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SUMMARY

The integration of wearable technology into healthcare is revolutionizing health
monitoring by enabling continuous tracking of vital metrics like heart rate and blood
sugar. Devices such as smartwatches and glucose monitors empower proactive
interventions, reducing hospital visits and personalizing care. For instance, wearables
can detect irregular heart rhythms for early cardiovascular disease detection or assist
individuals with diabetes in managing glucose levels. These advancements are
enabled by technologies like photoplethysmography (PPG), a non-invasive method for
real-time monitoring of physiological signals. Continuous monitoring generates time
series data that captures dynamic health fluctuations over time. This data allows
for identifying irregularities and deviations that isolated measurements might miss.
Detecting anomalies, such as abrupt changes in heart rate or prolonged abnormal
patterns, is essential for timely interventions in managing chronic conditions like
hypertension and cardiovascular diseases.

However, the analysis of time series data introduces challenges. For instance,
label scarcity arises because labeling health anomalies requires expert input,
which is often infeasible for large datasets. Inter-subject variability becomes a
concern as physiological patterns differ significantly across individuals, complicating
model generalization. Furthermore, temporal dependencies in time series data
add complexity, as observations are sequentially related and anomalies may not
manifest as isolated points but as patterns or sequences deviating from normal
behavior. Detecting subtle anomalies, minor deviations that accumulate over time
but may signal early-stage conditions, becomes particularly challenging due to their
resemblance to normal temporal variations and noise in the data. For example, a
gradual change in heart rate variability might indicate the onset of an irregular rhythm
but could easily blend into inherent variability if not carefully analyzed. Moreover,
evaluation metrics for time series data are insufficient, failing to capture the temporal
complexities of real-world applications. Consequently, conventional metrics can
misrepresent model performance, leading to unreliable or misleading assessments.

This thesis addresses these challenges by advancing time series anomaly detection
through innovative methodologies. A key focus is on addressing the limitations of
existing evaluation metrics by introducing new evaluation metrics to better capture
temporal complexities, ensuring reliable and meaningful performance assessments.
Beyond evaluation, this thesis is guided by several core principles to address the
challenges inherent in time series data analysis. Central to this is the use of
unsupervised representation learning to tackle label scarcity and variability, enabling
robust feature extraction from unlabeled data while maintaining generalizability.
Finally, the thesis develops strategies for increasing sensitivity to subtle anomalies,
providing effective solutions for identifying small yet significant deviations in complex
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datasets. Together, these contributions present a comprehensive framework for
improving anomaly detection systems across diverse applications, bridging theoretical
advancements with practical, real-world needs.



SAMENVATTING

De integratie van draagbare technologie in de gezondheidszorg revolutioneert in
de manier waarop gezondheid wordt gemonitord, doordat het continue tracking
van vitale functies zoals hartslag en bloedsuiker mogelijk maakt. Apparaten zoals
smartwatches en glucosemeters maken proactieve interventies mogelijk, verminderen
ziekenhuisbezoeken en personaliseren de zorg. Zo kunnen wearables onregelmatige
hartritmes detecteren voor vroege opsporing van hart- en vaatziekten, of mensen
met diabetes helpen bij het beheren van hun glucosespiegels. Deze vooruitgang
wordt mogelijk gemaakt door technologieén zoals fotoplethysmografie (PPG), een
niet-invasieve methode voor het real-time monitoren van fysiologische signalen.
Continue monitoring genereert tijdreeksdata die dynamische gezondheidsfluctuaties in
de tijd vastlegt. Deze data maakt het mogelijk om onregelmatigheden en afwijkingen
te identificeren die bij geisoleerde metingen mogelijk onopgemerkt blijven. Het
detecteren van anomalieén, zoals plotselinge veranderingen in hartslag of langdurig
abnormale patronen, is essentieel voor tijdige interventies bij het beheer van
chronische aandoeningen zoals hypertensie en hartziekten.

Het analyseren van tijdreeksdata brengt echter uitdagingen met zich mee. Een
voorbeeld hiervan is het tekort aan gelabelde data, omdat het labelen van
gezondheidsanomalieén deskundige input vereist, wat vaak onhaalbaar is bij
grote datasets. Interpersoonlijke variabiliteit vormt ook een uitdaging, aangezien
fysiologische patronen sterk verschillen tussen individuen, wat de generalisatie van
modellen bemoeilijkt. Bovendien voegen temporele athankelijkheden in tijdreeksdata
extra complexiteit toe, omdat observaties sequentieel met elkaar verbonden zijn en
anomalieén zich mogelijk niet manifesteren als geisoleerde punten, maar als patronen
of reeksen die afwijken van normaal gedrag. Het detecteren van subtiele anomalieén,
kleine afwijkingen die zich over tijd opstapelen maar mogelijk wijzen op een vroege
aandoening, is bijzonder uitdagend vanwege hun gelijkenis met normale temporele
variaties en ruis in de data. Een geleidelijke verandering in hartslagvariabiliteit
kan bijvoorbeeld wijzen op het begin van een onregelmatig hartritme, maar kan
gemakkelijk opgaan in de natuurlijke variatie als dit niet zorgvuldig wordt geanalyseerd.
Bovendien schieten evaluatiemetrieken voor tijdreeksdata tekort; ze houden geen
rekening met de temporele complexiteit van realistische toepassingen. Hierdoor
kunnen conventionele metrieken de modelprestaties verkeerd weergeven, wat leidt tot
onbetrouwbare of misleidende evaluaties.

Dit proefschrift pakt deze uitdagingen aan door de detectie van anomalieén
in tijdreeksdata te verbeteren met innovatieve methodologieén. Een belangrijk
aandachtspunt is het aanpakken van de beperkingen van bestaande evaluatiemetrieken
door het introduceren van nieuwe metrieken die de temporele complexiteit beter
vastleggen, zodat prestaties op betrouwbare en betekenisvolle wijze kunnen worden
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beoordeeld. Naast evaluatie wordt dit proefschrift geleid door verschillende
kernprincipes om de uitdagingen in tijdreeksanalyse aan te pakken. Centraal hierin
staat het gebruik van unsupervised learning om het tekort aan labels en variabiliteit
te overwinnen, waardoor robuuste kenmerken kunnen worden geéxtraheerd uit
ongelabelde data met behoud van generaliseerbaarheid. Tot slot ontwikkelt het
proefschrift strategieén om de gevoeligheid voor subtiele anomalieén te vergroten, en
biedt het effectieve oplossingen voor het identificeren van kleine maar significante
afwijkingen in complexe datasets. Samen vormen deze bijdragen een allesomvattend
raamwerk voor het verbeteren van systemen voor anomaliedetectie in uiteenlopende
toepassingen, waarbij theoretische vooruitgang wordt verbonden met praktische, reéle
behoeften.



INTRODUCTION

HE integration of technology into healthcare is revolutionizing how we monitor
T and manage our health. One of the most promising advancements in recent
years has been the rise of remote patient monitoring, which enables continuous,
seamless health tracking, largely facilitated by wearable devices [1]. These devices,
such as smartwatches and fitness trackers, allow individuals to stay connected to
their health data and enable healthcare providers to monitor patient conditions in
real time. For instance, a smartwatch can alert someone with a heart condition if
their heart rate becomes irregular, prompting immediate care [2]. Similarly, wearable
glucose monitors help patients with diabetes track blood sugar levels continuously,
enabling more responsive adjustments in medication or diet [3].

Continuous monitoring is particularly valuable because health metrics can fluctuate
widely throughout the day. A one-time measurement taken during a hospital visit
might not capture a patient’s typical health status or warning signs that appear
at other times [4]. For cardiovascular health, for instance, subtle fluctuations in
heart rate or irregularities can signal potential issues that may not be detected in a
one-time hospital visit [5]. Wearable devices, by providing an always-on connection to
vital health metrics, bridge the gap between patients and healthcare professionals,
reducing the need for frequent hospital visits and enabling more personalized care [6].
For many conditions, such as hypertension or heart disease, critical changes in health
metrics can occur between appointments, and timely interventions can mean the
difference between a manageable situation and a health crisis. Continuous monitoring,
therefore, not only empowers patients but also transforms the healthcare system,
fostering a proactive approach that can significantly enhance patient outcomes [7].

One of the key technologies enabling this continuous, non-invasive tracking in
wearable devices is photoplethysmography (PPG), which measures blood volume
changes by emitting light onto the skin and detecting variations in light absorption [8].
PPG is especially useful for cardiovascular monitoring, allowing wearables to capture
ongoing data about heart rate and detect irregularities that might signal early health
risks, such as arrhythmias or hypertension. This steady stream of data allows
healthcare providers a more accurate view of patient trends, supporting proactive
interventions and enabling patients to better manage their health with fewer hospital
visits [9]. Figure 1.1 illustrates the process of how wearable devices utilize PPG
technology for continuous health monitoring. The diagram shows how light-based
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PPG sensors in wearable devices capture variations in blood volume, generate
physiological signals, and transmit this data to healthcare systems. This enables
real-time monitoring not only by patients but also by doctors, who can use the
information to detect potential health issues early and provide personalized care.
Such integration between wearable devices and healthcare professionals ensures a
proactive approach to health management, bridging the gap between individuals and
clinical support systems. By enhancing individual health awareness and supporting
broader public health efforts, PPG technology plays an important role in advancing
remote healthcare. As wearable technology and PPG continue to evolve, the potential
to predict and manage health conditions remotely is expanding, making personalized,
proactive care more achievable than ever [10].

\

Rl Emitter Detector

% &

Smartwatch PPG Sensor

AN
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Heart Rate Steps Heart Condition

& J

Figure 1.1: Illustration of wearable health technology enabling continuous monitoring. A
smartwatch uses photoplethysmography (PPG) to measure blood volume changes, generating
real-time physiological data that is processed and analyzed by healthcare providers for
proactive, personalized care.

1.1. TIME SERIES DATA

As PPG data is recorded continuously over time, it forms what is known as a time
series data—a sequence of measurements collected at successive intervals that are
dependent on time, providing valuable insights when analyzed over time. Time series
data is widely used across domains to capture changes in variables over time [11].
Common examples include daily temperature readings, stock market prices, and
website traffic metrics [12-14].

One of the defining characteristics of time series data is its temporal nature—each
observation is recorded in a specific order, and past observations often influence
future ones [15]. This temporal dependency allows analysts to uncover patterns
that evolve over time [16]. For example, weather forecasts rely on past and current
temperature and pressure readings to predict future conditions, as these values are
interdependent [17]. Similarly, in PPG data, the progression of heart rate during
exercise and its subsequent recovery can reveal insights into cardiovascular fitness, as
these measurements are influenced by preceding levels of exertion and recovery [18].
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Building on this temporal nature, time series data often exhibits two key
components: trends and seasonality. A trend reflects long-term changes in the data.
For example, an upward trend in global average temperatures over decades indicates
climate change, whereas a decline in resting heart rate in PPG data over months
might suggest improved fitness [12, 19]. Figure 1.2b shows an example of a time
series with a positive, increasing trend. Seasonality refers to recurring patterns that
repeat at consistent intervals, such as daily peaks in electricity usage during the
evening or hourly cycles in PPG data reflecting activity and rest [20, 21]. An example
of seasonality in a time series, where a recurring pattern is apparent, is shown in
Figure 1.2c.

Figure 1.2: Examples of time series data: (a) a baseline signal without trend or seasonality,
(b) the same baseline signal with a positive, increasing trend, and (c) a time series with a
repetitive seasonal pattern combined with a slightly positive trend.

1.2. ANOMALIES IN TIME SERIES DATA

The specific characteristics of time series data enable the establishment of a baseline
of expected behavior over time. This baseline represents the "normal" patterns
observed within the system, providing a reference against which deviations can be
identified [22]. By analyzing these typical patterns, we can determine what constitutes
expected system behavior under varying conditions [23]. However, real-world systems
are subject to changes and unexpected events that disrupt these patterns. Identifying
these deviations from the established baseline of normal patterns is vital because they
may indicate critical shifts in the system’s state [22]. Such deviations, commonly
referred to as anomalies, provide early warning signals that enable timely interventions
and informed decision-making [24]. For example, Figure 1.3 illustrates two scenarios
involving PPG signal monitoring: Figure 1.3a shows a person who is monitoring his
heart rate while standing, and Figure 1.3b shows a person who is monitoring his heart
rate while running. In both scenarios, the red-highlighted sections indicate deviations
from the baseline pattern, representing anomalies. These deviations demonstrate how
anomalies can manifest in different forms within time series data. Anomalies in time
series data generally fall into three types [22]:

e Point Anomalies: These are single data points that stand out from the rest of
the data. Such anomalies may indicate momentary sensor errors, environmental
interference, or critical events such as an acute cardiac irregularity. For example,
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in Figure 1.3a, where the person is standing, the PPG signal exhibits a sharp
point anomaly at f;, highlighted by a pronounced deviation from the baseline
pattern. This type of anomaly is typically easier to detect due to its clear and
significant nature.

* Contextual Anomalies: These occur when a data point is anomalous in a
particular context. For instance, an elevated heart rate during rest or sleep is
unusual and could signal a health concern, even though such a heart rate might
be normal during physical activity. In Figure 1.3a, where the person is standing,
the PPG signal exhibits a contextual anomaly from #, to f3. While the pattern in
this range resembles the typical PPG signal observed during running, shown
in Figure 1.3b, it is considered anomalous in the context of the person being
standing. The discrepancy arises because the observed PPG pattern does not

(a) PPG signal recorded while the person is standing: The signal shows a baseline
pattern with a sharp "point” anomaly at t; and a "contextual" anomaly between
t> and t3, reflecting a pattern inconsistent with the person’s stationary state.

(b) PPG signal recorded while the person is running: The signal shows a "collective”
anomaly with a subtle deviation at #;, a more significant anomaly at #;, and a
sustained anomalous segment from f3 to fs.

Figure 1.3: Examples of PPG signals collected during two scenarios: (a) while the person is
standing and (b) while the person is running. The red-highlighted regions in both signals
indicate various types of anomalies, including "point" anomalies, "contextual" anomalies, and
"collective" anomalies, illustrating how deviations from the baseline pattern can manifest
under different contexts and conditions.
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align with the expected baseline for a standing individual. This highlights the
importance of considering contextual information when identifying anomalies,
as patterns must be evaluated relative to the conditions under which they occur.

Collective Anomalies: These involve a sequence of data points that together
represent an unusual pattern, even if individual points within the sequence may
not appear anomalous on their own. Unlike point anomalies, where single
data points can be identified as anomalous independently, collective anomalies
require examining the entire sequence to recognize the deviation from the
baseline. In Figure 1.3b, where the person is running, two types of collective
anomalies can be identified. A short-duration collective anomaly is observed at
11, where a subtle deviation spans a few consecutive points, and at f,, where
the deviation is more prominent but still occurs over a brief temporal window.
A prolonged collective anomaly is observed from f3 to #;. During this interval,
the PPG signal deviates from the established baseline, reflecting a significant
alteration in the overall pattern. This deviation may indicate a prolonged
irregularity in data collection or another physiological abnormality that warrants
attention. Unlike short-duration collective anomalies like those at #; and f,
prolonged anomalies are characterized by their persistence over a longer time
frame.

1.3. ANOMALY DETECTION IN TIME SERIES DATA

Anomaly detection in time series data involves identifying these unusual events amidst
the normal fluctuations and patterns. A variety of approaches can be employed,
broadly categorized into supervised and unsupervised methods.

1.3.1. SUPERVISED ANOMALY DETECTION

In supervised anomaly detection, the model is trained on a labeled dataset, where
each data point is explicitly marked as either "normal" or "anomalous." This
approach treats anomaly detection as a classification problem, enabling the model to
learn patterns associated with each class directly from the data [22]. For instance,
Figure 1.3a illustrates a scenario where an expert has annotated a PPG signal recorded
while the person is standing. In this figure, the regions around #; (sharp point
anomaly) and between f, and 3 (contextual anomaly) are labeled as anomalies.
These labeled segments serve as ground truth for the model during training, allowing
it to learn to distinguish anomalous patterns from normal behavior.

