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Abstract 

RNA Velocity allows the inference of cellular differentiation trajectories from single-cell RNA sequencing (scRNA-seq) data. It would be highly 
interesting to study these differentiation dynamics in the spatial context of tissues. Estimating spatial RNA velocities is, however, limited by the 
inability to spatially capture spliced and unspliced mRNA molecules in high-resolution spatial transcriptomics. We present SIRV, a method to 
spatially infer RNA velocities at the single-cell resolution by enriching spatial transcriptomics data with the expression of spliced and unspliced 
mRNA from reference scRNA-seq data. We used SIRV to infer spatial differentiation trajectories in the de v eloping mouse brain, including the 
differentiation of midbrain-hindbrain boundary cells and marking the forebrain origin of the cortical hem and diencephalon cells. Our results 
show that SIRV reveals spatial differentiation patterns not identifiable with scRNA-seq data alone. A dditionally, w e applied SIRV to mouse 
organogenesis data and obtained robust spatial differentiation trajectories. Finally, w e v erified the spatial RNA velocities obtained by SIRV using 
10x Visium data of the de v eloping c hic ken heart and MERFISH data from human osteosarcoma cells. Altogether, SIR V allo ws the inference of 
spatial RNA velocities at the single-cell resolution to facilitate studying tissue development. 
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ntroduction 

ingle-cell RNA-sequencing (scRNA-seq) enables the study of
ellular differentiation dynamics at single-cell resolution ( 1 ).
rajectory inference methods, such as Monocle ( 2 ), DPT ( 3 )
nd PAGA ( 4 ), aim to define an ordering of gene expression
hanges in a certain pool of cells. This ordering potentially re-
ects a trajectory of the cellular differentiation process. How-
ver, scRNA-seq only captures a static snapshot of the cellular
tates, which represents a major challenge for trajectory infer-
nce methods to correctly capture the dynamics of the cellular
ifferentiation process. RNA velocity ( 5 ,6 ) addresses this chal-
enge by estimating the dynamics of cellular differentiation us-
ng the expression balance between unspliced immature and
pliced mature mRNA molecules captured by scRNA-seq pro-
ocols. Typically, for each cell, the RNA velocity is estimated
or each gene individually, which together, predict the future
tate of the cell. When calculated over all cells, a flow field can
e calculated by some averaging of neighboring cells, which
an be projected in a low-dimensional visualization space. 

To date, the study of cellular differentiation is limited to dis-
ociated cells from scRNA-seq, ignoring the spatial organiza-
ion of cells in tissues. Taking the spatial context into account
an enhance our understanding of cellular differentiation pro-
esses ( 7 ). Spatial transcriptomics enable the study of the cellu-
ar heterogeneity of complex tissues while retaining spatial in-
ormation ( 8 ,9 ). Currently, a wide range of protocols ( 10–17 )
eceived: February 23, 2024. Revised: June 28, 2024. Editorial Decision: July 22
The Author(s) 2024. Published by Oxford University Press on behalf of NAR G

his is an Open Access article distributed under the terms of the Creative Comm
hich permits unrestricted reuse, distribution, and reproduction in any medium, 
is available which varies in spatial resolution, gene detection
sensitivity and number of simultaneously measured genes. In
principle, it is possible to apply RNA velocity analysis to spa-
tial transcriptomics measured using sequencing-based proto-
cols, such as 10x Visium and Slide-seq ( 10 ,11 ), as the spliced
and unspliced expression ratios can be directly obtained from
the sequencing data ( 11 ,18 ). However, the spatial resolution of
these protocols is currently limited to measuring tissue spots
consisting of multiple cells. On the other hand, high resolu-
tion protocols, such as seqFISH ( 16 ,17 ) and HybISS ( 19 ), can
provide (sub)cellular resolution but lack the spliced and un-
spliced counts required to study cellular differentiation using
RNA velocity. 

We and others have previously shown that high-resolution
imaging-based spatial transcriptomics data can be enriched
with predicted expression of spatially unmeasured genes
through integration with scRNA-seq data measured from the
same tissue ( 20–25 ). Building on the same concept, it should
be possible to predict the spliced and unspliced expressions
of each spatially measured gene from a reference scRNA-seq
data. Using these predicted values, RNA velocities can then
be calculated for each cell in its spatial context, enabling the
study of spatial differentiation trajectories. 

To unlock the study of cellular differentiation dynamics
in their spatial context, we propose SIRV ( S patially I nferred
R NA V elocity). SIRV is a pipeline representing a new use case
, 2024. Accepted: July 23, 2024 
enomics and Bioinformatics. 
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of data integration of spatial and scRNA-seq data, combined
with RNA velocity estimation for the spatial transcriptomics
data. SIRV relies on domain adaptation to align spatial tran-
scriptomics to matching scRNA-seq data. After alignment, the
spliced and unspliced expressions of a spatially measured gene
can be predicted from the neighboring scRNA-seq cells and
used to calculate the corresponding spatial RNA velocity. In
addition, SIRV can transfer various metadata from scRNA-
seq to spatial transcriptomics data, allowing, for example, de-
tailed annotations of the spatial data. We used SIRV to study
differentiation trajectories in the developing mouse brain and
confirmed spatially localized trajectories at E10.5. Next, we
applied SIRV to mouse organogenesis data and showed that
SIRV can infer reproducible trajectories across different em-
bryos. Finally, we verified our method by comparing the ve-
locities inferred by SIRV to velocities inferred from measured
spliced and unspliced counts in 10x Visium data of the de-
veloping chicken heart and MERFISH data from human os-
teosarcoma cells. 

Materials and methods 

SIRV algorithm 

The SIRV algorithm requires two inputs, the spatial transcrip-
tomics data represented by a gene expression matrix, and
the scRNA-seq data having three expression matrices corre-
sponding to the spliced (mature mRNA), unspliced (imma-
ture mRNA) and full mRNA expression. The scRNA-seq data
may also contain relevant metadata like cellular identity an-
notations, tissue / region of origin, etc. Using the set of shared
genes between the two datasets, SIRV enriches the spatial tran-
scriptomics data with spliced and unspliced expressions as
predicted from the scRNA-seq data. These spliced and un-
spliced expressions are then used to calculate the RNA veloc-
ity of each gene for each cell. Additionally, SIRV transfers the
metadata from the scRNA-seq data to the spatial transcrip-
tomics data. The SIRV algorithm consists of four major parts:
(i) integration of the spatial transcriptomics and scRNA-seq
datasets, (ii) prediction of spliced and unspliced expressions,
(iii) label transfer (optional), and (iv) estimation of RNA ve-
locities within the spatial context. 

Integration 

The spatial transcriptomics and scRNA-seq datasets are inte-
grated by finding the common signal between the two datasets.
Similar to SpaGE ( 20 ), the integration step is performed using
PRECISE to define a common latent space ( 26 ). In brief, us-
ing the set of shared genes across the two datasets, we calcu-
late a separate Principal Component Analysis (PCA) for each
dataset, and then align these separate principal components,
resulting in Principal Vectors (PVs). These PVs have a one-to-
one correspondence between the two datasets, and the highly
correlated PV-pairs represent the common signal. Finally, both
the spatial transcriptomics and scRNA-seq datasets are pro-
jected onto the PVs of the reference dataset (scRNA-seq in
this case), producing an integrated and aligned version of both
datasets. 

