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Preface  
 
Automated landmark detection may prove important for the examination and automatic 
analysis of real-time three-dimensional (3D) echocardiograms. By detecting 3D 
anatomical landmark points, the standard anatomical views can be extracted 
automatically in 3D ultrasound images of left ventricle, for better standardization and 
objective diagnosis. Furthermore, the landmarks can serve as an initialization for other 
analysis methods, such as segmentation. In this thesis we describe an algorithm that 
iteratively applies landmark detection in perpendicular planes of the 3D dataset. The 
landmark detection exploits a large database of expert annotated images, using an 
extensive set of Haar wavelet-like features for classification, resulting in fast detection 
times suitable for real-time applications. The detection is performed using two cascades 
of Adaboost classifiers, that work in different 2D planes, in a coarse to fine scheme. The 
method is evaluated by measuring the total detection error for the landmark points 
between the detected positions and the manual ones. 
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1 Introduction   
 
1.1 The heart  
 
The heart is the muscular organ of the circulatory system that constantly pumps blood 
throughout the body (Figure 1.1). Approximately the size of a clenched fist, the heart is 
composed of cardiac muscle tissue that is very strong and able to contract and relax 
rhythmically throughout a person's lifetime. The heart has four separate compartments or 
chambers. The upper chamber on each side of the heart, which is called the atrium, 
receives and collects the blood coming to the heart. The atrium then delivers blood to the 
powerful lower chamber, called the ventricle, which pumps blood away from the heart 
through powerful, rhythmic contractions. The human heart is actually two pumps in one. 
The right side receives oxygen-poor blood from the various regions of the body and 
delivers it to the lungs. In the lungs, oxygen is absorbed in the blood. The left side of the 
heart receives the oxygen-rich blood from the lungs and delivers it to the rest of the body. 
In this thesis, we will focus on the left ventricle of the heart and its anatomical landmarks.  
 
 

 
Figure 1.1 The main anatomical parts of the human heart  

 
 
1.2 Ultrasound medical imaging 
 
Ultrasound (sound in the MHz frequency range) has been used for many decades now for 
medical imaging. The technology is relatively inexpensive and portable, especially when 
compared with modalities such as magnetic resonance imaging (MRI) and computed 
tomography (CT). Some of the success and popularity of acoustic imaging is closely 
related to its safe and risk-free nature. In addition to being completely noninvasive, the 
biologic effects of ultrasound, as used in routine clinical applications, pose minimal risks 
for the patients. Medical sonography has been used in cardiology, endocrinology, 
gastroenterology, gynecology, obstetrics, ophthalmology and urology, among other 
fields, without documentations of serious adverse events. 
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The biologic effects of ultrasound depend on the total energy applied on a specific region 
and they are related to the production of heat and cavitation effects. With pulsed 
ultrasound, the relatively short periods of pulsing makes excessive heat generation 
unlikely[1]. A metric associated with the tissue heating bio-effect is given by the thermal 
index, which is the ratio of the power used to that required to cause a maximum 
temperature increase of 1°C. The second physical effect of ultrasound is cavitation. This 
term refers to the formation and behavior of gas bubbles, produced when high intensity 
ultrasound penetrates into tissue. These bubbles can implode and inadvertently destroy 
biological tissue. To prevent this phenomenon, it is made sure that the mechanical index, 
defined by the peak negative pressure and the center frequency, stays below a certain 
threshold.  
 
The instrument used to create an ultrasound image is called an echograph. It has all the 
necessary electronics needed to transmit, receive, process and interpret ultrasound pulses 
and generate an image. It uses a so called probe or transducer to generate and receive 
ultrasound waves. The echograph determines how long it took the echo to be received 
from the time the sound was transmitted and from this deduces the image depth. How 
strong the echo was determines in what intensity level each pixel will light up on the 
screen. 
 
   

 
Figure 1.2 An ultrasound probe  

 
 
The use of ultrasound for imaging became practical with the technological evolution of 
piezoelectric transducers. Piezoelectric materials have the ability to produce electric 
voltage in response to applied mechanical stress. The effect is reversible and results in 
deformation when a voltage is applied to the material. In this way, these materials can 
generate ultrasound waves, and convert the reflected sound energy to an electric impulse.  
 
An ultrasound probe mainly consists of an array of piezoelectric ceramic elements 
(Figure 1.2). The frequency of the ultrasound beam depends on their thickness, while 
their shape determines the beam shape. Other important components of the probe are the 
backing material and the lens. The backing material shortens the ringing response of the 
piezoelectric material after the brief electronic impulse. For most clinical applications, 
the ultrasound beam is both focused and steered electronically, through the use of phased-
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array transducers. The wave front of the beam consists of the sum of the individual 
wavelets produced by each element. Manipulating the time of excitation of each element 
results in both steering and focusing of the beam [1].  
 
 
1.3  Echocardiography  

 
An echocardiogram is an ultrasound image of the heart. Also known as cardiac 
ultrasound, echocardiography uses ultrasound techniques to enable analysis of the heart. 
Echocardiography is a significant tool in the hands of physicians. By measuring the heart 
volume the cardiologist can tell a lot about the patient’s condition. For example, left 
ventricular ejection fraction (the fraction of blood pumped out of a ventricle with each 
heart beat) and end-diastolic and end-systolic volumes (maximal and minimal volume per 
beat respectively) serve as a predictor for long-term survival of patients with for example 
congestive heart disease or dilated cardiomyopathy. Most attention has been given to 
detecting the endocardium (blood pool/tissue border) to allow for estimation of left 
ventricular volumes and derived measures such as the ejection fraction, and for regional 
wall motion assessment. In particular, these measures are used in diagnosis and 
assessment of ischemic heart disease.  
 
The majority of echocardiographic examinations are performed via the transthoracic 
route. In this case, the echocardiography probe is placed on the thorax of the subject, and 
images are taken through the chest wall. The views used in transthoracic 
echocardiography are the parasternal, the apical and the subcostal view, corresponding 
with different positions of the ultrasound probe on the patients chest [1],[2]. Slight turns 
of the transducer give us further subdivisions of these main views like the apical two and 
four chamber view (Figure 1.3).   
 
 



 4

a b 

c d 
Figure 1.3  Different views of the heart. a) the four chamber view, b) parasternal long axis view, c) the two 

chamber view and d) the parasternal short axis view.  
 

 
As already mentioned, one of the most important applications of ultrasound imaging is 
measurement of the heart volume and specifically of the left ventricle. The latter is 
traditionally calculated by delineating the endocardium in two perpendicular 2D views, 
such as the four and two chamber, and then applying Simpson’s rule [3]. Evidently, the 
results may vary a lot as assumptions are needed with regards to the geometry of the left 
ventricle. Also, apical foreshortening may occur due to imperfections in image plane 
positioning (the 2D images do not transect the true left ventricular apex). 3D 
echocardiography may overcome these drawbacks. The eventual goal is real time, 3D 
display of cardiac function. 
 
Realization of 3-D echocardiography requires facilities for the acquisition of the data set 
and the display of the three dimensional images. There have been two approaches 
concerning the acquisition of the images. The first one is based on acquiring multiple 
series of 2-D images of different planes, storing them and finally processing them in 
order to construct the 3-D images. The second method is volumetric imaging. A 
transducer is constructed with a two dimensional array of crystals, capable of collecting 
pyramidal images. For displaying the image there are also two main approaches: the 
whole 3-D image can be rendered as a volume, or 2-D slices of the volume are displayed, 
giving the opportunity of an inside look at any plane desired [4-8] (Figure 1.4). 
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Figure 1.4 Example of a 3D image and landmarks. (a) 2D four-chamber view, (b) two-chamber view (c) 

short axis view, and (d) 3D rendered volume. 
 
 
1.4 Study goal 
 
The goal of this master thesis project is to detect the 3D landmark points that define the 
position of the left ventricle (LV). This has proved to be challenging due to large amount 
of noise and signal drop-out that is common in ultrasound images. Additionally, 
echocardiography suffers from large image variation depending on the acquisition 
procedure. Factors as patient breathing, probe position or the anatomical differences 
among patients, give a large variety of images that make standardization difficult. The 
anatomical landmark points, however, can be used to extract the standard anatomical 
views in apically acquired 3D ultrasound images of LV, for better standardization and 
objective diagnosis. Furthermore, automatic detection of these landmarks would serve as 
an initialization for fully automated 3D analysis methods, such as segmentation. 
 
The anatomical views are defined based on the position of the LV long axis, which is 
defined as the line through the LV apex and the centre of the mitral valve (Figure 1.5). 
The correct orientation of the four-chamber (4C) view is defined as the largest cross-
section through the right ventricle (RV), which can be found by detecting the attachment 
points of the RV. The three-chamber (3C) view is found by locating the aortic outflow 
tract (AO, Figure 1.5). The current project will focus on finding these landmarks. 
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Figure 1.5 Diagram of (a) four chamber (4C), (b) two chamber (2C), which is defined as the perpendicular 

to the 4C, (c) three chamber (3C) long axis views, and (d) basal, mid and apical short axis views.   
 
