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33
EPISTEMIC IMPLICATIONS OF 

MACHINE LEARNING MODELS 
IN SCIENCE

Stefan Buijsman and Juan M. Durán

1. Introduction

Machine learning models are quickly gaining ground in scientific practice. A particular 
story of success is the use of the deep learning model AlphaFold 2 to predict protein folding 
(Jumper et al. 2021), but examples abound. There is, for example, the usage of deep learn‑
ing in climate models (Rasp et al. 2018), astronomy (Agarwal et al. 2012), and materials 
science (Schmidt et al. 2019). Furthermore, a wide range of deep learning models are used 
in computational neuroscience (e.g., Zhuang et al. 2021; Güçlü and van Gerven 2017). This 
increased usage of machine learning techniques in scientific research raises important philo‑
sophical questions regarding the epistemic implications of such tools. Most prominently, 
the issue is that many machine learning models fail to represent a target system with a set 
of equations, as is the case in other types of (process‑based) models. To see this, consider 
the workings of deep learning models such as random forest models. These models, a type 
of neural network, consist of a large number of artificial neurons that have a (standardly 
non‑linear) activation function determining the output value of the neuron based on the 
input values. These artificial neurons are then ordered into (a large number of) layers, with 
connections from neurons in one layer to neurons in the next layer. It is those connections 
that matter, as the weights on them—how much the output of a neuron counts toward the 
input of the next neuron—are adjusted based on training data. Typically, a machine learn‑
ing model has millions of weights, and the largest neural network models have trillions of 
such weights that are adjusted in training.

A number of differences from traditional theoretical models and modeling have already 
become apparent from this very brief description of machine learning models. First and 
foremost, there are no (explicit) representations of physical quantities in such models. This 
differentiates machine learning models from other statistical models, where regression 
based on data may be used, but representations of physical quantities are still present in the 
model. Furthermore, the adjustment of the weights in machine learning models  happens 
automatically, based on a training set. There are too many such weights to monitor this 
process directly, nor can the final model be easily inspected to understand its exact func‑
tioning. It follows that it is incredibly difficult to tell which patterns the model uses to arrive 
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at predictions. As a result, machine learning models have a high degree of epistemic opacity, 
defined as (see also Durán and Formanek 2018; Beisbart 2021):

[A] process is epistemically opaque relative to a cognitive agent X at time t just in case 
X does not know at t all of the epistemically relevant elements of the process

(Humphreys 2009, 618)

These two differences, and the increased epistemic opacity that results, raise the philosophi‑
cal question: what is the scientific value of using machine learning models? The answer 
depends somewhat on the scientific field. In the case of neuroscience, for instance, artificial 
neurons might be seen as (idealized) representations of physical neurons. Thus, neural net‑
works can be seen to yield scientific understanding in these contexts and can give way to 
new specifications of functionalism in the philosophy of mind (Section 2). In the other sci‑
ences, their status is much more contentious. The statistical nature of machine learning is a 
more serious concern here, as is the opacity of models and the absence of representations. 
Can machine learning models yield scientific explanations and, possibly via those explana‑
tions, understanding? Are we justified in believing their predictions? As we will see (Section 
3), views range from pessimistic, seeing machine learning models as substantially different 
from other kinds of models, to more optimistic, where epistemic opacity is not necessar‑
ily an issue and machine learning models are on the same scale of explainability as other 
models used in science.

Does this entail new ways of doing science and, as such, novel issues for the philosophy 
of science? Some answers to these questions are found in the literature on computer simula‑
tions. Although one can find some early skepticism about the scientific novelty of computer 
simulations (e.g., Teichroew and Lubin 1966, 724), the general feeling is that computer‑based 
methodologies extend the class of tractable mathematics and representation, thus broaden‑
ing the range of modeling phenomena (Frigg and Reiss 2009). Fewer agreements are found, 
however, on the philosophical novelty of computer‑based research. Famously, Frigg and 
Reiss (2009) club together four skeptical arguments against “a new metaphysics, episte‑
mology, semantics, and methodology” (595) for the philosophy of science. Humphreys, 
however, alerts us that an anthropocentric epistemology is no longer viable and that we are 
required to understand and evaluate the world through “computationally based scientific 
methods that transcend our own abilities” (Humphreys 2009, 617), as opposed to represen‑
tations tailored to human cognitive capacities. Within a non‑ anthropocentric epistemology 
emerge diverse philosophical issues that, according to Humphreys, have not been addressed 
by a more familiar philosophy of science. Perhaps the most famous of all is the problem of 
epistemic opacity mentioned earlier. Having said that, the epistemic and methodological 
implications of using machine learning models are still heavily debated. However, their suc‑
cessful use in the sciences shows that they certainly have a role to play.