This integration step is performed using the total
(spliced + unspliced + ambiguous) mRNA expression matrix
from the scRNA-seq side, together with the expression matrix
of the spatial transcriptomics data. Thus, the spliced and un-
spliced expressions are only used in the (following) prediction 

step. 

Spliced and unspliced expression prediction 

After obtaining the aligned datasets, SIRV enriches the spa- 
tially measured genes with spliced and unspliced expression 

predicted from the scRNA-seq data. Such prediction is per- 
formed using a kNN regression ( 20 ). For each spatial cell i , we 
calculate the k-nearest-neighbors from the aligned scRNA-seq 

data and assign a weight to each neighbor inversely propor- 
tional to its distance. 

w i j = 1 − dist ( i, j ) ∑ 

j ∈ N N ( i ) dist ( i, j ) 
(1) 

w 

∗
i j = 

w i j 

k − 1 

; such that 
∑ 

j ∈ N N ( i ) 

w 

∗
i j = 1 (2) 

with dist( i, j ) being the cosine distance between spatial cell 
i and scRNA-seq cell j ∈ N N (i ) , k equaling the number of
nearest-neighbors used, and w 

∗
i j representing the weight be- 

tween each spatial cell i and its jth nearest neighbor. 
For every spatially measured gene g, the spliced ( S ′ ig ) and 

unspliced ( U 

′ 
ig ) expression are predicted by: 

S ′ ig = 

∑ 

j∈ N N (i ) w 

∗
i j ∗ S R jg 

U 

′ 
ig = 

∑ 

j∈ N N (i ) w 

∗
i j ∗ U R jg 

(3) 

with S R jg and U R jg represent the spliced and unspliced ex- 
pression of gene g from the scRNA-seq data, respectively. 

Label transfer 
SIRV can annotate the spatial transcriptomics data with any 
relevant labels from the scRNA-seq data using the same kNN 

regression scheme as introduced earlier. Taking the cell iden- 
tity annotation as an example: for each cell type c in the 
scRNA-seq annotation, we calculate a score P ic expressing 
whether spatial cell i should be assigned to cell type c by ag- 
gregating the weights w 

∗
i j of the nearest neighbors annotated 

with c . The transferred cell type C i for each spatial cell i is then 

selected based on the cell type with highest score: 

P ic = 

∑ 

j ∈ NN ( i ) 
j ∈ c 

w 

∗
i j ; where 

∑ 

C 

P ic = 1 (4) 

C i = arg max 

c 
P ic (5) 

RNA velocity analysis 
After enriching the spatial genes with spliced and unspliced 

expressions, we applied the RNA velocity ( 5 ) method (imple- 
mented in the scvelo ( 6 ) python package) to investigate cel- 
lular development and differentiation. Following scvelo, first,
we calculated the high-dimensional RNA velocity vectors for 
the spatially measured genes, next we projected and visual- 
ized these vectors on the spatial coordinates of the cells in or- 
der to define directions of cellular differentiation in the spatial 
context. 

Datasets description 

Developing mouse brain 

We used both spatial transcriptomics and scRNA-seq datasets 
from the Developing Mouse Brain Atlas ( 27 ). Datasets 
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ere downloaded from http:// mousebrain.org/ downloads.
tml . The spatial transcriptomics data profiled the expression
f 119 genes in an E10.5 mouse embryo, measured using the
ybISS protocol ( 19 ). Out of 25 different spatial slices pro-

ided by the authors, we selected the ‘40 μm’ slice as it con-
ains a clear structure of the brain. Cell segmentation was not
rovided with the data, however, we used the voxel version
f the data (provided by the authors) which summarizes the
patial gene expression in a 2D grid of 30 000 pixels. 

The scRNA-seq data profiled a developing mouse brain tis-
ue from E7 to E18. To match the HybISS data, we only used
10 and E11 having a total 47 639 cells expressing 31 053
enes. Additionally, the scRNA-seq data was annotated with
everal metadata labels, we focused on the labels indicating
he region (Forebrain, Midbrain and Hindbrain) and cellular
dentity. (‘Subclass’ annotation). 

ouse organogenesis 
e used three spatial datasets measured using the seqFISH

rotocol, representing three slices from the same mouse em-
ryo ( 28 ). The three datasets contained a total of 52 568 cells
19 451, 14 891 and 23 194 cells for Embryo1, Embryo2 and
mbryo3, respectively) profiling the expression of 351 genes.
xpression count data, spatial coordinates and correspond-

ng metadata were downloaded from https://marionilab.cruk.
am.ac.uk/ SpatialMouseAtlas/ . 

We chose the Gastrulation atlas ( 29 ) as the refer-
nce scRNA-seq data for mouse organogenesis. We down-
oaded the complete atlas data from the MouseGastru-
ationData R package ( https:// bioconductor.org/ packages/

ouseGastrulationData/), then excluded cells with no cell-
ype annotation, and selected only E8.5 to match the seqFISH
patial data with a total of 16 909 cells profiling 29 452 genes.

eveloping c hic ken heart 
e obtained a pair of datasets from the developing chicken

eart ( 8 ), 10x Visium spatial data and 10x Chromium scRNA-
eq data, from day 14 in the development. The provided count
atrices by the authors did not contain the unspliced and

pliced expression. For that we downloaded the fastq files
rom GEO (GSE149457), and used kallisto / BUStools ( 30 ,31 )
o realign the reads to the reference genome (GRCg6a) while
ifferentiating between intronic and exonic reads. Using the
ame list of cell / spot barcodes in the count matrices provided
y the authors, we obtained 1 967 spots and 3 009 cells for
he Visium and scRNA-seq data, respectively, both profiling
2 541 genes with the corresponding unspliced and spliced
xpression. Relevant metadata and spatial coordinates were
ownloaded from Github ( https:// github.com/ madhavmantri/
hicken _ heart ). 

uman osteosarcoma (U-2 OS) 
e obtained three spatial transcriptomics datasets (batches)
easured from human osteosarcoma (U-2 OS) cells using
ERFISH ( 32 ). Here, the spliced and unspliced expressions
ere replaced by cytoplasmic and nuclear expressions, respec-

ively. We used batch 1 (645 cells) as our spatial data, while we
oncatenated batch 2 and 3 (400 and 323 cells, respectively)
o act as simulated matching scRNA-seq data (ignoring the
patial locations of cells). We used the 9 050 genes detected
ith the non-overlapping probe design ( 32 ). 
Data preprocessing 

First concerning the spatial datasets, the seqFISH and MER-
FISH datasets already had cellular resolution, the spots of the
Visium data were treated as cells, while for the HybISS data,
the pixels of the 2D grid were used as pseudo-cells. The gene
expression of each pixel (pseudo-cell) is the count of the spots
detected for each gene in that pixel location. To separate tissue
from background, we filtered out any pseudo-cell with total
counts across all genes less than 4. Next, we manually seg-
mented only the brain tissue, ending with a total of 4 628
spatial pseudo-cells ( Supplementary Figure S1 ). Next, all spa-
tial datasets were normalized by dividing the counts within
each cell by the total count within that cell, multiplied by a
scaling factor equal to the median number of counts across
cells, and log( x + 1) transformed. 

x ig = log 

( ( 

x ig ∑ 

g x ig 
∗mc 

) 

+ 1 

) 

; where mc 

= median 

i 

⎛ 

⎝ 

∑ 

g 

x ig 

⎞ 

⎠ (6)

with x ig represents the expression of gene g in cell i , 
∑ 

g 
x ig

equals the total count in cell i , and mc is the median num-
ber of counts across cells. For the Visium data, we filtered out
genes expressed in less than 10 cells, ending up with 12 295
genes, while no gene filtration was applied for the seqFISH,
MERFISH and HybISS datasets. 

