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Aims We aimed to compare performances of conventional survival models with machine learning (ML) survival models for inci
dent heart failure (HF) in men and women without prevalent HF, cardiomyopathy (CM) or ischaemic heart disease (IHD), 
and to identify potential high-risk precursors overlooked by conventional survival models.

Methods 
and results

We predicted 10-year risk of incident HF in 266 306 women (2894 events) and 212 061 men (4213 events). We con
structed multivariable Cox models, first using ∼ 400 baseline characteristics, and subsequently only those remaining after 
LASSO stability selection. We also used Random Survival Forest (RSF) and eXtreme Gradient Survival Boosting 
(XGBoost). Performances were assessed using internal cross validation and hold-out sets, with C-indices, calibration curves 
and net-benefit analyses. Model performances were comparable during internal validation: XGBoost (C-index ± SE) (men: 
0.79 ± 0.0040, women: 0.83 ± 0.0023) showed similar performance to the multivariable Cox model (men: 0.80 ± 0.0031, 
women: 0.83 ± 0.0022) and Cox models after LASSO stability selection, while RSF showed numerically slightly lower per
formance (men: 0.78 ± 0.0025, women: 0.81 ± 0.0015). Findings were similar in the hold-out sets. Age, cystatin-C, lifetime 
treatments/medications, other heart disease, systolic blood pressure, and spirometry measures were identified as high-risk 
factors in both model types for both sexes. Additionally, sex-specific and model-specific risk factors were identified.

Conclusion Machine learning models and Cox proportional hazard models performed well and similarly for 10-year incident HF risk 
prediction in the general population. However, sex-specific and model-specific risk predictors were found. Spirometry mea
sures, rarely included in existing models, were identified as important risk factors. Our results suggest that ML models for HF 
prediction in the general population reveal insights that would otherwise remain unnoticed.

* Corresponding author. Tel: +31650032051, Email: i.kardys@erasmusmc.nl 
© The Author(s) 2025. Published by Oxford University Press on behalf of the European Society of Cardiology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.
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Graphical abstract

Survival analysis (SV) and machine learning (ML) for the prediction
of incident heart failure (HF) in a general population cohort study
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Introduction
While several risk prediction models have been developed for heart 
failure (HF), their performance still leaves room for improvement, part
ly due to the multifactorial aetiology and heterogeneous nature of HF. 
A systematic review1 observed 58 HF risk prediction models, published 
between 2012 and 2018. The authors concluded that models were lim
ited by a lack of methodological information, high risk of bias and ab
sence of either internal- or external validation, and postulated the 
potential of machine learning (ML) tools for HF prediction.

Risk models are typically developed as multivariable regression mod
els that use small numbers of well-established predictor variables, and 
usually assume simple linear relationships between (log-scaled) predict
or variables and outcomes.2 The inclusion of a larger number of vari
ables provides opportunities to identify potential lesser-known HF 
risk factors and herewith improve model performance. Although it 
has been suggested that characteristics of a prediction model are less 
important than the type and number of used predictor variables in pre
dicting HF outcome,3 previous studies exploring benefits of ML techni
ques for HF prediction carried limitations, such as variable preselection 
and use of relatively small datasets.4

Moreover many existing models pay insufficient attention to sex dif
ferences. Sex is often included as determinant of outcome, yet interac
tions between sex and other characteristics are frequently neglected. 
Although age-related risk of HF and in-hospital HF mortality have 
shown similarities between sexes, sex differences can become apparent 
when examining how traditional risk factors influence risk in either 
sex.5,6 Women tend to be older at time of first in-hospital diagnosis 

and are more inclined to develop HF with preserved ejection fraction 
(HFpEF), compared with men who are more prone to develop HF 
with reduced ejection fraction (HFrEF).7 Diabetes and hypertension, 
both strong traditional risk factors, show greater risk of HF develop
ment in women than men, as shown in the Framingham Heart 
Study.8 Obesity has been described as a significant risk factor for 
HFpEF development, especially in postmenopausal women.9 Because 
of these underlying differences, prediction models, which take sex 
into account properly, are useful.

In this study, we developed sex-specific supervised ML prediction 
models for incident HF in the general UK Biobank population using a 
hypothesis-free approach. We compared prediction performance to 
traditional Cox proportional hazard (PH) models and investigated dif
ferences between sex-specific models. Moreover, we aimed to identify 
potential high-risk precursors otherwise ignored by conventional sur
vival models.

Methods
Study design
The UK Biobank dataset is a large-scale population cohort featuring 
502 407 participants living in the UK. The study design has been previously 
described.10 Participants aged 37 years and over were recruited between 
2006 and 2010 and sent to 1 of 22 assessment centres in England, 
Scotland and Wales. Written consent was provided by participants prior 
to enrolment. Participants underwent physical examinations, provided 
blood and urine samples, completed automated questionnaires and 

High-dimensional ML models for prediction of HF                                                                                                                                         1235
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjdh/article/6/6/1234/8275817 by Technical U
niversity D

elft user on 02 D
ecem

ber 2025



answered lifestyle, medical history, and nutritional questions during an 
interview with a professional nurse. The full UK Biobank protocol can be 
found online.11 Approval was obtained from the North West 
Multi-centre Research Ethics Committee and the Community Health 
Index Advisory Group. Furthermore, the Quality and Information 
Security Management systems at UK Biobank have been approved by the 
British Standards Institution and are certified to ISO 9001:2015 and ISO 
27001:2013 for the collection, processing, storing and analysis of genetic 
and environmental information respectively. Follow-up hospitalization 
data was obtained through mapping of hospital episode records across 
England, Scotland and Wales, combined with linking to national death and 
cancer registries and hospital admission data with linkage to primary care.12

For this study, participants were excluded who had prevalent inpatient 
hospital records of HF, cardiomyopathy (CM) or ischaemic heart disease 
(IHD) reflected by codes ICD-10 or ICD-9 (n = 21 588); or who were 
told by their doctor they had experienced a heart attack (n = 2452). 
After exclusion, 2 datasets containing 266 306 women and 212 061 men re
mained. A flow chart of participant selection is shown in Figure 1.