2. Neural networks and neuroscience

The application of machine learning in neuroscience is a special case. As opposed to other 
sciences, neural networks (but no other machine learning techniques) can be argued to con‑
tain explicit representations in neuroscience. Artificial neurons represent actual neurons, 
the weights in neural networks represent the strength of connections between neurons, and 
so on. There are, of course, a number of differences between neural networks and actual 
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neurons, as López‑Rubio (2018) enumerates: backpropagation is unrealistic for the brain, 
artificial neurons are far simpler than biological neurons, the brain isn’t structured as neatly 
as neural networks are, activation functions differ, and so on. Despite such differences, 
López‑Rubio considers it plausible that neural networks are representative of the brain, 
according to a similarity view of model representation:

[f]rom the current state of research, it is likely that the similarities among biological 
and artificial features extend from the highest level of description, i.e., the overall in‑
puts and outputs, to a certain intermediate level of description, while the lowest levels 
such as the electrical signals in the biological synapses do not match well with their 
artificial counterparts.

(681)

In virtue of this similarity between neural networks and the brain, López‑Rubio holds that 
we can formulate an updated version of computationalism he terms neural computational 
functionalism:

Neural computational functionalism (NCF): the mind is the set of synaptic weights of 
the brain.

This is to be interpreted in the sense that: (a) the brain stores synaptic weights in its 
neural structures, (b) some of those neural structures are organized in a hierarchy of 
layers, (c) those synaptic weights determine the computation of significant features 
of progressively higher level as we traverse the neural hierarchy, (d) those features 
ultimately determine behavior.

(682–683)

Neural networks can then clearly function as models of the brain in much the same way 
that other types of models work. In line with that idea, neural network models would 
be able to offer explanations of the functioning of the brain. Piccinini makes a concrete 
 suggestion of what such explanations would look like:

An explanation by synaptic weights of a capacity C possessed by a (biological or ar‑
tificial) neural system S is a set of weights W for C such that S possesses C because S 
operates according to its stored weights W.

(Piccinini 2010, 277)

Neural networks can then clearly offer explanations of the functioning of the brain in this 
proposal. Such ideas are more widespread, as Miłkowski (2013) and Stinson (2018) simi‑
larly argue that neural network models can offer (mechanistic) explanations of the brain. 
Buckner (2018) even argues that the functioning of (convolutional) neural networks gives 
an important insight into the way the brain handles concepts. They illustrate a process he 
calls transformational abstraction, where complexity is reduced by iterative transforma‑
tions into simplified (abstract) representations. This type of abstraction, which occurs in 
neural networks in order to detect later layers, e.g., the presence of a chair or shovel, is in 
Buckner’s (2018) eyes, also a fitting solution to the question of how humans manage to 
acquire such concepts from experience. Can these neural networks then function as mecha‑
nistic explanations for the visual cortex of our brains?
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There are a number of problems laid out by Buckner (2018), such as the fact that neural 
networks are prone to adversarial examples: Small changes to the input image can cause 
the model to yield a wildly different output classification. An image of a panda in which a 
few select pixels are changed might be classified as showing a gibbon, for example. Such 
adversarial examples are hard to eliminate in neural networks, and yet our brains are 
clearly not susceptible to them. Buckner (2018, 5367) does not see this as too problematic 
and argues instead that neural networks are best seen as mechanism sketches (Piccinini 
and Craver 2011) or as generic mechanisms of the kind Stinson (2018) suggests. Taking 
the limitations of neural networks into consideration, they still have an explanatory role 
to play: “DCNNs show that the generic kind of neural mechanism found in mamma‑
lian perceptual cortex can learn and deploy abstract category representations using only 
domain‑general mechanisms—vindicating a key theme of empiricism” (Buckner 2018, 
5369). Yet, at the same time, neural networks are far worse than we are at generalizing 
(see Section 3.1) and make very different mistakes in image classification and other tasks 
than humans. Such substantial differences call for caution when using neural networks as 
models of, e.g., human concept formation. Further attention to these functional differences 
is needed before we can see neural networks as explaining our actual higher‑level cognitive 
functions.