Second concerning the scRNA-seq datasets, for the Gas-
trulation atlas, we renamed and regrouped few cell types
based on previous recommendations ( 28 ), and filtered out cell
types with less than 25 cells. For the developing mouse brain
data, cells having ‘Class’ annotation of ‘Bad cells’ or ‘Unde-
fined’ were filtered out. Additionally, genes annotated as in-
valid (‘Valid’ = 0) were removed. Further, for all scRNA-seq
datasets, we filtered out genes expressed in less than 10 cells.
We ended up with 40 733 cells × 16 907 genes for the de-
veloping mouse brain data, 16 861 cells × 29 452 genes for
the Gastrulation atlas, 3 009 cells × 10 143 genes for the 10x
developing chicken heart data, while no genes were filtered
out for the MERFISH simulated scRNA-seq data. Finally, each
dataset was normalized by dividing the counts within each cell
by the total count within that cell, multiplied by a scaling fac-
tor of 10 

6 , and log( x + 1) transformed. 

x ig = log 

( ( 

x ig ∑ 

g x ig 
∗10 

6 

) 

+ 1 

) 

(7)

with x ig represents the expression of gene g in cell i , and 

∑ 

g 
x ig

equals the total count in cell i . 

Weighted similarity metric 

To quantitatively evaluate the estimated differentiation tra-
jectories using SIRV, we compared the measured and esti-
mated spatial / high-dimensional RNA velocity vectors using
a weighted similarity metric score: 

Weighted Similarity = 

∑ 

i 

αi ∗ Si m i (8)

αi = 

ma g i ∑ 

j ma g j 
(9)

http://mousebrain.org/downloads.html
https://marionilab.cruk.cam.ac.uk/SpatialMouseAtlas/
https://bioconductor.org/packages/MouseGastrulationData/
https://github.com/madhavmantri/chicken_heart
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
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where ma g i is the magnitude of the spatial / high-dimensional
velocity vector of spot i , αi is the weight of spot i relative to its
magnitude compared to all other spots, and Si m i is the cosine
similarity between the measured and estimated spatial / high-
dimensional velocity vectors of spot i . Here, we emphasize the
larger velocity vectors, which are more important to be esti-
mated correctly compared to smaller velocity vectors. 

RNA velocity gene contribution 

For a selected set of cells n , we quantified the contribution of
each gene in the resulting RNA velocity vectors, to observe
which genes are mostly driving the differentiation trajectory.
First, we normalized the velocity vector of each cell to a unit
vector. Next, the total contribution C g of gene g is calculated
as: 

C g = 

∑ 

i ∈ n 
C ig = 

∑ 

i ∈ n 
β2 

ig (10)

where C ig is the contribution of gene g in cell i , which is equal
to the square of the gth component in the RNA velocity of
cell i ( βig ). The total contribution of each gene is obtained by
summing the contributions along all cells in selection. 

Implementation details 

For the integration step we used 50 principal vectors ( 26 ), and
for the prediction step, we used k = 50 ( 20 ). For the RNA
velocity analysis, we scaled the data to zero mean and unit
variance features, next we calculate the top principal compo-
nents (PCA) to build a neighborhood graph with 30 neigh-
bors. Based on the percentage of explained variance in each
dataset, we used 30, 50, 20 and 30 principal components for
the HybISS, seqFISH, Visium and MERFISH datasets, respec-
tively. This neighborhood graph is used to calculate a UMAP
( 33 ) embedding of the data and cluster the data (in case of
the HybISS and MERFISH data) using Leiden ( 34 ) graph-
based clustering (resolution = 1). Next, we calculate the RNA
velocity vectors using the same number of principal compo-
nents and neighbors. Finally, we project the high-dimensional
velocity vectors on the UMAP coordinates and the spatial
(x,y) coordinates using the velocity_embedding and veloc-
ity_embedding_stream functions. We used the scanpy ( 35 )
python package (version 1.7.0) to perform data preprocess-
ing, PCA, UMAP and Leiden clustering. While the scvelo ( 6 )
python (version 0.2.3) package was used to calculate RNA
velocities and their projections in the UMAP and the spatial
context. 

Results 

SIRV overview 

To enable RNA velocity estimation in spatial transcriptomics
data, we developed SIRV (Figure 1 ). Calculation of RNA ve-
locity vectors requires measurements of mature (spliced) and
immature (unspliced) mRNA expressions, which are missing
in spatial transcriptomics data at the single-cell level. To over-
come this limitation, we integrated the spatial transcriptomics
data with matching scRNA-seq data, which includes spliced
and unspliced mRNA expressions, from the same tissue (Ma-
terials and methods). We have previously introduced SpaGE
( 20 ), a method that integrates spatial and scRNA-seq datasets
to predict whole-transcriptome expressions in the spatial data.
Similar to SpaGE, SIRV relies on PRECISE ( 26 ), a domain
adaptation method, to correct for technical differences be- 
tween the spatial and single-cell transcriptomics data. How- 
ever, after integration, SIRV uses kNN regression to trans- 
fer (i.e. predict) the spliced and unspliced expressions for the 
spatially measured genes from the scRNA-seq data (Materi- 
als and methods). The predicted spliced and unspliced expres- 
sions are used to calculate the RNA velocity vectors for every 
spatial cell. We project these vectors on the spatial coordinates 
of the tissue and derive flow fields by averaging the dynamics 
of spatially neighboring cells. 

Additionally, SIRV transfers various metadata from the 
scRNA-seq to the spatial transcriptomics data using a simi- 
lar kNN regression scheme (Materials and methods). Consid- 
ering cell identity labels, this label transfer feature offers an 

automated manner to annotate the spatial data. Since scRNA- 
seq captures the whole transcriptome, compared to a limited 

number of genes in the spatial data, the transferred annota- 
tions can represent more fine-grained cellular identities. 

Reconstructing spatial differentiation trajectories in 

the developing mouse brain 

To illustrate the utility of SIRV, we constructed spatial differ- 
entiation trajectories in the developing mouse brain. For this,
we used spatial transcriptomics data mapping the expression 

of 119 genes in the E10.5 mouse brain using HybISS ( 27 ).
First, we clustered cells from the HybISS data into 21 clusters 
(Figure 2 A, Supplementary Figure S2 A). We mapped the cell 
clusters back to their spatial locations and observed that the 
clustering agrees with the spatial organization, i.e. the major- 
ity of the cell clusters are spatially-localized (Figure 2 B and 

