
Edge phase transitions of the tricritical Potts model in two dimensions

Youjin Deng1,* and Henk W. J. Blöte1,2

1Faculty of Applied Sciences, Delft University of Technology, P. O. Box 5046, 2600 GA Delft, The Netherlands
2Lorentz Institute, Leiden University, P. O. Box 9506, 2300 RA Leiden, The Netherlands

sReceived 2 October 2004; published 10 February 2005d

Using Monte Carlo techniques and finite-size analysis, we investigate several two-dimensional lattice mod-
els with open edges, including the Blume-Capel model and theq=1 and 3 Potts models with vacancies. At bulk
tricriticality, we find that the open edges are dominated by the vacancies when the surface couplingKs and the
chemical potentialDs of the vacancies assume the bulk values. WhenKs and/orDs is sufficiently enhanced, an
edge phase transition takes place, beyond which spontaneous one-dimensional order occurs on the edges. Edge
phase transitions can also be induced by a surface magnetic fieldHs. We numerically determine a number of
edge critical exponents and derive phase diagrams in terms ofKs, Ds, andHs. In the low-temperature region,
we observe first-order transitions whenKs and Ds are varied; the associated hysteresis loops of surface
quantities are remarkably asymmetric. Some further insight into these edge transitions is provided by the exact
equivalence of the tricriticalq=1 Potts model and the Ising model.
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I. INTRODUCTION

While theoretical physicists frequently study phase transi-
tions in systems with periodic boundary conditions, in reality
systems generally have surfaces. Thus, there may be a need
to consider the effects due to the presence of surfaces. For a
d-dimensional system containingLd atoms, the relative frac-
tion of atoms at or near a surface is of order 1/L, and hence
for largeL it is usually justified to neglect the surface effects
on bulk properties of the material. However, near a phase
transition, correlations become long ranged, so that relatively
small perturbations can produce large responses. Therefore,
surface effects can become significant, and in many cases
they cannot be ignored. Indeed surface phase transitions have
been the subject of considerable research interest in the past
decadesf1–11g. Many theoretical and numerical methods
have been developed, including mean-field approximations,
high- and low-temperature expansions, renormalization
group techniques, conformal field theory, and Monte Carlo
simulations, etc.

Most of these results apply to three-dimensional systems,
and in this context, we briefly review surface critical phe-
nomena of the Ising model on a simple-cubic lattice with two
open surfaces in thez direction and periodic boundary con-
ditions in thexy plane f1,4,8,10g. The Hamiltonian of this
system can be divided into two parts: bulk terms and surface
terms, i.e.,

H/kBT = − Ko
i j

b

sisj − Ho
k

b

sk − Kso
lm

s

slsm − Hso
n

s

sn. s1d

The spins assume values61, and interactions occur between
nearest-neighbor spins. The first two sums account for the

bulk, and the last two sums involve spins on the open sur-
faces. For a finite cube with linear sizeL, the surface terms
concern an area 2L2, because there are surfaces both atz
=0 and atz=L.

In three dimensions, exact information is scarce about the
bulk critical behavior of the Ising model described by Eq.
s1d, so that investigations have to depend on approximations.
Nevertheless, accurate information has been obtained. For
instance, it has been determinedf12g that the bulk critical
point isK=Kc=0.221 654 55s3d andH=Hc=0, and the ther-
mal and magnetic renormalization exponents areyt
=1.5868s3d and yh=2.4816s1d, respectively. Surface critical
phenomena in this magnetic systems1d are now also well
analyzedf1,4,8,10g. In the absence of magnetic fieldsH
=Hs=0 and for ferromagnetic couplingsKù0 and Ksù0,
the phase diagram is sketched in Fig. 1. In the high-
temperature region, i.e., the bulk couplingsK,Kc, the bulk
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FIG. 1. Sketch of the surface phase transitions of the Ising
model in three dimensions. The vertical axis is the bulk temperature
1/K, and the parameterk=sKs−Kd /K in the horizontal axis repre-
sents the enhancement of the surface couplings. The “surface,” the
“ordinary,” and the “extraordinary” phase transitions are repre-
sented by the thick solid, the thin solid, and the dashed lines, re-
spectively. The lines meet in a point, shown as the black circle,
which is referred to as the “special” phase transition.
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is in the paramagnetic states“disordered”d, so that the bulk
correlations remain finite. However, phase transitions can
still occur on the open surfaces when the surface couplings
Ks are varied. These transitions, referred to as the “surface
transitions”, are shown as the curved solid line in Fig. 1.
Apparently, they belong to the same universality class as
Onsager’s Ising modelf13g in two dimensions, so that the
thermal and magnetic exponents aref13g yts=1 and yhs
=15/8, respectively. At the bulk critical pointK=Kc, the line
of surface transitions terminates at a pointsKc,Kscd, which
acts as a multicritical point. For relatively small surface cou-
plings Ks,Ksc, both the bulk and the surfaces undergo a
second-order phase transition atK=Kc when K is varied.
However, for larger surface couplingsKs.Ksc, the surfaces
become ferromagnetic at a smaller bulk couplingK,Kc, so
that the bulk transitionK=Kc occurs in the presence of spon-
taneous surface order. Along the bulk critical lineK=Kc, the
phase transitions forKs,Ksc, Ks=Ksc, and Ks.Ksc are re-
ferred to as the “ordinary,” the “special,” and the “extraordi-
nary” transitions, respectively. In order to describe the scal-
ing aspects of these surface transitions, besides the bulk
exponentsyt andyh, additional surface critical exponents are
also needed. The ordinary and the extraordinary transitions
have one additional relevant surface magnetic scaling field;
both the surface thermal and magnetic scaling fields are rel-
evant at the special transition. We denote the corresponding
exponents asyhs

sod, yhs
sed, yts

ssd, and yhs
ssd respectively, where the

superscriptssod, sed, andssd are for the ordinary, the extraor-
dinary, and the special transitions, respectively. In an analogy
with the bulk onesyt and yh, exact values of these surface
exponents are unavailable. It has been numerically deter-
mined f1,4,8,9,14g that yhs

