect experimental response data. Proper system identification
requires excitation of the system at various input frequencies and a square wave achieves
this as it is composed of multiple sine waves at various frequencies and amplitudes (this
follows from its Fourier series decomposition). Three state-space systems of orders 1 to 3 in
the form of Eq. 6-12 were identified on the estimation dataset using the MATLAB System
Identification Toolbox. The estimation and validation dataset contain the system response
to an input square wave with an amplitude of 5◦, frequency of 0.5Hz and duration of 15 s.
The input frequency was selected to be 0.5 Hz as to fall within the system bandwidth of
1.1 Hz. The data has been cut-off at the 15 s mark as to exclude the square wave signal’s
return to the 0◦ input; reason for this exclusion is that the quadrotor’s attitude controller
not only brings the pitch/roll back to 0◦, but also triggers a position hold controller so there
is no remaining translational motion. The position hold is achieved by generating a negative
pitch/roll against the motion and this corrective action involves an extra outer loop to the
attitude controller which is not currently being modelled.

Figures 7-1 and 7-2 show the designed input square wave with the corresponding simulated
and experimental validation data responses. For both pitch and roll, three non-delayed model
of increasing order and a delayed first-order model, with 0.1 s input delay td, were identified.
Table 7-2 shows the quantified overall model fit, as a percentage, with the estimation and
validation dataset. Percentage fit is the agreement between the model generated output and
the experimental data output. The measure used is Normalised Root Mean Square Error
(NRMSE) which is part of the MATLAB goodnessOfFit function. Additionally, the model
quality is explored by considering the output residual auto-correlation and cross-correlation
between the input and output residuals as given in Appendix I. Delayed second and third
order state-space models were also identified, however, there was minimal to no improvement
in the model fit as shown in Appendix H so they have been excluded from the results discussed
here. As shown in Table 7-2, the delayed first-order model shows significant improvement in
the model fit compared to the non-delayed version. Analysing Figures 7-1 and 7-2 and the
associated model fits, models of all order are able to capture the system dynamics sufficiently
well with at least a 80% fit. The model fits on pitch dynamics is better than roll which can
be attributed to the more consistent pitch response compared to roll for the square wave’s
repetitive inputs as used for experiments. The same consistency issue with the roll response
was observed in the results of Section 7-1-1. Additionally, note how the UAV’s experimental
pitch and roll response converges to a final value lower than the commanded input value
of ±5◦ (±0.087 rad). This also means the overall gain of the derived models is less than
1. Over the repeated inputs given to the UAV in the square wave form, the UAV does not
consistently converge to the same tilt angle, therefore, there is likely some error in the UAV’s
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internal state observation. Another important conclusion to be drawn is that the model fit
on the estimation and validation data is very similar indicating there is no apparent model
over-fitting to the estimation data.

Further analysis shows that second order model is the most suitable pitch and roll model
order considering the fit and computational load. The conclusions and observations made
are relevant for both the pitch and roll system given how similar the systems respond to
inputs. The residual analysis in Appendix I, shows that the second and third order model’s
quality is good given that the majority of the residuals fall within the 99% confidence intervals
with some peaks beyond the intervals. The first order model performs well, however, it has
a relatively low model fit at around 80-85% when compared to the second and third order
model. Also considering the response shown in Figures 7-1 and 7-2, the first order model
output overshoots the observed experimental response significantly. The delayed first order
model fit is more comparable with the second and third order models, however, it slightly
under-performs in terms of model fit. The improvement in model fit from the second to
third order model is small while the additional order makes the third order model more
computationally demanding. Following from the observations made, the second order pitch
and roll model is selected for which the state-space representation is given by equations 7-2
and 7-3 respectively. The pitch and roll model inputs are given by θu and φu with the
intermediate states encoded in vectors xθ and xφ. These models address the earlier identified
unknown UAV attitude dynamics functions formulated as Eqs. 6-7 and 6-8. To improve real-
time performance of the script and simplify the model, the delayed first-order model may be
considered in subsequent studies as it achieves a relatively good fit with the benefit of being
one order lower (less computationally demanding).

ẋθ =

[
−4.301 −2.877
10.92 −10.37

] [
xθ,1
xθ,2

]

+

[
−0.6893
−16.32

]

θu +

[
15.37
23.75

]

e(t)

θ =
[
1.763 4.586× 10−3

]
[
xθ,1
xθ,2

]

+ [0] θu + e(t)
(7-2)

ẋφ =

[
−2.789 −4.978
9.302 −13.72

] [
xφ,1
xφ,2

]

+

[
−5.41
−18.04

]

φu +

[
13.57
1.152

]

e(t)

φ =
[
1.996 0.4657

]
[
xφ,1
xφ,2

]

+ [0]φu + e(t)
(7-3)

Table 7-3 shows the poles, zero, damping ratio and natural frequency of the resulting second
order state-space systems. Both the pitch and roll models are under-damped with a damping
ratio approaching critical damping, therefore, there is very little oscillatory behaviour in the
response as also seen in Figures 7-1 and 7-2. This can also be deduced from the poles in
the complex left-plane that also confirm the system is stable. The non-minimum phase zero
introduces some undershoot behaviour, however, as it is very far right into the complex plane,
it has minimal effect on the overall system behaviour as it does not cancel any effects from
the more dominant poles (closer to the origin).
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(b) Second and third order models, and validation data response to input signal
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(c) Input signal square wave; amplitude: 5◦ (0.087 rad), frequency: 0.5 Hz, duration: 15 s

Figure 7-1: First (delayed), second and third order pitch state-space model response comparison
to experimental validation data

Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments Nikhil D. Potdar



76 Results and Discussion

0 2 4 6 8 10 12 14 16 18

Time [s]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

R
ol

l a
ng

le
 [r

ad
]

Order 1
Delayed
Order 1
Validation
Data

(a) First order models and validation data response to input signal

0 2 4 6 8 10 12 14 16 18

Time [s]

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

R
ol

l a
ng

le
 [r

ad
]

Order 3
Order 2
Validation
Data

(b) Second and third order models, and validation data response to input signal

0 2 4 6 8 10 12 14 16 18
Time [s]

-0.1

-0.05

0

0.05

0.1

R
ol

l a
ng

le
 [r

ad
]

Input
signal

(c) Input signal square wave; amplitude: 5◦ (0.087 rad), frequency: 0.5 Hz, duration: 15 s

Figure 7-2: First (delayed), second and third order roll state-space model response comparison
to experimental validation data
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Table 7-2: First, second and third order state-space model fit as NRMSE percentage to estimation
(est.) and validation (val.) dataset. First-order input delays are 0.10 s for pitch/roll model, and
0.12 s for vertical velocity.

System
Dataset fit of identified state-space model [%]
Order 1 Order 1 delayed Order 2 Order 3
Est. Val. Est. Val. Est. Val. Est. Val.

Pitch 84.68 84.55 91.72 91.08 94.59 93.81 95.93 94.96

Roll 82.34 81.69 89.95 88.54 91.09 89.08 92.76 90.17

Vertical Velocity 77.12 76.42 87.52 89.01 91.38 91.56 91.19 92.19

Table 7-3: Poles and zero of identified pitch, roll and vertical velocity second order state-space
system models

System Zero Pole(s) Damping Ratio [-] Natural Frequency [Hz]

Pitch 54.1 -7.34 ± 4.71i 0.841 1.39

Roll 32.6 -8.25 ± 4.05i 0.898 1.46

Vertical Velo-
city

93.0 -3.54 ± 3.07i 0.755 0.74

7-1-3 System Identification of UAV Vertical Velocity Dynamics

Following the same system identification process as for the pitch and roll dynamics model,
the vertical velocity model is also identified. The estimation and validation dataset contain
the system response to a pulse input of width 1s and an amplitude of 1m/s.

Figure 7-3 shows the designed input pulse and the corresponding simulated response using
state-space models of different order. Table 7-2 shows the quantified overall model fit, as a
percentage, with the estimation and validation dataset. A first order delayed model with a
0.13 s input delay td is included as there is significant improvement in the fit. As previously
noted in Table 7-1, the vertical velocity system rise time is higher, therefore, it is consistent
that the input delay is longer when compared to the pitch and roll system models. Looking at
Table 7-2, the data fit on the estimation and validation dataset is comparable indicating that
model over-fitting is not an issue. The first order model has a relatively poor fit at around
76-78% when compared to the second and third order models at 91-93%. Including the input
delay in the first order model vastly improves the model fit making it comparable to the second
and third order models. However, as seen in Figure 7-3, the (non-)delayed first order models
show an overall good response amplitude, however, the response shape deviates from the
experimental data. The second and third order models are able to capture the more gradual
damped nature by which the vertical velocity response evolves. The delayed first order model
may be considered to achieve real-time performance at the loss of some accuracy in subsequent
studies as it is computationally less demanding due to the lower order. Comparing the second
and third order model, the model fit is equivalent, therefore, the second order model is the
all round better model. Considering the model quality, as presented in Appendix I, the third
order model is better as the residuals fall more often into the confidence intervals, however,
the second order model is only slightly worse. The second order vertical velocity state-space
model is given by Eq. 7-4 where ż is the UAV’s actual vertical velocity.
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ẋż =

[
−4.875 1.848
−6.062 −2.203

] [
xż,1
xż,2

]

+

[
0.6029
3.681

]

żu +

[
21.93
83.78

]

e(t)

ż =
[
4.029 −0.7253

]
[
xż,1
xż,2

]

+ [0] żu + e(t)
(7-4)

Table 7-3 shows the poles, zero, damping ratio and natural frequency of the resulting second
order state-space system. The vertical velocity response is under-damped while more towards
being critically damped, hence, there is little oscillatory response behaviour as seen in Figure
7-3. As the poles are in the complex left-plane, the system is stable, and the non-minimum
phase zero being very far right in the complex plane has little effect on the behaviour resulting
from the dominant poles.

A peculiar and interesting observation is made from Figure 7-3, the UAV responds to a 0 m/s
vertical velocity input by flying down (negative vertical velocity). When given a 0 m/s vertical
velocity command, the UAV control system controls the altitude rather than maintaining a
zero velocity as it cannot directly sense velocities. Therefore, returning the input to the
nominal state 0 m/s triggers an additional altitude hold control loop which is not accounted
for in the model derived using this system identification scheme. Contrary to the roll and
pitch angle which the UAV can obtain from built-in gyroscopes, sensor fusion and estimation
must be performed to derive the UAV’s current vertical velocity. To achieve this the Parrot
Bebop 2 has a barometer, ultrasound based altimeter and accelerometers (PaparazziUAV,
2017). Therefore, due to the estimation involved, it is expected that the executed vertical
velocity will be inconsistent over repeated input commands of the same magnitude.

7-2 Analysis of Cable Slackening During Manoeuvres

To identify whether the cable slackens during foreseeable manoeuvres, flights were performed
with gradual and aggressive inputs allowing the payload to swing freely. Using Eq. 6-14,
the cable length can be computed over the duration of the experimental flight. From me-
asurements taken from the UAVP system setup, the offset vector was determined to be
rBoff = [0 0 − 0.04]⊤ in meters in the {B} (body) frame. As Eq. 6-14 requires the offset
in the inertial frame {I}, the necessary transformation using the measured attitude Euler
angles was performed to give roff. There was also an offset between the measured payload
position and suspension point on the payload of 0.025 m, therefore, this value was subtracted
from the computed cable length.

Figure 7-4 shows the computed cable length and suspensions angles for a section of flight
recorded with the pitch, roll and vertical velocity inputs given by the third sub-plot. The
flight was performed on level altitude with combined gradual and aggressive pitch and roll
inputs. The maximum pitch/roll angle and vertical velocity amplitude was capped at 20◦

(0.35 rad) and 1 m/s respectively. As mentioned in Section 7-1-1, these inputs are a practical
limit considering the limited traversable indoor workspace. This input range will also be used
for constraining the MPC generated high-level commands in the subsequent study. Before
performing the experiment, the UAVP was brought to a nominal hover state such that there
was minimal residual payload swing. Ideally the payload would be stationary, however, this
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(b) Input signal pulse; amplitude: 1m/s, pulse width: 1s

Figure 7-3: First (delayed), second and third order vertical velocity state-space model response
comparison to experimental validation data

is not practically achievable. As seen in Figure 7-4, the cable length varies during the run,
however, it only varies about 1 cm from an average value of 0.755 cm, or about 1.3% of
the nominal value. Also note that the measured cable length is 0.77 cm, as given in Table
6-1, however, here the cable on average appears to be shorter. The discrepancy likely results
from the cable shortening after attaching the string with a knot on the UAV and payload
suspension point. Also the offset vector measurement is not very accurate, so there is error
introduced through that measure.

It cannot be conclusively said that the cable never becomes slack during the experiment, ho-
wever, the variations in computed cable length is only around 1.3%, so that may be attributed
to random errors, and biases introduced by the offsets. If there was significant slackening of
the cable, the measured length between the UAV and payload would have more dramatically
been affected, however, this was not the case. Therefore, assuming the cable remains taut is
sufficient for the UAV command input ranges considered in this study. Slackening is generally
observed when the payload swings aggressively (high suspension angles) combined with rapid
acceleration of the vehicle to which the payload is attached. In this case, the motion of the
two rigid bodies decouple causing the cable to slack. This sort of behaviour was not observed
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Figure 7-4: Payload suspension cable length, suspension angles and UAV commanded input pitch
θu and roll φu angles, and vertical velocity żu for gradual and aggressive manoeuvres

during the experiments performed as the vehicle is unable to perform such agile behaviour
under the limited input range. Future studies can look at the slackening behaviour in more
detail by measuring the actual tensile force in the cable which clearly indicates the cable be-
comes slack when there is zero force. Due to unavailability of such measurement capabilities,
this study was not performed for this research.

7-3 Validation of UAV-Payload Model under Experimental Trials

Using results from the system identification of the pitch, roll and vertical velocity dynamics
and the newly gained insights about the cable taut/slack dynamics, the final step involved
validation of the obtained UAVP model using experimental data.

