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Unitarity randomized benchmarking (URB) is an experimental procedure for estimating the coherence of
implemented quantum gates independently of state preparation and measurement errors. These estimates of the
coherence are measured by the unitarity. A central problem in this experiment is relating the number of data
points to rigorous confidence intervals. In this work we provide a bound on the required number of data points
for Clifford URB as a function of confidence and experimental parameters. This bound has favorable scaling in
the regime of near-unitary noise and is asymptotically independent of the length of the gate sequences used. We
also show that, in contrast to standard randomized benchmarking, a nontrivial number of data points is always
required to overcome the randomness introduced by state preparation and measurement errors even in the limit
of perfect gates. Our bound is sufficiently sharp to benchmark small-dimensional systems in realistic parameter
regimes using a modest number of data points. For example, we show that the unitarity of single-qubit Clifford
gates can be rigorously estimated using few hundred data points under the assumption of gate-independent noise.
This is a reduction of orders of magnitude compared to previously known bounds.

DOI: 10.1103/PhysRevA.99.012315

I. INTRODUCTION

In order to further advance the efforts in building large-
scale quantum computers, it is essential to characterize the
errors of elementary quantum gates in practical implemen-
tations. Randomized benchmarking (RB) [1–4] has in the
past years become the standard for assessing the quality of
quantum gates [2,5–10]. This is because RB has a simple and
efficiently scalable implementation that characterizes gates
errors independently of any state preparation and measure-
ment (SPAM) errors. Since the introduction of randomized
benchmarking, several variants have been developed [11–15].
One of these variants is unitarity randomized benchmarking
(URB) [12,16].

This paper is concerned with the URB protocol proposed
in [12]. It provides a method to characterize the coherence
of errors in implemented quantum gates that is robust against
SPAM errors. This characterization of coherence is quantified
by the unitarity, a quantity that is independent of the average
gate fidelity measured by standard RB. Being able to estimate
the unitarity experimentally provides an extra source of in-
formation when optimizing experimental implementations of
quantum gates [16]. In particular, the unitarity can help to
discriminate whether the dominant error process is coherent
(i.e., overrotation or calibration errors) or incoherent (i.e.,
depolarizing or dephasing noise). This information is useful
since these two different types of noise are generally reduced
in different ways [16,17]. Additionally, knowing the unitarity
of a gate or gate set can be used to get sharper bounds on the
credible interval of an interleaved randomized benchmarking
experiment [18] and also get improved bounds on the diamond
norm error [19–21], which is the relevant metric in the setting
of fault-tolerant quantum computing.

The URB protocol is similar to the standard RB protocol
and they share many characteristics, like SPAM independent

estimation of its figure of merit. It aims only to provide a
partial characterization of the gate set (by estimating the uni-
tarity), instead of characterizing the noise completely, which
is what, e.g., channel or gate set tomography aim to do.
Since full tomography with rigorous confidence intervals is
very resource-intensive [22], in situations where partial noise
characterization suffices, more lightweight solutions like RB
and URB may be the choice of preference.

In RB-type protocols, the noise-characterizing figure of
merit is obtained from the exponential decay rate of the
average survival probability with the length of the sequence
of gates. For fixed sequence length, the average survival prob-
ability is estimated by averaging over a number of randomly
sampled gate sequences. An important problem for RB-type
procedures is then determining a number of random gate se-
quences that is practical yet yields a confident estimate of the
figure of merit. This problem was realized in the first concrete
proposal of RB [4]. Subsequent work focused on resolving
this problem in two different, complementary ways. First,
statistical tools were applied to allow for confident estimation
of the RB decay rate with fewer random gate sequences
[23–25]. Second, the underlying distribution from which the
RB protocol samples data was analyzed. In particular a sharp
bound on the variance of this distribution was derived, which
also allows for more resource-efficient estimation of the RB
decay rate from measurement data [26,27]. However, no such
analysis exists for the related URB protocol.

Here we analyze the statistics of unitarity randomized
benchmarking. The aim of this work is to contribute a so-
lution to the following central question: How many random
sequences of gates are required in the URB protocol to get
a confident estimate of the unitarity from the obtained mea-
surement data? We proceed along the lines of Refs. [26,27]
by providing a sharp bound on the variance of the under-
lying distribution from which the URB protocol samples.
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This additional knowledge of the URB sampling distribution
allows for more resource-efficient estimation of the unitarity
from experimental data. Concretely we demonstrate how our
variance bound can be used to bound the required number
of random sequences as a function of desired confidence
parameters.

In this work, we derive a bound on the variance of the dis-
tribution induced by the random sampling of gate sequences
in a modified version of the Clifford URB protocol. This mod-
ification is based on the adapted RB protocol of Ref. [27]. It
requires no experimental overhead while leading to a sharper
variance bound (and hence fewer required gate sequences)
as well as a simpler fit model for extracting the unitarity.
In addition, our statistical analysis reveals the optimal input
state and output measurement for minimizing the variance and
maximizing the signal strength. We then apply this variance
bound using standard concentration inequalities to relate the
number of random sequences to desired confidence intervals.
Our result is sufficiently sharp to perform the modified URB
protocol on few-qubit systems with a modest number of
sequences in realistic parameter regimes. It is an improvement
of several orders of magnitude in the number of sequences
required for fixed confidence, compared to a concentration
inequality that does not use the variance (as was first done
for RB in Ref. [4]). We show that the variance, and thus
number of required gate sequences, scales favorably in the
regime of large unitarity, which is the relevant regime for high
quality gates. We also show that, in contrast to standard RB
[27], a nontrivial number of sequences is always required to
overcome the randomness introduced by state preparation and
measurement errors even in the limit of perfect gates.

This paper is organized as follows. In the remainder of
this section we review the concept of unitarity and the URB
protocol to estimate the unitarity of a gate set. We introduce a
modification of the protocol based on Ref. [27] for the purpose
of improved statistics. Furthermore we explicitly distinguish
the two different implementations of the URB protocol and
emphasize their benefits and drawbacks. In Sec. II we present
our main result [Eqs. (18) and (19)] and illustrate how to
apply it using a simulated example. In Sec. III we examine
the behavior of our bound in various parameter regimes and
discuss the different features of our bound. A brief overview
of the proof techniques used to derive our main result is
presented in Sec. IV. All technical details of the proof have
been delegated to the appendices. In Sec. V we summarize
the main conclusions of our work and provide suggestions for
future research.

A. Unitarity

Let us begin with defining the figure of merit that URB
estimates. For a quantum channel E (here a quantum chan-
nel will refer to a completely positive and trace-preserving
(CPTP) superoperator), the unitarity is defined as [12]

u(E ) = d

d − 1

∫
dψTr

{[
E
(

|ψ〉〈ψ | − I

d

)]2
}

, (1)

where the integration is with respect to the uniform Haar
measure on the state space H. The prefactor is chosen such
that 0 � u � 1. An equivalent definition of the unitarity can

be given as [12, Proposition 1]

u(E ) = 1

d2 − 1

∑
σ,τ∈P∗

Tr[τE (σ )]2, (2)

where the summation is over the set of all nonidentity, normal-
ized Pauli matrices P∗. The normalization is with respect to
the Hilbert-Schmidt norm ‖σ‖2 =

√
Tr[σ †σ ]. This alternative

definition of the unitarity is often more pleasant to work
with. In Example 1 the unitarity of a depolarizing channel is
calculated.

The unitarity has some properties that one would intu-
itively expect a good measure of the coherence of gates to have
[12, Proposition 7]. First, u = 1 if and only if E is a unitary
quantum channel. Second, the unitarity is invariant under
unitary transformation. That is, if U ,V are unitary quantum
channels, then u(E ) = u(UEV ). The unitarity is independent
of but related to the average gate fidelity. In fact, the uni-
tarity provides an upper bound on the average gate fidelity
[12, Proposition 8], (

dFavg − 1

d − 1

)2

� u. (3)

Here Favg is the average gate fidelity between the implemented
gate and the ideal target gate. This relation expresses the
fact that a perfect gate (Favg = 1) must be unitary (u = 1).
However, the converse does not hold. Indeed, a unitary gate
(u = 1) can have arbitrary average gate fidelity by considering
purely unitary noise (i.e., overrotation). The inequality Eq. (3)
is tight, since it holds with equality for a depolarizing channel.

Example 1. Let E be a depolarizing quantum channel with
depolarizing parameter p:

E : A �→ pA + 1 − p

d
Tr[A]I.

Then the unitarity u of E is computed using Eq. (2) as

u = 1

d2 − 1

∑
σ,τ∈P∗

Tr[pτ †pσ ]2 = p2,

since Tr[τ †σ ] = δσ,τ . Note that Favg(E ) = p + 1−p

d
, so that

the inequality Eq. (3) is saturated by the depolarizing
channel. �

B. The URB protocol

This section gives an overview of the URB protocol of
Ref. [12] and gives a small modification based on Ref. [27].
The protocol is described for any gate set G that is a unitary
2-design [28]. Note that even though the protocol works for
all these gate sets, our result of the confidence analysis is only
applicable to the Clifford group. In Algorithm 1 we present
an outline of the URB protocol, where we distinguish two
different implementations (discussed later in this section).

The URB protocol works similar to the standard RB proto-
col. First one draws a uniformly distributed random sequence
of gates (with length m) from the gate set G. Denote such a
sequence

Gj = Gjm
· · ·Gj2Gj1 , (4)
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Fix a gate set G, choose a set of sequence lengths M to use and determine the number of random sequences
Nm per sequence length m ∈ M.

1: Procedure URBG, M, {Nm}
2: for allsequence lengths m ∈ M
3: repeat Nm times
4: Sample m random gates Gj1 , . . . ,Gjm

independently and uniformly at random from G;
5: Compose the sequence Gj = Gjm

· · ·Gj2Gj1 ;
6: if Two-copy implementation
7: Prepare states ρ ≈ I+S

d(d+1) and ρ̂ ≈ I−S
d(d−1) , apply G⊗2

j to each state and measure E ≈ S a large number
of times (where S denotes the Swap gate);

8: From this data, estimate the average sequence purity as
q

(2)
j = (

Tr
[
EG⊗2

j (ρ)
]− Tr

[
EG⊗2

j (ρ̂ )
]) = Tr

[
EG⊗2

j (ρ̄)
]
;

9: if Single-copy implementation
10: for all nonidentity Pauli’s P,Q �= I

11: Prepare states ρ
(P )
H ≈ I+P

d
and ρ̂

(P )
H ≈ I−P

d
, apply Gj to each state and measure E

(Q)
H ≈ Q a large

number of times;
12: From this data, estimate the average sequence purity as

q
(1)
j = 1

d2 − 1

∑
P,Q�=I

{
Tr
[
E

(Q)
H Gj

(
ρ

(P )
H
)]− Tr

[
E

(Q)
H Gj

(
ρ̂

(P )
H
)]}2

;

13: Compute the empirical average over the sampled sequences q̄m = 1
Nm

∑
j qj;

14: Fit q̄m = Bum−1, where B is a constant absorbing SPAM errors and u is the unitarity of the noise map.

ALG. 1. Outline of the modified unitarity randomized benchmarking protocol.

where each js denotes the randomly drawn gate from
G at position s. The subscript j denotes the multi-index
(j1, j2, . . . , jm) and therefore indexes the entire sequence.
Such a randomly sampled sequence Gj is then applied to a
state ρ, after which a two-outcome measurement is performed
(in this work the operator E denotes the Hermitian observable
associated with a two-outcome measurement {M, I − M}
with outcomes ±1). However, there are two differences here
with respect to the RB protocol. First, there is no global
inverse applied at the end of each sequence and second, the
expectation value of the measurement outcome is squared.
So the URB random variable of interest then becomes qj =
Tr[EGj(ρ)]2. Throughout this work, we shall call the URB
random variable qj the sequence purity (in standard RB, the
random variable of interest is typically referred to as the
survival probability). The rest of the procedure is then similar:
estimate the mean of the sequence purity qj using N random
sequences of fixed length, repeat for various sequence lengths
and fit to the model

E[qj] = Bum−1 + A (5)

to obtain the unitarity.
Here we analyze a slightly modified version of the protocol

of Ref. [12], based on ideas of Refs. [2,24,27]. Every sequence
of randomly sampled gates Gj is applied to two different input
states ρ and ρ̂, and half of the difference of their expectation
values is taken before squaring. By linearity of quantum
mechanics, this is equivalent to performing URB with the
traceless input operator

ρ̄ := 1
2 (ρ − ρ̂ ). (6)

The factor 1
2 is strictly not necessary but is added for better

statistical comparison. The key idea behind this is that one
effectively works with a traceless input operator ρ̄. There are
two main benefits of this modification. First, it improves the
fitting procedure, because the modified fit model for the mean
of the sequence purity becomes [see Eq. (53) in Sec. IV B]

E[qj] = Bum−1, (7)

where the constant B only depends on the input operator ρ̄ and
the measurement observable E. This is a linear fitting problem
in u by taking the logarithm and can therefore be performed
more easily. Second, this modification narrows the distribu-
tion of the sequence purity qj, improving the confidence in
our point estimate q̄m = 1

N

∑
qj of the exact E[qj]. In the next

section we discuss the implementation of the protocol in more
detail and emphasize that there are two possible methods to
estimate qj.

1. The two different implementations

In this section we discuss two different possible implemen-
tations of the URB protocol (as briefly discussed in Ref. [12]),
which are illustrated in Fig. 1. The choice of implementation
depends on whether the experimenter has access to two identi-
cal copies of the system or not. The implementations differ in
the way the sequence purity qj is computed and what the ideal
input operator ρ̄ and measurement E are. By ideal operators,
we mean the operators that maximize the signal strength [the
proportionality factor B in the fit model Eq. (7)] from which
the unitarity is estimated. We will then show that the two
implementations are closely related.

012315-3
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ρH

ρ E

(a)

(b)

EH

Gj2

Gj2Gj1 Gjm

Gj1 Gjm

Gj2Gj1 Gjm

FIG. 1. Schematic difference between the single-copy imple-
mentation (a) and the two-copy implementation (b) of the unitarity
randomized benchmarking protocol. Each line represents a system
on the base Hilbert space H. In the single-copy implementation,
the expected value of the measurement Tr[EHGj(ρ̄H )] needs to be
squared to obtain qj, whereas in the two-copy implementation qj =
Tr[EG⊗2

j (ρ̄)] yields the direct outcome.

Let us start by discussing the two-copy implementation
[Fig. 1(b)]. As the name suggests, this requires two copies
of the system H under investigation. The use of two copies
follows from the mathematical equivalence:

qj = Tr[EGj(ρ̄)]2 = Tr
[
E⊗2G⊗2

j (ρ̄⊗2)
]
. (8)

If the experimenter has access to two identical copies of
the system H, the input and measurement operator can be
entangled across the two copies of the system. The sequence
Gj is then applied to each half of the system H ⊗ H. This
yields the sequence purity of the two-copy implementation as

q
(2)
j = Tr

[
EG⊗2

j (ρ̄ )
]
, (9)

where ρ̄, E ∈ L(H ⊗ H) are now operators on the two copies
of the system. Since E is a two-valued measurement with out-
comes (±1) and ρ̄ is half the difference between two physical
states, it is not hard to show that the sequence purity lies in the
interval q

(2)
j ∈ [−1, 1]. In Sec. II C we show that this interval

can be narrowed under mild assumptions. In the two-copy
implementation it is implicitly assumed that the experimenter
can operate identically on each subsystem without any cross-
talk between the two subsystems. Moreover, the experimenter
should be able to prepare and measure over the two copies
of the system. Experimentally the input and measurement
operators ρ̄, E ∈ L(H ⊗ H) should be as close to the ideal
operators as possible. The ideal operators are given by (see
Appendix B 2 for more details and proof)

ρid = I + S

d(d + 1)
, ρ̂id = I − S

d(d − 1)
, Eid = S, (10)

where I is the identity and S is the Swap operator on H ⊗ H,
and d is the dimension of H. The state ρid (ρ̂id) is the
maximally mixed state on the symmetric (anti-symmetric)
subspace of H ⊗ H. Note that the maximally mixed state on
a subspace can be prepared by uniformly sampling pure states
from an orthonormal basis of this subspace. The operator
Eid is the Hermitian observable associated with a two-valued
measurement that discriminates between symmetric (outcome
1) and anti-symmetric states (outcome −1).

In the single-copy implementation, the experimenter must
obtain an estimate of the sequence purity qj using only a single

copy of the system H. From Eq. (8), it can be seen that qj =
Tr[EHGj(ρ̄H)]2 is the sequence purity given the operators
ρ̄H, EH ∈ L(H). Here the subscript H is to emphasize that the
operators are on a single copy of H. Throughout this paper we
will just write ρ̄ and E for operators on H ⊗ H and indicate
operators on a single copy explicitly by adding a subscript
H. There are two disadvantages in defining the single-copy
sequence purity using one pair of input and measurement
operators ρ̄H, EH ∈ L(H). First, the proportionality factor B

in Eq. (7) is upper bounded by 1
d2−1 , where d is the dimension

of H [12]. This means that the signal strength decreases
exponentially with the system size. Second, the variance of the
sequence purity is large. This leads to large uncertainty in the
estimated average sequence purity q̄m. These disadvantages
can be resolved by using multiple different pairs of input
and measurement operators [12]. The ideal set of operators
is chosen in such a way that summing the expectation values
squared for each pair of operators leads to effectively simu-
lating the ideal operators of Eq. (10). Let us make this more
precise. Define the single-copy sequence purity as

q
(1)
j = 1

d2 − 1

∑
P,Q�=I

Tr
[
E

(Q)
H Gj

(
ρ̄

(P )
H
)]2

, (11)

where the sum is over all nonidentity multiqubit Pauli op-
erators P,Q. Each ρ̄

(P )
H and E

(Q)
H are different input and

measurement operator settings indexed by the nonidentity
Pauli operators P and Q, respectively. For each pair P,Q,
the expectation value Tr[E(Q)

H Gj(ρ̄
(P )
H )] is to be estimated

experimentally. This expectation can be shown to lie in the
interval [−1, 1] by definition of E and ρ̄, so that the expec-
tation value squared lies in the unit interval. Therefore the
single-copy sequence purity can in principle lie anywhere
in the interval q

(1)
j ∈ [0, d2 − 1], since each summand lies

in the unit interval and the summation runs over (d2 − 1)2

terms. However in Sec. II C we show that this interval can
be narrowed significantly under mild assumptions. Since the
sum runs twice over all nonidentity Pauli operators, estimating
the sequence purity q

(1)
j requires (d2 − 1)2 different settings.

This is a number that grows exponentially in the number of
qubits comprising the system. We also emphasize that simply
squaring and summing up estimates of Tr[E(Q)

H Gj(ρ̄
(P )
H )] to

obtain an estimate of q
(1)
j yields a positively biased estimator

for q
(1)
j . This may lead to overestimating the unitarity. See

Sec. IV A 2 for more details on how to correctly estimate
q

(1)
j . The states ρ

(P )
H , ρ̂

(P )
H and measurement E

(Q)
H should be

implemented as closely as possible to the ideal operators

ρ
(P )
H,id = I + P

d
, ρ̂

(P )
H,id = I − P

d
, E

(Q)
H,id = Q. (12)

The ideal state ρ
(P )
H,id (ρ̂ (P )

H,id) is the maximally mixed state on
the positive (negative) eigenspace of the Pauli operator P , and
the measurement E

(Q)
H,id is the two-valued measurement that

discriminates between the positive (outcome 1) and negative
(outcome −1) eigenspace of the Pauli operator Q.

Next we show that the single copy can be interpreted as
a special case of the two-copy implementation [this is not
surprising in view of Eq. (8)]. To do so, we show that in
the single-copy implementation, one effectively works with
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two-copy operators of the form

ρ̄eff = d

d2 − 1

∑
P �=I

ρ̄
(P )
H ⊗ ρ̄

(P )
H ,

Ēeff = 1

d

∑
Q�=I

Ē
(Q)
H ⊗ Ē

(Q)
H . (13)

Here Ē (Ē(Q)
H ) is the traceless part of the observable E (E(Q)

H ),
defined as

Ē := E − Tr[E]
I

d2
, Ē := EH − Tr[EH]

IH
d

. (14)

The key point is that replacing the observable E with Ē makes
no difference, since Tr[EG⊗2

j (ρ̄)] = Tr[ĒG⊗2
j (ρ̄)]. This fol-

lows directly from Eq. (14), since Tr[IG⊗2
j (ρ̄)] = 0 by the

tracelessness of ρ̄ and the trace-preserving property of G⊗2
j .

Analogously, in the single-copy implementation, the traceless
measurement Ē(Q)

H can be used instead of the observable E
(Q)
H .

Throughout the paper, a bar over the measurement operator
will mean the traceless component as defined by Eq. (14).

The key idea of Eq. (13) is that ρ̄eff and Ēeff are constructed
such that computing q

(1)
j with Eq. (11) is mathematically

equivalent to computing q
(2)
j with Eq. (9) using the effective

operators Eq. (13),

q
(1)
j = 1

d2 − 1

∑
P,Q�=I

Tr
[
Ē

(Q)
H Gj

(
ρ̄

(P )
H
)]2

= Tr
[
ĒeffG⊗2

j (ρ̄eff )
] = q

(2)
j . (15)

In particular the ideal effective operators ρ̄eff,id and Ēeff,id [de-
fined by Eq. (13) for the ideal single-copy operators Eq. (12)]
are equal to the ideal two-copy operators Eq. (10),

ρ̄eff,id = ρ̄id and Ēeff,id = Ēid. (16)

This follows from the fact that [12]

S = 1

d

∑
P

P ⊗ P. (17)

Note that the sum is here over all Pauli matrices including
the identity. As a result of this, the rest of the paper will
exclusively deal with the two-copy operators ρ̄, E ∈ L(H ⊗
H). The results can be interpreted for the single-copy protocol
by considering the effective operators Eq. (13).

The two-copy implementation of the protocol as previously
discussed, can only be implemented if the experimenter has
access to two different, but identical copies of the system un-
der examination. These two systems must be simultaneously
accessible for entangled state preparation and measurements,
but the unitary control on each subsystem needs to be fully
disjoint (i.e., without crosstalk) and identical (meaning noise
must be identical on each subsystem). These assumptions are
hard if not impossible to fulfill in any experimental system.
We emphasize, however, that the two-copy implementation is
introduced as a mathematical tool for the analysis of the URB
protocol and its equivalence to the more realistic single-copy
protocol was shown.