sod=0.737s5d, yts
ssd=0.94s6d, andyhs

ssd

=1.62s2d.
The present paper investigates the surface effects on a

number of two-dimensional systems. However, in this case,
the “surfaces” are just one-dimensional edges. Since one-
dimensional systems with short-range interactions are known
not to order for any nonzero temperature, the “surface tran-
sitions” occurring atK,Kc simply cannot exist on open
edges of two-dimensional systems. It may then seem natural
that no spontaneous edge order can occur without a long-
ranged ordered bulk. In other words, in two dimensions, it
may be expected that only the ordinary transition exists on
the one-dimensional surfaces. It has further been arguedf1g
that the surface dimensionalityd=2 is the lower critical di-
mensionality for the special, the surface, and the extraordi-
nary transitions. This is consistent with exact results for the
Ising model in two dimensions. Exact calculations of surface
effects in this modelf15,16g were not restricted to the critical
region but covered in the entire temperature range. At the
bulk criticality, it was shown that, for any finite surface cou-
pling Ks, the transition on the open edges is just the ordinary
transition. The corresponding surface magnetic exponent is
yhs

sod=1/2 f15,16g, different from the bulk exponentyh
=15/8 f13g. The surface magnetization densityms and the
surface susceptibilityxs at the ordinary transition appear to
be of logarithmic naturef15,16g, i.e.,

mssHsd ~ HsulnHsu sK = Kc,uHsu ! 1d s2d

and

xsstd ~ zlnutuz sHs = 0,utu = uK − Kcu ! 1d, s3d

wherexs is defined as]ms/]Hs.
The statement that only ordinary transitions occur on the

edges can be generalized to the critical branch of theq-state
Potts model in two dimensions. For a review of the Potts
model, see Ref.f17g. For this model, the nature of the bulk
critical singularities is now well established. This is mostly
due to exact calculationsf19,18g, Coulomb gas theoryf20g,
and conformal field theoryf3g. In the context of the Coulomb
gas theoryf20g, a sequence of universal exponents can be
exactly expressed in terms of a single parameterg, i.e., the
coupling strength of the Coulomb gas. The parameterg sat-
isfiesq=2+2 cossgp /2d, with 2øgø4 and 4øgø6 for the
critical and the tricritical branch of the Potts model, respec-
tively. The leading thermal and magnetic exponents of the
Potts model aref20,21g yt=3−6/g andyh=sg+2dsg+6d /8g,
respectively. For the ordinary surface transition of the critical
Potts model, Cardyf5–7g employed boundary conformal
field theory, and expressed the surface magnetic exponent
yhs

sod in terms of the bulk thermal exponentyt as

yhs
sod = 2 − 3/s3 − ytd = 2 −g/2 s2 ø g ø 4d. s4d

A remarkable feature of Eq.s4d is that yhs
sod is a decreasing

function of the Coulomb gas couplingg. In particular, for the
q=4 Potts modelsg=4d, Eq. s4d yields yhs

sod=0, so that the
surface magnetic scaling field ismarginal. It seems natural
that Eq.s4d can also be applied tog.4, just as the above
expressions for the bulk exponentsyt and yh f20,21g. This
application then yields that the surface magnetic scaling field
is irrelevant for the tricritical Potts model. On the other hand,
it is known that, near a second-order transition, the strength
of critical fluctuations and the sensitivity to perturbations are
reflected by the magnitudes of the critical exponentsyt and
yh. For the Potts model,yt=3−6/g is an increasing function
of g, and, for 0,q,4, yh is larger on the tricritical branch
than on the critical one. Thus, one might naively expect that
the surface effects, including that of the surface magnetic
field Hs, become stronger asg increases. Further exploration
of this paradox seems justified.

Recently, boundary conformal field theory has received
considerable research interestf22–27g. In the context of sta-
tistical physics, this has been applied to the tricritical Ising
model in two dimensions. This model is considered to cor-
respond with an integral scattering theory of massive kinks
f22g, and it preserves superconformal symmetry. By means
of factorizableS matrix, fusion rules, and symmetry argu-
ments, various boundary operators were conjecturedf23g and
the corresponding renormalization flows were constructed. A
physical interpretation of these boundary phenomena was
then provided by Affleckf24g, indicating the possible emer-
gence of spontaneous edge order if the bulk is in the tricriti-
cal state. Moreover, this scenario has been numerically con-
firmed in Ref.f28g.

The present paper extends the work in Ref.f28g. First, as
a direct illustration of the existence of the edge transitions in
tricritical Potts models in two dimensions, we make use of
the exact equivalence of the diluteq=1 Potts model with the
Ising model in a magnetic fieldf29g. Thus, the exact infor-
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mation about the edge critical phenomena in the latter model
can be reformulated in the language of the former model.
Then, using suitable Monte Carlo methods, we simulate the
Blume-CapelsBCd model f30,31g and theq=3 Potts model
with vacancies. From the finite-size analysis of the numerical
data, we derive a number of edge phase diagrams in terms of
surface parameters, and determine several surface critical ex-
ponents.

The outline of this paper is as follows. Section II de-
scribes the surface phenomena of the diluteq=1 Potts
model, as derived from the known properties of the Ising
model in a magnetic field. In Secs. III and IV, Monte Carlo
results are presented for the surface transitions of the Blume-
Capel model and the tricriticalq=3 Potts model, respec-
tively. A brief discussion is given in Sec. V.

II. DILUTE ONE-STATE POTTS MODEL

The dilute Potts model is obtained by including vacancies
in the corresponding “pure” Potts model. On theL3L
square lattice with periodic boundary conditions, to which
we shall refer as the torus geometry, the Hamiltonian of the
dilute q-state model reads

HP/kBT = − K o
x,y=1

L

s1 − dsx,y,0dsdsx,y,sx+1,y
+ dsx,y,sx,y+1

d

− D o
x,y=1

L

dsx,y,0, s5d

where the lattice site is occupied by a vacancys=0 or a
Potts variable withs=1,2,… ,q. Nonzero couplingsK occur
only between Potts variables, and the chemical potentialD
controls the concentration of the vacancies. In Eq.s5d, we
have introduced the subscript P to represent periodic bound-
ary conditions. For the special caseq=1 Eq. s5d reduces,
apart from a constant, to

HP/kBT = − K o
x,y=1

L

sx,yssx+1,y + sx,y+1d + D o
x,y=1

L

sx,yss = 0,1d.

s6d

For D→−`, the vacancies are excluded, and the first sum of
Eq. s6d is just a constant. Nevertheless, the random-cluster
representation of Hamiltonians6d corresponds with the bond-
percolation model with bond-occupation probabilityp=1
−exps−Kd, so that Eq.s6d still describes percolation phenom-
ena. In the presence of vacancies, Eq.s6d describes acorre-
lated dilute bond-percolation model, which can be trans-
formed into the Ising model in a magnetic field. This follows
from substitution ofs=2s−1 in Eq. s6d, which yields