7-3-1 Quadrotor Input Control Model Implementation

The identified state-space models relating the commanded input to actual UAV state pitch,
roll and vertical velocity were implemented in the simulation environment. As outlined in
Section 6-2, the UAV’s true pitch θ, roll φ and vertical acceleration input z̈u relate to the
control forces f acting on the UAV system by Eq. 6-10. The true θ and φ states can now be
modelled from the input θu and φu by Eqs. 7-2 and 7-3 respectively provided the initial UAV
θ and φ state is known. The remaining equation is a relation between the vertical velocity
żu and acceleration z̈u inputs. Equation 7-4 currently models the vertical velocity dynamics
provided the input and initial condition. To obtain the vertical acceleration input as output,
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the differential output of Eq. 7-4 must be taken resulting in the state-space model as given
by Eq. 7-5.

ẋz̈ =

[
−6.767 −6.546
3.031 0.311

] [
xz̈,1
xz̈,2

]

+

[
38.75
1.841

]

żu

z̈u =
[
0.620 4.07× 10−2

]
[
xz̈,1
xz̈,2

]

+ [−0.241] żu

(7-5)

Note that by substituting the output z̈u in Eq 6-6, the vertical control force Fq = mz̈u with
UAVP mass m can also be defined as the output of model Eq. 7-5. This model addresses the
earlier identified unknown vertical acceleration input relation given by Eq. 6-9. The resulting
system zero is at s = 93.04 and poles are at s = −3.54± 3.07i with damping ratio 0.755 and
natural frequency of 0.74 Hz, therefore, it is an under-damped and stable system.

The three previously mentioned unknown functions given by Eqs. 6-7, 6-8 and 6-9 are now
defined completing the Quadrotor Controller model. The three state-space models, Eqs. 7-2,
7-3 and 7-5 were implemented in simulation and the response simulated numerically using
an (explicit) forward Euler algorithm to keep the computational complexity low. A Runge-
Kutta numerical method has been implemented in code, however, it has not been used for
the simulations performed and the results presented in this preliminary report. During trials
it was determined that in experiments the loop step-size averaged around 0.05 s which was
small enough that the forward Euler method did not deviate significantly from the actual
continuous function value.

7-3-2 Comparison of Simulated to Experimental UAVP Response

The complete simulation with the identified UAV dynamics included was used to perform
studies comparing the experimental and simulated UAVP response. As the payload motion is
inherently linked to the UAV motion and vice versa, the improved UAV model should reflect
in an improved modelling of the payload dynamics. To study this, simulated and experimental
step response data was collected to study how the payload suspension angle evolves when the
identified UAV dynamics are included and excluded in the simulated response.

For simulation purposes, the payload was assumed to be in a nominal equilibrium state (zero
suspension angles) with the UAV stationary and hovering. These idealised conditions are not
realisable in experimental conditions, however, effort was taken to bring the system as close
to nominal as possible. Being a causal system, all the residual undesirable motion has an
effect on the obtained results to a certain degree. Multiple runs were performed so that at
least one run could be selected where the system was close to a nominal state.

The first experiment involved a step 10◦ (0.175 rad) pitch input on the UAV at 4 s resulting
in the response seen in Figure 7-5. The simulated to experimental response fit is computed
as the NRMSE starting from 4 s till the end of the run. The UAV only moves in the {I}
inertial frame’s positive x direction so the payload ideally only responds with a φL angle. The
experimentally measured θL angle remained below 2.3◦ (0.04 rad) throughout the experiment
which is acceptable and has negligible effect on the φL response. The simulated responses
presented in Figure 7-5a includes the identified UAV dynamics while in 7-5b they are excluded.
Figure 7-5b shows how exclusion of the dynamics results in an immediate payload response to
the input while in reality there is a slight delay before the payload responds which is captured
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by including the damped dynamics as seen in Figure 7-5a. Overall the simulated response
frequency is equivalent to experimental data with the response in Figure 7-5a showing a
much better fit at 70.9% compared to 21.7%. As seen in Figure 7-5a, the simulated response
is approximately a shifted version of the experimental response, this may be attributed to the
residual oscillatory energy in the experimental system at the 4s mark when the step input is
executed. Given the response appears shifted and does not oscillate about a zero value, there
is likely a bias in the measurement which could be identified and removed. It cannot be said
for certain if this is the case, therefore, the results are presented as-is without removing a
bias.
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Figure 7-5: Experiment (exp) and simulation (sim) payload suspension angle for UAV pitch step
input θu = 10◦

Similar to the first experiment, the second experiment involved a step 10◦ (0.175 rad) roll
input on the UAV at 4 s resulting in the response seen in Figure 7-6. The same NRMSE fit was
computed in this case. The UAV only moves in the {I} inertial frame’s positive y direction so
the payload ideally only responds with a θL angle. The measured φL angle remained below 5.8◦

(0.1 rad) throughout the experiment which is acceptable. The simulated responses presented
in Figure 7-6a includes the identified UAV dynamics while in 7-6b they are excluded. Again,
Figure 7-6b shows how exclusion of the dynamics results in an immediate payload response to
the input while in reality there is a slight delay before the payload responds which is captured
by including the dynamics as seen in Figure 7-6a. Again, the simulated response frequency is
equivalent to experimental data with Figure 7-6a showing a much better fit at 72.3% compared
to 31.5%. As there was less residual oscillatory energy, the experimental amplitude response
is more comparable. The simulation shown in Figure 7-6a shows a slightly weaker amplitude
response while being less damped. This could be as the real UAV accelerates faster and the
payload experiences more drag than modelled in simulation.

The experiments that have been discussed till now have tested the simulated response to
discrete and simple step pitch or roll inputs. Figure 7-7 shows the simulation and experimen-
tal response of the UAVP to combined gradual and aggressive, roll and pitch inputs. The
experimental data has previously been presented in Figure 7-4 which also shows the input
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Figure 7-6: Experiment (exp) and simulation (sim) payload suspension angle for UAV roll step
input φu = 10◦

commands. Again care was taken to bring the system to a nominal state before initiating the
experiment as the simulation assumes a nominal initial state. Before analysis of the results, it
is important to note that due to causality and the dead-reckoning UAVP dynamics simulation
process, the simulated response is subject to cumulative errors. Given the experiment elapsed
for 56 seconds, there is a large span over which accumulation of errors occurs.

Observing Figure 7-7, the initial impression is that the overall fit is decent with the simulation
showing a comparably shaped simulation and experimental response. As also noted in the
step response data, the response amplitudes do not always agree which is also the case here.
On the other hand, the oscillatory frequency is equivalent. The simulated end experimental
responses deviate the most from each other when there is minimal input to system such that
the suspension angles are low (< 6◦ or < 0.1 rad) which occurs for φL from 0 to 5 s, and for
φL and θL from 50 to 56 s. This interesting observation indicates that the model is able to
more accurately capture the UAVP motion when the inter UAV-Payload dynamics become
dominant, i.e. when the UAV accelerates/decelerates significantly resulting in large payload
swinging motions. When the UAV is idle or undergoing very small inputs, the model and
actual response deviate which is expected. Taking the measurements from 0 to 5 s, looking
back at Figure 7-4, notice how the roll input is significantly larger than the pitch input, this
translates to larger θL angles than φL. Therefore, the simulation is able to capture the θL
response much better than the φL response. When there are very small accelerations in a given
direction, other unmodelled phenomenon become more dominant factors affecting the UAVP
dynamics, consequently, there is greater disparity between the simulated and experimental
response.

Given this observed behaviour, an experiment was set-up to perform flight under dominantly
UAV pitch inputs with significantly smaller roll inputs. Figure 7-8 shows the simulation and
experimental response of the UAVP to inputs of that nature. As the postulate states, it is
expected that the experimental φL response will be captured by the simulation while there is
more disparity in the θL response. This expected behaviour is also clearly observable in the
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Figure 7-7: Payload suspension angles in experiment and simulation for combined pitch and roll
UAV inputs, simulated φL fit of 41.0%, θL fit of 31.1%

collected response data in Figure 7-8. Note how the θL is almost always < 6◦ or < 0.1 rad
which are very small suspension angles. Compare this to φL which reaches angles around 35◦

(0.5 rad) showing that the inputs have a dominant effect on the UAVP dynamics observed
here. Also the simulated response fit on φL is 28.9% while for θL it is −12.3%.

7-3-3 Completed Model and Outlook

Having identified the Quadrotor Controller Model, summarising, the derived model’s state
xc combining the states of the identified second-order state space systems given by Eqs. 7-2,
7-3 and 7-5 is formally defined as,

xc = [xθ,xφ,xz̈]
⊤ (7-6)

Forward-looking, the model disparity to the real response for different UAV inputs should
be considered when using it for predicting the future UAVP motion in MPC. With lower
magnitude, gradual inputs the model is less accurate so there is more output uncertainty,
while for larger inputs, the model is more accurate with less output uncertainty. The MPC
controller can be made more robust by dynamically adjusting for the modelling uncertainty
depending on whether the inputs result in the UAV’s gradual or aggressive motions. It should
also be noted that unmodelled dynamics have an affect on the UAVP response, for example,
the rotor wake usually causes the payload to swing even when the UAV is hovering. This
effect is difficult to isolate and avoid as the payload is always suspended under the UAV.
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Figure 7-8: Payload suspension angles in experiment and simulation for dominantly pitch UAV
inputs, simulated φL fit of 28.9%, θL fit of −12.3%
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Chapter 8

Future Research Plan

As mentioned in Chapter 3, the identified, verified and validated UAVP model resulting from
this preliminary study will be used to perform MPC control on the UAV. Having addressed
research questions 1a and 1e as shown in Section 3-2, the remainder of this thesis will be
concerned with the MPC control algorithm implementation. Section 8-1 outlines the necessary
steps to be taken for the controller design and implementation in experiments. Section 8-2
then outlines the future extension with learning capabilities for controller adaptability.

8-1 Controller Design and Implementation

The implementation of MPC for closed-loop UAVP system control requires a definition of
the MPC control properties, a verification of the expected collision-avoidance behaviour and
finally validation of the results. These are the steps required to address the remaining research
questions 1b, 1c and 1d from RQ1. The steps to be undertaken to achieve the research
objective include the following with the estimated time for completion indicated;

1. Implementation of identified UAVP system model from preliminary study within MPC
framework for simulation (1 month)

(a) Definition of MPC objective and constraints to achieve closed-loop collision avoi-
dance flight with dynamic obstacles in simulated and experimental environments

(b) Develop simulation environment where MPC controller based on FORCES PRO
solver can be utilised to generate control commands

(c) Achieve capability to simulate the UAVP system under the derived dynamics,
defined objective and constraints for multiple test case scenarios

2. Verification of the simulated MPC controlled UAVP response (1 month)

(a) Use scenario test cases to demonstrate closed-loop collision avoidance in simulation

(b) Evaluate run-time performance of controller to determine applicability on physical
setup
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(c) Tune controller to achieve desired objective while performing under future required
run-time considerations for physical experiments

(d) Identify potential merits and limitations of implemented system to show the sce-
narios in which the MPC controller does (not) offer improved performance over
current control techniques of UAVP systems in obstacle rich dynamic environ-
ments

3. Implementation of MPC controller in experimental setup (1 month)

(a) Programming intensive phase involving the deployment of the controller within the
hardware control framework as introduced in this preliminary study

(b) Addressing issues arising from usage of real world data including noise, uncertain-
ties and state estimation using, for example, Kalman Filtering

4. Testing and validation of MPC scheme in experimental setup to achieve real-time closed-
loop collision-free flight (1-2 month)

(a) Demonstrate that the simulated behaviour translates to the real-world under ex-
perimental conditions using the scenarios used during simulation

(b) Identify limitations or performance affecting factors that are attributed to using
the MPC controller in real-world scenarios

(c) Evaluate the merits and limitations of the system demonstrating how the obtained
control scheme compares to current UAVP control implementation in obstacle rich
dynamic environments

The first and primary contribution of the research will be the demonstration of real-time
closed-loop collision-free flight in dynamic uncertain environments which has not been ad-
dressed in research. As presented in the literature study in Chapter 4, collision-free UAVP
flight has only been performed using off-line generated collision-free trajectories that are pre-
cisely tracked by the UAV controller. Demonstrating a real-time online generator enables
the possibility for the UAVP system to account for unforeseen changes in the environment
in real-time. This is important for dynamic and uncertain real world applications where it
is intractable and impractical to pre-compute trajectories for extended periods of time and
distance. As the desired implementation still relies on knowing the obstacle positions, there
is a need for future research to look into combining the obstacle detection methods with the
controller to be designed in this research.

8-2 Learning Extension

The second contribution that also addresses a practical aspect of UAVP system is the LBSI for
model uncertainties that could include, amongst others, adaptation to unknown or roughly es-
timated payload mass and suspension cable length. This contribution is incremental in nature
and only makes the obtained MPC framework robust to additional modelling uncertainties
that are not already addressed by the model derived in this preliminary study.

As the primary contribution of this research project already requires a significant amount of
time, the extension of using Learning Based System Identification (LBSI) for improving the
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performance is conditional to the time planning. Planning of this stage will be performed
should all steps from Section 8-1 be completed in time and a significant need for the learning
extension is recognised. The research questions from RQ2 provides guidance on defining these
steps. The possible avenues for improving the system dynamics modelling using learning is
addressed in the Literature Survey presented in Appendix 4.
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Chapter 9

Preliminary Conclusion

The preliminary study as presented in this report has outlined the derivation of the UAV-
Payload (UAVP) system dynamics model followed up with a thorough simulation and experi-
mental based verification and validation process. Chapter 3 presented an introduction to the
preliminary study and its relevance in the scope of this research project. It was shown that
understanding the system dynamics is imperative to be able to design a model based controller
which is the topic of subsequent studies during this research. Chapter 4 gave an overview of
relevant literature regarding UAVP modelling from which the model used for this preliminary
study was derived. The remaining chapters presented outcomes of the preliminary study.

