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Aims We aimed to compare performances of conventional survival models with machine learning (ML) survival models for inci-
dent heart failure (HF) in men and women without prevalent HF, cardiomyopathy (CM) or ischaemic heart disease (IHD),
and to identify potential high-risk precursors overlooked by conventional survival models.

Methods We predicted 10-year risk of incident HF in 266 306 women (2894 events) and 212 061 men (4213 events). We con-

and results structed multivariable Cox models, first using ~ 400 baseline characteristics, and subsequently only those remaining after
LASSO stability selection. We also used Random Survival Forest (RSF) and eXtreme Gradient Survival Boosting
(XGBoost). Performances were assessed using internal cross validation and hold-out sets, with C-indices, calibration curves
and net-benefit analyses. Model performances were comparable during internal validation: XGBoost (C-index + SE) (men:
0.79 + 0.0040, women: 0.83 + 0.0023) showed similar performance to the multivariable Cox model (men: 0.80 + 0.0031,
women: 0.83 + 0.0022) and Cox models after LASSO stability selection, while RSF showed numerically slightly lower per-
formance (men: 0.78 & 0.0025, women: 0.81 + 0.0015). Findings were similar in the hold-out sets. Age, cystatin-C, lifetime
treatments/medications, other heart disease, systolic blood pressure, and spirometry measures were identified as high-risk
factors in both model types for both sexes. Additionally, sex-specific and model-specific risk factors were identified.

Conclusion Machine learning models and Cox proportional hazard models performed well and similarly for 10-year incident HF risk
prediction in the general population. However, sex-specific and model-specific risk predictors were found. Spirometry mea-
sures, rarely included in existing models, were identified as important risk factors. Our results suggest that ML models for HF
prediction in the general population reveal insights that would otherwise remain unnoticed.
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Introduction

While several risk prediction models have been developed for heart
failure (HF), their performance still leaves room for improvement, part-
ly due to the multifactorial aetiology and heterogeneous nature of HF.
A systematic review’ observed 58 HF risk prediction models, published
between 2012 and 2018. The authors concluded that models were lim-
ited by a lack of methodological information, high risk of bias and ab-
sence of either internal- or external validation, and postulated the
potential of machine learning (ML) tools for HF prediction.

Risk models are typically developed as multivariable regression mod-
els that use small numbers of well-established predictor variables, and
usually assume simple linear relationships between (log-scaled) predict-
or variables and outcomes.” The inclusion of a larger number of vari-
ables provides opportunities to identify potential lesser-known HF
risk factors and herewith improve model performance. Although it
has been suggested that characteristics of a prediction model are less
important than the type and number of used predictor variables in pre-
dicting HF outcome,” previous studies exploring benefits of ML techni-
ques for HF prediction carried limitations, such as variable preselection
and use of relatively small datasets.”

Moreover many existing models pay insufficient attention to sex dif-
ferences. Sex is often included as determinant of outcome, yet interac-
tions between sex and other characteristics are frequently neglected.
Although age-related risk of HF and in-hospital HF mortality have
shown similarities between sexes, sex differences can become apparent
when examining how traditional risk factors influence risk in either
sex.>® Women tend to be older at time of first in-hospital diagnosis

Results
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Successful model
formulation
Performance

Similar performance for SV and ML

@ > @ Better performance in woman

Variable importance

Both sex-specific and model-specific risk

factors were identified for incident HF risk
Spirometry measurements stood out as clinically
relevent yet often ignored incident HF risk factors
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and are more inclined to develop HF with preserved ejection fraction
(HFpEF), compared with men who are more prone to develop HF
with reduced ejection fraction (HFrEF).” Diabetes and hypertension,
both strong traditional risk factors, show greater risk of HF develop-
ment in women than men, as shown in the Framingham Heart
Study.® Obesity has been described as a significant risk factor for
HFpEF development, especially in postmenopausal women.” Because
of these underlying differences, prediction models, which take sex
into account properly, are useful.

In this study, we developed sex-specific supervised ML prediction
models for incident HF in the general UK Biobank population using a
hypothesis-free approach. We compared prediction performance to
traditional Cox proportional hazard (PH) models and investigated dif-
ferences between sex-specific models. Moreover, we aimed to identify
potential high-risk precursors otherwise ignored by conventional sur-
vival models.