Supplementary Figure S2 B-C), except for clusters 0, 15, 19 

and 20. Furthermore, cluster 1 was spatially divided into two 

groups of cells, one localized to the midbrain and the other in 

the hindbrain. 
We integrated the HybISS spatial data with scRNA-seq data 

of the E10 and E11 mouse brain using SIRV and predicted 

the spliced and unspliced expressions for the spatially mea- 
sured genes in every spatial cell. The two datasets shared 117 

genes which were used for integration and prediction. With 

the predicted spliced and unspliced expressions for each of 
the 117 genes, we generated RNA velocity vectors for each 

spatial cell. The RNA velocity analysis showed differentia- 
tion patterns which are consistent with the HybISS clusters 
(Figure 2 A). For instance, cluster 9 differentiates into clus- 
ters 7, 8 and 13. Cluster 3 differentiates into clusters 5, 17 

and part of 14, while the other part of cluster 14 is devel- 
oped from cluster 13. Cluster 12 differentiates into cluster 16,
while clusters 2 and 10 differentiate towards a common end 

point. Additionally, we observed that clusters 0, 15, 19 and 

20 have close to zero magnitude velocity vectors. A possi- 
ble explanation is that these clusters form the boundary of 
the brain ( Supplementary Figure S2 C) and are not further in- 
volved in cellular differentiation at this stage of development.
Also, these clusters are spatial more scattered compared to 

others, and clusters 19 and 20 contain very few cells. 
Next, we projected and visualized the velocity vectors con- 

structed by SIRV onto the spatial coordinates (Figure 2 B),
which revealed the spatial differentiation dynamics of the 
cells. For example, cluster 9 is roughly located at the midbrain- 
hindbrain boundary, and the velocity vectors branches in 3 

directions towards clusters 7, 8 and 13. To obtain a more de- 
tailed view of the spatial RNA velocities, we visualized the 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
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Figure 1. SIRV pipeline. SIRV takes as input a spatial transcriptomics data X S and a reference scRNA-seq data. The latter contains spliced S R , unspliced 
U R and total mRNA X R expressions for each gene, and possibly label annotations L R e.g. cellular identity. SIRV integrates the two datasets X S and X R 
using domain adaptation producing aligned datasets X ∗S and X ∗R . Next, SIRV predicts the spatial spliced S ′ S and unspliced U 

′ 
S expressions from the 

scRNA-seq data using kNN regression applied on X ∗S and X ∗R . The predicted S ′ S and U 

′ 
S expressions are used to calculate RNA velocity vectors, which are 

projected on the spatial coordinates of the tissue estimating spatial cellular differentiation trajectories. A dditionally, SIR V transfers label annotations from 

scRNA-seq to spatial data ( L ′ s ) using the same kNN regression methodology. 
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patial velocity vectors at the single-cell level ( Supplementary 
igure S3 A). Results show that the velocity vectors follow con-
istent spatial paths across the different cell clusters and dif-
erent brain regions. If we consider cluster 9 again, the spa-
ial velocity vectors at the cell level show the same differ-
ntiation into 3 branches ( Supplementary Figure S3 B). Fur-
hermore, we can clearly observe the differentiation of clus-
er 12 into 16, and cluster 13 into a part of cluster 14
 Supplementary Figure S3 C). Moreover, cluster 2 forms a rel-
tively long path of differentiation through the Hindbrain
 Supplementary Figure S3 D), reaching a common end point
ogether with cluster 10. Interestingly, investigating spatial dif-
erentiation trajectories revealed patterns which were not ap-
arent in the UMAP (Figure 2 A). For instance, the spatial ve-
ocity vectors suggest that cluster 3, located in the forebrain,
ifferentiates towards cluster 5 and part of 14. However, clus-
er 3 indirectly differentiates to cluster 17 through cluster 5
 Supplementary Figure S3 E). Moreover, from the spatial con-
ext, we observed that cluster 5 further differentiates to cluster
. Together, these results show the potential of SIRV to iden-
ify spatial differentiation trajectories that cannot be obtained
rom dissociated data representation alone. 

Furthermore, we evaluated the stability of the produced re-
ults by SIRV while varying the values of its hyperparameters:
) number of principal vectors (#pv) in the integration step
nd 2) number of nearest neighbors ( k ) in the prediction step.
ompared to the results obtained in Figure 2 B using the de-

ault values, SIRV produced highly comparable spatial RNA
elocities across different settings ( Supplementary Figure S4 )
ith a weighted similarity above 0.9 (Materials and methods).
his shows that SIRV produces robust results across a range
f hyperparameters. 
 

Interpretation of spatial RNA velocities in the 

developing mouse brain 

To gain additional insights into the spatial trajectories, we
used SIRV to transfer cell annotations from the scRNA-seq
to the HybISS spatial data. First, we transferred the brain
region annotation (forebrain, midbrain and hindbrain) from
the scRNA-seq to the HybISS data. In the UMAP embed-
ding of the HybISS spatial data, the three brain regions
form three different groups with some overlap in the mid-
dle ( Supplementary Figure S5 A). This overlap can be ex-
plained by the group of mesenchyme cells forming the bor-
der of the brain (Figure 2 C, D). When visualized in their
spatial coordinates, we observe that the regional annotation
of cells is in agreement with the anatomical structure of the
brain ( Supplementary Figure S5 B and S1 C, D). Next, we
transferred the ‘Subclass’ annotations which formed distinct
groups in the UMAP embedding of the spatial data (Figure
2 C). Spatially, the obtained ‘Subclass’ labels also showed a
well-separated and structured spatial organization (Figure 2 D
and Supplementary Figure S6 ). Subclasses belonging to either
hindbrain, midbrain or forebrain clusters are found in their
respective brain regions with little overlap to neighboring re-
gions, validating the estimation of these labels. For example,
midbrain-hindbrain boundary cells are positioned around the
isthmus, and the cortical hem and dorsal diencephalon cells
localize in the forebrain as expected ( 27 ,36 ). The scRNA-seq
dataset has a total of 104 ‘Subclass’ label annotations. Using
SIRV, only 49 labels were transferred to the spatial data. These
labels ranged in size from 18 to 5 065 cells in the scRNA-seq
dataset, while the other 55 non-transferred labels ranged from
1 to 157 cells ( Supplementary Figure S5 C). This suggests that
SIRV is able to transfer the relevant annotations to the spatial

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
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Figure 2. SIRV differentiation trajectories and label transfer for developing mouse brain data. ( A ) Main flow of SIRV predicted RNA velocities visualized 
b y v elocit y streamlines, projected on the UMAP embedding of the HybISS spatial dat a, colored according to 21 cell clusters obt ained using Leiden 
clustering. ( B ) Main flow of SIRV predicted RNA velocities visualized by velocity streamlines, projected on the spatial coordinates of the HybISS data, cell 
clusters show spatial localization. ( C ) UMAP embedding of the HybISS spatial data colored according to the ‘Subclass’ annotation transferred from the 
scRNA-seq data. ( D ) Spatial map showing the location of each ‘Subclass’ label in the tissue, with main flow streamlines of spatial RNA velocities as in (B). 
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data, including small cellular populations in the correspond-
ing scRNA-seq dataset, and it’s not only biased towards trans-
ferring the large abundant cell populations. 

We visualized the spatial RNA velocity vectors at the single-
cell level together with the transferred ‘Subclass’ annotations
(Figure 3 A). The midbrain-hindbrain boundary cells (clus-
ter 9) show three branched trajectories, differentiating to-
wards midbrain, ventral midbrain and dorsal hindbrain cells
(Figure 3 B). Comparing the 21 cell clusters with their ‘Sub-
class’ annotation indeed shows that cluster 9 mostly maps to
the midbrain-hindbrain boundary subclass ( Supplementary 
Figure S5 E). In the midbrain, midbrain basal plate cells differ-
entiate into midbrain floor plate cells (Figure 3 C). In the hind-
brain, dorsal hindbrain cells differentiate towards hindbrain
cells (Figure 3 D). Considering the forebrain region, cells anno-
tated as forebrain (mostly covering clusters 3, 5 and 11) differ- 
entiate into dorsal diencephalon (cluster 17) and cortical hem 

(cluster 6) (Figure 3 E and Supplementary Figure S5 E). While 
cluster 0, 15, 19 and 20 are mostly composed of mesenchyme 
cells forming the borders of the brain ( Supplementary Figure 
S5 E), no differentiation was associated with these clusters in 

agreement with mesenchyme cells which also have almost zero 

magnitude RNA velocity vectors. To evaluate the trustworthi- 
ness of the generated velocities, we calculated the velocity con- 
fidence scores from the scvelo package. We observed relatively 
high confidence scores across the majority of the brain regions 
( Supplementary Figure S5 D), with an average confidence score 
of 0.87 across all cells. 

