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Abstract

Motivation: Co-expression of two genes across different conditions is indicative of their involvement in the same
biological process. However, when using RNA-Seq datasets with many experimental conditions from diverse sour-
ces, only a subset of the experimental conditions is expected to be relevant for finding genes related to a particular
Gene Ontology (GO) term. Therefore, we hypothesize that when the purpose is to find similarly functioning genes,
the co-expression of genes should not be determined on all samples but only on those samples informative for the
GO term of interest.

Results: To address this, we developed Metric Learning for Co-expression (MLC), a fast algorithm that assigns a GO-
term-specific weight to each expression sample. The goal is to obtain a weighted co-expression measure that is
more suitable than the unweighted Pearson correlation for applying Guilt-By-Association-based function predic-
tions. More specifically, if two genes are annotated with a given GO term, MLC tries to maximize their weighted co-
expression and, in addition, if one of them is not annotated with that term, the weighted co-expression is minimized.
Our experiments on publicly available Arabidopsis thaliana RNA-Seq data demonstrate that MLC outperforms
standard Pearson correlation in term-centric performance. Moreover, our method is particularly good at more spe-
cific terms, which are the most interesting. Finally, by observing the sample weights for a particular GO term, one
can identify which experiments are important for learning that term and potentially identify novel conditions that are
relevant, as demonstrated by experiments in both A. thaliana and Pseudomonas Aeruginosa.

Availability and implementation: MLC is available as a Python package at www.github.com/stamakro/MLC.

Contact: s.makrodimitris@tudelft.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Knowing which biological processes and pathways are affected by
each gene would be a useful tool for plant biologists and breeders.
With this information, they can more easily identify genes that are
likely to affect the phenomenon or trait they are studying and priori-
tize genes for experimental testing. The Biological Process Ontology
(BPO) of the Gene Ontology (GO) (Ashburner et al., 2000) provides
us with a set of terms that describe biological processes at different
levels of granularity and can be used to annotate genes from all spe-
cies in a systematic way. However, the use of computational meth-
ods to accurately predict BPO annotations, also known as
Automatic Function Prediction (AFP), remains challenging, as dem-
onstrated in the Critical Assessment of Functional Annotation
(CAFA) challenges (Jiang et al., 2016a).

Most AFP methods use the Guilt-By-Association (GBA) prin-
ciple. They define a similarity or dissimilarity measure between

genes and use it as a proxy for functional similarity. Then, they as-
sign GO annotations to genes of unknown function based on the
functions of the genes most similar to them. The choice of similarity
measure is always motivated by biology. For instance, sequence
similarity points towards a conserved structure which in turn implies
similar function. Alternatively, co-expression across different condi-
tions may hint at involvement in the same pathways. Recent results
from the third CAFA challenge hint at the great potential of gene ex-
pression data to find which genes are involved in a specific biologic-
al process (Zhou et al., 2019). Combining multiple similarity
measures in order to better approximate functional similarity is also
possible, as done for instance in (Cozzetto et al., 2013; Lan et al.,
2013; Zhang et al., 2017).

Genes that are involved in the same biological processes are
expected to show similar expression patterns, as they respond simi-
larly to perturbations related to these processes. Discovering BPO
annotations for all unannotated genes requires data from a wide
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range of different experimental conditions. For example, we need
samples from different tissues, different time points across develop-
ment, from wild-type or mutant plants etc. Thanks to world-wide
sequencing efforts, more and more RNA-Seq data are becoming
available to public databases, such as ArrayExpress (Parkinson
et al., 2007) and GEO (Clough and Barrett, 2016).

The Pearson Correlation Co-efficient (PCC) is the most widely
used measure of gene co-expression similarity and has been largely
successful, especially for microarray-derived expression data. For in-
stance, for MS-kNN (Lan et al., 2013), one of the top-performing
methods in CAFA2 (Jiang et al., 2016a), the PCC was calculated on
samples from 392 human microarray datasets to quantify co-
expression similarity between genes, outperforming sequence simi-
larity for AFP in BPO (Lan et al., 2013).

PCC might, however, not be the optimal co-expression measure
due to the diversity of biological processes and heterogeneity of pub-
lic expression datasets. This means that only a subset of all available
experimental conditions is likely to be truly informative about a spe-
cific GO term. For example, let us assume that we are looking for
genes involved in plant immune response. Using the PCC across all
possible conditions, we implicitly expect that all such genes are
expressed similarly not only during immune response, but across all
conditions and tissues. However, differential co-expression analysis
has shown that several Arabidopsis thaliana immune genes, such as
FLS2, ADR1 and JAR1, change co-expressed partners before and
after infection with Pseudomonas syringae (Jiang et al., 2016b).
A gene that is co-expressed with immune genes during (only) infec-
tion is still a good candidate gene for immune response, even if it
has different expression patterns to the immune genes in other
tissues or developmental stages. Including many unrelated expres-
sion samples, essentially adds noise to the correlations. According
to this reasoning, we should be able to improve the performance of
co-expression-based gene function prediction by calculating co-
expression only over the samples that are relevant for each term.

This insight that the PCC might be suboptimal is not new. For
example, Jaskowiak et al. showed that k-means clustering of gene
expression data heavily relies on the choice of similarity measure
(PCC, Spearman correlation, Euclidean distance etc.) and that the
most suitable measure varies across different datasets (Jaskowiak
et al., 2012). As another example, Hu et al. showed that using an in-
appropriate distance metric can really harm the performance of
the k-Nearest Neighbors (k-NN) classifier in biomedical datasets
(Hu et al., 2016).