Machine learning models, in conclusion, might provide an idealized representation of 
biological neurons and synapses, and neural networks can act as (mechanistic) explana‑
tions of their functioning on an appropriate level of abstraction. There is more work to do 
on the exact nature of these representations and idealizations and the effect this has on the 
conclusions that can be drawn from the models. Can neural networks explain higher‑level 
cognitive functions, or do they only provide how‑possibly explanations? Does their limited 
generalizability imply a limit to their role in how‑actually explanations? Or will neural net‑
works become one of the dominant modeling tools for neuroscience? This requires further 
reflection, but there is little doubt that neural networks have an explanatory role to play. 
That is quite different when applications of machine learning models are considered in 
other sciences. We, therefore, turn to those other applications now.

3. Machine learning in the other sciences

As mentioned in the introduction, machine learning models present us with difficulties in 
the other sciences, as they do not contain explicit representations of the physical quanti‑
ties involved and are epistemically opaque. That is, we typically do not understand why 
a machine learning model yields a particular prediction as opposed to a different one. 
Consequently, it is tempting to hold that such models do not yield (scientific) explanations 
for the phenomena they are trained to predict. Srećković et al. (2022), for example, argue 
that machine learning complicates the obtaining of two types of explanations: Process 
explanations and phenomenon explanations. This is uncontroversial for process explana‑
tions, which would be explanations of the process that led to a specific model prediction. 
Machine learning models are typically too complex to survey, and it is a serious challenge 
to obtain explanations for their outputs. This is widely studied under the name explainable 
AI (XAI; see Das and Rad 2020 for a review) and is considered an ethical issue for the ap‑
plication of AI.

The more crucial question for the use of machine learning methods in science is whether 
this also means that explanations of the scientific phenomena that are predicted are not 
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forthcoming. Srećković et al. (2022, 6) consider such explanations to be unforthcoming 
due to the lack of causal relations underlying the model predictions: the problem is “the 
associativity of the method, which involves searching solely for correlations between the 
features in the data without a theoretical back‑up to provide causal relationships, tradition‑
ally considered crucial for explanations.” The lack of process explanations exacerbates this 
issue, as it obscures the correlations used by the model to make predictions. These underly‑
ing correlations, as a result, cannot be extracted from the model, and so no experiments 
can be designed to find causal relations. In short, machine learning models, as Srećković 
et al. (2022) argue, cannot be used to arrive at causal relations linking inputs to outputs, 
and so do not yield causal explanations. They can be used for (highly accurate) predictions, 
but not for understanding. However, it is not even clear that predictions of machine learn‑
ing models will have a similar, or better, epistemic status as those of process‑based models. 
Thus, before diving deeper into the question of explanations, we turn first to the predictions 
of machine learning models.

3.1 Epistemic status of machine learning predictions

Machine learning models are usually associated with high accuracy. In the case study that 
Kawamleh (2021) looks at, the model predictions for parametrizations in climate models 
are reported to be of high accuracy (Rasp et al. 2018). Despite this success on the test set 
with which the model was evaluated, Kawamleh (2021) argues that the machine learn‑
ing model fails to generalize to new situations. This limited generalizability of machine 
learning models is a known problem, as machine learning models often perform badly 
when presented with input that is (in our view slightly) different than that present in the 
test set. For example, object recognition systems become highly inaccurate when objects 
are presented in unusual locations (Rosenfeld et al. 2018), or when they are rotated into 
an unusual pose (Alcorn et al. 2019). A similar situation occurs in the machine learning 
model that predicts parameters for climate models. These are trained on input‑output 
pairs generated by a physical model (that is much more computationally intensive to use 
for long‑term climate change modeling). If the situation deviates too much from these 
training pairs, which one might expect when modeling climate change, then the machine 
learning model loses its accuracy. As Rasp et al. (2018, 9687) state, “the neural network 
cannot handle temperatures that exceed the ones seen during training,” in this case, an 
increase of sea‑surface temperatures of more than 4 Kelvin. They blame this on overfitting, 
but as Kawamleh (2021) shows, no machine learning models have managed to generalize 
on this task to date (and as pointed out above, it is, in fact, a common feature of such 
models).

Where does this lack of generalizability come from? Kawamleh (2021) blames the lack 
of representations of physical processes:

Traditional and cloud resolving parameterizations represented processes directly or 
indirectly and this process representation has added an irreducible value for the re‑
liability of model predictions because it provides (a) physical/empirical constraints 
and (b) facilitates forms of model development and evaluation which guard against 
overfitting.