While supervised models can achieve high accuracy for detecting known anomalies,
their effectiveness is heavily reliant on the availability and quality of labeled datasets.
This dependency presents a significant challenge, as collecting labeled examples,
particularly for rare anomalies, is often labor-intensive and costly [25]. Additionally,
the scarcity of anomalies results in highly imbalanced datasets, making it difficult for
models to learn effectively without biasing toward the majority class [26]. Supervised
models are also prone to overfitting, especially when the training data fails to capture
the full variability of both normal and anomalous patterns [27]. Moreover, these
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models typically struggle to adapt to unknown or unexpected anomalies, failing to
detect events that were not represented in the training data [28]. As a result, while
supervised anomaly detection is powerful for well-defined problems with ample
labeled data, its limitations underscore the need for alternative solution such as
unsupervised anomaly detection.

1.3.2. UNSUPERVISED ANOMALY DETECTION

Unsupervised anomaly detection techniques do not rely on labeled datasets. Instead,
they operate under the assumption that anomalies are rare and different from the
majority of the data [22]. These methods focus on learning the inherent structure of
normal behavior from the dataset. Once the model has established a baseline for
what constitutes "normal," it identifies deviations from this baseline as anomalies.
This flexibility makes unsupervised methods particularly suited for scenarios where
labeled data is unavailable or where anomalies are not clearly defined.

However, while unsupervised methods alleviate the dependency on labeled data,
they come with their own challenges. The effectiveness of these techniques heavily
depends on the model’s ability to learn a meaningful representation of the data,
where normal and anomalous patterns are sufficiently distinct [29]. In this context,
a meaningful representation refers to transforming the raw data into a reduced or
structured form that highlights the essential patterns while discarding irrelevant
variations or noise. If the model fails to capture the underlying structure of normal
behavior accurately, it may misinterpret normal variations as anomalies, leading to
false positives, or overlook subtle anomalies, resulting in false negatives [30].

1.3.3. CHALLENGES IN TIME SERIES ANOMALY DETECTION

Beyond the specific challenges mentioned for both supervised and unsupervised
anomaly detection methods, both approaches are impacted by broader issues arising
from the intrinsic properties of time series data.

HiGH DIMENSIONALITY

One primary challenge is the high dimensionality of time series data, particularly in
multivariate datasets where multiple variables, or features, are recorded simultaneously
at each time step. In this context, features refer to distinct measurements or variables,
such as heart rate, blood oxygen levels, or motion sensor data in physiological
monitoring.

In high-dimensional datasets, the relationships between features become increasingly
complex. These interrelationships often play a critical role in detecting anomalies,
as deviations from expected patterns may not occur within individual features but
rather in their combined behavior [31]. For example, an anomaly might involve a
subtle shift in the correlation between heart rate and oxygen saturation that would
not be evident when examining either feature in isolation. Supervised methods,
which rely on labeled datasets, face significant challenges in high-dimensional spaces
because the model must learn these intricate relationships [22]. The scarcity of
labeled data exacerbates this issue, making it difficult to adequately capture all
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possible feature interdependencies. Without sufficient labeled examples, the model
risks underperforming or failing to generalize. High dimensionality also introduces
the risk of overfitting in supervised methods, where the model inadvertently learns
noise or irrelevant correlations rather than meaningful patterns. This can lead to
reduced accuracy when applied to unseen data. On the other hand, in unsupervised
anomaly detection methods, which aim to establish a baseline of normal behavior,
high dimensionality can obscure subtle anomalies or generate false alarms [29].
The complexity increases as the number of features grows, making it challenging
for models to identify meaningful patterns. Additionally, the large number of
possible interactions between features in high-dimensional spaces presents significant
computational and modeling challenges for both supervised and unsupervised
approaches [32].

Traditional approaches to address high dimensionality include dimensionality
reduction techniques such as Principal Component Analysis (PCA), which project
high-dimensional data onto a lower-dimensional space while preserving the most
critical information [33]. More temporarily, Autoencoders, a type of neural
network, are used to learn compact representations of data by compressing and
reconstructing input features [34]. While these methods are effective at reducing
the complexity of high-dimensional data, they have limitations. PCA assumes
linear relationships between features, which may not hold in complex datasets [35],
and autoencoders require careful tuning to avoid losing critical anomaly-related
information [36]. Additionally, these techniques often struggle to preserve temporal
dependencies in time series data, potentially diminishing their effectiveness for
detecting anomalies [37].

TEMPORAL DEPENDENCIES

In addition to high dimensionality, temporal dependencies in time series data also
affects anomaly detection [38]. These dependencies arise because observations, data
points collected over time for each feature, in a time series are not independent
but are sequentially related [39]. Anomalies, therefore, may not always occur as
isolated point anomalies; they can also manifest as patterns or sequences that deviate
from expected behavior over time (e.g., collective or contextual anomalies) [22]. For
example, in Figure 1.3a, the anomaly at f#; is an isolated point anomaly, while
the anomaly section from f, to f3 consists of a sequence of observations that are
considered anomalous within the given context. Similarly, an irregular heart rhythm
may develop gradually, with small changes in heart rate variability accumulating over
time.

For supervised methods, temporal dependencies significantly complicate the task of
labeling data. Gradual deviations or context-sensitive patterns require labeled datasets
that not only capture isolated anomalies but also sequences of abnormal behavior [40].
However, constructing such datasets is often infeasible, especially when anomalies
are rare or evolve unpredictably [22]. Consequently, supervised models trained
predominantly on isolated point anomalies may fail to detect more complex temporal
deviations embedded in sequences. Unsupervised methods also face considerable
challenges when dealing with temporal dependencies [38]. Normal patterns in time
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series often involve intricate, time-dependent relationships that vary across different
time scales [39]. For example, PPG signals exhibit short-term fluctuations driven
by breathing and long-term trends influenced by circadian rhythms. Distinguishing
between these expected variations and genuine anomalies requires models capable of
capturing both local and global temporal dependencies [29]. Failure to do so may
result in false positives, where normal but unusual variations are flagged as anomalies,
or missed detections for genuine sequential anomalies.

Moreover, temporal dependencies also complicate the detection of subtle
anomalies—those that slightly deviate from normal temporal behavior but may still
indicate significant underlying events—compared to more prominent anomalies. For
example, in Figure 1.3b, the anomaly at #; represents a subtle deviation from the
expected pattern. This type of anomaly may be harder to detect due to its minor
deviation, which can easily blend into the inherent variability or noise present in time
series data. By contrast, the anomaly at #, is a significant deviation that stands out
from the baseline pattern, making it easier to detect. Supervised methods, which
depend on labeled datasets, may fail to learn subtle anomalies like #; if they are
underrepresented or absent in the training data. Additionally, supervised models
tend to prioritize more distinct anomalies, such as t,, because these are easier to
label and classify. This focus on significant anomalies can result in subtle deviations
being disregarded, even when they are important. Unsupervised methods must
accurately capture the intricate temporal dependencies in the data to distinguish
between normal variability and subtle anomalies. Subtle deviations, like #;, may be
misinterpreted as noise or expected temporal variations, particularly in the presence
of complex patterns or noisy data. Furthermore, when significant anomalies like f,
dominate the dataset, the model may be biased toward detecting these more obvious
patterns, further reducing sensitivity to more subtle deviations.

To address temporal dependencies in time series anomaly detection, a variety of
solutions have been developed. Traditional methods, such as autoregressive models
(e.g., ARIMA and SARIMA), capture temporal relationships by modeling the current
value of a time series as a function of its past values [41]. While effective for simpler,
linear patterns or seasonal trends, these methods often struggle to handle non-linear
dependencies or multi-scale temporal relationships. Another approach, the matrix
profile, identifies anomalous subsequences by measuring similarities across the time
series, providing a computationally efficient way to handle univariate series, though
its applicability to multivariate or more complex anomalies is limited [42]. Neural
networks, including LSTMs and Transformers, have become popular for their ability
to model intricate, non-linear, and multi-scale temporal dependencies [39]. These
models can capture both short-term fluctuations and long-term trends, making
them powerful for detecting a wide range of temporal anomalies [43]. However,
neural networks are prone to over-generalization, particularly when the training data
predominantly reflects normal behavior. Subtle anomalies, which slightly deviate from
normal patterns, may be overlooked if the model generalizes these deviations as part
of the baseline [44, 45].
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(a) Clean infrared PPG signal: The signal exhibits a smooth and consistent baseline
pattern, representing ideal data collected without external noise or motion artifacts.
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(b) Corrupted PPG signal with motion artifacts: The signal demonstrates significant

distortion caused by motion artifacts, obscuring the original baseline pattern and

making anomaly detection challenging.
Figure 1.4: Examples of PPG signals: (a) a clean signal without artifacts, and (b) a corrupted
signal with motion artifacts. These examples illustrate the impact of noise and motion artifacts
on data quality, highlighting the challenges in detecting anomalies in real-world scenarios.

NOISE AND DATA QUALITY

Another major challenge is the presence of noise and issues with data quality.
In real-world applications, data may be collected from sensors or other devices
in uncontrolled environments, where external factors like sensor placement,
environmental conditions, or human activity can introduce noise [46]. Figure 1.4
provides an example of this issue in the context of physiological monitoring.
Subfigure 1.4a illustrates a clean PPG signal, while Subfigure 1.4b shows the same
signal corrupted by motion artifacts due to physical activity. These motion artifacts
distort the underlying patterns, making it difficult to distinguish meaningful deviations
from potential anomalies. For instance, anomalies embedded in the corrupted signal,
such as subtle physiological changes, may be masked by the noise or misinterpreted
as normal variations.

For supervised methods, noise and poor data quality can significantly degrade
model performance by corrupting the labeled training data [47]. In the context of
Figure 1.4, a corrupted PPG signal like the one in subfigure 1.4b could introduce
inconsistencies in the labeled dataset, where noise may be mistaken for genuine
anomalies or vice versa. When noisy labels or inputs are present, models may
struggle to learn accurate distinctions between normal and anomalous patterns. In
such cases, the model risks overfitting to noise, learning irrelevant patterns instead of
generalizable features, and ultimately performing poorly on unseen data [47, 48].
Similarly, unsupervised methods struggle when noise obscures the true baseline of
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normal behavior, as shown in subfigure 1.4b, where the motion artifacts make it
challenging for the model to learn the inherent structure of the signal [49]. This
issue is particularly pronounced in time series data, where noise can easily blend
into complex temporal patterns, making it harder to distinguish true anomalies from
random fluctuations.

Additionally, noise and data quality issues can compound other challenges in time
series anomaly detection, such as high dimensionality and temporal dependencies.
For example, when noise affects multiple features simultaneously or persists over
extended periods, it can amplify the difficulty of detecting genuine anomalies across
time and features. Models must disentangle true temporal patterns and feature
correlations from spurious noise to effectively identify anomalies in such scenarios.

Traditional methods such as signal smoothing techniques, including moving
averages and low-pass filters, aim to reduce noise by suppressing high-frequency
variations that are unlikely to represent true anomalies [50, 51]. While these methods
are computationally efficient and straightforward to implement, they risk removing
subtle anomalies along with the noise, especially when anomalies themselves involve
small, high-frequency deviations [52]. Noise-robust statistical models, such as Kalman
filters, provide an alternative by estimating the underlying signal based on noisy
observations, but their effectiveness diminishes when noise characteristics are complex
or non-stationary [53]. Recent advances in machine learning have introduced more
sophisticated solutions for handling noise. Neural networks, particularly autoencoders,
are often used for denoising by learning compact representations of clean signals and
reconstructing them from noisy inputs [36]. Variants like denoising autoencoders or
convolutional neural networks (CNNs) are specifically designed to filter out noise
while preserving meaningful patterns in the data [54]. However, these methods rely
heavily on having representative training data that includes both clean and noisy
signals, which may not always be available [55]. Moreover, neural networks can be
prone to overfitting noise if the training process is not carefully controlled.

DOMAIN-SPECIFIC VARIABILITY

A further challenge in time series anomaly detection is domain-specific variability,
which refers to differences that arise due to individual characteristics, device-specific
factors, or variations in data collection sources. This variability complicates the
development of robust models, as what constitutes "normal" behavior can vary
significantly across domains, individuals, or environments [56]. For example, in
physiological monitoring using wearables, PPG signals may differ greatly between
individuals due to factors such as age, skin tone, body composition, or fitness
levels [10]. This phenomenon, typically referred to as inter-subject variability,
highlights how a pattern that appears normal for one individual may be considered
anomalous for another, leading to difficulties in designing models that generalize
across individuals [57].

In supervised methods, these variations can cause models to overfit to the specific
characteristics of the training data, limiting their ability to generalize to new domains
or contexts. Without diverse labeled datasets that capture the full range of variability,
supervised models may misclassify domain-specific normal patterns as anomalies or
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overlook genuine anomalies that deviate from these patterns. Unsupervised methods
face similar challenges. Since these approaches rely on learning a baseline of normal
behavior directly from the data, domain-specific variability in the training data can
distort this baseline. For instance, an unsupervised model trained on PPG data from
a single individual may struggle to accurately detect anomalies in data collected
from another individual with significantly different physiological characteristics. This
challenge is further exacerbated in multivariate time series, where models must
simultaneously account for temporal dependencies and feature correlations while
accommodating domain-specific differences across multiple variables. In such cases,
variability across features or individuals can obscure true anomalies or lead to false
positives, further complicating anomaly detection in diverse domains.

To address domain-specific variability in time series anomaly detection, traditional
approaches often rely on feature standardization or normalization techniques to
reduce variability by rescaling data to a common scale. While effective for minimizing
inter-individual differences in straightforward cases, these techniques may not capture
more complex variations arising from domain-specific factors [58]. Similarly, ensemble
models that aggregate predictions from multiple models trained on different subsets
of the data can enhance robustness, but they often require substantial computational
resources and may still struggle with underrepresented variability in the training
data [59, 60]. Transfer learning and domain adaptation techniques might handle
domain-specific variability more effectively [61]. For instance, pretraining models
on large, diverse datasets before fine-tuning them on smaller, domain-specific
datasets can help mitigate overfitting to narrow contexts [62]. Transfer learning
enables models to retain generalizable patterns learned during pretraining while
adapting to specific domains during fine-tuning [63]. However, this approach relies
on the availability of well-labeled source datasets, which may not always exist for
niche applications [64]. Another promising method involves personalized modeling
frameworks that adapt anomaly detection models to individual users or specific
domains. However, personalized models face challenges such as data scarcity and the
computational demands of managing multiple models [65-67].

EVALUATION OF TIME SERIES ANOMALY DETECTION METHODS

Once an anomaly detection model is built, evaluating its performance in time series
data presents unique challenges, especially as we deal with rare, context-dependent
events that unfold over intervals. Conventional evaluation methods often rely on
metrics like Precision, Recall, or F1-score, which treat anomalies as isolated events
and evaluate each data point independently [68]. While these metrics are effective for
static data, they fall short in the context of time series, where anomalies frequently
form part of larger temporal patterns and exhibit sequential dependencies. For
example, an anomaly may span multiple time steps, making it difficult to assess
performance using metrics designed for static, point-based evaluations.