In Chapter 5, the full UAVP kinematics and dynamics were derived from first-principles
using the Euler-Lagrange formulation for derivation of the Equations of Motion (EOMs).
Building upon models presented in literature, the aerodynamically disturbed UAVP dynamics
with a rigid suspension cable was derived. Chapter 6 outlined the research methodology
with extensive detail of the MATLAB simulation environmental and experimental setup to
enable duplicability of the results obtained. Inverse kinematic equations to obtain the system
state from raw Motion Capturing Systems (MCS) were presented to facilitate comparison
of simulation and experimental results. A detailed account of the data collection and post-
processing procedures is provided as experimental results are extensively used throughout the
preliminary study and such procedures are necessary for collecting valid, systematic error-free
data.

Following the groundwork presented in preceding chapters, a discussion of the main results
was presented in Chapter 9. System identification using experimentally obtained data was
performed to identify the pitch, roll and vertical velocity dynamics of the Parrot Bebop 2 qua-
drotor. It was determined that three second-order state-space models, one for the pitch, roll
and vertical velocity dynamics, was able to capture the quadrotor’s real dynamics adequately.
The models had a model fit of 94.59%, 91.09% and 91.38% (NRMSE) on the estimation da-
taset respectively and were of a decent quality according to the residual analysis. The models
were determined to be stable with relatively high damping ratios in the range of 0.75-0.90
explaining the limited oscillatory response behaviour. As observed from experimental data,
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the models generally converge to a steady-state value less than the commanded input value.
The experimental response data also shows how the quadrotor does not consistently reach
a particular steady-state value over repetitive commanded inputs so the internal measured
angles likely suffer from an error range. Therefore, the overall gain of the response was less
than 1.

The identified UAV dynamics completed the UAVP model after which a comparison of the
simulated and experimental responses was performed. Short single step input runs as well
as longer runs with combined inputs were performed to perform a comparison. For short
step inputs of one second, the simulated and experimental suspended payload frequency and
amplitude response was equivalent with an overall good fit of greater than 70% when the iden-
tified dynamics are included. Excluding the identified UAV dynamics showed a considerably
degraded performance with a fit in the range of 20 − 30%. Undoubtedly there were dis-
crepancies between simulation and experimental response data due to unmodelled dynamics
and imperfectly estimated effects such as drag. During the longer experimental runs lasting
around 50 seconds, it was observed that the simulated and experimental dynamics agreed
the most when significant energy was introduced in a certain swing direction. For example,
if the UAV pitched forward, the simulated and experimental φL angle would be equivalent.
For swing directions where there was very minimal or no input energy introduced, the swing
angle would remain relatively low (< 0.1rad or < 6◦) and the model and observed behaviour
diverge. This is expected as the residual and/or low amplitude oscillations are not driven
by the main UAVP dynamics, but additional phenomenon not implemented in the currently
derived UAVP model. An important effect is that of the rotor wake on the payload directly
in it. Therefore, the current UAVP model works well when the UAV motion has a dominant
effect on the payload dynamics such that significant swinging motion is observed. When the
UAV is just hovering (no inputs) or moving very slowly, the payload motion is driven by
unaccounted effects.

Finally, an analysis of the cable taut and slack state was performed on experimental runs
involving gradual and aggressive inputs to identify whether switching UAVP dynamics was a
prevalent phenomenon. The results showed a minimal change in the suspension cable length
pointing to no switching in the cable state, however, it could not conclusively be said whether
the cable never becomes slack due to lack of accurate cable measurements. Future studies
can potentially measure the cable tensile force which will clearly indicate the slack state when
the tensile force becomes zero.

The preliminary study highlights the merits and limitations of the derived UAVP model ena-
bling its future implementation in the model based MPC. Given the scope of this research
study, limitations which hinder the use of the model for the remaining project have been
addressed. Limitations requiring further investigation have been noted and could be poten-
tially addressed in future in-depth studies where it may be necessary to have more accurate
models.
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Chapter 10

Configuring the Non-Linear Model
Predictive Controller

As a supplement to the paper, this chapter provides additional details regarding the Non-
Linear Model Predictive Control (NMPC) algorithm. Section 10-1 provides an explanation
of the NMPC concept with details regarding stability and optimality. Section 10-2 explains
the rationale behind the chosen NMPC cost weightings.

10-1 NMPC Algorithm for Closed-Loop, Collision-Free Trajectory
Generation

NMPC is a multi-stage optimal control strategy where control sequences are generated that
respect a user-defined control objective function and possible constraints. In the Literature
Survey of the preliminary study, Chapter 4, the theoretical foundations of MPC and the state-
of-the-art applications pertaining to UAVP system has been extensively discussed. Also, the
merits and limitations to other classical and optimisation based techniques including PID,
LQR and iLQR were presented. Recapitulating, some major advantages of Non-Linear MPC
specifically is the ability to use non-linear system dynamics descriptions and provide guaran-
tees through constraint handling (Mayne, Rawlings, Rao, & Scokaert, 2000). In Appendix D,
the algorithm is described in detail.

10-1-1 Costs and Constraints

The optimisation problem associated costs and constraints and their relevance are discussed.

Costs

Cost terms of the NMPC objective function are used to promote or discourage certain qualities
of the generated trajectories. The main objectives of the planning problem addressed in this
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study are;

• Perform point-to-point navigation from a start to goal position in three dimensional
space

• Agility of the system’s response in terms of payload swing and the commanded inputs
• Collision-free guarantees for the trajectories with respect to all obstacles
• Safe navigation amongst dynamic obstacles that includes humans

To achieve the objectives, relevant costs terms have been introduced and described in the
scientific article.

Equality Constraints for System Dynamics

The NMPC generated trajectory is feasible with respect to the system dynamics through
enforcement of the discretised state transition as an equality constraint xk+1 = f(xk,uk).
The EOMs are non-linear ordinary differential equations, as presented in the preliminary
study, Chapter 5, and are continuous-time functions. For implementation in NMPC which
is a discrete-time controller, the EOMs are discretised using the Runge-Kutta approach such
that a discrete time state transition function is derived. Requiring real-time performance and
online implementation of the controller, only explicit discretisation was considered and after
some mostly qualitative data analysis, the 2nd order Runge-Kutta method was determined
to provide a balance of speed, accuracy and stability. The simple explicit Euler method,
though very fast, quickly becomes unstable for non-linear systems when the real sample time
is relatively large (Burden & Faires, 2011). Higher order Runge-Kutta methods are slower but
more stable, especially if the dynamics are highly non-linear, however, under experimental
conditions that were performed, no loss of stability was qualitatively observed for the 2nd

order formulation. The benefit of the lower order is the higher control frequency.

A future comparative study of different discretisation methods on the real-time performance of
NMPC would help quantitatively evaluate the discretisation’s effects on control performance.
This is currently beyond the scope of this research.

Inequality Constraints

Additional (inequality) constraints are defined to ensure practical feasibility of the obtained
solution. They are also used to guarantee collision-free trajectories and compliance to phy-
sical workspace limits. For real-world deployability, it is generally favourable to allow minor
violations of some uncritical constraints as to maintain run-time feasibility of the optimisa-
tion problem. This is achieved by softening the hard constraint whereby slack variables s are
introduced to the (inequality) constraint that ‘capture’ the minor violations while keeping the
(inequality) constraint valid (Mayne et al., 2000). For example, given a function g(x) ≥ 0,
the slack variable is introduced as,

g(x) + s ≥ 0

In this case if g(x) = −0.1, then given s ≥ 0.1 the inequality will remain valid. To make
sure slacks are not abused by excessive use, a very high slack variable associated cost is
included in the objective function. The cost discourages the optimiser from using slacks to
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achieve constraint satisfaction. Under this cost, the soft-constraint becomes similar to hard-
constraints while maintaining run-time feasibility (Zheng & Morari, 1995). Slack variables
must be non-negative by definition as allowing full range of values would make the constraints
redundant.

10-1-2 Optimality and Stability

The algorithm that solves the NMPC optimisation problem is discussed as well as a note on
the solution optimality and the controller’s closed-loop stability.

Real-Time Convex Optimisation Algorithms

The NMPC non-convex planning optimisation problem is solved using a constrained, convex
optimiser. Traditionally, MPC type control was reserved for slowly evolving processes due to
the relatively high computational load (Mayne et al., 2000), however, advances in the realm
of hardware and software have greatly improved the controller’s run-time frequency. In this
study, an efficient state-of-the-art non-linear programming based solver FORCES Pro is used
that is able to deliver real-time computations for optimisation problems (Zanelli, Domahidi,
Jerez, & Morari, 2017). The solver uses a Primal-Dual Interior Point Constrained Optimiser
to solve the optimisation problem at high frequencies of order 101 to 102 Hz depending on
the problem complexity. In Appendix J the optimisation algorithm is fully outlined providing
the reader a basic introduction to the optimiser used in this study.

Optimality of the Obtained Solution

Using convex programming on a non-convex problem means that the solution obtained is
only locally optimal. Realising that NMPC uses a finite-horizon, hence only local planning
is performed, there is a significant risk that the optimised trajectory will converge to a local
optimum. Convergence to a local optimum may result in a deadlock situation where the
system gets ‘stuck’ or trapped during its manoeuvre from the start to goal position. This
is generally less of an issue for global trajectory planners as the optimisation algorithm is
able to probe the entire optimisation space resulting in a global optimum as solution. To
mitigate the effects of local optima convergence, it is necessary to carefully design the objective
function and constraints. Additionally, as in reinforcement learning an exploration type step
can be built in to allow temporary non-locally optimum solutions such that terminally a
more favourable (global) optimum is reached (Sutton & Barto, 1998). This exploratory type
behaviour is recommended for a future study.

Closed-Loop Stability of the NMPC Controller

NMPC is a finite-horizon controller that predicts the system’s trajectory in open-loop and
achieves closed-loop performance through the receding-horizon principle. However, the closed-
loop performance is not necessarily stable and depends on the chosen horizon N and cost
tuning (Mayne et al., 2000); it is possible that a tuned controller works in one situation
but fails in others. (Re-)tuning the controller for every minor system change can be tedious,
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therefore, approaches for closed-loop stability have been developed; methods include, amongst
others, a terminal (in)equality constraint or cost, or both and the survey (Mayne et al., 2000)
provides an excellent overview on stability issues surrounding MPC control.

10-1-3 Extra: Additional NMPC Stability Results

Extending the results in the Scientific Article, Appendix K provides an overview of the effects
of control time-step size and lags on NMPC’s closed-loop stability and performance.

10-2 Controller Implementation and Cost Weight Tuning

The primary approach to weight tuning was trialling different values in simulation, obser-
ving the system response and verifying whether the planning objectives as mentioned in
Section 10-1-1 were fulfilled. The tuned weights for the costs introduced in the scientific arti-
cle are presented in Table 10-1. A brief rationale is provided explaining the reasoning behind
the chosen cost weighting.

Table 10-1: Tuned NMPC objective function cost associated weights as implemented for simu-
lation and experimental studies

Cost Term Value Description

Navigation (Terminal) wnav = 1.0 High weight to guide towards, and stabilise the
system at the goal position.

Obstacle Separation wpf = 1.2 High cost guides generated trajectories away
from the obstacle for safer planning.

Inputs win = 0.01 Low cost to only use large inputs when neces-
sary without compromising on system agility.

Payload Swing wswing = 0.001 Very low cost promotes swing minimisation
only when the system reaches the goal position.
At the goal position, the swing associated cost
is the only non-zero cost (assuming no obstacle
is close by). As the cost is low, system agility
is not compromised.

Assistive Steering wsteer = 0.05 Steering for low-horizon planning is promoted
to be assistive rather than driving the trajec-
tory generation. By keeping a low weight, the
navigation and collision avoidance costs are gi-
ven more importance. Steering is beneficial
when the MPC uses a low horizon length such
that the system has short foresight; including
steering guides the system to obstacle free zo-
nes improving collision avoidance performance.

Each slack variable wslack = 1× 105 Ensures the slack variables are only used to
maintain MPC run-time feasibility without
making the constraints fully redundant.
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Chapter 11

Online State Estimation and Filtering
using Cascaded Kalman Filters

As a supplement to the paper, the rationale behind developing the Cascaded Kalman Filter is
discussed with the theoretical background and details regarding the filter tuning. Section 11-1
explains the theoretical methodology of the chosen state estimation approach. Section 11-2
describes the implementation and tuning of the Cascaded Kalman Filter setup. Finally,
Section 11-3 presents an evaluation of the state estimator’s performance. Note that some
notation from this report may differ from the scientific article.

11-1 State Estimation Scheme

Referencing back to the control system design presented in Section 6-1-2, the system is di-
vided into three subsystems (excluding the state estimator) namely 1) the high-level NMPC
controller, 2) the Quadrotor (Input) Controller and 3) the UAVP system. For NMPC to
predict the next system states, it must initialise the problem based on the current estimated
state x0 which includes the quadrotor controller model and UAVP model states. As the
quadrotor controller is specific to the Parrot Bebop 2 while the UAVP model is general, with
the intention of keeping the state estimation scheme as modular as possible, the estimator for
both subsystems is separated in a cascaded setup.

Two estimators are combined to construct the cascaded estimator;

1. The quadrotor controller estimator uses the linear model description of the Parrot Bebop
2 dynamics to estimate the state xc = [xθ, xφ, xz̈] (See Section 7-3-3 for the state
definition; in the paper xF ≡ mxz̈)

2. The UAVP system estimator uses the non-linear model description of the UAVP system
to estimate the state xq = [q, q̇] (See Section 5-1 for the state definition)
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Each estimator is treated individually in the subsequent sections after which the combined
estimator is discussed. This division of the estimation algorithm is possible as the dynamics
associated to the xc and xq states are assumed to be decoupled as discussed in Section 6-1-2.
The Kalman Filter (KF) formulation is used for both estimators. Other methods and their
performance comparison to the Kalman filtering approach are beyond the study’s scope and
may be explored in future studies.