(1019)
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Machine learning models do not have this protection against overfitting and instead rely 
purely on correlations present in the data set generated from running the process‑based 
model on a chosen set of training cases. The upshot is that:

the trained NNP [machine learning model] fails to learn convection and generalize 
beyond its training data because it fails to represent the causal convective processes 
which relate the climate variables of interest. […] The very representation of pro‑
cesses adds significant and irreplaceable value for the reliability of climate model 
predictions.

(Kawamleh 2021, 1019, emphasis in original)

This matches with explanations of the incredible performance of machine learning models 
in protein folding, where AlphaFold 2 is largely considered to have ‘solved protein folding’ 
because it gives accurate predictions of the folding for almost all protein specifications. 
Note, however, that “[t]he key to why AF2 works is the fact the library of single domain 
protein structures is essentially complete” (Skolnick et al. 2021, 4827). It is this lack of 
outliers compared to the training set that has led to a uniformly strong performance. If it 
were not for that completeness, there would likely be the same issues with generalizability 
(and indeed, issues do occur when more than one fold is possible). For:

AlphaFold has not learned from ligands and is actually not aware of the actual energy 
minima that are essential for folding in real life. In reality, AlphaFold has not solved 
the folding problem as it would occur in solution or in a cell, but it has provided a 
practical solution: It has learned the results of folding at the amino acid residue con‑
tact level and can, therefore accurately predict a single‑chain hemoglobin fold that 
would never exist on its own or in the absence of the heme cofactor in nature.

(Perrakis and Sixma 2021, 2–3)

So, does this issue with the generalizability of machine learning models affect the epistemic 
status of their predictions? It need not, depending on one’s views of justification from machine 
learning models. We only give a brief overview of the options here. These range from more 
liberal views, such as that of Beisbart (2017), who holds that one is justified to believe the 
predictions of a computer simulation (here generalized a bit to machine learning) if one is jus‑
tified to believe that the computer program works as intended. Verification of this will be very 
difficult for machine learning models, however, due to their epistemic opacity, so when are we 
justified to believe that the program works as intended? One can also wonder which inten‑
tions are relevant, as intending that the model predicts the phenomenon accurately for a test 
set is easy to verify, but too limited to be justified in believing its results generally speaking.

Durán and Formanek (2018) are more detailed matters about justification, though from 
a more externalist standpoint. They hold that one is justified to believe the output of a 
computer simulation if the model is sufficiently reliable, in their account of Computational 
Reliabilism (which can be generalized to machine learning models):

(CR) if S’s believing p at t results from m, then S’s belief in p at t is justified.
where S is a cognitive agent, p is any truth‑valued proposition related to the results 

of a computer simulation, t is any given time, and m is a reliable computer simulation.
(Durán and Formanek 2018, 654)
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Reliability here is to be understood as more than simply that the model produces correct 
predictions sufficiently often. Instead, it is a more complex notion where the reliability of a 
model can be supported by reliability indicators such as verification and validation meth‑
ods, robustness analyses, a history of (un)successful implementations, and expert knowl‑
edge. The account does not tell how these factors fit together, and thus, how to determine 
when a model is reliable and for what range of cases (e.g., only temperature variations 
under 4 Kelvin). Such details would need to be delivered by applying computational relia‑
bilism to specific cases.

Finally, Symons and Alvarado (2019) take this idea somewhat further, holding that 
justifications for the results of computer simulations (i.e., machine learning model pre‑
dictions) in scientific contexts come with high demands. They are, consequently, fairly pes‑
simistic about machine learning models, as they argue that “trust in simulations should 
be grounded in empirical evidence, good engineering practice, and established theoretical 
principles. Without these constraints, computer simulation risks becoming little more than 
unmoored speculation” (Symons and Alvarado 2019, 57–58). Such grounding is difficult, 
though what it exactly entails is left unclear. Still, Kawamleh (2021) can be read as an ar‑
gument that scientific grounding is lacking for those machine learning models, so justified 
beliefs might be hard to come by. The epistemic status of machine learning predictions 
is thus a matter of active debate, and there is a need for more specific accounts that can 
adjudicate specific cases. The lack of representations in these models presents a problem 
for their generalizability and grounding in established theoretical principles. That, in turn, 
affects the epistemic status of their predictions. Does it also rule out any hope for scientific 
explanations and understanding?