Adapting a distance measure is a subfield within machine learn-
ing that is called metric learning: learning a distance function from a
dataset of examples that can most effectively be utilized to perform
a task, e.g. discriminating between two classes. It is most explored
in combination with the k-NN classifier (Bellet et al., 2013). In the
context of AFP, Ray and Misra developed a metric learning
method called Genetic Algorithm for Assigning Weights to Gene
Expressions using Functional Annotations (GAAWGEFA) that
learns a weighted PCC on microarray data using a genetic algorithm
to find the optimal values for the weights (Ray and Misra, 2019).
They showed that their weighted correlation increases the protein-
centric precision compared to PCC in a yeast dataset. Metric learn-
ing has also been applied to AFP combined with multiple-instance
learning (Xu et al., 2017). In that work, each protein is viewed as a
‘bag of domains’ and metric learning is used to learn a distance func-
tion between proteins (based on their domains) that is representative
of functional similarity.

Here, we use metric learning to identify the most informative
conditions for a given GO term. Similar to GAAWGEFA, our goal is
to assign a weight to every RNA-Seq sample. GAAWGEFA learns
one weighted PCC for all GO terms (Ray and Misra, 2019). On the
contrary, our approach, Metric Learning for Co-expression (MLC),
optimizes the weights per term. Our philosophy (graphically shown
in Fig. 1) is that weights should be chosen in such a way that a pair
of genes annotated with the same term should have maximally simi-
lar expression profiles, i.e. comply with our assumption that these
genes should be co-expressed. On the other hand, when one gene is
annotated with the term and the other not, we expect that such a

pair should not have high co-expression. In other words, we would
like to select weights that minimize the co-expression for these pairs.
For pairs of genes both not annotated with the term, we cannot say
anything about the co-expression since they might be annotated
with another term, and thus be co-expressed too (albeit for other
conditions/samples). Consequently, the co-expression of these pairs
should be ignored when optimizing weights for the GO term of con-
sideration. A high weight for a sample will put emphasis on that
sample when calculating the co-expression over all samples, whereas
a low weight for a sample will reduce the influence of that sample.
When a weight becomes zero the sample is even ignored. To enforce
selecting informative samples, we additionally apply an L1 sparsity
constraint on the weights, which will set a weight to zero when a
sample is uninformative (Tibshirani, 1996). In contrast to
GAAWGEFA, where they have used a genetic algorithm to find the
weights, we are able to pose the weight optimization in an elegant
mathematical formulation that can be minimized efficiently using
standard methods. To reduce the computational burden even fur-
ther, we use the weighted inner product as a similarity function in-
stead of the weighted PCC. We evaluate our algorithm on public
RNA-Seq data from A. thaliana and on the microarray data
from Pseudomonas aeruginosa that were used for the CAFA-p chal-
lenge, which included experimental validation of gene functions.
(Zhou et al., 2019).

2 Materials and methods

2.1 Data and preprocessing
We used the API of the European Bioinformatics Institute (Petryszak
et al., 2017) to download all A. thaliana RNA-seq studies available
at ArrayExpress (Parkinson et al., 2007). All samples had been proc-
essed using the same pipeline and expression was measured using
raw read counts. We restricted our dataset to samples that used the
latest version of the A. thaliana genome (TAIR10) and had fewer
than 10% unmapped reads. After removing duplicate experiments,
we had 4215 samples from 298 different studies (batches) for
32 833 genes, 26 925 of which were protein-coding. We used a pre-
processing pipeline similar to the one used to construct the ATTED-
II RNA-Seq co-expression network (Obayashi et al., 2018). We first
removed samples with fewer than 10 000 000 mapped reads. Then,
we removed lowly expressed genes (genes with maximum expression
over the remaining samples less than 100). To diminish the zero-
inflation of the dataset, we also removed all genes that were not

Fig. 1. Illustrative example of the expression of two hypothetical genes (y-axis, solid

and dashed lines) involved in the same biological process over a large set of samples

(x-axis). The total Pearson correlation between the genes is 0.09. MLC sets large

weight values (wm) for the samples left of the vertical dashed line (where the

unweighted correlation is 0.92) and small or zero weights for the samples on the

right (unweighted correlation ¼ 0.002)
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expressed in at least half of the samples (median expression smaller
than 1). Finally, we log-transformed the expression counts using a
pseudocount of 0.125. Supplementary Material S1 and
Supplementary Figure S1 describe the results when excluding the fil-
tering of low-coverage samples.

We then mapped the TAIR gene ID’s to UniProt ID’s. BPO anno-
tations were downloaded from GOA (https://www.ebi.ac.uk/GOA)
in September 2016 and annotations with the IEA evidence code
were removed. A total of 2978 samples and 6013 genes with BPO
annotations remained after these filtering steps. We applied ComBat
(Johnson et al., 2007) to remove unwanted variation stemming from
the fact that the different samples come from different studies (batch
effects). ComBat uses a Bayesian method to standardize the mean
and the variance of each gene in each study (batch). In order to be
able to estimate within-batch variances, we removed all studies that
had only one sample, leaving us with 2959 samples (Supplementary
Material S2).

For the experiments on P. aeruginosa we used a pre-processed
microarray expression compendium from (Tan et al., 2017). This
dataset contains the expression of 5549 genes measured over 1051
samples. The gene annotations were downloaded from the
Supplementary Material of the CAFA-p paper (Zhou et al., 2019).

2.2 Notation
We use xi 2 R

f to denote the expression of gene i across all f¼2959
samples. xim is the expression of gene i at sample m. �xi is the mean of
gene i across all samples. Given N genes and a GO term l, we denote as
yðlÞ 2 f0;1gN the vector with the class labels of the genes, with yðlÞi ¼
1 iff gene i is annotated with l. The sample weights are represented by
a vector with f non-negative elements wðlÞ 2 ½0;þ1Þf .