HP
sid/kBT = − Ksid o

x,y=1

L

sx,yssx+1,y + sx,y+1d

− Hsid o
x,y=1

L

sx,yss= ± 1d, s7d

with the relations

Ksid = K/4 and Hsid = − D/2 + K, s8d

where the superscriptsid refers to the Ising model. In the
absence of a magnetic fieldHsid, the Ising models7d has a
critical point atKsid=Kc

sid=lns1+Î2d /2 f13g. This point is not
percolationlike; it serves as thetricritical point of theq=1
Potts systems6d. Equations8d yields the tricritical point as
K=Kt=2 lns1+Î2d and D=Dt=4 lns1+Î2d; the up-down
symmetry of Ising spins implies that the tricritical vacancy
density isr=1/2. Further, it follows from Eq.s8d that the
leading and the subleading thermal exponents of the tricriti-
cal Potts model are equal to the magnetic and the thermal
exponents of the Ising model, respectively, so thatyt1
=15/8 andyt2=1. The leading magnetic exponent is known
as yh1=187/96 f20g. In the low-temperature regionKsid

.Kc
sid, the Ising model undergoes a first-order phase transi-

tion when the magnetic fieldHsid changes sign. In other
words, the diluteq=1 Potts models6d has a line of first-order
phase transitions atD=2K for K.Kt.

Because of the attraction between the vacancies, the dilute
q=1 models6d is different from the conventional site-bond-
percolation problemf32g. In the latter system, the vacancies
are randomly distributed over the lattice sites, and then
bonds are placed with probability 0øpø1 between all
nearest-neighboring occupied sites. Apart from that, sites and
bonds areuncorrelated.A limiting case is the “pure” site-
percolation model, in which the bond-occupation probability
is 1. This model is still in the percolation universality, so that
no tricritical point exists for the conventional site-bond-
percolation problem. In contrast, for a correlated dilute
q-state Potts model described by Eq.s5d, it has been found
f29,33g that the tricritical point occurs for any value in the
continuous range 0øqø4.

In order to investigate the surface effects, we define the
correlated percolation models6d on an open cylinder, i.e., the
L3L square lattice with periodic and free boundary condi-
tions in thex and they directions, respectively. As for the
three-dimensional case, the surface couplingsKs and the
chemical potentialDs can assume different values from those
in the bulk. The HamiltonianHO on the open cylinder can be
written as the sum ofHP in Eq. s6d and their difference,
which reads

HO/kBT − HP/kBT = Ko
x=1

L

sx,1sx,L

− Kkko
x=1

L

ssx,1sx+1,1+ sx,Lsx+1,Ld

− Dkdo
x=1

L

ssx,1 + sx,Ld, s9d

wherekk=Ks/K−1 andkd=Ds/D−1 represent the enhance-
ments of the surface coupling and the chemical potential,
respectively. The subscript O is for the open cylinder. The
sums in the right-hand side of Eq.s9d are only over spins
sitting on the edgesy=1 andy=L. Thus, the surface effects
can be regarded as containing two parts: the first term in Eq.
s9d accounts for the geometric effect due to “missing” neigh-
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bors for spins at the surface layers, and the last two sums
describe the enhancements of the surface parametersKs and
Ds. Effectively, the first term serves as a perturbation which
decreases the correlations along the linesy=1 andy=L. Af-
ter substitutings=ss+1d /2 in Eq. s9d, one obtains the Ising
model on a cylinder with open ends

HO
sid/kBT − HP

sid/kBT

=
K

4o
x=1

L

sx,1sx,L −
K

4
kko

x=1

L

ssx,1sx+1,1+ sx,Lsx+1,Ld

− Hs
sido

x=1

L

ssx,1 + sx,Ld, s10d

with a surface magnetic fieldHs
sid

Hs
sid = fKs2kk − 1d − 2Dkdg/4. s11d

Due to the equivalences of Eqs.s6d and s7d, and of Eqs.
s9d ands10d, the edge transitions of the Ising model can now
be reformulated in the language of the diluteq=1 Potts
model. In the high-temperature regionK.Kt, no transition
occurs on the one-dimensional edge. At bulk criticality, the
Ising model exhibits an ordinary edge transition atHs

sid=0,
and the surface magnetic exponent isyhs

sod=1/2 f15,16g. In
the context of the tricriticalq=1 Potts models9d, this means
that, as indicated by the relations11d, an edge transition can
be induced by varying the surface couplingsKs and the
chemical potentialDs. For instance, for the casekd=0, the
edges of the Potts model are dominated by vacanciesss
=0d or by Potts variablesss=1d for kk,1/2 or kk.1/2,
respectively. SinceKs andDs are temperaturelike parameters,
we refer to such an edge transition as the “special transition.”
The surface thermal exponent is simply obtained asyts

ssdsq
=1d=1/2. In thelow-temperature regionK.Kt, the bulk of
the Potts models9d is in a two-phase equilibrium along the
line D /K=2, as discussed above. Therefore, a small pertur-
bation due to an enhancementkk or kd induces a first-order
transition, which involves the bulk as well as the edges. Fig-
ure 2 sketches the phase diagram of the diluteq=1 Potts
model s9d for the casekd=0.

For the q=1 Potts model at bulk tricriticality, Eq.s11d
yields a line of “special” critical points in theskk,kdd plane,
as shown in Fig. 3.

III. BLUME-CAPEL MODEL

The previous section indicates that, also in two-
dimensional systems, special phase transitions can occur.
However, the diluteq=1 Potts model described by Eq.s9d is
only a special case. For instance, the coupling constants and
the chemical potential in this Potts model are just the mag-
netic field in the Ising model. In the following two sections,
we shall investigate the Blume-Capel model and the dilute
q=3 Potts model.

The BC model, also referred to as the spin-1 Ising model,
was independently introduced by Blumef30g and Capelf31g.
This model can be obtained by including vacancies in the

Ising model, and it played an important role in the develop-
ment of the theory of phase transitions and critical phenom-
ena. In the torus geometry, the Hamiltonian reads

HP/kBT = − Ko
kij l

sisj + Do
k

sk
2 ss= 0, ± 1d. s12d

When the chemical potentialD goes to −̀ , the vacanciess
=0 are excluded, and this model reduces to the spin-1/2
Ising model. The critical coupling constantKcsDd is an in-
creasing function ofD, and the critical lineKcsDd terminates
at the tricritical pointsKt ,Dtd. For K.Kt, this line continues
as a line of first-order phase transitions. The phase diagram
of the bulk transitions is sketched in Fig. 4. At the tricritical
point, there are four relevant scaling fields; two of them are

FIG. 2. Edge phase transitions of the diluteq=1 Potts model in
two dimensions, withK /D=1/2 and kd=sDs−Dd /D=0. For K
,Kc, both the bulk and the surface are in the “disordered” state,
and no edge transition occurs. At bulk tricriticalityK=Kc, the varia-
tion of kk=sKs−Kd /K yields a “special” edge critical point atkk

=1/2. ForK.Kc, a line of first-order phase transitions,kk=1/2,
separates the phases dominated by the vacancies and by the Potts
variables, respectively. Arrows describe the direction of the renor-
malization flow.