These limitations underscore the need for evaluation criteria that address the
specific complexities of time series data. A well-rounded assessment should consider
several critical aspects of model performance. Among these, one criterion is Early
detection which refers to identifying potential anomalies before they fully manifest,
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often based on subtle changes in the data pattern over time. This capability is
especially valuable for proactive interventions, as it enables timely responses to
emerging issues. The other criterion is Delayed detection which occurs when an
anomaly is identified after it has fully occurred. While not ideal, delayed detection
reflects the model’s capacity to eventually recognize anomalies, even if the response is
not immediate. Figure 1.5 illustrates examples of both early and delayed detection.
For instance, the anomaly event a; is detected early by prediction p;;, highlighting
the value of early detection for timely intervention. Conversely, the same anomaly
a; is detected with a delay by prediction p;», demonstrating the importance of
accounting for such cases in evaluation metrics.

Example of Early and Delayed Detection Example of Onset Response Time Example of Coverage Level

Ground Truth --

Model 1 Detection -
Model 2 DeteCtion oo -

1 '
Time >

Figure 1.5: Illustration of anomaly detection in time series data. aj_3 represent the actual
anomalies as ground truth. Predictions are denoted by p. The durations of both events
are indicated by the length of the boxes. Overlapping areas indicated between p and a
demonstrate where the model has correctly identified anomalies.

A concept closely related to Early and Delayed detection is Onset response time,
which evaluates how accurately the detection of an anomaly aligns with the start of
the event. Onset response time focuses on identifying the beginning of an anomaly or
event as it starts to develop. In Figure 1.5, anomaly event a, is detected by p;
and p2». However, p»; aligns more closely with the beginning of the anomaly event
ap, indicating a faster response than p»». Understanding and evaluating both early
and Onset response time are critical for applications where timely responses can
significantly mitigate potential risks or consequences.

Anomaly Coverage level is another essential criterion, assessing the model’s ability
to detect a wide range of anomalies present in the data. High coverage ensures the
model is not overly selective, capturing not only clear outliers but also more complex
anomalies, such as contextual or collective patterns that span multiple data points. In
Figure 1.5, predictions p3; and ps3y detect anomaly ag, but p3; offers greater coverage,
aligning more extensively with the anomalous interval. Comprehensive coverage
is particularly critical in applications where varied anomaly types carry significant
implications.

Together, these criteria form a comprehensive framework for evaluating the
performance of anomaly detection models in time series data. Various metrics have
been proposed to evaluate time series anomaly detection, addressing its sequential
nature and temporal dependencies. Metrics such as R-based [69], TS-Aware [70], and
their enhanced versions like ETS-Aware [71] have advanced the field by incorporating
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considerations for range coverage, delayed detection, and overlap scoring. Point-based
metrics like PA-F1 [72] simplify evaluation but often lead to optimistic scores,
particularly when dealing with fragmented or subtle anomalies. Threshold-free metrics
such as VUS-ROC and VUS-PR [73] offer an alternative by evaluating performance
across a range of thresholds, yet they fall short in accounting for early and onset
detection, critical in time-sensitive applications. While these metrics represent
significant progress, gaps remain in fully capturing key evaluation criteria of time
series anomalies.

1.4. FOUNDATIONS OF THE THESIS AND OUTLINE

The challenges outlined above underscore the complexity of time series anomaly
detection, driven by issues such as label scarcity, high dimensionality, noise, intricate
temporal dependencies, and evaluation metrics. Addressing these gaps is essential for
developing more effective and reliable anomaly detection systems. A key focus of this
thesis is addressing the limitations of existing evaluation metrics. By introducing
a framework tailored to the unique characteristics of time series data, this work
provides a more accurate and context-aware assessment of anomaly detection
methods. Beyond evaluation, this thesis is guided by several core principles for
addressing anomaly detection challenges in time series data. Central to this work is
the use of unsupervised methods, which enable effective learning from unlabeled
data, and representation learning, which provides a robust foundation for capturing
meaningful patterns in complex datasets. Additionally, the thesis introduces novel
model design and anomaly scoring mechanisms to improve the detection of subtle
anomalies, emphasizing sensitivity and robustness in complex real-world datasets.
Non-linear techniques are employed to capture the rich temporal structure of time
series data, balancing generalization and sensitivity to ensure both prominent and
subtle anomalies are effectively detected.

Building on these principles, this thesis makes several contributions to advance the
state of time series anomaly detection, as detailed in the following chapters:

Chapter 2 focuses on the critical challenge of effectively evaluating anomaly
detection models in time series data, which is often overlooked by traditional
metrics. To overcome this, we introduce PATE (Proximity-Aware Time Series Anomaly
Evaluation), a novel metric designed to account for the temporal complexity inherent
in anomaly detection tasks. PATE considers the proximity of detected anomalies to
the true anomaly onset, allowing for a more accurate evaluation. It captures aspects
like Early detection, Delayed detection, Onset response time, and Coverage level, thereby
addressing the shortcomings of existing evaluation metrics. This chapter not only
explains the development of PATE but also demonstrates its effectiveness through
experiments on both synthetic and real-world datasets, highlighting its superiority in
capturing the intricacies of time series anomaly detection.

Chapter 3 addresses the challenges of label scarcity and high inter-subject
variability in PPG data by adopting an approach that enables the model to learn
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from unlabeled data. The method involves training the model on an auxiliary task,
such as reconstructing the PPG signal, to capture essential patterns in the data. This
auxiliary task, known as a pretext task, helps the model learn lower-dimensional,
informative representations that filter out noise while retaining critical information.
These learned representations are then fine-tuned for a specific application, such
as human activity recognition, referred to as the downstream task. However, using
reconstruction as the pretext task did not fully address the differences between
individuals, and inter-subject variability remains a significant challenge, limiting
the model’s generalization capabilities. This chapter serves as a foundation for
understanding the potential and limitations of representation learning in reducing
data complexity and improving anomaly detection in subsequent chapters.

Chapter 4 builds on the limitations identified in Chapter 3 regarding the
reconstruction pretext task and focuses on improving anomaly detection in PPG
signals as downstream tasks. In this chapter, we propose a custom pretext task, where
instead of reconstructing the original signal, we classify different transformations
of the signal. This approach helps learn lower-dimensional representations that
are more robust to variability and noise, effectively improving generalization across
subjects for two different anomaly detection tasks. We demonstrate that this custom
pretext task better captures essential features, tackling the challenges associated
with representation learning in PPG signals. Additionally, we explore personalization,
tailoring models to individual users to further reduce inter-subject variability,
ultimately enhancing the reliability of the model.

Chapter 5 shifts focus to the challenge of detecting subtle anomalies in time
series data, which are often overlooked due to the overgeneralization tendencies
of traditional reconstruction-based methods. To address this, we introduce
RESTAD (REconstruction and Similarity-based Transformer for Anomaly Detection), a
novel framework that combines reconstruction errors with similarity-based scoring
mechanisms. By integrating a Radial Basis Function (RBF) layer within a Transformer
architecture, RESTAD improves detection sensitivity to subtle deviations by measuring
the proximity of data points to learned reference centers in the latent space. This
chapter demonstrates RESTAD’s ability to detect both prominent and subtle anomalies
across a variety of benchmark datasets, offering a practical solution to the challenges
of missed anomalies and enhancing the field of anomaly scoring mechanisms.
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PATE: PROXIMITY-AWARE TIME SERIES
ANOMALY EVALUATION METRIC

Evaluating anomaly detection algorithms in time series data is critical as inaccuracies
can lead to flawed decision-making in various domains where real-time analytics and
data-driven strategies are essential. Traditional performance metrics assume iid data
and fail to capture the complex temporal dynamics and specific characteristics of time
series anomalies, such as early and delayed detections. We introduce Proximity-Aware
Time series anomaly Evaluation (PATE), a novel evaluation metric that incorporates
the temporal relationship between prediction and anomaly intervals. PATE uses
proximity-based weighting considering buffer zones around anomaly intervals, enabling
a more detailed and informed assessment of a detection. Using these weights, PATE
computes a weighted version of the area under the Precision and Recall curve. Our
experiments with synthetic and real-world datasets show the superiority of PATE in
providing more sensible and accurate evaluations than other evaluation metrics. We
also tested several state-of-the-art anomaly detectors across various benchmark datasets
using the PATE evaluation scheme. The results show that a common metric like
Point-Adjusted F1 Score fails to characterize the detection performances well, and
that PATE is able to provide a more fair model comparison. By introducing PATE,
we redefine the understanding of model efficacy that steers future studies toward
developing more effective and accurate detection models.

This chapter has been published as:

Ghorbani R, Reinders MJ, Tax DM. PATE: Proximity-Aware Time Series Anomaly Evaluation.
InProceedings of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 2024
Aug 25 (pp. 872-883). [11.

Code available at:
https://github.com/Raminghorbanii/PATE
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2.1. INTRODUCTION

Anomaly detection in time series (TS) data, the process of identifying unusual patterns
that deviate from the expected norm, has become increasingly important across
various domains [2, 3]. The rapid advancement of data-driven decision-making and
real-time analytics has opened opportunities for developing more accurate anomaly
detection methods. Such developments often lead to models competing to claim
the status of ’State-of-the-Art’ (SOTA). Achieving this status is not just a matter of
academic prestige; it often directs the focus of future research, influences industry
adoption, and guides the development of practical applications. However, choosing
an appropriate evaluation metric is critical to avoid incorrect conclusions about a
model’s performance. Relying on evaluation metrics that do not accurately reflect
the true effectiveness of the models can lead to flawed decisions in real-world
applications. This is particularly consequential in critical domains, such as medical
diagnostics or financial fraud detection, where relying on a poorly evaluated model
can have serious repercussions.

Standard evaluation metrics such as Precision and Recall [4] are effective for
point-based anomaly detection as they assess the accuracy of detecting isolated
iid events. In this context, each data point is evaluated independently, allowing
for straightforward calculation of these metrics. However, in TS data, events and
anomalies typically occur in time intervals. This complexity causes several situations:
1) Early Detection, when potential anomalies are identified before they fully manifest,
based on subtle changes in the data pattern over time. Figure 2.1 shows an example
of early detection where prediction p;; detects the anomaly event a; earlier than its
actual occurrence. Although p;; does not align exactly with a;, such early detection
is valuable for early response actions and should be appropriately appreciated in
evaluation metrics. 2) Delayed Detection, occurs when an anomaly event is not
detected immediately but is identified at a later time, even after its actual occurrence.
In Figure 2.1, the anomaly event a; is detected with a delay by prediction event
p12. Although p;» does not align precisely with a;, this type of delayed detection
should be accounted for in the evaluation process, as it reflects the model’s ability to
eventually identify anomalies, even after some delay.

Another situation, 3) Onset Response Time, refers to how close the detection of
an anomaly is to the start of the event. Timely detection is valuable, especially in
scenarios where immediate action is required. In Figure 2.1, anomaly event ay is

Predict 1

Predict 2

Time >

Ground

Figure 2.1: Illustration of anomaly detection in time series data. aj_3 represent the actual
anomalies as ground truth. Predictions are denoted by p. The durations of both events are
indicated by the length of the boxes. Overlapping areas between p and a demonstrate where
the model has correctly identified anomalies.
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detected by p»; and p,2. However, p»; aligns more closely with the beginning of the
anomaly event a,, indicating a faster response than p,,. Evaluation metrics should
reward those that occur promptly after the onset of an anomaly. Finally 4) Coverage
level of Predictions, refers to the range that a prediction covers an actual anomaly.
The effectiveness of a prediction can be measured by how much of the anomaly it
successfully captures. In Figure 2.1, predictions p3; and ps; both detect anomaly
event as, but ps3; covers as more than psp. This more extensive coverage by ps;
makes it a more effective prediction for as. Accordingly, evaluation metrics need to
consider the coverage range of the predictions over the duration of the anomalies.

Various metrics have been developed that are specifically tailored to the sequential
nature of time series data (referred to as Sequential Adaptability). For instance,
Range-based Precision and Recall metrics, hereafter denoted as R-based [5], expand
upon traditional metrics by incorporating factors such as existence (detecting the
anomaly range with at least one point), size and position (reflecting the number and
relative position of correctly detected anomaly ranges), and cardinality (penalizing
fragmented predictions for a single anomaly). The Time Series Aware Precision and
Recall, hereafter denoted as TS-Aware [6], follows a similar approach but omits
cardinality and position considerations. This metric requires a prediction to cover
a minimum percentage 6 of an anomaly for it to be considered a true detection.
They also add a buffer zone § to give some credit for delayed detection in a
decreasing manner. An enhanced version, denoted as ETS-Aware [7], further refines
the evaluation by combining detection and overlap scores for improved accuracy
in scoring overlapped detections. Further, the Affiliation metric [8], introduces a
different perspective by focusing on the distance between prediction and actual
anomaly ranges. It assesses the proximity of predicted anomalies to actual ones by
measuring the duration between their respective ranges.

Another widely used method is the Point Adjusted F1 Score metric, which we will
denote as PA-FI [9]. This approach assumes that detecting a single point in an
anomaly range is sufficient for human experts to identify the entire range. Thus,
it considers all observations within the corresponding anomaly range as correctly
detected anomalies. However, it has been criticized for potentially generating
optimistic scores. For example, [10] revealed that random anomaly scores from a
uniform distribution outperform state-of-the-art methods when evaluated using this
metric. To address this, [10] proposed a modified version that requires a portion of
K% of the anomaly range to be detected before making any adjustments.

While all these metrics represent advancements in time series anomaly detection
evaluation, they do not fully consider all the critical factors of early and delayed
detections, or onset response timing. In addition to these limitations, the
aforementioned metrics also require the setting of a threshold, a value where data
points with anomaly scores exceeding this value are classified as anomalies. Selecting
this threshold adds additional complexity and leads to subjectivity and inconsistency
in evaluations. Metrics such as the Area Under the Receiver Operating Characteristic
curve (AUC-ROC) and the Area Under the Precision-Recall curve (AUC-PR) eliminate
the need for thresholding by evaluating the performance of the model across a
range of thresholds. However, they fall short in time series contexts due to not
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considering the order of the data points and the temporal correlation between them.
In response to this issue, Volume Under the Surface (VUS) metrics, VUS-ROC and
VUS-PR, are proposed [11]. These metrics acknowledge the need to accommodate
close predictions to the true anomaly ranges by adjusting the labels to be between
0 and 1 on a range over both sides of the actual anomaly range. Although the
method is threshold-free, it does not pay attention to early and delayed detection,
and onset response time. Furthermore, by changing the original labels, the metric
gives unrealistic scores, as reaching the maximum detection score of 1 is not possible.

This paper introduces the Proximity-Aware Time series anomaly Evaluation metric,
PATE (/pelt/). Our novel metric integrates buffer zones around the anomaly events
and utilizes a special proximity-based weighting mechanism, enabling a detailed
assessment of both early/delayed detections and addressing the onset response time
challenge. PATE avoids the subjectivity of threshold-dependent metrics by integrating
over the range of thresholds, offering a fair and unbiased evaluation, especially in
research settings where expert knowledge might not be available for setting the exact
desirable parameters based on the application. Table 2.1 illustrates a comparison
between existing metrics and PATE, highlighting the comprehensive adaptability
reconsideration of PATE in evaluating the TS anomaly detection.

Table 2.1: Comparison of Anomaly Detection Evaluation Metrics. Key features: Sequential
Adaptability (SA); Early Detection (ED); Delayed Detection (DD); Onset Response Time (ORT);
Coverage Level (CL) and Threshold-Free (TF)

Metric SA ED DD ORT CL TF

Precision/Recall (F1 Score) - - - R _
R-based
TS-Aware/ETS-Aware
Affiliation

PA-F1

AUC-ROC/PR
VUS-ROC/PR

PATE

AN NENENEN

2.2. PROPOSED EVALUATION METRIC - PATE

A time series is denoted as a sequence of observations & = {xt}'{zl, where T represents
the length of the time series, and each x; is the observed data point at time .

An actual anomaly event (labeled as positive in the ground truth labels) is a
subsegment within the time series, denoted as ay = (ix, ni) for points iy and nj with
1<ix<ng<T. The set of all anomaly events in the time series is represented as
o = {ak}szl, where N is the number of anomaly events present in the time series.