2.3 Weighted and unweighted measures of

Co-Expression
The most widely-used measure of co-expression between two gene
expression vectors xi; xj is the Pearson Correlation Coefficient
(PCC), which is defined as follows:

PCCðxi; xjÞ ¼
Pf

m¼1ðxim � �xiÞðxjm � �xjÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf
m¼1 ðxim � �xiÞ2

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPf
m¼1 ðxjm � �xjÞ2

q (1)

Note that the numerator is the covariance between xi and xj and
the denominator is the product of the SDs of the two vectors.

A related, but simpler measure is the inner product similarity (S),
which, on the contrary, is sensitive to the mean expression of both
genes:

Sðxi; xjÞ ¼ xT
i � xj ¼

Xf

m¼1

ximxjm (2)

If two vectors xi, xj both have zero mean and unit L2-norm, then
their PCC is equal to their inner product. This equality does not
hold anymore if we weigh each vector element (sample) differently.
However, since the two metrics are related, we chose to use the
weighted inner product similarity instead of the weighted PCC as
our expression similarity function in order to simplify the problem.
We center and scale our data so that the (unweighted) mean of every
gene is zero across all conditions and its (unweighted) L2-norm is
equal to one:

~x i ¼
xi � �xi

kxi � �xik
(3)

Then, we define our similarity function as the weighted inner
product of the two scaled expression vectors (Sw):

Swðxi;xjÞ ¼ ~xT
i �W � ~x j ¼

Xfwm

m¼1

~xim ~xjm (4)

Where W ¼ diagðwÞ is a diagonal matrix containing the sample
weights.

2.4 MLC
The rationale for learning the weights is to maximize the perform-
ance of the k-NN classifier. For this purpose, we want the expres-
sion similarity between two genes that are both annotated with a
given GO term l to be higher (on average) than the similarity be-
tween a gene that is annotated with l and a gene that is not. We
group each gene pair into one of the following three categories:

i. Both genes are annotated with l (we call these ‘positive–positive

pairs’ or ‘p–p’).

ii. Exactly one of the two genes is annotated with l (‘positive–nega-

tive pairs’ or ‘p–n’).

iii. Neither gene is annotated with l (‘negative–negative pairs’ or

‘n–n’).

Our goal is to find the weight values wm that maximize the sep-
arability between ‘p–p’ and ‘p–n’ pairs. Let lp�p; r2

p�p denote the
mean and variance of the weighted similarity value Sw of all ‘p–p’
gene pairs and, similarly, lp�n; r2

p�n for all ‘p–n’ gene pairs. Let also
Np�p and Np�n denote the number of gene pairs in each category.
We use Welch’s two-sample t-statistic with unequal variances to
quantify the notion of separability:

tðwÞ ¼
lp�p � lp�nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
p�p

Np�p
þ r2

p�n

Np�n

r (5)

Note that l and r2 are functions of w, but this dependence is not
shown explicitly in Equation (5) to keep the notation simple.
Maximizing tðwÞ is equivalent to minimizing �tðwÞ. In order to en-
able sample selection, we also added an L1 regularization term that
forces the weights of uninformative samples to zero (Tibshirani,
1996). Our optimization problem then becomes:

min
w
�atðwÞ þ ð1� aÞ

Xf

m¼1

wm

2
4

3
5; s:t: wm � 08m (6)

Parameter a controls the trade-off between the actual cost and
the regularization. The minimization of Equation (6) is done with
the Broyden-Fletcher-Goldfarb-Shanno method (Byrd et al., 1995).

2.4.1 Global MLC

To investigate the effect of creating GO-term specific predictors, we
also implemented a version of MLC that is applicable to all terms
simultaneously. To this purpose, we redefined ‘p–p’ gene pairs as
pairs of two genes which share at least one GO term and ‘p–n’ pairs
as pairs of two genes that share no GO annotations. All the ensuing
steps remain the same as for the term-specific MLC. We call this
method ‘Global MLC’ (MLCG).

2.5 Experimental set-up
We compared MLC to the unweighted PCC baseline. To investigate
the effect of the use of a term-specific classifier, we created term-
specific classifiers from the PCC by tuning the classifier parameter k
individually per GO term and not globally over all terms. We called
this approach PCC(k). We also compared to GAAWGEFA which,
like MLC, learns a weighted co-expression measure (Ray and Misra,
2019). GAAWGEFA is not GO-term-specific and optimizes the
mean protein-centric precision using a genetic algorithm, so we also
constructed a non-term-specific version of MLC (MLCG) to com-
pare against. Another way to measure co-expression is the Mutual
Rank (MR) (Obayashi et al., 2018) which is used in the ATTED-II
database. Although MR neither selects samples nor weighs samples
differently, it has been shown to outperform the PCC for function
prediction (Obayashi et al., 2018), so we included it in the compari-
son as a stronger baseline. Input to MR are typically the PCC values
of all gene pairs, although it can be applied to any co-expression
measure. More details on the definition and implementation of each
of these methods are given in Supplementary Material S3.
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We evaluated the methods in three ways: (1) A cross-validation ex-
periment using all A. thaliana genes with at least one GO annotation
(reported as ‘CV results’), (2) a time-course experiment using the prelim-
inary test set from CAFA3 containing 6077 training and 90 test genes
also from A. thaliana (reported as ‘CAFA3 results’) and (3) the dataset
of CAFA-p from bacterium P. aeruginosa, where the goal was to make
term-specific predictions for biofilm formation and motility (Zhou et al.,
2019). For the cross validation experiment, we used nested cross-
validation (Varma and Simon, 2006), using the inner loop to optimize
the parameters and the outer loop to evaluate performance on previous-
ly unseen genes (Supplementary Fig. S2, Supplementary Material S4). As
in this work we are dealing with the problem of identifying which genes
should be annotated with a specific GO term, we focus on term-centric
evaluation using the mean ROCAUC. Details about the three evaluation
modes are provided in Supplementary Material S4 and details about the
used term-centric evaluation metrics as well as protein-centric metrics
that we also used are given in Supplementary Material S5.