Methods
Study design

The UK Biobank dataset is a large-scale population cohort featuring
502 407 participants living in the UK. The study design has been previously
described.® Participants aged 37 years and over were recruited between
2006 and 2010 and sent to 1 of 22 assessment centres in England,
Scotland and Wales. Written consent was provided by participants prior
to enrolment. Participants underwent physical examinations, provided
blood and urine samples, completed automated questionnaires and
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answered lifestyle, medical history, and nutritional questions during an
interview with a professional nurse. The full UK Biobank protocol can be
found online.!" Approval was obtained from the North West
Multi-centre Research Ethics Committee and the Community Health
Index Advisory Group. Furthermore, the Quality and Information
Security Management systems at UK Biobank have been approved by the
British Standards Institution and are certified to ISO 9001:2015 and ISO
27001:2013 for the collection, processing, storing and analysis of genetic
and environmental information respectively. Follow-up hospitalization
data was obtained through mapping of hospital episode records across
England, Scotland and Wales, combined with linking to national death and
cancer registries and hospital admission data with linkage to primary care.'

For this study, participants were excluded who had prevalent inpatient
hospital records of HF, cardiomyopathy (CM) or ischaemic heart disease
(IHD) reflected by codes ICD-10 or ICD-9 (n=21588); or who were
told by their doctor they had experienced a heart attack (n=2452).
After exclusion, 2 datasets containing 266 306 women and 212 061 men re-
mained. A flow chart of participant selection is shown in Figure 1.

Study endpoint

The primary outcome was incident ICD10 in-hospital diagnosis of 150 (con-
gestive HF, left ventricular failure, and unspecified HF). We censored for all-
cause mortality. Survival time was the time in days between the date of UK
Biobank assessment visit and an in-hospital diagnosis of incident HF event
or, for patients without incident HF, time until the reported day of death
or censoring (reaching the final observation date). Censoring occurred at
10 years of follow-up.

Statistical analysis

An overview of the data flow during the analysis process, can be found in the
Supplementary material online, Figure S1. Below, each analytical step is de-
scribed in further detail.

UK Biobank population

(N =502,407)
Participants with
.................... prevalent HF, IHD or CM
diagnoses (N = 21,588)*
Y
Population free of CVD at
baseline
(N =480,819)
Participants whose doctors
____________________ told them they experienced a
heart attack
(N =2,452)
Y
UK Biobank study
population
(N =478,367)

Figure 1 Flowchart of study population selection. *Prevalent diag-
noses for heart failure, ischaemic heart disease and cardiomyopathy
were stored as either ICD-10 or ICD-9 codes.

Data preprocessing

We included 426 variables in men and 437 in women. Baseline variables are
described in the Supplementary material online, Tables S1-512, and include
early life factors, family history, medical history, lifestyle and environment,
physical measures, psychosocial factors, socio-demographics, verbal inter-
view, measurements from biological samples, and female-specific factors.
Additionally, we included a set of prevalent history variables for all available
ICD10 data (see Supplementary material online, Table S13).

Details on data preprocessing, aggregation, and preparation can be found
in the Supplementary material.

Data splitting and imputation

Each sex specific dataset was split in a train (80%) set, in which models were
internally validated through stratified five-fold cross-validation, and a hold-
out dataset (20%) used for external validation. Stratified sampling was used
to create train- and hold-out sets with comparable proportions of the pri-
mary endpoint. Supplementary material online, Table 714 shows numbers
of participants and incident HF cases for both train- and hold-out sets.

Additionally, we formulated subsets for variable importance assessment,
to account for the low prevalence of the primary endpoint in the study
population, i.e. class imbalance. Subsets included all incident HF cases and
four times the amount of randomly selected participants without incident
HF. This resulted in a female subset (n =14 470) and a male subset (n=
21065), which were also split in 80% train- and 20% hold-out sets.
Multiple imputation by chained equations with random forests, using pre-
dictive mean matching, featured in the MiceRanger (1.5.0) package, was
used to impute missing data. Missing data was imputed in five iterations en-
suring proper convergence. To prevent data leakage between train- and
hold-out sets, imputation was performed after stratified splitting had oc-
curred. Furthermore, to prevent data leakage during internal model valid-
ation, train data was split in five stratified folds of which, iteratively,
four-folds were combined and imputed (train set) while the fifth was im-
puted separately (test set). Details about missing data, stratified by sex,
can be found in Supplementary material online, Table S75.

Traditional survival models

We formulated three types of Cox PH models for incident HF. First we ran
a multivariable Cox PH model, featuring all baseline variables. The two
other Cox PH models only contained baseline variables that remained after
least absolute shrinkage and selection operator (LASSO) stability selection
and randomized LASSO stability selection. LASSO stability selection com-
bines stability selection'® with LASSO regularization.'* Stability selection
identifies important predictor variables by repeatedly running variable se-
lection over subsampled datasets. Variables present in at least 80% of cre-
ated subsampled selection sets, were included in the Cox PH models.
LASSO stability selection uses regularization parameter A while random
LASSO stability selection allows 1 to vary between 4 and A/a where o is a
weakness term, borrowed from the terminology of weak greedy algo-
rithms.”® We used a = 1 for LASSO stability selection and a = 0.8 for ran-
domized LASSO stability selection.