Next, we focused on the spatial differentiation trajectory 
at the midbrain–hindbrain boundary and aimed to confirm 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
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Figure 3. ( A ) Cell-le v el RNA velocities projected on the spatial coordinates of the HybISS spatial data, colored according to the ‘Subclass’ annotation 
transferred from the scRNA-seq data (same legend as Figure 2 C, D). (B–E) Zoom-in views on the same spatial differentiation trajectories as in Figure 3; 
( B ) midbrain-hindbrain boundary, dashed-lines highlight the isthmus region, ( C ) part of midbrain, ( D ) hindbrain and ( E ) forebrain, highlighting two cortical 
hem populations (Wnt8b+ in red, and Wnt8b– in blue). Black arrows show branching or linear spatial differentiation directions between subclasses 
(these arrows are drawn manually to highlight certain differentiation trajectories). ( F ) Overlaid expression of marker transcription factors following the 
differentiation trajectory in the hindbrain and midbrain. *Predicted expression from scRNA-seq data using SpaGE (20). 
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the trajectory suggested by these spatial RNA velocity vec-
tors (Figure 3 B). The isthmus is an important organizer dur-
ing midbrain and hindbrain development and is marked by
the expression of Fgf8 ( 37 ). Otx2 expression rostral to the
isthmus and Gbx2 expression caudal to the isthmus restrict
Fgf8 expression. In addition, Gli3 is implicated as a regulator
of Fgf8 expression and is essential for establishing the tectum,
isthmus and cerebellum during early development ( 38 ). The
combinatorial expression of Otx2 , Pax2 / 5 and En1 / 2 drives
cells towards a mesencephalic fate, and Pax3 / 7 expression fur-
ther drives differentiation towards the tectum ( 37 ,39 ). Fgf8,
Pax3 / 7 and En2 expression was detected in their expected
regions in the isthmus and midbrain (Figure 3 F). Examining
the velocity plot of Gli3 indeed shows the midbrain-hindbrain
boundary cells as an earlier differentiation stage, while dor-
sal hindbrain cells and midbrain / dorsal midbrain cells (tec-
tum) are late stages ( Supplementary Figure S7 A). Similar ob-
servations can be obtained from Pax3 / 7 , while En2 shows
the ventral midbrain cells as a later differentiation stage fol-
lowing the midbrain-hindbrain boundary cells. We repeated
the RNA velocity analysis using only the five genes ( Fgf8 ,
Gli3 , Pax3 , Pax7 and En2 ) involved in the midbrain-hindbrain
differentiation trajectory. We were able to partially recon-
struct the spatial trajectory obtained using all spatial genes
( Supplementary Figure S7 B) with a weighted cosine similar-
ity of 0.33 (Materials and methods). Although the direction
of the ventral midbrain cells is changed, the branching of the
midbrain-hindbrain boundary cells into dorsal hindbrain and
midbrain / dorsal midbrain cells could still be observed. 

We then asked whether Pax3 / 7 were also the main con-
tributors to the RNA velocity trajectory of the cells differen-
tiating into the tectum (Materials and methods). For the cells
differentiating towards the tectum, the top contributing genes
were Gli3, Egfem1 and Pax3, in agreement with the previ-
ously described role of Gli3 and Pax3 in the development of
the tectum. However, Egfem1 (EGF-like and EMI domain-
containing protein 1) , has not previously been implicated in
neural development of the tectum and its function within the
central nervous system is still unknown ( 40 ). 

Furthermore, we noticed that SIRV predicted two distinct
trajectories in the cortical hem (Figure 3 E). The cortical hem
is important for the formation of the choroid plexus and hip-
pocampus, and gives rise to Cajal-Retzius cells ( 41 ). The de-
velopment of the cortical hem is impaired in Gli3-deficient
mice ( 42 ,43 ). Lmx1a is required to repress Lhx2 expression in
the cortical hem, preventing progenitors from adopting a hip-
pocampal fate and ensuring the production of Cajal-Retzius
neurons ( 44 ). The Wnt family member Wnt8b marks the corti-
cal hem ( 45 ,46 ) and Wnt8b expression appeared to divide the
trajectories in a Wnt8b 

+ trajectory rostrally and a Wnt8b 

−

trajectory dorsally (Figure 3 E). We therefore asked whether
these genes contribute to the RNA velocity trajectories in the
cortical hem, and whether Wnt8b defines the rostral trajec-
tory. In contrast to the RNA velocity trajectory in the dorsal
midbrain, the gene contribution to the trajectories of the cor-
tical hem were more dispersed across several genes. The top
contributing genes for the two subsets showed considerable
overlap ( Gli3, Lmx1a ) and clear differences ( Unc5c, Pax6, in
Wnt8b 

−, Eya4 in Wnt8b 

+ ). Surprisingly, Wnt8b barely con-
tributed to the direction of the trajectory in either subset of
cells. Pax6 is involved in cortical development, but lowly ex-
pressed in the cortical hem ( 47 ). Unc5c ( Unc5 Netrin Recep-
tor C), a receptor to the axon guidance cue netrin-1, and Eya4 

(EYA transcriptional coactivator and phosphatase 4) have not 
been linked to early cortical hem development before. Con- 
clusively, SIRV shows reliable RNA velocity trajectories in the 
developing mouse brain and could implicate novel genes in 

the differentiation of cell types during neural development. 

SIRV reveals spatial differentiation trajectories that 
are missed using scRNA-seq only 

Next, we wondered if inferring spatial trajectories using SIRV 

reveals patterns that cannot be captured using RNA veloc- 
ity from the scRNA-seq data alone. We applied RNA velocity 
to the scRNA-seq data of the developing mouse brain, using 
the top 2000 highly-variable genes (HVGs). We could not de- 
tect the differentiation trajectory of the midbrain-hindbrain 

boundary cells (Figure 4 A), which is the clearest trajectory 
captured by SIRV (Figure 3 B). We then wondered if the re- 
sults are driven by the highly selected genes measured in the 
HybISS data. To test the effect of gene selection on velocity es- 
timation, we inferred velocities from the scRNA-seq data us- 
ing the same 117 genes measured in the HybISS dataset. Yet,
the midbrain-hindbrain boundary trajectory was not captured 

(Figure 4 B). To make sure that such differentiation trajectory 
was not over-taken by a stronger signal in the scRNA-seq data,
we selected the cell populations involved in the midbrain- 
hindbrain boundary differentiation trajectory and applied the 
RNA velocity to these cells only. Again, the trajectory was not 
captured, neither using the 2000 HVGs nor the 117 spatial 
genes ( Supplementary Figure S8 A-B). 