FIG. 3. Line of “special” transitions in the diluteq=1 Potts
model at bulk tricriticality. The fixed point is shown as a black
circle, and the arrows represent the direction of the renormalization
flow.
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thermal ones and the other two are magnetic ones. In two
dimensions, the renormalization exponents are known as
yt1=9/5 andyt2=4/5, andyh1=77/40 andyh2=9/8 f20,21g,
respectively. By means of a sparse transfer-matrix technique
and finite-size scaling, we located the square-lattice tricritical
point f33g asKt=1.643 175 9s1d andDt=3.230 179 7s2d; the
tricritical vacancy density isrt=0.454 950 6s2d. This result is
obtained from the requirement that both the bulk leading
magnetic and energy-energy correlation lengths simulta-
neously reach their theoretical values. The precision is con-
sidered to be sufficient for the present investigation.

On theL3L open cylinder, as for the diluteq=1 Potts
model s9d, the Hamiltonian of the BC model can be ex-
pressed as the sum of the Hamiltonian in the torus geometry
and their difference, which reads

HO/kBT − HP/kBT

= o
x=1

L

sx,1sx,L − Kkko
x=1

L

ssx,1sx+1,1+ sx,Lsx+1,Ld

+ Dkdo
x=1

L

ssx,1
2 + sx,L

2 d − Hso
k

ssx,1 + sx,Ld, s13d

whereHs is the surface magnetic field. In the right-hand side
of Eq. s13d, the first term corresponds with the geometric
effect, and the remaining three terms describe the effects of
the surface parametersKs, Ds, andHs.

A. Bulk criticality: K,Kt

For bulk couplingsK,Kt, the phase transition along the
critical line KcsDd is just Ising-like. Thus, in the absence of
surface magnetic fieldsHs, only the ordinary transitions oc-
cur on the open edges, and the surface magnetic exponent is
yhs

sod=1/2 f15,16g.

B. Bulk tricriticality: K=Kt, D=Dt

When the bulk is at the tricritical point, the prediction
from conformal field theory described by Eq.s4d and the
discussions in Sec. II indicate that intriguing phase transi-
tions can occur on the open edges of the BC model.

1. Ordinary edge transitions

As discussed above, the surface effects can be divided
into two parts: the geometric effect and the surface enhance-
ments. To study the former effect only, we investigated the
tricritical BC model on an open cylinder with circumference
L and lengthnL for n=10. We took the surface parameters in
Eq. s13d askk=kd=0 andHs=0. The system sizes assumed
even numbers in the range 8øLø24. Simulations used a
combination of Wolff and Metropolis steps. The former step
flips Ising spins, while the latter step also allows fluctuations
of the vacancy density. The vacancy densityr was sampled
along the cylinder. Ther data forL=12 are shown in Fig. 5.
One observes that, without sufficient enhancements ofKs
andDs, the open edges of the tricritical BC model are mainly
occupied by the vacancies. This is analogous to the case of
the tricritical q=1 Potts model.

An explanation of the paradox mentioned after Eq.s4d can
be given as follows. As mentioned in Sec. I, the effect of a
temperaturelike perturbation is reflected by the bulk thermal
exponentyt, and thus the geometric effect described by the
first term in Eq.s13d also increases as a function ofyt. For
the critical Potts modelsg,4d, yt is relatively small, so that
the edges maintain strong critical correlations. Asg in-
creases, however, the density of the vacancies increases and
the edge critical correlations become less strong. As a con-
sequence, the surface magnetic field becomes less “effec-
tive.” On the tricritical branchsg.4d, the geometric effect is
so large that the edges are dominated by vacancies, and the
surface magnetic field becomes irrelevant. We mention that,
although the edges have a considerable degree of disorder,
and the decay of this disorder into the bulk can be long
ranged, the bulk tricritical correlation lengths remain diver-
gent. This is reflected by the asymptotically exponential de-
cay of the vacancy densityr in Fig. 5, which takes place
with the predicted length scalej. Thus, the bulk transition at
K=Kt and D=Dt occurs in the presence of “disordered”
edges. In analogy with the three-dimensional Ising model,
we refer to this phase transition as the “ordinary transition.”

Under Cardy’s well-known conformal mappingf3g, the
semi-infinite cylinder is be transformed into a semi-infinite

FIG. 4. Sketch of the bulk phase diagram of the BC model. The
tricritical point is denoted as the black circle, the second- and the
first-order transition lines are represented by the solid and the
dashed lines, respectively.

FIG. 5. Exponential decay of the vacancy densityr along an
L310L cylinder for the tricritical BC model. The system size is
chosen asL=12, andr represents the distance to one open end. The
correlation length used for the horizontal scale is calculated asjt

=L / s2pXt1d, whereXt1=1/5 is thebulk thermal scaling dimension.
In the middle of the cylinder,r is close to the tricritical valuert

=0.454 950 6s2d. Deviations from the exponential behavior occur
near the edgessright-hand sided and near the middlesnot visible on
this scaled.
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plane. The exponential decay of correlations along the cylin-
der is covariantly transformed into algebraic decay into the
bulk of the semi-infinite plane. Thus, the thermal correlation
length along the cylinder readsjt=L / s2pXt1d, with the lead-
ing thermal scaling dimensionXt1=2−yt1=1/5 f20,21g. Ac-
cording to the least-squares criterion, we fitted ther data by
the formula

rsr,Ld = rt + L−2Xt1fCsrd + CsnL − rdg

3sa0 + a1L
yi + a2L

−2 + ¯ d, s14d

with the function

Csrd = serp/L − e−rp/Ld−2Xt1, s15d

wherer is the distance to one of the open ends. A justifica-
tion of Eqs.s14d ands15d can be found in Refs.f14,34g. The
term CsnL−rd in Eq. s14d is due to the symmetry between
the positionsr andnL−r. The parametersa0, a1, anda2 are
unknown constants, andyi =−1 is the leading irrelevant ther-
mal exponent of the tricriticalq=2 universality classf20,21g.
For L→` and r =L /2, the bulk vacancy densityrsr ,Ld ap-
proaches the tricritical valuert=0.454 950 6s2d f33g. We
fixed the values ofyi andrt, and discarded the data for small
system sizesLø8 and for small distancesyøL /4. Then, the
fit yields Xt1=0.198s3d, in good agreement with the theoret-
ical valueXt1=1/5.