Study endpoint
The primary outcome was incident ICD10 in-hospital diagnosis of I50 (con
gestive HF, left ventricular failure, and unspecified HF). We censored for all- 
cause mortality. Survival time was the time in days between the date of UK 
Biobank assessment visit and an in-hospital diagnosis of incident HF event 
or, for patients without incident HF, time until the reported day of death 
or censoring (reaching the final observation date). Censoring occurred at 
10 years of follow-up.

Statistical analysis
An overview of the data flow during the analysis process, can be found in the 
Supplementary material online, Figure S1. Below, each analytical step is de
scribed in further detail.

Data preprocessing
We included 426 variables in men and 437 in women. Baseline variables are 
described in the Supplementary material online, Tables S1–S12, and include 
early life factors, family history, medical history, lifestyle and environment, 
physical measures, psychosocial factors, socio-demographics, verbal inter
view, measurements from biological samples, and female-specific factors. 
Additionally, we included a set of prevalent history variables for all available 
ICD10 data (see Supplementary material online, Table S13).

Details on data preprocessing, aggregation, and preparation can be found 
in the Supplementary material.

Data splitting and imputation
Each sex specific dataset was split in a train (80%) set, in which models were 
internally validated through stratified five-fold cross-validation, and a hold- 
out dataset (20%) used for external validation. Stratified sampling was used 
to create train- and hold-out sets with comparable proportions of the pri
mary endpoint. Supplementary material online, Table S14 shows numbers 
of participants and incident HF cases for both train- and hold-out sets.

Additionally, we formulated subsets for variable importance assessment, 
to account for the low prevalence of the primary endpoint in the study 
population, i.e. class imbalance. Subsets included all incident HF cases and 
four times the amount of randomly selected participants without incident 
HF. This resulted in a female subset (n = 14 470) and a male subset (n =  
21 065), which were also split in 80% train- and 20% hold-out sets. 
Multiple imputation by chained equations with random forests, using pre
dictive mean matching, featured in the MiceRanger (1.5.0) package, was 
used to impute missing data. Missing data was imputed in five iterations en
suring proper convergence. To prevent data leakage between train- and 
hold-out sets, imputation was performed after stratified splitting had oc
curred. Furthermore, to prevent data leakage during internal model valid
ation, train data was split in five stratified folds of which, iteratively, 
four-folds were combined and imputed (train set) while the fifth was im
puted separately (test set). Details about missing data, stratified by sex, 
can be found in Supplementary material online, Table S15.

Traditional survival models
We formulated three types of Cox PH models for incident HF. First we ran 
a multivariable Cox PH model, featuring all baseline variables. The two 
other Cox PH models only contained baseline variables that remained after 
least absolute shrinkage and selection operator (LASSO) stability selection 
and randomized LASSO stability selection. LASSO stability selection com
bines stability selection13 with LASSO regularization.14 Stability selection 
identifies important predictor variables by repeatedly running variable se
lection over subsampled datasets. Variables present in at least 80% of cre
ated subsampled selection sets, were included in the Cox PH models. 
LASSO stability selection uses regularization parameter λ while random 
LASSO stability selection allows λ to vary between λ and λ/α where α is a 
weakness term, borrowed from the terminology of weak greedy algo
rithms.15 We used α = 1 for LASSO stability selection and α = 0.8 for ran
domized LASSO stability selection.

Machine learning models
Random Survival Forest (RSF)16 is an ensemble tree-based ML method for the 
analysis of right-censored survival data and built as an extension on random 
forest analysis which only performs regression and classification.17 RSF ex
plores non-linear relationships between predictor variables and outcome in 
high-dimensional data using many independent decision trees. Extreme 
Gradient Boosting (XGBoost)18 is a flexible ML method which combines a 
gradient boosting framework with a decision tree ensemble method similar 
to RSF. Unlike RSF, iteratively, one decision tree is added at a time, to correct 
the errors of the ensemble of decision trees up to that point, until optimal out
come prediction is reached. To facilitate survival analysis, the XGBoost learn
ing objective for Cox regression for right censored survival data was used.

Both ML techniques went through hyperparameter optimization. 
Definitions and range of explored parameters are shown in Supplementary 
material online, Table S16. For RSF, hyperparameter optimization was done 
using a grid search in which the optimal out-of-sample error was found using 
the C-index as evaluation metric. Permutation importance was used to assess 
variable importance in the RSF models.

Figure 1 Flowchart of study population selection. *Prevalent diag
noses for heart failure, ischaemic heart disease and cardiomyopathy 
were stored as either ICD-10 or ICD-9 codes.
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For XGBoost, optimal hyperparameters were identified using five-fold 
cross validation and evaluated using C-indices. Iterations were halted 
when the C-index of the validation set did not significantly increase for 30 
iterations. Variable importance was assessed using the gain parameter.

Variable importance assessment was only done for the sex-specific sub
sets, using all available train data. For both ML methods, standard errors of 
C-indices in the hold-out sets were not readily available. Standard errors 
were calculated using an approximation based on the Mann–Whitney stat
istic.19 Furthermore, pairwise correlation between high-risk variables, iden
tified in any model, was assessed to account for collinearity.