Relying on spatially measured transcriptomes 

provides better spatial differentiation trajectories 

Although the spliced and unspliced counts of individual genes 
are predicted by SIRV for every spatial location, we do use 
the measured gene count when calculating the (spatial) RNA 

velocities. We decided to do so because the spatial transcrip- 
tomics data has a higher detection rate (fraction of cells ex- 
pressing a certain gene) ( Supplementary Figure S8 C). To test 
the validity of this choice, we compared the measured spa- 
tial transcriptomics data ( X s ) with the sum of the predicted 

spliced ( S ′ s ) and unspliced ( U 

′ 
s ) expressions as derived from 

the scRNA-seq data. We indeed observed high correlations,
comparable to the correlation between scRNA-seq data ( X r ) 
and the measured spliced ( S r ) and unspliced ( U r ) expressions 
( Supplementary Figure S8 D). To further test that the use of 
the spatially measured gene counts is to be preferred over pre- 
dicted ones, we generated spatial RNA velocities using the 
summed predicted spliced and unspliced expressions as gene 
counts. Supplementary Figure S8 E indeed shows that then the 
predicted spatial trajectories do deteriorate when compared 

to using the spatially measured gene counts. 
SIRV is capable of predicting the spliced and unspliced ex- 

pressions transcriptome-wide, not only for the spatially mea- 
sured genes. We thus were interested whether calculating the 
spatial RNA velocities based on a full (predicted) transcrip- 
tome would outperform one in which the RNA velocities were 
only based on the measured spatial genes. Hereto, we pre- 
dicted with SIRV the spliced and unspliced expressions for all 
genes from the scRNA-seq. The spatial gene counts are now 

represented by the summation of the predicted spliced and un- 
spliced expressions ( X 

′ 
s = S ′ s + U 

′ 
s ) as we don’t have (spatial) 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
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Figure 4. (A, B) Main flow of RNA velocities visualized by velocity streamlines projected on the UMAP embedding of the scRNA-seq data of the 
de v eloping mouse brain, RNA velocity was calculated using ( A ) top 20 0 0 HVGs, or ( B ) 117 spatial genes. Cells are colored according to the ‘Subclass’ 
annotation of the scRNA-seq (same legend as Figure 2 C, D). The branching trajectory of the midbrain-hindbrain boundary cells (highlighted in red) is not 
detected in both cases. ( C ) Cell-le v el RNA velocities projected on the spatial coordinates of the HybISS spatial data, where SIRV was used to predicted 
transcriptome-wide spliced and unspliced expressions, and RNA velocity analysis was performed using the top 20 0 0 HVGs. Cells are colored according 
to the ‘Subclass’ annotation transferred from the scRNA-seq data (same legend as Figure 2 C, D). 
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easurements for most genes. Using the top 2000 HVGs, we
erformed the RNA velocity and projected the velocity vec-
ors on the spatial coordinates of the mouse brain, obtaining
onsistent spatial differentiation paths across different brain
egions (Figure 4 C). However, the spatial differentiation tra-
ectories obtained using the 117 spatial genes with their corre-
ponding measured spatial data (Figure 3 A) were more clearly
efined, showing the value of using the spatial data even with
maller set of genes. 

Another important attribute of the spatial data is the spa-
ial locations of cells. Although SIRV is not using the spa-
ial locations directly in the RNA velocity calculation, they
re crucial for the projection step. When different cell classes
re spatially localized, we observed that cells are homoge-
ously differentiating towards their neighboring cell classes,
orming these clear spatial differentiation trajectories. Indeed,
hen randomly re-assigning cells to spatial locations and re-

alculated the RNA velocity analysis, SIRV produced random
patial RNA velocities without any clear trajectories as ex-
ected ( Supplementary Figure S8 F), showing the importance
of the accurate spatial localization of cells obtained from spa-
tial transcriptomics data. 

Reproducible spatial differentiation trajectories in 

mouse organogenesis 

To illustrate the versatility of SIRV, we next analyzed spatial
transcriptomics data of mouse organogenesis ( 28 ). This data
mapped the spatial expression of 351 genes from three mouse
embryos at embryonic day (E)8.5–8.75 using seqFISH. As a
reference scRNA-seq, we used the Gastrulation scRNA-seq
atlas (E8.5) ( 29 ). Based on 348 shared genes, we integrated
the two datasets and predicted the spliced and unspliced ex-
pressions of those shared genes for each spatial cell. Next, for
each of the three spatial embryos, we calculated the RNA ve-
locity vector of each cell, then projected and visualized these
vectors onto the spatial coordinates. For Embryo 1, SIRV esti-
mated several spatial differentiation trajectories across differ-
ent cell types (Figure 5 A). For example, the gut tube cells dif-
ferentiate anterio-dorsally (Figure 5 B), while the mixed mes-

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
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Figure 5. SIRV spatial differentiation trajectories for mouse organogenesis ( A ) Main flow of the SIRV predicted RNA velocities across different cell types, 
visualiz ed b y v elocity streamlines, projected on the spatial coordinates of Embry o 1 from the mouse organogenesis SeqFISH data. (B, C) Zoom-in vie ws 
on the cell-le v el spatial RNA velocities, showing reproducible results across the three embryos, where in ( B ) gut tube cells differentiate in the 
Anterior-Dorsal direction, while in ( C ) mixed mesenchymal mesoderm cells differentiate towards splanchnic mesoderm cells (Black arrows are drawn 
manually to highlight certain differentiation trajectories). 
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enchymal mesoderm cells are differentiating towards splanch-
nic mesoderm cells (Figure 5 C). These examples, in addition to
the full differentiation spectrum, were reproducibly estimated
by SIRV across the three embryos at the single-cell level (Fig-
ure 5 B, C, Supplementary Figure S9 ). In terms of trustwor-
thiness of these spatial velocities, we obtained high average
velocity confidence scores of 0.92, 0.90 and 0.89 across the
three embryos, respectively ( Supplementary Figure S10 ). 

Furthermore, we used SIRV to transfer the cell type an-
notations from the scRNA-seq to the seqFISH data. Since
the seqFISH data was previously annotated in a similar
manner, we used the seqFISH data annotation as ground
truth to evaluate the accuracy of the label transfer. Our re-
sults show accurate annotation of various cell types includ-
ing cardiomyocytes, erythroid and brain cells, among others
( Supplementary Figure S11 A), while other cell types, such as
blood progenitors and ExE endoderm, were more challeng-
ing to annotate. SIRV obtained an overall accuracy of 0.74
and a median F1-score of 0.69 across all 23 cell types. Of
note, annotations of the seqFISH data were refined manu- 
ally by the authors, which partially explains the misclassifi- 
cation of cells by SIRV ( 28 ). To test this observation, we com- 
pared the performance of label transfer between SIRV, Seurat 
(CCA + MNN) ( 22 ) and Tangram ( 48 ), where the latter is re-
ported as the top performing integration method for spatial 
and scRNA-seq data ( 25 ). Seurat obtained a comparable an- 
notation performance with an accuracy of 0.70 and a median 

F1-score of 0.61 ( Supplementary Figure S11 B), while Tangram 

showed lower performance in comparison to SIRV and Seu- 
rat, with an accuracy of 0.53 and a median F1-score of 0.41 

( Supplementary Figure S11 C). 
Next, we evaluated the accuracy of the integration step of 