 
Since these standard anatomical views are required for simple visualization and 
initialization purposes, the detection method needs to be relatively fast. Also, because of 
the challenging image quality and the variation in LV appearance, robust methods are 
required. Additionally, special attention should be paid to preprocessing the images, to 
reduce speckle noise. So far, from our experience, we found that landmarks like the 
attachment points of the RV and the LV apex are difficult to define and to detect. More 
salient structures, like the AO and the mitral valve annulus, may be more reliable. 
Therefore, the method should let the more salient structures guide the segmentation, 
combining prior knowledge on these anatomies. This may suggest a multilevel approach, 
in which the global locations of the landmarks are found first, and then refined.    
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2 Landmark Detection in Ultrasound Images 

 
2.1 General 
 
Object detection in ultrasound images is a task of great interest in medical diagnostic 
procedures. Detecting heart volumes, fetus or the prostate are only some applications of 
object detection algorithms. In clinical practice, physicians mentally integrate 
information from different images acquired from a patient, often with different imaging 
modalities. Images are shown in various orientations and positions and at different scales. 
Semi-interactive detection methods rely on the expert’s ability to interactively select 
corresponding slices using anatomical knowledge. Current research is mostly focused on 
making these methods fully automatic and thus operator independent. To do so, 
registration, segmentation and feature detection have been proposed. In this chapter we 
briefly discuss these topics. However, it is important to keep in mind that specific 
methods may use combinations of these techniques.  
 
Data sets acquired by imaging a scene or object at different times, or from different 
perspectives, or using a different physical modality, will result in images that are sampled 
in different coordinate systems. Image registration is the process of transforming two or 
more images from one or more physical modalities into one coordinate system. In image 
processing, segmentation refers to the process of partitioning an image into several 
regions. The goal of this process is to divide the image in different sections and it results 
either into a set of regions that collectively cover the whole image or into a set of 
contours extracted from the image. Image segmentation is a procedure typically used for 
object and boundary detection [9]. In medical imaging methods of this kind are used for 
detecting tumors, tissue wall computation, study of anatomical structure and other 
diagnostic purposes. Finally, in computer vision and image processing, the concept of 
feature detection refers to methods that aim at computing abstractions of image 
information and making local decisions at every image point whether there is an image 
feature of a given type at that point or not. The resulting features will be subsets of the 
image domain, often in the form of isolated points, continuous curves or connected 
regions. There is no universal or exact definition of what constitutes a feature, and the 
exact definition often depends on the problem or the type of application. 
 
2.1.1 Registration 
 
Image registration is a significant asset to object detection algorithms. By aligning an 
image which contains information about an object, to a second image, information can be 
projected. We can group the different registration techniques by the type of deformation 
they want to estimate. Rigid transformations can be described by a simple parametric 
transformation consisting of translation and rotation. An affine model, on the other hand, 
includes translation, rotation, scaling, and shear. If the transformation maps parallel lines 
onto parallel lines it is called affine. If it maps lines onto lines, it is called projective. 
Finally, if it maps lines onto curves, it is called non-rigid or elastic[10]. Non-rigid 
transformations use polynomial warping, interpolation of smooth basis functions (thin-
plate splines), and physical continuum models to represent a smooth deformation field 
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[9]. Non-rigid registration of medical images can also be used to register a subject's data 
to an anatomical atlas. Large datasets of images can be mapped into a common 
coordinate system. That way we can study inter-population differences or intra-
population variability. 
 
A transformation is called global if it applies to the entire image, and local if subsections 
of the image each have their own transformations defined. The type of registration to use 
depends on the application of interest. So, for intrasubject differences focus is placed on 
small changes and global transformations are applied. An example is registration of rest 
to stress cardiac images [11, 12]. On the other hand when large changes are required, like 
for example monitoring tumor growth [13], local transformations are necessary. For 
intersubject and patient-to-model registration the appropriate transformation must be able 
to capture large anatomical differences.  
 
Apart from the type of transformation, the main components of registration are the image 
similarity measure to use, the optimizer and the interpolator. Interpolation is required 
when an image needs to be translated, rotated, scaled, warped, or otherwise deformed 
before it can match a reference image or an atlas [14]. The choice of the image similarity 
measure depends on the nature of the images to be registered. Common examples of 
image similarity measures include cross-correlation, sum of square differences and ratio 
image uniformity. These are commonly used for registration of images of the same 
modality [9]. For images of different modalities, the mutual information measure is 
commonly used [11]. The metric of choice has to be optimized, i.e. maximized or 
minimized depending on the metric, during registration. Optimization algorithms 
commonly used are the simplex method, simulated annealing, gradient descent etc. [15]. 
 
2.1.2 Segmentation 
 
Ultrasound image segmentation is strongly influenced by the quality of the data. Speckle 
and attenuation are some of the artifacts typical for ultrasound images that make the task 
of contour detection in such images a difficult task. However, as transducer technologies 
evolved and preprocessing algorithms were introduced, the image quality improved 
significantly, resulting in more possibilities for ultrasound image segmentation, not only 
in 2-D but in 3-D as well [16]. Over the years, medical image segmentation techniques 
have become more sophisticated, replacing methods like region growing, thresholding 
and watershed algorithms with deformable models, level sets and statistical models. 
 
In echocardiography segmentation methods are mainly used for border and volume 
detection, mostly of the left or the right ventricle. The most popular approaches have 
been those that use deformable models (snakes) to detect the endocardium border. A 
snake can be viewed as a curve that deforms under the influence of external and internal 
forces. Internal forces are determined by the snake’s elasticity and curvature, while 
external forces are derived from image properties [17]. 
 
An evolved version of active contour border detection is level set based methods. Instead 
of manipulating the contour directly, the contour is embedded as the zero level set of a 
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higher dimension function ψ  called the level set function. The level set function is then 
controlled through a differential equation (Figure 2.1). At any time during evolution, the 
contour can be obtained by extracting the zero level set from the output. The level set 
method makes it very easy to follow shapes that change topology, for example when a 
shape splits in two, develops holes, or the reverse of these operations. Level sets have 
been extensively used in medical imaging [18], [19], as it is easily adaptable by using 
image based features, like image intensities, gradients etc. in the governing differential 
equation.  
 
 

 
Figure 2.1 In the upper-left corner we see a shape, that is, a bounded region with a well-behaved boundary. 

Below it, the red surface is the graph of a level set function ψ  determining this shape, and the flat blue 
region represents the z plane. The shape itself is the set of points on the surface for which the function is 

positive or zero. 
 
 
Other important segmentation methods are active shape models and active appearance 
models. These are model-based approaches that integrate expert knowledge with 
computer vision by constructing statistical models of the object. The models, built using 
Principal Component Analysis (PCA), can be used to generate new realistic instances of 
the object, which can be matched to new images that are not yet interpreted. To 
synthesize a complete image of an object or structure, shape and texture (i.e. the intensity 
in the region of the object) can be modeled [20]. Active shape models take only the 
statistical shape variation into account, whereas active appearance models combine the 
shape and texture model into one appearance model, to describe the complete image. 
 
2.13 Feature detection 
 
A feature is defined as an interesting part of an image. Edges, blobs, specific points can 
all be considered as features. Feature detection is usually performed as the first operation 
on an image, and examines every pixel to see if there is a feature present at that pixel. If 
this is part of a larger algorithm, then the algorithm will typically only examine the image 
in the region of the features. Many image processing algorithms use feature detection as 
the initial step, so as a result, a very large number of feature detectors have been 
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developed. These vary widely in the types of feature detected, the computational 
complexity and the repeatability. Repeatability is strongly related to whether the selected 
features are invariant to image scaling, rotation, and to change in illumination between 
the different images. 
 
One feature detection technique widely used in image processing has been proposed by 
Lowe [21]. In this work a method is introduced to extract oriented keypoint features that 
can be used for further object identification (Figure 2.2). The approach has been named 
Scale Invariant Feature Transform (SIFT), as it transforms image data into scale-invariant 
coordinates relative to local features.  
 
 

 
Figure 2.2 A keypoint descriptor is created by first computing the gradient magnitude and orientation at 

each image sample point in a region around the key point location, as shown on the left. These are weighted 
by a Gaussian window, indicated by the overlaid circle. These samples are then accumulated into 

orientation histograms summarizing the contents over 4x4 sub-regions, as shown on the right, with the 
length of each arrow corresponding to the sum of the gradient magnitudes near that direction within the 

region. This figure shows a 2 × 2 descriptor array computed from an 8 × 8 set of samples [21]. 
 
 
A frequently used method in ultrasound is based on the Hough transform (HT). The HT 
converts the problem of extracting collinear point sets in the image space into maxima 
detection in the Hough space. Although the original formulation allows the detection of 
lines and circles, the method has been extended to extract other parametric curves [22]. 
So, using the HT it is possible to detect approximate circular structures, such as the aorta 
and the endocardium in short-axis slices, in an edge-enhanced image. The algorithm has 
been used several times for border detection in ultrasound and MRI images [23, 24], [25]. 
 