3 Results

3.1 All methods outperform the PCC
We compared our metric learning approach (MLC), as well as MR
and GAAWGEFA to the standard, unweighted PCC using 3-fold
cross-validation. PCC achieved a mean term-centric ROCAUC of
0.69, while the performance of both MR and MLC with the
weighted inner product was 0.72 (Table 1). The performance of
GAAWGEFA was 0.71. MLCG, the non-term-specific version of
MLC, also achieved a mean ROCAUC of 0.72. Although all meth-
ods perform fairly similarly according to protein-centric measures
(Supplementary Tables S1–2, Supplementary Material S6), PCC per-
forms significantly worse than the other methods on term-centric
ROCAUC [False Discovery Rate (FDR) < 0.036, Table S3–6,
Supplementary Material S7, effect size 4%]. This shows that the
PCC is indeed a suboptimal co-expression measure. When randomly
permuting the GO annotations of the genes, both PCC and MLC
had a mean ROCAUC of 0.5, i.e. equal to random guessing, imply-
ing that MLC does not artificially generate information in the ab-
sence of real structure (Supplementary Material S8).

3.2 MLC is the best at predicting specific GO terms
Although MR, GAAWGEFA and MLC perform equally on average,
one is typically not interested in predicting GO terms that are ‘near’ the
ontology root, as most of them describe too general biological proc-
esses (Clark and Radivojac, 2013). Therefore, we compared the per-
formances of these methods as a function of term specificity. As
measures of specificity, we used the maximum path length to the ontol-
ogy root and the Resnik Information Content (IC) (Resnik, 1995). One
way to take term specificity into account is to calculate the weighted
term-centric ROCAUC, where each term is weighted by its IC when
calculating the average. As shown in Table 1, MLC achieves the high-
est weighted ROCAUC. The difference is statistically significant for all

methods except for MR (Supplementary Table S4, Supplementary
Material S7), although the effect size is small (1.5%).

Furthermore, we grouped the GO terms into quintiles (quantiles
at 0, 20%, 40%, 60% and 80%) and plotted the distribution of the
percent differences in performance of MLC from MR for each quin-
tile (Fig. 2a). We observed that for the first two quintiles (i.e. the
40% most frequent terms), MLC performs worse than MR, while
for the 60% most specific terms, both the mean and the median per-
formance of MLC is better. Further analysis showed that for the
very general terms, MLC makes a lot more type I errors (false posi-
tives) than for the more specific ones (Supplementary Fig. S3,
Supplementary Material S9) and that makes it underperform with
respect to MR. The Spearman correlation between percent differ-
ence and Resnik IC was 0.26. The same pattern is evident when
comparing MLC to all other methods (PCC, GAAWGEFA and
MLCG), as well as when replacing Resnik IC with the path length to
the ontology root (Supplementary Tables S7 and 8, Supplementary
Figs. S4 and 5, Supplementary Material S10). From that we can con-
clude that term-specific MLC is the preferred method for finding
genes belonging to rarer terms.

3.3 MLC tunes the weights to find ‘p–p’ pairs
The goal of MLC is to choose the weights so that for test genes that
have a particular GO annotation, the learned similarities are higher
to training genes that have the same annotation than to genes that
do not. As an example, Figure 2b and c show the distribution of co-
expression similarities between the test genes annotated with term
GO: 1903047 (mitotic cell cycle process) and all training genes for
the PCC and MLC similarities, respectively. It is clear that for MLC,
the test genes are a lot more similar to training genes with the same
annotation. Note, however, that, for this term, a significant portion
of the similarities are negative (small blue peak in Fig. 2b). This
means that some positive genes are anti-correlated to the rest. For
these cases MLC will make Type II errors (false negatives).

Figure 2d shows the distribution of the number of selected sam-
ples for each GO term. For about 33% of all GO terms, MLC
selected less than 9% of the available samples (252 or fewer), setting
all other weights to zero. The median number of selected samples
was 2035 out of 2959 or about 69% of all samples. Randomly
selecting samples did not improve the mean performance of the PCC
(Supplementary Material S11), implying that the correct samples
have to be selected for each term. Moreover, for about 23% of the
terms, MLC kept all the samples and weighted them more or less
equally (maximum SD of weights ¼ 0.006), in which case MLC was
almost equivalent to the unweighted inner product. As expected, for
those terms MLC had on average similar performance to the base-
line PCC. We also found that individually tuning k per GO term for
the PCC gave on average the same term-centric ROCAUC as the
baseline PCC [PCC (k), Table 1], so the performance improvement
is not caused by simply choosing the optimal k value for each GO
term. Finally, we observed a small negative correlation between
term IC and the number of samples selected (Spearman q ¼ –0.09,
P-value ¼ 0.057). This means that MLC has a slight tendency to

Table 1. Mean term-centric ROCAUC achieved by the methods under comparison using 3-fold cross-validation (CV, second and third col-

umn) and when testing on the CAFA3 dataset (CAFA3, fourth and fifth column)

Method ROCAUC (CV) Weighted ROC AUC (CV) ROC AUC (CAFA3) Weighted ROCAUC (CAFA3)

PCC 0.69 6 0.003 0.69 6 0.003 0.68 [0.63, 0.72] 0.68 [0.63, 0.73]