3.2 Explanations from machine learning models?

The statistical nature of machine learning models, combined with the opacity of the precise 
correlations they rely on, are for a number of philosophers good reason to be skeptical of 
their explanatory prospects. We have already discussed the arguments of Srećković et al. 
(2022), but López‑Rubio and Ratti (2021) make a similar point in the context of molecular 
biology. They focus on the prospect of mechanistic explanations, the standard account for 
molecular biology, resulting from machine learning models. They, too, are skeptical that 
such explanations can be obtained: “ If you do molecular biology with machine learning 
techniques, and if you want to have the best machine learning performances, then you can‑
not even in principle elaborate fully‑fledged mechanistic explanations” (López‑Rubio and 
Ratti 2021, 3152). Not because of technological limitations, but because “the more the size 
of the model increases, the less the human mind is able to organize the model’s components 
into a causal narrative, which forms the backbone of any mechanistic description with ex‑
planatory force” (López‑Rubio and Ratti 2021, 3152). As machine learning models rely on 
a vast number of parameters to achieve high accuracy, the argument goes, that they hinder 
the formulation of a causal narrative and, thus, of a mechanistic explanation. Here it is the 
associativity, i.e., the lack of a clear causal link between inputs and model predictions, in 
addition to the complexity that hinders understanding.

Yet other philosophers do not consider it a given that there are no scientific explanations to 
extract from machine learning models (primarily seen as involving causal relations, though, 
importantly, not all philosophical accounts of explanation give a central role to causation). 
They hold that, at least in some cases, it is possible to acquire these kinds of explanations. 
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Sullivan (2022) started this line of thought, defending that machine learning models can 
yield understanding despite their epistemic opacity. She holds that the implementation of 
a model is often irrelevant to the explanations that can be generated from that model and 
gives the example of Schelling’s model, used to study the causes of segregation. This model 
holds that a person will move if more than 70% of her neighbors belong to a different group 
than she does. In a situation with two groups present, this simple rule ultimately leads to a 
segregated situation, irrespective of the starting situation. How that model is implemented, 
however, whether on a checkers board (as originally the case) or on a computer, is irrelevant 
for extracting scientific explanations. What matters for us to obtain explanations of segre‑
gation in the real world is whether the model shows a process that actually occurs. In other 
words, what matters is whether people in real life tend to move when they belong to the 
minority in a specific neighborhood. If the model links to such a real‑world process, then 
it can provide explanations. If it does not, then it fails to yield scientific explanations. The 
real problem, according to Sullivan, then, is what she calls link uncertainty, where “link 
uncertainty constitutes a lack of scientific and empirical evidence supporting the link con‑
necting the model to the target phenomenon” (Sullivan 2022, 21). Note, however, that the 
explanation resulting from the model here also crucially relies on us knowing the process 
implemented by the model: that people move when 70% of their neighbors are in a different 
group is built‑in in the model (Räz and Beisbart 2022). However, as discussed in the context 
of epistemic opacity, the knowledge of the implemented process is difficult to obtain from 
machine learning models. Sullivan (2022), however, is optimistic that, in some simple cases, 
one can still know enough about the implemented process and reduce the link uncertainty 
sufficiently to obtain explanations from machine learning models.

Sullivan argues that this is the case for a skin lesion classifier, where a machine learning 
model classifies moles based on their visual appearance. As there is a strong scientific basis 
for a link between visual appearance and the type of mole it is (e.g., whether it is a kind of 
cancer or requires a biopsy), the reasoning goes that the link uncertainty, therefore, is low. 
The model also receives the input information that is scientifically known to be relevant to 
the decision, and thus, correlations found based on that information are of interest. Perhaps 
they do not correspond to causal relations, but Sullivan maintains that such (new) correla‑
tions “can further understanding, especially once these newly discovered patterns undergo 
further investigation” (2019, 24). While she does not discuss how the correlations the ma‑
chine learning model uses would be identified, deal with the worry that they may be too 
complex, or how link uncertainty is reduced, the idea that available scientific background 
information can make machine learning models explanatory has been picked up and devel‑
oped in further detail by others.