As an alternative to the HT for contour initialization in image segmentation, the Fourier 
Mellin Transform (FMT) [26] is proposed by  the authors of [27]. The main idea behind 
this approach is to build an appearance template of the object of interest, and to express 
both the template and the search image in a rotation and scale invariant representation 
using the FMT (Figure 2.3). This way, the estimation of rotation, scale and position 
converts into a cascade of linear shift detections, enabling a fast estimate of the object 
pose, and the subsequent generation of an initial contour from the template. 
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Figure 2.3 (a) 4 chamber view echocardiogram (ED phase). (b)Template image (c). The peak matrix after 

matching a and b; the location of the highest peak (indicated by the arrow) indicates the orientation and 
scaling factor. (d) Based on the scale and orientation detected in (c), the template is rotated and scaled to 

match the search image (e). By matching (a) and (d), the position of the left ventricle is detected (indicated 
by the arrow). (f) An average contour is placed on the detected location serving as an initialization of a 

segmentation algorithm [27]. 
 
 
The term classification is used to underline the process of implicitly encoding the prior 
knowledge embedded in expert annotated databases. Classification has been proven to 
solve ultrasound problems similar to ours. These techniques use a database of training 
images to train a classifier which can distinguish between different classes of objects (e.g. 
apples and pears). Objects are represented by their features, as described in section 2.1.2. 
Usually, the classifier automatically selects from a large set of features computed at 
different image scales, some relevant ones. Recently, an interesting classification 
approach has been proposed by Georgescu et al. [28]. In the following section, we will 
discuss this approach in more detail.  
 
 
2.2 Classification methods 
 
Georgescu et al. [28] introduce a classification method, which they named database-
guided paradigm, that directly exploits expert annotation of structures of interest in large 
medical databases. They select the features using a boosted cascade of weak-classifiers. 
This is used to detect the possible locations of the object of interest. A similar approach is 
used by the authors of [29] for the detection and measurement of fetal structures in 
ultrasound images. 
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To do so the image is considered to consist of two parts, a foreground S which contains 
the sought object and a background region B. The foreground image S is determined by 
the following vector 
 

( )yxyx σσαθ ,,,,=   2.1 
 
where the parameters ( yx, ) represent the top left region position in the image, α denotes 
orientation, and ( yx σσ , ) the region scale (Figure 2.4). In the training phase, the features 
within this foreground box are used to build the classifier. In the detection phase, the idea 
is to find the position of the foreground box in a new image, by evaluating the image 
features at candidate positions of the foreground box. 
 

 
Figure 2.4 Foreground (rectangular) image region with five parameters [29]. 

 
 
The appearance of the image region is represented with Haar-like features, which are 
derived from wavelets. A simple rectangular Haar-like feature is defined as the difference 
of the sum of pixels of areas inside the rectangle, which can be at any position and scale 
within the original image. These features can be calculated very quickly. Haar wavelets 
have been successfully used for face detection [30] as well as for left ventricle detection 
in ultrasound images [28].  
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Figure 2.5 Haar image feature types used. The feature value is the sum of the pixels in the white region 

minus the sum of the pixels in the black region. Notice that the gray area represents the foreground 
region S [29]. 

 
As we already mentioned the method depends on a classifier, based on the idea that one 
can combine a number of weak classifiers and, by giving them appropriate weights, 
construct a strong one. The classifier is a probabilistic boosting tree that is able to cluster 
the data automatically, allowing for binary classification of data sets. The algorithm 
recursively learns a classification tree. At each node, a strong classifier is learned using a 
boosting algorithm which automatically learns a strong classifier by combining weak 
classifiers. The algorithm selects the weights by minimizing the probability of error.  
 
 

 
Figure 2.6 Illustration of the probabilistic boosting  tree. The dark nodes are the leaf nodes. Each level of 

the tree corresponds to an augmented variable. Each tree node is a strong classifier. The classifier  
computes the probability  )|( SyP  where  }1,1{−∈y  with  )|1( SyP −=  representing the 

probability that image region S contains background information and )|1( SyP =   that it contains the 
sought structure [29]. 
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The original probabilistic boosting tree algorithm may suffer from overfitting of the 
training data in the nodes close to the leaves (Figure 2.6), as well as in long training and 
detection procedures. The authors of [29] suggest a two part solution to these problems. 
To simplify the training and detection procedures they divide the parameter space into 
subspaces. In addition, they set a limit to the allowed growth of the tree by limiting the 
height and number of nodes. They train three different classifiers, where the classification 
problem grows in terms of complexity. The main difference between this approach and 
the cascade scheme is that the first stages are trained with a subset of the initial set of 
parameters instead of a subspace of the full parameter space. Given that the classification 
problem of each classifier is less complex than the original problem, the height and the 
number of tree nodes can be constrained.  
 
The main disadvantage of this approach is that it may fail in terms of robustness if the 
database is not large enough. On the other hand it is a generic method, which makes it 
easy to expand it to detect other interesting structures as well (RV, 2C and 4C views, left 
ventricle long axis). 
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3 Database Guided Landmark Detection 
 
3.1 Iterative scheme  
 
After considering all our options, it seems that a database guided approach would be the 
most promising. It may give us a fast, robust and complete solution, since all landmarks 
could be detected at once. It has been previously demonstrated in ultrasound images [28, 
29] and it exploits prior knowledge from a database, which was one of our goals. Rather 
than extending this method to 3D, we opt for staying close to the original 2D method and 
replacing our existing manual framework for landmark definition. 
 
Previously, we proposed a manual method to find the LAX, in which perpendicular 
planes from 3D data set were annotated iteratively [31, 32]. By annotating the apex and 
mitral valve centers in perpendicular long-axis planes, the 3D LAX can be found easily 
(Figure 3.1, Figure 3.2). In this study we propose to replace the manual annotation in 2D 
cross-sections using the fully automated landmark detection. This can be achieved by 
iteratively applying a database-guided approach similar to the one described in [29] for 
detecting 2D landmark points in fetal structures. In addition, the orientation of the 4C, 
2C, 3C can be found by matching 2D short-axis views on several levels, yielding the 
rotation, which can then be used to update the LAX views again. The 2D templates for 
the database can be generated simply by taking differently oriented 2D slices of the 
available 3D images with manually defined LV surfaces. The method will need a few 
iterations before it can estimate an accurate LAX position, but it is still expected to reach 
a solution faster than a Hough transform approach for example.  Similar to [31, 32] the 
method will be applied to single 3D images at end-diastole (ED) only, although use of 
temporal features from the complete cycle may also be possible. 
 
 

 
Figure 3.1 Manual method for LAX determination by iterative annotation of landmarks. a) After the apex 

and mitral valve markers are placed in an approximate 4C plane, the LAX is calculated, b) the 
perpendicular 2C approximation plane is taken and the LAX is adjusted, c) the perpendicular 4C 

approximation is used to adjust the LAX again, d) step b) and c) are repeated until we have the LAX. 
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Figure 3.2 Block diagram of the iterative scheme.  

 
 
Instead of detecting the landmark points individually, we try to locate the region where 
these landmarks are at fixed positions from its borders (Figure 3.3c). The typical image 
features are learned using a classification approach, previously used in applications like 
face detection [30] where the resulted implementations were used in digital cameras since 
they were suitable for real time applications (in terms of speed, accuracy, robustness).  
 
First, we train classifiers to identify the left ventricle position, by using 2D example 
images in which these landmarks have been manually annotated. In a new test image, the 
region of interest is detected by extracting candidate regions from the test image and 
feeding this into the trained classifier. The classifier will determine for each candidate 
whether it contains the sought structure. The method will work in a coarse to fine 
approach, using three classifiers. First a rough scan over the 2D slices taken from the 3D 
dataset will give us the primal “hits” in which the left ventricle is present. These will be 
used to generate new candidates, by applying translations and rotations to the first “hits”, 
in which the apex and mitral valve center are sought. After classifying them with the 
second classifier, the new “hits” will be used to give us new input candidates, by 
applying finer translation, rotation, scale and shear, to create regions where all landmark 
points are sought (Figure 3.3). The third classifier is used to give us the final estimate of 
the landmark positions.   
 
 

2D LAX (4C) 

2D SAX 

2D LAX (2C) 2D LAX (4C) 
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Figure 3.3 Drawings of the templates. a) Shows the template of the first classifier where only the left 

ventricle center is at a fixed position and b) shows a template with fixed positions for the apex and mitral 
valve center and c) with fixed positions for all sought anatomical landmark points.  

 
 
We can split the whole method in three steps: training the classifiers, tuning them and the 
actual detection step. Before we get into any details an overview of the method can be 
found in Figure 3.4 
 
 

 
Figure 3.4 Overview of classifier creation and use. 

 
 
3.2 Landmark detection 
 
Our landmark detection algorithm relies on using expert annotated images to train 
classifiers. The image features are used to train our classifiers. We train three classifiers, 
with which we create a cascade that works in a coarse-to-fine scheme.   
 