Model performance assessment
We evaluated discriminative ability by means of Harrell’s concordance in
dex (C-index).20 Moreover, for further performance assessment in the sub
sets, net-benefit- and calibration curves were constructed. Apart from 
performance assessment of our full models as specified above, we also com
pared performance of ML models that incorporated all available covariates, 
to ML models incorporating only variables that remained after LASSO sta
bility selection. Additionally, we applied the established Pooled Cohort 
Equations to Prevent HF (PCP-HF) score21 to our study population, and 
compared its performance to that of our models.

R and package information
All models were fitted in R (4.2.3). Cox models were fitted using the coxph 
function in the survival (3.5-5) package. LASSO stability selection was done 
using the randLassoStabSel function found in the monaLisa (1.7.1) 
Bioconductor package. Random Survival Forest was performed using the 
RandomForestSRC (3.2.2) package. XGBoost was performed using the xgboost 
(1.7.5.1) package. Hyperparameter optimization was done for RSF using the 
tune() function, as described in the RandomForestSRC (3.2.2) package, and for 
XGBoost using the caret (6.0-94) package combined with the xgbTree meth
od. Calibration plots were generated using the CalPlot() function from the pec 
(2023.04.12) package and net-benefit analysis plots were generated using the 
dca() function from the dcurves (0.5.0) package.

Results
Baseline characteristics
A total of 266 306 women and 212 061 men were included. Baseline 
characteristics are shown in Table 1 and Supplementary material 
online, Table S17 for the total participant population and subsets, re
spectively. In the total population, median (25th–75th percentile) 
age was similar between men [58.0 (50.0–63.0) years] and women 
[57.0 (50.0–63.0)]. Men were more likely to be current smokers 
(13.0% vs. 8.9%), had larger waist circumference [96.0 (89.0– 
103.0) vs. 83.0 (75.0–92.0) cm] and had higher forced expiratory 
volume in 1 second (FEV1) measures [3.34 (2.84–3.83) vs. 2.41 
(2.05–2.76) L] than women. Men were also more likely to have 
prevalent diabetes (2.1% vs. 1.3%), other heart disease (defined as 
among others pericardial disease, valve disorders, and arrhythmias) 
(2.0% vs. 1.2%) and more often used blood pressure (BP) medica
tion (21% vs. 17%) than women.

Incident heart failure
Follow-up was censored at 10 years, and during median follow-up times 
of 10.0 years (25th–75th percentile: 10.0, 10.0) in women and 10.0 
years (25th–75th percentile: 10.0, 10.0) in men, there were 2894 
(1.09%) incident HF events in women and 4213 (1.99%) in men. 
Cumulative incidence of HF is shown in Figure 2.

Baseline characteristics, stratified by incident HF status, are shown in 
Supplementary material online, Table S18 for the full cohort and in 
Supplementary material online, Tables S19 and S20 for men and wo
men. Overall, individuals who developed HF, were generally older at 
baseline [median (interquartile range) age, 63 (59–67) years vs. 57 
(50–63) years], more often male (59% vs. 41%) and were more likely 

to have a medical history of other heart disease (8.2% vs. 1.4%), dia
betes (7.1% vs. 1.5%), and BP medication use (43% vs. 18%).

Model performance
Overall, traditional survival models and ML models showed similarities 
in performance, both for internal five-fold cross validation and for val
idation in the hold-out sets (Table 2). During training, using the full data, 
C-statistics ranged between 0.78 and 0.80 in men and 0.81 and 0.83 in 
women. In the hold-out sets, C-statistics varied between 0.78 and 0.80 
in men and 0.80 and 0.82 in women. Model performance was numer
ically higher in women than in men for all five models. C-indices in 
the subsets were generally somewhat lower than in the full datasets, 
and the aforementioned sex-difference persisted. Overall, model per
formances numerically outperformed the PCP-HF score (see 
Supplementary material online, Table S21). Net benefit analyses (see 
Supplementary material online, Figures S2 and S3) showed that net 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Baseline characteristics for the total UK 
Biobank population (n = 478 367)

Characteristic Men,  
n = 212 061

Women,  
n = 266 306

Age (years) 58 (50, 63) 57 (50, 63)

Ethnic background

Any other white background 5945 (2.8%) 9882 (3.7%)
British 187 520 (88.4%) 234 443 (88.0%)

Indian 2704 (1.3%) 2835 (1.1%)

Irish 5868 (2.8%) 6701 (2.5%)
Other 10 024 (4.7%) 12 445 (4.7%)

Waist circumference (cm) 96 (89, 103) 83 (75, 92)

BMI (kg/m2) 27.2 (24.9, 29.9) 26.1 (23.4, 29.6)
Best FEV1 measure (L) 3.34 (2.84, 3.83) 2.41 (2.05, 2.76)

Systolic blood pressure (mmHg) 141 (130, 154) 135 (122, 150)
Diastolic blood pressure 

(mmHg)

84 (77, 91) 80 (73, 88)

Smoking status
Current 26 595 (12.5%) 23 689 (8.9%)

Never 106 405 (50.2%) 159 480 (59.9%)

Previous 79 061 (37.3%) 83 137 (31.2%)
Albumin (g/L) 45.55 (43.85, 

47.25)

44.94 (43.25, 

46.67)

Cystatin-C (mg/L) 0.91 (0.84, 1.00) 0.85 (0.78, 0.95)
CRP (mg/L) 1.28 (0.66, 2.53) 1.37 (0.65, 2.97)

Creatinine (mmol/L) 79.8 (72.4, 88.0) 63.0 (57.0, 69.9)

Cholesterol (mmol/L) 5.53 (4.81, 6.28) 5.84 (5.11, 6.62)
HDL cholesterol (mmol/L) 1.25 (1.07, 1.47) 1.56 (1.32, 1.83)