This concludes our review of the URB protocol, includ-
ing the proposed modification of traceless input operators

and emphasizing the two different implementations (which
we have named the single- and two-copy implementation,
respectively). Next, we will present our main result. We will
show how a concentration inequality can be used to relate
the required resources (the number of sequences N ) to pa-
rameters that quantify the confidence in the estimate of the
average sequence purity q̄m. To do so, we will present a sharp
bound σ 2 on the variance of the sequence purity V[q (K )

j ] and
present a bound L on the length of the interval in which the
sequence purity q

(K )
j lies. These bounds are independent of

K (the choice between single or two-copy implementation).
Therefore, if no implementation-specific details are discussed,
the sequence purity is just denoted qj.

II. SUMMARY OF RESULTS

In this section the main contribution of the paper is sum-
marized. The main result is a sharp bound on the number
of sequences N required to obtain the average sequence
purity q̄m given fixed sequence length m with a certain a
priori determined confidence. In Sec. II A we review a result
from statistics to quantify the relation between the number of
sequences N and the confidence. This relation requires some
knowledge on the distribution of the sequence purity qj. A
bound on the variance and a bound on the interval length of the
sequence purity are needed. In Sec. II B we present a bound on
the variance of the URB sequence purity qj for benchmarking
the Clifford gate set. This is the main contribution of this
work. In Sec. II C we present a bound on the length of the
interval in which qj must lie. Finally in Sec. II D we give some
examples on how to use our results.

A. Relation between the confidence parameters
and the number of sequences

Using concentration inequalities from statistics, the confi-
dence in the estimate q̄m can be expressed as the probability
that it deviates at most ε from the exact mean E[qj]. If this
probability P[|q̄m − E[qj]| � ε] � δ is to be bounded by δ,
then the number of required data points N is related to the
confidence parameters ε, δ by [29]

2

⎡
⎣( L

L − ε

) L2−εL

σ2+L2
(

σ 2

σ 2 + εL

) σ2+εL

σ2+L2

⎤
⎦

N

� δ. (18)

In this expression σ 2 is a bound on the variance V[qj] and L

is a bound on the length of the interval in which qj lies. Given
σ 2 and L, there are two ways to apply this inequality. It can
either be solved (numerically) for ε, given fixed N and δ, or it
can be solved for N given ε, δ. In any case, it provides a direct
relation between the number of required sequences N and the
confidence parameters ε, δ, given L and σ 2. So in order to
apply Eq. (18), the bounds L and σ 2 are needed.

In the next section we will present a sharp bound σ 2 on the
variance of the sequence purity V[qj]. This bound is the key
ingredient in using Eq. (18) and it is the main contribution of
this paper.
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B. Bound on the variance of the sequence purity

In this section we present a bound σ 2 on the variance of
the sequence purity V[qj] that is valid under the following
assumptions:

(1) The gate set under investigation is the d-dimensional
Clifford group, denoted C(d ). Here d = 2q for a q-qubit
system. This assumption is necessary for deriving a variance
bound. Even though the expected value E[qj] of the URB
sequence purity is independent of the chosen gate set (as long
as it is a unitary 2-design), the variance is not. The Clifford
group was chosen as the default gate set.

(2) Gate errors are independent of the gate. This is known
as the gate-independent error model. In this model, the imple-
mented noisy gate is G̃ = G�, where G ∈ C(d ) is the ideal
Clifford gate and � is an arbitrary quantum channel describ-
ing the noise. Crucially, � does not depend on the specific
gate G ∈ C(d ). This is assumption is necessary for deriving
the fit model for URB [12]. Consequently our variance bound
also employs this assumption. The URB protocol has not been
analyzed in a gate dependent noise setting.

(3) The noise map � is assumed to be unital if q � 2 (or
equivalently if d � 4). A quantum channel � is unital if the
maximally mixed state is a fixed point of the map, �(I ) = I .
If the system under investigation H is a single-qubit system
(d = 2), than this assumption is not necessary. Our result
thus holds for any single-qubit quantum channel �. This
assumption enters in our derivation of the variance bound. It
is not a fundamental assumption but rather a condition under
which we were able to derive a useful, sharp bound.

At this point, we emphasize that V[qj] is the between-
sequence variance, i.e., the variance of qj due to the randomly
sampled sequence indexed by j. In particular this means that
given a sequence j, we assume that qj can be determined with
arbitrary precision. In reality qj can only be estimated due
to the probabilistic nature of quantum mechanics by taking
many single-shot measurements of the same sequence j. In
Sec. IV A we relax this assumption by splitting the total
variance into the sum of the between-sequence variance (the
variance due to randomly sampled j) and the within-sequence
variance (the variance due to uncertainty in qj for fixed j).

Under the assumptions stated above, the following
bound on the variance V[qj] is derived (see Theorem 1 in
Appendix B):

V
[
q

(K )
j

]
� σ 2

= 1 − u2(m−1)

1 − u2
(1 − u)2

[
c1(d ) + c2(d )‖Ēerr‖2

∞

+ c3(d )‖ρ̄err‖2
1

]+ ‖ρ̄err‖2
1‖Ēerr‖2

∞, (19)

which is independent of the used implementation (single- or
two-copy, corresponding to K = 1, 2). Here u is the unitarity
of �, m is the sequence length, ‖Ēerr‖2

∞, ‖ρ̄err‖2
1 are quantities

depending on the quality of state preparation and measure-
ment and ci are constants that solely depend on the dimension
d. The values of ci for small d are tabulated in Table I. For
precise definitions of these quantities, see Theorem 1 in
Appendix B. The error operators have the following

TABLE I. Evaluation of the constants ci (d ) for various small-
dimensional systems. The last row indicates the asymptotic behavior.

d c1(d ) c2(d ) c3(d )

2 11
12

13
9

5
2

4 179
60 54.675 48.053

8 1.6322 81.445 119.31
16 1.1443 110.64 296.88
32 1.0354 173.80 891.69
→ ∞ O(1) O(d ) O(d2)

definitions:

ρ̄err = ρ̄ − Tr[ρ̄idρ̄]

‖ρ̄id‖2
2

ρ̄id = ρ̄ − (d2 − 1)Tr[ρ̄idρ̄]ρ̄id,

Ēerr = Ē − Tr[ĒidĒ]

‖Ēid‖2
2

Ēid = Ē − Tr[ĒidĒ]

d2 − 1
Ēid, (20)

where the ideal operators ρ̄id, Ēid are defined in Eq. (10), and
a bar over the measurement operator indicates its traceless
component Ē = E − Tr[E]

d2 I [as defined in Eq. (14)]. Recall
that ρ̄ was defined as the difference between two states
Eq. (6). The error operators are defined in such a way that
they are orthogonal to the ideal operators with respect to the
Hilbert-Schmidt inner product:

Tr[ρ̄errρ̄id] = Tr[ĒerrĒid] = 0. (21)

The norms on the error operators are the trace norm and
operator norm, respectively, defined for all A ∈ L(H ⊗ H) as

‖A‖1 = Tr[
√

A†A] =
∑

i

si (A),

‖A‖∞ = sup
0 �=x∈H⊗2

‖Ax‖2

‖x‖2
= max

i
{si (A)}, (22)

with si (A) the ith singular value of A and ‖x‖2 the euclidean
norm on H⊗2. Note that in the single-copy case the quantities
‖ρ̄err‖2

1, ‖Ēerr‖2
∞ as defined in Eq. (20) are to be estimated

using ρ̄eff and Ēeff as defined in Eq. (13).
The variance bound of Eq. (19) has some appealing quali-

tative features. The first feature is that the first term is propor-
tional to (1 − u)2. This means that the first term goes to zero
quadratically as the unitarity u of the error map � approaches
1. The fact that the second term is constant with respect to
both u and m is unavoidable, as will be discussed in Sec. III B.
The second appealing feature is the fact that the bound is
asymptotically independent of the sequence length m. Thus
the variance bound is useful in any regime of m. In Sec. III the
dependence of the variance bound and the resulting number of
sequences on various parameters is discussed in greater detail.

In the next section we present a bound L in the length of
the interval in which the sequence purity qj lies. This is the
final ingredient needed in order to apply Eq. (18).

C. Bound on the interval of the sequence purity

In this section we present the improved bound L on the
length of the interval in which the sequence purity q

(K )
j lies.

Even though the actual interval depends on K , the length
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of these intervals is the same. Thus the bound L on the
interval length of the sequence purity is independent of the
implementation indexed by K . The improved bound is derived
under the mild assumption that the experimental control is
sufficiently good such that Tr[ρ̄idρ̄] � 0 and Tr[ĒidĒ] � 0
(analogous assumption holds for the single-copy input and
measurement operators). These conditions are satisfied only
if the conditions

Tr[ρidρ] � Tr[ρ̂idρ], Tr[ρ̂idρ̂] � Tr[ρidρ̂], (23)

Tr[Eρ̄id] � 0 (24)

are satisfied. Eq. (23) can be interpreted as requiring that
the implemented states ρ, ρ̂ have more overlap with their
corresponding ideal state than with the noncorresponding
ideal states. Eq. (24) is equivalent to Tr[ĒĒid] � 0 since
Ēid = (d2 − 1)ρ̄id and Tr[ρ̄idĒ] = Tr[Eρ̄id]. Eq. (24) has the
interpretation that the measurement {M, I − M} associated
with the observable E = 2M − I assigns the correct outcome
(+1 for ρid and −1 for ρ̂id) with at least probability 1

2 , or alter-
natively, that the measurement can correctly discriminate the
maximally mixed state on the symmetric subspace (ρid) from
the maximally mixed state on the anti-symmetric subspace
(ρ̂id). These are very reasonable assumptions for any practical
quantum information device.

In Lemma 12 of Appendix B 2 we show that under the
stated assumption, the sequence purity lies in the interval

q
(1)
j ∈ [0, 1 + ‖ρ̄err‖1 + ‖Ēerr‖∞ + ‖ρ̄err‖1‖Ēerr‖∞], (25)

q
(2)
j ∈ [−‖ρ̄err‖1 − ‖Ēerr‖∞ − ‖ρ̄err‖1‖Ēerr‖∞, 1]. (26)

Therefore it follows that

L = 1 + ‖ρ̄err‖1 + ‖Ēerr‖∞ + ‖ρ̄err‖1‖Ēerr‖∞ (27)

for both implementations. The idea of the proof of Lemma 12
is to decompose the input and measurement operators ρ̄ and
Ē into their ideal and error components according to Eq. (20).
This gives rise to four terms. The ideal term Tr[EidG⊗2

j (ρ̄id )]
can be bounded in the interval [0,1]. The other terms are
then bounded in magnitude using Hölder’s inequality, which
contributes the last three terms in Eq. (27).

D. Examples

Perhaps the best way to gain insight in the use of Eq. (18),
Eq. (19), and Eq. (27) is by example. In Example 2 we
calculate the required number of sequences for a fixed choice
of all relevant parameters. In Example 3 we simulate a URB
experiment using fixed number of sequences and compute the
confidence interval around each estimate q̄m. We compare the
results of these examples with a previously known bound (first
used in Ref. [4]). This bound does not use the variance, but
just uses the boundedness of the sequence purity qj. It claims
that P[|q̄m − E[qj]| � ε] � δ, whenever [29]

2e
−2N ε2

L2 � δ. (28)

The number of sequences N is merely a function of the
confidence parameters ε, δ and the interval length L. In
particular it does not depend on the variance of qj.

Example 2. Suppose that a URB experiment is performed
on the single-qubit Clifford group (d = 2). The choice of
implementation (single-copy or two-copy) is irrelevant for
this example since both the variance bound Eq. (19) and
the interval length bound Eq. (27) are independent of the
choice of implementation. The only difference in practice
is how to estimate the SPAM parameters ‖ρ̄err‖2

1, ‖Eerr‖2
∞.

Furthermore suppose that an a priori estimate of the unitarity
is u = 0.98 and an estimate for the SPAM parameters is
‖ρ̄err‖2

1 = ‖Eerr‖2
∞ = 0.02. Then, after choosing appropriate

sequence lengths to use in the experiment, an upper bound
on the variance as a function of the sequence length can be
computed using Eq. (19). The interval length can be bounded
using Eq. (27). Using ‖ρ̄err‖2

1 = ‖Eerr‖2
∞ = 0.02, this yields

L = 1.02 + 0.2
√

2 ≈ 1.303. Finally, choosing an interval ε

and confidence δ, Eq. (18) gives the required number of
sequences N (at fixed length m). Concretely, setting ε = 0.02,
δ = 0.01 and all other parameters as discussed, the number
of sequences required for sequences of length m = 10, is
N = 242. For sequence length m = 30, the required number
is N = 366, whereas m = 100 requires N = 452. The long
sequence length limit (when u2(m−1) � 1), yields N = 457.

Let us compare these numbers with the previously known
bound Eq. (28) that does not use the variance of qj. Given our
choices of ε = 0.02, δ = 0.01, and ‖ρ̄err‖2

1 = ‖Eerr‖2
∞ = 0.02

[from which L = 1.02 + 0.2
√

2 ≈ 1.303 is computed using
Eq. (27)], the bound Eq. (28) yields N = 11 242 required
sequences. We emphasize that this number is independent of
u or m. In this scenario, our bound gives approximately two
orders of magnitude improvement.

Example 3. In Fig. 2 we compare the 99% confidence in-
tervals ε (for fixed N = 250 and δ = 0.01) around the empir-
ical average sequence purity q̄m calculated with and without
our variance bound at several different sequence lengths. The
empirical average sequence purity q̄m data is based on a
simulated single-qubit Clifford URB experiment. The length
of the confidence interval ε without variance (larger blue bars)
is computed from Eq. (28). Then the choice of N = 250 and
δ = 0.01 yields ε = 0.134. On the other hand, the length of
the confidence interval ε with variance (smaller red bars in the
plot) is computed from Eq. (18) by solving the equation for
ε, using our sharp variance bound Eq. (19). In the evaluation
of Eq. (19), the a priori estimates u = 0.98 and ‖ρ̄err‖2

1 =
‖Eerr‖2

∞ = 0.02 were used. Then Eq. (27) yields L = 1.02 +
0.2

√
2. Using our sharp variance bound, the values of the

confidence interval vary between ε = 0.019 (for m = 8) and
ε = 0.029 (for m = 174). This is approximately an order of
magnitude larger than the confidence interval without variance
ε = 0.134.

In this simulated experiment the Clifford gates are imple-
mented with a fixed error channel � that is generated by
taking a convex combination of the identity channel (with high
weight) and a random CPTP map (sampled using QETLAB
[30]). Similarly, the noisy input states and measurement op-
erator are simulated by taking a convex combination of the
ideal operators and randomly generated operators (generated
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FIG. 2. Comparison of the 99% confidence intervals around the
average sequence purity q̄m calculated with and without our variance
bound at several different sequence lengths. The plot is based on a
simulated URB experiment of the single-qubit Clifford group with
N = 250 samples per sequence length m. The empirical average
sequence purity q̄m (marked with a cross) is plotted versus the
sequence length m on a semilogarithmic scale. The larger (blue)
bars indicate the 99% confidence interval without variance Eq. (28)
and the smaller (red) bars indicate the 99% confidence interval of
Eq. (18) based on our sharp variance bound Eq. (19). Here we used
a priori estimates of the unitarity and SPAM parameters of u = 0.98
and ‖ρ̄err‖2

1 = ‖Eerr‖2
∞ = 0.02, respectively. Then Eq. (27) yields

L = 1.02 + 0.2
√

2. For completeness, a least-squares fit according
to the model q̄m = Bum−1 [see Eq. (7)] is shown in the yellow solid
line. This yields u ≈ 0.987.

using QETLAB). For this particular realization of an error
map �, the data points seem to be even more accurate than our
confidence interval might suggest based on their proximity to
the fit. This is due to the fact that this particular error channel
is well-behaved. We emphasize that our bound is valid for
any unital or single-qubit error map. In particular this means
that our bound is valid for the worst case realizations of �.
It is unclear what error map � maximizes the variance of the
sequence purity.

We emphasize that the point of this simulated example is
not to prescribe a direct method for extracting the confidence
in the unitarity, as this generally depends on the fitting model
and the way the uncertainty in the average sequence purity
are propagated into the uncertainty of the unitarity. Moreover,
more advanced statistical tools may be used to extract the
unitarity from the obtained (in this case simulated) data, like
e.g., Refs. [23,25]. The goal of this example is to illustrate the
significant gain in confidence of the average sequence purity
when the simple concentration inequalities of Hoeffding are
applied [29]. The point is that the additional knowledge of a
variance bound on the underlying distribution of the sequence
purity qj can be used by statistical tools to extract the unitarity
with improved confidence.

In the next section we explore the behavior of our bound in
various parameter regimes.

III. DISCUSSION

This section is devoted to discussing the variance bound
and the interval length of the sequence purity in more detail.

0 50 100 150 200 250 300
0

100

200

300

400

FIG. 3. Number of sequences N versus the sequence length m for
various values of the unitarity u when benchmarking the single-qubit
Clifford group (d = 2). Confidence parameters are ε = 0.02 and δ =
0.01. The SPAM parameters are ‖ρ̄err‖2

1 = ‖Eerr‖2
∞ = 0. By Eq. (27)

then L = 1 is used. The number of sequences is asymptotically
independent of the sequence length. This is consistent with our
variance bound Eq. (19).

In particular we discuss the variance bound in several different
parameter regimes in more detail and aim to provide a better
understanding of the parameters that ultimately determine the
statistical confidence of the measurements. In Sec. III A we
discuss the dependence of the variance bound Eq. (19) on
the unitarity u and the sequence length m. In Sec. III B we
discuss the dependence on the SPAM parameters ‖ρ̄err‖2

1 and
‖Ē∞‖2

1. Here we also show by example that the variance of the
sequence purity does not go to zero in the presence of SPAM
errors. In Sec. III C the dependence of the variance bound on
the system size is discussed.

A. Dependence on unitarity and sequence length

First, we discuss the dependence of the number of required
sequences N on the sequence length m. In Fig. 3 this de-
pendence is plotted for various values of u in the absence
of SPAM errors (i.e., ‖ρ̄err‖2

1 = ‖Eerr‖2
∞ = 0). The confidence

parameters were fixed at δ = 0.01 and ε = 0.02. It can be seen
from the figure that N approaches a constant as m increases.
This is consistent with our variance bound Eq. (19), where the
factor depending on m is

1 − u2(m−1)

1 − u2
(1 − u)2. (29)

This approaches a constant in the limit of large se-
quence lengths. This limit is approximately achieved when
u2(m−1) � 1. The exact limit is given by

lim
m→∞

1 − u2(m−1)

1 − u2
(1 − u)2 = 1 − u

1 + u
. (30)

In the presence of SPAM errors, the asymptotic constant is
larger than in its absence, but the behavior is similar. Since the
variance approaches a constant, so does the required number
of sequences for fixed values of the confidence parameters.
From here on out, the “large sequence limit” means the regime
of m where u2(m−1) � 1 so that the variance bound (and thus
the number of sequences) is approximately independent of m.
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FIG. 4. Semilogarithmic plot of the variance bound σ 2 as a
function of the unitarity u for various magnitudes of SPAM errors
in the large sequence limit for single-qubit Clifford URB (d = 2).
The black dash-dotted line is a reference line plotting σ 2 = (1 − u)2.
The differently colored solid lines indicate the various magnitudes of
SPAM errors, where ‖ρ̄err‖2

1 = ‖Ēerr‖2
∞ = η. There are two regimes.

For small SPAM errors and small u, the variance scales as (1−u)2,
whereas for nonzero SPAM errors and large u, the variance ap-
proaches a constant.

Second we discuss the dependence of the variance bound
on the unitarity u. In Fig. 4 the variance bound σ 2 is plotted
as a function of the unitarity u for various values of SPAM
errors in the long sequence length limit. This figure shows two
regimes. In the regime of low unitarity and small SPAM error,
the variance is proportional to (1 − u)2. This is consistent with
Eq. (19), where the variance is dominated by the first term
in this regime. However, for nonzero SPAM error and large
unitarity, this behavior transitions into a constant variance. In
this regime, the variance is dominated by the second, constant
term (independent of u) in Eq. (19).

The number of required sequences N shows qualitatively
similar behavior, but there are differences. This is due to the
fact that N is a nonlinear function of σ 2. In the regime of
constant variance, the number of sequences is also constant. In
the regime where the variance bound is proportional to (1 −
u)2, the number of sequences also decreases as N increases,
but the rate depends also on the choice of ε.

B. Dependence on SPAM parameters

In Fig. 5 we show a color plot of the number of sequences
N as a function of the SPAM parameters ‖ρ̄err‖2

1 and ‖Eerr‖2
∞

for fixed unitarity u in the limit of large sequences. The plot
illustrates the qualitative dependence of N on the magnitude
of these SPAM parameters. There are two ways that the SPAM
parameters contribute to the number of required sequences
N . First, the variance bound σ 2 depends on the SPAM pa-
rameters ‖ρ̄err‖2

1 and ‖Eerr‖2
∞ [see Eq. (19)]. Second, the

interval length bound L depends on the square root of these
parameters, ‖ρ̄err‖1 and ‖Eerr‖∞ [see Eq. (27)]. Both these
bounds increase as the SPAM parameters increase. From the
concentration inequality Eq. (18), it follows that the required
number of sequences N for fixed confidence parameters
grows with increasing variance and interval length. Both these
effects have qualitatively similar behavior. This translate into

FIG. 5. Color plot of the number of sequences N as a function
of the SPAM parameters ‖ρ̄err‖2

1 and ‖Eerr‖2
∞ in the large sequence

length limit for single-qubit Clifford URB (d = 2). The parameters
u = 0.99 and ε = 0.02, δ = 0.01 were used. This plot illustrates the
sensitivity of our result to SPAM errors. In particular, the number of
sequences increases most significantly when both state preparation
and measurement errors are large.

the illustrated dependence of the number of sequences N on
the SPAM parameters in Fig. 5. In particular, the number of
sequences most strongly depends on the product between the
two, showing a larger required number in the area where the
product ‖ρ̄err‖2

1‖Eerr‖2
∞ is largest.