3.2.1 Features 
 
We use a very large and general pool of simple Haar-like features. The advantage is that 
they provide a robust description of the sought structures. Also, a very fast computational 
scheme exists which allows calculation at any position in any scale at the same speed for 
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all sizes. Papageorgiou et al. in [33] proposed an over-complete feature pool that we 
combined with a very fast computation scheme proposed by Viola and Jones in [30]. 
 
A simple rectangular Haar-like feature can be defined as the difference of the sum of 
pixels of areas inside the rectangle, which can be at any position and scale within the 
original image. Viola and Jones [30] defined 6 types of these features (Figure 2.5). Each 
feature type can indicate the existence of certain characteristics in the image, such as 
edges or corners. For example, a feature of type 2 shown in Figure 2.5 can indicate the 
horizontal border between a dark region and a light region. 
 
 

 
Figure 3.5 The sum of the pixels within rectangle D can be computed with four array references. The value 
of the integral image at location 1 is the sum of the pixels in rectangle A. The value at location 2 is A+B, at 
location 3 is A+C, and at location 4 is A+B+C+D. The sum within D can be computed as 4+1-(2+3) [30].  

 
 
One of the contributions of Viola and Jones was to use so-called integral images. Integral 
images can be defined as a 2D lookup table in the form of a matrix with the same size as 
the original image. Each element of the integral image ii contains the sum of all pixels 
located within the upper-left region of the original image (in relation to the element's 
position). The integral image at location (x,y) contains the sum of the pixel values i above 
and to the left of (x, y), inclusive: 
 

∑
≤′≤′

′′=
yyxx

yxiyxii
,
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This allows computing sum of arbitrary rectangular areas in the image, at any position or 
size, using only 4 lookups (Figure 3.5). 
 
The Haar types that we used were the same as in Carneiro et al. [29] (Figure 2.5). The 
number and the size of the feature types to use vary, depending on the classification 
stage. We did so in order to follow the coarse-to-fine scheme. 
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Figure 3.6 Annotated images of a) 4C view and b) 2C view along with the resulting template. The points 

where the template exceeds the image are marked by circles 
 
 
Finally, a very important issue related to the calculation of our features had to do with 
missing image information, in regions where the template exceeds the actual image 
boundaries (Figure 3.6, Figure 3.7). Carneiro et al. [29] do not discuss this problem. On 
the other hand, Georgescu et al. [28] use a mask to exclude invalid pixel values. They 
claim that if the valid image mask is available we can use it to eliminate the contribution 
of the invalid pixels to the feature value. The mask can be inferred from the data, or is 
directly available when images are taken in controlled environment, which is our case. If 
we set to zero the intensity for the invalid pixels, the rectangle sum will no longer be 
influenced by incorrect values. However due to the missing data the sum will be 
“unbalanced”. To deal with this, we correct the rectangle sum using the number of valid 
pixels. The number of valid pixels can be easily found by first computing an equivalent 
map: the “integral mask” im:   
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where m=1 within the valid image region and m=0 for invalid pixels. 
 
Similar to the integral image the number of valid pixels in a rectangle can be computed 
from the integral mask in the same number of operations (Figure 3.5). The equivalent 
feature value will be given by a weighted difference between the sums of the intensities i 
in the “light” and “dark” image regions. If we denote by R+ the region where the pixels 
intensities contribute with a positive value (light region) and by R− with a negative value 
(dark region), the feature value f is: 
 

⎪⎩

⎪
⎨
⎧ >−

= +−
∈−∈+
∑∑

−+

otherwise

nnyxi
n
Nyxi

n
N

f RyxRyx

0

0,),(),(
),(),(   3.3 



 20

 
where n−, n+ denote the number of valid pixels for dark and light regions respectively, 
each containing N pixels.  
 

 
Figure 3.7 the image boundaries problem. The black-white rectangle is our Haar feature. The region within 

the ultrasound sector (under the white line )is valid and the one outside of it invalid.  
 
The use of integral masks improved the classifiers’ performance, but invalid pixels were 
still used by them. Mapping the pixels used clearly showed that the masks were not 
efficient enough (Figure 3.8). So, apart from using the integral masks to avoid invalid 
regions, we also explicitly excluded most of them. By summing all positive examples 
from all patients, we used this summed template to know which regions were invalid for 
all our patients (Figure 3.9). We used this information to exclude the feature values of 
these regions from both our training and testing set.  
 

(a) (b) 
Figure 3.8 Examples of pixels used by classifiers. (a) Only image masks are used, (b) after explicitly 

excluding pixel values. It is clear that the classifier focuses near the anatomical landmark locations (red 
circles), since there are many pixels used from the top part (apex) and two location in the base part (mitral 

valve points) of the image. 
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Figure 3.9 Sum of templates for the two chamber view. 

 
 
3.2.2 Classifier 
 
At this point it is important to describe and discuss the characteristics of the classifier we 
used. We chose to work with Adaboost because it has been applied to problems similar to 
ours with the use of Haar features [29]. 
 
“Boosting” is a general method for improving the performance of any learning algorithm 
by iteratively applying weights on misclassified data. In theory, boosting can be used to 
significantly reduce the error of any “weak” learning algorithm that consistently 
generates classifiers which need only be a little bit better than random guessing. Despite 
the potential benefits of boosting promised by the theoretical results, the true practical 
value of boosting can only be assessed by testing the method on “real” learning problems. 
Freund and Schapire [34] introduced a new boosting algorithm that they named 
AdaBoost. 
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Figure 3.10 Examples of (a) positive sub-images and (b), (c), (d) negative ones taken from the same 

patient. 
 
 
AdaBoost is a machine learning boosting algorithm capable of constructing a strong 
classifier through a weighted combination of weak classifiers (a weak classifier classifies 
correctly in only a little bit more than half the cases). It is important to make clear that the 
AdaBoost theory uses the term positive examples, to indicate the image regions that 
contain the sought object, and negative examples for the ones that don’t (Figure 3.10).  
 
Starting with training samples all with equal weights, the AdaBoost builds a strong 
classifier, using a few features. If a training sample is misclassified, the weight of that 
training sample is increased (boosted). A second classifier is built using the new weights, 
which are no longer equal. Again, misclassified training data have their weights boosted 
and the procedure is repeated. Typically, this is repeated 500-1000 times. A score is 
assigned to each classifier, and the final classifier is defined as a linear combination of 
the classifiers from each boosting round, based on their scores. We can see an overview 
of the training algorithm in Figure 3.11.   
 
In our application we used more complicated classifiers as weak classifiers. We used the 
treec function of prTools, which trains a tree of simple classifiers (each feature is the 
simple classifier here). We tested several tree levels, as well as different classifiers.  
 
 

a b 

c d 
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Figure 3.11 The training algorithm for the AdaBoost classifier 

 
 
3.2.3 Cascade 
 
For the actual classification problem, we chose to use a cascade of classifiers, which 
achieves increased detection performance while reducing computation time. The key 
insight is that smaller, and therefore more efficient, boosted classifiers can be constructed 
which reject many of the negative sub-regions while detecting almost all positive 
instances (i.e. the threshold of a boosted classifier can be adjusted so that the false 
negative rate is close to zero). Simpler classifiers are used to reject the majority of sub-
regions before more complex classifiers are called upon to achieve low false positive 
rates. The overall form of the detection process is that of a degenerate decision tree, what 
we call a “cascade” (Figure 3.12). A positive result from the first classifier is a candidate 
for evaluation in the second classifier which has also been adjusted to achieve very high 
detection rates. A positive result from the second classifier is a candidate for the third 
classifier, and so on. A negative outcome at any point leads to the immediate rejection of 
the sub-region.  
 
Stages in the cascade are constructed by training classifiers using AdaBoost and then 
adjusting the threshold to minimize false negatives. We do so with the help of receiver 
operator characteristic (ROC) curves. In classifiers theory, a ROC curve is a graphical 
plot of the sensitivity vs. (1 - specificity) for a binary classifier system as its 
discrimination threshold is varied. The ROC can also be represented equivalently by 
plotting the fraction of true positives (TPR = true positive rate) vs. the fraction of false 
positives (FPR = false positive rate), also known as a Relative Operating Characteristic 
curve, because it is a comparison of two operating characteristics (TPR & FPR) as the 
criterion changes [35]. In a two-class prediction problem (binary classification), in which 
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the outcomes are labeled either as positive (p) or negative (n) class, there are four 
possible outcomes from a binary classifier. If the outcome from a prediction is p and the 
actual value is also p, then it is called a true positive (TP); however if the actual value is n 
then it is said to be a false positive (FP). Conversely, a true negative has occurred when 
both the prediction outcome and the actual value are n, and false negative is when the 
prediction outcome is n while the actual value is p (Figure 3.12). 
 
 

 
Figure 3.12  An example of cascaded classifiers  

 
 
Note that the default AdaBoost threshold is designed to yield a low error rate (high 
accuracy) on the training data. In general a lower threshold yields higher detection rates 
(higher p’) and higher false positive rates. We try to choose the appropriate threshold, 
that will give the optimal number of “hits” (predicted positives) that we want.  
 