In practice, the detection models output continuous anomaly scores, denoted as
S = {s,}thl, representing the likelihood of each observation x; to be anomalous.
These scores are then converted into binary predictions by applying a threshold 8,
where scores equal to or exceeding the threshold are classified as anomalies. We
define a prediction event as a subsegment identified by these binary predictions to be
anomalous, denoted as p;(0) = (my, j;) for points m; and j; with 1<m; < j;<T. The
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set of all prediction events is represented as 27 = {pl(H)}?/:Il, where M is the number
of prediction events identified by the model.

The effectiveness of the anomaly detector is determined by how well these p;(0)
events align with the a; events. PATE distinguishes several categories of matches
between ground truth and predictions based on their temporal relationships and
assigns proximity-specific weights to each point in each category. These weights
are then used to compute a weighted version of Precision and Recall scores. The
final measure of PATE is a weighted AUC-PR, which is derived from these weighted
Precision and Recall scores. Further details on these computations are provided in the
following sections.

2.2.1. CATEGORIZING THE EVENTS

Figure 2.2 illustrates the different categories of anomaly and prediction events in
relation to each other. In assessing each p;(0), we consider its overlap, proximity,
or distance (temporal relation) from each a;. This approach allows for the clear
differentiation of the diverse scenarios: complete and partial detection of anomalies,
early or delayed detection, and instances where anomalies are either partially or
entirely missed. Specifically, we categorize the anomaly and prediction events as
follows:

PREDICTION EVENTS CATEGORIES:

* True-Detection: Sub-segments of the prediction event p;(0) that overlap with an
anomaly event ay, indicating anomalies that are accurately identified and not missed.
Examples are segments p;, ps, and pg—» in Figure 2.2.

., Partial Missed Early buffer zone started after the post buffer zone
The same as the 3 Anomaly Event as there was an overlapping between the zones Total Missed
e Anomaly Event

sizeofps ¢
A

butfer size : d butter size 0+

Anomaly

Events ‘{ &

Prediction o v IS P

Events Detected |Post-Buffer Outside Pre-Buffer
1 .

TPs & FPs . e ~—

Weights e —
. ;

FNs
Weights ~
0 i

“Time Index

Figure 2.2: Illustration of the Categorization and Weighting Mechanism in the PATE Method.
Prediction events (p; — p7) are represented by orange boxes, while anomaly events (a; — ay)
are depicted by blue boxes. TP weights are illustrated with a blue line mmm, FP weights with a
red line mmm, and FN weights with a purple line ==m. Note that the solid segments of the lines,
in contrast to the dotted segments, indicate the activated weights for the example scenario
depicted in the figure.
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¢ Post-Buffer Detection: Sub-segments of the prediction event p;(0) that fall into
a buffer zone immediately following an anomaly event a; (See segments p, and
pe—3 in Figure 2.2). This category highlights the capacity of the model for delayed
detection. The post-buffer zone size, denoted by d, can be adjusted by experts based
on specific application needs. When d is unknown for a specific application, we
can consider a range of values for d rather than a fixed one D=1{0,1,...,dnax}. This
approach allows for a comprehensive assessment of the model’s performance across
different scenarios, as each buffer size can provide a different perspective on the
performance of the model. Details on how these buffer sizes contribute to the overall
PATE score will be discussed in the following sections.

* Pre-Buffer Detection: Sub-segments of the prediction event p;(6) that fall into a
zone that precedes the start of an anomaly event aj. This category highlights the
capacity of the model for early detection, signaling potential anomalies ahead of
time. Similar to the post-buffer zone, the size of the pre-buffer zone, denoted by e,
varies within the set E={0,1,...,enax} with the same approach for the assessment.
The assignment of points to this category is conditional on not overlapping with
the Post-Buffer zone of a preceding anomaly aj_;, ensuring that the model early
warning is distinct from a delayed detection of the previous event. In other words, the
Post-Buffer category has priority, and therefore, if iy — e < ny_; +d then the Pre-Buffer
zone starts at nyp_;+d+1 instead of i, —e. Furthermore, Pre-Buffer detection is
dependent on the successful detection of the subsequent anomaly event aj. In
situations where no part of the subsequent event ay is detected by a True-Detection,
this Pre-Buffer detection is considered a false alarm rather than a meaningful early
detection. Consequently, this early prediction p;(6) is reclassified as False Positive (the
Outside category, which is discussed below). Further details are given in Appendix 2.C.
In Figure 2.2, py and pg-; are the examples of pre-buffer detection category, whereas
p7 is not considered in this category.

¢ Outside: Sub-segments of the prediction event p;(0) located outside the ranges
of anomaly event a; and its buffer zones. These are instances where the model
incorrectly flags normal behavior as anomalous (False Positive), like segments p3 and
p7 in Figure 2.2.

ANOMALY EVENTS CATEGORIES:

o Total Missed Anomalies: When an entire anomaly event ay is not detected by any
segments of the prediction event p;(0), that is, all detections are before i} — e or after
nyg+d. This category indicates a complete failure (False Negative) of the model to
identify the anomaly. See segment a4 in Figure 2.2.

* Partial Missed Anomalies: This category is assigned when only a part of anomaly
event ay is detected by the prediction events p;(@)’s, but there are segments within
the anomaly range of a; that remain undetected. This category not only highlights
the model’s capability to detect parts of an anomaly but also its inability to identify
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the anomaly event in its entirety. For instance, segment a, in Figure 2.2, where a part
of it is detected by ps but before and after ps we have partially missed segments.

2.2.2. WEIGHTING PROCESS

After each individual time point is assigned to its category, we define weights for
each of these points to determine their contribution to the True Positive (TP), False
Positive (FP), and False Negative (FN) metrics of the detector. It is important to
note that time points at which no anomaly is present and no prediction is made,
True Negatives (TN), do not actively contribute to the performance metrics and are,
therefore, implicitly assigned a weight of zero, reflecting their non-contribution. The
bottom half of Figure 2.2 visually represents the variations in weights across all
different categories.

o True-Detection Weights: Each point ¢ from the True-Detection category, lying
within the range of an anomaly event [ig, ng], is considered correctly identified. Thus,
such points are assigned the maximum weight of 1 as True Positives:

w™(1)=1 for t€ TrueDetection p1©) 2.1

* Post-Buffer Detection Weights: Each point ¢ from the post-buffer category, in the
range of (ng, ny +d], is evaluated in relation to the anomaly event aj. These points,
while not being true positives in the traditional sense, receive a weight based on their
proximity to the aj, which captures the diminishing influence of an anomaly over
time as the distance from the anomaly event increases.

n
)y }’iik [t—yl

wP=1- o
Ty g+ d) -yl

for t € Post-Buffer p;(0) 2.2)

Here, the numerator calculates the distance of ¢ from each point within the
anomaly event, and the denominator normalizes this against the total potential spread
within the buffer zone. With this method, we account for the proximity to the entire
anomaly, not just its endpoint. Thus, we address the delayed detection by recognizing
that any point within the actual anomaly range might influence predictions in the
buffer zone, not just the most immediate or final points of the anomaly. This also
implies that the lengths of the anomalies influence the weights. For smaller anomalies,
points in the Post-Buffer zone are closer to the anomaly onset, and will therefore be
assigned with higher true positive weights. Further details, regarding the impact of
anomaly length on the weights, are given in Appendix 2.B.

In the Post-Buffer zone, as the distance from ay; increases, the likelihood of a
detection being a False Positive rises. Thus, the weights assigned to false positives
are calculated as the complement of the TPs weights, acknowledging the reduced
significance of detections further from the actual anomaly. Figure 2.2 visually shows
the variations in TP and FP weights across the Post-Buffer categories (p2 and pg)).

w' (1) =1-w™ (1) for t e Post-Buffer p;©) 2.3)
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* Outside Weights: Each point ¢ from the Outside category indicates a situation
where the model incorrectly identifies normal behavior as anomalous. Given the lack
of proximity to any real anomaly, these points are considered FPs with a maximum
weight of 1, reflecting a significant deviation from accurate detection.

w'P(1)=1 for teOutside p;(6) (2.4)

* Pre-Buffer Detection Weights: Each point ¢ in the pre-buffer category, in the range
of [ix —e,iy), is assessed for potential early detection in relation to the preceding ay.
These points, while not being true positives in the conventional sense, are evaluated
for their proximity to the upcoming anomaly:

ng _
Lo ly—tl

Ny s _
Zyz%luk e)—y

w1 =1- for ¢ € Pre-Buffer p;(6) (2.5)

Here, the numerator represents the distance of ¢ from every point in ay, capturing
how early ¢ occurs relative to the anomaly. The denominator provides normalization
against the total potential spread within the pre-buffer zone. This mechanism
recognizes that any point within the anomaly event might have an influence on the
zone.

Similar to the Post-Buffer zone, the likelihood of a point being a False Positive
increases as the distance from the iy increases. Thus, the weights assigned to FPs are
calculated as the complement of the TPs weights, reflecting the reduced relevance of
premature detections. Figure 2.2 shows the variations in weights of the Pre-Buffer
categories (ps and pg())-

w1 =1-w'™ (1) for te Pre-Buffer p;(0) (2.6)

* Total Missed Anomalies Weights: When the entire range of aj is undetected, each
¢t within its interval receives a maximum False Negative weight of 1. This assignment
underscores the complete failure of the model in detecting the anomaly event. Figure
2.2 shows the variations in FN weight across a4 as a total missed event.

wFN(t) =1 for te Total-Missed a; 2.7

e Partial Missed Anomaly Weights: When aj; is only partially detected, the
undetected points ¢ within aj, are evaluated based on their proximity to the
start of the anomaly event. The closer the points are to the anomaly onset the
higher the FN weight, emphasizing the onset response time in detection. Here
for t € Partial Missed a;, we have:

1 if t< ip+r
wN() = T -yl , (2.8)
— <ig—— otherwise
Zy=ik [ng—yl
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Here, r is the size of the buffer that starts from the onset of the anomaly event.
Undetected points in this buffer are penalized with a maximum FN weight of 1.
Undetected points outside the buffer received a reduced FN weight, weighted by the
distance to the buffer. The rationale behind this design is that more comprehensive
coverage of an anomaly by a prediction justifies a more lenient assessment of its
exact timing accuracy. In other words, when a prediction successfully captures a
larger portion of ay, the precision of its onset timing becomes less critical. Therefore,
r is defined as the fraction of coverage of ay by its corresponding p;(0). Figure 2.2
shows the variations in FN weight across the Partial Missed category where some
segments of a, are missed.

2.2.3. PATE FINAL SCORE

The PATE final metric is designed to comprehensively evaluate anomaly detection
by considering a full range of combinations of pre-buffer (e) and post-buffer (d)
sizes. For each combination of e and d, we apply a range of thresholds (0)
to convert the continuous anomaly scores (%) into binary predictions, capturing
the model’s performance across different sensitivity levels. Based on these binary
predictions, we identify the prediction events 22 and then categorize all prediction
and anomaly events. Based on this categorization, we assign appropriate weights to
each observation.

We calculate weighted Precision and Recall across all thresholds in the considered
range for each specific combination of e and d. Using these calculations, we construct
the Precision-Recall curve for each combination and compute the area under the
curve (AUC-PR). Note that the weights w'®(z), w™ (1), and w"™N(z) are assigned based
on the categorization of each time point ¢. For time points that do not fall into any
specific category, the weights are considered to be 0. Thus, the summation in the
formulas for Precision and Recall effectively includes only those time points that have
been categorized.

Y w™w

YL W@+ wP )

Precision, 4(0) = (2.9)

Y w™w

Recall, ;(0) =
YT WP+ L, wiN ()

(2.10)

Finally, the overall PATE score is determined by averaging the computed AUC-PRs
across all combinations of e and d:

PATE= —— AUC-PR, 4 (2.1
|E| x | D EZdD @

Here, |D| and |E| represent the number of distinct values for d and e within their
respective sets.
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2.3. EXPERIMENTS AND RESULTS

2.3.1. SYNTHETIC DATA EXPERIMENTS

To highlight the merits of PATE, we first compare PATE with alternative evaluation
metrics on a synthetic time series with a binary anomaly detector. The alternative
measures can be threshold-dependent or independent. Threshold-independent
metrics are inherently evaluated across a range of possible thresholds. For this
example, we consider thresholds 8 = {0,1} to distinguish between normal and
anomalous predictions. For threshold-dependent metrics, we define the optimal
threshold as 6 =1, identifying points predicted as '1’ (anomalous) for evaluation.

Figure 2.3 shows anomaly a; with its pre and post-buffer zones. Below, ten different
detection scenarios are shown, Si,...,S19. Results in Table 2.2 demonstrate that
PATE effectively distinguishes the scenarios based on temporal proximity, duration,
coverage level, and response timing. For instance, although §; is temporally close to
the anomaly event, it fails to detect any part of it. In the context of time series, where
past data is crucial for prediction, the inability to detect any part of the anomaly
after it starts suggests that the prediction might be a true false alarm rather than a
meaningful early detection. A low score for S; reflects a metric that appropriately
penalizes lucky guesses or irrelevant detections. On the other hand, S, gets a higher
score as it captures part of the anomaly itself, and then the non-overlapping part can
be recognized as relevant early detection, which should be valued. Note that the PATE
score of 0.03 for S; is not exactly zero because it considers a range of thresholds,
including zero. At a threshold of 0, every point is labeled as a potential anomaly, thus
increasing both true and false positives. This broad consideration prevents the PATE
score from being zero for this specific example.

Meanwhile, S; and S, should be evaluated differently from delayed detections Sy
and Ss. Although S,’s coverage level is the same as that of S, due to response timing,
it gets a lower score. Similarly, the evaluation of S5 is completely different from S; as
it occurs after the anomaly event. This late detection might indicate that the model is
responding to the anomaly, albeit with a significant delay. Hence, it is reasonable to
evaluate Ss higher than S; as it could reflect some response to the actual anomaly,
even though it is late and fails to detect any part of the anomaly. Other metrics, while
effective in certain scenarios, do not distinguish between the finer details of anomaly
detection. For instance, these metrics just mirror the results of S; and S, for S; and
S5 without considering the early and delayed context. Moreover, S3, as an example
of accurate detection, is expected to get the maximum score of 1 by all evaluation
metrics, and Sg is expected to get a lower score than S3. However, the VUS-ROC/PR
metrics fail to evaluate these scenarios correctly. The scenarios S7, Sg, Sg, and
S10 further exemplify the importance of the coverage level and response timing in
detection. In each pair, S; and Sg detect the anomaly right from the start; thus they
should get scored higher than Sg and Sjp. While other metrics tend to score these
pairs similarly, PATE recognizes the earlier detections in S7; and Sg and gives them
higher scores. Moreover, in scenarios like Sg and S;p, where the anomaly is covered
more extensively, PATE assigns less penalties for response timing inaccuracies. This is
seen in the smaller score difference between early and late detections in scenarios
with greater coverage.
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Figure 2.3: Illustration of examples with synthetic data. The figure shows the placement of
different anomaly scores S from a binary anomaly detector.

Table 2.2: Comparison of evaluation metrics for synthetic data examples depicted in Figure
2.3. 'FY’ refers to the F1 Score. 'Standard-F1’ specifically denotes the conventional F1 Score
calculated from standard Precision and Recall.