The variance bound of Eq. (19) has a constant term
‖ρ̄err‖2

1‖Eerr‖2
∞, independent of the unitarity u and sequence

length m. In particular this means that the variance bound
is nonzero in the presence of SPAM error for all sequence
lengths m even in the limit of ideal gates � → I. This behav-
ior is also seen in Fig. 4. We argue that this is fundamental
to the URB protocol, by showing that the actual variance of
the sequence purity V[qj] also has this behavior even when
ideal gates are considered. This is done in Example 4. In
this example we construct noisy operators ρ̄ and Ē such
that the average sequence purity qj is not constant over all
possible ideal gate sequences Gj (i.e., sequences with � = I).
Thus there exists an error channel (namely � = I) and noisy
operators (namely those constructed in Example 4) such that
the variance, and thus the required number of sequences, is
nonzero. This behavior is in contrast with standard RB, where
all RB gate sequences compose to the identity when � = I
(in the RB protocol, a global inverse gate is applied after each
sequence). Therefore in standard RB, the survival probability
does not depend on the sequence in the absence of gate errors
and hence the variance is zero.

Example 4. Consider a URB experiment where the gate set
under investigation is the single-qubit Clifford group C(2).
Suppose that the gates are implemented perfectly, i.e., � = I.
Furthermore assume that the state and measurement operators
are given by

ρ, ρ̂ = I ⊗ I ± X ⊗ X

4
and E = X ⊗ X, (31)

where I is the identity and X is the Pauli-X matrix on
the single-qubit Hilbert space H � C2. Since � = I, the
sequence Gj of m independently and uniformly distributed
Clifford gates reduces to a single Clifford gate Gi uniformly
drawn from C(2). The group C(2) has 24 elements, eight of
which map X �→ ±X. Whether such a map sends X to +X
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or −X is irrelevant, since if G maps X �→ ±X then G⊗2 maps
X⊗2 �→ X⊗2 in either case. The other 16 Clifford gates send
X �→ ±Y or X �→ ±Z, where again the sign is irrelevant.
Thus, given that ρ̄ = X⊗X

4 , a fraction 8
24 of all sequences Gj

will satisfy G⊗2
j (ρ̄) = X⊗X

4 while the others will send ρ̄ either

to Y⊗Y
4 or Z⊗Z

4 . Since Tr[E( X⊗X
4 )] = 1 and Tr[E( Y⊗Y

4 )] =
Tr[E( Z⊗Z

4 )] = 0, the following probability distribution on

q
(2)
j is obtained:

P
[
q

(2)
j = 1

] = 1
3 and P

[
q

(2)
j = 0

] = 2
3 . (32)

Clearly then E[q (2)
j ] = 1

3 and V[q (2)
j ] = 2

9 > 0. This example
shows that the variance V[qj] of the sequence purity can not
go to zero as the unitarity u → 1. �

Given noisy implementations ρ̄ and E in the two-copy
implementation, the SPAM parameters ‖ρerr‖2

1 and ‖Ēerr‖2
∞

defined in Eq. (20) can in principle be estimated by relating
them to the ideal states and measurements of Eq. (10). In
practice, this requires (partial) knowledge of the noisy oper-
ators ρ̄ and E. If a full (tomographic) description of ρ, ρ̂, E

is available, then ‖ρ̄err‖2
1 and ‖Ēerr‖2

∞ can be calculated from
the definition Eq. (20). However, if only partial knowledge is
available (e.g., a lower bound on state preparation fidelity),
then the SPAM quantities need to be bounded. For example
‖ρ̄err‖2

1 can be upper bounded if the fidelity between ρ (ρ̂) and
ρid (ρ̂id) is known, by application of the Fuchs–Van de Graaff
inequality [31]. In the single-copy implementation, slightly
more work is needed. The SPAM parameters are then defined
with respect to ρ̄eff and Ēeff Eq. (13). However, only (partial)
knowledge of the physical operators ρH and EH are available.
Noise on these physical operators needs to be translated to
noise on the effective operators ρ̄eff and Ēeff .

C. Dimension-dependent constants

In this section, the dependence of the variance bound
Eq. (19) and consequently the number of sequences on the
system size is examined. An undesirable feature of the vari-
ance bound is the asymptotic growth of the constants c2(d )
and c3(d ) with the dimension d = 2q of the q-qubit system.
This means that for large systems, the bound becomes loose
and ultimately vacuous. This is illustrated in Fig. 6, where
the number of sequences N is plotted as a function of the
system size q on a semilogarithmic scale (for fixed unitarity
u and large sequence length m). The number of sequences is
plotted in the absence of SPAM error, with state preparation or
measurement error only and with both errors simultaneously.
This is done to distinguish the different contributions of the
constants c1, c2, and c3 in Eq. (19). In the absence of SPAM
error, only c1 is relevant. This constant takes its maximum at
q = 2 and asymptotically goes to 1. However with measure-
ment error, the number of sequences needed grows exponen-
tially with the system size. With state preparation error, this
expectational growth is even faster. This is consistent with the
asymptotic limits of the constants c2 = O(d ) and c3 = O(d2),
since d = 2q . In particular, this figure shows that our variance
bound is prohibitively loose for q � 6 (assuming u = 0.99
and large m), since the first order bound Eq. (28) yields a
smaller number of sequences N as indicated by the black
dash-dotted line in the figure.

1 2 3 4 5 6 7 8
102

103

104

105

106

FIG. 6. Number of sequences N as a function of the number of
qubits q comprising the system for different values of the SPAM
parameters. A fixed unitarity u = 0.99 and the large sequence length
limit are used. The interval bound L is computed using Eq. (27)
as a function of the SPAM quantities (see legend). The confidence
parameters ε = 0.02, δ = 0.01 were used. The dashed line indicates
the first-order bound Eq. (28) corresponding to ‖ρ̄err‖2

1 = ‖Ēerr‖2
∞ =

0.02. For the given confidence and SPAM parameters, our bound
gives an improvement of the required number of sequences up to
five-qubit systems.

We believe that the unbounded growth of our variance
bound with the system size is an artifact of the proof rather
than a fundamental property. The sequence purity qj is a
bounded, discrete random variable, where the bound L does
not depend on the dimension d. Therefore the exact variance
V[qj] can not asymptotically grow with the system dimension
d. The bound of Eq. (19) is, however, sharp enough for
practical use in few-qubit systems.

IV. METHODS

This section gives an high-level overview of the methods
used for deriving our main result Eq. (18) and Eq. (19). In
Sec. IV A we focus on the statistical aspect of our result
related to Eq. (18). We also relate the between-sequence vari-
ance V[qj] (the quantity which we bounded in this work) to the
within-sequence variance that arises due to the fact that qj can
be estimated only by collecting a finite sample of single-shot
measurements for a given sequence. In Sec. IV B we discuss
the derivation of the fit model (as derived in Ref. [12]) and
derive an expression for the variance V[qj]. In Sec. IV C we
give an outline of the proof of our variance bound Eq. (19).

A. Estimation theory

Ultimately, the URB protocol leads to the complex statisti-
cal estimation problem of determining u and the confidence
thereof, given a large set of realizations of the sequence
purity qj (for multiple sequence lengths m). There are several
ways one can go about this problem (see e.g., Ref. [25]
for a Bayesian inference approach). In this paper we take a
frequentist approach and determine a confidence interval for
the point estimates q̄m of E[qj]. These confidence intervals
(for different values of m) can then be taken into account when
fitting the point estimates q̄m = Bum−1 to the fit model. The
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main contribution of this work is improving the confidence
interval of q̄m by bounding the variance of the sequence purity
qj. This variance bound provides strictly more information on
the distribution of qj than what was known before [12] and
could therefore also be of value when using other estimation
techniques to extract the unitarity u from the set of measure-
ment outcomes.

The intuitive idea is that estimating the mean of a bounded
distribution of random variables requires fewer samples when
the distribution is narrowly peaked around the mean. Since
the variance is a measure of the spread of the distribution, it
is intuitive that having knowledge of the variance improves
the confidence in the estimate of the mean. This idea is made
precise in statistics by concentration inequalities. Here we
use a concentration inequality due to Hoeffding [29]. Given
a collection of N independent and identically distributed
(i.i.d.) random variables Xi , sampled from a distribution on a
length L interval with mean μ and variance σ 2, the following
statement holds for all 0 � ε � L:

P[|X̄ − μ| � ε] � 2

⎡
⎣( L

L − ε

) L2−εL

σ2+L2
(

σ 2

σ 2 + εL

) σ2+εL

σ2+L2

⎤
⎦

N

,

(33)

where X̄ = 1
N

∑
i Xi is the empirical mean. This is essentially

Eq. (18) using the fact that qj are i.i.d. random variables. The
point is that if one wishes to bound this probability by δ, then
upper bounding the right-hand side by δ gives a means to
relate N , δ, and ε. Instead of the exact (unknown) variance
of the distribution of qj, an upper bound is used.

The fact that our variance bound Eq. (19) depends on
the unitarity u, the quantity that one ultimately attempts to
estimate, may seems strange and circular. But this is actually
a feature of statistics, which is more apparent in the Bayesian
view. One may have an a priori distribution of the unitarity u

of the gate set and given some experimental data (the complete
URB data set) one can construct a more concentrated a
posteriori distribution on the unitarity. In the frequentist view,
an a priori lower bound to the unitarity can be known with
very high confidence. Then performing URB will improve the
estimate of the unitarity and increase the confidence in this
estimate. In principle this procedure can be done by doing
several successive URB experiments, further increasing the
confidence in the outcome. Note that a first lower bound
can always be obtained from the average gate fidelity [by
application of Eq. (3)], which is estimated using standard RB.

Finally there is one subtlety that deserves some atten-
tion. The protocol requires the experimenter to measure
Tr[EG⊗2

j (ρ)], but actually this is an expectation value of
the measurement operator E (a Hermitian observable) given
the state G⊗2

j (ρ). This expectation value must be learned
from multiple single-shot measurements of preparing the
state, apply gates, and measure. The outcome is inherently
probabilistic (with a Bernoulli distribution) by the laws of
quantum mechanics and either a click or no click is observed
with the probability given by Born’s rule. To estimate the
expectation value Tr[EG⊗2

j (ρ)], a large number of single-shot
measurements must be taken and the proportion of clicks
is an estimate Tr[EG⊗2

j (ρ)]. In reality then, there is also

some uncertainty in each data point qj, which propagates
into increased uncertainty in the average q̄m. So far we have
assumed the uncertainty in q̄m is dominated by the uncer-
tainty due to the randomly sampled sequences and not due
to the uncertainty in determining each sequence purity qj.
This assumption is motivated by experiments in which it is
hard to store many sequences, but easy to repeat single-shot
measurements of the same sequence. In these experiments
it is then easy to do enough single-shot measurements of
each qj, such that the uncertainty in q̄m is dominated by the
uncertainty due to the randomly sampled sequences. This
assumption is not fundamental, however, but is related to clas-
sical hardware control of the experimenter. In the next section
we will discuss the validity of this assumption, estimate the
number of required single-shot measurements and show how
this assumption can be dropped if one wishes to explicitly take
into account finite sampling uncertainty.

1. Finite sampling statistics

In the previous section it was discussed that the quantity
qj is actually not directly accessible, but must be estimated
by performing a large number of single-shot measurements.
Born’s rule states that given a (two-valued) POVM measure-
ment {M, I − M} and a state ρ, the probability of getting
outcome 1 (associated with M) is given by Tr[Mρ] and
outcome 0 (associated with I − M) is 1 − Tr[Mρ]. This can
be used to construct a probability distribution for a single-shot
measurement of q

(K )
j , given a fixed sequence indexed by j.

The distribution is determined by the definition of q
(K )
j and

depends on the choice of implementation. Recall that qj is
calculated using the difference of two states ρ̄ = 1

2 (ρ − ρ̂ ).
Let us denote q̄j an unbiased estimator for the exact qj

given a fixed sequence indexed by j. Then there is uncertainty
in q̄j due to the uniformly distributed random sequences j and
due to the fact that q̄j is itself a random variable for fixed j
(since it is an estimator for the exact qj). The contribution of
each source of uncertainty can be quantified by the law of total
variance [32], which states that

V[q̄j] = E[V[q̄j|j]] + V[E[q̄j|j]] = E[V[q̄j|j]] + V[qj]. (34)

Here the quantity V[q̄j|j] is referred to as the within-sequence
variance (for the given sequence j). It is the variance of the se-
quence purity q̄j given fixed j solely due to the finite sampling
statistics. The quantity V[qj] is the between-sequence variance
of qj and is solely due to the fact that the sequences j are
sampled from a uniform distribution. This equation expresses
that the total variance is the sum of the expected within-
sequence variance (expected over the uniformly distributed
random sequences) and the between-sequence variance. The
quantity V[qj] was bounded in this work Eq. (19).

To examine the term E[V[q̄j|j]] in Eq. (34), an expression
or bound on the within-sequence variance V[q̄j|j] as a function
of the number of single-shot repetitions is required. We will
show how this is done for the two-copy implementation,
leaving the more cumbersome (but in principle not more
difficult) single-copy implementation as an open problem.
Define the single-shot random variable by xr , where the
subscript r indexes the different single-shot realizations (for
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r = 1, . . . , R for some large R), by the following distribution:

P[xr = y|j] =
⎧⎨
⎩

a(1 − b), if y = 1,

ab + (1 − a)(1 − b), if y = 0,

(1 − a)b, if y = −1.

(35)

Here a = Tr[MG⊗2
j (ρ)], b = Tr[MG⊗2

j (ρ̂)] and M = 1
2 (I +

E) is the POVM element associated with the two-valued mea-
surement E. The outcome xr = 1 is interpreted as measuring
a click only for ρ, outcome xr = 0 corresponds to a click for
both or neither states and outcome xr = −1 is associated with
a click only for ρ̂. This is indeed the single-shot outcome
measurement outcome of a q

(2)
j measurement, since

q
(2)
j = E[xr |j] = a − b = Tr

[
EG⊗2

j (ρ̄)
]
. (36)

The natural unbiased estimator of q
(2)
j is then given by

q̄
(2)
j = 1

R

R∑
r=1

xr . (37)

The within-sequence variance V[q̄ (2)
j |j] is related to the vari-

ance of xr [which can be computed given the probability
distribution Eq. (35)] using the fact that xr are i.i.d. and
mutually uncorrelated random variables:

V[q̄ (2)
j |j] = V

[
1

R

R∑
r=1

xr

∣∣∣∣j
]

= 1

R2

R∑
r=1

V[xr |j] = 1

R
V[xr |j].

This follows the definition of the variance and linearity of
the expected value. The variance of xr [computed from the
distribution Eq. (35)] is then

V[xr |j] = [a(1 − a) + b(1 − b)] � 1
2 , (38)

where the upper bound is trivially obtained by maximiz-
ing over 0 � a, b � 1. The within-sequence variance thus
satisfies

V
[
q̄

(2)
j |j] = 1

R
[a(1 − a) + b(1 − b)] � 1

2R
. (39)

Hence for the two-copy implementation, the total variance is
bounded by

V
[
q̄

(2)
j

]
� σ 2 + 1

2R
, (40)

where R is the number of single-shot measurements taken per
sequence and σ 2 is the variance bound of Eq. (19).

It may seem that the modification of the protocol to use
the difference of two states ρ̄ means that twice as many
single-shot measurements must be taken. This is, however, not
the case [27]. To see this, let Vρ be the variance associated
with a single measurement setting on the state ρ. Then for
the difference of two states, the variance associated with that
measurement satisfies

Vρ̄ = V 1
2 (ρ−ρ̂ )

� 1
4 (Vρ + Vρ̂ ) � 1

2 max(Vρ,Vρ̂ ). (41)

So to the contrary, fewer sequences are required to get an
accurate estimate of Tr[EGj(ρ̄ )] than of Tr[EGj(ρ)]. This can
explicitly be seen in the two-copy implementation, where the
within-sequence variance Vρ̄[q̄j|j] was computed in Eq. (39).
However, if only a single state ρ were used, then P[xr = 1] =

a and P[xr = −1] = 1 − a. Therefore the variance Vρ[q̄j|j] =
1
R
Vρ[xr |j] = 4a(1−a)

R
� 1

R
, which is indeed a factor 2 larger

than in Eq. (39).

2. The unbiased estimator of the sequence purity
in the single-copy implementation

In the single-copy implementation care must be taken in
defining an appropriate estimator of q

(1)
j . Analogously to the

above, one can define a random variable xPQ
r associated with

a single-shot measurement of Tr[E(Q)
H Gj(ρ̄

(P )
H )] for a fixed

sequence indexed by j, depending on the Pauli’s P and Q.
Then

E
[
xPQ

r

∣∣j] = Tr
[
E

(Q)
H Gj

(
ρ̄

(P )
H
)]

, (42)

so that

q
(1)
j = 1

d2 − 1

∑
P,Q�=I

E
[
xPQ

r

∣∣j]2
. (43)

If we denote x̄PQ = 1
R

∑R
r=1 xPQ

r , then one could try to

estimate q
(1)
j by q̄

(1)
j = 1

d2−1

∑
P,Q�=I x̄2

PQ. This estimate is

biased, however, and overestimates the actual value of q
(1)
j ,

since

E
[
x̄2

PQ

∣∣j] = E
[
x̄PQ

∣∣j]2 + V[x̄PQ|j]

= E[x̄PQ|j]2 + 1

R
V
[
xPQ

r

∣∣j]. (44)

To remedy this, one can make use of the unbiased estimator

q̄
(1)
j = 1

d2 − 1

∑
P,Q�=I

x̄2
PQ − 1

R
s2
PQ, (45)

where

s2
PQ = 1

R − 1

R∑
r=1

(
xPQ

r − x̄PQ

)
(46)

is the unbiased estimate of V[xPQ
r |j]. It is important to take

this into consideration when performing a Clifford URB ex-
periment using the single-copy implementation, since over-
estimating q

(1)
j can lead to an overestimate of the unitarity

obtained from the experiment.

B. Fit model and variance expression

In this section we first briefly review the derivation of the
fit model of URB (as derived in Ref. [12]), slightly adapted
with our modification of a traceless input operator ρ̄. Then
we derive an expression for the variance of the sequence
purity. We do so using slightly different notation, picking
an orthonormal basis for the space of linear operators L(H)
(in particular we use the normalized Pauli operators). We
can then vectorize any operator with respect to that basis,
which we will denote with a braket-like notation ρ → |ρ〉〉 and
E → 〈〈E|. Quantum channels can then be viewed as matrices
on these vectors, i.e., E (ρ) → |E (ρ)〉〉 = EEE |ρ〉〉, where we use
boldface notation for the matrix representation of a quantum
channel. The Hilbert-Schmidt inner product Tr[E†ρ], carries
over as the vector inner product with respect to any basis,
so that Tr[E†ρ] = 〈〈E|ρ〉〉. Finally composition of channels
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E1E2 → E1E1E1E2E2E2 carries over as matrix multiplication. This no-
tation is known as the natural representation, Liouville repre-
sentation, or Pauli transfer matrix representation [26,33]. See
Appendix A 1 b for more details.

Using this notation, the expected value of the sequence
purity E[qj] can be written as

E[qj] = 1

|C(d )|m
∑

j

〈〈E|GGG⊗2
j |ρ̄〉〉 = 〈〈E|(GGG (2)

avg���
⊗2
)m|ρ̄〉〉,

(47)

where

G (n)
avg = 1

|C(d )|
∑

G∈C(d )

G⊗n. (48)

The key idea behind deriving the fitting model is that G (2)
avg

is the orthogonal projection onto the vector space W =
Span{I, S} ⊂ L(H ⊗ H). This is a result from representation
theory of finite groups; see Lemma 2 in Appendix A 2 for de-
tails. It is for this reason that the ideal state and measurement
operators of Eq. (10) are elements of the subspace W . The
operators I and S do not form an orthogonal basis for W , but
the following orthonormal basis can be constructed:

B1 = I

d
= σ0 ⊗ σ0, (49)

B2 = S − I
d√

d2 − 1
= 1√

d2 − 1

∑
σ∈P∗

σ ⊗ σ, (50)

where σ0 is the Hilbert-Schmidt normalized identity on H and
σ ∈ P∗ are the d2 − 1 traceless normalized Pauli operators
on H. Since G (2)

avg is an orthogonal projection, it follows that
(G (2)

avg)2 = G (2)
avg. Therefore we can rewrite

E[qj] = 〈〈E|MMMm−1���⊗2|ρ̄〉〉, (51)

where M = G (2)
avg�

⊗2G (2)
avg. It can be shown that MMM (which as

only support on W ) has the following matrix entries [12]:

MMM =
[

1 0
‖α(�)‖2√

d2−1
u(�)

]
, (52)

in the basis {B1, B2}, with α the nonunitality vector of �

[see Eq. (A11) in Appendix A 1 b for details]. In particular
this means that u(�) = 〈〈B2|���⊗2|B2〉〉, which might not be
too surprising in view of Eq. (2). Since the input state ρ̄ is
traceless and quantum channels are trace preserving, Eq. (51)
is evaluated as

E[qj] = 〈〈E|B2〉〉〈〈B2|ρ̄〉〉um−1 = Bum−1, (53)

where the final channel �⊗2 has been absorbed into the state
as state preparation error. The robustness to state preparation
and measurement errors stems from the fact that every com-
ponent of ρ̄ and E outside the subspace W is projected out by
the procedure.

In very similar fashion the variance, defined as V[qj] =
E[q2

j ] − E[qj]2, can be computed. Using Tr[A]2 = Tr[A⊗2],
the mixed-product property of the tensor product [i.e., (A ⊗

B )(C ⊗ D) = (AC) ⊗ (BD)] and linearity, we write

E
[
q2

j

] = 1

|C(d )|m
∑

j

〈〈E⊗2|GGG⊗4
j |ρ̄⊗2〉〉

= 〈〈E⊗2|(GGG (4)
avg���

⊗4
)m|ρ̄⊗2〉〉

= 〈〈E⊗2|NNNm−1���⊗4|ρ̄⊗2〉〉, (54)

where N = G (4)
avg�

⊗4G (4)
avg, using the fact that G (4)

avg is also an
orthogonal projection (Lemma 2 of Appendix A 2), and

E[qj]
2 = 〈〈E⊗2|(MMM⊗2)m−1���⊗4|ρ̄⊗2〉〉. (55)

Putting it together yields the following expression for the
variance:

V[qj] = 〈〈E⊗2|NNNm−1 − (MMM⊗2)m−1|ρ̄⊗2〉〉, (56)

where the final channel �⊗4 has again been absorbed into the
state as state preparation error. One of the key ingredients
of understanding this expression is finding the subspace of
L(H⊗4) onto which G (4)

avg projects. The next section elaborates
on this idea.