 
 

 
Figure 3.13 Confusion matrix and common performance metrics calculated from it for a typical ROC 

curve. 
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3.2.4 Marginal Space Learning  
 
Besides a faster computation, the cascade approach gave us the opportunity to apply a 
coarse-to-fine scheme for our problem, by first finding the region of the left ventricle and 
then the apex and mitral valve points. Zheng et al. [36] proposed a similar method, which 
they named marginal space learning.  
 
As we have already said, for affine 2D object detection, there are 6 degrees of freedom: 
two for translation and four for rotation, scaling and shear. The object is found by 
scanning the region exhaustively over all possible combinations of locations, orientations, 
and scales. Exhaustive search makes the system robust under local minima. However, it 
is challenging to exhaustively search for all parameters simultaneously, since the number 
of parameter combinations increases exponentially with respect to the number of 
parameters. To efficiently localize the object, we perform parameter estimation in a series 
of parameter spaces (i.e. marginal spaces) with increasing dimensionality. To be specific, 
the task is split into three steps: object position estimation, position-orientation 
estimation, and position-orientation-scale-shear estimation (Figure 3.14). We approached 
the detection problem like Carneiro et al. did [29], defining a rectangle region of  interest 
where the landmark points have known positions. We also included shear in our 
implementation though, to achieve fixed positions for the landmark points (Figure 3.3c). 
After each step, several candidates are retained for the following estimation step. At the 
end, the candidates are aggregated to provide the final detection result. 
 
 

 
Figure 3.14 Block diagram of the marginal space learning algorithm [36]. 

 
 
So, the first classifier performs a rough scanning with a region of fixed size on the 2D 
slice from the 3D set, considering only translation. At this point we only want to detect 
the region where the left ventricle is present, regardless of its scale or rotation. As a result 
a rectangular image that contains the left ventricle and is taken from the plane with the 
three landmark points would be sufficient for a positive example (Figure 3.3a). From 
each patient, we can generate several positive examples, limiting ourselves with the 
condition that the three landmark points should always be visible. In the same way, 
negative images can be generated by translating the center of the template to a much 
greater extent (Figure 3.15-3.16). This will give us the opportunity to use large number of 
images for the training phase, which is important because a robust classifier, as a rule of 
thumb, needs a database that contains ten times more images than the features it uses.   
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Figure 3.15 Example of 2 chamber view with templates. With green color we see the original template. 

With red color we see negative samples   
 
 

 
Figure 3.16 Centers of positive and negative examples used for training.  The orange ones are the positive 

examples. 
 
 
The second classifier will try to locate the actual position of the apex and the mitral valve 
center within the regions that were classified as “hits” at the previous stage. To do so we 
have to change our template. We use a rectangular template with the ventricle center as 
its center, but this time where the apex and mitral valve center will have fixed distances 
from the borders (Figure 3.3b). The negative images are generated again by translations 
of the image center. Here we also rotate the images, creating new set of candidates.    
 
The third classifier tries to locate all three landmark points. What differentiates it from 
the second one is the addition of scale and shear. So, in order to have fixed distances 
between each point in the mitral valve ring and the template borders, we apply shear to 
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the template of the previous stage (Figure 3.3c). Additionally, the ranges of the other 
parameters (rotation, scale) are set to finer numbers, to achieve better accuracy. 
 
Another important issue has to do with the features that we use. We experimented with 
different Haar types and in different sizes, since this has not been reported in literature. 
That way we can exploit the fact that we are using a cascade and approach the coarse-to-
fine scheme with the additional help of the features: larger sizes in the beginning where 
less detail is important and smaller sizes in later stages of the cascade.  
 
 

 
Figure 3.17 Types of feature used for training the classifiers. 
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4 Experimental Setup 
 
 
4.1 Data representation 
 
Our data set consists of 3D end-diastolic images of the left ventricle, which were 
acquired using the Philips Sonos 7500 system with a four matrix array transducer. The 
typical dimensions were 160x144x208pix with a resolution of 1x1.2x0.7mm/pix. We 
annotated these volumes, defining the landmark points and the orientation angles for the 
different 2D views (two, three, four chamber and short axis view) using 3DStressView, a 
software package for analyzing 3D echocardiograms (Thoraxcenter Biomedical 
Engineering, Erasmus MC Rotterdam, the Netherlands). The annotation was as follows: 
 

• Indicate the lateral and the septal points on the mitral valve ring along with the 
apex in an approximate 4-chamber view 

• Indicate the anterior and the inferior points along with the apex in a view 
perpendicular to the previous one (approximate 2-chamber) 

• Repeat until the long axis is found 
• Indicate the orientation angles in the short axis view (SAX) 

 
 

 (a)  (b) 

(c) 
Figure 4.1 Annotated images of good quality a) 4C view, b) 2C view, c) SAX view. The orientation angles 
of the apical views are also indicated in the SAX view. With red color we see the 2C view, with green the 

4C and with blue the 3C view.   
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The sets are taken from 85 patients which we split into a training, tuning and detection 
set. We used 60 patients to generate positive and negative examples, with which we 
trained the classifiers. The remaining 25 were used both for tuning and detection. By 
tuning we mean the procedure of tuning the operating points of our classifier using ROC 
analysis. By detection, we mean to apply the classifiers to detect the landmark points. 
This will be explained in detail later on. The 25 patients were split into groups of 5. Each 
time 20 were used for tuning and 5 for detection. This was done five times and at the end 
the results were averaged. We tried to use images of different quality. So, all three groups 
were containing images of good medium and bad quality.  
 
4.2 Preprocessing 
 
Some preprocessing is applied to the images. Ultrasound images are more difficult to 
interpret compared with other medical imaging modalities (CT, MRI) due to speckle 
noise and other artifacts. Additionally, the acquisition procedure of ultrasound images is 
highly dependent on the user and varies from patient to patient. To cope with the above 
we tried to find the best preprocessing steps for our set of patient data. 
 
First of all we tried to get a feeling of the various speckle removing algorithms described 
in literature [37, 38]. To do so, we processed a set of 20 images using the programming 
environment MeVisLab (version 1.6.1, MeVis Research GmbH, Bremen, Germany), 
suitable for medical image processing. Gaussian smoothing, Median filtering and 
Anisotropic diffusion were applied.  
 
The three methods can be used to suppress speckle. Gaussian smoothing may blur salient 
structures, Anisotropic diffusion required more time than the other methods and Median 
filtering may introduce spurious artifacts (i.e., in specific regions, edges appeared that 
were not obvious in the original image). We chose to use Median filtering, because it is 
fast and the artifacts that are introduced are not significant, when small kernels are used.   
 
 
4.3 Experimental setup  
 
As we have already mentioned, we split the task in three steps, training the classifiers, 
tuning them by choosing an operating point (tradeoff between errors in our classes) and 
finally detection in real life situation.  
 
4.3.1 Training 
 
As already mentioned, we trained three Adaboost classifiers, using simple tree classifiers 
(prTools treec classifier) as weak ones. Having in mind the size of our templates and that 
each feature value should be used once, we used 50 boosting rounds, while the tree level 
was set at 5 leaf nodes, since more boosting rounds or deeper level would result require 
bigger templates. We used three types of classifiers, with three different configurations to 
get the desired results. We always had in mind the coarse-to-fine scheme and the level of 
accuracy we wanted to have in each step.  
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So, in the beginning we search for the region of interest in a rough way. The level of 
detail is not too deep and only translation is considered. As a consequence, the translation 
step was set to 5 pixels and all translations within ±15 pixels were considered to give a 
positive template. The Haar features that we used were relatively big, set at 12 pixels, and 
four types were used. At this point each pixel is 1mm, and the image is isotropic. Usually, 
choosing the type of the Haar features is part of the “boosting”, but we decided not to 
work this way due to memory limitations. The Haar values were chosen based on 
experiments we did in Matlab and using OpenCV. OpenCV is a library of programming 
functions mainly aimed at real time computer vision. It contains an implementation of the 
Viola and Jones [30] face detector, which is a similar to our application. They use Haar 
like features to train the classifiers, and then use the best types in terms of sizes and type. 
 
In this step of the cascade we also included some slightly rotated versions of our positive 
examples. We did so in order to add greater variation in the left ventricle types. If we had 
an enormous database of patients, we wouldn’t need to. Including some rotation variation 
should make our classifier more robust. 
 