Threshold-independent Threshold-dependent
Metrics Metrics

E —

%} (@] O ;." E é L‘é

2 3 o~ e o = = g S

s = A A A g — 2 < =

S8 g g ¢ 9| % B £ 2 £

g/ &8 B 2 2|Z & 2 & &g
S1 003 063 037 048 0.02 | 0.00 0.00 0.00 0.00 094
) 076 079 072 074 051 0.50 080 0.60 0.75 0.98
S3 1.00 087 088 1.00 1.00 | 1.00 1.00 1.00 1.00 1.00
Sa 069 079 070 0.74 051 0.50 080 0.60 075 0.98
S5 031 063 034 048 0.02 | 0.00 0.00 0.00 0.00 094
Se 087 099 091 098 075 | 067 067 075 0.86 0.98
S7 085 069 071 075 076 | 067 1.00 075 0.86 0.99
Sg 077 069 071 075 076 | 0.67 1.00 075 0.86 0.99
S9 095 078 079 088 0.88 | 0.86 1.00 0.89 0.93 1.00
S10 088 078 079 083 088 | 086 1.00 0.89 0.93 1.00

2.3.2. REAL-WORLD DATA EXPERIMENTS

To validate the practicality and effectiveness of PATE in real-world applications,
we extracted some examples from the publicly available and widely used datasets,
UCR-KDD21 [12] and MIT-BIH Arrhythmia (MBA) ECG [13]. The goal is to
evaluate how well PATE, alongside other evaluation metrics, distinguishes between
various detection models. To ensure a fair comparison, we compare PATE with
threshold-independent evaluation metrics, guaranteeing an unbiased comparison of
metrics performances.
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(a) Weather Temperature data example. (b) ECG data example.

Figure 2.4: Real-World Datasets and Anomaly Scores of Different Models. The anomalous
segment and its corresponding region (labeled by an expert), against which the models’
predictions are compared, is highlighted in red

Table 2.3: Quantitative Evaluation of Anomaly Detection Models. Evaluation score for different
anomaly detection models in detecting the anomalous region in examples of Figure 2.4.

Datasets | Weather Temperature | ECG
Q O @) O
S : 2o 82 g o
5 2 2 s S| E 2 2 35
Scenarios £ E E < < = E E < <
Perfect Model 1.00 055 057 1.00 1.00 | 1.00 090 091 1.00 1.00
Model 1 0.88 098 0.71 098 0.02 | 0.83 099 0.89 0.98 0.69
Model 2 0.07 086 0.14 083 0.01 | 0.79 098 0.81 0.97 0.69
Random Score | 0.02 0.67 0.08 066 0.01 | 0.07 056 0.11 043 0.06

We analyzed the anomaly scores generated by 1) a Perfect Model, which serves
as the benchmark by perfectly identifying anomalies; 2) established models like
MultiVariate Normal distribution (MVN) [14], Autoencoder (AE)[15], and Local Outlier
Factor (LOF)[16]; 3) a baseline Random Score that assigns scores uniformly at random
from a [0, 1] distribution. This selection covers a spectrum from theoretically ideal to
practically random, offering a comprehensive view of the metrics’ potential evaluation
range. Detailed implementation of the models is available in our public code
repository.

Figure 2.4 showcases two real-world examples: (a) Weather Temperature data from
UCR-KDD21 and (b) ECG data. The top row of each example shows the time
series data with actual anomalies highlighted in red. The next rows illustrate the
the output of the Perfect Model, and Models 1 and 2 (represented by MVN, LOE
or AE), demonstrating their respective detection scores. The final row displays a
random score for baseline comparison. Table 2.3 quantitatively compares various
metrics. PATE consistently rates the Perfect Model highest and the Random Score
lowest, showing its capability to recognize optimal detection and effectively penalize
poor performance. In contrast, VUS-ROC/PR and AUC-ROC metrics seem less capable
of such differentiation with the baselines.

Moreover, PATE accurately takes into account the time series context and delayed
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detection effect, offering a more realistic and conservative assessment compared to
VUS-ROC and AUC-ROC metrics, which appear to overestimate the performance of
Models 1 and 2. This overestimation is evident in the Weather Temperature data,
where Model 2 is inaccurately scored high by VUS-ROC and AUC-ROC despite its poor
detection. Additionally, AUC-PR is also not sensitive in evaluation. For instance, in the
Weather Temperature data, Model 1’s delayed yet successful detection is incorrectly
evaluated with a very low score, similar to the detection of Model 2. Similarly, in the
ECG data, PATE’s evaluation reflects the inconsistent anomaly detection pattern of
Model 2 (AE) compared to Model 1 (MVN). However, AUC-ROC/PR and VUS-ROC
do not effectively consider this difference. Overall, PATE’s assessments across both
examples underscore its effectiveness in real-world applications.

2.3.3. IMPACT ANALYSIS: SOTA MODELS

We re-evaluated several recent SOTA anomaly detection methods to not only assess
their true performance but also to examine the stability of their ranking across various
benchmark datasets when evaluated with different metrics, including PATE. Our
comparative analysis includes models such as DCdetector [17], AnomalyTrans [18],
and USAD [19], all of which have been recognized for their high performance in recent
studies, alongside a Transformer and LSTM model, as simpler reconstruction-based
anomaly detector baselines. These models are tested across the benchmark datasets of
SMD [20], MSL [21], SWaT [22], and PSM [23], used in previous works. Implementation
details are available in our public code repository.

In the literature on SOTA models, the PA-F1 is the most frequently used and widely
accepted metric. Additionally, in some cases, the standard F1 Score and Point-Adjusted
variant of AUC-ROC (PA-AUC-ROC) are also employed. For a comprehensive
comparison, we included these metrics in our comparative analysis. Results, shown
in Table 2.4, highlight a significant discrepancy between PATE scores and those
obtained from other metrics like PA-F1, Standard F1 Score, and PA-AUC-ROC. Notably,
models that performed exceptionally well under PA-F1 and PA-AUC-ROC, such as
AnomalyTrans and DCdetector, exhibit markedly lower scores when evaluated with
PATE. For instance, for the SMD dataset, AnomalyTrans achieves a PA-F1 score of 0.91,
showcasing high performance, yet its PATE score is only 0.06, indicating a substantial
reduction in performance. To visually illustrate the differences in detection quality,
Figure 2.5 shows a portion of the anomaly scores for the SWaT and SMD. The figures
show that AnomalyTrans and DCdetector models struggle with consistent detection.
In particular, for the SWaT, the peaky detections by these models hardly align with
the expert-labeled anomaly intervals, and the high values reported for PA-F1 and
PA-AUC-ROC do not reflect this detection pattern. This suggests that these metrics
may overestimate model effectiveness.

Next, Table 2.4 shows that the Standard F1 Score, AUC-ROC, and VUS-ROC, do
not exhibit such overestimations. However, they lack sensitivity to the finer aspects
of detection as discussed in section 2.2.1. For instance, on the SWaT dataset, the
Standard F1 Score is not able to distinguish between the good performing LSTM
and Transformer and the poorly performing AnomalyTrans and DCdetector, see also
Figure 2.5 (a). Furthermore, AUC-ROC does not reflect the small differences between
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Table 2.4: Comparison of SOTA anomaly detection model using different evaluation metrics

across various benchmark datasets.

Datasets ‘

Models
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AnomalyTrans
DCDetector
USAD
LSTM
Transformer

0.06 0.91 0.03 0.96 0.49 0.50
0.07 0.87 0.01 0.94 0.50 0.51
0.16 0.94 0.13 0.91 0.63 0.72
0.25 0.80 0.14 0.87 0.76 0.81
0.27 0.75 0.14 0.84 0.74 0.80

0.13 0.94 0.02 0.97 0.49 0.52
0.14 0.97 0.02 0.98 0.50 0.58
0.17 0.91 0.06 0.92 0.53 0.58
0.19 0.82 0.08 0.87 0.57 0.64
0.20 0.40 0.07 0.63 0.60 0.66

0.19 0.94 0.02 0.97 0.53 0.54
0.12 0.96 0.02 0.99 0.49 0.50
0.73 0.85 0.25 0.83 0.82 0.61
0.71 0.82 0.03 0.85 0.82 0.60
0.72 0.82 0.03 0.85 0.82 0.57

0.33 0.98 0.02 0.99 0.51 0.52
0.32 0.98 0.02 0.99 0.50 0.52
0.45 0.89 0.07 0.91 0.60 0.61
0.55 0.93 0.15 0.94 0.73 0.73
0.56 0.91 0.14 0.92 0.72 0.72
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(a) Anomaly Scores of SOTA models for SWaT  (b) Anomaly Scores of SOTA models for SMD
dataset. dataset.

Figure 2.5: Segments of anomaly scores of SOTA models for SWaT and SMD dataset. The
highlighted regions in red indicate the true anomaly periods (labeled by an expert).

USAD, LSTM, or Transformer. The scores of this metric suggest that all models have
an identical performance, that does not match the reality of their output. Moreover,
while VUS-ROC offers a slightly better distinction among models than AUC-ROC, its
limited scoring range (e.g., 0.54 for AnomalyTrans and 0.57 for Transformer) makes it
challenging to clearly identify models that perform exceptionally well from those that
do not. Meanwhile, PATE offers a more consistent and transparent assessment. It
can be seen that PATE gives a relatively higher score to USAD (0.73), Transformer
(0.72), and LSTM (0.71) according to their better detection pattern. PATE even slightly
prefers USAD over LSTM, although the difference is small.

We also explored the average rankings of the models for all metrics across all
four benchmark datasets. Figure 2.6 presents these rankings, highlighting noticeable
differences in the standings of the models when using different metrics. The average
rankings based on the PA-F1 metric place DCdetector at the forefront with an
average rank of 1.62, followed by AnomalyTrans (1.88), USAD (3.00), LSTM (3.88), and
Transformer (4.62). However, when evaluated with PATE, a significant shift occurs:
Transformer and LSTM emerge as the top-performing models with ranks of 1.38 and
2.12, respectively, while AnomalyTrans and DCdetector drop to the bottom ranks of
4.50 each. This variance underscores the critical impact of the chosen evaluation
metric and the importance of selecting a proper metric such as PATE.



2.4. ABLATION ANALYSIS: BUFFER SIZES 35

PATE ® ® A =
PA-F1- B e A L]
kY
<
b=
g Original-F1 <& ® A [ ] L]
C
K]
=]
© PA-AUC-ROC 1 = o L 2 A °
©
>
w
AUC-ROCA ¢ o A ez
VUS-ROC 1 L 2 L ] A e
1.0 15 2.0 25 30 35 40 45 5.0

Average Rank

® AnomalyTrans B DCdetector A USAD ¢ LST™ ® Transformer

Figure 2.6: Average rankings of different models for various evaluation metrics across all
benchmark datasets.

2.4. ABLATION ANALYSIS: BUFFER SIZES

The adaptability of PATE to accommodate different buffer sizes is one of its key
strengths. This flexibility allows for an expert-driven and context-specific approach
to model evaluation, ensuring that the unique characteristics of each dataset are
appropriately considered. Figure 2.7 illustrates the mean performance of DCdetector,
AnomalyTrans, USAD, LSTM, and Transformer across all four benchmark datasets
using PATE. Results show that PATE consistently ranks models such as Transformer
and LSTM the highest across different buffer sizes. This consistency in model
rankings, irrespective of buffer size, highlights PATE’s robustness as an evaluation
metric, and showcases PATE’s reliability for diverse applications, ensuring a consistent
and dependable assessment for anomaly detection models.
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Figure 2.7: Mean PATE performance of all models across all datasets for different Pre and
Post-Buffer sizes (e = d).
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2.5. DISCUSSION AND CONCLUSION

We proposed PATE, a novel approach to evaluate anomaly detection models in
time series data. PATE addresses the limitations of existing evaluation metrics
by categorizing the anomaly and prediction events and assigning proximity-based
weighting, considering different buffer zones around the anomaly event. PATE
computes the area under the Precision-Recall curve, where the Precision and Recall
are computed from weighted versions of True Positive, False Positive, and False
Negative performances.

Our experiments with both synthetic and real-world data demonstrate that
PATE effectively differentiates between models based on their actual performance,
considering early and delayed detection, onset response time, coverage level of the
anomaly event, and consistency in detection. The re-evaluation of SOTA anomaly
detection methods using PATE reveals notable differences in performance assessments
compared to other metrics. For instance, point-adjusted metrics often overestimate
the performance of models. However, in practice, metrics such as ROC-AUC and
VUS-ROC offer more reasonable estimates for SOTA models, though they might
overlook subtle detection errors and sometimes lack discriminability between models.
This analysis not only questions the true performance of current SOTA models but
also indicates a shift in their rankings, challenging the prevailing understanding
of the superiority of these models. PATE’s ability to provide a more matching,
context-sensitive, and transparent assessment highlights its potential as a more
appropriate metric that can set a new standard for evaluating advancements in
anomaly detection. Additionally, PATE’s adaptability to various buffer sizes without
compromising consistency and fairness in model evaluation further highlights its
robustness and applicability across diverse applications.

To address the specific scenarios where either an expert has predetermined the
threshold or models inherently output binary labels, we have developed PATE-FI
as an essential extension of the original PATE framework. The methodology and
experimental insights on PATE-FI are detailed in Appendix 2.D. PATE-FI effectively
distinguishes between different scenarios based on temporal proximity, duration,
coverage level, and response timing, setting it apart from other metrics that face
limitations in capturing these aspects in evaluation. Additionally, our findings indicate
that the original PATE framework, through strategic threshold application, naturally
extends to effectively evaluate binary outputs. However, employing PATE-FI in such
scenarios offers a more direct and simplified approach. This adaptation ensures
PATE’s methodology remains a versatile and applicable measure across a broader
spectrum of anomaly detection approaches and contexts.

In conclusion, PATE represents a significant advancement in the evaluation of time
series anomaly detection methods which has the potential to guide future research,
influence industry adoption, and enhance the development of practical applications
in critical domains such as healthcare and finance.
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APPENDICES

2.A. REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our work, the source code, along with comprehensive
documentation, is publicly available at: https://github.com/Raminghorbanii/
PATE.

This repository includes detailed instructions for using PATE, including how to
set the buffer size, and complete descriptions of all models implemented for our
experiments, covering configuration settings, training procedures, and experimental
details to ensure accurate replication. Researchers seeking additional information are
encouraged to contact the corresponding author.

2.B. EFFECT OF ANOMALY LENGTH ON BUFFER WEIGHTS

To explore the effect of anomaly length on the assignment of weights within the PATE
framework, we consider three distinct anomaly events with varying durations: a,,
az, and as, with a; being the longest and as the shortest. Each was followed by a
post-buffer zone of fixed size d. Figure 2.B.1 depicts the potential True Positive (TP)
weights along the timeline, capturing the period before the anomaly, within its range,
and throughout the post-buffer zone. The analysis of this figure indicates that TP
weights for detections in the post-buffer zone are higher for as, the shortest anomaly,
and progressively lower for a; and ap, the longer anomalies. This observation
underscores the direct correlation between the duration of an anomaly and the
corresponding TP weights assigned to post-buffer detections. Higher TP weights for
detections following shorter anomalies signify the critical nature of these detections,
as they are in closer proximity to the anomaly onset. The PATE weighting mechanism
accommodates this by adjusting the weights based on the distance from detections to
the entire anomaly. This phenomenon also extends to the pre-buffer zone, where
early detections are similarly influenced by the length of the forthcoming anomaly.

2.C. CLARIFICATION ON EARLY AND DELAYED DETECTIONS

To understand the distinct approaches PATE takes toward Early Detection (in the
pre-buffer zone) and Delayed Detection (in the post-buffer zone), it is essential to
consider the foundational goal of this evaluation metric.