2. Special phase transitions

As for the case of the tricriticalq=1 Potts model, we
expect that the geometric effect in the tricritical BC model
can be asymptotically compensated by the enhancements of
surface parametersKs and Ds. To test this expectation, we
used a combination of the Wolff and Metropolis methods to
simulate the BC model on open cylinders with sizeL3L.
The simulations were performed at the bulk tricritical point
mentioned above, and we took the surface parameters as
kd=0 andHs=0. The system sizes assumed 14 odd values in
the range 9øLø121, and we sampled the magnetization
density and the vacancy densityr for several values ofkk.
Further, we defined two dimensionless ratios as

Qb = kmb
2l2/kmb

4l andQs = kms1ms2l2/ksms1ms2d2l, s16d

wheremb, ms1, and ms2 are the magnetization densities on
the linesy=sL+1d /2, y=1, andy=L, respectively. These di-

mensionless quantities are closely related to the Binder ratio,
and they are useful in Monte Carlo analyses of critical
points, because their asymptotic values at criticality are uni-
versal.

The absolute value of the surface magnetizationumsu and
the edge vacancy densityrs for system sizeL=15 are shown
in Figs. 6 and 7, respectively. These figures illustrate that, for
coupling enhancementskk.0.6, the open edges are domi-
nated by Ising spins so thatspontaneous orderoccurs on the
one-dimensional edges. Further, the clean intersection of the
Qb data in Fig. 8 reveals a second-order phase transition near
kk=0.56. We fitted the data ofQb andQs by the formula

Qskk,Ld = Qc + o
k=1

4

akskk − kkcdkLkyts
ssd

+ b1L
y1 + b2L

y2 + b3L
y3

+ b4L
y4 + csk − kkcdLyts

ssd+y1 + nsk − kkcd2Lyts
ssd

, s17d

where the terms withb1, b2, and b3 account for finite-size
corrections. The exponenty1=yi =−1 arises from the leading
irrelevant thermal scaling fieldf20,21g. More generally, we
expect analytic finite-size corrections with exponentsyj =
−n with integer nù1. Thus, the exponentsy2, y3, and y4
were taken as22, 23, and24, respectively. The term with
c describes the “mixed” effect of the relevant and the irrel-
evant thermal scaling fields, and the last term in Eq.s17d is
due to the fact that the surface thermal scaling field can be a

FIG. 6. Absolute value of the edge magnetizationumsu of the
tricritical BC model vs coupling enhancementkk. The other surface
parameters arekd=0 andHs=0, and the system size isL=15.

FIG. 7. Edge vacancy densityrs of the tricritical BC model vs
coupling enhancementkk. The other surface parameters arekd=0
andHs=0, and the system size isL=15.

FIG. 8. Bulk magnetic ratioQb of the tricritical BC model vs
coupling enhancementkk. The other surface parameters arekd=0
andHs=0, and the system sizes areL=11 s1d, 15 shd, 19 ssd, 23
snd, 31 s3d, and 39sLd.
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nonlinear function ofkk. After a cutoff for small system sizes
Lø11, the fit of Qb yields Qbc=0.765s4d, kkc=0.5660s4d,
and yts

ssd=0.407s8d, and the fit ofQs yields Qsc=0.566s3d,
kkc=0.5664s4d, andyts

ssd=0.395s7d. These two fits are consis-
tent with each other, and the results foryts

ssd are equal to the
exact value 2/5f23,24g within the estimated error margins.

Near the above estimated special transitionkk=kkc and
kd=0, the surface magnetic susceptibilityxs=Lkms

2l was
sampled, and the Monte Carlo data were fitted by

xsskk,Ld = r0 + r1sk − kkcd + r2sk − kkcd2 + L2yhs
ssd−1

3Fo
k=0

4

aksk − kkcdkLkyts
ssd

+ b1L
y1 + b2L

y2 + b3L
y3

+ csk − kkcdLyts
ssd+y1 + nsk − kkcd2Lyts

ssdG . s18d

The terms withr0, r1, and r2 come from differentiations of
the analytical part of the free energy with respect to the sur-
face magnetic scaling field. We fixed the surface thermal
exponentyts

ssd at the value 2/5f23,24g, and obtainedkkc

=0.5658s8d and yhs
ssd=0.914s8d, where the error margins are

quoted as two standard deviations. The corresponding scal-
ing dimensionXhs

ssd=1−yhs
ssd=0.086s8d is marginally consis-

tent with the bulk magnetic scaling dimensionXh=3/40 but
also with the exact value 1/10f23,24g. We shall come back
to this point in Sec. V.

Just likekk, the enhancementkd of the surface chemical
potential also induces a “special transition.” This is illus-
trated by theQs data in Fig. 9 for the casekk=0. The fit of
the Qs data by Eq.s17d yields a critical point atkdc=
−0.344s2d. Using the same technique, we have determined a
number of special critical points in the parameter space
sKs,Dsd, which are listed in Table I. On this basis, the line of
special edge transitions is shown in Fig. 10. For the limit
Ks→`, the edge transition is first order, and separates a state
with edges fully occupied by the vacancies from one with
fully magnetized edges. From the relative statistical weights
of these phases, the transition is simply obtained as
Ksc/Dsc=1. For the opposite limitDs→−`, no vacancies
occur on the edges. We simulated this limit for system sizes
in the range 11øLø111. We still find a second-order tran-
sition atKsc=Kts1+kkcd=0.1183s8d. The surface critical cou-
pling strengthKsc is quite small in comparison with the bulk
tricritical value Kt=1.643 175 9s1d. Near the critical point
Ksc, the data of the surface susceptibilityxs were fitted by

TABLE I. Numerical results for several special edge transition points of the tricritical BC model in the
spacesKs,Dsd. The critical values are given in terms of the surface enhancementskkc and kdc; the corre-
sponding values ofKsc andDsc areKsc=Kts1+kkcd andKdc=Dts1+kdcd.

kdc −` 21.7 21.6 21.5 21.4

kkc 20.9280s4d 20.9050s4d 20.8964s4d 20.8845s4d 20.8686s4d

kdc 21.3 21.2 21.1 21.0 20.9

kkc 20.8474s4d 20.8175s4d 20.7778s7d 20.7252s7d 20.6576s7d

kdc 20.8 20.7 20.6 20.45 20.35

kkc 20.5737s8d 20.4732s8d 20.3563s9d 20.1261s8d 20.0095s9d

kdc 20.15 0 0.6

kkc 0.3096s8d 0.5662s4d 1.6665s8d

FIG. 9. Surface magnetic ratioQs of the tricritical BC model vs
chemical-potential enhancementkd. The other surface parameters
arekk=0 andHs=0, and the system sizes areL=9 s1d, 13 s3d, 17
shd, 21 ssd, and 29snd.