Haemoglobin concentration 

(g/dL)

15.02 (14.40, 

15.68)

13.50 (12.90, 

14.10)
HbA1c (mmol/mol) 35.2 (32.7, 37.9) 35.1 (32.7, 37.7)

RDW (%) 13.30 (12.90, 

13.80)

13.36 (12.90, 

13.90)
Presence of other heart disease 4325 (2.0%) 3160 (1.2%)

Presence of diabetes 4437 (2.1%) 3351 (1.3%)

Blood pressure medication 44 482 (21%) 44 034 (17%)

BMI, body mass index; FEV1, forced expiratory volume in 1 s; CRP, C-reactive protein; 
HDL, high-density lipoprotein; HbA1c, glycated haemoglobin; RDW, red blood cell 
distribution width.
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benefit of the Cox models was generally lower than that of both ML 
methods in both men and women. Net benefit was highest for RSF 
at low threshold probabilities, and highest for XGBoost at high thresh
old probabilities. Net benefit differences were less pronounced in wo
men than men. The calibration plots (see Supplementary material 
online, Figures S4 and S5) showed that, at high predicted event probabil
ities, the ML models tended to underestimate the risk of HF, while the 
Cox models tended to overestimate. Overall, Cox models showed bet
ter calibration compared with XGBoost and RSF.

Variable importance and sex differences
We identified 21 high-risk variables in both sexes, 13 in only men and 20 
in only women.

Top 15 variable importance is shown for men and women in Tables 3
and 4, respectively. The scores used to construct both tables, can be 
found in the Supplementary material online, Tables S22 and S23 and, 
additionally, the importance metrics of the ML models are visualized 
in the Supplementary material online, Figures S6 and S7. Figure 3 pro
vides an overview of model occurrences of high-risk variables, stratified 
by sex. Figures 4 and 5 display heat maps of presence and absence of 
high-risk variables in each model. Correlation information between 
high-risk predictor variables, can be found in the Supplementary 
material online, Figures S8 and S9. Positive correlation was strongest be
tween several spirometry metrics and between cystatin-C and creatin
ine. Negative correlation was strongest between age and spirometry 
metrics. Adiposity metrics showed both strong positive-and negative 
correlations.

In both sexes, age, cystatin-C, and the presence of other heart dis
ease were the only three predictor variables present in all five models. 
The importance metrics plots show that, while these three predictor 
variables were indeed strongly associated with incident HF in both 
sexes, they did not cancel out other predictor variables (see 
Supplementary material online, Figures S6 and S7). Furthermore, the 

effect of age was weaker in women than men. The number of 
self-reported lifetime treatments/medications was important in four 
models in both sexes, while diastolic BP (DBP) was present in the fifth 
model in women instead.

Sex differences were also present between the models; glycated 
haemoglobin (HbA1c) was important in four models in men but 
none in women. The number of self-reported non-cancers was import
ant in three models in women but none in men. Red blood cell distri
bution width (RDW) and predicted FEV1 score (%) were present in 
four models in men and three in women. Leg impedance was present 
in three models in men and one in women. Detailed model-specific im
portance characteristics are described below.

In men, the ordinary multivariable Cox PH model was the only model 
to identify smoking, urate, lipoprotein A, creatinine, a poor overall 
health score, alanine aminotransferase, and walk metrics as a major 
risk for incident HF development, while prescription medication use, al
cohol drinker status, inability to confide in someone close, use of ibu
profen, the presence of diabetes, trend to drive faster than motor 
way speed limit, trunk fat free mass, sodium in urine, speaker phone 
use, and receiver of disability/living allowance was only identified by 
this model in women.

LASSO stability selection reduced the number of variables from 426 
down to 15 (randomized LASSO) and 18 (LASSO) in men, and from 
437 down to 18 (randomized LASSO) and 18 (LASSO) in women. 
Further details are provided in Supplementary material online, Table S24.

For both stability selection models, waist circumference was the 
most important risk factor in men, followed by the number of treat
ments/medications. In women, age and presence of other heart disease 
were most important in both models; the third to seventh most im
portant variables were predicted FEV1 score (%), cystatin-C, number 
of treatments/medications, number of self-reported non-cancer ill
nesses, and presence of respiratory disease. Rankings showed similar
ities in men, although HbA1c, RDW, and presence of hypertensive 
disease, were more important.

Figure 2 Cumulative incidence of heart failure with 95% confidence intervals in the UK Biobank population, stratified by sex. Survival time is given in 
years.
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The LASSO stability selection models were the only models to iden
tify hand grip strength, dentures use, blue badge use, presence of 
hypertensive disease and serum albumin as high-risk variables in 
men. At the same time, they were the only ones to identify C-reactive 
protein (CRP), neutrophil count, presence of muscoskeletal-, 
hypertensive- or respiratory disease, denture use, and BP medication 
use, as important in women. Beta estimates of the ordinary Cox model 
and both LASSO stabilized Cox models are shown in Supplementary 
material online, Tables S25–S27.

The ML models were the only models to select current (i.e. base
line) employment status, best FEV1-scores, and best forced vital cap
acity (FVC) measures as high-risk factors in both sexes. Random 
Survival Forest was the only model to identify sleep duration and 
time spent watching television as high-risk factors in both sexes. In 
men, RSF was the only model to identify the number of self-reported 
operations, number of people in household, and presence of endo
crine/metabolic disease as high-risk factors. At the same time, it was 
the only model to consider DBP, nucleated red blood cell count, walk
ing metrics, age period started, number of self-reported operations 
and self-reported cancers as important in women. XGBoost was 
the only model to identify long standing illness as a risk factor in 
both sexes and mean sphere cell volume in women. When only the 
predictor variables, that remained after LASSO stability selection, 
were used to train the ML models, their performances were compar
able to the ML models trained on all available predictor variables (see 
Supplementary material online, Table S28).