SIRV, for that we benchmarked against Harmony ( 49 ) and 

Seurat ( 22 ), top performing methods for integration of single- 
cell transcriptomics data ( 50 ). The UMAP ( 33 ) embeddings of 
the integrated seqFISH and scRNA-seq data are comparable 
between SIRV, Harmony and Seurat ( Supplementary Figure 
S12 ). For a quantitative comparison, we calculated the aver- 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
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ge silhouette score (ASW) and the Local Inverse Simpson’s In-
ex (LISI) ( 49 ) using both batch and cell type identifiers across
ll methods. SIRV integration was comparable to Harmony
nd Seurat. For cell type separation, SIRV obtained the over-
ll best cell type ASW (higher is better) of 0.145 compared to
.119 and 0.101 for Harmony and Seurat, respectively. How-
ver, SIRV ranked 2nd in terms of cell type LISI (optimal is 1)
f 1.42 compared to 1.44 and 1.39 for Harmony and Seurat,
espectively. For batch mixing, SIRV obtained the overall best
atch ASW (lower is better) of 0.001 compared to 0.002 and
.006 for Harmony and Seurat, respectively. However, SIRV
anked last in terms of batch LISI (optimal is 2) of 1.28 com-
ared to 1.38 and 1.37 for Harmony and Seurat, respectively.
Taken together, these results illustrate that SIRV can esti-
ate robust spatial differentiation trajectories, and accurately

ntegrate and annotate spatial data using reference scRNA-seq
ata. 

erification of SIRV using Visium and MERFISH 

ata 

o verify the spatial RNA velocity vectors estimated using
IRV, we used a 10x Visium data of the developing chicken
eart ( 8 ). 10x Visium is a sequencing-based method, allow-
ng the quantification of spliced and unspliced mRNA reads
n 55 μm wide tissue spots composed of multiple cells. We
sed kallisto and bustools ( 30 ,31 ) to quantify the spliced and
nspliced counts from the 10x Visium data as well as from a
atching scRNA-seq data from the same study ( 8 ). We used

he measured 10x Visium spliced and unspliced expressions
o calculate RNA velocity vectors (hereafter: measured ve-
ocities), showing various spatial differentiation trajectories
hen projected to the spatial coordinates of the tissue (Fig-
re 6 A). Next, we used SIRV to integrate the 10x Visium data
ith the 10x scRNA-seq data and predicted the spliced and
nspliced expressions for each spatial spot from the scRNA-
eq data. We used these predicted spliced and unspliced ex-
ressions to calculate the RNA velocity vector of each spot
hereafter: estimated velocities), which we then also projected
n the spatial coordinates (Figure 6 B). We observed a gen-
ral agreement between the measured and estimated velocity
ectors at the single-spot level across different regions of the
issue (Figure 6 A-B, Supplementary Figure S13 A, B), includ-
ng the erythrocytes, fibroblasts and cardiomyocytes in the left
entricle. To quantitatively evaluate the estimated spatial ve-
ocities, we calculated the cosine similarity between the mea-
ured and estimated spatial velocity vectors (Materials and
ethods, Supplementary Figure S13 C, D). We obtained rela-

ively high similarity at different regions of the tissue including
he examples previously mentioned, with an overall weighted
imilarity of 0.45 between the high-dimensional velocity vec-
ors and 0.25 between the 2D spatial velocity vectors across
he whole tissue. It is important to note that the measured and
stimated RNA velocity vectors cannot be directly compared,
ince the measured velocities are calculated from multiple cells
aptured by each spot in the 10x Visium data, while the esti-
ated velocities are calculated based on individual cells from

he scRNA-seq data. 
To overcome the limited spatial resolution of the 10x Vi-

ium data, we turned to MERFISH data from human os-
eosarcoma (U-2 OS) cells ( 32 ). MERFISH is a subcellular
esolution imaging-based method that detects the spatial lo-
ation of mRNA molecules in a cell. While it’s not possi-
ble to distinguish spliced and unspliced mRNAs using MER-
FISH, cytoplasmic and nuclear mRNA can be used instead
( 32 ). Here, the assumption is that spliced reads are more en-
riched in the cytoplasm while the unspliced reads are more
enriched in the nucleus. First, we clustered the MERFISH
data into eight clusters, then we used the measured cytoplas-
mic (spliced) and nuclear (unspliced) expressions to calculate
RNA velocity vectors (i.e. the measured velocities). We then
simulated matching scRNA-seq data by ignoring the spatial
location of cells from other batches of the MERFISH data
(Materials and methods). Using SIRV, we then set out to pre-
dict the cytoplasmic and nuclear expressions for each spatial
cell from the simulated scRNA-seq data (i.e. the estimated
velocities). Projecting the measured and estimated velocities
on the spatial coordinates of the cells showed a high agree-
ment at the single-cell level (Figure 6 C, D). Since the MER-
FISH data contains only one cell type, the identified cell clus-
ters represent different states in the cell-cycle, which are cap-
tured by the measured velocities as was previously shown ( 32 )
( Supplementary Figure S14 A). The estimated velocities using
SIRV similarly reconstruct the cell-cycle process captured by
the measured velocities ( Supplementary Figure S14 B). Overall,
we obtained a weighted similarity of 0.99 between the high-
dimensional velocity vectors and 0.84 between the 2D spatial
velocity vectors ( Supplementary Figure S14 C-D). 

Further, we benchmarked the prediction of spliced and un-
spliced expressions using SIRV against Harmony and Seu-
rat. While Seurat can perform the whole pipeline of inte-
gration and prediction of new genes, Harmony only pro-
vides the integration of spatial and scRNA-seq data but lacks
a method to predict the expression of new genes. There-
fore, we applied the same kNN regression scheme as used
in SIRV to predict spliced and unspliced expressions. We cal-
culated the Spearman correlation between the original spa-
tially measured and predicted spliced and unspliced expres-
sions across all methods. For the 10x Visium data, all methods
performed similarly with a median Spearman correlation of
0.03, 0.02 and 0 for SIRV, Harmony and Seurat, respectively,
for the spliced data ( Supplementary Figure S15 A). While all
methods had a median correlation of 0 for the unspliced
data ( Supplementary Figure S15 B), showing the challenge of
matching spot data (being a collection of cells) with single-cell
data. For the MERFISH data, SIRV showed improved perfor-
mance with a median correlation of 0.21 for both spliced and
unspliced data, compared to 0.08 and 0 for Harmony and Seu-
rat, respectively ( Supplementary Figure S15 C, D). Addition-
ally, similar to SIRV, we used the predicted spliced and un-
spliced expressions from Harmony and Seurat and performed
the RNA velocity analysis. Comparing the measured and esti-
mated RNA velocities shows that SIRV outperforms both Har-
mony and Seurat on both 10x Visium and MERFISH datasets.
For the 10x Visium, Harmony and Seurat respectively ob-
tained a weighted similarity of 0.33 and 0.40 between the
high-dimensional velocity vectors, and 0.04 and 0.16 between
the 2D spatial velocity vectors. While for the MEFRISH data,
Harmony and Seurat respectively obtained a weighted simi-
larity of 0.82 and 0.01 between the high-dimensional velocity
vectors, and 0.56 and 0.08 between the 2D spatial velocity
vectors. 