FIG. 10. Line of special transitions of the tricritical BC model in
the parameter spacestanhKs, tanhDsd. The symbolsn represent the
numerical data. When the bulk couplingK is varied, the transition
on the edge is first order in the region above the curve.
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Eq. s18d. We obtain the surface magnetic exponent asyhs
ssd

=0.098s2d, in good agreement with the exact value 1/10
f23,24g.

As indicated in Fig. 10, the line of the special transitions
exhibits two bends near the limitsDs→ ±`. To display its
behavior for largeDs→−` in more detail, this line is shown
again in Fig. 11 in the parameter spacesKs,e

Dsd.

3. Extraordinary phase transitions

In the upper region of the critical line in Fig. 10, the edges
and the bulk undergo a first- and a second-order transition,
respectively, when the bulk couplingK is varied, i.e., the
surface magnetization densityms displays a discontinuity. In
comparison with the three-dimensional Ising model, this can
be considered to correspond with the coincidence of the “sur-
face” and the “extraordinary” transitions. The existence of
spontaneous edge order is only possible becausethe bulk is
tricritical. At this point, spins on the edges in effect interact
via sufficiently long-ranged bulk correlations, so that the
edge correlations also become long ranged.

It seems reasonable to expect that the bulk critical prop-
erties are reflected on the edges even if the edge transition is
first order. As a test, we simulated the tricritical BC model
for kd=0 andkk.0.6. The system sizes were taken in the
range 9øLø185, and part of theQb data are shown in Fig.
12. The clean intersection in Fig. 12 indicates a fixed point

nearkk=0.81. The decreasing slope as a function ofL indi-
cates that this fixed point is stable in thekk direction. Natu-
rally, the question arises what critical exponent governs the
renormalization flow in thekk direction. For this purpose, we
fitted the Qb data by Eq.s17d, where the exponentyts

ssd is
replaced byyts

sed. After discarding data for small system sizes
Lø9, we obtainQc=0.892s2d and yts

sed=−0.80s5d. We note
that, for an arbitraryd-dimensional system, a surface thermal
exponentyts=−1 has been reportedf35g to occur. However,
the resultyts

sed=−0.80s5d is slightly different from this exact
value, which dominates the range of the ordinary transitions.

For a further illustration of the edge critical properties in
the range of the extraordinary transition, we fitted thems

2

data atkk=0.805, which are listed in Table II, by the formula

ms
2 = a0

2 + L−2Xhs
sed

sb0 + b1L
yts

sed
+ b2L

yi + b3L
−2 + b4L

−3d,

s19d

where the terma0 represents the spontaneous edge magneti-
zation density. The exponentyts

sed was fixed at the estimated

TABLE II. Monte Carlo data for the second momentms
2 of the surface magnetization density at the

extraordinary transition in the tricritical BC model. The surface parameters areHs=0, kd=0, and kk

=0.805.

L 9 11 13 15 17

ms
2 0.91729s1d 0.91560s1d 0.91399s1d 0.91262s1d 0.91145s1d

L 19 21 23 25 29

ms
2 0.91044s1d 0.90960s1d 0.90886s1d 0.90821s1d 0.90717s1d

L 33 37 45 55 65

ms
2 0.90631s1d 0.90562s1d 0.90459s1d 0.90367s1d 0.90299s1d

L 85 105 145 185

ms
2 0.90206s1d 0.90151s1d 0.90076s1d 0.90031s1d

FIG. 11. Line of special transitions of the tricritical BC model in
the parameter spacesKs,e

Dsd.

FIG. 12. Bulk magnetization moment ratioQb of the tricritical
BC model vs surface coupling enhancementkk. The other surface
parameters arekd=0 andHs=0. The data points1, 3, h, s, n,
L, andp representL=7, 9, 11, 13, 17, 21, and 29, respectively. The
clean intersection of these data lines implies that, in addition to the
“special” transition kk=kkc=0.5662s5d, there is another “fixed”
point atkk<0.81. However, in contrast to Fig. 8, the slope of these
lines is a decreasing function of the system sizeL. This means that
this fixed point is stable in thekk direction.
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value 20.80s5d, and we obtaina0=0.947 76s4d and Xhs
sed

=0.3987s15d<2/5. Thus, critical correlations still occur on
the edges.

4. Field-driven edge transition

It seems reasonable that, in analogy with the enhance-
ments of the surface couplingsKs and the chemical potential
Ds, the geometric effect can also be compensated by the
surface magnetic fieldHs. Thus, we simulated the tricritical
BC model for surface parameterskd=kk=0 but HsÞ0. The
edge magnetization densityms is shown versusHs in Fig. 13
for system sizeL=32. It behaves consistently with the above
expectation. To test for the presence of a field-driven edge
phase transition, we defined the ratioQsf=Šsms

−kmsld2
‹

2/Šsms−kmsld4
‹. The Qsf data in the range 8øL

ø48 were fitted by Eq. s17d, and we obtainedQsfc
=0.4419s10d, Hsc=0.6772s10d, and yhs

f =0.405s10d<2/5.
This result, in particular the relevant exponentyhs

f , confirms
the existence of the phase transition.

The phase diagram in the parameter spaceskk,Hsd is
sketched in Fig. 14 forkd=0. The numerical results for the
estimated critical points, as denoted by3 in Fig. 14, are
listed in Table III. It is clear from Fig. 14 that the special
transition, atkkc=0.5662s4d, Hs=0, behaves as a “multicriti-
cal” point, because several phase transition lines merge in
this point.

C. Bulk first-order range: K.Kt

For K.Kt, the bulk of the BC model exhibits a line of
first-order transitions, which separates the ferromagnetic

phases from the vacancy-dominated phase. On this transition
line, just as for the tricriticalq=1 Potts model, the surface
parameters can also induce first-order transitions. These tran-
sitions occur simultaneously on the edges and in the bulk. As
an example, we simulated the BC model forK=1.8 andD
=3.555 35, which is very close to the line of the bulk transi-
tions. The surface parameters were fixed atkd=Hs=0, and
we sampled the bulk and edge vacancy densitiesrb andrs on
the linesy=sL+1d /2 andy=1, L, respectively. The hyster-
esis loops ofrb and rs for system sizeL=63 are shown in
Figs. 15 and 16, respectively. The hysteresis loop ofrs is
ratherasymmetric.