Discussion
We used over 400 predictor variables, measured in over 450 000 UK 
individuals, to compare traditional and contemporary Cox PH models, 
and two ML survival models, for incident HF prediction in men and wo
men without a history of HF, CM and IHD. Machine learning survival 
models performed similar to Cox PH models although both sex- 
specific and model-specific risk predictors could be identified. In gen
eral, age, cystatin-C, and presence of other heart disease, were the 
most consistently important predictor variables. In men, waist circum
ference and HbA1c were more important, while medical disease his
tory was more important in women. The ML models showed higher 
priority for spirometry metrics and employment status, while LASSO 
stability selection models prioritized denture use, neutrophil count, 
and medical disease history.

Performances of Cox PH models and ML models were similar in 
terms of the C-index, with XGBoost showing slight numerical perform
ance superiority to RSF. Furthermore, overall, XGBoost showed the 
best net-benefit curves. For RSF, net benefit decreased drastically as 
threshold probability increased. Unlike the Cox PH models and 
XGBoost, which showed skewed predicted risk distributions, the pre
dicted risk for RSF showed a sigmoid distribution. This probably con
tributed to the shape of the net benefit curve. Also, RSF and 
XGBoost tended to underestimate the risk of incident HF, while the 
Cox models were prone to overestimation; overall, the Cox models 
showed the most stable calibration.

Despite performance similarities, the ordinary Cox PH model 
showed the largest deviations in predictor importance compared 
with the other models. Different methodologies for variable import
ance assessment, the ability of ML to model non-linear relationships be
tween predictors and endpoint, and the large number of available 
covariates may have contributed to these findings.

A retrospective multicohort analysis, which compared conventional 
survival models and ML models for 10-year incident HF risk prediction, 
showed superior performance of ML models, particularly when ML 
models were stratified by race.22 Also, previous research in the predic
tion of breast cancer survival demonstrated similar performances of 

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

T
ab

le
 3

 
C

on
ti

nu
ed

C
ox

 P
H

 m
od

el
R

an
do

m
iz

ed
 L

A
SS

O
 s

ta
bi

lit
y 

se
le

ct
io

n
LA

SS
O

 s
ta

bi
lit

y 
se

le
ct

io
n

R
SF

 m
od

el
X

G
B

oo
st

 s
ur

vi
va

l m
od

el

C
ys

ta
tin

-C
H

an
d 

gr
ip

 s
tr

en
gt

h
H

an
d 

gr
ip

 s
tr

en
gt

h
Pr

es
en

ce
 o

f o
th

er
 e

nd
oc

rin
e/

m
et

ab
ol

ic
 

di
se

as
e

H
bA

1c

N
eu

tr
op

hi
l c

ou
nt

C
RP

C
RP

N
um

be
r 

of
 s

el
f r

ep
or

te
d 

op
er

at
io

ns
RD

W

Le
g 

fa
t 

im
pe

da
nc

e
A

lb
um

in
N

eu
tr

op
hi

l c
ou

nt
Ti

m
e 

sp
en

t 
w

at
ch

in
g 

te
le

vi
sio

n
Le

g 
fa

t 
im

pe
da

nc
e

M
os

t r
el

ev
an

t i
nc

id
en

t H
F 

pr
ed

ic
to

rs
 fo

r m
en

 in
 th

e 
su

bs
et

 d
at

a.
 F

or
 C

ox
 P

H
 a

nd
 th

e 
(r

an
do

m
iz

ed
) L

A
SS

O
 st

ab
ilit

y 
se

le
ct

io
n,

 th
e 

fir
st

 1
5 

va
ria

bl
es

 a
re

 sh
ow

n 
an

d 
va

ria
bl

es
 a

re
 o

rd
er

ed
 fr

om
 lo

w
es

t t
o 

hi
gh

es
t P

-v
al

ue
. R

ed
uc

ed
 ri

sk
 (H

R 
<

1)
 fa

ct
or

s i
n 

th
e 

C
ox

 P
H

 m
od

el
s 

ar
e 

w
rit

te
n 

us
in

g 
a 

bo
ld

 fo
nt

. F
ea

tu
re

s 
in

 M
L 

m
od

el
s 

ar
e 

or
de

re
d 

by
 p

er
m

ut
at

io
n 

im
po

rt
an

ce
 in

 R
SF

 a
nd

 g
ai

n 
in

 X
G

Bo
os

t.
C

ox
 P

H
, C

ox
 p

ro
po

rt
io

na
l h

az
ar

d;
 L

A
SS

O
, l

ea
st

 a
bs

ol
ut

e 
sh

rin
ka

ge
 a

nd
 se

le
ct

io
n 

op
er

at
or

; R
SF

, R
an

do
m

 S
ur

vi
va

l F
or

es
t; 

X
G

Bo
os

t, 
eX

tr
em

e 
G

ra
di

en
t B

oo
st

in
g;

 S
BP

, s
ys

to
lic

 b
lo

od
 p

re
ss

ur
e;

 A
ge

, a
ge

 in
 y

ea
rs

 w
he

n 
at

te
nd

in
g 

as
se

ss
m

en
t c

en
tr

e;
 

H
bA

1c
, g

ly
ca

te
d 

ha
em

og
lo

bi
n;

 R
D

W
, r

ed
 b

lo
od

 c
el

l d
ist

rib
ut

io
n 

w
id

th
; C

RP
, C

-r
ea

ct
iv

e 
pr

ot
ei

n;
 F

EV
1,

 fo
rc

ed
 e

xp
ira

to
ry

 v
ol

um
e 

in
 1

 s
; F

VC
, f

or
ce

d 
vi

ta
l c

ap
ac

ity
; B

P,
 b

lo
od

 p
re

ss
ur

e.
a Bl

ue
 b

ad
ge

 is
 a

 s
er

vi
ce

 a
llo

w
in

g 
pe

op
le

 w
ith

 s
ev

er
e 

m
ob

ilit
y 

pr
ob

le
m

s 
to

 p
ar

k 
cl

os
e 

to
 t

he
ir 

de
st

in
at

io
ns

.