Machine learning models

Random Survival Forest (RSF)' is an ensemble tree-based ML method for the
analysis of right-censored survival data and built as an extension on random
forest analysis which only performs regression and classification.'” RSF ex-
plores non-linear relationships between predictor variables and outcome in
high-dimensional data using many independent decision trees. Extreme
Gradient Boosting (XGBoost)'® is a flexible ML method which combines a
gradient boosting framework with a decision tree ensemble method similar
to RSF. Unlike RSF, iteratively, one decision tree is added at a time, to correct
the errors of the ensemble of decision trees up to that point, until optimal out-
come prediction is reached. To facilitate survival analysis, the XGBoost learn-
ing objective for Cox regression for right censored survival data was used.

Both ML techniques went through hyperparameter optimization.
Definitions and range of explored parameters are shown in Supplementary
material online, Table S16. For RSF, hyperparameter optimization was done
using a grid search in which the optimal out-of-sample error was found using
the C-index as evaluation metric. Permutation importance was used to assess
variable importance in the RSF models.
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For XGBoost, optimal hyperparameters were identified using five-fold
cross validation and evaluated using C-indices. Iterations were halted
when the C-index of the validation set did not significantly increase for 30
iterations. Variable importance was assessed using the gain parameter.

Variable importance assessment was only done for the sex-specific sub-
sets, using all available train data. For both ML methods, standard errors of
C-indices in the hold-out sets were not readily available. Standard errors
were calculated using an approximation based on the Mann—Whitney stat-
istic.” Furthermore, pairwise correlation between high-risk variables, iden-
tified in any model, was assessed to account for collinearity.

Model performance assessment

We evaluated discriminative ability by means of Harrell's concordance in-
dex (C-index).%° Moreover, for further performance assessment in the sub-
sets, net-benefit- and calibration curves were constructed. Apart from
performance assessment of our full models as specified above, we also com-
pared performance of ML models that incorporated all available covariates,
to ML models incorporating only variables that remained after LASSO sta-
bility selection. Additionally, we applied the established Pooled Cohort
Equations to Prevent HF (PCP-HF) score®' to our study population, and
compared its performance to that of our models.

R and package information

All models were fitted in R (4.2.3). Cox models were fitted using the coxph
function in the survival (3.5-5) package. LASSO stability selection was done
using the randLassoStabSel function found in the monalisa (1.7.1)
Bioconductor package. Random Survival Forest was performed using the
RandomForestSRC (3.2.2) package. XGBoost was performed using the xgboost
(1.7.5.1) package. Hyperparameter optimization was done for RSF using the
tune() function, as described in the RandomForestSRC (3.2.2) package, and for
XGBoost using the caret (6.0-94) package combined with the xgbTree meth-
od. Calibration plots were generated using the CalPlot() function from the pec
(2023.04.12) package and net-benefit analysis plots were generated using the
dca() function from the dcurves (0.5.0) package.

Results

Baseline characteristics

A total of 266 306 women and 212 061 men were included. Baseline
characteristics are shown in Table 1 and Supplementary material
online, Table S17 for the total participant population and subsets, re-
spectively. In the total population, median (25th—75th percentile)
age was similar between men [58.0 (50.0-63.0) years] and women
[57.0 (50.0-63.0)]. Men were more likely to be current smokers
(13.0% vs. 8.9%), had larger waist circumference [96.0 (89.0—
103.0) vs. 83.0 (75.0-92.0) cm] and had higher forced expiratory
volume in 1 second (FEV1) measures [3.34 (2.84-3.83) vs. 2.41
(2.05-2.76) L] than women. Men were also more likely to have
prevalent diabetes (2.1% vs. 1.3%), other heart disease (defined as
among others pericardial disease, valve disorders, and arrhythmias)
(2.0% vs. 1.2%) and more often used blood pressure (BP) medica-
tion (21% vs. 17%) than women.

Incident heart failure

Follow-up was censored at 10 years, and during median follow-up times
of 10.0 years (25th—75th percentile: 10.0, 10.0) in women and 10.0
years (25th—75th percentile: 10.0, 10.0) in men, there were 2894
(1.09%) incident HF events in women and 4213 (1.99%) in men.
Cumulative incidence of HF is shown in Figure 2.