PCC(k) 0.69 6 0.003 0.69 6 0.003 0.68 [0.63, 0.71] 0.68 [0.63, 0.72]

PCC þMR 0.72 6 0.002 0.72 6 0.002 0.69 [0.65, 0.73] 0.69 [0.65, 0.73]

GAAWGEFA 0.71 6 0.002 0.71 6 0.002 0.69 [0.65, 0.73] 0.70 [0.65, 0.74]

MLC (Sw) 0.72 6 0.003 0.73 6 0.003 0.69 [0.65, 0.73] 0.69 [0.65, 0.73]

MLCG 0.72 6 0.003 0.72 6 0.003 0.71 [0.67, 0.75] 0.72 [0.67, 0.76]

MLC-MR Hybrid 0.73 6 0.005 0.73 6 0.005 0.69 [0.65, 0.73] 0.69 [0.66, 0.73]

Notes: For the cross-validation, we report the average performance over the three folds as well as the corresponding standard error. For the CAFA3 results we

report the performance on the test set as well as the 95% confidence intervals from doing 1000 bootstrapped tests.

The top performance of every column is shown in bold.
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select fewer samples for more specific terms, but this result is not
statistically significant.

3.4 The weights learned by MLC help at identifying

relevant experimental conditions
The weights learned by GAAWGEFA are roughly uniformly distrib-
uted between 0 and 1 (Kolmogorov–Smirnov test statistic ¼ 0.011,
P-value ¼ 0.847) and are not correlated to any of the term-specific
weight profiles of MLC, which tend to have an exponential-like dis-
tribution (Supplementary Figs. S6 and 7, Supplementary Material
S12), as many samples get a weight of zero. Furthermore, samples
from the same study (batch) tend to be either selected or not selected
together by MLC (Supplementary Table S9, Supplementary
Material S13).

We used simulated data to validate the sample selection of MLC.
We created an artificial dataset with 7000 genes, 3000 samples and
three GO terms, where the genes with a particular GO term are cor-
related over a predefined set of samples. The sets of informative
samples are of equal length and do not overlap (Supplementary Fig.
S8, Supplementary Material S14). We varied the number of inform-
ative samples from 10 to 500 and compared MLC to the PCC calcu-
lated over all samples and the PCC calculated only over the
informative ones [which can be seen as the optimal, ground-truth
(GT) performance]. As seen in Figure 3, when up to 200 samples
drive the similarity, MLC performs considerably better than the
PCC and only slightly worse than the GT PCC (GT). When the
number of informative samples increases, both MLC and PCC in-
crease performance, eventually both converging to GT. Yet, MLC
converges much faster, thus achieving GT PCC performance with
fewer informative samples. We also found that in all cases, and for
all numbers of relevant samples except 500, the MLC weights of the
GT samples were on average significantly larger than those in the

rest of the samples (two-sample t-test, FDR ¡ 0.01, Supplementary
Fig. S9a, Supplementary Material S14). Moreover, there was a sig-
nificant enrichment of the informative samples in the samples
selected by MLC (Fisher’s exact test, FDR ¡ 0.01, Supplementary
Fig. S9b, Supplementary Material S14). When the number of in-
formative samples increased to 500, MLC selected all the samples
with rather similar weights (Fig. S9) and performed consistently
equal to both PCC and GT.

Continuing on the example from before, for term GO: 1903047
(mitotic cell cycle process) MLC gives the highest weight to a sample
of a plant grown in the absence of phosphorus, which has been
shown to restrict the cell division rate (Kavanová et al., 2006).
Among the samples with highest weights are also many samples
from experiments studying seed germination, a process closely
linked to cell cycle (Vázquez-Ramos and de la Paz Sánchez, 2003).
Finally, two IBM1 mutant samples were selected with very high
weights. The IBM1 gene codes for histone demethylation protein
and has GO annotations that include flower, root and pollen devel-
opment. The complete weight profile is shown in Supplementary
Figure S10 (Supplementary Material S15).

As another example, we looked at ‘regulation of flower devel-
opment’ (GO: 0009909). For this term, MLC selected 164 samples
and achieved ROC AUC of 0.74 while the PCC score was 0.55. The
top scoring sample came from an AS1 mutant plant. AS1 is a well-
known transcription factor, key in many developmental processes
including flowering (Xu et al., 2008). Several wild-type samples
were selected, many of them from meristems, tissues which contain
undifferentiated cells and drive tissue differentiation. In the top-10
samples, we also found a CORYNE mutant [CORYNE is involved
in the signaling of cell differentiation in flowers (Muller et al.,
2008)] and an AGO1 mutant, a gene crucial for miRNA-based
mRNA splicing (Vaucheret et al., 2004). Finally, 3 out of the top-10
samples were from knock-outs of well-known DNA methylation

(a) (b)

(c) (d)

Fig. 2. (a) Percent increase in ROCAUC of MLC (Sw) with respect to MR as a function of Resnik IC. For each set of terms in each quintile of IC, the corresponding box includes the

two middle quartiles of the percent increase for these terms. An orange line denotes the median and a green triangle the mean. The error bars extend to 1.5 times the range of the

two middle quartiles. Note, that the 0–20% quintile corresponds to the 20% least specific terms and the 80–100% quintile to the 20% most specific ones. (b–c) Distributions of co-

expressions for genes annotated with term GO: 1903047. In dashed blue lines, the co-expression values between a test and a training gene that both are annotated with that term. In

solid red lines, the co-expression between test genes annotated with that GO term and training genes that are not. Co-expression is measured as the PCC (b) and the Sw trained by

MLC (c). The x-axis shows the co-expression values and the y-axis the probability density estimated with Gaussian kernels. Note that the PCC and Sw have different ranges due to

the weight optimization. (d) Histogram of the number of samples that were selected for each GO term. The x-axis corresponds to the number of selected samples and the y-axis to

how many GO-term-specific similarity functions selected that many samples. The dashed line denotes the median number of non-zero weights
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genes. Chen et al. were—to our knowledge—the first to extensively
study the interplay between epigenetics, transcription factors and
miRNAs in flower development, which is otherwise largely not
understood (Chen et al., 2018). MLC was able to highlight that all
these three regulatory mechanisms are at the same time informative
for understanding flower development, without using the data from
that work or any Chip-Seq or miRNA data.