C. Sketch of proof on variance bound

In this section we discuss and sketch the main ideas for
the proof of our variance bound Eq. (19). A complete proof is
given in Appendix B, Theorem 1. We actually prove a slightly
stronger statement:

V[qj] � ‖ρ̄err‖2
1‖Ēerr‖2

∞ + 1 − u2(m−1)

1 − u2
(1 − u)2

×[α2β2c1(d ) + α2c2(d )‖Ēerr‖2
∞ + β2c3(d )‖ρ̄err‖2

1

]
,

(57)

where

α = Tr[ρ̄idρ̄]

‖ρ̄id‖2
2

= (d2 − 1)Tr[ρ̄idρ̄], (58)

β = Tr[ĒidĒ]

‖Ēid‖2
2

= Tr[ĒidĒ]

d2 − 1
. (59)

These quantities arise in the decomposition of the operators
ρ̄, Ē into an ideal and error parts as

ρ̄ = αρ̄id + ρ̄err and Ē = βĒid + Ēerr. (60)

It can be shown that −1 � α, β � 1 (see Appendix B,
Lemma 11), so that Eq. (57) indeed implies Eq. (19). The
quantities α, β are generally unknown to the experimenter
and therefore easily eliminated from the variance bound.
Finally we remark that the bound on the interval length L

[given in Eq. (27)] can also be slightly improved if additional
information on α or β is known. See Appendix B, Lemma 12
for a precise statement.

Our analysis departs from the expression of the variance
Eq. (56). First, let us note that fully characterizing the operator
N seems infeasible. This was possible for the operator M,
since it only has support on the two-dimensional subspace
W . The dimension of the support of N (the dimension of the
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space onto which G (4)
avg projects) is given, however, by [34–36]

|Rge(N )| =
⎧⎨
⎩

15 if d = 2;
29 if d = 4;
30 otherwise.

(61)

Therefore calculating the |Rge(N )|2 matrix entries of NNN
seems infeasible. A different approach is thus needed. We use
a telescoping series expansion (see Lemma 4 in Appendix A 3
for a proof)

NNNm − (MMM⊗2)m =
m∑

s=1

NNNm−s[NNN −MMM⊗2](MMM⊗2)s−1 (62)

in Eq. (56). The main idea of this is to study the middle
operator NNN −MMM⊗2 carefully and sharply bound the relevant
matrix entries of this operator. The action of (MMM⊗2)s−1 is well
understood because the full 2-by-2 matrix description ofMMM is
known [given in Eq. (52)]. Finally the action of the remaining
higher powers NNNm−s−1 are bounded more trivially, since less
information in computed about NNN . Let us make these ideas
more precise now.

In the previous it was discussed that the operator
MMM only has support on the subspace W = Span{I, S} =
Span{B1, B2}. Therefore the analysis of the variance expres-
sion is quite different for the components of ρ̄ and E on the
subspace W and its orthogonal complement. In fact, this lead
to the decomposition of the operators ρ̄, Ē into an ideal and
error parts as

ρ̄ = αρ̄id + ρ̄err and Ē = βĒid + Ēerr, (63)

where the bar over E indicates its traceless component. In
fact, the identity component of E does not contribute at all
to qj (and therefore to its mean and variance), because the
input operator is traceless and all applied maps Gj are trace
preserving. So the traceless ideal components are in the trace-
less subspace of W (spanned by B2) and the error components
are in the orthogonal complement W⊥. In principle, plugging
the above expansion into Eq. (56) yields 16 different terms
after distributing the tensor powers in ρ̄ and E over the sum.
However, 12 factors containing mixed tensor products of ideal
and error components (e.g., Ēid ⊗ Ēerr) vanish. This is due
to the structure of the space onto which G (4)

avg projects (see
Appendix B 1 for more details). Thus we expand Eq. (56) as

V[qj] = α2β2
〈〈
Ē⊗2

id

∣∣NNNm−1 − (M⊗2)m−1
∣∣ρ̄⊗2

id

〉〉
(64)

+α2
〈〈
Ē⊗2

err

∣∣NNNm−1 − (MMM⊗2)m−1
∣∣ρ̄⊗2

id

〉〉
(65)

+β2〈〈Ē⊗2
id

∣∣NNNm−1 − (MMM⊗2)m−1
∣∣ρ̄⊗2

err

〉〉
(66)

+ 〈〈Ē⊗2
err

∣∣NNNm−1 − (MMM⊗2)m−1
∣∣ρ̄⊗2

err

〉〉
. (67)

Each of these terms is bounded separately. Here we will
demonstrate the ideas of our proof using the term of Eq. (65).
The two terms Eqs. (64) and (66) are similar (only a few
technical details are different; see Theorem 1 in Appendix B 2
for precise treatment of all terms). Using the telescoping series

Eq. (62) term Eq. (65) can be written as

(65) = α2
m−1∑
s=1

〈〈
Ē⊗2

err

∣∣NNNm−s−1[NNN −MMM⊗2](MMM⊗2)s−1
∣∣ρ̄⊗2

id

〉〉

= α2
m−1∑
s=1

u2(s−1)
〈〈
Ē⊗2

err

∣∣NNNm−s−1[NNN −MMM⊗2]
∣∣ρ̄⊗2

id

〉〉
,

(68)

where the second line follows from the fact that MMM|B2〉〉 =
u|B2〉〉 and ρ̄id = 1√

d2−1
B2 [see Eq. (B23) in Appendix B]. The

next step is analyzing

NNN −MMM⊗2

∣∣∣∣ 1

d2 − 1
B⊗2

2

〉〉
= 1

d2 − 1

∑
i

ai |Ai〉〉, (69)

where ai = 〈〈Ai |NNN −MMM⊗2|B⊗2
2 〉〉 and |Ai〉〉 is a basis for the

space Rge(GGG (4)
avg) on which NNN has support. To find the basis

|Ai〉〉 explicitly, the following ideas from representation theory
are used (see Appendix B 1 for details).

The map G �→ GGG⊗n is a group representation of the Clifford
group C(d ) for any n. A fundamental result in group repre-
sentation theory [37] (Lemma 2 in Appendix A 2) is that G (n)

avg
is the orthogonal projection onto the trivial subspace of the
representation G �→ GGG⊗n. For n = 2, the trivial subspace was
found to be the space W [12], giving rise to the fit model of
Eq. (53). The task at hand here is to find the trivial subspace
for n = 4. To do so, the following is used. If (V,R) is an
irreducible, real representation of a group C(d ), then [37]

(
Span

{∑
v∈V

v ⊗ v

}
, R ⊗ R

)
(70)

is the only trivial representation of V ⊗ V of the group C(d )
(see Lemma 3 in Appendix A 2). This allows us to calculate
all trivial subrepresentations of G �→ GGG⊗4, using a complete
description of the irreducible representations of G �→ GGG⊗2.
These were found in Refs. [34,36]. Therefore Eq. (70) pro-
vides a method to compute the |Ai〉〉 using the explicit descrip-
tion of the irreducible spaces of G �→ GGG⊗2 found in Ref. [36].

Hence, the following expression is obtained for Eq. (65),
using the expansion Eq. (69):

(65) = α2

d2 − 1

m−1∑
s=1

u2(s−1)
∑

i

ai

〈〈
Ē⊗2

err

∣∣NNNm−s−1|Ai〉〉, (71)

where ai = 〈〈Ai |NNN −MMM⊗2|B⊗2
2 〉〉 are the coefficients of the

expansion. The factor 1
d2−1 is later absorbed into the constant

c2(d ) in the final result. Up until this point, equality still holds.
Now we are finally in a position to start bounding the term
Eq. (65). To do so, we upper bound each ai . These bounds
involve constants depending on the dimension d [which are all
absorbed into c2(d )] and are proportional to (1 − u)2. Finally
the inner product containing NNNm−s−1 is upper bounded by
a constant depending on the dimension and proportional to
‖Ēerr‖2

∞ (and in particular independent of m or s). This then
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gives a total bound on the term Eq. (65),

(65) � 1 − u2(m−1)

1 − u2
(1 − u)2α2c2(d )‖Ēerr‖2

∞, (72)

where we used the geometric series

m−1∑
s=1

u2(s−1) = 1 − u2(m−1)

1 − u2
. (73)

The terms Eq. (64) and Eq. (66) can be bounded by repeating
all these steps, using a different telescoping series expansion
where the factors (MMM⊗2)s−1 and NNNm−s are interchanged in
Eq. (62). The analysis is then performed by simplifying the
inner product from left to right. This involves a few technical-
ities, but no new ideas. In the end, only the bound on the final
inner product with Nm−s−1 and the proportionality constants
c1(d ), c3(d ) differ, as can be seen from the result Eq. (57).
Finally for the final term Eq. (67), there is not much more to
do than

(67) = 〈〈
Ē⊗2

err

∣∣NNNm−1
∣∣ρ̄⊗2

err

〉〉
� ‖Ēerr‖2

∞‖ρ̄err‖2
1, (74)

using Hölder’s inequality and the fact that N is contrac-
tive in the induced trace norm [38], i.e., ‖N‖1→1 � 1
(see Proposition 19 in Appendix C).

V. CONCLUSION AND FUTURE WORK

In this work we have shown a significant reduction in the
required number of random sequences for unitarity random-
ized benchmarking (URB) than previously could be justified.
This reduction is achieved by analyzing the statistics of the
protocol. In particular, we have provided a bound on the
variance of the sequence purity. Application of a concentra-
tion inequality yields the reduction in number of sequences,
provided that the variance bound is sharp enough. We have
shown that in realistic parameter regimes, the required number
of sequences is in the order of hundreds, when benchmarking
few-qubit Clifford gates. This brings benchmarking the unitar-
ity of few-qubit Clifford gates into the realm of experimental
feasibility.

The main ingredient of this result was a sharp bound
on the variance of the sequence purity. The analysis was
done for a slightly modified version of the protocol. This
modification leads to better guarantees on the confidence
and additionally yields a linear fitting problem. Our variance
bound has the attractive property that it scales quadratically
in 1 − u, where u is the unitarity, up to constant contribution
due to state preparation and measurement (SPAM) errors.
This implies that fewer sequences are required to estimate
highly coherent gates. We show that the constant contribution
due to SPAM errors is a fundamental property of URB (and
therefore not an artifact of our bound). Furthermore our bound
is asymptotically independent of the sequence length and is
therefore applicable in both short and long sequence lengths.
Finally our bound grows exponentially in the number of qubits
comprising the system. We argue that this is an artifact of
the bound, which could be improved upon. As a result, our
bound becomes vacuous for large systems. However, we have
shown that our bound is sharp enough to benchmark few-qubit
systems (say, up to five qubits).

During the analysis of the URB protocol, we have em-
phasized two different implementation techniques. We have
explicitly shown their optimal state preparation and measure-
ment settings for practical implementation. We highlighted
the benefits and drawbacks of each implementation and
showed the statistical difference between the two.

A. Future work

There are a few caveats in the analysis of this work, which
arise from the assumptions under which the bound holds. Each
of these assumptions as summarized in Sec. II is an open
avenue for future research. First and foremost, the assumption
of the gate independent error model is rather strong and never
completely satisfied in practical implementations of gates.
The analysis of the URB protocol so far has been restricted
to the gate-independent noise model [12]. There are three
somewhat independent open problems with the URB protocol
when one wants to generalize the model to (Markovian) gate-
dependent errors. First, the behavior of the protocol must be
studied. This means that the validity and deviation of the fit
model must be studied under this more general noise model.
Second, the statistics of the protocol can be studied in the
gate-dependent error model. This aims to provide an answer
to the question how many resources are required to extract
the unitarity from measurement data in this more general
noise model, provided that a generalized fit model is found.
Finally one can attempt to relate the URB decay rate(s) in the
gate-dependent setting to physically relevant quantities (like
the unitarity) of the gates comprising the gate set. All three
of these problems relating to gate-dependent errors are tough
problems and many research focused on answering analogous
questions for standard RB. For standard RB, progress has been
made in terms of understanding the fit model and relating the
decay rate to a physically interpretable infidelity in the gate-
dependent error model [39–41]. However, statistical analyses
of standard RB only apply to the gate-independent error model
[24,26,27]. We suspect that some of the progress made in
analyzing gate-dependent RB can be modified and applied to
URB, but we have left this for future work.

A second interesting avenue is exploring how unitarity ran-
domized benchmarking behaves when the assumption of uni-
tary 2-design is relaxed [42]. This would give rise to a protocol
that can benchmark the unitarity of different gate sets that do
not form a 2-design. Interesting examples are the Dihedral
group [43,44], subgroups of monomial unitary matrices [45]
and subgroups of the Clifford group [46,47], where progress
have been made for standard RB. Note that the first two of
these gate sets are particularly interesting since they contain
the T -gate. A general framework for standard RB given an
arbitrary gate set is provided in [48]. An interesting open
question is whether these techniques can be applied to URB.

Finally it is interesting if the current limitations of our
bound can be improved upon. In particular an open question is
how to improve this bound to be asymptotically independent
of the dimension, a caveat that currently renders our bound
impractical for large system (q � 5). Similarly we wonder
if our bound can be generalized to general multiqubit noise
models that need not be unital. These lines of future work
could improve the applicability of our bound.
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APPENDIX A: PRELIMINARIES

The appendices are devoted to proving the upper bound
Eq. (19) [actually we prove Eq. (57), which implies Eq. (19)]
on the variance of the sequence purity for Clifford Unitarity
Randomized Benchmarking. To do so, this appendix first
provides an overview of the preliminaries and sets the formal
notation used in the rest of the appendices. The material cov-
ered in this appendix is not a new result. In Appendix B then
the variance bound of Eq. (19) is proven. It also contains the
proof of the interval of the sequence purity Eq. (27). Finally,
all technical lemmas used in the proof of the variance bound
are collected in Appendix C. The material in Appendices B
and C is the main result of this work.

1. Notation and definitions

In this subsection we summarize all notation used in the
paper and the appendices. Suppose our principle system un-
der investigation is a q-qubit system. Its state space is then
represented by a d-dimensional Hilbert space H, where d =
2q . Typically H is identified with Cd . General vector spaces
are typically denoted V . The dimension of a vector space
is denoted |V | = dim(V ). Hence d = 2q = |H|. The set of
linear operators between two vector spaces V1, V2 is denoted
L(V1, V2) [some references write Hom(V1, V2)]. We write
L(V ) as shorthand for L(V, V ) [in the literature also written as
End(V )]. It is convenient to think of L(H) as a Hilbert space
in itself, equipped with the Hilbert-Schmidt inner product.
This inner product is defined as 〈A,B〉HS = Tr[A†B] for any
A,B ∈ L(H). It induces the Hilbert-Schmidt norm ‖A‖2 =√〈A,A〉HS. This is in fact a special case of the more general
Schatten p-norms (for 1 � p � ∞), which are defined as

‖A‖p
p = Tr[(A†A)

p

2 ] = ‖s(A)‖p
p =

∑
i

si (A)p. (A1)

Here s(A) denotes the vector of singular values si (A) of
A. The Hilbert-Schmidt norm corresponds to p = 2. Other
important special cases are the trace norm (p = 1) and the
operator norm to (p = ∞).

The normalized Pauli matrices form an orthonormal basis
of L(H) with respect to the Hilbert-Schmidt inner product.
The set of normalized Pauli’s is denoted

P :=
{

P√
d

∣∣∣∣P ∈ {I,X, Y,Z}⊗q

}
, (A2)

where I,X, Y,Z denote the usual (unnormalized) Pauli ma-
trices. The set of traceless Pauli matrices is denoted P∗ = P \
{σ0}, where σ0 := 1√

d
I⊗q is the normalized identity. Elements

of P are denoted by the Greek symbols σ, τ . For two normal-
ized Pauli matrices σ, τ ∈ P, we define the normalized matrix
product σ · τ := 1√

d
στ . This ensures that ‖σ · τ‖2 = 1 so that

σ · τ ∈ ±P. The tensor product between two Pauli matrices
can then be conveniently omitted, so that στ := σ ⊗ τ . This

is used for brevity when writing many tensor products of
normalized Pauli matrices. From here on out, we will omit
the tensor product. Finally for every normalized Pauli τ ∈ P,
we define Cτ as the set of all elements of P∗ that commute
with τ , except for τ itself [36]:

Cτ := {σ ∈ P∗ : σ · τ = τ · σ )}. (A3)

In Ref. [36] it is shown that |Cτ | = d2−4
2 .

The Clifford group, denoted C(d ), has a natural action
by conjugation on the set of Pauli matrices P. Informally
speaking, the Clifford group sends Pauli matrices to Pauli
matrices under conjugation. More formally speaking, the Clif-
ford group is the normalizer of the Pauli group (the group
generated by P) in the unitary group, up to global phase:

C(d ) := {U ∈ U(d ) : UσU † ∈ ±P, ∀σ ∈ P}/U(1). (A4)

An alternative description of the Clifford group is given in
terms of its generators. The group is generated as

C(d ) = 〈{Hi, Si, CNOTij |i, j = 1, . . . , q, i �= j}〉 / U(1),

(A5)

where Hi is the Hadamard gate and Si is the π
4 -phase gate on

qubit i, and CNOTij is the CNOT gate on qubits i, j . For a
more detailed introduction into the Pauli and Clifford group,
see [49] and references therein. The size of the Clifford group
is [50]

|C(d )| =
q∏

j=1

2(4j − 1)4j = 2O(q2 ). (A6)

a. States, measurements, and quantum channels

In quantum mechanics, quantum states are described by
density operators. A density operator ρ ∈ L(H) satisfies
two properties. It is positive semidefinite (denoted ρ � 0)
and has Tr[ρ] = 1. POVM elements M ∈ L(H) are positive
semidefinite operators with all eigenvalues smaller than one.
This means that I − M is also positive semidefinite and
a POVM therefore satisfies 0 � M � I . A general POVM
measurement is described by a colleaction of POVM elements
{M1, . . . ,Mn} that satisfy

∑n
i=1 Mi = I . Denote the measure-

ment outcome associated with Mi as mi . Then given a state ρ,
the probability to observe outcome mi is Tr[Miρ]. The Hermi-
tian observable E ∈ L(H) associated with this measurement
is then E = ∑n

i=1 miMi . Therefore the expectation value of
the measurement, given the state ρ, is 〈E〉ρ = Tr[Eρ]. In
this work, we will only consider two-valued measurements,
with associated outcomes ±1. Such a measurement is thus
described by the POVM measurement M, I − M and the
corresponding observable is E = M − (I − M ) = 2M − I .

Operations on quantum states that transform one state into
the other are described by quantum channels. In general,
transformations of linear operators A ∈ L(H) are described
by a linear operator E : L(H) → L(H). These linear operators
are sometimes called superoperators, to distinguish them from
linear operators A ∈ L(H). A quantum channel is a superop-
erator E : L(H) → L(H) that is

(1) completely positive (CP), i.e., (E ⊗ I )(A) � 0 for all
0 � A ∈ L(H⊗2), where I is the identity channel and
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(2) trace preserving (TP), i.e., Tr[E (A)] = Tr[A] for all
A ∈ L(H).