Baseline characteristics, stratified by incident HF status, are shown in
Supplementary material online, Table $18 for the full cohort and in
Supplementary material online, Tables $19 and S20 for men and wo-
men. Overall, individuals who developed HF, were generally older at
baseline [median (interquartile range) age, 63 (59-67) years vs. 57
(50-63) years], more often male (59% vs. 41%) and were more likely

Table 1

Biobank population (n =478 367)

Baseline characteristics for the total UK

Characteristic

Age (years)
Ethnic background
Any other white background
British
Indian
Irish
Other
Waist circumference (cm)
BMI (kg/m?)
Best FEV1 measure (L)
Systolic blood pressure (mmHg)
Diastolic blood pressure
(mmHg)
Smoking status
Current
Never
Previous
Albumin (g/L)

Cystatin-C (mg/L)

CRP (mg/L)

Creatinine (mmol/L)

Cholesterol (mmol/L)

HDL cholesterol (mmol/L)

Haemoglobin concentration
(g/dL)

HbA1c (mmol/mol)

RDW (%)

Presence of other heart disease
Presence of diabetes

Blood pressure medication

Men,
n=212061

58 (50, 63)

5945 (2.8%)
187 520 (88.4%)
2704 (1.3%)
5868 (2.8%)
10024 (4.7%)
96 (89, 103)
27.2 (249, 29.9)
3.34 (2.84, 3.83)
141 (130, 154)
84 (77, 91)

26595 (12.5%)
106 405 (50.2%)
79061 (37.3%)
45,55 (43.85,
47.25)
091 (0.84, 1.00)
1.28 (0.66, 2.53)
79.8 (724, 88.0)
553 (481, 6.28)
1.25 (107, 1.47)
15.02 (14.40,
15.68)

352 (327, 37.9)
13.30 (12.90,
13.80)
4325 (2.0%)
4437 (21%)
44482 (21%)

Women,
n=266306

57 (50, 63)

9882 (3.7%)
234 443 (88.0%)
2835 (1.1%)
6701 (2.5%)
12445 (4.7%)
83 (75, 92)
26.1 (234, 29.6)
241 (2.05, 2.76)
135 (122, 150)
80 (73, 89)

23689 (8.9%)
159 480 (59.9%)
83137 (31.2%)
44.94 (43.25,
46.67)
0.85 (0.78, 0.95)
1.37 (065, 2.97)
63.0 (57.0, 69.9)
584 (5.11, 6.62)
1.56 (132, 1.83)
1350 (12.90,
14.10)

35.1 (327, 37.7)
1336 (12.90,
13.90)
3160 (1.2%)
3351 (1.3%)
44034 (17%)

BMI, body mass index; FEV1, forced expiratory volume in 1 s; CRP, C-reactive protein;
HDL, high-density lipoprotein; HbA1c, glycated haemoglobin; RDW, red blood cell

distribution width.

to have a medical history of other heart disease (8.2% vs. 1.4%), dia-

betes (7.1% vs. 1.5%), and BP medication use (43% vs. 18%).

Model performance

Overall, traditional survival models and ML models showed similarities
in performance, both for internal five-fold cross validation and for val-
idation in the hold-out sets (Table 2). During training, using the full data,
C-statistics ranged between 0.78 and 0.80 in men and 0.81 and 0.83 in
women. In the hold-out sets, C-statistics varied between 0.78 and 0.80
in men and 0.80 and 0.82 in women. Model performance was numer-
ically higher in women than in men for all five models. C-indices in
the subsets were generally somewhat lower than in the full datasets,
and the aforementioned sex-difference persisted. Overall, model per-
formances numerically outperformed the PCP-HF score (see
Supplementary material online, Table S21). Net benefit analyses (see
Supplementary material online, Figures S2 and S3) showed that net
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Cumulative Incidence of HF in men and women
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Men
At Risk 212061 211376 210404 209208 207875 206379 204619 202841 200915 198756
Events 0 160 389 664 1004 1341 1768 2262 2829 3509
Women
At Risk 266306 265894 265184 264289 263210 262045 260733 259369 257891 256223
Events 0 87 211 376 590 812 1090 1422 1811 2315

Figure 2 Cumulative incidence of heart failure with 95% confidence intervals in the UK Biobank population, stratified by sex. Survival time is given in

years.

benefit of the Cox models was generally lower than that of both ML
methods in both men and women. Net benefit was highest for RSF
at low threshold probabilities, and highest for XGBoost at high thresh-
old probabilities. Net benefit differences were less pronounced in wo-
men than men. The calibration plots (see Supplementary material
online, Figures $4 and S5) showed that, at high predicted event probabil-
ities, the ML models tended to underestimate the risk of HF, while the
Cox models tended to overestimate. Overall, Cox models showed bet-
ter calibration compared with XGBoost and RSF.