Knüsel and Baumberger (2020) do so in the context of climate change modeling ‑ not for 
parametrizations, but for models that try to determine if the rise in average temperature is 
due to human actions. In such a case, they consider it possible for machine learning models 
to provide understanding. The condition here is that:

for data‑driven models to be useful for understanding phenomena, researchers should 
be in a position to argue from the coherence of the model with background knowl‑
edge to its representational accuracy. This can for example be achieved if important 
bivariate relationships are known. This sort of reasoning provides exactly the kind of 
evidence that reduces the link uncertainty discussed by Sullivan

(Knüsel and Baumberger 2020, 47)
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How does this background knowledge help in modeling historical changes in temperature? First 
of all, it is a setting where we can approximate the situation quite well using the energy‑balance 
model, consisting of a single differential equation. It coheres with background knowledge, has 
decent empirical accuracy, is robust, and is easily graspable (as it is only a single differential 
equation). As such, it can be used to show that human actions are the cause of the temperature 
rise, as that rise only comes out of the model if the effects of human actions are taken into ac‑
count. Filter them out, and the average temperature predicted by the model remains stable. We 
can then explain why the average temperature has risen (and why human actions are the culprit).

Knüsel and Baumberger (2020) then compare this process‑based model to a machine 
learning model making the same predictions. This machine learning model shows the same 
difference whether human actions are included or not and has similar empirical accuracy. 
They argue that it is robust because outputs are similar to the process‑based model, in that 
it is coherent with background knowledge and because the outputs are consistent with the 
known physical laws (though recall Kawamleh (2021) that robustness and coherence are 
more complicated), and that manipulating the model and studying the feature importance 
makes it somewhat graspable. Therefore, they hold that this machine learning model can 
also be used to explain why the average temperature has risen in the last hundred years. 
Machine learning models may do worse on all these scales of explanation except for empiri‑
cal accuracy, but they can still do well enough in some cases to provide explanations. The 
argument, however, focuses on whether certain input values (human factors) are relevant 
to the outcome. More interesting, and problematic, given the associativity and opacity of 
machine learning models, is why human actions cause a rise in temperature. Knüsel and 
Baumberger (2020) do not discuss that question. In addition, it is unclear if the link uncer‑
tainty can be reduced sufficiently without a transparent process‑based model being avail‑
able. Only if that is possible would machine learning models add new explanations.

A similar shortcoming can be seen in the work of Jebeile et al. (2021), who look at yet 
another type of machine learning in climate modeling to argue that said models are on a 
continuous scale along with other types of models. They argue that their empirical accuracy 
is often better, but they do worse on intelligibility, representational accuracy, coherence 
with background knowledge, and assessment of the domain of validity. In some cases, 
however, we might know enough about the domain that we can give a sufficiently confident 
assessment of machine learning models’ coherence with background knowledge. In those 
cases, they can explain the phenomena they are trained to predict. Yet, what kind of expla‑
nations can be obtained if the processes the models implement remain unclear?

Meskhidze (2023) tries to provide more substantive answers here. She argues that machine 
learning models in cosmology (predicting cosmological parameters in large simulations of the 
formation of galaxies) answer some why‑questions, but do not help us understand “why phe‑
nomena of this general type occur across a variety of circumstances” (Meskhidze 2023, 1901). 
The reason is their lack of physical representations; they do not adhere to physical laws and so 
are not suited to explain such questions about the unfolding of physical processes. This is not a 
problem, though, for such machine learning models to help us understand “why, for example, 
our universe has the particular distribution of matter it does. By filling out the parameter space 
of interest, such methods can point cosmologists to the relevant values of the cosmological 
parameters that led to a particular distribution of matter” (Meskhidze 2021, 1906). The argu‑
ment seems to be that if the outputs of the machine learning models correspond to the actual 
values, then this can be explanatory of the actual distribution of matter. However, scientific 
explanations are typically thought to require a covering rule or mechanism sketch. The machine 
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learning model does not seem to provide that overarching process, which is instead given by 
physics‑based N‑body models. As such, the machine learning model does not seem to answer 
the question of why our universe has the particular distribution of matter that it does on its own. 
It thus remains unclear what the explanatory value of the machine learning models is exactly.