For an anomaly detector, the ability to learn from past data and accurately predict
future anomalies is essential. An early prediction that fails to correspond with an
actual, subsequent anomaly suggests a fundamental modeling failure of the data’s
underlying structure—like sounding an alarm for an event that never happens.
Ideally, if a model detects early signs of an impending anomaly, it should also
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Figure 2.B.1: Potential True Positive (TP) weights relative to the anomaly events with varying
lengths. The graph illustrates the higher TP weights for detections following the shortest
anomaly event a3, and the progressively lower weights for the longer events a; and ap.

identify the anomaly when it occurs. The early signs—small changes or patterns
of deterioration—lead to a larger and more evident departure from the norm. If
the model has correctly identified these early signs, it should also recognize the
anomaly itself, given the now more noticeable deviation. When the early detection
is successfully followed by a true detection of the anomaly, the early detection is
not considered just a lucky guess. It supports the model’s predictive power and
consistency.

In contrast, the context for delayed detection significantly differs as it showcases
the capability of the model to identify anomalies post hoc. The model is apparently
able to detect some deviation in the input, albeit a bit late. Such late detections still
allow for the identification of the anomaly. Failing to have True Positive detections
in the anomaly event is therefore not considered fatal for the Delayed Detection.
Figure 2.C.1 shows the detection responses by three different models to an anomalous
event, shown by the shaded area in red. Model 1 (top panel) reveals an early
detection followed by True Positive detections, indicated by peaks aligning with the
anomaly window. This pattern exemplifies an acceptable detection where the model
preemptively and accurately identifies an anomaly. Model 2 (middle panel), however,
demonstrates early detection without subsequent TPs during the actual anomaly,
missing the critical deviation. This outcome might suggest a misinterpretation of the
anomaly pattern by Model 2, potentially leading to a false alarm scenario. Conversely,
Model 3 (bottom panel) shows a peak that arises post the onset of the anomaly,
exemplifying a delayed detection. This detection is valued as it demonstrates the
capacity of the model for retrospective analysis, acknowledging and learning from the
anomaly event after its occurrence.
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Figure 2.C.1: Comparative evaluation of model responses to an anomalous event in time series
data.

2.D. PATE-F1 - ADJUSTED FOR BINARY SCORES

* Methodology: To enhance the applicability of PATE in scenarios where models use
predetermined thresholds or where expert knowledge informs threshold determination,
we propose an adapted version, PATE-F1. This adaptation leverages the core principles
of PATE by assigning proximity-specific weights to categorized points and calculating
weighted Precision and Recall. Unlike the original PATE, which evaluates a range
of thresholds (8), PATE-F1 is tailored for binary scenarios, without the variation of
thresholds but rather different combinations of buffer zones (e and d). For each
combination, weighted Precision and Recall are calculated using equations 2.9 and
2.10 as detailed in Section 2.2.3. Subsequently, the F1 score for each combination is
determined as follows:

Precision, 4 x Recall, 4

F1-Score, 4 =2 (2.12)

X
Precision, 4 + Recall, 4

The overall PATE-F1 score is then computed as the average of these F1 scores across
all buffer zone combinations:

1
PATE-F1 = —— F1-Score, 4 (2.13)
|El x |D| EZ” ¢

Here, |E| and |D| represent the number of distinct pre-buffer (e) and post-buffer (d)
sizes, respectively.

¢ Experimental Results: We extend our analysis to PATE-FI1 by comparing the
evaluations against threshold-dependent metrics, tailored for binary score predictions.
Figure 2.D.1 shows 10 different detection scenarios shown by prediction events
p1,-..,p10- Table 2.D.1 shows that similar to the original PATE, PATE-F1 effectively
differentiates between scenarios based on temporal proximity, duration, coverage
level, and response timing. This alignment with PATE’s evaluation logic underlines the
adaptability of our methodology to binary score scenarios without compromising the
depth of analysis provided by the range of thresholds in the original framework.
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Figure 2.D.1: Examples with synthetic prediction events (binary scores). The figure shows the
placement of different prediction events p;(f) from a binary anomaly detector.

Table 2.D.1: Comparison of evaluation metrics for synthetic prediction event examples depicted
in Figure 2.D.1. ’F1’ refers to the F1 Score.

‘ Metrics

E —

Y & & B p

£ = | 3 3 s 8

< - e — 177} < <

s E E|E & & £ £

3 £ £ & = o &= 2
pP1 0.03 0.00 0.00 0.00 0.00 0.00 0.94
p2 0.76 0.75 0.50 0.80 0.60 0.75 0.98
p3 1.00 1.00 1.00 1.00 1.00 1.00 1.00
j22 0.69 0.66 0.50 0.80 0.60 0.75 0.98
ps 0.31 0.28 0.00 0.00 0.00 0.00 0.94
Pe 0.87 0.85 0.67 0.67 0.75 0.86 0.98
p7 0.85 0.81 0.67 1.00 0.75 0.86 0.99
ps 0.77 0.67 0.67 1.00 0.75 0.86 0.99
P9 0.95 0.95 0.86 1.00 0.89 0.93 1.00
P10 0.88 0.86 0.86 1.00 0.89 0.93 1.00

2.E. COMPLEXITY TIME ANALYSIS

We evaluated the computational efficiency of the PATE algorithm against established
metrics like AUC-PR and VUS-PR through experiments on synthetic and real
benchmark datasets when using a perfect anomaly detector. These experiments were
conducted on a standard MacBook with a 2 GHz Quad-Core Intel Core i5 processor,
Intel Iris Plus Graphics 1536 MB, and 16 GB RAM, reflecting the performance
on commonly available hardware. Although PATE supports parallel execution to
potentially decrease computation time, especially on High-Performance Computing
(HPC) systems, we used a serial computation approach for consistent comparisons
with other metrics.
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» Synthetic Data Experiments: We generated synthetic time series data ranging
from 1,000 to 100,000 points with anomaly ratios of 2%, 5%, and 10% to reflect
various common scenarios. As shown in Figure 2.E.1, PATE’s computation time
increases linearly with data length and varies slightly with different anomaly ratios.
Despite this, computation times remained under one second across all conditions,
highlighting PATE’s efficiency without parallel processing.

S

Computation Time (seconds)

1073

Time Series Length

—e— PATE Ratio 0.02 —e— PATE Ratio 0.05 —e— PATE Ratio 0.1
-#- AUC-PR Ratio 0.02 -#- AUC-PR Ratio 0.05 -#- AUC-PR Ratio 0.1
—A- VUS Ratio 0.02 —A- VUS Ratio 0.05 —A- VUS Ratio 0.1

Figure 2.E.1: Computation time of PATE on synthetic data with varying lengths and anomaly
ratios.

* Benchmark Dataset Experiments: We validated PATE on all standard benchmark
datasets used in this study. As shown in Table 2.E.1, PATE’s computation times are
comparable to those of the AUC-PR metric and significantly faster than the VUS
metric, remaining under one second for smaller datasets and under two seconds
for larger ones. Note that further speed enhancements could be achieved on HPC
systems or with parallel processing.

Table 2.E.1: Computation times (in seconds) for evaluation metrics across benchmark datasets.

‘ ‘ Evaluation Metrics

3
ks .
g 2 8 ElE & &
I L »n = ! 1 2]
g E g & S 5 =
A = 5 < [y
MSL 73700 10% 0.007 42.315 0.278
PSM 87800 4% 0.013 51.683 0.634
SWaT 449900 12% 0.267 249.573 1.895
SMD 708400 4% 0.064 462.252 1.796







SELF-SUPERVISED PPG REPRESENTATION
LEARNING SHOWS HIGH INTER-SUBJECT
VARIABILITY

With the progress of sensor technology in wearables, the collection and analysis of
PPG signals are gaining more interest. Using Machine Learning, the cardiac rhythm
corresponding to PPG signals can be used to predict different tasks such as activity
recognition, sleep stage detection, or more general health status. However, supervised
learning is often limited by the amount of available labeled data, which is typically
expensive to obtain. To address this problem, we propose a Self-Supervised Learning
(SSL) method with a pretext task of signal reconstruction to learn an informative
generalized PPG representation. The performance of the proposed SSL framework is
compared with two fully supervised baselines. The results show that in a very limited
label data setting (10 samples per class or less), using SSL is beneficial, and a simple
classifier trained on SSL-learned representations outperforms fully supervised deep
neural networks. However, the results reveal that the SSL-learned representations
are too focused on encoding the subjects. Unfortunately, there is high inter-subject
variability in the SSL-learned representations, which makes working with this data
more challenging when labeled data is scarce. The high inter-subject variability suggests
that there is still room for improvements in learning representations. In general, the
results suggest that SSL may pave the way for the broader use of machine learning
models on PPG data in label-scarce regimes.

This chapter has been published as:

Ghorbani R, Reinders MJ, Tax DM. Self-supervised ppg representation learning shows high inter-subject
variability in Proceedings of the 2023 8th International Conference on Machine Learning Technologies
(ICMLT), 2023 Mar 10, pp. 127-132. [1]

Code available at:
https://github.com/Raminghorbanii/SSL-PPG-shows-HighVariability

45



46 3. SELF-SUPERVISED PPG REPRESENTATION LEARNING SHOWS HIGH VARIABILITY

3.1. INTRODUCTION

In recent years, wearables such as smartwatches and health trackers, equipped with a
photoplethysmography (PPG) sensor, are becoming increasingly popular [2]. PPG is a
non-invasive, low-cost optical measurement that can measure tissue blood flow over
time following each pulse wave ejected from the heart. PPG works on the principle of
pulse oximetry, wherein a sensor emits light to the skin and measures the intensity
of light that is reflected or transmitted through the skin. Changes in arterial blood
volume cause PPG signal variations [3, 4]. The cardiac rhythm corresponding to the
PPG signal’s periodicity can be used to obtain additional useful information from
the users and predict various tasks. Some examples of research on PPG signals
are related to Activity Recognition [5], Heart Rate Estimation [6], Blood Pressure
Prediction [7], Biometric Identification [8], Sleep Staging Detection [9], and Atrial
Fibrillation Detection [10].

In existing research, analyzing the PPG signals can be broadly categorized into
signal processing and machine learning methods. The majority of machine learning
solutions for PPG-based tasks utilize fully-supervised learning methods, which can be
associated with several limitations. A fully-supervised learning setup usually requires
considerable computational resources and time. Additionally, this setup requires large
human-annotated datasets for high performance. Typically, obtaining labeled data is
very costly and time-intensive, and the amount of labeled data is therefore insufficient
in real-world applications, for instance, in the case of heart failure detection or fall
detection. When automated detectors have to be trained on this type of problem,
a good representation of the data with few numbers of informative features is
essential [11]. Therefore, it is necessary to address the label-scarcity problem.

One approach to obtain a good informative representation is ‘Self-Supervised
Learning’ (SSL). In SSL, two tasks are defined: a ‘pretext’ task and a ‘downstream’
task. The pretext task is the task of learning informative representations by
itself. For instance, an auto-encoder tries to precisely reconstruct the input,
squeezing the information through a bottleneck layer. It thereby learns a condensed,
low-dimensional representation containing all necessary information to reconstruct
the input exactly [12]. It is assumed that this learned low-dimensional representation
reduces the complexity of the data by reducing anomalies and noise and, at the
same time, improves the ability to detect patterns in the data simpler and better.
Hence, learned representations from the pretext task should be helpful for learning a
second-stage classifier on the downstream task, which is the actual task of interest
that we want to solve.

The latest research in the field of machine learning shows the potential of SSL
for finding generalized and robust representations [13-16]. The existing works in
representation learning are generally concentrated on image-based applications where
variations in the data could be visually observed. However, SSL is rarely applied to
the field of time series data, especially biosignals. In recent years, some have applied
SSL to time series data to show that this method can improve the representation,
and they could confirm the potential of self-supervision in capturing important
information even in the absence of labeled data. For instance, [17] introduced an
Intra-inter Subject self-supervised Learning (ISL) model customized for ECG signals.
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Their model integrates medical knowledge into self-supervision to effectively learn
from intra-inter subject differences. Their results over different evaluation scenarios
showed that the learned representations are information-rich and more generalizable
than other state-of-the-art methods for diagnosing cardiac arrhythmias in label-scarce
regimes. As another example, [16] investigated SSL to learn representations from EEG
signals. They explored two pretext tasks based on temporal context prediction and
contrastive predictive coding on two clinically EEG-relevant downstream tasks. The
results show that linear classifiers trained on SSL-learned representations consistently
outperform purely supervised deep neural networks in label-scarce regimes while
reaching competitive performance when all labels are available. These findings are,
however, not yet shown on noisy PPG signals, so it still remains to be shown whether
self-supervision can bring improvements over standard supervised approaches on
PPG signals.

In this paper, we focus on Human Activity Recognition (HAR) from PPG data. This
is gaining interest since PPG data can be easily acquired from any of the widely
available wearable devices [18]. Researchers have been exploring how SSL techniques
can be either extended or explicitly designed for HAR tasks on accelerometer and
gyroscope data. However, they have not yet looked into the PPG data specifically.
In one of the early pioneering works, [19] used the task of identifying which signal
transformation has been applied to a particular data sample as a pretext task using
accelerometer and gyroscope data. The results show that SSL drastically reduces
the requirement of labeled activity data, narrowing the gap between supervised and
unsupervised techniques for learning meaningful representations.

Concluding, to the best of our knowledge, there are currently no studies using SSL
on PPG data in label-scarce regimes. Therefore, we present the first detailed analysis
of SSL tasks on PPG signals with attention to Activity Recognition as a downstream
task. Our main contributions are: 1) Proposing a SSL framework for PPG data in
label-scarce regimes, 2) Evaluating whether human activity recognition task can be
done better when using SSL representations, and 3) Investigating the Inter-subject
variability in PPG data and exploring how this is captured by the SSL representation.

3.2. PROPOSED FRAMEWORK

An overview of the proposed SSL framework is shown in Figure 3.1. We use an
Autoencoder (AE) to learn a representation of the (unlabeled) data (unsupervised
learning). Given an unlabeled dataset Dy = {xi}ﬁ"l where x; € R**T is a vector of
length T and N, is the number of vectors (samples). The encoder maps each input
vector into a latent space representation h; = E(x;) where h; € R4 where d < T.
After that, h; is fed into the decoder component of the model, which follows the
same approach to map h; to the output values X; = Dy(h;) where X; € RT. The
encoder and decoder are parametrized by ¢ and 0, respectively. The AE is trained to
minimize the mean squared error between x; and X; [20]:
Ny

Lrotar = /Ny Y (/T [ x; —%; II*) 3.1)
i=1
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SSL Step 1: Pretext Task (Signal Reconstruction)
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Figure 3.1: The overall proposed Self-Supervised framework

We have used a combination of Convolutional Neural Network layers (CNN) with
the AE architecture, a Convolutional Neural Network AutoEncoder (CNN-AE). The
main advantage of using a CNN-AE is a better reconstruction for the PPG signal as it
exploits the correlations between time measurements in the PPG signal and thus
captures the time-dependent information better.

For the downstream task, we use the original preprocessed PPG as the input to Ey
with frozen trained weights from the reconstruction task to get the related latent
representation h;. This h; is used as input to train a simple classifier such as Logistic
Regression (LR) or k-Nearest Neighbors (kNN). We do this because when the number
of training samples is small, these simple classifiers often outperform more flexible
and complex models. The classifier is trained on h;’s from several subjects and tested
on a completely new subject.

3.3. EXPERIMENTAL SETUP

3.3.1. DATASET

We use the PPG-Dalia public dataset, which was collected by [21] for the PPG-based
heart rate estimation task. This dataset contains recordings of 15 subjects performing
daily activities such as sitting, ascending/descending stairs, playing table soccer, cycling,
driving a car, having lunch, walking, and working. The measurements are obtained
from wrist and chest-worn devices. Besides the activities, the transient periods
between the activities are also recorded. We removed data from subject number
6 due to hardware issues during data recording. Note that having lunch, driving
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a car, and working activities are categorized as concurrent or inter-leaved human
activities, where actions of multiple activities are carried out simultaneously or where
activities contain various activities while their actions can be interleaved in a shuffled
manner [22, 23]. Therefore, we only considered the remaining five human activities
for further study.