Taken together, these verification results show that SIRV-
estimated spatial differentiation trajectories resemble those
that could be obtained directly from measured spatial data
at the single-cell or spot level. 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae100#supplementary-data
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Figure 6. Validation of estimated spatial differentiation trajectories using SIRV (A, B) Main flow of the ( A ) measured and ( B ) SIRV estimated spatial RNA 

velocities across different cell types, visualized by velocity streamlines, projected on the spatial coordinates of the developing c hic ken heart 10x Visium 

dataset. Various regions show high agreement between measured and estimated spatial differentiation trajectories, including the erythrocytes (blue 
box) and fibroblasts and cardiomyocytes in the left ventricle (red box). Zoom-in views show similar agreement at the single-spot level. (C, D) Cell-level 
RNA velocities of the ( C ) measured and ( D ) SIRV estimated velocities projected on the spatial coordinates of the human osteosarcoma MERFISH 

dataset, showing high agreement. Cells are colored according to clusters obtained using Leiden clustering. 
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Discussion 

We developed a computational method to transfer RNA ve-
locities from scRNA-seq data to spatial transcriptomics data
at the single-cell level, allowing the investigation of differenti-
ation trajectories in their spatial context. Our method, SIRV,
can be used to enrich any spatial transcriptomics data with
spliced and unspliced mRNA expressions, as well as any ad-
ditional cell metadata, from a matching scRNA-seq data. We
have shown that exploiting the spatial data is valuable and
reveals differentiation patterns that are not captured by the
scRNA-seq data only. 

Since the HybISS spatial data was not originally annotated
with cellular identities, the spatial differentiation trajectories
obtained with SIRV could not be easily interpreted using the
spatial data as is, but this was overcome by transferring cell
annotations with SIRV. However, the interpretation of the es- 
timated spatial velocity vectors is still challenging, i.e. the dif- 
ferentiation directions might only imply that cells differentiate 
from one state to another, or also imply that cells do migrate 
in the tissue during development where RNA gradient might 
be necessary ( 51 ,52 ). Additionally, when inspecting the most 
contributing genes to the spatial differentiation trajectories,
we observed that transcription factors were the main drivers 
of differentiation compared to other types of genes, including 
morphogenes. Although the Wnt8b morphogene expression 

divided the two distinct populations observed in the cortical 
hem, Wnt8b was less contributing to the differentiation tra- 
jectory compared to various transcription factors. A possible 
explanation is that despite their important role in establishing 
initial patterns during development, morphogenes are more 
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ransient compared to transcription factors, where the latter
re continuously more active as they are required to maintain
he cellular identity. 

SIRV estimated reproducible spatial differentiation trajec-
ories in mouse organogenesis data from three different em-
ryos. Additionally , SIRV -estimated RNA velocities showed
onsistency with RNA velocities calculated from the mea-
ured spatial data. When applied on the 10x Visium devel-
ping chicken heart data, the spatial velocities estimated us-
ng SIRV resembled the measured velocities at the single-spot
evel. However, this comparison suffers from the fact that the
0x Visium measures mRNA content in 55 μm wide spots,
omposed of a few cells, while the corresponding scRNA-seq
aptures single cells, which could explain the overall lower
imilarity. In contrast, applying SIRV on the MERFISH data,
n which we simulated scRNA-seq data from different MER-
ISH batches, yielded a high similarity, being a proof-of-
oncept that SIRV is able to correctly reproduce the measured
ifferentiation trajectories. In addition, we observed regions
ith poorly estimated spatial velocities in the 10x Visium
ata, having even negative cosine similarities ( Supplementary 
igure S13 D). These negative similarities are still obtained
or the MERFISH data ( Supplementary Figure S14 D), which
hows that SIRV is not always able to estimate the RNA veloc-
ty accurately. However, these negative similarities are much
ess present for the MERFISH data in comparison with the
0x Visium data, which can be explained by matching spots
ith single-cells instead of cells with cells as done in this MER-
ISH experiment. Here, we used the Visium data to verify the
stimated spatial trajectories by SIRV, however, applying SIRV
irectly on Visium data will always suffer from the mixed pop-
lation of cells within the spots, yielding less trustworthy bi-
logical insights. Therefore, SIRV holds more potential when
pplied on sequencing-based methods with higher cellular res-
lution, including Stereo-seq and Visium HD. 
In the current study, the spatial information is not directly

sed during the RNA velocity calculation and is mainly used
o project and visualize the RNA velocity vectors in the spa-
ial domain. However, the spatial information is exploited as
t is implicitly driving the definition of the RNA velocities be-
ween cells, since the velocity graph calculation is based on the
easured spatial gene expression that tends to be more similar

or close-by cells. As shown, when this is violated by randomly
ssigning cells to spatial locations, the produced spatial RNA
elocities are pointing randomly in all directions in the spatial
omain. Further methodological developments could benefit
rom explicitly using the spatial information to inform RNA
elocity calculation. 

With SIRV, we generalized the idea of transferring any rel-
vant features from scRNA-seq to spatial data. This can be
urther extended to other applications, for instance, transfer-
ing the expression of different RNA species measured us-
ng VASA-seq ( 53 ). Furthermore, in this study we used the
teady-state model from scvelo ( 6 ) to calculate the RNA ve-
ocity. SIRV can also be extended to other upcoming mod-
ls, that require spliced and unspliced expressions, developed
o overcome current limitations such as the lack of modeling
f transcriptional bursts ( 54 ). However, different RNA veloc-
ty methods need to be carefully evaluated to ensure a proper
omparison on their spatial equivalence. 

SIRV enables the RNA velocity method to be applied to
patial transcriptomics data, providing spatially resolved dif-
erentiation trajectories. Transcription similarity based meth-
ods, like pseudo-time and PAGA can offer complementary in-
formation to RNA velocity. Similar to CellRank ( 55 ,56 ), com-
bining both information on top of the spatial localization may
improve our understanding of the underlying cellular differ-
entiation process With the increasing availability of spatial
data, examining cellular differentiation in the spatial context
becomes more popular with several recent methods arising,
including SpaceFlow ( 57 ) and stLearn ( 7 ), calling for more
quantitative benchmarking of such methods. However, finding
the actual ground truth of such spatial differentiation trajec-
tories and defining proper evaluation metrics represent major
challenges. 

SIRV was able to estimate biologically relevant spatial dif-
ferentiation trajectories in the developing mouse brain data.
In addition to the midbrain-hindbrain boundary region, SIRV
correctly estimated the differentiation of the dorsal region of
the hindbrain into various hindbrain cells ( 58 ), and the fore-
brain being the origin of diencephalon and cortical hem cells
( 59 ). However, the estimated differentiation of midbrain basal
plate cells into floor plate cells is ambiguous. Although basal
plate and floor plate cells are adjacent structures in the mid-
brain, they act as distinct entities into the differentiation pro-
cess ( 60 ). It is important to note that projecting the high-
dimensional RNA velocity vectors into two-dimensional coor-
dinates may introduce undesired artifacts, as cells are forced
to point towards nearby cells. Therefore, novel estimated dif-
ferentiation trajectories require proper validation. 

Concluding, SIRV produces valuable spatial differentiation
trajectories for high-resolution imaging-based spatial tran-
scriptomics data and opens new possibilities to study cellular
differentiation processes in their spatial context, which helps
understanding the natural tissue development. 

Data availability 

All datasets used are publicly available data, for conve-
nience preprocessed datasets can be downloaded from Zen-
odo ( https:// doi.org/ 10.5281/ zenodo.6798659 ). The imple-
mentation of SIRV, as well as the code to reproduce the
results, are available in the GitHub repository, at https:
// github.com/ tabdelaal/ SIRV . The repository source code
release is deposited on Zenodo ( https:// doi.org/ 10.5281/
zenodo.10641057 ). 
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Supplementary Data are available at NARGAB Online. 
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