Together these examples highlight that MLC has the ability to
identify novel experimental conditions for a specific GO term.
Moreover, the weights learned by MLC are also consistent with the
ontology structure and the existing annotations, as shown in
Supplementary Figure S11 in Supplementary Material S16.

3.5 Using all samples obscures co-expression
Next, we investigated the terms for which MLC performed sample
selection, i.e. assigning a non-zero weight to at most 9% of the sam-
ples. We looked at the PCC values for ‘p–p’ and ‘p–n’ gene pairs.
Figure 4a shows an example of the distributions of the PCC values
for ‘p–p’ and ‘p–n’ pairs for term ‘GO: 1903047’ (mitotic cell cycle
process). Next, we calculated the PCC for all ‘p–p’ and ‘p–n’ pairs,
but only considering the samples that were selected by MLC (i.e.
had a non-zero weight assigned), as well as only considering the
samples that were not selected by MLC (i.e. were assigned a weight
of zero), shown in Figure 4b and c, respectively. One can notice that
the two distributions (‘p–p’ and ‘p–n’ PCC values) differ more when
taking the MLC selected samples in consideration (compare Fig. 4a
with Fig. 4b). When only considering the samples that were not
selected, the two distributions differ in a similar way to when all
samples are being considered (compare Fig. 4a with Fig. 4c).

For every GO term for which MLC performs sample selection, we
calculated the mean PCC of all ‘p–p’ and ‘p–n’ pairs under the three
sample sets (all samples, not selected samples and selected samples).
Figure 4d shows the average of these values of all GO terms. We also
performed 1000 bootstraps, sampling GO terms with replacement to
obtain 95% confidence intervals for these averages. We observed that
the difference in mean co-expression between ‘p–p’ and ‘p–n’ in the
samples not selected by MLC is similar to the difference in all the sam-
ples. Although these differences are statistically significant, they are
also significantly smaller than the difference in the MLC-selected sam-
ples (bootstrap P-value ¡0.001) (Fig. 4d). This means that although the
whole dataset does contain a few samples that are informative for these
GO terms, calculating the co-expression over a larger set of samples
can corrupt the ‘real’ co-expression signal, increasing the difficulty of
discovering new genes that play a role in these processes.

3.6 Combining MR and MLC
The performances of MLC and MR are positively correlated
(Spearman q ¼ 0.13, P-value ¼0.003). We also applied MR on the
co-expression similarities obtained with MLC, as MR is in principle

Fig. 3. ROCAUC (y axis) on simulated data as a function of the number of relevant

samples (x axis in log scale) for MLC (green), PCC (orange) and the PCC using only

the GT samples (blue). The error bars denote the SD over five repetitions

(a) (b)

(c) (d)

Fig. 4. (a–c) Distributions of Pearson correlations for pairs of training genes that are both annotated with term GO: 1903047 (‘p–p’, blue dashed), and for pairs of training

genes of which only one is annotated with that term (‘p–n’, red solid). The correlations are calculated using all samples (a), the samples that were selected by MLC (b) and the

samples that were not selected (c). (d) The means of the distributions of (a–c), over all GO terms where less than 10% of the samples where used to calculate the co-expression

(more than 90% zero weights). Values for ‘p–p’ pairs are colored blue and for ‘p–n’ pairs red. The error bars show the 95% confidence intervals for the means, calculated with

1000 bootstraps. Above the bars the bootstrap P-values are shown for the pairwise comparisons
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not restricted to using only the PCC. We found a small improvement
compared to standalone MLC, with a mean ROC AUC of 0.73.
Also, the performances of MLC and MLC þMR were highly corre-
lated (Spearman q ¼ 0.97, P-value� 10–20).

We tried another approach to combine MLC and MR depending
on the performance of the methods. If the training ROCAUC of MR
was larger than 0.8 for a GO term, we used the predictions of MR
for that term, otherwise we used the predictions of MLC. This com-
bined classifier had an incrementally larger term-centric ROCAUC
(0.73, Table 1–Hybrid), though statistically significant (P-value ¼
0.008, two-sample t-test). The threshold of 0.8 training ROCAUC
was chosen arbitrarily and was not tuned to maximize performance.
This naı̈ve hybrid classifier shows that there is potential to improve
performance by combining MLC and MR in more sophisticated
ways.

3.7 CAFA results
Moreover, we benchmarked MLC on 90 temporary A. thaliana tar-
gets from the CAFA3 competition. The results are similar, both in
absolute numbers and the ranking of the methods (Table 1), with
both MR and MLC outperforming the PCC on average. However,
due to the small size of the dataset, the confidence intervals are
much wider, so no significant conclusions can be drawn.