3.3.2. DATA PREPROCESSING

For the pretext task, a band-pass 2" order Butterworth filter with low and high
frequencies of 0.1 - 6 Hz is applied to the whole PPG signal of each subject
individually. The filtered signal is normalized to zero mean and unit variance per
subject. The final normalized filtered signals are segmented into a fixed window size
of 8 seconds while two successive windows overlap by 6 seconds in the test dataset
(this setting is common for PPG data). To increase the training set size, the two
successive windows overlap by 7 seconds in the training dataset. For the downstream
task, the PPG signals are split into 8 seconds windows while two successive windows
overlap by 6 seconds in both training and test datasets. Activity labels are assigned to
the corresponding PPG windows based on the available annotations.

3.3.3. IMPLEMENTATION
PROPOSED SSL

The hyperparameters and the architecture of the proposed CNN-AE are systematically
determined by searching through all possible combinations to obtain the best
performance. Eventually, we used a CNN-AE architecture deep learning model
consisting of three convolution layers, followed by the Exponential Linear Unit
(ELU) activation function, Batch Normalization, and MaxPooling layers. The decoder
consists of the hidden layers in the reverse order of the encoder section. The Adam
optimizer with a learning rate of 0.01, a decay rate of 0.001, and a clip-norm value
of 0.9 are used. The batch size is 128, and training runs for 200 epochs. Finally,
the parameters of all layers are randomly initialized. To assess the randomness of
the deep learning framework, each training process for each test subject is repeated
five times. Leave-One-Subject-Out cross-validation (LOSO) is used to evaluate the
reconstruction performance.

For the downstream task, two simple classifiers are trained on the SSL-learned
representations separately: a Logistic Regression and a kNN classifier (SSL-LR and
SSL-kNN, respectively). The SSL-LR is regularized with the L2 penalty term and is
solved using LIBLINEAR [24]. The SSL-kNN is trained with reweighted neighbors [25],
where points are weighted by the inverse of their distance. Therefore, closer neighbors
of a query point will have a larger influence than far away neighbors. Due to the
different number of training samples which are 2, 5, 10, 50, and 1000 per class, the
number of neighbors is selected as 8, 19, 39, 115, and 350, respectively. The LOSO is
used to evaluate the AUC performance.
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COMPARATIVE BASELINES

The performance of the SSL method is compared with two other baseline models: a
simple and a more complex one. The simple baseline model (a typical baseline in SSL
research) is trained directly on the original preprocessed PPG representations and
consists of the encoder part of the CNN-AE from the pretext task, extended with one
classification layer at the end. The encoder part is thus trained on the classification
task immediately and not in a self-supervised setting. The Adam optimizer with a
learning rate of 0.001 and a clip-norm value of 0.6 are used. The batch size is
128, and training runs for 200 epochs. The more complex baseline is a CNN-LSTM
model also trained directly on the original preprocessed PPG representations. The
architecture of the complex baseline consists of a convolution layer followed by a
hyperbolic tangent function, Batch Normalization, MaxPooling layers, and then a
LSTM layer with a hyperbolic tangent activation function, followed by a classification
layer at the end. The Adam optimizer with a learning rate of 0.001 and a clip-norm
value of 0.6 are used. The batch size is 128, and training runs for 200 epochs. To
assess the randomness of these Deep Learning frameworks, each training process
for each test subject is repeated five times. Both baseline models use the LOSO to
evaluate the AUC performance.

BIOMETRIC IDENTIFICATION (BI) FOR EXPLORING INTER-SUBJECT VARIABILITY

If there is a large inter-subject variability, the subjects should be easily discriminated
in the representation. To check if a subject can indeed be easily discriminated, we
train and evaluate a kNN classifier with reweighted neighbors (k =20) per activity.
Note that this classifier is not optimized at all on the SSL-learned representations; the
kNN fully relies on the metric that is induced by the CNN-AE latent representation
h;. A good performance of the kNN for the BI task suggests that the learned
representation from CNN-AE is heavily biased towards encoding different subjects and
not so many other tasks like activities. In this experiment, PPG data is preprocessed
with the same steps as the downstream task preprocessing. Afterward, the PPG
windows of each activity are selected to sample a separate balanced training set over
the subjects. The 4-fold cross-validation (75% for the training and 25% for the test
set) is used to evaluate the AUC performance.

3.4. RESULTS
3.4.1. PRETEXT TASK

To determine a suitable dimensionality d of the learned representation h;, we
compute the relative MSE (i.e., MSE in Eq. (1) normalized by the total variance across
test subjects’ data) by varying d using the CNN-AE. The results are shown in Table 3.1.
It can be seen that the reconstruction error decreases with increasing dimensionality
d. As the representation with a lower dimension is more suited for learning with
limited labels, we chose d =64 when proceeding with the downstream task. Also, later
experiments show that d = 64 leads to better performance on the downstream task
compared to other dimensionalities.
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Table 3.1: Mean Relative MSE results of test subjects (LOSO) for the signal reconstruction task
by varying d using the CNN-AE.

Dimension of h; Relative MSE Results
d=2 0.83£0.02
a=8 0.59+0.03
d=32 0.14+0.03
d=64 0.02+0.00
a=128 0.00+0.00

3.4.2. DOWNSTREAM TASK

In Figure 3.2a, we show the AUC performances on the downstream task of predicting
activity type for a varying number of training samples per class. The performance
of the proposed SSL method is compared with the simple and complex baseline
methods. As the number of training samples per class decreases, the performances of
all methods drop, confirming the negative influence of when less and less samples
with labels are available. The linear SSL-LR model fails to improve the performance
compared to the baseline models when a few (< 10) training samples per class are
available. However, SSL-kNN, as a non-linear solution, outperforms the baselines
and the SSL-LR in the label-scarce regimes. This suggests that the SSL-learned
representation is still too complex for a simple linear solution like LR. One reason
for such a behavior could be the high Inter-Subject variability in the SSL-learned
representations. Figure 3.2b shows the SSL-kNN performance of each of the individual
test subjects, for a varying number of training samples per class. It can be observed
that the AUC performance can vary between 0.5 and 0.7 for a small training size of
N =2, and even for very large training sizes of N =1000, the AUC still varies between
0.55 and 0.8. This indicates that the data distributions of different subjects vary

significantly, thus indicating large inter-subject variability.
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Figure 3.2: Results for Activity Recognition downstream task: (a) Mean AUC performance of
test subjects over the different number of training samples per class and (b) variability in AUC
performance among test subjects using SSL-kNN.
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To explore the inter-subject variability more deeply, we also investigated the
possibility of classifying subjects during each activity using a kNN model. Note that
this is now different than our initial domain task; here, we are interested in whether
subjects are still separable in the latent representations h; (which, in principle, is
undesired when generalizing over subjects). The results of the BI task in Table 3.2
show that subjects can be discriminated perfectly for some activities such as sitting
or walking. It can be seen that there are enough differences among subjects in
the original as well as the SSL-learned representations. Moreover, the SSL-learned
representation seems to highlight the inter-subject variation as its mean performance
is consistently higher than on the original data. This suggests that the AE learned
representation is more focused on encoding the different subjects and not so much
on the domain tasks of interest, that is, predicting the different activities.

Table 3.2: Mean AUC Performance of test sets (4-fold cross-validation) for Biometric
Identification task.

Activities Input

Original Representation SSL-Learned Representation
Sitting 0.84+0.12 0.84+0.01
Ascending/Descending Stairs 0.63+0.02 0.64+0.03
Playing Table Soccer 0.53+0.01 0.61+0.02
Cycling 0.59+0.05 0.61+0.06
Walking 0.72£0.02 0.75+0.02

3.5. DISCUSSION AND CONCLUSION

We have evaluated the usefulness of self-supervised representation for the activity
recognition task when suffering from a label-scarcity in PPG data. The representation
is not optimized on the downstream classification task (for which just a few labeled
training samples may be available), but it is first optimized to perform a data
reconstruction pretext task (for which no supervised information is needed). The
results reveal that the SSL method can compete and outperform fully supervised
baselines when a kNN model is trained on the SSL-learned representations in
label-scarce regimes (with less than 50 samples per class). However, training a
simple linear classifier like LR (instead of kNN) is not helpful since the inter-subject
variability introduces too much non-linearities in the decision boundaries.

One should note that in the current study setup, fixed hyperparameters are used
across the data regimes for all baseline models. When copious amounts of (unlabeled)
data from all subjects would be available, all hyperparameters could be optimized for
every different task.

The poor performance of the LR classifier on the SSL-learned representations shows
that there is high inter-subject variability. High inter-subject variability makes the
generalization more challenging. In this case, a subject-specific model could be a
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solution for improving the performance over the learned representations. However,
training a subject-specific model can be expensive because a large amount of
(labeled) data that has to be obtained from each subject. Here, the SSL representation
can come to the rescue, as we have shown that this representation can improve
performance with respect to the original representation. However, there should be
more focus on disentangling the inter- and intra-subject variability.

This matter opens the door for future research to learn more generalized informative
PPG representations while addressing the inter-subject variability problem. For
instance, removing the subject-specific factors in order to disentangle the inter-subject
variations using a factor disentangling sequential autoencoder [26], or performing
contrastive learning among subjects to learn distinctive representations [17] can be
promising directions in learning informative PPG representations.
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REPRESENTATION LEARNING AND
PERSONALIZATION FOR PPG ANOMALY
DETECTION

Photoplethysmography (PPG) signals, typically acquired from wearable devices, hold
significant potential for continuous fitness-health monitoring. In particular, heart
conditions that manifest in rare and subtle deviating heart patterns may be
interesting. However, robust and reliable anomaly detection within these data remains
a challenge due to the scarcity of labeled data and high inter-subject variability.
This paper introduces a two-stage framework leveraging representation learning
and personalization to improve anomaly detection performance in PPG data. The
proposed framework first employs representation learning to transform the original
PPG signals into a more discriminative and compact representation. We then apply
three different unsupervised anomaly detection methods for movement detection and
biometric identification. We validate our approach using two different datasets in
both generalized and personalized scenarios. Our results demonstrate significant
improvements: for movement detection, in the generalized scenario, AUCs improved
from barely 0.5 to above 0.9 with representation learning. Importantly, inter-subject
variability was substantially reduced, from around 0.4 to below 0.1. In the personalized
scenario, AUCs became close to 1.0, with variability further reduced to below 0.05,
indicating the effectiveness of both representation learning and personalization for
anomaly detection in PPG data. Similar enhancements were observed in biometric
identification, emphasizing how our approach can minimize inter-subject variability
and enhance PPG-based health monitoring systems.

This chapter has been published as:

Ghorbani, R., Reinders, M. J., & Tax, D. M. (2024). Personalized anomaly detection in PPG data using
representation learning and biometric identification. Biomedical Signal Processing and Control, 94,
106216. [1]
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4.1. INTRODUCTION

Photoplethysmography (PPG) data is a non-invasive, low-cost, optical physiological
signal that measures the volume of blood flowing through the blood vessels and
can be measured by a variety of wearable devices and smartwatches [2]. PPG data
enables remote health monitoring and fitness tracking, which presents opportunities
for identifying unusual patterns in the user data that may indicate potential health
issues, like abnormal heart rate or irregular movement patterns [3].

The effectiveness of detecting anomalies largely depends on the availability of
enough labeled data. Supervised machine learning methods, such as k-Nearest
Neighbours (kNN), Random Forest, and Artificial Neural Networks (ANN), have been
widely used in previous research to interpret PPG signals [4-8]. However, the process
of data labeling is tedious, time-consuming, and costly, especially for anomaly
detection problems, since anomalies seldomly occur in real-world applications.
Furthermore, these supervised learning methods may be prone to bias and overfitting
if the labeled dataset does not adequately represent the full range of normal and
anomalous PPG signals. Moreover, these methods may not be adaptable to unknown
or unexpected anomalies, as they learn to recognize patterns based on the examples
provided in the training dataset, and may fail to effectively detect anomalies not
represented in the dataset. To address these limitations, unsupervised anomaly
detection methods can offer advantages over supervised approaches, as they do not
rely on explicitly labeled examples of anomalous behavior and can be more adaptable
to unknown or unexpected anomalies [9, 10].

Anomaly detection in PPG data can also be challenging due to other various factors
that contribute to noise and inter-subject variability. These are factors like physical
activity, stress, illness, measurement noise, age, gender, body composition, and genetic
differences, as well as external factors such as sensor placement, sensor quality, and
environmental conditions. This makes it difficult to develop generalized models
that perform consistently across different individuals since each person’s PPG signal
may exhibit unique characteristics [11]. These complexities necessitate strategies to
account for individual-specific characteristics.

Personalization can be a potential solution to help overcome the limitations
of generalization by tailoring models to individual users [12]. However, the
effectiveness of personalization hinges on accurate biometric identification. Inaccurate
identification of individuals can lead to personalized models being trained on or
applied to the wrong user’s data, resulting in poor performance and potentially
harmful outcomes. Hence, accurate biometric identification can enhance the reliability
of personalized models, as it ensures that the models are based on the specific
characteristics of each user.

In addition to unsupervised anomaly detection methods and personalization,
representation learning can be particularly useful in enhancing performance [13].
Representation learning models are typically trained to learn from large amounts of
unlabeled data, enabling them to extract a more compact, informative, and expressive
representation of the data without the need for expensive and time-consuming
manual labeling. By learning a lower-dimensional representation of the PPG data that
captures its inherent structure and discriminative features, representation learning
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can help overcome challenges posed by inter-subject variability, noise, and other
factors affecting PPG signals. AutoEncoders, for example, are a type of self-supervised
representation learning model that learns representations by encoding inputs into
lower dimensions and then decoding them back to their original form, focusing
on reconstructing the input [14]. Other representation learning models have been
proposed with different tasks, such as contrastive learning or classification of
augmented transformations of the original data [15, 16]. Representation learning
has been increasingly used for anomaly detection in various domains, including
image analysis [17-21], and time series data, such as bio-signals sensor data like
EEG or ECG [22-25]. These studies have shown how representation learning can
successfully extract meaningful features from complex bio-signals sensor data, leading
to improved performance in classification tasks such as emotion detection or sleep
stage classification. However, its application to PPG data for unsupervised anomaly
detection and biometric identification remains underexplored, despite PPG being a
commonly used bio-signal in health-monitoring applications.

In this paper, we present a two-stage framework for unsupervised movement detection
and biometric identification in PPG data using representation learning. In the first
stage, we train a deep neural network to obtain a lower-dimensional and informative
data representation. In the second stage, we construct separate unsupervised anomaly
detectors for both tasks using the learned representations from the first stage. Our
approach not only investigates the effectiveness of representation learning in this
context, but also explores the potential of personalization in enhancing anomaly
detection performance. Additionally, we delve into biometric identification, aiming
to improve the reliability of personalized anomaly detectors. To the best of our
knowledge, this is the first study to jointly address these aspects for anomaly detection
in PPG data. Summarizing, our contributions are:

1. We propose a two-stage framework for unsupervised anomaly detection and
biometric identification in PPG data using representation learning.

2. We demonstrate the effectiveness of using the learned representations compared
to the original representations in detecting difficult real-world anomalies and
mitigating the subject variability.

3. We compare the effectiveness of generalization and personalization in anomaly
detection, discussing the impact of tailoring models to individual users for
enhancing the detection performance.

4. We investigate the unsupervised biometric identification task in PPG data to
increase the reliability of personalized models.