According to the investigations in this section, the edge
phase transitions of the Blume-Capel model are sketched in
Fig. 17. The shaded area represents the surface of bulk phase
transitions. ForK,Kt, only the ordinary transitions occur on
the edges, so that all renormalization flow lines in this part of
the critical surface end in a single fixed point. Along the bulk
tricritical line K=Kt andD=Dt, there are three fixed points,
representing the ordinary, the special, and the extraordinary
phase transitions, respectively. ForK.Kt, there is a line of
first-order transitions, which is denoted as the dashed line in
Fig. 17. On the left- and the right-hand sides of this line, the
edges and the bulk of the BC model are dominated by the
vacancies and the Ising spins, respectively.

IV. TRICRITICAL THREE-STATE POTTS MODEL

The Hamiltonian of the diluteq=3 Potts model in the
torus geometry is described by Eq.s5d with q=3. The bulk
phase diagram of this model is analogous to that of the
Blume-Capel model described by Eq.s12d. At tricriticality,

TABLE III. Numerical determinations of several field-driven
edge transitions for the tricritical BC model in the parameter space
skk,Hsd. The surface chemical-potential enhancement iskd=0.

kkc 0.45 0.4 0.3 0.2

Hsc 0.0661s10d 0.1212s8d 0.2500s10d 0.3880s8d

kkc 0.1 0 20.2 20.5

Hsc 0.5315s10d 0.6772s10d 0.9720s10d 1.4080s10d

FIG. 13. Edge magnetization densityms of the tricritical BC
model vs surface magnetic fieldHs The system size isL=32, and
surface parameters arekd=0 andkk=0.

FIG. 14. Sketch of the phase transitions of the tricritical BC
model in the parameter spaceskk,Hsd with kd=0. The fixed points
are denoted by the black circles, and the arrows show the direction
of the renormalization flow.

FIG. 15. Hysteresis loop of the bulk vacancy densityrb of the
BC model with K=1.8 andD=3.555 35 vs surface coupling en-
hancementkk. The system size isL=63.

EDGE PHASE TRANSITIONS OF THE TRICRITICAL… PHYSICAL REVIEW E 71, 026109s2005d

026109-9



the leading and subleading bulk thermal exponents areyt1
=12/7 andyt2=4/7, respectively, and the magnetic ones are
yh1=40/21 andyh2=22/21 f20,21g. By means of a sparse
transfer-matrix technique, the tricritical point on the square
lattice has been determinedf33g as Kt=1.649 913s5d and
Dt=3.152 173s10d; the tricritical vacancy density isrt

=0.345 72s5d.
On theL3L open cylinder, the Hamiltonian of the dilute

q=3 Potts model reads

HO/kBT − HP/kBT

= Ko
x=1

L

dsx,1,sx,L
s1 − dsx,1,0d − Kkko

x=1

L

fdsx,1,sx+1,1

3s1 − dsx,1,0d + dsx,L,sx+1,L
s1 − dsx,L,0dg

− Dkdo
x=1

L

sdsx,1,0 + dsx,L,0d − Hs1o
k=1

L

sdsx,1,1 + dsx,L,1d

+
Hs1

2 o
k=1

L

sdsx,1,2 + dsx,L,2d +
Hs1

2 o
k=1

L

sdsx,1,3 + dsx,L,3d.

s20d

The surface magnetic fieldHs1 serves to enhance the statis-
tical weight of the Potts states=1 with respect to statess
=2 ands=3.

In analogy with the BC model, the systems20d has a line
of bulk critical points forK,Kt, in the same universality
class as the “pure”q=3 Potts model. Thus, only the ordinary
phase transition occurs on the open edges, with a surface
magnetic exponentyhs

sod=1/3, aspredicted by Eq.s4d. For
K.Kt, a first-order transition can be induced by enhance-
ments of the surface couplings and the chemical potential. In
the present work, we concentrate on the case that the bulk is
precisely at the tricritical point.

A. Special phase transitions

We simulated the tricriticalq=3 Potts models20d on the
L3L open cylinder by means of a combination of the Me-
tropolis and Wolff methods, with the linear size in the range
7øLø65. The bulk parameters were set at the aforemen-
tioned tricritical point, and the surface parameters atHs1=0

and kd=0. The edge order parameter was defined asms
2

=fsr1−r2d2+sr2−r3d2+sr3−r1d2g /2, in which ri is the den-
sity of the edge spins in statei. Accordingly, we sampled the
ratio Qs1=kms

2l2/ kms
4l. TheQs1 data are partly shown in Fig.

18. They indicate a special edge transition nearkk=0.7. The
Qs1 data were fitted by Eq.s17d, in which the correction
exponents were fixed aty1=yi =−10/7 f3g, y2=−1, y3=−2,
and y4=−3. We obtainQs1c=0.941s2d, kkc=0.702s2d, and
yts

ssd=0.282s5d. Near this special phase transition, i.e.,kkc

=0.702s2d andkd=0, we also analyzed the edge susceptibil-
ity xs by Eq. s18d. The fit yieldsXhs

ssd=0.133s15d.

B. Field-driven edge transitions

Next, we simulated the tricriticalq=3 Potts models20d in
the presence of the surface magnetic fieldHs1; the other sur-
face enhancements were taken askk=kd=0. The system
sizes were taken as ten odd values in the range 7øLø49,
and we sampled the bulk ratioQb in Eq. s16d. Analogous to
the case of the tricritical BC model, edge phase transitions
are introduced by the fieldHs1. Nevertheless, the symmetry
between the positive and the negative field is now absent.
TheQb data were fitted by Eq.s17d, and we found two edge

FIG. 16. Hysteresis loop of the edge vacancy densityrs of the
BC model with K=1.8 andD=3.555 35 vs surface coupling en-
hancementkk. The system size isL=63.

FIG. 17. Sketch of the edge phase diagram of the BC model for
Hs=0. The fixed points are shown as black circles, and the arrows
show the renormalization flow.

FIG. 18. Surface magnetic ratioQs1 of the tricriticalq=3 model
vs coupling enhancementkk. The data points1, h, s, n, andL
representL=7, 15, 23, 31, and 39, respectively.
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transitions atHs1c=0.5710s15d and 22.27s3d. At these two
points, the asymptotic values of the ratioQb are 0.462s4d and
0.232s8d, respectively; those of the renormalization exponent
yhs

f are 0.278s8d and 0.280s8d, respectively, which are identi-
cal to each other within the estimated error margins. From
these results, we conjecture the loci of the edge transitions in
the planeskk,Hs1d as sketched in Fig. 19.