1240                                                                                                                                                                                            T.F. Kok et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjdh/article/6/6/1234/8275817 by Technical U
niversity D

elft user on 02 D
ecem

ber 2025

http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztaf118#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztaf118#supplementary-data
http://academic.oup.com/ehjdh/article-lookup/doi/10.1093/ehjdh/ztaf118#supplementary-data


..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

..
..

.

T
ab

le
 4

 
T

he
 1

5 
m

os
t 

im
po

rt
an

t 
pr

ed
ic

to
r 

va
ri

ab
le

s 
in

 w
om

en

C
ox

 P
H

 m
od

el
R

an
do

m
iz

ed
 L

A
SS

O
 s

ta
bi

lit
y 

se
le

ct
io

n
LA

SS
O

 s
ta

bi
lit

y 
se

le
ct

io
n

R
SF

 m
od

el
X

G
B

oo
st

 s
ur

vi
va

l m
od

el

Pr
es

en
ce

 o
th

er
 h

ea
rt

 d
ise

as
e

A
ge

A
ge

Pr
es

en
ce

 o
th

er
 h

ea
rt

 d
ise

as
e

C
ys

ta
tin

-C

A
ge

Pr
es

en
ce

 o
th

er
 h

ea
rt

 d
ise

as
e

Pr
es

en
ce

 o
f o

th
er

 h
ea

rt
 d

ise
as

e
A

ge
A

ge
SB

P
N

um
be

r 
of

 t
re

at
m

en
ts

/m
ed

ic
at

io
ns

.
P

re
di

ct
ed

 F
EV

1 
sc

or
e 

(%
)

Sl
ee

p 
du

ra
tio

n
Be

st
 F

EV
1-

sc
or

e

Pr
es

cr
ip

tio
n 

m
ed

ic
at

io
n 

us
e

N
um

be
r o

f s
el

f-r
ep

or
te

d 
no

n-
ca

nc
er

 

illn
es

se
s.

C
ys

ta
tin

-C
N

um
be

r 
of

 t
re

at
m

en
ts

/ 

m
ed

ic
at

io
ns

N
um

be
r 

of
 t

re
at

m
en

ts
/m

ed
ic

at
io

ns

O
th

er
 s

er
io

us
 m

ed
ic

al
 c

on
di

tio
n/

di
sa

bi
lit

y 

di
ag

no
se

d 
by

 d
oc

to
r

C
ys

ta
tin

-C
N

um
be

r 
of

 t
re

at
m

en
ts

/m
ed

ic
at

io
ns

N
um

be
r 

of
 s

el
f-r

ep
or

te
d 

op
er

at
io

ns

Pr
es

en
ce

 o
th

er
 h

ea
rt

 d
ise

as
e

Pr
es

en
ce

 o
f d

ia
be

te
s

P
re

di
ct

ed
 F

EV
1 

sc
or

e 
(%

)
N

um
be

r 
of

 s
el

f-r
ep

or
te

d 
no

n-
ca

nc
er

 il
ln

es
se

s.
N

um
be

r 
of

 s
el

f r
ep

or
te

d 
ca

nc
er

s
Pr

ed
ic

te
d 

FE
V1

 s
co

re
 (%

)