Intuitively, this means that density operators are mapped
to density operators. Thus quantum channels (CPTP superop-
erators) are indeed the operators that map quantum states to
quantum states. Here generic quantum channels are denoted
E or �. A quantum channel is said to be unitary (denoted G)
if G(A) = GAG† for some unitary G ∈ L(H) and for all A ∈
L(H). So unitary quantum channels (also called unitaries or
gates) are denoted with a calligraphic G and their counterparts
in L(H) are denoted G. Unital maps are superoperators E
that satisfy E (I ) = I . Note that all unitaries are unital, but
the converse is not true [consider the completely depolarizing
channel E (A) = Tr[A]

d
I ]. The space of superoperators is typ-

ically equipped with the induced Schatten norms, defined as

‖E‖p→q = sup
A∈L(H)

{‖E (A)‖q : ‖A‖p = 1}. (A7)

Important special cases are p = q = 1, which yields the
induced trace norm and p = q = 2 which results in the op-
erator norm (‖E‖∞ = ‖E‖2→2). For more details on states,
measurements and quantum channels, the reader is referred
to textbooks like Refs. [33,51]. In the next section, we will
discuss the Liouville representation of states, measurements,
and quantum channels.

b. Liouville representation

Here we expand on the definition of the Liouville represen-
tation (also known as the natural or affine representation or the
Pauli transfer matrix) [26,33] introduced in the main text. This
representation exploits the fact that the Pauli matrices form an
orthogonal basis for the set of linear operators with respect
to the Hilbert-Schmidt inner product. We can then think of
linear operators A ∈ L(Cd ) as column vectors or row vectors
with entries determined by the inner product with respect to
a Pauli basis operator. Formally, we introduce a linear map
|·〉〉 : L(Cd ) → Cd2

defined by |σi〉〉 = ei , where σi is the ith
normalized Pauli matrix in P and ei is the ith canonical basis
vector of Cd2

. The map is then extended to L(H) by linearity,
so that

|A〉〉 =
∑
σi∈P

〈σi, A〉HS |σi〉〉. (A8)

The adjoint is then defined via 〈〈A| = |A〉〉†. As a result, the
inner product carries over as

〈〈A|B〉〉 = 〈A,B〉HS = Tr[A†B], ∀A,B ∈ L(Cd ). (A9)

Quantum channels E : L(Cd ) → L(Cd ) can then be viewed
as matrices acting on the vectors |A〉〉. This matrix, called
the Liouville matrix, is a map EEE : Cd2 → Cd2

defined by
EEE ij = 〈〈σi |E (σj )〉〉 (with σi, σj ∈ P). The Liouville matrix EEE
corresponding to the quantum channel E is denoted in bold
font to distinguish the two. The Liouville matrix representa-
tion of quantum channels naturally respects the vectorization
|·〉〉, the product (channel composition is identified with matrix
multiplication), the adjoint and the tensor product. That is, for
superoperators E1, E2 : L(Cd ) → L(Cd ) and linear operators

A,B,Q ∈ L(Cd ), the following relations hold:

|E2E1(A)〉〉 = E2E2E2|E1(A)〉〉 = E2E2E2E1E1E1|A〉〉,
|E2 ⊗ E1(A ⊗ B )〉〉 = E2E2E2 ⊗ E1E1E1|A ⊗ B〉〉 = E2E2E2 ⊗ E1E1E1|A〉〉|B〉〉

= E2E2E2|A〉〉 ⊗ E1E1E1|B〉〉,
|E†

1 (A)〉〉 = E1E1E1
†|A〉〉,

Tr[Q†E1(A)] = 〈〈Q|E1(A)〉〉 = 〈〈Q|E1E1E1|A〉〉. (A10)

Note that with slight Dirac-notation-like ambiguity, the (not
necessarily Hermitian operator) E1E1E1 is always applied to the ket
|A〉〉 and not to the bra 〈〈Q| in the last line. A quantum channel
has a special block form of its Liouville matrix by imposing
the trace-preserving property. If the first basis element of P is
σ0 = I√

d
, a quantum channel can be written as

EEE =
[

1 0
α(E ) EEEu

]
, (A11)

where α(E ) is the nonunitality vector (of length d2 − 1) andEEEu

is the unital block (of size d2 − 1 by d2 − 1) of EEE . The trace-
preserving property implies that no traceless Pauli matrix in
P∗ can be mapped to σ0, since 〈〈σ0|E (τ )〉〉 = Tr[E (τ )]√

d
= 0 for

all τ ∈ P. Similarly 〈〈σ0|E (σ0)〉〉 = Tr[E (σ0 )]√
d

= 1. This justifies
the first row of Eq. (A11). In terms of this decomposition, the
definition of the unitarity Eq. (2) can be rewritten as

u(E ) = 1

d2 − 1

∑
σ,τ∈P∗

〈〈τ |EEE |σ 〉〉2 = 1

d2 − 1

∑
σ∈P∗

〈〈σ |EEE†
uEEEu|σ 〉〉

= 1

d2 − 1

∑
σ∈P∗

〈〈σ |EEEuEEE†
u |σ 〉〉 = Tr[EEE†

uEEEu]

d2 − 1
= Tr[EEEuEEE†

u ]

d2 − 1
,

(A12)

where EEEu is slight abuse of notation for 1 ⊕ EEEu.

2. Representation theory

Here we give a brief overview of the required representa-
tion theory of finite groups. This section will briefly provide
some definitions and the results used in this work. For more
details the reader can refer to textbooks like Refs. [37,52]. Let
G denote a finite group, V some finite-dimensional complex
vector space. Let GL(V ) denote the general linear group on
V (i.e., the set of invertible linear operators on V ). Then a
representation (V,R) is a map R : G → GL(V ) that satisfies
R(g)R(h) = R(gh) for all g, h ∈ G. If V is equipped with an
inner product (making it a Hilbert space) and R(g) is unitary
for all g ∈ G, then (V,R) is called a unitary representation of
G. If R is an injective map, then the representation is faithful.
If the map R is clear from the context, the representation is
just referred to as V .

A subspace W ⊆ V is called a subrepresentation of V

if R(g)W ⊆ W for all g ∈ G. If W = 0 and W = V are
the only subrepresentations of V , then V is an irreducible
representation (often called irrep). Consider two representa-
tions V1, V2 of G. Then a mapping ϕ : V1 → V2 is called an
intertwining operator if ϕR1(g) = R2(g)ϕ. Intuitively, an in-
tertwining operator preserves the structure of a representation.
The representations V1 and V2 are called equivalent (denoted
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V1
∼= V2) if there exists an intertwining operator ϕ that is an

isomorphism between the vector spaces. A fundamental result
in representation theory of finite groups is that a representation
(V,R) can always be written as the direct sum of irreps.

Lemma 1 (Maschke’s Theorem [37]). Let (V,R) be a
finite-dimensional, nonzero representation of a finite group G.
Then (V,R) decomposes uniquely (up to isomorphisms and
ordering) as

V =
k⊕

i=1

(Cni ⊗ Vi ) =
k⊕

i=1

V
⊕ni

i and

R =
k⊕

i=1

(Ini
⊗ Ri ) =

k⊕
i=1

R
⊕ni

i , (A13)

where the set {(Vi, Ri ) : i = 1, . . . , k} contains mutually
inequivalent, nonzero, irreducible representations occurring
with multiplicity ni in the decomposition of (V,R) and Ini

is the identity on a ni-dimensional vector space.
As an example consider the Clifford group G = C(d ) ⊂

L(H). Then the map R1 : G �→ G that associates the quantum
channel G with the abstract group element G ∈ C(d ) is a
representation of C(d ) on the space V1 = L(H). In fact G is
itself a representation (the defining representation) on H. The
Liouville representation is also a representation on the space
V2 = Cd2

via the map R2 : G �→ GGG. The Liouville representa-
tion (V2, R2) and the quantum channel representation (V1, R1)
are equivalent representations of the Clifford group C(d ).
The intertwining operator that establishes this equivalence is
given by ϕ = |·〉〉 : V1 → V2 (defined in Appendix A 1 b), the
map that sends a linear operator A ∈ V1 to the corresponding
Liouville vector |A〉〉 ∈ V2. The intertwining property R2ϕ =
ϕR1 is then explicitly expressed as GGG|A〉〉 = |G(A)〉〉 for all
A ∈ V1 and G ∈ C(d ).

A crucial ingredient to the URB protocol is constructing
the projector onto the trivial subrepresentations of a represen-
tation (V,R). This is achieved in the following result.

Lemma 2 (Projection onto trivial subrepresentations
[37]). Let (V,R) be any representation of a group G and let
V G := {v ∈ V : R(g)v = v, ∀g ∈ G} denote the subspace
on which G acts trivially. Define the map φ : V → V by

φ = 1

|G|
∑
g∈G

R(g). (A14)

Then φ is an intertwining operator and moreover φ is the
orthogonal projection onto V G.

The next lemma is crucial for the variance analysis, as it
provides a method to identify the subspace of trivial represen-
tations (V ⊗ V ∗)G, given a decomposition of V into irreps.

Lemma 3. Let (V,RV ) and (W,RW ) be unitary, ir-
reducible finite-dimensional representations of a finite-
dimensional group G and let {vi}, {wi} be an orthonor-

mal basis for V , W , respectively. If V ∼= W are equivalent
representations (and the basis vectors are labeled such that
the intertwining map ϕ between V and W maps vi �→ wi),
then the (V ⊗ W ∗, RV ⊗W ∗ ) has one and only one trivial
subrepresentation

(V ⊗ W ∗)G = Span

{∑
i

vi ⊗ w
†
i

}
. (A15)

If V and W are not equivalent, then

(V ⊗ W ∗)G = ∅. (A16)

Proof. The proof makes use of the canonical isomor-
phism α : V ⊗ W ∗ → L(W,V ) defined by v ⊗ w† �→ vw†

(extended by linearity), where V ∗ is the dual space of V

(carrying the dual representation) and vw† acts on x ∈ W by
vw†x := v 〈w, x〉 (with 〈·, ·〉 the inner product on W ). Now α

is an intertwining operator [37]. Therefore it follows that

α((V ⊗ W ∗)G) = (L(W,V ))G, (A17)

since α preserve the structure of the representation. The sub-
space (L(W,V ))G of trivial subrepresentations of L(W,V )
is precisely the space of intertwining operators between the
representations W and V [37]. Thus a trivial representation of
V ⊗ W ∗ corresponds to an intertwining operator from W to
V . Schur’s Lemma states that [37]

|(L(W,V ))G| =
{

1 if V ∼= W

0 otherwise. (A18)

So if V and W are inequivalent α((V ⊗ W ∗)G) =
(L(W,V ))G = ∅. And if V ∼= W , let φ ∈ (L(W,V ))G be
the intertwining isomorphism with ‖φ‖∞ = 1. Then letting
vi = φ(wi ), we can write φ = ∑

i viw
†
i , so that

α((V ⊗ W ∗)G) = Span

{∑
i

viw
†
i

}
, (A19)

which yields the result after applying α−1. �
Corollary 1. If moreover the representation V = W is real

and thus orthogonal, then (using V ∗ ∼= V ) it follows that

(V ⊗ V )G = Span

{∑
i

vi ⊗ vi

}
. (A20)

Corollary 2. Let V be a finite-dimensional vector space
carrying a group representation. By Lemma 1 there exists
a decomposition V = ⊕k

i=1 V
⊕ni

i into mutually inequivalent
irreducible representations. Denote Vis the sth copy of the
space Vi (s = 1, . . . , ni) and denote {v(is )

j : j = 1, . . . , |Vi |}
an orthonormal basis of Vis that respect the isomorphisms
between equivalent spaces (meaning that v

(is )
j �→ v

(is′ )
j under

the intertwining isomorphism between Vis and Vis′ ). Then the
trivial subrepresentations of V ⊗ V are given by

(V ⊗ V )G = Span

⎧⎨
⎩

|Vi |∑
j=1

v
(is )
j ⊗ v

(is′ )
j

∣∣∣∣ ∀s, s ′ = 1, . . . , ni, ∀i = 1, . . . , k

⎫⎬
⎭. (A21)
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Proof. Let us start by writing

V ⊗ V =
k⊕

i,i ′=1

ni⊕
s

ni′⊕
s ′

(
Vis ⊗ Vi ′s′

)
. (A22)

Each trivial subrepresentation is found by application of
Lemma 3 to each term in this decomposition. This makes use
of the fact that Vis

∼= Vi ′
s′

are equivalent if and only if i ′ = i by
virtue of the decomposition. �

In Appendix B this machinery is used to find the trivial
subrepresentations of the Liouville tensor-4 representation of
the Clifford group C(d ). But first a section is given with some
preliminary technical lemmas from literature that are required
in the proof of our variance bound.

3. Technical lemmas from literature

In this section we review a few lemmas from literature that
are required for our variance bound. Some lemmas are stated
without proof and the reader is then referred to the reference
for a proof. The first lemma is a telescoping series for expand-
ing the variance expression. It is applied to quantum channels,
but here presented in more general form.

Lemma 4 (Telescoping Series [27]). Let A be an associa-
tive algebra with unit. Then for a, b ∈ A and m ∈ N+,

am − bm =
m∑

s=1

am−s (a − b)bs−1 =
m∑

s=1

bm−s (a − b)as−1.

(A23)
Proof. By direct computation, it follows that

m∑
s=1

am−s (a − b)bs−1 =
m∑

s=1

am−s+1bs−1−am−sbs

=
m−1∑
s=0

am−sbs −
m∑

s=1

am−sbs = amb0 − a0bm = am − bm

and

m∑
s=1

bs−1(a − b)am−s =
m∑

s=1

bs−1am−s+1 − bsam−1

=
m−1∑
s=0

bsam−s −
m∑

s=1

bsam−1 = b0am−a0bm = am−bm.

�
Note that the set of quantum channels form an associative

algebra with unit, so that this lemma indeed applies to quan-
tum channels.

Next we present a lemma that bounds the induced schatten
p → p norm of a quantum channel.

Lemma 5 (Pérez-García. et al. [38]). Let E be a CPTP
quantum channel on a d-dimensional Hilbert space H, with
d = 2q for a q-qubit system. Then for all p ∈ [1,∞],

‖E‖p→p = max
A∈L(H)

{‖E (A)‖p : ‖A‖p = 1} � d
1− 1

p (A24)

and

‖E‖H
p→p := max

0 �=A∈L(H)
Tr[A]=0,A=A†

{‖E (A)‖p

‖A‖p

}
�
(

d

2

)1− 1
p

. (A25)

If in addition E is unital (E (I ) = I ), then ‖E‖p→p � 1 for all
p ∈ [1,∞].

The following three lemmas are used to bound the quan-
tities ai Eq. (69). First, we state a technical lemma used in
Ref. [27], which can be restated as

Lemma 6 (Helsen. et al. [27]). Let E be a CPTP map on a
d-dimensional Hilbert space. Then

0 � 1

d2 − 1

∑
σ∈P∗

〈〈σ |EEE |σ 〉〉2 − f 2 � d2 − 2

d2
(1 − f )2,

(A26)
where

f = 1

d2 − 1

∑
σ∈P∗

〈〈σ |EEE |σ 〉〉 (A27)

is the randomized benchmarking decay parameter of E .
Here this lemma is applied to channels of the form

E1E1E1 =
[

1 0
0 ���u���

†
u

]
and E2E2E2 =

[
1 0
0 ���

†
u���u

]
, (A28)

where ���u is the unital block of the error map ��� under in-
vestigation, since then f (E1) = f (E2) = u(�). It is not clear
that these superoperators are even a quantum channel (i.e.,
that they are CPTP). Therefore the following lemma provides
a necessary condition on � for which Eq. (A28) are CPTP
maps.

Lemma 7. Let � be a CPTP quantum channel on a d-
dimensional Hilbert space. Then the channels E1, E2 defined
in Eq. (A28) are CPTP if either d = 2 or if � is unital (or
both). Moreover ‖E1‖2→2, ‖E2‖2→2 � 1.

Proof. If d = 2 (that is, if � is a single-qubit channel), then
the unital part of �, defined as

�̂̂�̂� =
[

1 0
0 ���u

]
, (A29)

is CPTP [53, Theorem IV.1]. For the general d-dimensional
case, it is assumed that � is unital, so that � = �̂. So in
either case, �̂ is CPTP and unital. It can be shown that the
adjoint of a CPTP and unital map is also CPTP and unital
[33, Proposition 2.18 and Theorem 2.26], i.e., �̂† is CPTP
and unital. Therefore E1 = �̂�̂† and E2 = �̂†�̂ are also CPTP
and unital. Lemma 5 then ensures that ‖E1‖2→2 � 1 and
‖E2‖2→2 � 1. �

Third is a lemma from matrix analysis. It is a charac-
terization of positive semidefinite matrices in terms of its
principal minors. This lemma was used on I − �̂̂�̂��̂̂�̂�† to bound
its off-diagonal terms.

Lemma 8 (Sylvester’s criterion). Let A ∈ L(Cd2
) be a Her-

mitian matrix. Then A is positive semidefinite if and only if all
of its principal minors are nonnegative.

Proof. See, e.g., Ref. [54, Corollary 7.1.5 and Theorem
7.2.5]. �
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Next we present two results, also from matrix analysis, that
are used several times to bound inner products. The first is a
trace inequality and the second is Hölder’s inequality.

Lemma 9. Let A,B ∈ L(H) be two linear operators on a
d-dimensional Hilbert space H. Denote their singular values
as si (A), si (B ) respectively with i = 1, . . . , d, both in de-
creasing order. Finally let s(A) and s(B ) denote vectors with
entries si (A) and si (B ). Then

(1) (Von Neumann’s trace inequality) Re(Tr[AB]) �∑d
i=1 si (A)si (B ) and
(2) (Hölder’s inequality)

∑d
i=1 |si (A)si (B )| �

‖s(A)‖p‖s(B )‖q = ‖A‖p‖B‖q , for any pair p, q ∈ [1,∞]
such that p−1 + q−1 = 1.

Since singular values are nonnegative, combining the state-
ments yields Re(Tr[AB]) � ‖A‖p‖B‖q for any pair p, q ∈
[1,∞] such that p−1 + q−1 = 1.

Proof. Statement 1 is proven for example in [54, Theorem
8.7.6] and statement 2 is proven in Ref. [55, Theorem 31.3].
�

Corollary 3. If A,B ∈ L(H) are Hermitian, then
Tr[AB]∗ = Tr[(AB )†] = Tr[B†A†] = Tr[BA] = Tr[AB],
so that Tr[AB] is real. Therefore Tr[AB] � ‖A‖p‖B‖q for
any p, q ∈ [1,∞] satisfying p−1 + q−1 = 1.

Finally some of our bounds use the fact that the mean of
squares is larger than the square of the mean. We show this
well-known fact below.

Lemma 10 (Mean of squares is larger than square of mean).
Let {xi} ⊂ R be a collection of N real numbers. Then(

1

N

N∑
i=1

xi

)2

� 1

N

N∑
i=1

x2
i . (A30)

Proof. By direct computation, it follows that

(
1

N

N∑
i=1

x2
i

)
−
(

1

N

N∑
i=1

xi

)2

=
(

1

N

N∑
i=1

x2
i

)
−2

(
1

N

N∑
i=1

xi

)(
1

N

N∑
k=1

xk

)
+
(

1

N

N∑
k=1

xk

)2

= 1

N

N∑
i=1

⎡
⎣x2

i − 2xi

(
1

N

N∑
k=1

xk

)
+
(

1

N

N∑
k=1

xk

)2
⎤
⎦

= 1

N

N∑
i=1

[
xi −

(
1

N

N∑
k=1

xk

)]2

� 0, (A31)

since it is the sum of real numbers squared, proving the
result. �

APPENDIX B: VARIANCE BOUND AND INTERVAL
LENGTH BOUND

This section is devoted to rigorously proving the variance
bound Eq. (19). Along the way we also prove the interval
length bound Eq. (27). The key ingredient of the variance
bound proof is finding the trivial subrepresentations of the

Liouville tensor-4 representation of the Clifford group C(d ).
This is done in the first subsection. Then the variance bound
Eq. (19) is proven. The technical lemmas used in this proof
are collected in Appendix C.

1. Trivial subrepresentations of the tensor-4 Liouville
representation of the Clifford group

This section is concerned with presenting the trivial sub-
representations of the representation G �→ G⊗4 of the Clifford
group C(d ). This representation is equivalent to G �→ GGG⊗4 by
the intertwining isomorphism |·〉〉. Therefore both are consid-
ered the same and with slight abuse of notation we refer to
them both as the same representation, which we will call the
tensor-4 Liouville representation.

The key idea is to apply Lemma 3 and its corollaries
to find the trivial subrepresentations of the tensor-4 repre-
sentation G �→ G⊗4. This requires a full description of the
Liouville tensor-2 representation G �→ G⊗2 in terms of its
irreducible components. This was studied in [35,36]. Let us
denote V = L(H ⊗ H) as the space that carries the tensor-2
representation. The present problem is therefore to find the
trivial subrepresentations of V ⊗ V , given a decomposition
of V into irreducible representations. In an earlier result [34]
the multiplicity of the trivial representation in V ⊗ V was
calculated. They found that

|(V ⊗ V )C(d )| =
⎧⎨
⎩

15 if d = 2;
29 if d = 4;
30 otherwise,

(B1)

which is a justification of Eq. (61). First we will discuss the
decomposition of V into irreducible representations [36], and
next we will apply Lemma 3 to find (V ⊗ V )C(d ) explicitly.

The full decomposition of the Liouville tensor-2 repre-
sentation (V,R) given by R : C(d ) → GL(V ) : G �→ G⊗2 is
studied in [36]. We will review the result of this work here,
following their notation. A summary of the relevant subspaces
is given in Table II. First, the representation V is decomposed
in the following subrepresentations, defined by

VS := Span

{
στ + τσ√

2
: σ, τ ∈ P∗, σ �= τ

}
,

VA := Span

{
στ − τσ√

2
: σ, τ ∈ P∗, σ �= τ

}
,

Vd := Span{σσ : σ ∈ P∗}, (B2)

Vr,l := Span{σ0σ, σσ0 : σ ∈ P∗},
Vid := Span{B1 = σ0σ0}.

Recall that the tensor symbol is omitted for brevity (so στ

means σ ⊗ τ here). Each of these spaces carries a subrep-
resentation and furthermore V = Vid ⊕ Vr,l ⊕ Vd ⊕ VS ⊕ VA.
Finally let us define the traceless, symmetric subspace as

VT S := VS ⊕ Vd. (B3)

Since the ideal input and measurement operators for the URB
protocol ρ̄id, Ēid [as defined in Eq. (10); see also Eq. (B23)]
are elements of VT S and since �⊗2(VT S ) ⊆ VT S by the trace-
preserving property of � and the symmetry with respect to
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TABLE II. Hierarchy of subspaces contained within the traceless, symmetric subspace VT S , carrying the relevant subrepresentation of the
Liouville tensor-4 representation G �→ GGG⊗4. Every child node is a subspace (that also carries a subrepresentation) of its parent node and all
child nodes direct sum to their parent. Leaf nodes represent the final irreducible subspaces and their dimension are shown in the box below
each leave node. Definitions of the composite spaces are given in the main text ((B2), (B3), and (B4); for the definitions of the irreducible
spaces, see [36]). For d = 2 or d = 4 there are certain subspaces with |Vi | � 0. This means that such a subspace is empty and therefore not
present in the decomposition. Summing the dimensions of the child nodes together, yields the following sizes for the decomposable spaces:
|V1,2| = d2 − 2, |Vd | = d2 − 1, |VS | = 1

2 (d2 − 1)(d2 − 2) and |VT S | = 1
2 d2(d2 − 1).

VTS

Vd

V0

1

V1,2

V1

d(d+1)−2
2

V2

d(d−1)−2
2

VS

V{1}

(d2−1)d(d+2)
8

V{2}

(d2−1)d(d−2)
8

V[1]

(d2 − 1)

× d(d+2)
8

− 1

V[2]

(d2 − 1)

× d(d−2)
8

− 1

V

d2 − 1

swapping the two copies of H, the only relevant subspace of
V is VT S . Therefore we continue our analysis of VT S .