In addition to Hs1, the surface magnetic fields,Hs2 and
Hs3, can also be applied to the Potts systems20d. Thus, for
the casekd=kk=0, Fig. 20 illustrates the edge phase diagram
in the spacesHs1,Hs1,Hs3d.

V. DISCUSSION

By means of Monte Carlo simulations and finite-size scal-
ing, we have found that rich surface critical phenomena still
occur in two-dimensional systems with short-range interac-
tions only. In particular, when the bulk of a Potts model is at
the tricritical point, edge transitions are introduced by en-
hancements of the surface couplings and the chemical poten-
tial, and by a surface magnetic field. For the critical branch
of the Potts model, however, only the ordinary phase transi-
tion exists on the one-dimensional edges. Thus, one con-

cludes that, in two dimensions, it depends on the strength of
bulk critical fluctuations whether other types of edge phase
transitions can occur.

Let us now address the question of what are the exact
values of the critical exponents describing the edge phase
transitions described in this work. At the special transitions,
one has the exact resultyts

ssdsq=1d=1/2 for thetricritical q
=1 Potts model. For the case of the tricritical Blume-Capel
model, in the context of superconformal field theory, it has
been predicted that the surface thermal and magnetic expo-
nents aref23,24g yts

ssd=2/5 andyhs
ssd=9/10, respectively. For

the whole tricritical branch of the Potts model, it has been
recently conjecturedf28g that, in terms of the Coulomb gas
coupling constantg, the exact expressions ofyhs

ssd and yts
ssd

read

yhs
ssd = s3g − 6d/2g andyts

ssd = 2 − 8/g, s21d

respectively. These values ofyhs
ssd andyts

ssd are one-half of the
leading and subleading bulk thermal exponents,yt1 and yt2,
respectively. For the tricritical Potts models withq=0, 1, 2,
3, and 4, the results according to Eq.s21d are listed in Table
IV. A remarkable feature is that the expression ofyts

ssd in Eq.
s21d can be simply obtained by substitutingg=16/g8 in Eq.
s4d, which describes the surface magnetic exponentyhs

sod at the
ordinary phase transitions. The underlying meaning of this
procedure is clear for the tricriticalq=1 Potts model, be-
cause the special transition of this model is just the ordinary
transition of the Ising model and the Coulomb gas coupling
of these two models areg=16/3 and 3, respectively. For a
pair of critical and tricritical Potts models, we note that the
relation gg8=16 has been reportedf36,37g in other cases.
Thus, Eq.s21d might mean that the effect of surface cou-
plings Ks in a tricritical Potts model is equivalent to that of
the magnetic fieldHs in a critical system, the two models
being related asgg8=16.

For the tricritical q=1 Potts model, Eq.s21d predicts a
surface magnetic exponentyhs

ssd=15/16. It is known that the
bulk Potts magnetic scaling dimensionXh=5/96 is thefrac-
tal dimension of Ising clusters, which connect nearest-
neighbor Ising spins of the same sign. Thus, one would ex-
pect that the exponentyhs

ssd governs the scaling behavior of the
correlation functiongsIdsrd, which is defined as the probabil-
ity that a pair of edge points is in the same Ising cluster.
However, it has been shown that the decay ofgsIdsrd is de-
scribed by a geometric scaling dimensionXp=1/6 f28g, dif-

TABLE IV. Theoretical predictions of the surface thermal and
magnetic exponentsyts

ssd andyhs
ssd at the special phase transitions for

the tricriticalq-state Potts model withq=1, 2, 3, and 4. The param-
eterg is the Coulomb gas coupling constant.

Model q=0 q=1 q=2 q=3 q=4

g 6 16/3 5 14/3 4

yts
ssd 2/3 1/2 2/5 2/7 0

yhs
ssd 1 15/16 9/10 6/7 3/4

FIG. 19. Sketch of the edge phase diagram of the tricriticalq
=3 Potts model in thesHs1,kkd plane forkd=0. The fixed points are
denoted by black circles, and the arrows show the renormalization
flow.

FIG. 20. Sketch of the edge phase diagram of the tricriticalq
=3 Potts model as a function the surface fields forkd=kk=0. The
fixed points are denoted by black circles, and the arrows illustrate
the renormalization flows.
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ferent fromXhs
ssd=1/16. The physical interpretation ofyhs

ssd is
so far not clear.

For the tricritical BC model, the results obtained from Eq.
s21d are in agreement with the predictions in Refs.f23,24g.
In particular, the predictionyts

ssd=2/5 is well confirmed by
our numerical resultyts

ssd=0.395s7d. However, the exact value
yhs

ssd=9/10 is only marginally consistent with the resultyhs
ssd

=0.914s8d for the casekd=Hs=0 andkkc=0.5662s4d. On the
other hand, at the critical pointkkc=−0.9280s4d, kd=−`, the
result yhs

ssd=0.902s2d is in good agreement withyhs
ssd=9/10.

This might be taken as a suggestion that the end point of the
line of special transitions atkd=−` in Fig. 10 acts as an
unstable fixed point with the expected exponentyhs

ssd=9/10,
while the rest of the line is attracted by another fixed point.
However, the numerical evidence is only marginal, and
moreover, if the end point atkd=−` is a fixed point, then
one would in general expect that the line of special transi-
tions, when parametrized by the activity of the vacancies and
the surface coupling enhancement, displays a singularity at
kd=−`. No sign of such a singularity is visible in Fig. 11.

For the tricriticalq=3 model, the predictions in Table IV
are consistent with the numerical determinationsyts

ssd

=0.282s5d andyhs
ssd=0.867s15d.

The q=4 Potts model is a marginal case for several rea-
sons. First, the critical and the tricritical branches of the Potts
model join atq=4. Second, Eq.s4d predicts that, at the or-
dinary phase transitions, the surface magnetic scaling field is
marginal, i.e.,yhs

sod=0. Third, Eq.s21d yields yts
ssd=0, so that

the surface coupling and the chemical-potential enhancement
become marginal. However, the predictionyhs

ssd=3/4 accord-
ing to Eq. s21d is apparently different from the exponent
yhs

sod=0. The resultyts
ssd=0 also differs from the existing sur-

face thermal exponentyts=−1 f35g. These phenomena indi-
cate that there exists a special phase transition for theq=4
Potts model.
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