The second classifier was trained to detect rotation and find translation more accurately 
than the first. Since accuracy was one of the goals, the Haar features were smaller than 
before. Also, the translation steps were smaller and a different template was used (Figure 
3.13). Finally the third classifier used even more fine steps, resulting in small features 
and translations/rotations, while shear was also included. The above are summarized in   
Table 1. 
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Table 1 Training settings 
 Image size positive negative features 

Transform Range Transform Range Step1 
ROI 

150x100  
Template:  
Figure 3.13 
(a) 

Translation  
Rotation 

-15:5:15 
-100:50:100 

Translation  
 

-15:5:15 
With an 
extra 
translation 
of ±45 

12x12 

 
Transform Range Transform Range Step 2 

Coarse 
120x80 
Template:  
Figure 3.13 
(b)  

Translation  
Rotation 

-6:2:6 
-100:50:100 

Translation  
Rotation 
Scale  

-12:3:12 
With an 
extra 
translation 
of ±25 
-100:50:100 

40% to 10% 
and 160% to 
200% with 
step of 10% 
 

10x10 

 

Transform Range Transform Range Step 3 
Fine 

120x80 
Template:  
Figure 3.13 
(c) 

Translation  
Rotation 
Scale 
Shear 

-4:1:4 
-30:10:30 

95% to 
105% of d 
with step of 
2% 
Maximum 
angle of 30o 

Translation  
Rotation 
Scale 
Shear 

-6:2:6 
With an 
extra 
translation 
of ±15 
-30:10:30 

68% to 80% 
and 150% to 
162%  with 
step of 4% 
Maximum 
angle of 30o 

6x6 

 
 

 
 
4.3.2 Tuning the classifier 

 
The tuning part had to do firstly with organizing our classifiers and visualizing their 
performance and secondly with choosing the operating points that would perform best. 
We do so, as already mentioned, using the receiver operator characteristic (ROC) curves 
(Figure 4.2). The basic idea of ROC analysis is very simple: For a given trained classifier 
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and a labeled test set define a set of possible operating points and estimate different type 
of errors at these points. In our application instead of using the typical ROC curves 
(sensitivity vs 1-specificity) we used a different configuration (error on positive class vs 
error on negative class). We did so because such a curve was easier to interpret. It is 
obvious that the closer we get to point (0, 0), the better our results will be.  
 
Since we are using a coarse-to-fine approach our objectives at each step are different. So, 
at first we want to be sure that all our positive examples (images with the region of 
interest) will pass to the next stage. As a consequence, we are more interested in having 
zero error on the negative class: the false positives will be discarded in later stages.   
 

 

 
Figure 4.2 Adapted Receiver Operator Curve of the second classifier. On x axis we have the error on the 
positive examples and on y the negative examples. In the title we can see that among all operating points 
the third one is chosen, which gives an error of 0.39 on positive (

N
FP , Figure 3.11) and 0.02 on negative 

examples ( P
FN , Figure 3.11).  

 
 
However, as we conducted the experiments we saw that opting for zero error in negative 
class resulted in large number of hits. To avoid this, as it meant more candidates in later 
stages and more computational time, we decided to optimize the performance, allowing 
some errors in first class, but not higher than 0.4 so we could be certain that most of the 
true positives would pass to the next stage of the cascade. This would not affect the 
overall result, since the number of positive examples that we created was redundant. 
After choosing an operating point, the classifier works on that configuration and is ready 
to be used for detection. 
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4.3.3 Detecting 
 
In the last step of the evaluation setup, the actual detection is performed. This step is 
combined with the previous one, so from the 25 patients, each time 20 are used for the 
ROC analysis and 5 for detection.  
 
Since we are using different configurations for training the classifiers, the detection 
configurations also vary. So, first we do a rough scan on the 2D slice that we extract from 
the 3D dataset. Here only translation is considered, while the size of the Haar features is 
fixed and the same as we used in the training phase. The “hits” (detected positives) of this 
step are pruned, based on a maximum distance from their average to remove outliers, and 
then are used to generate new region candidates for the second classifier. The detected 
regions are rotated, translated and scaled. The translation steps are smaller than 
previously, but the rotation and scale are still in the rough phase. The new hits are again 
pruned and fed to the final classifier. Here no translation is needed and we have the fine 
stage for both rotation and scale. Shear is also introduced, to add accuracy to our final 
candidates. The above are summarized in Table 2.  
 
 
 
 
 

Table 2 Detecting settings (d is the pixel size).   
 Image size Search features 

Transform Step size Step1 
ROI 

150x100  
d= 1mm Translation  

 
6 pixels 
 

12x12 

 

Transform Range Step 2 
Coarse 

120x80 
 d=1mm  Translation  

Rotation 
Scale  

-6:2:6 pixels 
-100:50:100 

 0,8*d :0,1*d: 1,5*d 

10x10 

 

Transform Step size Step 3 
Fine 

120x80 
d=1mm   Rotation 

Scale 
Shear  

-40:10:40 

0,95*d:0,02*d:1,05*d 
10 steps 
maxAngle=300 

6x6 
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5 Evaluation  
 
As already explained, the evaluation is done in each stage in two steps: first we conduct 
ROC analysis to set the operating point of the classifier and then we test the classifiers’ 
ability to detect the sought structure on that point. As a consequence, we will present the 
results, in these two steps for the four and two-chamber views. 
 
 
5.1 Two chamber view plane 
 
A first impression of the classifiers’ performance can be given from the ROC curves, 
which we use to tune among the possible classifier operation points. So, Figures 5.1-5.3 
show the curves that we get for the first batch of patients. We show here only one of the 
batches because the ROC-like curves of the batches are very similar. At this point we 
should highlight that the third classifier originally suffered from overtraining. The image 
variations that were included in the training process resulted in two-point ROC curves, an 
indication of overtraining (Figure 5.4). These classifiers would classify all input 
templates either as positives or negatives in the detection step. We solved that issue by 
using less complex weak classifiers, setting the boosting rounds to 30 and allowing the 
trees to grow until the third level. 
 
 
 
 

 
Figure 5.1 ROC curve of the first 2C classifier for the first group of patients 
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Figure 5.2 ROC curve of the second 2C classifier for the first group of patients  

 
 

 
Figure 5.3 ROC curve of the third 2C classifier for the first group of patients 

 
 
The curves indicate that all three classifiers can work with relatively small errors. To 
check that other simple and easier to implement classifiers would not give similar results, 
we used a Gaussian classifier, applying a PCA to the training data and then use a 
threshold to classify the data used for tuning. The resulted ROC curve is shown in   
Figure 5.5. Obviously, a classifier like that would give poor results since the 
classification error of the negative examples is high, regardless of the operating point. 
Finally, we used ROC curves to test whether our effort to expand our database generating 
artificial patient variation is justified. The results are presented in Figure 5.6 where we 
have the ROC curve of a first classifier that does not include rotated versions of the 
images. We see operating points that give larger errors in the positive class, which was an 
indication that this classifier would give poorer results.      
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Figure 5.4 ROC curve of a third 2C classifier in the case of overtraining. 

 
 
 
 
 
 
 

 
Figure 5.5 ROC curve of a Gaussian classifier on the first 2C classifiers training data 
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Figure 5.6 ROC curve of the first 2C classifier for the first group of patients with no rotations. 

 
 
The detection performance was evaluated by measuring the Euclidian point-to-point 
errors, meaning the distance between the manually annotated position of the sought point 
and the one indicated by the classifier. At the first stage, from a total of 885 candidate 
regions for each of the 25 patients we got after pruning 15-20 candidate positions, 
depending on the image quality of the 3D sets (Figure 5.7), as more candidates were 
obtained for images of lower quality. For each patient we calculated a mean value from 
all the “hits”. The distance between the manually annotated centers of the region of 
interest and the means was on average 6.5±2.5mm. These detected regions were 
translated, rotated and scaled resulting in 7x7x5x8=1960 new candidates, which we 
classify using the classifier that we trained with the help of the template shown in    
Figure 3.3b. This allows us to detect the apex and mitral valve center position. The 
resulted mean distance between the true apex and the mean detected one equal to 
7.2±7.0mm, while for the mitral center the error was 5.6±5.2mm, while the paired t-test 
noted statistically significant improvement in the accuracy of the detected image center. 
The candidates indicated from the second classifier as possibly containing the left 
ventricle were further rotated, scaled and sheared giving us 9x6x11=594 new images to 
classify. The last classifier used was trained with templates like the one in Figure 3.3c, so 
all three landmark points could be predicted. The resulted errors were at the rate of 
7.1±6.7mm for the apex, 5.8±3.5mm for the anterior and 4.5±3.1mm mm for the inferior 
point. It is important to note here that the accuracy from the second to the third classifier 
does not always change significantly (Figure 5.8). 
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Figure 5.7 Example of the centers for the 2 chamber view detected by the first classifier. The true center is 
marked with a green circle and the hits with cyan asterisks. The inferior (magenta), anterior (yellow) and 

apex (cyan) markers are also indicated. 
 
 
 
 
 

 (a) (b)  (c) 
Figure 5.8 Example of detected regions by (a) the first (b) the second and (c) the third classifier. With 

green circles are depicted the detected points, while with cyan asterisks the true ones. 
.  
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Table 3 Results on 2C view. * denotes statistically significant (p<0.05) difference with respect to the 
previous classifier. † denotes statistically insignificant difference with respect to the previous classifier. 