Lastly, we compared MLC and MR to PCC in the term-centric
challenge CAFA-p for P. aeruginosa, where PCC on microarray data
was the top-performing method (Zhou et al., 2019). The goal of the
challenge was to predict proteins involved in motility and biofilm
formation and the ground truth was obtained using genome-wide
assays. Note that these two terms are relatively frequent (about
14% and 12% of the tested genes were annotated with biofilm and
motility, respectively). Comparing them to our experiments in
Arabidopsis (Fig. 2a), they would fall in the left-most, least inform-
ative bin, where MLC is expected to be on average slightly worse
than MR and about similar to PCC. The results show that PCC, MR
and MLC achieve similar ROCAUC (around 0.6 for both biofilm
and motility, which is also very similar to the performance reported
in Zhou et al., 2019) (Supplementary Table S10, Supplementary
Material S17). However, MLC selected samples from relevant con-
ditions (Supplementary Material S17), enabling interpretability of
the predictions. We also examined the genes for which MLC was
most confident for their involvement in either biofilm formation or
motility, but they were not confirmed by the assay (i.e. false posi-
tives) and found evidence in the literature that indeed these genes
are likely part of these processes under certain biological conditions.
For example, two genes in the top-10 for biofilm formation were
annotated with the biofilm pathway in KEGG (more detailed discus-
sion and interpretation can be found in Supplementary Material
S17). Interestingly, these genes received low scores by PCC and MR
(see e.g. Supplementary Fig. S12, Supplementary Material S17).

4 Discussion

4.1 MLC
We introduced MLC, a metric learning method for building auto-
matic function predictors from a large collection of expression data.
MLC calculates gene co-expression by assigning GO-term-specific
weights to each sample. The weights aim at maximizing the co-
expression similarity between genes that are annotated with that
GO term. In general, training GO-term specific classifiers (also
known as the ‘Binary Relevance’ approach in the machine learning
literature) has the disadvantage that individual classifiers fail to see
the ‘bigger picture’ and cannot exploit the correlations between
terms imposed by the ontological structure. Several works on multi-
label classification have shown that Binary Relevance performs
worse than models that incorporate label correlations (Li and
Zhang, 2014; Suzuki et al., 2001; Tanaka et al., 2015). Despite this,
we showed that the weight profiles learned by MLC do correlate
with real biological knowledge, such as semantic similarity in the
ontology graph and gene annotation similarity, meaning that our
method is powerful enough to capture at least some of the label

similarities even though it was not exposed to them. Due to the use
of the L1 regularization, MLC can also select informative samples
by setting the weights of non-informative samples to zero.
Moreover, we showed that the samples that are selected come from
biological conditions relevant to the GO term in question.

Our method is designed to work well with a GBA approach like
the k-NN classifier. This classifier assigns a GO term to a test gene if
a large enough fraction of its top co-expressed training genes are
annotated with that term. To achieve this, MLC tries to maximize
the difference between the average co-expression between gene pairs
that are both annotated with the GO term of interest (‘p–p’ pairs)
and the average co-expression between gene pairs only one of which
is annotated with the term (‘p–n’ pairs). During the training phase,
our model ignores gene pairs where neither gene has the term of
interest (‘n–n’ pairs). Such pairs could either include two genes that
have common GO annotations, but different from the GO term of
interest or two genes with completely different annotations. For the
first case, one might be tempted to think that the co-expression of
such pairs should be high. However, if their common function is dif-
ferent from the term of interest, it is likely that they are correlated
for another set of samples than the one related to the GO term of
interest and, consequently, are thus uninformative for that GO term.
For the second type of ‘n–n’ pairs, the ones that share no annota-
tions whatsoever, it might make sense to want their co-expression to
be 0, as they are expected to be dissimilar over any set of samples.
However, we decided to ignore these pairs as they do not add any
term-specific information, so it is not clear how they will affect the
identification of samples specifically relevant for a specific term.
This might be problematic as for a negative test gene (i.e. a gene that
should not be annotated with the GO term of interest) we cannot ex-
clude that it can be as highly co-expressed to positive as to negative
genes, because we did not tune the co-expression values for ‘n–n’
pairs. For very frequent terms with a lot of positive training genes
this leads to a lot of false positive predictions, which might explain
the poor performance of MLC for frequent terms.

The similarity function that we used as a basis for MLC is the
weighted inner product (Sw). We chose this measure because its
unweighted version is identical to the unweighted PCC for centered
and scaled data, but it has a simpler form which eases the computa-
tional burden. The weighted versions of the inner product and PCC
are no longer identical, as the data are no longer scaled after weigh-
ing the samples. This has as side-effect that the similarity functions
that MLC learns are not necessarily in the range [–1, 1], like the
PCC. In most cases, their range is much narrower as can be seen in
Figure 2b for GO: 1903047. Also, because of the range differences,
it is not trivial to compare the similarity of two genes across differ-
ent GO terms. For the purpose of classification with the k-NN
classifier, however, the range of the metric is insignificant (only the
relevant rankings are important to find the proper neighborhood).

Our model is more general and not restricted to only the inner
product, though. The main idea is to maximize the difference be-
tween the similarity of p–p and p–n pairs. This is done by maximiz-
ing the t-statistic between the two distributions of similarities. This
means that MLC can also be applied to any measure of similarity
such as the weighted PCC, weighted Spearman correlation,
Euclidean distance etc. Regardless of the chosen metric, the two
classes (‘p–p’ and ‘p–n’) do not meet the assumptions for applying
Student’s t-test, as the similarity values are neither normally distrib-
uted nor independent. This is not an issue, though, because we do
not use the t-statistic to compute a P-value (exploit that the t-statis-
tic is distributed according the Student’s t-distribution under these
assumptions), but only to quantify the class separability
(Theodoridis and Koutroumbas, 2008). Equivalently, we could have
used any other measure of class separability, for instance the Fisher
Discriminant Ratio (Fisher, 1936) or the Davies-Bouldin index
(Davies and Bouldin, 1979).