The space Vd can be broken up into the two
subrepresentations:

V0 := Span

{
B2 = 1

d2 − 1

∑
σ∈P∗

σσ

}
and

V1,2 := Vd \ V0. (B4)

In the single-qubit case (q = 1), the spaces VS and V1,2 are
irreducible, therefore fully characterizing VT S = V0 ⊕ V1,2 ⊕
VS . However, if q � 2 the space V1,2 breaks into two irreps,
indexed by the index set Z1,2. For q = 2, VS breaks into four
irreps, while for q � 3 it breaks into five irreps, which will be
indexed by ZS . So the space VT S breaks up into the following
number of irreps:

|ZT S | =
⎧⎨
⎩

3 if q = 1;
7 if q = 2;
8 if q � 3,

(B5)

where ZT S := Zd ∪ ZS = {0} ∪ Z1,2 ∪ ZS . A summary of all
the subspaces of VT S that carry subrepresentations is given
in Table II, together with the dimensions of the spaces.
In Ref. [36] it is shown that all irreducible representations
contained in VT S = Vd ⊕ VS indexed by ZT S are mutually
inequivalent. Therefore it follows from Lemma 3 that there
are precisely |ZT S | trivial subrepresentations contained in
VT S ⊗ VT S . The lemma also provides an explicit method of
finding them, given a basis for Vi from Ref. [36].

Let Bi denote an orthonormal basis for Vi , for i ∈ ZT S .
Then since all irreps indexed by ZT S are mutually inequiv-
alent, Lemma 3 gives an explicit way to compute the trivial

subreps of (VT S ⊗ VT S ) as

Ai = 1√|Vi |
∑
vi∈Bi

vivi, ∀i ∈ ZT S, (B6)

where the normalization constant is to normalize Ai with
respect to the Hilbert-Schmidt norm ‖Ai‖2 = 1. In the mul-
tiqubit case where V1,2 and VS are not irrep, it is still useful to
define

Aj = 1√|Vj |
∑
i∈Zj

√
|Vi |Ai, j ∈ {S; d; 1, 2}. (B7)

In fact, this allows us to explicitly find A1,2 from Ad and A0.
Using the basis for V0, Vd and VS [in Eqs. (B2) and (B4)], we
therefore explicitly find

A0 := B2B2 = 1

d2 − 1

∑
σ,τ∈P∗

σσττ, (B8)

A1,2 := 1√
d2 − 2

(∑
σ∈P∗

σ⊗4 − A0

)
, (B9)

AS :=
√

1

2(d2 − 1)(d2 − 2)

∑
σ, τ ∈ P∗

σ �= τ

σ τστ + σττσ. (B10)

No explicit expression is needed for any i ∈ ZS or i ∈ Z1,2

if VS and V1,2 are reducible (which happens in the multi-
qubit case), because bounds are defined in terms of AS and
A1,2. The only exception to this is i = [adj] ∈ ZS . The space
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V[adj] ⊂ VS , which carries an irrep, is defined by [36]

V[adj] = Span

⎧⎨
⎩v[adj]

τ = 1

2
√|Cτ |

×
∑
σ∈Cτ

σ (σ · τ ) + (σ · τ )σ

∣∣∣∣τ ∈ P∗

⎫⎬
⎭, (B11)

where · indicates the normalized matrix product and where Cτ

is the set of all elements of P∗ that commute with τ as defined
in Eq. (A3). The corresponding trivial subrepresentation, as
computed using Eq. (B6), is

A[adj] = 1

2(d2 − 4)
√

d2 − 1

×
∑
τ∈P∗

⎡
⎣∑

σ∈Cτ

(σ · τ )σ + σ (σ · τ )

⎤
⎦

⊗2

. (B12)

In the next section, we use the trivial subrepresentations of the
Liouville tensor-4 representation to prove our variance bound.

2. Statement and proof of the variance bound
and interval length bound

In this section we will state and prove our main theorem
on the variance bound and prove the interval in which the
average sequence purity is found. We also show the optimality
of the ideal input and measurement operators. First, we will
recapture some of the most important definitions and results
discussed in the main text. The point of departure is the
expression for the variance of Eq. (56)

V[qj] = 〈〈Ē⊗2|NNNm−1 − (MMM⊗2)m−1|ρ̄⊗2〉〉, (B13)

where the operators are defined as

M := G (2)
avg�

⊗2G (2)
avg, N := G (4)

avg�
⊗4G (4)

avg,

G (n)
avg := 1

|C(d )|
∑

G∈C(d )

G⊗n. (B14)

Here qj is the sequence purity due to the sequence j. As
discussed in the main text, MMM only has support on the space
W = Span{B1, B2} ⊂ L(H ⊗ H) [12], where

B1 = I

d
= σ0σ0, (B15)

B2 = S − B1√
d2 − 1

= 1√
d2 − 1

∑
σ∈P∗

σσ. (B16)

In particular the matrix elements of MMM with respect to this
basis [see also Eq. (52)] as

MMM =
[

1 0
‖α(�)‖2√

d2−1
u(�)

]
. (B17)

From this it follows that [see also Eq. (A12)]

MMM|B2〉〉 = u|B2〉〉, (B18)

which implies that 〈〈B2|MMM|B2〉〉 = 〈〈B2|���⊗2|B2〉〉 = u, since
GGG (2)

avg|B2〉〉 = |B2〉〉 and B2 is normalized. This is used in the
analysis of Eq. (B13).

In Eq. (B13) the measurement E is replaced with its the
traceless counterpart Ē, which is defined as

Ē := E − Tr[E]

d2
I = E − 〈〈B1|E〉〉B1. (B19)

Since ρ̄ is traceless by construction and Gj is trace-preserving,
it follows that qj = 〈〈E|G⊗2

j |ρ̄〉〉 = 〈〈Ē|G⊗2
j |ρ̄〉〉. This justifies

the replacement of E by Ē is all expectation value and
variance expressions. In our analysis it is advantageous to
think of Ē instead of E, since then Ēid, ρ̄id ∝ B2. The ideal
state and measurement operators were defined in Eq. (10). For
completeness, they are

Eid = S = B1 +
√

d2 − 1B2, (B20)

ρid = I + S

d(d + 1)
= 1

d
B1 +

√
d2 − 1

d(d + 1)
B2, (B21)

ρ̂id = I − S

d(d − 1)
= 1

d
B1 −

√
d2 − 1

d(d − 1)
B2, (B22)

from which it follows that

Ēid =
√

d2 − 1B2 and ρ̄id = ρid − ρ̂id

2
= 1√

d2 − 1
B2.

(B23)
The implemented operators ρ̄ and E can then be decomposed
into an ideal part and an error part as

α := 〈〈ρ̄id|ρ̄〉〉
〈〈ρ̄id|ρ̄id〉〉 = (d2 − 1)〈〈ρ̄id|ρ̄〉〉, ρ̄err := ρ̄ − αρ̄id,

(B24)

β := 〈〈Ēid|Ē〉〉
〈〈Ēid|Ēid〉〉

= 1

d2 − 1
〈〈Ēid|Ē〉〉, Ēerr := Ē − βĒid.

(B25)

This decomposition is chosen such that Tr[ρ̄idρ̄err] =
Tr[ĒidĒerr] = 0. It can be shown that the ideal operators
ρ̄id, Ēid are in fact ideal, in the sense that they maximize
the prefactor B in the fit model E[qj] = Bum−1 (and also
minimize the variance as we will see). The prefactor B is
given by [see Eq. (53)]

B = 〈〈E|GGG (2)
avg|ρ̄〉〉 = 〈〈Ē|B2〉〉〈〈B2|ρ̄〉〉 = αβ. (B26)

The ideal operators ρ̄id, Ēid will yield B = 1. The following
lemma shows that this is in fact optimal.

Lemma 11 (Optimality of ideal operators). The prefactor
B in the fit model for URB as given in Eq. (B26) satisfies
|B| � 1 for all input and measurement operators ρ̄, E.

Proof. Let us write the two-valued measurement E with
outcomes ±1 in terms of its POVM elements {M, I − M}, so
that E = M − (I − M ) = 2M − I . By definition M satisfies
0 � M � I . Since G (2)

avg is a CPTP map and ρ, ρ̂ � 0 are
quantum states, it follows that G (2)

avg(ρ),G (2)
avg(ρ̂) � 0. Using the

fact that Tr[AB] � 0 for all positive semidefinite operators
A,B � 0, it follows that

0 = 〈〈0|GGG (2)
avg|ρ〉〉 � 〈〈M|GGG (2)

avg|ρ〉〉 � 〈〈I |GGG (2)
avg|ρ〉〉 = 1. (B27)

In terms of the measurement E, this means that −1 �
〈〈E|GGG (2)

avg|ρ〉〉 � 1. Analogously, this holds for ρ̂. Since ρ̄ =
1
2 (ρ − ρ̂ ) is follows that −1 � B = 〈〈E|GGG (2)

avg|ρ̄〉〉 � 1. �
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Corollary 4. The quantities α, β as defined in Eq. (B24)
and Eq. (B25) satisfy −1 � α, β � 1.

Proof. Lemma 11 and Eq. (B26) show that −1 � αβ � 1
for all ρ̄, E. Note that α only depends on ρ̄ and β only on
E. Therefore if we fix ρ̄ = ρ̄id (which implies α = 1), then
we have −1 � β � 1. Analogously fixing E = Eid (which
implies β = 1) yields −1 � α � 1. �

Very similar reasoning also gives the bound on the interval
in which the sequence purity q

(K )
j lies [see Eq. (27)]. This

bound will be proven in the following lemma.
Lemma 12 (Bound on interval lengths). Let q

(K )
j denote

the sequence purity of the K-copy implementation due to the
random sequence j as defined in Eq. (11) and Eq. (9):

q
(1)
j = 1

d2 − 1

∑
P,Q�=I

〈〈
E

(Q)
H
∣∣GGGj
∣∣ρ̄ (P )

H
〉〉2

and

q
(2)
j = 〈〈E|G⊗2

j |ρ̄〉〉. (B28)

Assume that α, β � 0 (equivalent to Tr[ρ̄idρ̄] � 0 and
Tr[ĒidĒ] � 0 stated in Sec. II C). Then for all operators
ρ̄, E [which are the effective operators in the single-copy
implementation, see Eq. (13)], all CPTP error maps � and
all sequences of Clifford gates indexed by j,

q
(1)
j ∈ [0, αβ + β‖ρ̄err‖1 + α‖Ēerr‖∞ + ‖ρ̄err‖1‖Ēerr‖∞],

(B29)

q
(2)
j ∈ [−β‖ρ̄err‖1 − α‖Ēerr‖∞ − ‖ρ̄err‖1‖Ēerr‖∞, 1]. (B30)

Corollary 5. The interval length for q
(1)
j and q

(2)
j can

be bounded independent of α, β by using that α, β � 1
(Lemma 11) as L = 1+‖ρ̄err‖1+‖Ēerr‖∞+‖ρ̄err‖1‖Ēerr‖∞.

Proof. Starting with the two-copy implementation, let us
write E = M − (I − M ) = 2M − I , where 0 � M � I is
a POVM element (the measurement E is described by the
POVM set {M, I − M}, assigning outcome 1 to M and −1
to I − M). Then using the fact that G⊗2

j (ρ) � 0 is positive
semidefinite, it follows that

0 = Tr
[
0G⊗2

j (ρ)
]
� Tr

[
MG⊗2

j (ρ)
]
� Tr

[
IG⊗2

j (ρ)
] = 1,

expressing that Tr[MG⊗2
j (ρ)] is indeed the probability

associated with obtaining outcome M . Therefore −1 �
Tr[EG⊗2

j (ρ)] � 1. Exactly the same argument holds for ρ̂, so

that [recall that ρ̄ = 1
2 (ρ − ρ̂)]

−1 � q
(2)
j = Tr

[
EG⊗2

j (ρ̄)
]
� 1. (B31)

The lower bound can be improved by using the decomposition
Eq. (B24) and Eq. (B25) to write ρ̄ = αρ̄id + ρ̄err and Ē =
βĒid + Ēerr. Then

q
(2)
j = αβTr

[
ĒidG⊗2

j (ρ̄id )
]+ αTr

[
ĒerrG⊗2

j (ρ̄id )
]

+βTr
[
ĒidG⊗2

j (ρ̄err )
]+ Tr

[
ĒerrG⊗2

j (ρ̄err )
]
. (B32)

The first term satisfies Tr[ĒidG⊗2
j (ρ̄id )] � 1 by Eq. (B31)

(which holds for all E, ρ̄ so in particular for Eid, ρ̄id).
However, we also find that

Tr
[
ĒidG⊗2

j (ρ̄id )
] = Tr

[
B2G⊗2

j (B2)
]

= 1

d2 − 1

∑
σ,τ∈P∗

Tr[σGj(τ )]2 � 0. (B33)

The remaining three terms in Eq. (B32) are bounded using
Proposition 19, which yields (using α, β � 0)

α
∣∣Tr
[
ĒerrG⊗2

j (ρ̄id )
]∣∣ � α‖Ēerr‖∞‖ρ̄id‖ = α‖Ēerr‖∞,

β
∣∣Tr
[
ĒidG⊗2

j (ρ̄err )
]∣∣ � β‖Ēid‖∞‖ρ̄err‖1 = β‖ρ̄err‖1,∣∣Tr

[
ĒerrG⊗2

j (ρ̄err )
]∣∣ � ‖Ēerr‖∞‖ρ̄err‖1. (B34)

So by combining Eqs. (B32), (B33), and (B34), we find that

q
(2)
j � 0 − α‖Ēerr‖∞ − β‖ρ̄err‖1 − ‖ρ̄err‖1‖Ēerr‖∞. (B35)

The above argument also holds in the single-copy implemen-
tation if we let E = Eeff and ρ̄ = ρ̄eff as defined in Eq. (13).
However, now we use it to upper bound q

(1)
j . It follows that

q
(1)
j = αβTr

[
ĒidG⊗2

j (ρ̄id )
]+ αTr

[
ĒerrG⊗2

j (ρ̄id )
]

+βTr
[
ĒidG⊗2

j (ρ̄err )
]+ Tr

[
ĒerrG⊗2

j (ρ̄err )
]

� αβ + β‖ρ̄err‖1 + α‖Ēerr‖∞ + ‖ρ̄err‖1‖Ēerr‖∞. (B36)

The lower bound q
(1)
j � 0 follows directly from the fact that

it is defined as the sum of real numbers squared. �
So far we have recaptured the essential definitions and

notations, shown optimality of the ideal operators and proven
a bound in the interval in which the sequence purity qj lies.
Next we will state our variance bound Eq. (19) and give the
complete proof.

Theorem 1 (Variance bound). Let H be a d-dimensional
Hilbert space, with d = 2q for a q-qubit system. Let E ∈
V = L(H ⊗ H) be the Hermitian observable associated with
a two-valued measurement with outcomes ±1 and ρ, ρ̂ ∈
V = L(H ⊗ H) be two quantum states on two copies of the
system. Consider the URB experiment (using the states and
measurement ρ, ρ̂, E) of the Clifford group C(d ), assuming
that a noisy implementation of G ∈ C(d ) is given by G̃ = G�,
where � is a CPTP map. In this experiment the sequence pu-
rity is qj = 〈〈Ē|(MMM⊗2)m−1|ρ̄〉〉, with M defined in Eq. (B14).

Under the assumption that d = 2 or � is unital (that is,
�(I ) = I ), the following bound on the variance V[qj] holds:

V[qj] � σ 2 = 1 − u2(m−1)

1 − u2
(1 − u)2

[
α2β2c1(d )

+α2c2(d )‖Ēerr‖2
∞ + β2c3(d )‖ρ̄err‖2

1

]
+‖ρ̄err‖2

1‖Ēerr‖2
∞, (B37)

where u is the unitarity of �, m is the length of the sequence
indexed by j, ci (d ) are functions only of the dimension d and
α, β, ρ̄err, and Ēerr are defined in Eqs. (B24) and (B25). Pre-
cise definitions of the dimension-dependent functions ci (d )
will be given in the proof, but closed form expressions are
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messy and therefore not written down explicitly. Asymptoti-
cally, these functions satisfy

c1(d ) = O(1), c2(d ) = O(d ), c3(d ) = O(d2). (B38)

Proof. We start from the derived expression for the vari-
ance Eq. (B13). First, let us decompose the state and
measurement operators in ideal and error components as
[see Eqs. (B23)–(B25)]

ρ̄ = αρ̄id + ρ̄err and Ē = βĒid + Ēerr. (B39)

Define again W = Span{B1, B2} ⊂ V , with B1, B2 defined
in Eqs. (B15) and (B16), respectively. Then the ideal com-
ponents ρ̄id and Ēid are in W and the error components ρ̄err

and Ēerr are in the orthogonal complement W⊥. Plugging
this expansion into Eq. (B13) in principle yields 16 terms.

However, the 12 terms with an ideal component tensor error
component (e.g., ρ̄err ⊗ ρ̄id) vanish, because both(

G (2)
avg

)⊗2
(W ⊗ W⊥) = (

G (2)
avg

)⊗2
(W⊥ ⊗ W ) = ∅, (B40)

G (4)
avg(W ⊗ W⊥) = G (4)

avg(W⊥ ⊗ W ) = ∅. (B41)

Eq. (B40) is easy to see because G (2)
avg is the orthogonal projec-

tion onto W . Equation Eq. (B41) follows from the fact that W

carries the trivial subrepresentations of the Liouville tensor-2
representation and W⊥ carries all other necessarily nontrivial
subrepresentations. By Lemma 3 the spaces W⊥ ⊗ W and
W ⊗ W⊥ (which are representations of the Liouville tensor-4
representation) do not carry trivial subrepresentations. Hence
G (4)

avg, the projector onto the trivial subrepresentations of the
Liouville tensor-4 rep (by Lemma 2), does not project onto
any subspace of W⊥ ⊗ W and W ⊗ W⊥. This justifies the
following expression for the variance:

V[qj] = α2β2
〈〈
B⊗2

2

∣∣NNNm−1 − (MMM⊗2)m−1
∣∣B⊗2

2

〉〉
(B42)

+ α2

d2 − 1

〈〈
Ē⊗2

err

∣∣NNNm−1 − (MMM⊗2)m−1
∣∣B⊗2

2

〉〉
(B43)

+ (d2 − 1)β2
〈〈
B⊗2

2

∣∣NNNm−1 − (MMM⊗2)m−1
∣∣ρ̄⊗2

err

〉〉
(B44)

+ 〈〈Ē⊗2
err

∣∣NNNm−1 − (MMM⊗2)m−1
∣∣ρ̄⊗2

err

〉〉
, (B45)

where the expressions of Eq. (B23) are used for the ideal operators ρ̄id, Ēid. We will analyze each of the four terms separately.
The term we start with is Eq. (B43), since this term most clearly conveys the idea of our analysis. Then the terms Eqs. (B42)
and (B44) are treated in similar fashion, but with a small additional technicality. Finally the term Eq. (B45) is treated in a totally
different fashion.

The analysis of Eq. (B43) starts by using Lemma 4 (telescoping series lemma), so that we can write this term as

(B43) = α2

d2 − 1

m−1∑
s=1

〈〈
Ē⊗2

err

∣∣NNNm−s−1[NNN −MMM⊗2](MMM⊗2)s−1
∣∣B⊗2

2

〉〉

= α2

d2 − 1

m−1∑
s=1

u2(s−1)
〈〈

Ē⊗2
err

∣∣NNNm−s−1[NNN −MMM⊗2]
∣∣B⊗2

2

〉〉
. (B46)

In the second line we used that MMM|B2〉〉 = u|B2〉〉. The idea is to expand NNN −MMM⊗2|B⊗2
2 〉〉 in the basis {Ai : i ∈ ZT S} of the

subspace VT S ⊗ VT S ⊂ Rge(G (4)
avg) ⊂ V ⊗ V . VT S is the trace-preserving, symmetric subspace of V = L(H⊗2), as defined in

Appendix B 1. The restriction of G (4)
avg to VT S ⊗ VT S is justified by the fact that �⊗2(B2) ∈ VT S . Hence we expand

NNN −MMM⊗2
∣∣B⊗2

2

〉〉 = ∑
i∈ZT S

ai |Ai〉〉, where ai := 〈〈Ai |NNN −MMM⊗2
∣∣B⊗2

2

〉〉
. (B47)

Therefore Eq. (B43) can be written as

(B43) = α2

d2 − 1

m−1∑
s=1

u2(s−1)
∑

i∈ZT S

ai

〈〈
Ē⊗2

err

∣∣NNNm−s−1|Ai〉〉. (B48)

For the terms Eqs. (B42) and (B44), something similar is done. The telescoping series (Lemma 4) is now written in the other
way. Therefore we can write Eq. (B42) as

(B42) = α2β2
m−1∑
s=1

〈〈
B⊗2

2

∣∣(MMM⊗2)s−1[NNN −MMM⊗2]NNNm−s−1
∣∣B⊗2

2

〉〉
(B49)

= α2β2
m−1∑
s=1

u2(s−1)
〈〈
B⊗2

2

∣∣[NNN −MMM⊗2]NNNm−s−1
∣∣B⊗2

2

〉〉
. (B50)
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The step from Eqs. (B49) to (B50) is not immediately clear, since

〈〈B2B2|(MMM⊗2)s−1 = x
(s)
11 〈〈B1B1| + x

(s)
12 〈〈B1B2| + x

(s)
21 〈〈B2B1| + u2(s−1)〈〈B2B2|, (B51)

for some coefficients x
(s)
11 , x

(s)
12 , x

(s)
21 ∈ R. However we show that Eq. (B50) is justified, since

〈〈BkBl|[NNN −MMM⊗2]NNNm−s−1
∣∣B⊗2

2

〉〉 = 0, if k = 1 or l = 1. (B52)

This follows from the trace-preserving properties of N ,M, the tracelessness of B2 and the fact that B1 = I
d

. In particular,

〈〈BkBl|NNNm−s
∣∣B⊗2

2

〉〉 = 1

|C(d )|m−s

∑
j

〈〈Bk|GGG⊗2
j |B2〉〉〈〈Bl|GGG⊗2

j |B2〉〉 = 0, (B53)

〈〈BkBl|MMM⊗2NNNm−s−1
∣∣B⊗2

2

〉〉 = 1

|C(d )|m−s−1

∑
j

〈〈Bk|MMMGGG⊗2
j |B2〉〉〈〈Bl|MMMGGG⊗2

j |B2〉〉 = 0, (B54)

if l = 1 or k = 1, since 〈〈B1|MMMGGG⊗2
j |B2〉〉 = 0 and 〈〈B1|GGG⊗2

j |B2〉〉 = 0. This justifies Eq. (B50). Next we use a similar expansion

〈〈
B⊗2

2

∣∣NNN −MMM⊗2 =
∑

i∈ZT S

bi〈〈Ai |, where bi := 〈〈
B⊗2

2

∣∣NNN −MMM⊗2|Ai〉〉. (B55)

Therefore we arrive at

(B42) = α2β2
m−1∑
s=1

u2(s−1)
∑

i∈ZT S

bi〈〈Ai |NNNm−s−1
∣∣B⊗2

2

〉〉
. (B56)

Similarly to the analysis Eq. (B42), we can write Eq. (B44) as

(B44) = (d2 − 1)β2
m−1∑
s=1

u2(s−1)
∑

i∈ZT S

bi〈〈Ai |NNNm−s−1
∣∣ρ̄⊗2

err

〉〉
. (B57)

Finally, we slightly rewrite Eq. (B45) by noting that
(B45) = 〈〈Ē⊗2

err |NNNm−1|ρ̄⊗2
err 〉〉, becauseMMM|ρerr〉〉 = 0. We there-

fore arrive at the following expression of the variance:

V[qj] = α2β2
m−1∑
s=1

u2(s−1)
∑

i∈ZT S

ai

〈〈
B⊗2

2

∣∣NNNm−s−1|Ai〉〉 (B58)

+ 1

d2 − 1
α2

m−1∑
s=1

u2(s−1)
∑

i∈ZT S

ai

〈〈
Ē⊗2

err

∣∣NNNm−s−1|Ai〉〉

(B59)

+ (d2 − 1)β2
m−1∑
s=1

u2(s−1)
∑

i∈ZT S

bi〈〈Ai |NNNm−s−1
∣∣ρ̄⊗2

err

〉〉
(B60)

+ 〈〈Ē⊗2
err

∣∣NNNm−1
∣∣ρ̄⊗2

err

〉〉
. (B61)

This expression is still exact, as we have only expanded each
term in the equation.