 Number of “hits” 
after pruning  

Average error on points 

Step1 
ROI 

15-20 Image 
center  
 

6.5±2.5mm 

Image 
center  
 

5.8±2.4mm* 

Apex 7.2±7.0mm 

Step 2 
Coarse 

1000-2000 

Mitral valve 
center 

5.6±5.2mm 

Apex 7.1±6.7mm† 
Mitral valve 
center 

5.2±2.8mm† 

Anterior 5.8±3.5mm 

Step 3 
Fine 

 150 

Inferior 4.5±3.1mm 

 
 
5.2 Four chamber view plane 
 
In the four chamber view the ROC curves are used once again to give a first impression 
of the classifiers’ performance (Figure 5.9-5.11).  
 
 

 
Figure 5.9 ROC curve of the first 4C classifier for the first group of patients 
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Figure 5.10 ROC curve of the second 4C classifier for the first group of patients 

 
 
The same sequence of classifiers was once again used. The resulted errors are presented 
at Table 4. At the first stage, again from a total of 885 candidate regions for each of the 
25 patients we got 10-15 candidate positions, depending on the image quality of the 3D 
sets. The candidates were less than in the 2C view case probably because there were less 
outliers in this view. The mean distance between the manually annotated center of the 
region of interest and the mean detected one was here on average 7.9±4.1mm. These 
detected regions were once again translated, rotated and scaled, like described in the 2C 
case, resulting in 1960 new candidates. The resulted mean distance between the true apex 
and the mean detected one equal to 8.2±4.7mm, while for the mitral center the error was 
8.0±5.0mm. The candidates indicated from the second classifier as possibly containing 
the left ventricle were further rotated, scaled and sheared giving us 9x6x11=594 new 
images to classify. The last classifier used was once again trained with templates like the 
one in Figure 3.3c, so all three landmark points could be predicted. The resulted errors 
were 7.9±7.1mm for the apex, 5.6±2.7mm mm for the septal and 4.0±2.6mm for the 
lateral point. 
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Figure 5.11 ROC curve of the third 4C classifier for the first group of patients 

 
 
 
 
 
 

Table 4 Results on 4C view. * denotes statistically significant (p<0.05) with respect to the previous 
classifier. † denotes statistically insignificant difference with respect to the previous classifier. 

 Number of “hits” 
after pruning 

Average error on points 

Step1 
ROI 

10-15 Image 
center  
 

7.9±4.1mm 

Image 
center 

7.6±4.8mm* 

Apex 8.0±5.0mm 

Step 2 
Coarse 

1500-2500 

Mitral valve 
center 

8.2±4.7mm 

Apex 7.9±7.1mm† 
Mitral valve 
center 

4.8±2.3* 

Septal 5.6±2.7mm 

Step 3 
Fine 

 150 

Lateral 4.0±2.6mm 
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6 Discussion 
 
The goal of this thesis was to detect the anatomical landmark points that define the 
position of the left ventricle in ultrasound images. This can be used to extract the standard 
anatomical views of 3D echocardiography, which, in consequence, can be used to 
initialize segmentation methods. Due to the fact that these standard anatomical views are 
required for simple visualization and initialization purposes, the detection method should 
be relatively fast. Also, because of the challenging image quality and the variation in LV 
appearance, robust methods are required. We intend to use this automatic detection 
method to automate an existing manual method for view extraction, which is also based 
on manually indicated landmarks [31, 32]. In that method, we find the left ventricle long-
axis by locating the apex along with the mitral valve points. 
 
The research method is used to detect the left ventricle landmark points in a fully 
automated way, without the need for initialization or interaction. The method may be 
applied for detecting landmark points in multiple 2D views of the 3D set (approximate 
two-chamber, four-chamber, short axis). This makes it suitable for our intended use, 
resulting in a 3D application, which has not been done before in similar approaches.   
 
6.1 Multilevel approach 
 
We decided to follow a multilevel approach, in which the global location of the ventricle 
with the landmarks is found first, and then rotation and scaling are found and further 
refined, to locate the landmark positions. We tested the detection accuracy in two of the 
standard anatomical views of echocardiography: the two (2C) and four chamber (4C) 
views. 
 
The method produces a reasonably accurate estimation for the locations of the points. We 
can detect the points in both the 2C and 4C views. There is an acceptable error of 
7.1±6.7mm for the apex, 5.6±2.7mm for the septal, 4.0±2.6mm for the lateral, 
5.8±3.5mm for the anterior and 4.5±3.1mm for the inferior point. The multilevel 
approach is justified, since the results are improving from stage to stage. However, we 
noticed that the improvement from the second to the third classifier in some cases is 
minimal (Figure 5.8, Table 3, Table 4). The second classifier is already quite accurate, so 
that it is difficult for the fine classifier to improve the scores. Additionally, generating 
new candidates from the second to the third stage of the cascade in fine steps resulted in 
image differences that were hard even for an expert to distinguish and classify. If further 
improvement would be needed, the parameter choices or features for the third stage 
should be reconsidered.  
 
Compared to  research conducted in similar applications [28, 29], one of the challenges 
was to overcome the limited image database, as we had relatively few 3D sets of patients 
to cover the expected image variability. In order to do so, we added artificial variations 
and noticed that the ROC curve with the variation (Figure 5.1) was better versus the one 
without it (Figure 5.6). This may be enough for the purposes of a thesis project, but based 
on what we see in literature [36, 39] methods like ours generally need large databases, if 
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they are to be applied in real life situations. However, although limited, we tried to 
include in our database images of different quality, to make it suitable for clinical 
practice (where differences in image quality can be expected).  
 
The current implementation is very slow. In general, a cascade of classifiers is used to 
give faster detection rates [30], [29]. In our case, the training and detection times were 
fast, but going from the one stage of the cascade to the next was time consuming, because 
of the amount of new candidates that were generated each time and current 
implementation issues. We wanted to be as general as possible in our approach, to allow 
an easy change of the classifier parameters, thus we did not seek for an optimal 
implementation in terms of speed. However, in order to accelerate the detection steps, we 
pruned away a lot of candidate regions, based on knowledge about the left ventricle’s 
size. This resulted in faster detection, along with better results, since many of the outliers 
were discarded.  
 
6.2 Choice of classifier parameters 
 
One important aspect for the method’s overall performance had to do with the choice of 
our training and detecting parameters (Table 1, Table 2). We chose the training 
parameters to achieve a certain detection accuracy; the parameters define the maximum 
accuracy that we can reach. So, for example, adding artificial variation of ±4mm 
translation for the third classifier means that we can expect an error approximately at 
4mm, which, compared to our ground truth, was considered realistic enough. 
Unfortunately, since only one manual annotation was used it is unclear what the quality 
and accuracy of our annotation is. It is our impression that future approaches should start 
with calculating the interobserver and intraobserver errors on the used database, to get an 
indication on the quality of the manual annotation, while that way we could also result in 
different parameter choices.    
 
One basic difference between this implementation and similar ones, like the one proposed 
by Viola and Jones [30], is that instead of filtering our positive and negative sub-images 
with as many Haar feature types as possible and in as many sizes as possible, we used 
specifically six of them in three fixed sizes (smaller size as we proceed in the cascade in a 
coarse to fine scheme). This was done, as explained, to simplify things and reduce 
computational demands. When we tried to be more general and let the classifier decide 
on which sizes to use, we run either into memory issues (too much data for MATLAB to 
handle) or long training times. Unfortunately, there is no certain way to know which can 
perform best and in what size. There is no indication upon that on literature, so we based 
our choice on experiments that we conducted using OpenCV, which uses many types of 
Haar features and in all possible sizes (depending on the size of the given image). 
However, the nature of the problem is such that adding different Haar feature types 
would probably not result in significant improvement. The regions that we are looking for 
are of limited variation, so complex Haar features probably would just complicate things. 
One could opt, though, for better performing feature categories. We know, for example, 
that Lu et al. [39] used also steerable features. We chose to use Haar-like features 
because they have been previously used in similar applications, and can be computed 
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fast. The first indications we got when we tried other types widely used in image 
processing (SIFT, HOG), were poor due to speckle noise. 
 
6.3 Comparison with literature 
 
In Table 5 we compare our method to the one of Van Stralen [40], using exactly the same 
database. In all comparison tables we are giving our best performing results. Van 
Stralen’s method uses a combination of the Hough transform and dynamic programming, 
which results in a 3D application (whereas ours is 2D). In terms of accuracy we see that 
we performed better. But a fair comparison is difficult here. Van Stralen's method detects 
the long axis and mitral valve center in 3D. First the LAX is detected and based on that 
the mitral valve plane is taken as the perpendicular circular ring, touching the left 
ventricle bottom endocardial border. The fact that the plane is considered always 
perpendicular to the LAX, which is not the case, is probably responsible for the 
difference in the accuracy of detecting the mitral valve center and the other mitral valve 
points (Table 5, Table 6). Moreover, Van Stralen’s method does not detect rotation. As a 
consequence, the orientation angles for the 2C and 4C planes are not known and a 
standard angle at 0o and 90o is always considered as the right one. Our method was 
evaluated in optimal 2D planes, and a 2D distance from the true landmarks is reported. 
To compensate this difference, we project the detected points from Van Stralen’s method 
on the correct plane. Our current implementation is much slower than Van Stralen’s 
method that needed only a few seconds to estimate the landmark positions. 
 