11-1-1 Linear Kalman Filter

The Linear KF is used to estimate state xc for the quadrotor input controller model which
is defined in terms of three linear second-order state-space systems by Eqs. 7-2, 7-3 and
7-5. Using the state estimates, the model’s filtered outputs are computed. As previously
introduced, the output of the linear models give the quadrotor’s real pitch, roll angles and
vertical control acceleration input.

The continuous time dynamics are discretised using zero-order hold with the time step ∆t.
With abuse of notation, the standard discrete-time linear system description for use with a
Linear KF is given by Eq. 11-1 (Kalman, 1960).

xk = Fkxk−1 +Bkuk +wk

zk = Hkxk + vk
(11-1)

With time index k, state xk, input uk, measurement zk, discrete state matrix Fk, discrete
input matrix Bk, discrete observation matrix Hk and process and observation noise random
variables wk ∼ N (0, Qk) and vk ∼ N (0, Rk) with covariances Qk and Rk respectively.

11-1-2 Unscented Kalman Filter

The Unscented KF is used to estimate the state xq with variables q and q̇ using the non-linear
dynamics given by the EOMs in Equation 5-24. The transformation from the quadrotor pitch,
roll and vertical control acceleration to f , given by Eq. 6-10, is included in the non-linear
dynamics model.

As KFs work on discrete-time models, the UAVP dynamic model is discretised using the
explicit Euler method as given by Eq. 6-11. With abuse of notation, the standard discrete-
time non-linear system description for use with a Non-Linear KF is given by Eq. 11-2 (Wan
& Van Der Merwe, 2000).

xk = Fk(xk−1,uk) +wk

zk = Hk(xk) + vk
(11-2)

With time index k, state xk, input uk, measurement zk, discrete non-linear state transition
function Fk, discrete non-linear observation function Hk and process and observation noise
random variableswk ∼ N (0, Qk) and vk ∼ N (0, Rk) with covariances Qk and Rk respectively.
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Rationale for choosing the Unscented Kalman Filter

The Unscented KF, as introduced in (Julier & Uhlmann, 1997), is chosen over the more
traditional Extended KF for non-linear systems due to their same order of computational
complexity with Unscented KF’s benefit and ability to handle non-linearities in dynamics
directly (Wan & Van Der Merwe, 2000). The Extended KF is a familiar non-linear state
estimator that shares many similarities with the standard linear KF. In Extended KF, the
non-linear state and observation equations are linearised at run-time by computing their asso-
ciated Jacobians so that the state and observation transition function in discrete form can be
obtained. The system is usually linearised around a nominal value of the state and input after
which the state prediction is propagated giving a new state distribution. However, for highly
non-linear systems using the linearised dynamics for state propagation can result in large
errors in the estimated state distribution (Wan & Van Der Merwe, 2000). Additionally, the
computations of the Jacobians is usually very expensive and not always possible if derivatives
of the state and observation function are not available and/or computable. The Unscented
KF is able to address these shortcomings by using a sampling based approach to propagating
the state distribution as will be explained in the subsequent section. In (Bisgaard, 2008) an
Unscented KF was also used for state estimation in the case of a traditional helicopter with
a slung load system; similarly, the Unscented KF is used for this study.

The Unscented Kalman Filter Algorithm

A qualitative overview of the Unscented KF method is presented; for a comprehensive ex-
planation of Unscented Kalman Filtering, the equations and algorithm please refer to (Julier
& Uhlmann, 1997; Wan & Van Der Merwe, 2000). Figure 11-1 is included to visualise the
algorithm’s process supporting the explanation provided. Given the current true state dis-
tribution, shown by the blue dots in the top-left of Figure 11-1, there is an associated true
mean and covariance. The Unscented KF algorithm captures this distribution by carefully
selecting sigma points X that are representative of the distribution; this process is known as
the unscented transform of the distribution. For a system of n state variables, there are 2n+1
sigma points of which one is always at the mean state value. For the real system following
application of a non-linear function f(x) the resulting true state distribution has a new true
mean and covariance. The Unscented KF algorithm applies the same non-linear function to
the sigma points such that,

Y = f(X )

The transformed sigma points Y are then used to reconstruct the new predicted sample mean
and covariance. Measurement data is subsequently used to further refine the prediction to
a state estimate by computing a Kalman gain based on the prediction and measurement
statistics. This is analogous to a standard Kalman filter measurement update. The result of
this process is a state estimation with an associated distribution encoded in the covariance.
See (Wan & Van Der Merwe, 2000) for the full algorithm.

11-1-3 Cascaded Kalman Filter and Data Measurement

The Linear and Unscented KF are combined in a Cascaded KF setup as schematised in
Figure 11-2. The filtered states of the Linear KF are used to compute the true pitch, roll and
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Figure 11-1: The unscented transform and propagation of a state distribution, shown by blue
dots, for the Unscented KF algorithm
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Figure 11-2: Cascaded Kalman Filtering setup for state estimation and filtering of the quadrotor
controller model and UAVP system model states

vertical control acceleration. Then by Eq. 6-10, the control input forces fu are computed as
inputs for the UAVP model.

The Parrot Bebop 2 quadrotor that is used for experiments only transmits internal sensor
data to external clients in the order of 100 Hz 1, this is too slow for state estimation of the
highly dynamic UAVP system. As the designed Cascaded KF estimators runs off-board, it
was ineffective to use any transmitted on-board sensor data for state estimation. Therefore,
to perform the state estimation, measurement data was collected exclusively from the ex-
ternal Motion Capturing System (MCS); the MCS obtainable measurement data is given in
Table 11-1.

As the high-fidelity MCS provides sub-millimetre accurate measurements of the quadrotor
and payload’s pose in SE(3)2, the system configuration q = [xq, yq, zq, θl, φl]

⊤ can readily
be measured very accurately with low noise levels (See Appendix E showing the MCS cali-
bration results). The time derivative of q, namely q̇ is not directly measurable as the MCS
cannot provide this type of data, therefore, the KF is primarily designed to produce low noise
estimates of this.

Also note that within the quadrotor controller model there is the vertical control acceleration
output, however, there are no measurements available for this. Therefore, for the vertical
velocity to vertical control acceleration model state estimation, the Linear KF only performs
the model prediction skipping the measurement update. As the study predominantly involved

1Mani Monajjemi. “bebop autonomy”. Accessed February 01, 2018. http://bebop -autonomy .

readthedocs.io/en/latest/reading
2Natural Point. “OptiTrack Motive”. Accessed January 18, 2018. http://optitrack.com/products/

motive/
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Table 11-1: Measurable system variables from Motion Capturing System data for use in state
estimation scheme

Measurement Notation Notes

Quadrotor Pitch θq Directly obtained from MCS

Quadrotor Roll φq Directly obtained from MCS

Quadrotor Position xq, yq, zq Directly obtained from MCS

Payload Suspension Angles θl, φl Computed with Equations 6-15 and 6-16 using
MCS positional data of the quadrotor and pay-
load

navigation in the horizontal plane, using only the state prediction did not result in any
qualitatively observable detrimental effects.

11-2 Kalman Filter Implementation and Tuning

The observability of the system models were verified to ensure the KFs would converge to an
estimation when implemented. Additionally, the filters have been tuned to produce system
state estimates provided the noise levels in the MCS data available (See Appendix E showing
the MCS calibration results).

11-2-1 System Model Observability

Using the methods outlined in (Hermann & Krener, 1977), observability of the quadrotor
controller model and UAVP system model are verified to satisfy the necessary criteria for
having a convergent Kalman Filter. Only an overview of the procedure and results is provided;
the state observability was verified using the Symbolic toolbox of MATLAB.

Quadrotor Controller Model and Linear Observability

The observability rank criterion based on the linear observability matrix, as defined by
Eq. 11-3, is used to verify the quadrotor controller model observability (Olsder et al., 2011).

Olinear =
[
C,CA,CA2, . . . , CAn−1

]⊤
(11-3)

The criterion states that given a system with n states, the rank of Olinear = n for the system
to be fully observable. The variable A and C are the discrete-time model state and output
matrix, respectively.

Combining the quadrotor controller linear systems given by Eqs. 7-2, 7-3 and 7-5 into one
linear state-space formulation, the resulting state state is xc ∈ R

6, and A, C matrices are

Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments Nikhil D. Potdar



104 Online State Estimation and Filtering using Cascaded Kalman Filters

given below and are zero everywhere except where indicated.

A(6×6),continuous =













−4.301 −2.877 · · · 0

10.92 −10.37 . .
. ...

−2.789 −4.978
9.302 −13.72

... . .
.

−6.767 −6.546
0 · · · 3.031 0.311













C(3×6),discrete =






1.763 4.586× 10−2 · · · 0
... . .

.
1.996 0.4657 . .

. ...
0 · · · −0.620 4.070× 10−2






For digital implementation, the matrices are discretised with ∆t = 0.05 s (experimentally
measured average control period). The discrete form of A is given by Eq. 11-4 using the
zero-order hold method. The continuous and discrete form of C is equivalent.

A(6×6),discrete = eA(6×6),continuous∆t (11-4)

The resulting discretised matrices A and C are time and state invariant.

Substituting the discretised A and C in Eq. 11-3 with n = 6, then rank(Olinear) = 6 so the
system is fully observable.

UAVP System Dynamics and Non-Linear Observability

The observability rank criterion based on the system Lie derivatives is used to verify the
non-linear system observability. For the Unscented KF, the system state is xq ∈ R

10 so
the numbers of states n = 10, then when the rank of the observability matrix given as
rank(Onon-linear) = 10 the system is observable (Hermann & Krener, 1977). For more details
about definitions of non-linear observability refer to (Hermann & Krener, 1977). The state
transition function is f(xq,u) = [q̇, q̈]⊤, where q̈ is defined by Eq. 5-24. The estimator’s
observation function h(xq) = diag(1, 1, 1, 1, 1, 0, 0, 0, 0, 0)xq ≡ q.

The observability matrix definition requires the use of Lie derivatives based on the method
presented in (Hermann & Krener, 1977). The Lie derivative of the observation function h
with respect to the state dynamics f and its subsequent derivatives is given by,

Lfh =∂xh · f (11-5)

LfLfh =∂x(Lfh) · f (11-6)

The non-linear observability matrix is defined by,

Onon-linear =




∂xh, ∂x(Lfh), ∂x(LfLfh), . . . , ∂x(Lf . . . Lf

︸ ︷︷ ︸

n−1

h)






⊤

(11-7)

Replacing f and h by the definitions presented in the preceding text, for the UAVP non-linear
model rank(Onon-linear) = 10 hence the system is observable.
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Table 11-2: Linear and Unscented Kalman Filter noise covariance matrices as implemented in
controller framework

Kalman Filter Tuned Process and Observation Noise Covariance Matrices

Linear
QLKF = diag




0.01, 0.01
︸ ︷︷ ︸

θq

, 0.01, 0.01
︸ ︷︷ ︸

φq

, 0, 0
︸︷︷︸

z̈u






RLKF = diag



0.01
︸︷︷︸

θq

, 0.01
︸︷︷︸

φq





Unscented
QUKF = diag




0.1, 0.1, 1, 0.1, 0.1
︸ ︷︷ ︸

q

, 10, 10, 1, 0.1, 0.1
︸ ︷︷ ︸

q̇






RUKF = diag



1× 10−4, 1× 10−4, 1× 10−4, 1× 10−4, 1× 10−4

︸ ︷︷ ︸

q





11-2-2 Kalman Filters Tuning

The definition and tuning of the KFs is performed using the noise statistics of the MCS
provided data and user-defined values.

Linear Kalman Filter

The tuned process and observation noise covariances are given in Table 11-2. The QLKF and
RLKF matrix entries are chosen such that the Linear KF equally relies on the model prediction
and measurement data to produce the best estimate. As discussed in Chapter 7, the linear
second-order model fits are very good (See Appendix H for model fit) so the KF can use
the prediction for aggressively removing noise from the measured data. As the high-fidelity
MCS provides very accurate measures of θq and φq, their associated covariances in RLKF

are relatively low. The QLKF entries of θq and φq are not set to higher values as this lets
more noise pass through to the output of the KF. As mentioned, there are no measures of
z̈u and only the prediction step of the Linear KF is performed to obtain the associated state
estimates.

Unscented Kalman Filter

Tuning of the Unscented KF was performed to obtain accurate estimates of q̇ using measu-
rements of q without excessive noise amplification. The tuned process and observation noise
covariances are given in Table 11-2 with the variables to which the covariance are associated.

The QUKF and RUKF matrix entries are chosen such that the Unscented KF relies more on
the high-fidelity MCS measurements to produce good estimates of q̇. As the full q vector is
directly measured, all associated entries in RUKF have very low covariances. The q related
entries in QUKF have relatively low covariances to still allow the predicted q values to be used
for noise reduction in the state estimate. For entries in QUKF associated to ẋq, ẏq and żq
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(first three elements of q̇), the covariance is high as the model predicted values are likely to
be less accurate due to unaccounted dynamics. For the payload suspension angular rates θ̇l
and φ̇l, the QUKF covariance is relatively low as there is no direct measure of the angular rates
and it needs to be predicted using the UAVP model. The reliance on the process model to
obtain q̇ means noise will inevitably be amplified when using only the available q measures.
However, the Unscented KF filtering reduces the noise amplification to acceptable values as
will be shown in the subsequent section.

11-3 Evaluation of State Estimation Performance

The state estimator was evaluated in a simulated setup with artificial noise introduced to the
process model and measurements. Experimental evaluation of the state estimator is beyond
the study’s scope and is recommended for future studies.

The standard deviation of the MCS based measurements is chosen to be approximately
3 × 10−3 m and 3× 10−3 degrees. As no process noise statistical information was directly
available, a value of 0.01 for the standard deviation was used to approximate some process
noise. A comprehensive study of the process and its noise statistical properties is outside the
scope of this study and is recommended for future studies; this may improve the estimation
performance of the designed KFs.