Variable importance and sex differences

We identified 21 high-risk variables in both sexes, 13 in only men and 20
in only women.

Top 15 variable importance is shown for men and women in Tables 3
and 4, respectively. The scores used to construct both tables, can be
found in the Supplementary material online, Tables $22 and $23 and,
additionally, the importance metrics of the ML models are visualized
in the Supplementary material online, Figures S6 and S7. Figure 3 pro-
vides an overview of model occurrences of high-risk variables, stratified
by sex. Figures 4 and 5 display heat maps of presence and absence of
high-risk variables in each model. Correlation information between
high-risk predictor variables, can be found in the Supplementary
material online, Figures S8 and S9. Positive correlation was strongest be-
tween several spirometry metrics and between cystatin-C and creatin-
ine. Negative correlation was strongest between age and spirometry
metrics. Adiposity metrics showed both strong positive-and negative
correlations.

In both sexes, age, cystatin-C, and the presence of other heart dis-
ease were the only three predictor variables present in all five models.
The importance metrics plots show that, while these three predictor
variables were indeed strongly associated with incident HF in both
sexes, they did not cancel out other predictor variables (see
Supplementary material online, Figures S6 and S7). Furthermore, the

effect of age was weaker in women than men. The number of
self-reported lifetime treatments/medications was important in four
models in both sexes, while diastolic BP (DBP) was present in the fifth
model in women instead.

Sex differences were also present between the models; glycated
haemoglobin (HbA1c) was important in four models in men but
none in women. The number of self-reported non-cancers was import-
ant in three models in women but none in men. Red blood cell distri-
bution width (RDW) and predicted FEV1 score (%) were present in
four models in men and three in women. Leg impedance was present
in three models in men and one in women. Detailed model-specific im-
portance characteristics are described below.

In men, the ordinary multivariable Cox PH model was the only model
to identify smoking, urate, lipoprotein A, creatinine, a poor overall
health score, alanine aminotransferase, and walk metrics as a major
risk for incident HF development, while prescription medication use, al-
cohol drinker status, inability to confide in someone close, use of ibu-
profen, the presence of diabetes, trend to drive faster than motor
way speed limit, trunk fat free mass, sodium in urine, speaker phone
use, and receiver of disability/living allowance was only identified by
this model in women.

LASSO stability selection reduced the number of variables from 426
down to 15 (randomized LASSO) and 18 (LASSO) in men, and from
437 down to 18 (randomized LASSO) and 18 (LASSO) in women.
Further details are provided in Supplementary material online, Table S24.

For both stability selection models, waist circumference was the
most important risk factor in men, followed by the number of treat-
ments/medications. In women, age and presence of other heart disease
were most important in both models; the third to seventh most im-
portant variables were predicted FEV1 score (%), cystatin-C, number
of treatments/medications, number of self-reported non-cancer ill-
nesses, and presence of respiratory disease. Rankings showed similar-
ities in men, although HbA1c, RDW, and presence of hypertensive
disease, were more important.
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The LASSO stability selection models were the only models to iden-