 

Table 5 Compare results with Van Stralen [40] 
 Proposed 

2C  
Van Stralen 

[40] 2C 
Proposed 
4C  

Van Stralen  
[40] 4C 

Apex 7.1±6.7mm 14.7±8.6mm 7.9±7.1mm 15.0±8.3mm 
Septal/Anterior 5.8±3.5mm 11.2±6.0mm 5.6±2.7mm 13.7±7.7mm 
Lateral/Inferior 4.5±3.1mm 13.0±5.7mm 4.0±2.6mm 13.3±6.8mm 

 
 
Lu et al. [39] presented a data driven approach for the detection of standard view planes 
(apical 4C, 2C, 3C and short axis basal, middle and apex plane), similar to ours. They 
also use a cascade of three classifiers, which are trained based on boosting techniques. 
The coarse classifier is using Haar wavelet-like feature types, like we do, but the next two 
are using steerable features [41]. They claim that the latter are at the detailed level 
computationally inexpensive, compared to Haar features. Finally, their cascade was 
structured in a different way. The coarse classifier is used as a detector for the apical 4C 
view and its outcome is used to limit the search region for fine parameter estimation for 
in the other 2D planes individually. They compute initial plane parameters for the sought 
planes combining the detected parameters of the coarse classifier and empirical statistics 
of their pose parameters. Finer classifiers are then used for each plane separately. Lu’s 
method results in smaller errors than our method does. This may be due to better 
performance of the steerable features or the structure of the cascade. We have to note 
though, that their database was much larger (326 patients on which a four-fold cross-
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validation was performed) and as consequence, adding artificial variation was not 
necessary.  
 
Furthermore, some approaches which also identify the sought landmark points in addition 
to the long axis or the apical views’ orientation angles have been published. Leung et al. 
[31] presented an approach for registration of the left ventricle in stress echocardiography 
that also detected the sought landmark points and Orderud et al. [42] presented an 
approach for alignment of standard apical and short-axis slices in 3D echocardiography. 
Compared to the results given by Orderud et al. [42] and Van Stralen [40]  we find lower 
errors for the apex and mitral valve center (Table 6). Leung et al. [31] outperform our 
method, but we have to take into consideration that they aimed at registering markers in 
stress images, given the markers in the rest image, instead of detecting the standard 
views, which might have influenced the results. Once more we have to note that our 
approach works in 2D cross-sections, while all the rest are applied on the 3D data, so our 
result may be a bit biased. 
 
 

Table 6 Comparison with existing methods 
 Apex Mitral Valve 
Proposed 7.1±6.7mm 4.8±2.3mm 
Orderud [42] 8.4±3.5mm 3.6±1.8mm 
Lu [39] 4.5±3.5mm 3.6±3.1mm 
Van Stralen [40] 14.7±8.6mm 8.4±5.7mm 
Leung [31] 7.6±4.8mm 4.5±2.9mm 
Interobserver [31] 7.1±2.9mm 3.8±1.5mm 
Intraobserver [31] 5.2±2.0mm 3.3±1.5mm 

 
 
We also compare our results to the interobserver and intraobserver errors given by Leung 
et al. [31]. They note that two independent observers indicate the long axis and 4C 
direction, as well as the aorta and the RV-attachment in end-diastole and end-systole. The 
intraobserver variability in the apex and mitral valve centre is defined as the average of 
Euclidean distances between points annotated twice by the same observer. However, 
these observer errors were measured on a smaller database (20 patients). The 
interobserver variability is similarly defined, as the average of differences in the mean 
annotation of each observer. The fact that our errors are close to those provided by the 
interobserver and intraobserver variability is very promising, since these are the errors in 
our ground truth of manual annotation (following the same protocol as in this study). 
 
6.4 Limitations 
 
An important issue for our project was to create an algorithm that could work relatively 
fast, thus suitable for real life applications. The time for both processing of the images 
and evaluating the method varies, depending on the classifier stage. The first classifier 
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needs 30 minutes for training, while the second and third one need at around 45. 
However, preprocessing (calculating feature values for training and tuning/testing set) is 
taking half a day for the first classifier and one day for the others. The second and third 
stages need 2-3 days to evaluate (calculating the point-to-point errors for the detecting 
set). The evaluation time was greatly influenced by the number of candidates that were 
passing from each stage to the other (Table 3, Table 4), since each time the Haar values 
are being calculated for all the candidates. However, as we have already mentioned, we 
kept our method’s frame as general as possible, so we could research more on the 
classifier parameters, rather than speeding up the process. An implementation aimed at a 
specific application would use standard classifiers. We can easily map which features the 
classifiers use, so we could calculate only those Haar values. The current implementation, 
is calculating, for instance, at the case of the second classifier, 4 Haar feature types, for a 
template of 120x80 pixels resulting in 38400 calculations, while in the end 250 pixels are 
used. Going from 38400 to 250 calculations is already speeding the process at a factor of 
150. Furthermore, our work with OpenCv showed that the computational time using C++ 
code can be greatly reduced: OpenCV needs a couple of hours to train the classifiers and 
a few seconds for detecting, including the time to calculate all feature values. We are 
confident that a real time application is feasible with this approach, since similar methods 
for face detection are being used in digital cameras. 
 
Overfitting was another hurdle that we had to overcome. As discussed in literature for 
similar projects [29], complex classification problems may suffer from overtraining. In 
our case the third classifier, where the differences were too detailed, was overtrained at 
first, thus incapable of classifying our evaluation sets (Figure 5.4). As already explained, 
reducing the classifier complexity solved that issue, but we should always keep that in 
mind for future applications. 
 
Finally, another limitation of our work lies in the fact that we are always working on the 
ideal 2D image plane, defined by the manual annotated 3D landmark points. We have 
trained the cascades to work in many different translations, rotations and scales so we can 
expect that they will detect the most probable locations for the landmark points in random 
planes. Although we don’t have any specific indication concerning the accuracy of that 
detection, we believe that using these classifiers in an iterative scheme would result in the 
right planes, thus accurate detection rates. We base that belief on our experience using the 
manual method.     
 
6.5 Conclusions  
 
We showed that using our proposed approach, the anatomical landmark points can be 
detected accurately. If we consider that our errors were comparable to the interobserver 
and intraobserver variability, it appears that our approach is really promising. The 
algorithm proved to be accurate and robust enough in both planes, so it could be 
combined with the already existing manual technique to extract the views and result to a 
fully automated method of detecting the left ventricle’s location. This would be possible 
if we include in our method a third cascade of classifiers, trained to work in the short axis 
plane, which would work as a detector for the orientation angles of the 2C and 4C planes. 
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Our original goal was to propose a method that can work in the three planes, but this 
proved to be too optimistic for the time span of a master thesis project. Additionally, we 
were opting for a fast application, which is possible but was not achieved yet due to 
implementation choices.  
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7  Future Research 
 
Some possible improvements for the method have already been discussed. One of the 
most important improvements has to do with the size of the database to use. Using a 
larger database may improve the cascade’s performance. As already explained, since we 
could not do so, we decided to create artificial variation. We believe that our classifier 
became more robust that way, but this also resulted in a reduction in accuracy. The 
differences among our examples were not natural, and maybe harder to distinguish, 
which probably led to overfitting. So, using larger databases will probably result in more 
robust classifiers and furthermore will help us avoid overfitting issues. 
 
A next step would be to implement a similar cascade for the short-axis plane. In that way 
a full three step scheme would be ready for  use in combination with the previously 
proposed manual method [31]. Apart from the three cascades, trained to work on the 
exact standard anatomical views’ planes (2C, 4C, SAX), additional cascades for random 
planes could be examined. Normally, the manual methods needs 4-6 iterations before the 
sought views are found [31]. The annotated images produced by these intermediate steps 
are available, and a classifier trained to work in these intermediate steps may prove to be 
more accurate and robust than the final one. However, our first impression is that the 
current classifiers can work on the intermediate steps as well, as they will give the most 
probable position for the landmark points in the given plane. These could be used for 
further correcting the extracted plane, until the algorithm converges. 
 
Working with different feature types could also be considered. Lu et al. [39] propose a 
method that performs better than ours and one of the differences is that they do not rely 
only on Haar like feature types. However, even if we consider Haar features as reliable 
enough, experimenting on their size, or their type would also be interesting. In any case, 
issues like how their size or their type influences the classifier’s accuracy and robustness 
have not been covered by literature.  
 
Finally, the overall cascade structure could be different. As we explained the accuracy 
improvement from the second to the third classifier was not so significant. This means 
that perhaps different parameters could be used for both of them, or only the second one 
may be used. Calculating interobserver and intraobserver errors for the specific database 
would facilitate that procedure. The ground truth would be different, changing the 
accuracy that we aim at. 
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