The variance bound is obtained by bounding the remaining
inner products and the quantities ai, bi in this expression. This
technical task is delegated to Appendix C, with a number of
technical propositions that compute bounds on the quantities
above. We summarize the results here. The bounds on ai and
bi for i ∈ {0; [adj]; S; 1, 2} are obtained under the assumption

that d = 2 or that � is unital in Propositions 13–18. In
summary

0 = a0 = b0, (B62)

0 � a1,2, b1,2 �
√

d2 − 2

d2
(1 − u)2, (B63)

0 � aS, bS �
√

d2 − 2

d2 − 1

√
2(1 − u)2, (B64)

0 � a[adj], b[adj] �
√

d2 − 1(1 − u)2. (B65)

In the case of d � 4, bounds on ai are needed for i ∈ Z1,2 ∪
ZS \ {[adj]} in terms of the above bounds on aS and a1,2. To
do so, we use Eq. (B7), which states√|V1,2|A1,2 =

∑
i∈Z1,2

√
|Vi |Ai,

√
|VS |AS =

∑
i∈ZS

√
|Vi |Ai.

(B66)

From this it follows that√|V1,2|a1,2 =
∑

i∈Z1,2

√
|Vi |ai,

√
|VS |aS =

∑
i∈ZS

√
|Vi |ai,

(B67)√|V1,2|b1,2 =
∑

i∈Z1,2

√
|Vi |bi

√
|VS |bS =

∑
i∈ZS

√
|Vi |bi.

(B68)
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Thus, since ai, bi � 0 by Proposition 13, these equations imply the following bounds:

ai �
√

|V1,2|
|Vi | a1,2, bi �

√
|V1,2|
|Vi | b1,2, ∀i ∈ Z1,2 (B69)

ai �
√

|VS |
|Vi | aS, bi �

√
|VS |
|Vi | bS, ∀i ∈ ZS \ {[adj]}. (B70)

The size of the relevant spaces (as derived in [36]) was summarized in Table II. The inner products in Eqs. (B58)–(B61) are
bounded using Propositions 19–21. Proposition 19 is applicable since Nm is a CPTP map for any m ∈ N, since CPTP maps
are closed under composition. Now N is CPTP because N is the convex combination of the CPTP sequences Gj and a convex
combination of CPTP maps is CPTP. The results of Propositions 19, 20, and 21 are summarized as follows:

〈〈Ai |NNNm−s−1
∣∣B⊗2

2

〉〉
� 1√|Vi |

, (B71)

〈〈
Ē⊗2

err

∣∣NNNm−s−1|Ai〉〉 � d2‖Ēerr‖2
∞, (B72)

〈〈Ai |NNNm−s−1
∣∣ρ̄⊗2

err

〉〉
�
√

6

(d − 2)(d − 1)
‖ρ̄err‖2

1, (B73)

〈〈
Ē⊗2

err

∣∣NNNm−1
∣∣ρ̄⊗2

err

〉〉
� ‖Ēerr‖2

∞‖ρ̄err‖2
1, (B74)

where we have used that ‖A⊗k‖p = ‖A‖k
p for any k ∈ N and p ∈ [1,∞]. Equations (B72) and (B73) have single-qubit

specific (d = 2) improvements (derived in Proposition 20), using the fact that V1,2 and VS actually are irreducible subrep-
resentations. Since we have explicit expressions for A1,2 and AS [Eqs. (B9) and (B10), respectively], their norms can be
computed directly. Using this gives the improved single-qubit bounds,

〈〈
Ē⊗2

err

∣∣NNNm−s−1|AS〉〉 � 5√
3
‖Ēerr‖2

∞,
〈〈
Ē⊗2

err

∣∣NNNm−s−1|A1,2〉〉 � 2
√

2‖Ēerr‖2
∞, (B75)

〈〈AS |NNNm−s−1
∣∣ρ̄⊗2

err

〉〉
� 1√

3
‖ρ̄err‖2

1, 〈〈A1,2|NNNm−s−1
∣∣ρ̄⊗2

err

〉〉
�

√
2

3
‖ρ̄err‖2

1. (B76)

Plugging all of these bounds into Eqs. (B58)–(B61) and using the geometric series

m−1∑
s=1

u2(s−1) = 1 − u2(m−1)

1 − u2
(B77)

will yield the bound Eq. (B37)

V[qj] � σ 2 = 1 − u2(m−1)

1 − u2
(1 − u)2

[
α2β2c1(d ) + α2c2(d )‖Ēerr‖2

∞ + β2c3(d )‖ρ̄err‖2
1

]+ ‖ρ̄err‖2
1‖Ēerr‖2

∞, (B78)

where

c1(d ) =

⎧⎪⎪⎨
⎪⎪⎩

√
2

4
1√
2

+
√

2
3

√
2 1√

3
= 11

12 , if d = 2,

√
d2−2
d2

∑
i∈Z1,2

√
|V1,2|
|Vi | + √

2
√

d2−2
d2−1

∑
i∈ZS\{[adj]}

√|VS |
|Vi | +

√
d2−1√
|V[adj]|

, if d � 4,

c2(d ) =

⎧⎪⎨
⎪⎩

1
3

(√
2

4 2
√

2 +
√

2
3

√
2 5√

3

) = 13
9 , if d = 2,

d2

d2−1

(√
d2−2
d2

∑
i∈Z1,2

√
|V1,2|√|Vi | + √

2
√

d2−2
d2−1

∑
i∈ZS\{[adj]}

√|VS |√|Vi | + √
d2 − 1

)
, if d � 4,

c3(d ) =

⎧⎪⎨
⎪⎩

3
(√

2
4

√
2

3 +
√

2
3

√
2 1√

3

) = 5
2 , if d = 2,

(d2 − 1)
√

6
(d−2)(d−1)

(√
d2−2
d2

∑
i∈Z1,2

√
|V1,2|√|Vi | + √

2
√

d2−2
d2−1

∑
i∈ZS\{[adj]}

√|VS |√|Vi | + √
d2 − 1

)
, if d � 4.

The size of the spaces Vi in these equations are found in Table II. The asymptotic behavior of the dimension-dependent functions
ci (d ) can be found if all relevant dimensions of the spaces are plugged into the above equations. �
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APPENDIX C: BOUNDS ON INDIVIDUAL QUANTITIES IN THE PROOF

This section provides the technical lemmas and propositions referred to in the previous section. They are collected here
together in an attempt not to clutter the main line of the proof. Most of these technical lemmas put a bound on quantities arising
in the proof of Theorem 1.

We start by bounding the ai . Only bounds on a0, aS , a1,2, and a[adj] are provided. In the multiqubit case where VS and V1,2 are
not irreducible representations, the quantities ai for i ∈ ZS,Zd are bounded by aS and a1,2. The only exception is i = [adj], for
which we provide a separate bound. Let us start with showing that all ai and bi are nonnegative.

Proposition 13 (Lower bound on ai and bi). For all CPTP � and all i ∈ ZT S , one has

ai = 〈〈Ai |NNN −MMM⊗2|B2B2〉〉 � 0, bi = 〈〈B2B2|NNN −MMM⊗2|Ai〉〉 � 0. (C1)

Proof. If i = 0, then Proposition 14 will show that a0 = 0, which includes this lower bound. For all other i ∈ ZT S \ {0}, we
show that M⊗2|Ai〉〉 = 0. This is because M⊗2 is supported on W⊗2 = Span{B1B1, B1B2, B2B1, B2B2}, where A0 = B2B2.
But B1B1, B1B2, B2B1 ∈ (V ⊗2

T S )⊥. Since Ai ∈ V ⊗2
T S \ Span{A0} the claim follows. Therefore ai = 〈〈B2B2|NNN |Ai〉〉. Using the

definitions of N Eq. (B14) and Ai Eq. (B6), it follows that

ai = 1

|Vi ||C(d )|2
∑

G,G ′∈C(d )

∑
vi∈Bi

〈〈vivi |GGG⊗4���⊗4G ′G ′G ′⊗4|B2B2〉〉 = 1

|Vi ||C(d )|2
∑

G,G ′∈C(d )

∑
vi∈Bi

〈〈vi |GGG⊗2���⊗2G ′G ′G ′⊗2|B2〉〉2 � 0, (C2)

which is nonnegative as it is the sum of real numbers squared. Analogously,

bi = 1

|Vi ||C(d )|2
∑

G,G ′∈C(d )

∑
vi∈Bi

〈〈B2|GGG⊗2���⊗2G ′G ′G ′⊗2|vi〉〉2 � 0.

�
Next we show that a0 vanishes.
Proposition 14 (Bound on a0). Let a0 be defined by Eq. (B47). Then for all CPTP quantum channels �, a0 = 0.
Proof. By definition of Eq. (B47) it follows that [using that A0 = B2B2 by definition of Eq. (B8)]

a0 = 〈〈A0|NNN −MMM⊗2|B2B2〉〉 = 〈〈B2B2|���⊗4 − ���⊗4|B2B2〉〉 = 0, (C3)

since GGG (4)
avg|B2B2〉〉 = (GGG (2)

avg)⊗2|B2B2〉〉 = |B2B2〉〉. �
The next proposition gives a bound on a1,2.
Proposition 15 (Bound on a1,2). Let a1,2 be defined as in Eq. (B47) and let � be a CPTP map. If � is a single-qubit channel

(i.e., if d = 2) or if � is unital [i.e., �(I ) = I ], then

a1,2 = 1√
d2 − 2

(
1

d2 − 1

∑
σ∈P∗

〈〈σ |���u���
†
u |σ 〉〉2 − u2

)
�

√
d2 − 2

d2
(1 − u)2. (C4)

Proof. By the definition Eq. (B47), a1,2 = 〈〈A1,2|NNN −MMM⊗2|B2B2〉〉, where

B2B2 = 1

d2 − 1

∑
σ,τ∈P∗

σσττ and A1,2 = 1√
d2 − 2

(∑
σ∈P∗

σ⊗4 − A0

)
(C5)

were defined in Eqs. (B8) and (B9), respectively. Therefore a1,2 is computed as [recalling that A0 = B2B2 and using Eq. (B18)]

a1,2 = 〈〈A1,2|NNN −MMM⊗2|B2B2〉〉

= 1

(d2 − 1)
√

d2 − 2

⎛
⎝ ∑

σ,σ̂ ,τ̂∈P∗
〈〈σσσσ |���⊗4|σ̂ σ̂ τ̂ τ̂ 〉〉 − 〈〈B2B2|���⊗4|B2B2〉〉

⎞
⎠

= 1√
d2 − 2

⎛
⎝ 1

d2 − 1

∑
σ,σ̂ ,τ̂∈P∗

〈〈σ |���|σ̂ 〉〉2 〈〈σ |���|τ̂ 〉〉2 − u2

⎞
⎠

= 1√
d2 − 2

(
1

d2 − 1

∑
σ∈P∗

〈〈σ |���u���
†
u|σ 〉〉2 − u2

)
, (C6)

where in the last step, the following was used:∑
σ̂∈P∗

〈〈σ |���|σ̂ 〉〉〈〈τ |���|σ̂ 〉〉 =
∑
σ̂∈P∗

〈〈σ |���|σ̂ 〉〉〈〈σ̂ |���†|τ 〉〉 = 〈〈σ |���u���
†
u|τ 〉〉, ∀σ, τ ∈ P∗, (C7)
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abusing notation slightly by writing ���u instead of 1 ⊕ ���u and using the fact that
∑

σ̂∈P∗ |σ̂ 〉〉〈〈σ̂ | is the projection onto the unital
block.

The bound of Eq. (C4) is then shown as follows. The idea is to apply Lemma 6 to the map

EEE :=
[

1 0
0 ���u���

†
u

]
, (C8)

since this map is constructed such that

f (E ) = 1

d2 − 1

∑
σ∈P∗

〈〈σ |EEE |σ 〉〉 = 1

d2 − 1

∑
σ∈P∗

〈〈σ |���u���
†
u|σ 〉〉 = u(�) (C9)

and

1

d2 − 1

∑
σ∈P∗

〈〈σ |���u���
†
u|σ 〉〉2 − u(�)2 = 1

d2 − 1

∑
σ∈P∗

〈〈σ |EEE |σ 〉〉2 − f (E )2. (C10)

Application of Lemma 6 requires the map E to be CPTP. This is guaranteed by Lemma 7, using the assumption that � is a
single-qubit or unital channel. Therefore Lemma 6 applied to the channel E defined above, yields

1

d2 − 1

∑
σ∈P∗

〈〈σ |���u���
†
u|σ 〉〉2 − u(�)2 = 1

d2 − 1

∑
σ∈P∗

〈〈σ |EEE |σ 〉〉2 − f (E )2 � d2 − 2

d2
[1 − f (E )]2 = d2 − 2

d2
[1 − u(�)]2. (C11)

Plugging this into Eq. (C6) yields the result. �
The next proposition bounds the quantity aS .
Proposition 16 (Bound on aS). Let aS be defined as in Eq. (B47) and let � be a CPTP map. If � is a single-qubit channel

(i.e., if d = 2) or if � is unital (i.e., �(I ) = I ), then

aS =
√

2

(d2 − 1)
3
2 (d2 − 2)

1
2

∑
σ, τ ∈ P∗

σ �= τ

〈〈σ |���u���
†
u|τ 〉〉2 �

√
d2 − 2

d2 − 1

√
2(1 − u)2. (C12)

Proof. First, let us show the evaluation of aS . By the definition Eq. (B47), aS = 〈〈AS |NNN −MMM⊗2|B2B2〉〉, where

B2B2 = 1

d2 − 1

∑
σ,τ∈P∗

σσττ and AS =
√

1

2(d2 − 1)(d2 − 2)

∑
σ,τ∈P∗
σ �=τ

σ τστ + σττσ (C13)

were defined in Eqs. (B8) and (B9) respectively. Therefore aS is computed as

aS = 〈〈AS |NNN −MMM⊗2|B2B2〉〉

= 1√
2(d2 − 1)

3
2 (d2 − 2)

1
2

∑
σ, τ, σ̂ , τ̂ ∈ P∗

σ �= τ

〈〈στστ + σττσ |���⊗4|σ̂ σ̂ τ̂ τ̂ 〉〉

= 1√
2(d2 − 1)

3
2 (d2 − 2)

1
2

∑
σ, τ, σ̂ , τ̂ ∈ P∗

σ �= τ

2〈〈σ |���|σ̂ 〉〉〈〈τ |���|σ̂ 〉〉〈〈σ |���|τ̂ 〉〉〈〈τ |���|τ̂ 〉〉

=
√

2

(d2 − 1)
3
2 (d2 − 2)

1
2

∑
σ, τ ∈ P∗

σ �= τ

〈〈σ |���u���
†
u|τ 〉〉2

=
√

2

(d2 − 1)
3
2 (d2 − 2)

1
2

∑
σ, τ ∈ P∗

σ �= τ

〈〈σ |I − ���u���
†
u|τ 〉〉2

. (C14)

In the fourth step, the trick of Eq. (C7) was again used. In the final step, it is used that 〈〈σ |���u���
†
u|τ 〉〉2

is the square of off-diagonal

matrix elements of ���u���
†
u, so that 〈〈σ |���u���

†
u|τ 〉〉2 = 〈〈σ |I − ���u���

†
u|τ 〉〉2

.
The bound is derived as follows. Under the stated assumption that � is a single-qubit or unital channel, Lemma 7 guarantees

that ‖�u�
†
u‖2→2 � 1. Here ‖ · ‖2→2 is the induced Schatten 2-norm [see Eq. (A7)]. Since 〈〈A|B〉〉 = Tr[A†B] for any A,B ∈

L(H) [and therefore ‖A‖2 = ‖|A〉〉‖2 for all A ∈ L(H)], it follows that ‖���u���
†
u‖2→2 = ‖�u�

†
u‖2→2. But the operator norm
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(Schatten ∞-norm) on matrices is just the induced 2 → 2 norm, so that it can be concluded that ‖���u���
†
u‖∞ = ‖���u���

†
u‖2→2 =

‖�u�
†
u‖2→2 � 1. Together with the fact that a matrix of the form ���u���

†
u is itself positive semidefinite, this implies that the matrix

I − ���u���
†
u � 0 is also positive semidefinite as a matrix (not to be confused with being a positive superoperator). Now the key

idea is to bound the off-diagonal elements of the symmetric positive semidefinite matrix I − ���u���
†
u by the diagonal elements

using the Sylvester’s Criterion for positive semidefinite matrices (Lemma 8). This criterion states that a Hermitian matrix is
positive semidefinite if and only if all of its principal minors are nonnegative. Here we use the only if part, since it has been
established that I − ���u���

†
u is positive semidefinite. In particular we use that the positive semidefiniteness of I − ���u���

†
u implies

that all of its second order minors are nonnegative. This means that

〈〈σ |I − ���u���
†
u|σ 〉〉〈〈τ |I − ���u���

†
u|τ 〉〉 − 〈〈σ |I − ���u���

†
u|τ 〉〉2 � 0, ∀σ, τ ∈ P∗, σ �= τ. (C15)

Plugging this into Eq. (C14) yields

aS �
√

2

(d2 − 1)
3
2 (d2 − 2)

1
2

∑
σ, τ ∈ P∗

σ �= τ

〈〈σ |I − ���u���
†
u|σ 〉〉〈〈τ |I − ���u���

†
u|τ 〉〉

=
√

2

(d2 − 1)
3
2 (d2 − 2)

1
2

⎡
⎣(∑

σ∈P∗
〈〈σ |I − ���u���

†
u|σ 〉〉

)2

−
∑
σ∈P∗

〈〈σ |I − ���u���
†
u|σ 〉〉2

⎤
⎦. (C16)

The final step is to use that the mean of squares is larger than the square of the mean (Lemma 10). This means in our setting that

1

d2 − 1

∑
σ∈P∗

〈〈σ |I − ���u���
†
u|σ 〉〉2 �

(
1

d2 − 1

∑
σ∈P∗

〈〈σ |I − ���u���
†
u|σ 〉〉

)2

. (C17)

Multiplying by −(d2 − 1) and plugging into Eq. (C16) yields the bound

aS �
√

2

(d2 − 1)
3
2 (d2 − 2)

1
2

(
1 − 1

d2 − 1

)(∑
σ∈P∗

〈〈σ |I − ���u���
†
u|σ 〉〉

)2

(C18)

=
√

2

(d2 − 1)
3
2 (d2 − 2)

1
2

d2 − 2

d2 − 1
((d2 − 1)(1 − u))2 (C19)

=
√

d2 − 2

d2 − 1

√
2(1 − u)2, (C20)

using the definition of u Eq. (A12) and the fact that u(I ) = 1. �
Finally, a bound on a[adj] is presented.
Proposition 17 (Bound on a[adj]). Let a[adj] be defined as in Eq. (B47) and let � be a CPTP map. If � is a single-qubit channel

(i.e., if d = 2) or if � is unital [i.e., �(I ) = I ], then

a[adj] = 2

(d2 − 4)(d2 − 1)
3
2

∑
τ∈P∗

⎛
⎝∑

σ∈Cτ

〈〈σ · τ |���u���
†
u|σ 〉〉

⎞
⎠

2

�
√

d2 − 1(1 − u)2, (C21)

where Cτ is the set of all normalized Pauli’s that commute with τ (except for τ and σ0), as defined in Eq. (A3).
Proof. By the definition Eq. (B47), a[adj] = 〈〈AS |NNN −MMM⊗2|B2B2〉〉, where

B2B2 = 1

d2 − 1

(∑
σ̂∈P∗

σ̂ σ̂

)⊗2

and A[adj] = 1

2(d2 − 4)
√

d2 − 1

∑
τ∈P∗

⎡
⎣∑

σ∈Cτ

(σ · τ )σ + σ (σ · τ )

⎤
⎦

⊗2

(C22)

were defined in Eqs. (B8) and (B12) respectively. Therefore a[adj] is computed as

a[adj] = 1

2(d2 − 4)(d2 − 1)
3
2

∑
τ∈P∗

˝˝⎡
⎣∑

σ∈Cτ

(σ · τ )σ + σ (σ · τ )