£ v
- tify hand grip strength, dentures use, blue badge use, presence of
_ g 9 hypertensive disease and serum albumin as high-risk variables in
“— c
§ T 2 men. At the same time, they were the only ones to identify C-reactive
£ g| g protein (CRP), neutrophil count, presence of muscoskeletal-,
I s| ¥ ¢ hypertensive- or respiratory disease, denture use, and BP medication
> e ) 00 YP P Y
$ el 5 5 use, as important in women. Beta estimates of the ordinary Cox model
c
3 o £ S g and both LASSO stabilized Cox models are shown in Supplemental
[ < = o £ PP Y
u E 9 =2 g material online, Tables $25-S27.
§ 9] 8 = The ML models were the only models to select current (i.e. base-
[ (%] . .
) - line) employment status, best FEV1-scores, and best forced vital cap-
X 2 2 acity (FVC) measures as high-risk factors in both sexes. Random
g Survival Forest was the only model to identify sl durati d
2 o y identify sleep duration an
2 g time spent watching television as high-risk factors in both sexes. In
g men, RSF was the only model to identify the number of self-reported
[
R Y Y P
9 " 2 3 operations, number of people in household, and presence of endo-
= o E B, p peop p
9 o < 9 53 crine/metabolic disease as high-risk factors. At the same time, it was
8 2 0 = @ g
13 S 5| 3 B8 the only model to consider DBP, nucleated red blood cell count, walk-
€ o > 5 2 & . y. :
K} g 2 ©T S5 ing metrics, age period started, number of self-reported operations
k= 9 5 <3 g ge p p p
? 5 B | ¢ ©2 and self-reported cancers as important in women. XGBoost was
T o v c| &8 ©2=° P P
o T 2 s =| s z_‘ga’ the only model to identify long standing illness as a risk factor in
uE_ g _‘;«c’ I both sexes and mean sphere cell volume in women. When only the
4 £S S 2 s B g predictor variables, that remained after LASSO stability selection,
P
= s °§’. § 6 = were used to train the ML models, their performances were compar-
g g g Sg j':; E able to the ML models trained on all available predictor variables (see
o3 EF| g 28 Supplementary material online, Table $28).
o 4 s s €0
o g 80 J
28 ¢Ec
c O o . .
sxg@ Discussion
X —
u\—1 £ % c
c P
o £&%38 ¢ We used over 400 predictor variables, measured in over 450 000 UK
=) - R 5 P
S < 2 £5372 individuals, to compare traditional and contemporary Cox PH models,
[ F:b 3 S5 X » and two ML survival models, for incident HF prediction in men and wo-
" S gl s2+ 5 P
> 2 —| 8=¢2FE men without a history of HF, CM and IHD. Machine learning survival
= = 9] 2 L
3 2 o al S8 % models performed similar to Cox PH models although both sex-
.‘% % o O Fal- I p g
S e, O s 535%73 specific and model-specific risk predictors could be identified. In gen-
'3 9 S| 3¢ p P p 8
o) ke z g E¢ &g eral, age, cystatin-C, and presence of other heart disease, were the
ﬁ 8585 % most consistently important predictor variables. In men, waist circum-
S Cw . . . . .
- é 88 L; % ference and HbA1c were more important, while medical disease his-
E % ‘i{ g7 tory was more important in women. The ML models showed higher
£ - priority for spirometry metrics and employment status, while LASSO
T o 5 e . N W .
g3 g g stability selection models prioritized denture use, neutrophil count,
£E98%8 g . . .
g 2865338 and medical disease history.
% o e é O x Performances of Cox PH models and ML models were similar in
C O © . . . . .
H £, T80 % by terms of the C-index, with XGBoost showing slight numerical perform-
(] = X2s =% ance superiority to RSF. Furthermore, overall, XGBoost showed the
w59 | 3388f¢ periortty : ' ’
a2 7 o VeEgio best net-benefit curves. For RSF, net benefit decreased drastically as
<y a < 3 52 %33 Y
: K =4 Oal Lz f5¢ threshold probability increased. Unlike the Cox PH models and
= g c&s . . . P .
] s o <| = 4= 32 XGBoost, which showed skewed predicted risk distributions, the pre-
E £ g % g3 ‘é dicted risk for RSF showed a sigmoid distribution. This probably con-
35 ) 3
3 2l g5 o tributed to the shape of the net benefit curve. Also, RSF and
‘e:u =53 ;é % XGBoost tended to underestimate the risk of incident HF, while the
z % ;5 2 s Cox models were prone to overestimation; overall, the Cox models
EoQm 3 showed the most stable calibration.
5 3 £
- PL Y & Despite performance similarities, the ordinary Cox PH model
FS] .»i o} P p ry
g:282 % showed the largest deviations in predictor importance compared
° T2RES with the other models. Different methodologies for variable import-
] 583 8 P
S w 3 2= ance assessment, the ability of ML to model non-linear relationships be-
= I psd2d y P
E - 2 gl 5t E g tween predictors and endpoint, and the large number of available
o L . . 3 .
S |3 3| 3 g g%’ 9 covariates may have contributed to these findings.
£ 0 é_) é_ é £ g &é & A retrospective multicohort analysis, which compared conventional
m [T < a £ SETO2 % survival models and ML models for 10-year incident HF risk prediction,
) o =1 o = L~ Wy Y P
- 3 = %’0 £38 Y £ showed superior performance of ML models, particularly when ML
9] @ L . . .
ﬁ o o) z 4| 2 :)5 % = models were stratified by race.”” Also, previous research in the predic-

tion of breast cancer survival demonstrated similar performances of
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Variable importance overview in men and women