Tr
un

k 
fa

t 
fr

ee
 m

as
s

Pr
es

en
ce

 o
f r

es
pi

ra
to

ry
 d

ise
as

e
Pr

es
en

ce
 o

f r
es

pi
ra

to
ry

 d
ise

as
e

U
su

al
 w

al
ki

ng
 p

ac
e

Lo
ng

 s
ta

nd
in

g 
illn

es
s, 

di
sa

bi
lit

y 
or

 in
fir

m
ity

C
ys

ta
tin

-C
W

ea
rs

 d
en

tu
re

s
SB

P
C

ys
ta

tin
-C

SB
P

Ta
ke

s 
Ib

up
ro

fe
n

SB
P

W
ea

rs
 d

en
tu

re
s

A
ge

 w
he

n 
pe

rio
d 

st
ar

te
d

Le
g 

fa
t 

im
pe

da
nc

e

U
na

bl
e 

to
 c

on
fid

e 
to

 s
om

eo
ne

 c
lo

se
C

RP
RD

W
U

se
s 

bl
ue

 b
ad

ge
a

N
um

be
r 

of
 s

el
f r

ep
or

te
d 

no
n-

ca
nc

er
 il

ln
es

se
s

So
di

um
 in

 u
rin

e
RD

W
N

eu
tr

op
hi

l c
ou

nt
Ti

m
e 

sp
en

t 
w

at
ch

in
g 

te
le

vi
sio

n
O

th
er

 s
er

io
us

 m
ed

ic
al

 c
on

di
tio

n/
di

sa
bi

lit
y 

di
ag

no
se

d 
by

 d
oc

to
r

Re
ce

iv
es

 d
isa

bi
lit

y/
liv

in
g 

al
lo

w
an

ce
Pr

es
en

ce
 o

f m
us

co
sk

el
et

al
 d

ise
as

e
Pr

es
en

ce
 o

f h
yp

er
te

ns
iv

e 
di

se
as

e
N

uc
le

at
ed

 r
ed

 b
lo

od
 c

el
l 

co
un

t

Be
st

 F
VC

 m
ea

su
re

A
lc

oh
ol

 d
rin

ke
r 

st
at

us
N

eu
tr

op
hi

l c
ou

nt
BP

 m
ed

ic
at

io
n 

us
e

Be
st

 F
EV

1-
sc

or
e

RD
W

U
se

s 
sp

ea
ke

rp
ho

ne
Pr

es
en

ce
 o

f h
yp

er
te

ns
iv

e 
di

se
as

e
Pr

es
en

ce
 o

f m
us

co
sk

el
et

al
 d

ise
as

e
D

BP
M

ea
n 

sp
he

re
d 

ce
ll 

vo
lu

m
e

O
fte

n 
dr

iv
e 

fa
st

er
 t

ha
n 

m
ot

or
w

ay
 li

m
it

BP
 m

ed
ic

at
io

n 
us

e
C

RP
Be

st
 F

VC
 m

ea
su

re
C

ur
re

nt
 e

m
pl

oy
m

en
t 

st
at

us

M
os

t r
el

ev
an

t i
nc

id
en

t H
F 

pr
ed

ic
to

rs
 fo

r 
w

om
en

 in
 th

e 
su

bs
et

 d
at

a.
 F

or
 C

ox
 P

H
 a

nd
 th

e 
(r

an
do

m
iz

ed
) L

A
SS

O
 s

ta
bi

lit
y 

se
le

ct
io

n,
 th

e 
fir

st
 1

5 
va

ria
bl

es
 a

re
 s

ho
w

n 
an

d 
va

ria
bl

es
 a

re
 o

rd
er

ed
 fr

om
 lo

w
es

t t
o 

hi
gh

es
t P

-v
al

ue
. R

ed
uc

ed
 r

isk
 (H

R 
<

1)
 

fa
ct

or
s 

in
 t

he
 C

ox
 P

H
 m

od
el

s 
ar

e 
w

rit
te

n 
us

in
g 

a 
bo

ld
 fo

nt
. F

ea
tu

re
s 

in
 M

L 
m

od
el

s 
ar

e 
or

de
re

d 
by

 p
er

m
ut

at
io

n 
im

po
rt

an
ce

 in
 R

SF
 a

nd
 g

ai
n 

in
 X

G
Bo

os
t.

C
ox

 P
H

, C
ox

 p
ro

po
rt

io
na

l h
az

ar
d;

 L
A

SS
O

, l
ea

st
 a

bs
ol

ut
e 

sh
rin

ka
ge

 a
nd

 se
le

ct
io

n 
op

er
at

or
; R

SF
, R

an
do

m
 S

ur
vi

va
l F

or
es

t; 
X

G
Bo

os
t, 

eX
tr

em
e 

G
ra

di
en

t B
oo

st
in

g;
 S

BP
, s

ys
to

lic
 b

lo
od

 p
re

ss
ur

e;
 D

BP
, d

ia
st

ol
ic

 b
lo

od
 p

re
ss

ur
e;

 A
ge

, a
ge

 in
 y

ea
rs

 w
he

n 
at

te
nd

in
g 

as
se

ss
m

en
t c

en
tr

e;
 H

bA
1c

, g
ly

ca
te

d 
ha

em
og

lo
bi

n;
 R

D
W

, r
ed

 b
lo

od
 c

el
l d

ist
rib

ut
io

n 
w

id
th

; C
RP

, C
-r

ea
ct

iv
e 

pr
ot

ei
n;

 F
EV

1,
 fo

rc
ed

 e
xp

ira
to

ry
 v

ol
um

e 
in

 1
 s

; F
VC

, f
or

ce
d 

vi
ta

l c
ap

ac
ity

; B
P,

 b
lo

od
 p

re
ss

ur
e.

a Bl
ue

 b
ad

ge
 is

 a
 s

er
vi

ce
 a

llo
w

in
g 

pe
op

le
 w

ith
 s

ev
er

e 
m

ob
ilit

y 
pr

ob
le

m
s 

to
 p

ar
k 

cl
os

e 
to

 t
he

ir 
de

st
in

at
io

ns
.

High-dimensional ML models for prediction of HF                                                                                                                                         1241
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjdh/article/6/6/1234/8275817 by Technical U
niversity D

elft user on 02 D
ecem

ber 2025



Cox models and multiple ML models with XGBoost outperforming all 
models.23 Research on prediction of survival in pancreatic cancer found 
that Cox models performed slightly better than RSF.24 A 
meta-analysis25 investigated performance and reliability of 202 
statistical- and 78 ML models for predicting all-cause mortality and all- 
cause readmission in HF patients, and found no apparent superiority of 
either model types. While our findings agree with these observations, 
this meta-analysis did not consider incident HF as an endpoint. 
Overall, our findings can be used to (i) extend the overall notion that 
ML and traditional Cox models have similar performances for incident 
HF risk in a general population and (ii) ML models imply additional de
terminants of incident HF, not found by traditional survival analysis.

Spirometry metrics (FEV1, FVC) were considered important in both 
the LASSO stability selection Cox PH models, and ML models, in both 
sexes. Spirometry metrics are used to check lung performance and sup
port diagnosis and severity classification of chronic lung diseases like 
asthma and chronic obstructive pulmonary disease (COPD). Chronic 
obstructive pulmonary disease and HF often coexist in clinical practice, 
yet recognizing HF in the presence of COPD is complicated by symp
tom similarities like old age and tobacco smoking.26 A previous study 
concluded that FEV1 is just as important in the prediction of IHD mor
tality as cholesterol.27 Our results relate these findings to HF, and imply 
that spirometry measures, even in the absence of asthma or COPD, 
hold prognostic value for incident HF development. Our correlation 
analyses showed strong negative correlations between age and various 
spirometry metrics; still, both age and spirometry metrics were consid
ered important in the models. Furthermore, because smoking was trea
ted as a categorical (never, previous, current) rather than a continuous 
variable, the relationship between spirometry metrics and HF may have 
been influenced, potentially becoming more pronounced, as spirom
etry could partially reflect the cumulative effect of smoking.