⎤
⎦

⊗2

|���⊗4 |
(∑

σ̂∈P∗
σ̂ σ̂

)⊗2
˛̨

= 1

2(d2 − 4)(d2 − 1)
3
2

∑
τ∈P∗

⎡
⎣∑

σ∈Cτ

∑
σ̂∈P∗

〈〈(σ · τ )σ + σ (σ · τ )|���⊗2|σ̂ σ̂ 〉〉
⎤
⎦

2
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= 1

2(d2 − 4)(d2 − 1)
3
2

∑
τ∈P∗

⎛
⎝∑

σ∈Cτ

∑
σ̂∈P∗

2〈〈σ · τ |���|σ̂ 〉〉〈〈σ |���|σ̂ 〉〉
⎞
⎠

2

= 2

(d2 − 4)(d2 − 1)
3
2

∑
τ∈P∗

⎛
⎝∑

σ∈Cτ

〈〈σ · τ |���u���
†
u|σ 〉〉

⎞
⎠

2

, (C23)

where in the final line we used again the trick of Eq. (C7). Our bound on this quantity again starts with using the fact that the
mean of the squares is larger than the square of the mean (Lemma 10), yielding for all τ ∈ P∗

⎛
⎝ 2

d2 − 4

∑
σ∈Cτ

〈〈σ · τ |���u���
†
u|σ 〉〉

⎞
⎠

2

� 2

d2 − 4

∑
σ∈Cτ

〈〈σ · τ |���u���
†
u|σ 〉〉2

. (C24)

Multiplying with d2−4
2 and plugging into the above yields

aS � 1

(d2 − 1)
3
2

∑
τ∈P∗

∑
σ∈Cτ

〈〈σ · τ |���u���
†
u|σ 〉〉2

. (C25)

Now we use the facts that σ · τ �= σ to write this as

aS � 1

(d2 − 1)
3
2

∑
τ∈P∗

∑
σ∈Cτ

〈〈σ · τ |I − ���u���
†
u|σ 〉〉2

, (C26)

where I − ���u���
†
u is a positive semidefinite matrix, since ‖���u���

†
u‖∞ = ‖�u�

†
u‖2→2 � 1 under the stated assumptions on � by

Lemma 7 and the fact that a matrix of the form ���u���
†
u is itself positive semidefinite. This allows us again to use Sylvester’s

criterion (Lemma 8) to bound off-diagonal terms by diagonal terms by using the fact that all minors of degree 2 of I − ���u���
†
u

must be nonnegative:

〈〈σ |I − ���u���
†
u|σ 〉〉〈〈σ · τ |I − ���u���

†
u|σ · τ 〉〉 − 〈〈σ · τ |I − ���u���

†
u|σ 〉〉2 � 0, ∀τ ∈ P∗, ∀σ ∈ Cτ . (C27)

Therefore, we arrive at

aS � 1

(d2 − 1)
3
2

∑
τ∈P∗

∑
σ∈Cτ

〈〈σ |I − ���u���
†
u|σ 〉〉〈〈σ · τ |I − ���u���

†
u|σ · τ 〉〉

� 1

(d2 − 1)
3
2

∑
τ,σ∈P∗

〈〈σ |I − ���u���
†
u|σ 〉〉〈〈τ |I − ���u���

†
u|τ 〉〉

=
√

d2 − 1(1 − u)2, (C28)

where in the second line the sum over σ ∈ Cτ was completed to the sum over σ ∈ P∗ by adding all the nonnegative terms
〈〈σ |I − ���u���

†
u|σ 〉〉〈〈σ · τ |I − ���u���

†
u|σ · τ 〉〉 with σ ∈ P∗ \ Cτ for each τ ∈ P∗. All these terms are nonnegative because they are

the product of diagonal elements of positive-semidefinite matrices, which must be nonnegative. �
This completes the set of propositions to bound the quantities ai . The quantities bi are strongly related to the quantities ai ,

and we will show that they satisfy the same upper bounds. More precisely, the next proposition establishes that all bounds on ai

also hold for bi , for i ∈ {1, 2; S; 0; [adj]}.
Proposition 18 (Bounds on bi). Let � be a CPTP map. Assume that d = 2 or that � is unital. Let ai = 〈〈Ai |NNN −MMM⊗2|B2B2〉〉

and bi = 〈〈B2B2|NNN −MMM⊗2|Ai〉〉 as above. Then

b0 = a0 = 0, (C29)

b1,2 = a1,2 �
√

d2 − 2

d2
(1 − u)2, (C30)

bS = aS �
√

d2 − 2

d2 − 1

√
2(1 − u)2, (C31)

b[adj] �
√

d2 − 1(1 − u)2. (C32)
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Proof. The equality b0=a0=〈〈B2B2|NNN −MMM⊗2|B2B2〉〉 immediately follows from the fact that A0 = B2B2. Thus b0 = 0 by
Proposition 14. In general, bi can be written as

bi = 〈〈B2B2|NNN −MMM⊗2|Ai〉〉 = 〈〈Ai |NNN† − (MMM⊗2)†|B2B2〉〉. (C33)

Now since G (n)
avg are orthogonal projections, (G (n)

avg)† = G (n)
avg. Therefore N† = G (4)

avg(�†)⊗4G (4)
avg and M† = G (2)

avg(�†)⊗2G (2)
avg. Thus,

bi and ai are related by bi (�) = ai (�†). That is, bi can be obtained from ai by replacing � with �† in the exact expressions.
We first show that this implies b1,2 = a1,2 and bS = aS . This follows from the two identities [using only the trick of Eq. (C7)

over and over again] ∑
σ∈P∗

〈〈σ |���u���
†
u|σ 〉〉2 =

∑
σ∈P∗

〈〈σ |���u|σ̂ 〉〉2〈〈σ |���u|σ̂ 〉〉2 =
∑
σ∈P∗

〈〈σ̂ |���†
u���u|σ̂ 〉〉2

, (C34)

∑
σ,τ∈P∗

〈〈σ |���u���
†
u|τ 〉〉2 =

∑
σ,τ,σ̂ ,τ̂∈P∗

〈〈σ |���u|σ̂ 〉〉〈〈τ |���u|σ̂ 〉〉〈〈σ |���u|τ̂ 〉〉〈〈τ |���u|τ̂ 〉〉 =
∑

σ̂ ,τ̂∈P∗
〈〈σ̂ |���†

u���u|τ̂ 〉〉2
. (C35)

Now Eq. (C34) implies that a1,2(�) = a1,2(�†) = b1,2(�). Subtracting Eq. (C34) from Eq. (C35) implies that aS (�) =
aS (�†) = bS (�). This shows the second and third claim of this proposition [Eq. (C30) and Eq. (C31)], using the bounds and
expressions for a1,2 and aS from Proposition 15 and 16

For b[adj] it is not clear that b[adj] equals a[adj]. However, by copying the technique of the proof of Proposition 17 we show that
the same bounds hold. Since b[adj](�) = a[adj](�†), Proposition 17 implies that

b[adj] = 2

(d2 − 4)(d2 − 1)
3
2

∑
τ∈P∗

⎛
⎝∑

σ∈Cτ

〈〈σ · τ |���†
u���u|σ 〉〉

⎞
⎠

2

. (C36)

The bound is proven in exactly the same spirit as Proposition 17. We first bound the square of the mean by the mean of the

squares (Lemma 10) and then use that 〈〈σ · τ |���†
u���u|σ 〉〉2 = 〈〈σ · τ |I − ���

†
u���u|σ 〉〉2

(since σ · τ �= ±σ ). The matrix I − ���
†
u���u is

then shown to be positive semidefinite using ‖���†
u���u‖∞ � 1 (by the assumptions on � and Lemma 7) together with the fact that

���
†
u���u � 0 is positive semidefinite. Thus Sylvester’s criterion can be applied (Lemma 8)Therefore

b[adj] = 2

(d2 − 4)(d2 − 1)
3
2

∑
τ∈P∗

⎛
⎝∑

σ∈Cτ

〈〈σ · τ |���†
u���u|σ 〉〉

⎞
⎠

2

� 1

(d2 − 1)
3
2

∑
τ∈P∗

∑
σ∈Cτ

〈〈σ · τ |���†
u���u|σ 〉〉2

= 1

(d2 − 1)
3
2

∑
τ∈P∗

∑
σ∈Cτ

〈〈σ · τ |I − ���†
u���u|σ 〉〉2

� 1

(d2 − 1)
3
2

∑
τ∈P∗

∑
σ∈Cτ

〈〈σ |I − ���†
u���u|σ 〉〉〈〈σ · τ |I − ���†

u���u|σ · τ 〉〉

� 1

(d2 − 1)
3
2

∑
τ,σ∈P∗

〈〈σ |I − ���†
u���u|σ 〉〉〈〈τ |I − ���†

u���u|τ 〉〉

=
√

d2 − 1(1 − u)2, (C37)

where in the last inequality the sum is completed by adding the nonnegative terms 〈〈σ |I − ���
†
u���u|σ 〉〉〈〈τ |I − ���

†
u���u|τ 〉〉 for all

τ ∈ P∗ and σ ∈ P∗ \ Cτ . Note that this is the same bound as on a[adj]. �
Finally two more propositions are needed to bound the inner products in the expanded variance expression. The tool for this is

the following. This proposition is formulated for any general CPTP map E and Hermitian operators X, Y ∈ L(H). This theorem
is applicable to inner products involving the map Nm−s−1, since this is a CPTP map.

Proposition 19. Let E be a CPTP map on a general Hilbert space H. Then for any pair of Hermitian operators X, Y ∈ L(H)

〈〈X|EEE |Y 〉〉 � ‖X‖∞‖Y‖1. (C38)
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Proof. By Von Neumann’s trace inequality and Hölders
inequality (Lemma 9) it follows that

〈〈X|EEE |Y 〉〉 = Tr[XE (Y )] � ‖X‖∞‖E (Y )‖1, (C39)

using that X and E (Y ) are Hermitian. We then use the induced
trace norm (the 1 → 1 norm) and the fact that the map E is a
CPTP map so that ‖E‖1→1 � 1 (Lemma 5). Therefore

‖X‖∞‖E (Y )‖1 � ‖X‖∞‖E‖1→1‖Y‖1 � ‖X‖∞‖Y‖1.

(C40)

Putting this together proves the bound. �
In order to apply the above proposition to the inner prod-

ucts occurring in the variance proof, a bound on the norms of
the operators Ai with i ∈ ZT S is needed.

Proposition 20 (Norm bounds on Ai). Let {Ai : i ∈ ZT S}
be defined as in Eq. (B6). Then for d � 4 the following
bounds hold:

‖Ai‖1 � d2 and ‖Ai‖∞ �
√

6

(d − 2)(d − 1)
, ∀i ∈ ZT S.

(C41)

If d = 2, then ZT S = {S; 1, 2}, and

‖AS‖1 = 5√
3
, ‖AS‖∞ = 1√

3
, (C42)

‖A1,2‖1 = 2
√

2, ‖A1,2‖∞ =
√

2

3
. (C43)

Proof. For the d = 2 case, the norms can be computed
directly, since AS and A1,2 are explicitly defined in Eq. (B9)–
Eq. (B10). By direct computation the result follows. For d�4,
the trace norm bound is trivial, since

‖Ai‖1 �
√

d4‖Ai‖2 = d2, (C44)

by Hölder’s inequality. The last equality uses the fact that Ai

are Hilbert-Schmidt normalized (‖Ai‖2 = 1). The effort of the
proof is in the bound on ‖Ai‖∞.

The proof of this statement uses the description of the
tensor-2 Liouville representation of Ref. [34] over Ref. [36],
since their description is basis-free. Reference [34] considers
the action of the Clifford group C(d ) on H⊗4. The represen-
tation H⊗4 of the Clifford group C(d ) decomposes as

H⊗4 =
⊕

k

Wk ⊗ Cdk , (C45)

where Wk are irreducible, pairwise inequivalent representa-
tions of the Clifford group that occur with multiplicity dk .
Here k is just an index for the irreducible, inequivalent rep-
resentations. Descriptions of these spaces and explicit expres-
sions for their dimensions are given in [34] (there the index k

runs over Young Diagrams λ and signs s). We will show that

‖Ai‖∞ � max
k

1√|Wk|
. (C46)

Since the dimensions of all Wk are given, the maximization
can easily be done.

Using the intertwining isomorphism L(H) � H ⊗ H∗ the
tensor-4 Liouville representation on L(H⊗4) can be written in
terms of the decomposition Eq. (C45):

L(H⊗4) =
⊕
k,l

L(Wl,Wk ) ⊗ L(Cdl ,Cdk ). (C47)

In principle L(Wl,Wk ) are not irreducible representations.
However, only the trivial subrepresentations of L(Wl,Wk )
[denoted (L(Wl,Wk ))C(d )] are relevant, since

(L(H⊗4))C(d ) =
⊕
k,l

(L(Wl,Wk ))C(d ) ⊗ L(Cdl ,Cdk ). (C48)

The key point is that every element ϕ ∈ (L(Wl,Wk ))C(d ) is
an intertwining operator between the representations Wk and
Wl [37]. By Schur’s Lemma [37] and the fact that Wk are
mutually inequivalent irreducible representations it follows
that ϕ ∝ δk,lIWk

. Therefore

(L(H⊗4))C(d ) =
⊕

k

Span
{
IWk

}⊗ L(Cdk ). (C49)

This description provides a simple orthogonal basis for the
space (L(H⊗4))C(d ), namely,

A = {
PWk

⊗ Em,n

∣∣k; m, n = 1, . . . , dk

}
, (C50)

where PWk
is the orthogonal projection onto Wk and

{Em,n|m, n = 1, . . . , dk} is the canonical (or any other) or-
thonormal basis of L(Cdk ). Normalizing with respect to the
Hilbert-Schmidt norm yields the orthonormal basis operators

Ak,m,n = PWk√|Wk|
⊗ Em,n. (C51)

Note that our basis operators {Ai : i ∈ ZT S} might be dif-
ferent than these Ak,m,n. However, these Ai also span trivial
subrepresentations of L(H⊗4), so Ai ∈ L(H⊗4)C(d ). We now
show that ‖A‖ � maxk |Wk|− 1

2 for all A ∈ L(H⊗4)C(d ) such
that ‖A‖2 = 1. Therefore this bound holds in particular for
our Ai of interest. To do so, A is written in the basis A as

A =
∑

k

dk∑
m,n=1

αk,m,nAk,m,n, s.t.
∑

k

dk∑
m,n=1

|αk,m,n|2 = 1.

(C52)

Now we use that the operator A ∈ (L(H⊗4))C(d ) is block
diagonal with respect to the spaces Span{IWk

} ⊗ L(Cdk ) [see
Eq. (C49)]. Therefore the infinity norm can be computed as
the maximum over k of the infinity norm of A restricted to
Span{IWk

} ⊗ L(Cdk ), yielding

‖A‖∞ =
∥∥∥∥∥
∑

k

dk∑
m,n=1

αk,m,nAk,m,n

∥∥∥∥∥
∞

= max
k

∥∥∥∥∥
dk∑

m,n=1

αk,m,nAk,m,n

∥∥∥∥∥
∞

= max
k

∥∥∥∥∥ PWk√|Wk|
⊗

dk∑
m,n=1

αk,m,nEm,n

∥∥∥∥∥
∞

. (C53)
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Using some basic properties of the Schatten p-norms, this is
bounded as follows:

‖A‖∞ = max
k

∥∥∥∥ PWk√|Wk|

∥∥∥∥
∞

∥∥∥∥∥
dk∑

m,n=1

αk,m,nEm,n

∥∥∥∥∥
∞

= max
k

∥∥PWk

∥∥
∞√|Wk|

∥∥∥∥∥
dk∑

m,n=1

αk,m,nEm,n

∥∥∥∥∥
∞

� max
k

1√|Wk|
, (C54)

using that ‖PWk
‖∞ = 1 and∥∥∥∥∥

dk∑
m,n=1

αk,m,nEm,n

∥∥∥∥∥
∞

�
∥∥∥∥∥

dk∑
m,n=1

αk,m,nEm,n

∥∥∥∥∥
2

�
dk∑

m,n=1

|αk,m,n|2‖Em,n‖2 = 1. (C55)

By Lemma 1 of Ref. [34], which gives all dimensions |Wk|, it
follows that

‖A‖∞ � max
k

1√|Wk|
=
√

6

(d − 1)(d − 2)
, (C56)

provided that d = 2q � 4, q ∈ N. This proves the last
bound. �

Finally, there is one inner product in the proof of Theo-
rem 1 for which a sharper bound can be found than using
Proposition 19 and 20. This sharper bound is given in the
following proposition.

Proposition 21. Let N be defined as in Eq. (B14), with �

a single-qubit or unital quantum channel. Then for any m ∈ N
the following bound holds:

〈〈Ai |NNNm|B2B2〉〉 � 1√|Vi |
, ∀i ∈ ZT S. (C57)

Proof. Slightly rewriting the inner product yields

〈〈Ai |NNNm|B2B2〉〉 = 〈〈Ai |Nm(B2B2)〉〉. (C58)

From the definition of N Eq. (B14) it follows that

Nm(B2B2) = 1

|C(d )|m
∑

j

G⊗4
j (B2B2)

= 1

|C(d )|m
∑

j

[
G⊗2

j (B2)
]⊗2

, (C59)

where the sum is over all noisy sequences of length m indexed
by j (i.e., j is a multi-index of length m). We will show that
‖G⊗2

j (B2)‖2 � 1. we treat the multiqubit and single-qubit case
separately. In the multiqubit case, we have∥∥G⊗2

j (B2)
∥∥

2 �
∥∥G⊗2

j

∥∥
2→2‖B2‖2 = ‖Gj‖2

2→2. (C60)

The inequality follows from the definition of the induced
Schatten norms [see Eq. (A7)]. The equality is due to the fact
that ‖B2‖2 = 1 is normalized. Under the assumption that � is
unital, the entire sequence Gj is unital. Therefore by Lemma 5
(Pérez-García), ‖Gj‖2

2→2�1. This shows that ‖G⊗2
j (B2)‖2�1.

In case of a single-qubit, nonunital error channels �,
some extra care must be taken. Let us denote L(H)H :=
{A ∈ L(H) : Tr[A] = 0, A = A†} = SpanR{σ : σ ∈ P∗}
as the traceless Hermitian subspace of L(H). This space
is a vector space over R, with an orthonormal basis P∗.
Since Gj is positive (and thus maps Hermitian operators
to Hermitian operators) and trace-preserving, it maps the
traceless Hermitian subspace L(H)H to itself. Observe that
B2 ∈ (L(H)H )⊗2. Therefore restrict G⊗2

j to (L(H)H )⊗2. This
results in ∥∥G⊗2

j (B2)
∥∥

2 = ∥∥G⊗2
j

∣∣
(L(H)H )⊗2 (B2)

∥∥
2

�
∥∥G⊗2

j

∣∣
(L(H)H )⊗2

∥∥
2→2‖B2‖2

= ‖Gj|L(H)H ‖2
2→2. (C61)

The first equality is the restriction of Gj to the traceless
Hermitian subspace. The inequality follows from the
definition of the induced Schatten norm Eq. (A7). The final
equality is due to the fact that ‖B2‖2 = 1. The key point of
restricting to the traceless Hermitian subspace ‖Gj|L(H)H ‖2→2

allows for the application of statement Eq. (A25) of Lemma 5
(Pérez-García). By the lemma (where ‖Gj|L(H)H ‖2→2 is
denoted ‖Gj‖H

2→2), we have

‖Gj
∣∣
L(H)H ‖2→2 �

√
d

2
, (C62)

which in the single-qubit case means ‖Gj|L(H)H ‖2→2 � 1.

Therefore, we also have ‖G⊗2
j (B2)‖2 � 1 in the single-qubit,

nonunital case.
We have thus established that ‖G⊗2

j (B2)‖2 � 1 for single-
qubit or unital noise maps �. Therefore, the following upper
bound is valid:

〈〈Ai |NNNm|B2B2〉〉 = 1

|C(d )|m
∑

j

〈〈
Ai

∣∣[G⊗2
j (B2)

]⊗2〉〉

� 1

|C(d )|m
∑

j

max
Q ∈ (L(H)H )⊗2

‖Q‖2 � 1

〈〈Ai |Q⊗2〉〉

= max
Q ∈ (L(H)H )⊗2

‖Q‖2 � 1

〈〈Ai |Q⊗2〉〉. (C63)

In the second line, we have replaced the particular operator
G⊗2

j (B2) ∈ (L(H)H )⊗2 which satisfies ‖G⊗2
j (B2)‖2 � 1 with

the maximization over all operators Q ∈ (L(H)H )⊗2 that
satisfy ‖Q‖2 � 1. To continue, we use the definition of Ai

Eq. (B6), which is given by

Ai = 1√|Vi |
|Vi |∑
s=1

v(i)
s v(i)

s , ∀i ∈ ZT S, (C64)

where {v(i)
s } is an orthonormal basis of Vi ⊂ (L(H)H )⊗2. Let

us expand Q in this basis,

Q = q⊥v
(i)
⊥ +

|Vi |∑
s=1

qsv
(i)
s s.t. |q⊥|2 +

|Vi |∑
s=1

|qs |2 � 1,

q⊥, qs ∈ C, ∀s = 1, . . . , |Vi |. (C65)

012315-33



BAS DIRKSE, JONAS HELSEN, AND STEPHANIE WEHNER PHYSICAL REVIEW A 99, 012315 (2019)

Here q⊥v
(i)
⊥ is the component of Q in the space orthogonal to Vi , i.e., q⊥v

(i)
⊥ ∈ (L(H)H )⊗2 \ Vi . The condition on q⊥ and the

qs follow from the requirement that ‖Q‖2 � 1. Actually, there are additional constraints on q⊥ and the qs needed to ensure that
Q is traceless and Hermitian, but these constraints are not necessary to prove the result. Using the expansion Eq. (C65) it follows
that

max
Q ∈ (L(H)H )⊗2

‖Q‖2 � 1

〈〈Ai |Q⊗2〉〉

� max
{qs }∑

s |qs |2 � 1

1√|Vi |
|Vi |∑

s,t,k=1

|qsqt |
∣∣〈〈v(i)

k v
(i)
k

∣∣v(i)
s v

(i)
t

〉〉∣∣

= max
{qs }∑

s |qs |2 � 1

1√|Vi |
|Vi |∑
k=1

|qk|2 � 1√|Vi |
, (C66)

using the fact that 〈〈v(i)
k v

(i)
k |v(i)

s v
(i)
t 〉〉 = δskδtk by orthonormality of the basis. This completes the proof. �
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