"Age when period started

40- Alcohol drinker status
DBP
Drive often above speed limit
Mean sphere cell volume
35- Nucleated red blood cell count
Number of self reported cancers
[ Aanine amnotansierase | Prescription medication use
Albumin Presence of diabetes
Creatinine Receives disability/living allowance
30- Lipoprotein A Sodium in urine
Never smoked Takes lbuprofen
Number of people in household Trunk fat free mass
Number of self reported operations Unable to confide to someone
Poor overall health score Use of speakerphone
25- Presancs endoctinefmetatolicdissase Long staring liness
rate leep duration
® Long standing iliness Time spent watching television
3 Sleep duration Usual walking pace
o] Time spent watching television Current employment status.
© Usual walking pace Uses blue badge
5 20 BP medication use Leg impedance
S Hand grip strength Number of self-reported operations.
Current employment status Other serious medical condition
Uses blue badge Presence of muscoskeletal disease
15- V1-score Presence of respiratory disease
Best FVC-measure BP medication use.
Neutrophil count Best FEV1-score
Presence of hypertensive disease Best FVC-measure
Wears dentures Neutrophil count
10- Waist circumference Presence of hypertensive disease
Leg impedance Wears dentures
CRP
HbATC Self reported non—cancers
Predicted FEV1 score (%) Predicted FEV1 score (%)
| RDW RDW.
5 Number of treatments/medications Number of treatmentsimedications
SBP SBP
Age
Cystati Cystatin-C
o- Presence other heart disease Presence other heart disease
Men Women
Sex
Occurrence|:| 1 |:| 2 D 3 D 4 |:| 5

Figure 3 The alluvial plot shows the number of occurrences of high-risk variables in each of the models, for the 15 most important predictor vari-
ables. There are 34 distinct predictors identified in men and 41 in women with an overlap of 21 variables in both sexes. The flows show how occurrence
varies between men and women. Absence of flow means that this variable was only present in one sex.

Cox models and multiple ML models with XGBoost outperforming all
models.” Research on prediction of survival in pancreatic cancer found
that Cox models performed slightly better than RSF* A
meta-analysis>®> investigated performance and reliability of 202
statistical- and 78 ML models for predicting all-cause mortality and all-
cause readmission in HF patients, and found no apparent superiority of
either model types. While our findings agree with these observations,
this meta-analysis did not consider incident HF as an endpoint.
Overall, our findings can be used to (i) extend the overall notion that
ML and traditional Cox models have similar performances for incident
HF risk in a general population and (ii) ML models imply additional de-
terminants of incident HF, not found by traditional survival analysis.

Spirometry metrics (FEV1, FVC) were considered important in both
the LASSO stability selection Cox PH models, and ML models, in both
sexes. Spirometry metrics are used to check lung performance and sup-
port diagnosis and severity classification of chronic lung diseases like
asthma and chronic obstructive pulmonary disease (COPD). Chronic
obstructive pulmonary disease and HF often coexist in clinical practice,
yet recognizing HF in the presence of COPD is complicated by symp-
tom similarities like old age and tobacco smoking.*® A previous study
concluded that FEV1 is just as important in the prediction of IHD mor-
tality as cholesterol.?” Our results relate these findings to HF, and imply
that spirometry measures, even in the absence of asthma or COPD,
hold prognostic value for incident HF development. Our correlation
analyses showed strong negative correlations between age and various
spirometry metrics; still, both age and spirometry metrics were consid-
ered important in the models. Furthermore, because smoking was trea-
ted as a categorical (never, previous, current) rather than a continuous
variable, the relationship between spirometry metrics and HF may have
been influenced, potentially becoming more pronounced, as spirom-
etry could partially reflect the cumulative effect of smoking.

The most important blood biomarkers, in both sexes, were cystatin-C,
CRP and RDWV while HbA1c was important only in men. Cystatin-C has
been identified as a strong, independent prognostic marker of incident
HF in the elderly general population.”® Cystatin-C serves as a marker

of renal impairment, which is strongly associated with HF. Moreover,
higher cystatin-C levels may be associated with HF risk factors such as
hyperhomocysteinemia.?® In our study, cystatin-C was a better predictor
of HF than creatinine. This could be due to the fact that cystatin-C re-
flects kidney function more accurately, independent of muscle mass, un-
like creatinine, which is influenced by muscle tissue. Moreover, cystatin-C
increases early in kidney dysfunction, providing a sensitive marker.
Additionally, cystatin-C is linked to infllammation and cardiovascular
risk.® CRP is a strong predictor of incident HF and adverse events in es-
tablished HF, in both healthy populations and among patients with vari-
ous comorbidities such as atherosclerosis, acute myocardial infarction
(MI) or diabetes.®" In the Rotterdam Study, CRP was found to be a strong
independent HF predictor, although this relationship was more pro-
nounced in men.>? These observations contradict our findings which sug-
gest similar importance of CRP in both sexes. Red blood cell distribution
width, which reflects the rate of anisocytosis, has been associated with
various cardiovascular outcomes including HF over the last decade 3
HbA1c is closely associated with diabetes mellitus® and our results sug-
gest that HbA1c is only associated with incident HF in men. Previous re-
search has suggested that HbA1c tends to underestimate fasting glucose
in men and, consequently, results in a larger liability of diabetes compared
with women.*® The same study suggested that similar levels of HbA1c
represent higher levels of glycaemia in men compared with women,
which in turn can lead to underdiagnosis and undertreatment.
Diabetes in turn confers a higher absolute risk of coronary heart disease
in men than women despite similar relative risks.*