The most important blood biomarkers, in both sexes, were cystatin-C, 
CRP and RDW while HbA1c was important only in men. Cystatin-C has 
been identified as a strong, independent prognostic marker of incident 
HF in the elderly general population.28 Cystatin-C serves as a marker 

of renal impairment, which is strongly associated with HF. Moreover, 
higher cystatin-C levels may be associated with HF risk factors such as 
hyperhomocysteinemia.29 In our study, cystatin-C was a better predictor 
of HF than creatinine. This could be due to the fact that cystatin-C re
flects kidney function more accurately, independent of muscle mass, un
like creatinine, which is influenced by muscle tissue. Moreover, cystatin-C 
increases early in kidney dysfunction, providing a sensitive marker. 
Additionally, cystatin-C is linked to inflammation and cardiovascular 
risk.30 CRP is a strong predictor of incident HF and adverse events in es
tablished HF, in both healthy populations and among patients with vari
ous comorbidities such as atherosclerosis, acute myocardial infarction 
(MI) or diabetes.31 In the Rotterdam Study, CRP was found to be a strong 
independent HF predictor, although this relationship was more pro
nounced in men.32 These observations contradict our findings which sug
gest similar importance of CRP in both sexes. Red blood cell distribution 
width, which reflects the rate of anisocytosis, has been associated with 
various cardiovascular outcomes including HF over the last decade.33,34

HbA1c is closely associated with diabetes mellitus35 and our results sug
gest that HbA1c is only associated with incident HF in men. Previous re
search has suggested that HbA1c tends to underestimate fasting glucose 
in men and, consequently, results in a larger liability of diabetes compared 
with women.36 The same study suggested that similar levels of HbA1c 
represent higher levels of glycaemia in men compared with women, 
which in turn can lead to underdiagnosis and undertreatment. 
Diabetes in turn confers a higher absolute risk of coronary heart disease 
in men than women despite similar relative risks.36

When expanding the scope beyond the top 15 predictors, reduced 
serum albumin levels were much more important for incident HF risk 
in men than women, occurring in three models in men vs. zero in women. 
Reduced albumin levels have been associated with an increased risk for 
hospitalization and mortality in chronic HF patients37,38 although these 
studies did not find significant differences between sexes. Studies on 
the Atherosclerosis Risk in Communities study found associations of al
buminuria39 and an inverse relationship between albumin volume40 on 
incident HF risk. Neither studies considered sex differences, thus our 

Figure 3 The alluvial plot shows the number of occurrences of high-risk variables in each of the models, for the 15 most important predictor vari
ables. There are 34 distinct predictors identified in men and 41 in women with an overlap of 21 variables in both sexes. The flows show how occurrence 
varies between men and women. Absence of flow means that this variable was only present in one sex.
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Figure 4 The heatmap shows, for each tested prediction model, which predictor variables were part of the 15 most important predictor variables in 
men.

Figure 5 The heatmap shows, for each tested prediction model, which predictor variables were part of the 15 most important predictor variables in 
women.
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findings extend these results with the notion that reduced serum albumin 
appears to be more important in men than women for incident HF risk.

Hypertension is a well-known risk factor for HF in women. In the 
Framingham heart study,8 although the prevalence of hypertension 
was similar amongst sexes, associated HF risk was greater in 
hypertensive women than men. This concurs with our study where, 
even though men have overall higher systolic blood pressure (SBP) va
lues and more often use BP medication, BP was associated with incident 
HF risk in both sexes.

Our study has several strengths and limitations. The UK Biobank is 
well-established, clearly documented, features a large general popula
tion and contains an extensive number of predictor variables. Another 
strength is the inclusion of LASSO stability selection which, to our 
knowledge, has found little use in the incident HF setting and is easy 
to incorporate in clinical practice. A limitation is the absence of mea
surements of N-terminal pro B-type natriuretic peptide (NT-proBNP) 
and troponin, both well-known prognostic markers of HF. Including 
these markers could have influenced our results. Furthermore, we 
were limited by the parameters available in the UK Biobank; although 
this is a rather extensive set. The UK Biobank population also suffers 
from a ‘healthy’ participant bias41 and is predominantly white. 
Moreover, we were unable to examine time-dependent variable ef
fects on incident HF risk. We also could not discern between HF phe
notypes (HFrEF vs. HFpEF), since in the UK Biobank data, type of HF 
was not provided. Finally, since we censored participants at the mo
ment mortality occurred, we did not account for the competing risk 
of death, potentially overestimating the incidence of nonfatal HF. 
However, in the context of several ML models, including XGBoost, in
corporating competing risks is challenging due to the complexity of 
model adaptation and the need for specialized techniques. Although 
our results should be interpreted while keeping this issue in mind, 
they still offer additional insights into factors associated with risk of HF.

Conclusions
Machine learning models showed similar performance to traditional 
Cox PH models for HF prediction in women and men without a his
tory of HF, IHD and CM at baseline. However, both sex-specific and 
model-specific risk predictors were found. Spirometry metrics, not 
commonly included in existing models, were identified as important 
risk factors. As such, the ML models indicate the potential value of 
HF risk predictors normally excluded from traditional HF risk predic
tion models.
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