The UAVP system response was simulated for 15 s with a simulation step size of ∆t = 0.05 s.
The UAVP system was initialised with the quadrotor positioned at (3, −3, 2) m and the
suspensions angles θl = 20◦ and φl = 20◦. The Linear and Unscented KF state variables were
each initialised from the zero-mean Gaussian distribution N (0, 0.2). The input signals are
given below with time t

u(t) =





θu
φu
żu



 =





0.175 sin (2π · 0.2 · t)
0.175 cos (2π · 0.2 · t)
0.5 sin (2π · 0.2 · t)





The inputs θu and φu are 0.2 Hz sinusoidal signals with an amplitude of 0.175 rad (≈ 10◦).
The input żu is a 0.2 Hz sinusoidal signal with an amplitude of 0.5 m/s.

The resulting trajectory of the UAVP system is shown in Figure 11-3.

The estimator’s performance is evaluated using the Root Mean Squared Error (RMSE) and
Normalised Root Mean Squared Error (NRSME) of the true to estimated/filtered KF output
as presented in Table 11-3. Within first 20 data points (1 second) the KFs estimates are
still converging to the true signal, so to not affect the fit statistics they have been omitted
in the fit calculation. The NRMSE facilitates the comparison of the estimator’s performance
on the different scales of the data produced; the MATLAB definition of NRSME is used for
normalisation 3. The subsequent sections discuss the performance of the Cascaded KF.

3MATLAB. “goodnessOfFit”. Accessed 10 January, 2018. https://nl.mathworks.com/help/ident/ref/

goodnessoffit.html
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Figure 11-3: Simulated 20 s UAVP flight trajectory of initially non-equillibrium system with
sinusoidal inputs u

Table 11-3: Fit as (N)RMSE for estimated variables is using Linear and Unscented Kalman Filter
for simulated UAVP system flight

Esimtated variables Linear Kalman Filter RMSE NRMSE [%]

θq 2.30× 10−3 rad 98.0

φq 2.40× 10−3 rad 97.8

Estimated variables Unscented KF RMSE NRMSE [%]

xq 2.90× 10−3 m 99.6

yq 2.90× 10−3 m 99.6

zq 1.07× 10−5 m 98.9

θl 2.90× 10−3 rad 98.2

φl 2.90× 10−3 rad 98.5

ẋq 5.52× 10−2 m/s 93.7

ẏq 5.50× 10−2 m/s 93.2

żq 2.20× 10−3 m/s 87.4

θ̇l 1.91× 10−1 rad/s 53.1

φ̇l 1.21× 10−1 rad/s 79.0

11-3-1 Linear Kalman Filter

The true to estimated/filtered output of the Linear KF is shown in Figure 11-4. The estima-
tor’s fit to true data as (N)RMSE is given in Table 11-3.

Figures 11-4a and 11-4b indicate that due to the availability of very accurate measurements
of θq and φq (which would be directly obtainable from the low-noise MCS measurements in
experimental conditions) the fit is very good, with an NRMSE greater than 97%, with very
low noise. The KF has also been tuned to rely heavily on the measurements with the process
model used to reduce the noise. The fit for the z̈u is not shown as the value is computed
using only the model prediction skipping the measurement update of the KF. Therefore, the
fit is as good as the model, and as the model is used for the simulated study, computing a fit
is meaningless.
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Figure 11-4: Comparison of true to the estimated quadrotor pitch and roll for the simulated
UAVP flight with ∆t=0.05 s

11-3-2 Unscented Kalman Filter

The true to estimated/filtered states of the Unscented KF is shown in Figures 11-5 and 11-6.
The estimator’s fit to true data as (N)RMSE is given in Table 11-3. The estimation error,
specifically for the q̇ estimations, is shown in Figure 11-7 for the first 4.0 s of simulation.

From Figure 11-5, it is again apparent that the low noise measurements already produces
accurate measures of q. Therefore, as shown in Table 11-3, the fit for the estimated variables
in q is very good with a NRMSE of at least 98%. One of the main reason for using the
Unscented KF was to produce good estimates of q̇. As shown in Figure 11-6 there is more
discrepancy between the estimated/filtered and the true value which is expected given there
are no direct measures available for any variables in q̇. Therefore, the reliance on the UAVP
process model to obtain the time derivatives results in some noise propagation from the q

measures which are then differentiated (hence amplified) in the KF prediction step. However,
using the filtering process the noise amplification is acceptable and a good fit is obtained.

The estimation of ẋq and ẏq as shown in Figures 11-6a and 11-6b is very good with the NRMSE
of 93.7% and 93.2% respectively. As shown in Figures 11-7a and 11-7b the estimator converges
within two time steps to the true value. For żq, the estimation as shown in Figure 11-6c is
good with an NRMSE of 87.4%. The error convergence for the żq estimate as shown 11-7c is
comparable to that of ẋq and ẏq.

Estimation of the suspension angles rates θ̇l and φ̇l have the lowest fit compared to all other
estimated states as they are highly coupled to other UAVP system dynamics through the
EOMs. Therefore, the process noise introduced on the state transition in simulation signi-
ficantly affects the model predicted suspension angle rates. Given that no measurements of
the suspension angle rates are available, then as with other q̇ states, the KF must rely on the
predictions to produce the estimates. From Figures 11-7d and 11-7e the error convergence,
especially for φ̇l is fast, however, it is markedly slower than the estimation convergence for
ẋq, ẏq and żq. Overall the true and estimated response shapes as shown in Figures 11-6d and
11-6e are comparable with differences in amplitude being the significant discrepancy.

Concluding, the limitation of the currently implemented Cascaded KF is the high reliance on
accurate MCS data for feeding measurements to the Linear and Unscented KF. Additionally,
due to lack of availability of any time rate variable measurements, which include the entries
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of q̇, the KFs rely heavily on the process models for predicting these values. The KFs
have only been verified in simulation, however, experimental validation can permit a more
comprehensive analysis of the KFs performance. This is currently beyond the scope of this
research and it is recommended that future studies follow up on this.
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Figure 11-5: Comparison of true to the estimated UAVP model q states for a simulated UAVP
system flight with ∆t=0.05 s
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0 5 10 15
-2

-1

0

1

2

True Filtered

(d) Payload suspension angular rate θ̇l

0 5 10 15
-2

-1

0

1

2

True Filtered

(e) Quadrotor suspension angular rate φ̇l

Figure 11-6: Comparison of true to the estimated UAVP model q̇ states for a simulated UAVP
system flight with ∆t=0.05 s
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0 1 2 3 4
-1

-0.5

0

0.5

1

Estimation Error

(d) Payload suspension angular rate θ̇l

0 1 2 3 4
-1

-0.5

0

0.5

1

Estimation Error

(e) Quadrotor φ̇l suspension angular rate

Figure 11-7: Convergence of estimation error within first 4.0 s for the UAVP model q̇ states for
a simulated UAVP system flight with ∆t=0.05 s
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Chapter 12

Real-Time Software based Control
System Framework

As a supplement to the paper, the simulation and experimental framework is further des-
cribed in detail. A custom real-time control software and framework was developed as part
of this thesis to enable the fully autonomous operation of an Unmanned Aerial Vehicle with
suspended Payload (UAV(P)). This framework took a significant amount of programming,
testing, verification and validation effort over multiple months and is planned to be used by
other students in their research and theses. In Section 12-1, the programmed real-time con-
troller is outlined with technical details. Sections 12-2 describe the operation of the software
framework, and Section 12-3 presents contributions and extensions.

12-1 Real-Time Control System Software Architecture

The framework has been written to allow both simulated and experimental studies in one
integrated package. This full stack allows simulation trials to readily and quickly be deployed
for experimental trials with no recoding work. The discussion of this software package picks
up where the preliminary framework in Sections 6-2 and 6-3 left off outlining the physical
workspace and hardware used. Readers are advised to familiarise themselves with those
sections before proceeding with this chapter.

12-1-1 Software Overview

The MATLAB based software is split up in two main scripts that run in parallel on possibly
a multi-computer setup,

• run main.m - Controller that handles all commands generated and sent to the quadrotor
(simulated or real) and performs all inter-hardware communication

Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments Nikhil D. Potdar



114 Real-Time Software based Control System Framework

Optional

GUI

MCS

Quadrotor

Joystick

Storage

Controller (GUI)

Figure 12-1: Hardware and software data connections and interface enabled through ROS based
communication network. ROS network is hosted on the controller computer. The GUI may either
run locally on the controller computer, or any external client on the ROS enabled local area
network.

• run visual.m - (Optional) Graphical User Interface (GUI) for user interaction, UAVP
system and trajectory visualisation

A ROS network is used to interface to all physical hardware which includes the OptiTrack
Motion Capture System (MCS), the Parrot Bebop 2 quadrotor 1, the manual gaming joys-
tick and potentially any client computers on which the GUI is running. This network is
schematised in Figure 12-1

Even though this software has been designed with the Parrot Software Development Kit
(SDK)2 to interface with the quadrotor, it is general enough to exchange out for other SDKs
for other quadrotor hardware. For a list of ancillary software packages, refer to Appendix F.

12-1-2 System and Scenario Initialisation

The system definition and workspace is initialised in a file initialise.m containing variables
that are user configurable before run-time. These variables include, amongst others, the
quadrotor and payload mass, the suspension cable length, drag coefficients and workspace
limits. A scenario file then defines the initial start and goal point of the quadrotor and the
dimensions of any virtual or real obstacles in the workspace.

Obstacles in the workspace may either be virtual or real, and static or dynamic. For real
obstacles in the experimental mode the MCS can capture real-time obstacle positions and
relay those to the controller for dynamic trajectory planning. Additionally, to enable studies
with static and dynamic obstacles in simulation, or when physical objects are not available,
virtual obstacles may be introduced into the experimental workspace. Summarising, the
following scenarios are possible with the framework;

• Simulation mode: virtual static or dynamic obstacles

1Parrot. “Parrot Bebop 2”. Accessed January 18, 2018. https://www.parrot.com/global/drones/

parrot-bebop-2
2Parrot. “ARDroneSDK3”. Accessed September 26 2017. http://developer.parrot.com/docs/bebop/
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Figure 12-2: Graphical User Interface (GUI) in MATLAB used to dynamically interact with the
real-time controller framework

• Experimental mode: virtual static or dynamic obstacles, or, real static or dynamic
obstacles

12-1-3 Interacting with the Graphical User Interface

The Graphical User Interface (GUI) allows users to interact with the controller and see a real-
time visualisation of the UAVP system response in simulation or experiments. Figure 12-2
shows the GUI with the various features labelled. Most importantly, the GUI allows the user
to set the UAV goal position (set-point) to interactively command the controller to execute the
trajectory planning to the new goal. For debugging purposes, values of several key variables
including the estimated and filtered UAVP system configuration and time derivatives are
displayed.

The GUI runs on a parallel MATLAB script to the controller; the division is necessary such
that the graphic processing does not affect the more critical real-time controller performance.
The communication with parallelisation is achieved through ROS based asynchronous bi-
directional message exchanges allowing the two scripts to run independently.

12-1-4 Logging Data for Post-Processing and Replay

Post-processing and replay of the simulation/experiment is possible from data that is logged
in-the-loop to a MATLAB log data file and a ROS rosbag file. These two logging approaches
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provides the data to re-visualise the entire simulation/experiment in the GUI as well as use
the run-time data to perform post-processing to gather statistics and generate plots.

12-1-5 Controller Computational Performance on Standard Computers

The scientific article presents NMPC solve times results and as these are entirely computer
hardware dependent, for clarification, additional details of the computer used are provided.
The MATLAB based controller script runs on a laptop3 with an Intel Core i7-3610QM
Quad-Core processor running at 2.30 GHz (with a maximum 3.30 GHz); the processor fre-
quency is dynamically adjusted according to demand. Additionally, the laptop had 8GB
of random access memory and Quadro K1000m graphics processing unit. As introduced in
Section 10-1-2, the optimisation problem is solved using a C based solver FORCES Pro

(Domahidi & Jerez, 2014) that is called from MATLAB as a MEX file. When running the
controller, the MATLAB instance utilises at maximum 25% of the processor effectively only
using one out of four processing cores. This makes the controller amendable to small micro-
controllers that increasingly have very powerful processors such as an ODROID4. The graphics
processing unit is not used in the optimisation computations. As the control framework is
divided over two scripts running on independent MATLAB instances, it is advisable to use a
dual core processor at the minimum so each MATLAB instance has sufficient resources.

12-2 Operation of the Framework

When used for experiments, the framework has two main modes of operation, namely manual
and autonomous (NMPC based) control. Following take-off, the two modes can be switched
according to the finite state machine schematic as shown in Figure 12-3.

Taking-
off

1

Landing

4

Manual
Control

2

MPC
Control

3

Running Running

Mode

toggle Infeasibility

Land

Land

Figure 12-3: Finite State Machine for quadrotor operation in experimental studies from take-off
to a landing with toggling between manual and MPC control.

The standard procedure for performing a flight is as follows; first the quadrotor takes-off after
which it enters the manual control mode. The MPC control mode is enabled by the user
through the joystick and may be terminated at any point to switch back into manual mode.

3Hewlett Packard. “HP EliteBook 8570w Mobile Workstation”. Accessed 12 January, 2018. https://

support.hp.com/us-en/product/hp-elitebook-8570w-mobile-workstation/5257502/
4Hardkernel. “ODROID”. Accessed 22 January, 2018. http://www.hardkernel.com/
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Figure 12-4: Schematic of Logitech F710 joystick controller showing manual control commands
and mode switching buttons. The two rockers allow the continuous range of inputs for pitch,
roll, vertical velocity (velz) and yaw rate (disabled for this study) to be sent. Buttons are used to
enable modes of operations.