When expanding the scope beyond the top 15 predictors, reduced
serum albumin levels were much more important for incident HF risk
in men than women, occurring in three models in men vs. zero in women.
Reduced albumin levels have been associated with an increased risk for
hospitalization and mortality in chronic HF patients®”® although these
studies did not find significant differences between sexes. Studies on
the Atherosclerosis Risk in Communities study found associations of al-
buminuria® and an inverse relationship between albumin volume™® on
incident HF risk. Neither studies considered sex differences, thus our
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Predictor overview in men

Number of self reported operations
Long standing illness
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Presence other heart disease
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RDW
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SBP

Waist circumference

CRP
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Wears dentures

BP medication use

Current employment status Absent
Best FEV1-score

Presence of hypertensive disease
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Figure 4 The heatmap shows, for each tested prediction model, which predictor variables were part of the 15 most important predictor variables in
men.

Predictor overview in women
Present

Age
Cystatin-C

Presence other heart disease
Number of treatments/medications

Predicted FEV1 score (%)
RDW
Self reported non-cancers

Best FEV1-score
Best FVC-measure

Neutrophil count .
Presence of muscoskeletal disease
Presence of respiratory disease
Other serious medical condition
Presence of hypertensive disease
Wears dentures

BP medication use

Uses blue badr};e i -
Time spent watching television
Imézedance of leg

DBP

Absent

Sleep duration
Nucleated red blood cell count

Usual walking pace
Number of operations, self reported

Age when period started

Long standing illness

Mean sphere cell volume

Prescription medication use

Unable to confide to someone close to you
Alcohol drinker status

Receives disability/living allowance

Uses Ibuprofen

Presence of diabetes -

Drive faster than motor way limit

umber of self reported cancers

Trunk fat free mass
Sodium in urine

peaker phone use

urrent employment status

Figure 5 The heatmap shows, for each tested prediction model, which predictor variables were part of the 15 most important predictor variables in
women.
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findings extend these results with the notion that reduced serum albumin
appears to be more important in men than women for incident HF risk.

Hypertension is a well-known risk factor for HF in women. In the
Framingham heart study,® although the prevalence of hypertension
was similar amongst sexes, associated HF risk was greater in
hypertensive women than men. This concurs with our study where,
even though men have overall higher systolic blood pressure (SBP) va-
lues and more often use BP medication, BP was associated with incident
HF risk in both sexes.

Our study has several strengths and limitations. The UK Biobank is
well-established, clearly documented, features a large general popula-
tion and contains an extensive number of predictor variables. Another
strength is the inclusion of LASSO stability selection which, to our
knowledge, has found little use in the incident HF setting and is easy
to incorporate in clinical practice. A limitation is the absence of mea-
surements of N-terminal pro B-type natriuretic peptide (NT-proBNP)
and troponin, both well-known prognostic markers of HF. Including
these markers could have influenced our results. Furthermore, we
were limited by the parameters available in the UK Biobank; although
this is a rather extensive set. The UK Biobank population also suffers
from a ‘healthy’ participant bias*' and is predominantly white.
Moreover, we were unable to examine time-dependent variable ef-
fects on incident HF risk. We also could not discern between HF phe-
notypes (HFrEF vs. HFpEF), since in the UK Biobank data, type of HF
was not provided. Finally, since we censored participants at the mo-
ment mortality occurred, we did not account for the competing risk
of death, potentially overestimating the incidence of nonfatal HF.
However, in the context of several ML models, including XGBoost, in-
corporating competing risks is challenging due to the complexity of
model adaptation and the need for specialized techniques. Although
our results should be interpreted while keeping this issue in mind,
they still offer additional insights into factors associated with risk of HF.

Conclusions

Machine learning models showed similar performance to traditional
Cox PH models for HF prediction in women and men without a his-
tory of HF, IHD and CM at baseline. However, both sex-specific and
model-specific risk predictors were found. Spirometry metrics, not
commonly included in existing models, were identified as important
risk factors. As such, the ML models indicate the potential value of
HF risk predictors normally excluded from traditional HF risk predic-
tion models.
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