4.2 Comparison to related methods
Our work validates the observation that PCC is not the optimal
co-expression measure for AFP. The MR attempts to obtain more
robust and noise-free co-expression values by converting the PCC
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values into ranks and averaging the reciprocal rankings of two genes
(Obayashi et al., 2018). MLC takes a fundamentally different ap-
proach, operating on the sample level rather than the correlation
level. First and foremost, as we mentioned above, it removes sam-
ples that do not help at discriminating between genes that do or do
not perform a certain function. With that MLC gives insight into
which samples are important for a given GO term, which subse-
quently can be used to investigate the expression patterns of the GO
term related genes across these samples. Weighing samples different-
ly can also be viewed as a way of denoising. For example, it can
compensate for the issue that an expression change of one unit has a
different meaning in different samples due to technical variations,
such as differences in sequencing depth or sample preparations. Our
results have shown that MLC is more beneficial than the MR ap-
proach for the more specific—and arguably more useful—GO
terms.

A similar method to MLC is GAAWGEFA, which learns a
weight for each sample in a dataset and then applies a weighted
Pearson correlation. There are two fundamental differences between
the two methods. Firstly, GAAWGEFA aims at good protein-centric
performance, i.e. it tries to do well on average for all genes and
therefore learns only one set of sample weights. On the other hand,
MLC aims at maximizing the performance for each GO term indi-
vidually. Secondly, GAAWGEFA learns the weights using a genetic
algorithm. For MLC, we used the inner product, which allowed us
to have a simple optimization problem that can be solved very effi-
ciently. Even though MLC has to be run for each term separately, it
is still 67% faster than GAAWGEFA and, unlike GAAWGEFA,
runs for different GO terms can be carried out in parallel to achieve
even greater speed-up. Next to those differences, MLC makes more
accurate predictions for rarer terms and provides interpretability of
the predictions by examining the term-specific sample weight
distributions.

Furthermore, in the context of selecting expression samples a
related technique is biclustering. Biclustering is an umbrella term for
a diverse set of algorithms that simultaneously select subsets of genes
and samples, so that the genes in the same subset (bicluster) have
similar expression to each other within the samples of that bicluster.
It is typically expected that each bicluster reflects a biological pro-
cess and that makes the rationale of MLC appear similar to a biclus-
tering approach. Although both approaches make use of sample
selection and aim at discovering genes involved in the same biologic-
al processes, they are fundamentally different in the sense that MLC
is supervised and biclustering unsupervised. Biclustering does not
make use of GO annotations, but only of the expression matrix.
Often, observing enrichment of certain GO terms or KEGG path-
ways in the genes of biclusters is one of the ways to validate a biclus-
tering result (Santamarı́a et al., 2007). On the other hand, MLC
starts with a set of genes whose GO annotations are known (or at
least partly known) and tries to use the expression matrix in order
to identify which of the remaining genes participate in a particular
biological process by defining a co-expression measure specific to
that process.

4.3 Possible extensions
MLC learns the sample weights automatically from the available
data and does not rely on information about the samples’ biological
condition or tissue. As curation efforts increase and the amount of
well-annotated data in public databases grows larger with time, in
the future it might be useful to extend MLC to incorporate such
knowledge. A possible way to do that would be a group LASSO ap-
proach (Yuan and Lin, 2006). Group LASSO uses predefined groups
of samples and forces the weights of all samples in a group to be
equal. Each such group could contain technical and biological repli-
cates, samples from the same tissue or samples from similar knock-
out experiments and perturbations.

A disadvantage of MLC is the fact that it does not account for
the possibility that genes that show exactly opposite expression pat-
terns (i.e. genes with large negative correlation) might also be
involved in the same biological process. In fact, negative correlations
are penalized, as our model explicitly tries to force the signed

similarities of p–p pairs to be larger than those of the p–n pairs. In
Figure 2b, we see that large negative PCC values are scarce within
our dataset, implying that we might not suffer a lot from ignoring
negative similarities, at least when considering the PCC as a method.
The effect might be larger for our MLC approach though, which
selects a subset of the samples, as in this smaller set negative correla-
tions might be more frequent.

To handle this short-coming, one could directly use the absolute
value of the weighted co-expression in the model. Doing this, one is
faced with an additional challenge, namely that the absolute value is
not differentiable at 0. This can be overcome by approximating the
absolute value with a smooth function, such as

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ �
p

, where � is a
small positive number (Ramı́rez et al., 2013), but this makes the co-
expression function non-linear and the calculation of its derivative
with respect to w more costly. More importantly, it makes the opti-
mization problem more difficult, as it adds an extra non-linearity to
an already non-convex objective function, meaning that it might be
harder to find a good solution for the weights in this problem.

One could also think of alternative formulations of the objective
function that would accommodate absolute co-expression values
more easily. For instance, it would be possible to minimize the
squared difference between the weighted absolute correlations and a
target value (e.g. 0 for p–n pairs and 1 for p–p pairs). Another possi-
bility would be to use a triplet loss, which has been successfully
used in image retrieval (Husain et al., 2019). In the triplet loss, we
look at sets of three genes at a time instead of two: two positive
genes (p1, p2) and one negative (n1). Then, we maximize the differ-
ence Swðp1; p2Þ � Swðp1; n1Þ, where Sw is in this case the absolute
weighted similarity.

Finally, in this work, we applied MLC on finding candidate
genes for GO terms from the BPO. However, it can be useful for any
gene annotation problem that can be solved with expression data,
such as finding members of KEGG pathways or genes that are likely
to influence a given phenotypic trait. As MLC is computationally
efficient, it can easily be applied to a large number of different
terms/phenotypes, offering state-of-the-art performance with the
added benefit of allowing users to understand which parts of the
dataset influence the predictions.
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