The MPC mode continues running indefinitely with the following exceptions, 1) the optimiser
encounters an infeasibility in the problem, or 2) the quadrotor battery simply runs out. When
this occurs, for safety reasons, the quadrotor is commanded to land on-the-spot.

12-2-1 Manual Control Mode

When performing manually controlled flight, the human operator replaces the MPC controller
in the control loop. Manual control actions are commanded through the joystick5 after which
the commands are sent through MATLAB which acts as a bridge. The wireless transmissions
and signal processing results in some lag, however, in experimental trials it was found that
these lags are sufficiently small to not be noticeable to the user. The commands that can be
sent from the joystick are displayed in Figure 12-4

12-2-2 NMPC Autonomous Control Mode

For NMPC based autonomous control, the human is removed from the control loop and only
provides high level objectives through desired goal positions. The user may define a navigation
goal that the GUI will verify to be within the workspace before execution. It is possible that
by providing a list of navigation points in successive order, trajectories can be followed in a
set-point tracking manner.

In the unlikely event that the NMPC controller or quadrotor destabilises, manual control
can be reclaimed or a high-priority emergency command to land the quadrotor can be sent
through the GUI or joystick.

12-3 Code Acknowledgments and Extensions

Considerable time and effort was put into programming this complete software framework,
then testing and debugging it. The software uses snippets of code from a framework written

5Logitech. “F710 Wireless Gamepad”. Accessed January 18, 2018. https://www.logitechg.com/en-us/

product/f710-wireless-gamepad
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by Tobias Naegeli at ETH Zürich and released as part of an article (Naegeli et al., 2017).
The snippets used pertain to ROS functions for communicating with the Parrot Bebop 2,
obtaining OptiTrack data and general communication over ROS. The developed framework
is written with object-oriented programming methods resulting in a modular code enabling
its use in various studies involving (multiple) UAVs including the UAVP system.
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Appendix A

Executive Summary of the Preliminary
Study

A synopsis of the literature study highlights the state-of-the-art approaches to UAV and
Payload (UAVP) system dynamic modelling, collision avoidance techniques, controller design
and learning for model adaptability to structural/parametric uncertainties. It is shown that
current implementations of UAVP controller design is limited to open-loop trajectory design
and precise tracking with seldom any approaches that account for planning under uncertainty
in closed-loop. This has often led to inefficient, slow and conservative UAVP planning in
largely static environments with full environment knowledge. In the pursuit of addressing
this standing issues, this preliminary study is concerned with the identification, verification
and validation of the Unmanned Aerial Vehicle (UAV) and swung payload dynamics to enable
its implementation in a model based Model Predictive Controller (MPC) in the subsequent
study.

The Equation of Motion (EOMs), a set of non-linear Ordinary Differential Equations (ODEs),
are derived from first-principles using the Lagrangian mechanics approach. Assumptions are
made which include the treatment of the suspension cable as a rigid link and the payload as a
point mass simplifying the system definition and mechanics. To enable studies on the model,
a MATLAB simulation environment and physical indoor experimental workspace was esta-
blished. Experimentation was performed on a Parrot Bebop 2 quadrotor that was attached
with a light suspended payload. All inter-hardware communications was performed over a
ROS based communication network and external real-time UAV and payload pose data was
acquired from an optical Motion Capturing System (MCS).

To enable the identification, verification and validation of the model, three experiments were
performed. The first experiment involved the identification of the functional relation between
the commanded pitch, roll and vertical velocity commands and the actual observed UAV
response. It was determined that assuming immediate and exact execution of input commands
by the UAV is unrealistic and that a (delayed) response model would need to be identified to
complete the UAVP model. Experimental runs were performed from which three second-order
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state-space models, one for each input command, were acquired that were able to adequately
capture the quadrotor’s attitude and vertical velocity dynamics. The models demonstrated an
exceptional fit of 94.59%, 91.09% and 91.38% (NRMSE) on the estimation dataset respectively
and were of an acceptable quality according to a residual analysis performed. The dynamic
response resulting from the models is stable with relatively high damping ratio in the range
of 0.75-0.90. Additionally, observations showed that the UAV pitch and roll dynamics did not
consistently converge to a fixed steady state value over repeated runs due to the internal state
feedback nature by which the Parrot Bebop executes attitude commands. The state feedback
is used to perform attitude stabilisation, and due to possible errors in this, the response is
not consistent. Additionally, the overall UAV attitude response gain is not one resulting in
an inexact input execution.

During definition of the UAVP model, it was assumed that the suspension cable was rigid. To
validate the assumption, a cable slackness test was performed using a UAV with suspended
payload. The second experiment involved flying the UAV using gradual and aggressive inputs
over the UAV’s allowable input ranges as to observe whether the cable ever became slack. The
cable would never slacken under the presumption that the suspension cable length remains
constant (fully stretched) throughout the experiment. The results showed minimal change
in the suspension cable length pointing to no switching in the cable state, however, it can
not conclusively be said whether the cable never becomes slack. This is partly due to a lack
of accurate cable measurements and future studies can potentially measure the cable tensile
force which will clearly indicate the slack state when the tensile force becomes zero.

The final experiment involved validating the full UAVP model. Short single step input runs
as well as longer runs with combined inputs were performed to perform a comparison. For
the short step inputs of about 1 second, the simulated and experimental suspended payload
frequency and amplitude response was equivalent with a good overall fit exceeding 70% when
the identified dynamics are included. Excluding the identified UAV dynamics in the model
resulted in a poor performance with a fit in the range of 20− 30%. Undoubtedly there were
discrepancies between the simulated and experimental responses due to un-modelled dynamics
and imperfectly estimated effects such as drag. During the longer experimental runs lasting
around 50 seconds it was observed that the simulated and experimental dynamics agreed
the most when significant energy was introduced in a certain swing direction. For swing
directions where there was very minimal or no input energy introduced, the swing angle
would remain relatively low (< 0.1rad or < 6◦) and the model and observed behaviour
diverged significantly. This is expected as the residual and/or low amplitude oscillations in
that direction are not driven by the main UAVP dynamics, but additional phenomenon not
implemented in the currently derived UAVP model. A possible significant contribution to
these residual oscillations is the generated rotor wake that encapsulates the payload hanging
under the UAV. Therefore, the current UAVP model works well when the UAV motion has a
dominant effect on the payload dynamics such that significant swinging motion is observed.
Over short simulation periods, the model fit is good and as expected the accumulation of
errors causes the long term response to deviate significantly from what is actually observed.

The preliminary study highlights the merits and limitations of the derived UAVP model
enabling its future implementation in the model based MPC. The simulation and experimen-
tal study provides sufficient evidence to show that the obtained model performs sufficiently
well and is able to replicate the actual UAVP system response under the assumptions and
conditions presented. Steps for further research to be conducted are discussed.
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Appendix B

Literature Overview

This literature overview is an abridged version of the comprehensive Literature Survey presen-
ted in Chapter 4. Note that to the best of the writer’s knowledge, this is the state-of-the-art
at the time of writing of August 2017.

The modelling and control of aerial vehicles carrying suspended payloads was originally tre-
ated for helicopters (Cicolani & Kanning, 1992). Cicolani et al. published a comprehensive
NASA Technical Paper in 1992 covering the Equations of Motion (EOMs) of slung-load sy-
stems including multi-lift systems (multiple vehicles) with different single/multiple suspen-
sion points with the intention of helicopter-like vehicles being the suspension point(s). The
study helped in the understanding of aerial vehicle assisted payload carriage and the dis-
turbance effects that slung-payloads introduce to the carrying vehicle. However, the theory
of helicopter-payload dynamics do not directly translate to UAVP dynamic systems; UAVs
have fast, non-linear, unstable dynamics that are only complicated by introducing a swung
payload resulting in external disturbances (Palunko, Fierro, & Cruz, 2012). Therefore, this
literature overview provides a brief summary of state-of-the-art UAV-Payload (UAVP) system
modelling techniques.

Section B-1 discusses the types of UAVs currently found on the market and their applicability
for payload carriage. Section B-2 gives an overview of approaches to payload attachment on
UAVs. Section B-3 discusses the UAVP problem and the main ideas in literature regarding
its modelling. Finally Section B-4 and B-5 provide more details regarding cable slackening
and aerodynamic effects on the system.

B-1 Types of Unmanned Aerial Vehicles (UAVs)

Modelling the UAVP system dynamics involves understanding the carrier vehicle dynamics,
therefore, a short introduction to UAVs is given highlighting the motivation for choosing the
quadrotor type UAV. The Unmanned Aerial Vehicle (UAV) is a category of aerial vehicles
that are piloted remotely or (semi-) autonomously with the absence of a human operator
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on-board. Within the UAV category, there are two main types of vehicles; commercially
popular single/multi-rotor systems (e.g. helicopter, quadrotor/quadcopters, hexacopter, oc-
tocopters) and fixed-wing systems (e.g. General Atomics MQ-9 Predator (General Atomics
Aeronautical, 2017)). More niche types of vehicles include the flapping-wing systems (e.g.
DelFly Micro/Explorer (Micro Aerial Vehicles Laboratory TU Delft, 2017)) or hybrids of
such systems (e.g. the ATMOS UAV Marlyn that combines a conventional quadrotor setup
for take-off/landing with a fixed-wing flight mode (ATMOS UAV, 2017)). This literature
study will focus on modelling the UAV as a multi-rotor system and specifically a quadrotor.

A quadrotor is a four rotor Vertical Take-off and Landing (VTOL) vehicle. Quadrotors are
able to perform stationary hovering which is in contrast to fixed-wing UAVs that require a
continuous motion to generate lift which is not desirable especially in indoor conditions where
space is limited. Consequently, a quadrotor is able to perform agile motions in confined spaces
as it has the ability to fly without forward motion. The quadrotor is an under-actuated
system (non-holonomic) as it has six Degrees of Freedom (DOF) and only four degrees of
control/actuation (four rotors) (De Crousaz et al., 2014). Adding a suspended payload to the
system increases the system’s DOF by two (pendulum’s polar coordinates in vehicle reference
frame) and including a flexible rope by a further one (De Crousaz et al., 2014). In literature,
a quadrotor’s pose dynamics (position and orientation) is usually derived in terms of the
body’s inertial properties with four rotational velocity inputs, one for each rotor attached
motor (Mahony et al., 2012).

B-2 Approaches to Payload Attachment

The UAV is the combination of all the components necessary for the vehicle to fly inde-
pendently; this includes the basic airframe and necessary battery resulting in the vehicle’s
Operating Empty Weight. The payload definition adhered to during this research is as any
additional, non-essential mass that is externally attached to the UAV that does not serve
any functional purpose related to the flying and/or structure of the UAV. The payload does
not directly contribute to additional thrust forces on the system; this would complicate the
system dynamics significantly.

When considering aerial vehicles such as a UAV with payload, there are two ways by which
payload can be carried, grasped loads whereby the payload is rigidly attached to the airframe
(Palunko, Cruz, & Fierro, 2012) and more often suspended loads whereby the payload is
(freely) swung under the vehicle (Feng et al., 2014). In the external grasping case, the
payload can be seen as a protruding extension of the vehicle body itself that alters the vehicle’s
inertial and physical properties. Provided the payload is a rigid body, the grasped payload’s
position relative to the vehicle is unchanged during all flight manoeuvres (Palunko, Cruz, &
Fierro, 2012). In the suspension case for a point load, the payload moves in R

3 relative to
the suspension point on the vehicle significantly increasing the complexity of modelling the
dynamics.

With regards to this thesis’ research, the first case of grasping a payload is not interesting as
for the trajectory generation, the planning must only account for an expanded UAV shape
with an altered dynamics model. In the suspended payload case, the trajectory generation
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problem will have to account for the UAV and relative payload dynamics which is more
interesting.

B-3 UAV-Payload Setup and Modelling

The UAVP systems that have been treated in literature are either a single UAV or multi-
ple UAVs cooperatively carrying a suspended payload. Only the single UAV case will be
considered for this preliminary study.

The basic UAVP setup consists of a single UAV with one suspended point payload. This
problem is usually broken down into a two rigid-body problem where the bodies are coupled
through interaction forces. The two body approach allows the UAV and payload dynamics
to be treated separately coupling them through the interaction tensile force. Subsequently,
cascaded control systems may be designed whereby the payload dynamics drive the quadrotor
dynamics and vice versa as is done frequently in research (Gonzalez et al., 2015; Jain, 2015;
Palunko, Cruz, & Fierro, 2012; Pizetta et al., 2015, 2016; Trachte et al., 2014). The single
UAVP setup has been studied for both planar (R2) and Three Dimensional (3D) (R3) motion
cases. The point load pendulum dynamics are analogous to a simple (in the case of planar
motion) or spherical (three-dimensional case) pendulum attached to a moving suspension
point. The Equations of Motion (EOM) are derived using the Newton-Euler approach, or
more often the Euler-Lagrange formulation due to more straightforward computation and
resulting complexity of the EOMs.

Planar UAVP motion in the XZ plane studies the motion of a quadrotor with a cable suspen-
ded load (always in tension) where the system state/configuration will evolve in SE(2)× S1;
for the 3D case, the state evolves in SE(3) × S2 (Sreenath et al., 2013). In (Pizetta et al.,
2015), Pizetta et al. derive a dynamics model for the planar UAV-point payload model using
the Euler-Lagrange equations whereby the payload’s effect on the vehicle is considered as
external disturbances. The paper proposes the non-linear modelling and control strategy for
the system through feedback linearisation for performing trajectory tracking. In the study
the aim was not to make the payload follow a specific trajectory, but rather for a controller to
be designed that allows the vehicle to counteract disturbances introduced by the pendulum
such that the vehicle could perform trajectory tracking.