Despite widespread optimism, no clear answers have emerged on how machine learning 
models lead to (novel) explanations, even if the link uncertainty is reduced. At the same time, 
the pessimists might be too hasty to dismiss the extraction of causal relations from machine 
learning models, as there is a burgeoning literature connecting causal inference to machine 
learning (Pearl 2019). Buijsman (2023) connects this literature to machine learning techniques 
for causal inference to argue that in a few specific cases we can get (causal) scientific explana‑
tions from machine learning models. However, he also argues that this is unlikely to work for 
predictive machine learning models due to inherent biases in these models. Furthermore, causal 
accounts of explanation are not the only option. Other epistemic accounts of explanation are 
likewise viable; for example, Durán (2017, 2021) approaches scientific explanation and ma‑
chine learning from a unificationist perspective. Such alternative accounts deserve more atten‑
tion in the debate on scientific explanations from machine learning. The central challenge of 
formulating how explanations arise from machine learning models (if at all), remains an open 
question and calls for both a broader look at explanations and more in‑depth case studies.

Let us finally note that the current debate on understanding machine learning largely 
happens in light of explanation. This is either because explanations are seen by many as a 
one‑solution‑fits‑all (e.g., it reduces opacity, increases transparency, provides trustworthy 
machine learning, and adds to our understanding of the system) or because it is the standard 
philosophical pathway to understanding. Take, for instance, the objections raised by Räz 
and Beisbart (2022) to Sullivan’s uncertainty link. To these authors, Sullivan’s view depends 
on which notion of understanding is at play, and a strong notion would require explanatory 
understanding. Although they do not adopt a specific definition of explanatory understand‑
ing, they accept de Regt’s (2017) and Khalifa’s (2017) as suitable interpretations for their 
purposes. In this context, the overall strategy of Räz and Beisbart consists of showing that 
understanding ML comes in close connection with explanations. But not just any form of 
explanation. In particular, Sullivan’s how‑explanations strike them as unconvincing: “She 
writes that the deep patient model can answer the question of ‘how it is possible to predict 
disease development for a range of diseases’” (Sullivan 2022, 123). As pointed out by Räz 
and Beisbart, “This is not a request for a how‑possibility explanation of phenomena in the 
target system, it is a question about the possibility of predictive modeling itself” (2022).

Some authors have taken a somewhat different path in the connection between explana‑
tion and understanding. Páez (2019), for instance, claims that the search for explainable AI 
must be formulated in terms of the broader project of offering a pragmatic and naturalistic 
account of understanding. The result is the same: the analysis of explanations is in light of 
understanding. But is there a way to address understanding without resorting to explana‑
tion (and vice versa)? Räz and Beisbart think so. They suggest that machine learning can 
produce some degree of objectual understanding, here taken to be:

the understanding of a domain of things; it is often taken to imply some knowledge 
of this domain and the grasp of connections between items in the domain. These 
connections may be explanatory, but need not be; they may be merely logical or 
probabilistic.

(Räz and Beisbart 2022)
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Examples of objectual understanding have been discussed in the philosophical literature. 
Gijsbers (2013) shows that some classifications, such as those used in biology, can effec‑
tively enhance our understanding of, say, species without providing explanations. Based on 
these, Räz and Beisbart suggest that “ML models can lead to some objectual understanding, 
e.g., by establishing correlations, or by simply adding to knowledge of a domain of things” 
(Räz and Beisbart 2022).

4. Conclusion

What are the epistemic implications of machine learning models in the sciences? In the case 
of neuroscience, these epistemic implications are fairly clear. Neural networks, a type of 
machine learning model, can be seen as representing (parts of) the brain, and elements of 
neural networks can be linked to elements of biological neurons and synapses. Questions 
remain on the limitations of neural networks as models of the brain, e.g., due to their lim‑
ited ability to generalize, but it is clear that they play a role in understanding the functioning 
of the brain.

When Machine Learning functions as a tool, in other sciences, its contribution to un‑
derstanding is far less clear. Since machine learning models do not contain physical repre‑
sentations, they are harder to link to the actual situation they model. Furthermore, their 
epistemic opacity makes it difficult to extract causal relations and even to determine the 
reliability and robustness of their predictions. As a result, it is unclear when scientists are 
justified to believe the predictions made by such models, and more work is needed on 
specifying exactly what conditions hold for justification in these contexts. Furthermore, it 
is unclear whether and what explanations (and understanding) can be gained from machine 
learning models. The discussion so far has focused on causal accounts of explanation but 
has not yet yielded examples of causal explanations that are clearly obtained from the ma‑
chine learning model. Both a broader look at accounts of explanations and more detailed 
case studies are needed to determine the explanatory role of machine learning models in 
science. Such models are here to stay due to their benefits of higher empirical accuracy and 
lower computational costs, as the range of case studies has shown.
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