Feng et al. in (Feng et al., 2014), and Palunko et al. in (Palunko, Cruz, & Fierro, 2012)
generalises the planar UAVP case to the 3D case for achieving perfect UAV trajectory tracking
under payload disturbances as in Pizetta et al. work. The EOMs are derived using the Euler-
Lagrange formulation. In (Feng et al., 2014), the quadrotor UAV dynamics are also derived
and interested readers can follow-up on the article. In (Feng et al., 2014), simulation studies
were performed to show the UAVs tracking performance under the payload disturbance while
(Palunko, Cruz, & Fierro, 2012) shows experimental studies with the inclusion of achieving
swing-free payload motion. The studies demonstrate the model’s validity by successfully being
able to reject the payload disturbance forces and effectively control the vehicle.

Sreenath et al. in (Sreenath et al., 2013) proposed a planning approach where the purpose was
to design trajectories for the payload, rather than the vehicle, and then to control the vehicle
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(UAV) such that the payload would track its trajectory. This is in contrast to the work of
Pizetta et al. and Feng et al. where the payload was not actively controlled to follow a certain
trajectory. Designing a payload trajectory is challenging as the pendulum dynamics are
coupled to the vehicle dynamics and is only controlled through the UAV’s inputs. Considering
the planar XZ case, Sreenath et al. establishes that the system is a differentially flat hybrid
system. Sreenath et al. approach enables the pendulum swing to be exploited for dynamic
agile motions rather than just suppressing the disturbances introduced by the swing. Using
this approach, the differential flatness property is used to generate a UAV trajectory that
must be precisely tracked such that the payload follows the arbitrarily designed trajectory.
The hybrid characteristic is required to address the case of cable slackening (coupling forces
becoming zero) where the system dynamics switch. Using the differentiable flatness property,
it was successfully demonstrated in (Sreenath et al., 2013) that payload trajectory tracking
is possible in the planar and 3D case.

The single UAVP system has been treated in (Trachte et al., 2014, 2015; Feng et al., 2014;
Palunko, Cruz, & Fierro, 2012) and follows the same two rigid body approach to modelling
the UAVP system arriving at same or similar models. The contributions of these papers relate
more to the control aspect which will be discussed later.

Bisgaard’s PhD thesis (Bisgaard, 2008) and the publication (Bisgaard et al., 2009) by Bis-
gaard et al. provide a comprehensive overview for modelling the single and multi-UAV payload
system with full derivations of the dynamic EOMs and approaches for including cable slac-
kening and drag effects. Further research can be performed should the scope of the research
be expanded to the multi-UAVP problem.

B-4 Cable Slackening of Payload Suspension Link

As previously mentioned, studies by Sreenath et al. (Sreenath et al., 2013; Sreenath & Kumar,
2013) and Pizetta et al. (Pizetta et al., 2016) considered the switching dynamics introduced by
cable slackening resulting in a hybrid system dynamics model. Initial studies of single UAVP
systems including the work of Palunko et al. (Palunko, Cruz, & Fierro, 2012) and Feng et al.
(Feng et al., 2014) and others (Pizetta et al., 2015; Jain, 2015; Trachte et al., 2014) considered
an always non-zero tensile force. For that modelling assumption to be true, the cable must
always be taut (fully stretched) so the rope is comparable to a rigid link. Rope slackening
fundamentally alters the system dynamics as the two bodies (UAV and payload) become
independent in their motion as there is no coupling force, therefore, the uncontrolled payload
enters a free-fall under gravity while the UAV is controllable. Consequently, the system EOMs
are defined by a hybrid system model where the system EOMs switch between two equation
sets; the non-zero and zero coupling tensile force case. When considering slackening of the
rope, the 3D dynamics no longer evolve in SE(3) × S2 but rather SE(3) × R

3 as the rope
length becomes one DOF.

Alternative modelling approaches that do not require hybrid system models also exist. In
(Dai et al., 2014), Dai et al. do not consider a binary state of slack or taut, but rather models
the catenary curve formed by the rope going from taut to slack. This allows the EOMs to
describe the continuous transition to a slack state eliminating the need for a hybrid system

Nikhil D. Potdar Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments



B-5 Aerodynamic Drag on UAV and Payload 127

model. To achieve this, Dai et al. model the suspension cable as a series of rigid mass links
with an associated state where each link’s dynamics is modelled by an EOM. Combining the
EOM for each link gives the system of EOMs describing the full wire’s motion. This method is
computationally expensive as the set of EOMs grows with increasing granularity in modelling
the cable. Therefore, this method can more accurately capture the cable’s behaviour at the
expensive of the high cost associated with increased computation. This is not ideal when
real-time execution is of high concern in the to be designed algorithm.

B-5 Aerodynamic Drag on UAV and Payload

Besides cable slackening, aerodynamic drag has a prominent effect on the UAVP dynamics.
Studies into UAVP motion have generally addressed only low-speed experiments such that
the relative effect of aerodynamic drag when compared to the most significant external force,
gravity, is negligible. However, when considering rigid body loads (large surface areas) and/or
high-speed motions the drag force is significant as the force is proportional to the surface area
perpendicular to the velocity vector and quadratically increases with the velocity magnitude
(Bisgaard et al., 2009).

In (Bisgaard et al., 2009), Bisgaard et al. consider the quadratic form of aerodynamic drag
with velocity in R

3 for the slung payload EOMs. In this case, the drag force is proportional
to the velocity squared which is the classical formulation of the simple drag force equation.
Klausen et al. also considers aerodynamic drag on a UAVP system in (Klausen et al., 2015),
however, due to the relatively slow motion of the system (even at what is considered high
speed in indoor cases; around ‖V ‖ ≤ 2m/s), the function V 2 in this range can be roughly
estimated by the linear V function. The benefit of this that the drag force equation becomes
linear and can be directly implemented into a linear formulation of the EOMs.

A summarised literature was presented in this chapter showcasing the state-of-the-art in the
field of UAVP modelling.
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Appendix C

Combinatorial and Sampling-based
Planning

In Combinatorial Planning a road map or graph is produced in Cfree with each vertex re-
presenting a configuration q ∈ Cfree with each edge between vertices also being collision free
(contained fully within Cfree). Under combinatorial planning there are many approaches,
for example, a common approach known as visibility graphs is presented (Pan & Manocha,
2015). In the visibility graph approach the vertices of the Cobs space are identified after which
straight links are formed between all vertices for which the link is contained fully within Cfree

as shown in Figure C-1a. Once the graph is generated, an optimisation algorithm is imple-
mented to find the shortest route between qI and qG on the graph. Combinatorial planning
techniques are computationally expensive and scale badly with the dimension of q as it uses
the full configuration space knowledge for computing trajectories (Pan & Manocha, 2015).

In Sampling-based Planning instead of fully capturing the C-space, it is probed/sampled
using various different methods to construct a C-space approximation. The probing identifies
samples which include q ∈ Cobs and q ∈ Cfree which are then used as vertices to generate
graphs similar to combinatorial planning. A popular example of this approach is LaValle’s
Rapidly exploring Random Trees (RRTs) that probes the C-space by expanding incrementally
from an initial configuration qI forming a graph structure (LaValle, 1998). The visibility
graph method can also be used here, as shown in Figure C-1b, whereby mutually visible
sample points in Cfree are joined and the shortest route is found. This method is quicker as
an approximation of the C-space is used for planning, however, due to the sampling nature,
some obstacles might not be captured and like combinatorial planning, it scales badly with
the dimension of the C-space as more samples are required. Also with increasing scarcity of
vertices, the computed trajectory becomes more jagged which is not favourable for smooth
robot motions. Important is that sampling-based planning is probabilistically complete such
that if there exists a solution, it will be found within infinite time (LaValle, 2006).
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(a) Combinatorial planning using way-points defi-
ned by midpoints of vertical partitions on obstacle
vertices (LaValle, 2011).
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(b) Sampling-based planning using randomly iden-
tified way-points in Cfree and visibility graph ap-
proach (Pan & Manocha, 2015)

Figure C-1: Example of combinatorial and sampling-based planning algorithm with the shortest
route between qI and qG shown solid with other routes given as dashed
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Model Predictive Control Theory

Model Predictive Control (MPC) solves an Optimal Control Problem (OCP) whereby the
objective is to minimise an objective/cost function subject to the constraints (Trachte et al.,
2015). To perform MPC control, the following information must be available;

• Mission planning objective(s) to define and tune the cost terms of the objective function
that is optimised

• System model to perform the state prediction
• Control and process constraints to limit the range of feasible states and inputs
• Measurements from the system to set the initial condition using the actual system
response

The OCP time horizon is discretised in N steps indexed by k with ∆t being the time sample
step size. The initial system state at k = 0 is encoded in x0. The stage cost function cs
is defined over the interval k = 0 → N − 1 while ct is a terminal cost function related to
being at state xN with input uN at time N . The cost functions are constructed to achieve
several control objectives, examples include amongst others minimising the tracking error
to a reference trajectory or discouraging extreme control inputs (Kamel et al., 2017). The
system dynamics are encoded in the discretised (non-)linear function f which is enforced
through an equality constraint. State and inputs are constrained to feasible values which are
derived from physical/mechanical space limitations denoted by X and motor/actuator limits
by U . Slack variables s may be introduced for soft-constraining the problem to facilitate
run-time feasibility by allowing minor constraint violations (Neunert et al., 2016). A high
cost is associated with slack variables being non-zero to make their use the last resort option
to maintain feasibility of the optimisation problem.

The OCP is optimised with respect to the trajectory x̃ = [x0, . . . ,xN ] with associated inputs
ũ = [u0, . . . ,uN−1] and slack variables s̃ = [s0, . . . , sN ]. Together these are the optimi-
sation variable z̃ = [x̃, ũ, s̃] that are to be optimised. The mathematical definition of the
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optimisation problem is given by Eq. D-1.

min
z̃

J = ct(xN ,uN ) + Σ
N−1
k=0 cs(xk,uk, ∗k)

s.t. x0 = x(t) (Initial Estimated State)

xk+1 = f(xk,uk) (Discretised Dynamics)

g(xk,uk, ∗k) ≥ 0 (Inequality Constraints)

xk ∈ X (State Constraints)

uk ∈ U (Input Constraints)

sk ≥ 0 (Slack Constraints)

(D-1)

where ∗ represents all additional variables (obstacle positions, slacks etc.) used for cost and
constraint definitions. From the optimised z̃ only the first input u0 is executed and the time-
horizon is receded by ∆t (one time step) to a new planning instance repeating the process.
Closed-loop performance is achieved as a result of this receding-horizon approach.

Figure D-1 provides a graphical representation of the MPC algorithm demonstrating the
concept.

i i+1 i+2 i+Ni+k

Figure D-1: Model Predictive Control algorithm for trajectory tracking showing the computation
performed for one OCP (Adapted from (M. Behrendt, 2009)). The future predicted trajectory
and control input is based on the current measured system response/output.

The OCP is solved using an optimisation method that falls into either of two classes, namely
shooting or direct methods. In (Posa & Tedrake, 2013) these two approaches are described; “In
shooting methods, the non-linear optimization searches over (a finite parametrization of) u(t),
using a forward simulation from x(0) to evaluate the cost of every candidate input trajectory.
In direct methods, the non-linear optimization simultaneously searches over parametrizations
of u(t) and x(t); here no simulation is required and instead the dynamics are imposed as a
set of optimization constraints, typically evaluated at a selection of collocation points”.
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Appendix E

Motion Capture System Calibration

The Optitrack optical infrared Motion Capture System (MCS) was calibrated prior to perfor-
ming experiments using the Motive calibration software provided by the vendor. The itemised
details below are from the calibration report showing the error in tracked two and three di-
mensional (2D/3D) position readings obtained from the MCS. To understand the provided
report, please refer to the OptiTrack documentation1.

All experimental data collected for the preliminary study was performed under the following
MCS calibration;

• Overall Re-projection Mean 3D Error: 0.326 mm, Mean 2D Error: 0.086 pixels (Ex-
ceptional)

• Worst Camera Mean 3D Error 0.407 mm, Mean 2D Error 0.108 pixels (Excep-
tional)

• Triangulation Recommended: 2.7 mm, Residual Mean Error: 0.3 mm
• Overall Wand Error Mean Error: 0.220 mm (Exceptional)
• Ray length Suggested Max: 11.0 m

Experimental data collected for the scientific article and supplements was performed under
the following MCS calibration;

• Overall Re-projection Mean 3D Error: 0.323 mm, Mean 2D Error: 0.080 pixels (Ex-
ceptional)

• Worst Camera Mean 3D Error 0.357 mm, Mean 2D Error 0.108 pixels (Excep-
tional)

• Triangulation Recommended: 2.7 mm, Residual Mean Error: 0.3 mm
• Overall Wand Error Mean Error: 0.284 mm (Exceptional)
• Ray length Suggested Max: 11.5 m

1NaturalPoint. “OptiTrack Calibration”. Accessed 22 February 2018. https://v20.wiki.optitrack.com/

index.php?title=Calibration
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Appendix F

Framework’s MATLAB and ROS
Dependencies

To use the programmed control framework, the following software, MATLAB toolboxes and
ROS packages are required;

• MATLAB R2017a Linux 64-bit version1

• ROS Kinetic Kame2

• MATLAB Toolboxes

– Control System Toolbox (10.2)
– Image Processing Toolbox (10.0)
– Curve Fitting Toolbox (3.5.5)
– Aerospace Toolbox (2.19)
– Robotics System Toolbox (1.4)

• ROS Packages

– bebop autonomy (0.7.0)3

– mocap optitrack (GitHub latest master 23 May 2016)4

To perform the Model Predictive Control computations the FORCES Pro5 package is re-
quired. An academic license is available upon request. Note: This package was not required
for the preliminary study.

1MathWorks. “MATLAB”. Accessed September 20 2017 https://mathworks.com/products/matlab
2ROS. “ROS Kinetic Kame”. Accessed September 26 2017. http://wiki.ros.org/kinetic
3Mani Monajjemi. “bebop autonomy”. Accessed September 26 2017. http://bebop -autonomy .

readthedocs.io/en/latest/
4Kathrin Gräve and Alex Bencz. “mocap optitrack”. Accessed September 20 2017. http://wiki.ros.

org/mocap optitrack
5embotech. “FORCES PRO”. Accessed September 20 2017. https://www.embotech.com/FORCES-Pro
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Appendix G

Quadrotor Model Identification
Experimental Data Post-Processing

Details

The estimation and validation dataset for the UAV pitch and roll step response used for
system identification had to be de-trended to account for a bias in the recorded response data
during the run. The offset value is subtracted from the recorded output signal in the dataset
resulting in a de-trended dataset. The output signals are measured in radians and considering
the offsets are in the 10−3 order, the actual bias is very small. The required offset is computed
by comparing the positive and negative peak responses and adjusting for the average value
such that it is zero (undisturbed UAV state).

• Pitch dataset de-trending:

– Estimation dataset, output signal: -0.0090;

– Validation dataset, output signal: -0.0063;

• Roll dataset de-trending:

– Estimation dataset, output signal: -0.0061;

– Validation dataset, output signal: -0.0059;
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Appendix H

Identified Quadrotor Model Fit
Accuracy

In addition to the first (delayed), second and third order Parrot Bebop 2 quadrotor state-space
models identified and presented in the report, input delayed models of the second and third
order were also identified. As the delayed second and third order state space models under-
performed or showed minimal improvement with respect to their non-delayed counterparts,
they were not considered for implementation in the UAVP model. The input delays were
determined by trial-and-error through selection of various input delays in the range 0 to 0.2
seconds. The chosen input delay resulted in the best fitting model. Inputs delays longer than
0.2 seconds showed severe degradation of model fit indicating excessive input delay.

The delays in the first, second and third order models are presented in Table H-1. The
Normalised Root Mean Square Error (NRMSE) fit of the model response when compared to
the experimentally obtained estimation and validation dataset is provided in Table H-2. The
estimation dataset included the recorded data used to identify the model while the validation
dataset is a repeated experimental run used for checking over-fitting and generalisation.

Table H-1: First, second and third order delayed identified quadrotor state-space model input
delays

State-space model
Input delay [s]
Order 1 Order 2 Order 3

Pitch 0.10 0.10 0.10

Roll 0.10 0.10 0.10

Vertical Velocity 0.12 0.10 0.14
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Table H-2: First, second and third order (delayed) identified quadrotor state-space model fit as NRMSE percentage to estimation (est.) and
validation (val.) dataset.

System
Dataset fit of the identified state-space model [%]
Order 1 Order 1 delayed Order 2 Order 2 delayed Order 3 Order 3 delayed
Est. Val. Est. Val. Est. Val. Est. Val. Est. Val. Est. Val.

Pitch 84.68 84.55 91.72 91.08 94.59 93.81 94.21 93.52 95.93 94.96 94.27 93.57
Roll 82.34 81.69 89.95 88.54 91.09 89.08 91.19 90.05 92.76 90.17 92.19 90.22
Vertical Velocity 77.12 76.42 87.52 89.01 91.38 91.56 91.25 91.48 91.19 92.19 91.39 90.43
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Appendix I

Identified Quadrotor Model Residual
Analysis for Fit Quality

Residual analysis is performed on the identified Parrot Bebop 2 quadrotor state-space models
to evaluate their quality. “Residuals are differences between the one-step-predicted output
from the model and the measured output from the validation data set” (MathWorks, 2017).
The report only mentions the model fit, however, a residual analysis is necessary to explore
the portion of the validation data that cannot be explained by the identified model. Figure
I-1 shows the autocorrelations of output residuals (whiteness test) and cross-correlation of
input with output residuals (independence test) for the different order state-space models.
For a high quality model, the residual function should fall within the 99% confidence interval
identified by the dotted line which matches the colour of the model order. Please refer back
to the report for a discussion of the model quality. A more thorough residual analysis is
necessary to understand the quality of the obtained models, however, this is currently beyond
the scope of this research so future studies can perform such an analysis.
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Figure I-1: Identified pitch, roll and vertical velocity model residuals with 99% confidence in-
tervals marked with corresponding coloured dash line; Top: Autocorrelation of output residuals,
Bottom: cross-correlation of input with output residuals
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Appendix J

Primal-Dual Interior-Point Constrained
Optimisation Algorithm Overview

The Model Predictive Controller (MPC) algorithm is a receding and finite-horizon, constrai-
ned optimisation problem that solves for quasi-optimal solutions. The inclusion of ‘quasi-’
follows from the fact that only a guaranteed global optimum is found for convex problems
under specific conditions. For non-convex problems, the optimiser cannot be guaranteed to
converge to the global optimum but rather any minima/maxima, local or global.

A Newton-type, optimisation scheme is implemented in the software package FORCES Pro

that is used to achieve real-time computational performance (Domahidi & Jerez, 2014). The
specific algorithm is called Barrier Interior-Point Optimisation for which a short theoretical
exposition is provided based on the derivation provided in (Vanderbei, 2012). The notation
convention may differ from the main report and is made clear from the context or by explicit
definition in this appendix.

J-1 Optimisation Problem Definition

Take the cost function minimisation optimisation problem with total cost J , and with f :
R
n → R subject to p inequality and q − p equality constraints as defined by Eq. J-1.

J = min
x∈Rn

f(x)

gi(x) ≥ bi for i = 1, . . . , p ∈ N

gi(x) = bi for i = p+ 1, . . . q ∈ N

(J-1)

Rewrite an equivalent problem using slack variables si to convert the inequality constraints
to equality constraints.

J = min
x∈Rn

f(x)

ci(x, s) = 0 for i = 1, . . . , q ∈ N

si ≥ 0 for i = 1, . . . , p ∈ N

(J-2)
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c(x, s) = [gi(x)− bi − si , . . . , gp(x)− bk − sp, gp+1(x)− bp+1 , . . . , gq(x)− bq]
⊤

The non-negativity constraint on the slack variables is rewritten as a logarithmic barrier
function cost term giving Eq. J-3 which gives the equivalent barrier problem.

B = min
x∈Rn

f(x)− µ

p
∑

i=1

ln(si)

ci(x, s) = 0 for i = 1, . . . , q ∈ N

(J-3)

A small positive barrier parameter µ is introduced such that for lim
µ→0

minB = min J , the new

optimisation problem is equivalent to the original. By definition, the natural logarithmic is
undefined for si < 0 thereby implicitly satisfying the inequality si ≥ 0. Finally, incorporate
the equality constraints into the objective function using Lagrange multipliers λ giving the
Lagrange function Eq. J-4. The primal variable is x with the dual variable λ ∈ R

q.

L(x, s,λ) = f(x)− c(x, s)⊤λ− µ

p
∑

i=1

ln(si) (J-4)

J-2 Newton-Raphson Iterative Root Finding Search

The optimisation problem is solved iteratively with a Newton-Raphson gradient based search
direction algorithm. The gradients of Eq. J-4 is defined by Eqs. J-5 to J-7 which are set to
equal zero. These three necessary conditions constrained optimisation problems are referred
to as the Karush-Kuhn-Tucker (KKT) conditions (Kuhn, 2014).

∇xL ≡ ∇xf(x)−∇xc
T (x, s)λ = 0 (J-5)

∇sL ≡ − µS−1e+ Y λ = 0 (J-6)

∇λL ≡ c(x, s) = 0 (J-7)

with S =

[
s1 0

. . .
0 sp

]

, Y =
[
I(p×p) 0(p×q−p)

]

Rewriting, we get the set of Eqs. J-8 to J-10.

∇xf(x)−∇xc(x, s)
⊤λ =0 (J-8)

ΛSe =µe (J-9)

c(x, s) =0 (J-10)

with Λ = diag(Y λ) =

[
λ1 0

. . .
0 λp

]

, e = [1 , . . . , 1] ∈ N
p
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Applying the Newton-Raphson method for root-finding to the set of Eqs. J-8 to J-10, the
system of equations, as given by Eq. J-11, is obtained with the ∆ search steps. The left
matrix is the Jacobian to the set of Eqs. J-8 to J-10.





W 0 −∇xc(x, s)
⊤

0 Λ S
∇xc(x, s) −Z 0









∆x

∆s

∆λ



 = −





∇xf(x)−∇xc
⊤(x, s)λ

ΛSe− µe
c(x, s)



 (J-11)

with Z =
[
I(p×p) 0
0 0(q−p×q−p)

]

W = ∇2
xxL(x, s,λ)

Computing the search direction given by the vector of ∆ is the most computationally expensive
step of the algorithm (Domahidi, Zgraggen, Zeilinger, Morari, & Jones, 2012). In practice this
is achieved through various methods, however, this is beyond the scope of this explanation.

Then the variables x, s, λ are iteratively found by taking step of size α in the search directions
identified in Eq. J-11 resulting in the update Eq. J-12. The step-size is regulated to achieve
a converging line-search.





x

s

λ





(k+1)

=





x

s

λ





(k)

+ α(k)





∆x

∆s

∆λ





(k)

(J-12)

J-3 Algorithm Convergence and Extensions

As the Newton-Raphson method is iterative in nature, the KKT conditions defined by Eqs. J-8
to J-10 are set to be satisfied when a certain tolerance ǫ is satisfied.

max
∣
∣
∣∇xf(x)−∇xc(x, s)

⊤λ

∣
∣
∣ ≤ǫ1

max |ΛSe− µe| ≤ǫ2

max |c(x, s)| ≤ǫ3

As the Hessian W is not analytically defined in FORCES Pro, an approximation method
is used resulting in a quasi-Newton method known as the Broyden-Fletcher-Goldfarb-Shanno
algorithm (Domahidi & Jerez, 2014); the specific’s of which are beyond the scope of this report.
The standard Newton method as presented in this appendix is sufficient to understand the
general method utilised to solve the constrained optimisation problem.

Note in (Karmarkar, 1984), Karmarkar first showed that interior-point methods are polyno-
mial time algorithms hence the number of algorithmic steps is O(nk) for a non-negative k and
n size input. Furthermore, for interested readers, the article (Forsgren, Gill, & Wright, 2002)
provides a comprehensive overview of interior-point methods for non-linear optimisation.

Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments Nikhil D. Potdar



148 Primal-Dual Interior-Point Constrained Optimisation Algorithm Overview

Nikhil D. Potdar Online Trajectory Planning and Control of a MAV Payload System in Dynamic Environments



Appendix K

NMPC Robustness to Time-Step Size
and Execution Lag

The effects of various controller time-step size and command execution lags on the NMPC per-
formance are presented. The results in this appendix expand on the results already presented
in the scientific article.

The UAVP system performs a point-to-point navigation tak starting from (-1.5,0,1) to a goal
(1.5,0,1) position in meters with a small obstacle positioned at (0,0,0) with an infinite height.
As the obstacle is in the direct path from the start to the goal point, the planning must be
executed with a curvature as shown in Figure K-1. For all cases the planning stages N = 18
and default cost definitions and weights are used with assistive steering disabled. In Fi-
gure K-2 the effects of different NMPC planning and control time-steps (controller frequency)
on the generated inputs and manoeuvres is presented. In Figure K-3, the NMPC controller
uses a fixed ∆t=0.05 s planning time-step to generate the predicted trajectory, however, the
execution of commands is delayed by 0 to 0.15 seconds to artificially model lag. The lag
demonstrates the effects on performance generally seen in real-world controller deployment.

-3.0 -1.5 0.0 1.5 3.0
x [m]

-1.5

0.0

1.5

y
 [
m

] t
0 t

2

t
1

t
3

Figure K-1: Example executed point-to-point navigation task that is performed using the NMPC
controller with N = 18
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In Figure K-2 notice how as the ∆t becomes longer, the controller compensates for the lower
control frequency by making the manoeuvre less agile i.e. smaller suspension angles. Hence,
the systems takes longer to reach the goal with a longer ∆t. The magnitude of generated
input commands is also reduced with increasing ∆t to ensure system stability with larger
time-steps. These characteristics are all achieved without any re-tuning of the NMPC and
is an inherent feature of the NMPC closed-loop planning approach. There is a limit to how
large ∆t can be which is determined by the discretisation of the non-linear dynamics used. In
this study, a Runge-Kutta 2nd order method is used, so if ∆t becomes too large the linearised
dynamics may result in error divergence and eventually controller instability. With ∆t=0.25 s
(4 Hz), the controller destabilises, however, this is already a very low controller frequency.

In Figure K-3, notice how the delay has a minimal effect on the executed trajectory which
was performed under the control inputs generated by the NMPC using a time-step ∆t=0.05 s.
Note that the controller is set up such that it will continue executing the last received com-
mand until a new command is received. Therefore, as the NMPC generates commands that
should be executed for 0.05 s, in reality they are executed for 0.20 s due to the time delay
(lag). Therefore, notice how for the 0.15 s delay case, the payload suspension angles start
amplifying and eventually the entire system destabilises. This occurs as the controller tries
to reduce the suspension angles when the goal is reached, however, those inputs have the
adverse resonating effect when executed over the longer real time-step. In simulation, the
total time lag under which the system remains stable is also affected by the discretisation
method used for the simulated system model. The Runge-Kutta 2nd order method is used by
both the NMPC controller and to simulate the UAVP dynamics and higher-order methods
may be more stable for larger time-steps and lags. In experimental setups, the total allowable
lag may be greater, however, this study falls beyond the scope of this research.
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(a) ∆t=0.05 s
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(b) ∆t=0.10 s
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(c) ∆t=0.15 s
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(d) ∆t=0.20 s
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(e) ∆t=0.25 s

Figure K-2: Comparison of distance-to-goal, payload suspension angles and NMPC generated
inputs for different control time-steps
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(a) ∆t=0.05 s, no delay
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(b) ∆t=0.05 s, 0.05 s delay
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(c) ∆t=0.05 s, 0.10 s delay
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(d) ∆t=0.05 s, 0.15 s delay

Figure K-3: Comparison of distance-to-goal, payload suspension angles and NMPC generated
inputs for different planning to execution time delays
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