5. We explore the impact of the dimensionality of the learned representation
on the performance of our anomaly detection framework, demonstrating the
robustness of representation learning across a wide range of dimensionalities.
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4.2. PROPOSED FRAMEWORK

An overview of the proposed anomaly detection framework is shown in Figure 4.1. In
the first step, we focus on obtaining a representation of the PPG data that captures the
underlying structure of the data. Recent research shows that the task of classifying the
original data and augmented transformed versions of the same data can outperform
AutoEncoders and contrastive learning methods in learning better representation for
the downstream task of interest [16]. Accordingly, we learn the representation by
distinguishing original data from augmented transformed versions of the same data.
This task is what we refer to as "Signal Transformation Classification."

Given the original signal S(I), where [ =(1,2,...,L) and L is the length of the time
series, the augmented transformations of the data are described as:

 Time reversal: A time inverted version of the signal: S'(I), where [ =(L,L—1,...,1).

o Amplitude reversal: A amplitude inverted version of the signal: as S'(I) = —S(0),
where [ =(1,2,...,L).

* Both Time and Amplitude reversal: We first perform the time reversal as
described and then perform the amplitude reversal to obtain a time and
amplitude inverted version of the signal: S'(l) = —S(1), where [ =(L,L-1,...,1).

To train the representations, we use a CNN model to classify PPG segments
into four categories: Time reversal, Amplitude reversal, Both time and amplitude
reversal, and the original signal. Given an unlabeled PPG dataset Dy = {x; ?2‘1
where x; e R1*T is a vector of length T and N, is the number of vectors (samples).
yi €{1,2,3,4} is the class label for the i™h vector, where ¥i =1,2,3 represents the
augmented data obtained by reversing the original PPG signal and y; =4 represents
the original PPG signal. The CNN model consists of an encoder component
that maps each input vector into a latent space representation h; = Ey(x;) where
h; e R4 and d < T. After that, h; is fed into the classifier component of the
model to predict the class label y; = Cy(h;). The model is trained to minimize
the cross-entropy loss between the predicted class label y; and the true class
label y;. The final learned representation is obtained by taking the latent space
representation h; outputted by the encoder component. This learned representa-
tion is then used in the second stage of our proposed framework for anomaly detection.

In the second step of our proposed framework, we use the learned representation h;
to detect anomalies. Specifically, we use three different methods to detect whether an
input signal is an anomaly: Multi-Variate Normal distribution (MVN) [26], Isolation
Forest (IF) [27], and PCA-Reconstruction [26]. For the MVN, the mean and covariance
matrix are estimated on normal training samples. Given a test sample h;.s;, we can
then calculate the probability density function (PDF) of the test sample using the
fitted Gaussian distribution as:

1 _
plhyes) = p —E(hmt—p)Tz Yhyese — ) 4.1)

(271')dl2|2|1/2 ex
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Step 1: Representation Learning (RL) Task (Signal Transformation Classification) Original Signal
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Figure 4.1: Proposed framework for anomaly detection using Representation Learning (RL).
The framework consists of two steps: (1) A representation learning phase, where the model
(consisting of an encoder and classifier component) is trained to discriminate between
augmented transformations and the original data. The weights of the encoder are then frozen
for the next step. (2) A anomaly detection phase, where the frozen encoder is used to extract
features from the input data, which are then fed into an anomaly detector. The scatter plot
illustrates an example of the distribution of points in a 2-dimensional feature space. The
anomaly detector separates the normal and anomalous samples with the decision boundary
(threshold) based on their anomaly scores.

where d is the dimension of the learned representation. It is expected that anomalous
test samples have a lower probability compared to normal samples. Therefore, these
points can be detected if the probability is below a set threshold.

For the Isolation Forest (IF) method, we first train an ensemble of decision trees on
normal training samples. Given a test sample h.;, the IF algorithm isolates the
test sample from the others by recursively splitting the data with randomly selected
features and split values. The number of splits, or the path length, required to isolate
a sample is an indication of its anomaly score. Anomalous samples are expected to
have shorter path lengths compared to normal samples. The anomaly score of a test
sample h.;; using the IF algorithm is calculated as:
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_E[L(hyes)]
sthyes) =2 ¢V) 4.2)

where E[L(h)] is the average path length of the test sample over all trees in the
ensemble, c(N) is the average path length of an unsuccessful search in a Binary
Search Tree with N external nodes, and N is the number of samples in the training
data. The anomaly score s(hss;) ranges from 0 to 1, with higher scores indicating a
higher likelihood of being anomalous. Anomalous test samples can be detected if the
anomaly score is above a set threshold.

The PCA-Reconstruction method is a technique for detecting anomalies in high-
dimensional data by reconstructing the original data from its principal components
and evaluating the reconstruction error. Given a test sample hy.;, the reconstruction
error can be calculated as the squared distance between the original sample and its
reconstructed version (h;ecop,) after mapping to a reduced PCA space. This is achieved
by projecting the test sample h;.s; onto the orthogonal basis vectors represented by
the matrix describing the PCA mapping, W, and then transforming it back to the
original space. The reconstruction error can then be expressed as:

e(hsesy) = [lhyesy — (WWT)hreconHz (4.3)

Note that anomalous test samples can be detected if the reconstruction error is above
a set threshold.

4.2.1. DEFINITION OF ANOMALIES

We define anomalies in the context of two specific tasks: activity movement detection
and biometric identification.

ACTIVITY MOVEMENT DETECTION

In this particular setting, we train an anomaly detector on the recorded data during
a specific activity (considered as the "normal" activity) and evaluate it on the
data, which includes another activity (considered as an "anomalous" activity) in
addition to the "normal" activity. We assume that the anomalous movement activity
shows a different pattern than the normal activity and should be distinguishable
from the "normal" movement activity. Accurately detecting movement can have
significant practical implications in various applications, such as fitness health
tracking, where identifying irregular patterns or deviations from expected behavior is
crucial. By focusing on such a complex and practical problem, we can demonstrate
the effectiveness and robustness of our proposed approach in handling real-world
challenges associated with PPG data, including inter-subject variability, noise, and
other factors affecting signal quality.

BIOMETRIC IDENTIFICATION

In the context of biometric identification, we aim to identify an individual (user) as
an anomaly when compared to a given group of people or another individual as the
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"intended" user(s). We train the anomaly detector on the recorded data from the
intended group or individual during a specific activity and evaluate the anomaly
detector when presenting new data, which includes another individual (considered
as an "anomaly") during the same activity as the data from the intended user(s).
Identifying such anomalies can be crucial in personalized health monitoring systems,
where it is important to distinguish between users for accurate and safe health
monitoring and assessments.

4.3. EXPERIMENTAL SETUP

4.3.1. DATASETS

We use two datasets in our experiments. The first one is the Pulse Transit Time
PPG (PTT-PPG) public dataset [28], a high-resolution and time-synchronized dataset
annotated with activity labels. It contains waveform records from multi-wavelength
sensors measuring PPGs, attachment pressures, and temperatures. The recordings are
from 22 healthy subjects (M = 22) performing different physical activities in random
order. We selected Sitting and Walking activities for this study. We use the green
wavelength recorded PPG from the proximal phalanx (base segment) of the left index
finger palmar side (Frequency of 500 Hz).

The second dataset is the PPG-Dalia public dataset collected by [29] to perform
PPG-based heart rate estimation. It has recordings of 15 subjects (M = 15) performing
different daily activities. We have selected Sitting and Walking activities for this study.
We removed data from subject number 6 due to incomplete data recording. The
signals are recorded with a frequency of 64 Hz.

4.3.2. DATA PREPROCESSING

A band-pass 2*? order Butterworth filter is applied to the whole PPG signal of each
subject individually for both datasets, but with different frequency ranges of 0.35
- 20 Hz for the PTT-PPG dataset and 0.1-10 Hz for PPG-Dalia. To create different
categories of signals, we used Time reversal, Amplitude reversal, and both Time and
Amplitude reversal augmentations. All of the signals are then normalized to zero mean
and unit variance across the whole signal per subject. The final normalized filtered
signals are segmented into windows with a length of 8 seconds, while two successive
windows overlap by 7.5 seconds (this setting is common for PPG data [29-31]). Since
the PTT-PPG dataset frequency is 500 Hz, the input windows are resampled using the
Fourier method from a size of 4000 to a fixed size of 512, which allows for more
efficient processing during model training, and it is the same input window size as
the PPG-Dalia dataset.

4.3.3. IMPLEMENTATION
REPRESENTATION LEARNING

The hyperparameters and the architecture of the proposed deep learning model
are determined by systematically searching through all possible combinations to
obtain the best performance on the classification task using Leave-One-Subject-Out
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cross-validation (LOSO). Eventually, we used a CNN architecture deep learning model
consisting of a 1D convolutional neural network layer with a series of five-layer blocks
followed by a fully connected layer and a final classification layer. The layer blocks are
composed of two 1D convolutional layers, each followed by the Exponential Linear
Unit (ELU) activation function and, in the end, a MaxPooling layer. After the final
layer block, there is a fully connected layer with a size of 64, which is the learned
representation size, followed by the Rectified Linear Unit (ReLU) activation function.
Finally, there is a classification layer (SoftMax activation function) with a size of 4,
corresponding to the four categories. The final implemented CNN model details are
available in Appendix A.

The model is optimized using categorical cross-entropy as the loss function. The
Adam optimizer is used with a learning rate of 0.00001 and a decay rate of 0.0001
for the PTT-PGG dataset and a learning rate of 0.0001 and a decay rate of 0.001
for the PPG-Dalia dataset. The batch size is 64, and training runs for 400 epochs
for both datasets. To assess the randomness of the deep learning framework, each
training process for each test subject is repeated five times. To evaluate the signal
transformation classification performance, we use the Area under the ROC curve
(AUC-ROC) metric.

ANOMALY DETECTION

In our PCA-based anomaly detection approach, we optimize the number of principal
components by ensuring they cumulatively account for 99% of the data variance.
The Isolation Forest model was implemented with 100 base estimators in the
ensemble. The number of base estimators was chosen based on our preliminary
experiments, which showed good performance in this setting. The Multivariate
Normal Distribution-based anomaly detector was implemented utilizing a Gaussian
Mixture Model with a single component. The parameters of this distribution, namely
the mean vector and the covariance matrix, are learned directly from the data. In the
evaluation phase, we assess the performance of our anomaly detectors by calculating
the AUC-ROC.

4.3.4. ANOMALY DETECTION EVALUATION SCENARIOS

We consider two evaluation scenarios for anomaly detection tasks: Generalization and
Personalization.

GENERALIZATION SCENARIO

In the generalization scenario, we aim to test the ability of the anomaly detection
model to generalize across different individuals.

For activity movement detection, shown in Fig 4.2a, we train the model using data
from all subjects performing Sitting activity as the main normal activity. This data is
considered as 'normal training samples’. In the test phase, we introduce data from
both a new activity, referred to as the ’anomalous activity’ (in this case, Walking), and
the main activity of a new subject (left-out) who was not part of the training data. We
repeat this process for each subject, treating them as the test set (left-out subject),
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using the LOSO setting. We then calculate the mean and standard deviation of the
performance metrics across all test sets.

For biometric identification, shown in Fig 4.2b, we train the model on data from
a group of subjects, who we refer to as the ’'intended users. This data forms our
‘'normal training samples. We set aside 20% of the data from each subject for testing,
using a 5-fold cross-validation approach. During the testing phase, we introduce
’anomalous data’ from a new subject who is not part of the training data. This subject
is referred to as the ’left-out’ subject (user). To assess how well our model can
differentiate the new user from the intended users, we use LOSO validation to treat
each subject once as a ’left-out’ user. We then calculate the mean and standard
deviation of the performance metrics across all test sets.
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Figure 4.2: Overview of Generalization Scenario: (a) Generalization in Movement Detection task,
(b) Generalization in Biometric Identification task. Note that the distribution of the anomalous
and normal samples in training and test sets follows the same ratios as depicted in the figures.
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Figure 4.3: Overview of Personalization Scenario a) Personalization in Movement Detection
task. b) Personalization in Biometric Identification task. Note that the distribution of the
anomalous and normal samples in training and test sets follows the same ratios as depicted in
the figures.

PERSONALIZATION SCENARIO

In the personalization scenario, we aim to tailor the anomaly detection model to
individual characteristics, both for movement detection and biometric identification.
For activity movement detection, shown in Fig 4.3a, we select one subject and train
the model on data related to the main activity, which is Sitting. This data forms our
‘normal training samples. We reserve 20% of this data for testing, using a 5-fold
cross-validation approach. During the testing phase, we introduce 'anomalous activity
data’ from the same subject, in this case, Walking activity, and we use 20% of this
data using 5-fold cross-validation for testing. Thereby, our test set includes 20% of
'Walking activity’ data and 20% of the ’Sitting activity’ data from one selected subject.
We repeat this process for each subject. Finally, we calculate the mean performance
and standard deviation across all test sets.
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For biometric identification, shown in Fig 4.3b, we train the model using data from
a single selected subject, who we refer to as the ’intended user’. This data forms our
‘'normal training samples’. We reserve 20% of this data for testing, using a 5-fold
cross-validation method. During the testing phase, we introduce ’anomalous data’
from a new subject who was not part of the training data, and we use 20% of its data
using 5-fold cross-validation for testing. We compare each subject with the intended
user in a pairwise manner. The average performance of these comparisons is taken
as the performance of the intended user. We repeat this entire process for each
individual, treating them as the intended user each time. Finally, we calculate the
mean performance and standard deviation across all intended individuals.

4.4. RESULTS
4.4.1. REPRESENTATION LEARNING

The first step of the proposed framework is Representation Learning (see Fig 4.1).
The overall performance of the signal transformation classification task for both
datasets is calculated across all test subjects. Both datasets have a high mean AUC of
0.92+0.09 for the PTT-PPG and 0.93 + 0.06 for the PPG-Dalia. These results indicate
that the model is able to generalize to new data (subject) and accurately classifies the
augmented and original PPG segments in both datasets.

4.4.2. ANOMALY DETECTION
ACTIVITY MOVEMENT DETECTION

The second step of the proposed framework is Anomaly Detection (see Fig 4.1).
Table 4.1 shows the results of movement detection for both datasets. In the generalized
scenario, representation learning significantly improves the AUC performance for all
three anomaly detection methods, suggesting its effectiveness in detecting anomalies
in PPG data compared to the original data representation. For instance, the results of
all anomaly detectors with PTT-PPG reveal that the AUC performance for anomaly
detection barely reaches 0.5. However, the performance is increased towards 0.9 when
using the learned representations.

Further, the original representation models demonstrate notable instability,
indicative of high inter-subject variability. For example, the standard deviation in
anomaly detectors without representation learning is around 0.4. However, employing
representation learning substantially reduces this variability to below 0.1. These results
underscore the capability of representation learning to facilitate better generalization
across different individuals.

We also investigated the performance of the proposed methods in a personalized
setting (Table 4.1). In the personalized setting, all methods show enhanced
performance compared to the generalized scenario, with a moderate reduction in
variability among individual performances. Notably, the integration of personalization
with representation learning yields the most significant improvements. Here, the
AUC performance approaches 1.0, and subject variability is markedly decreased to
below 0.05. This demonstrates that the combined use of representation learning and
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Table 4.1: Mean Test AUC performance of Movement Detection in the Generalized and
Personalized Scenario. The 'RL-’ prefix designates anomaly detectors that employ learned
representations from Representation Learning (RL) instead of the original data representation.

Movement Detection AUC Performance
Anomaly Detectors PTT-PPG Dataset Dalia Dataset

Generalized Personalized Generalized Personalized

MVN 0.40+0.39 0.74+0.29 0.78+0.16 0.93+0.08
RL-MVN 0.92 + 0.09 0.98 + 0.03 0.93 + 0.10 0.97 + 0.03
IF 0.28+£0.34 0.37+0.31 0.56+0.14 0.87+0.15
RL-IF 0.91 + 0.11 0.97 + 0.05 0.88 + 0.13 0.93 + 0.03
PCA 0.44+0.37 0.81+£0.25 0.76£0.19 0.94+0.07
RL-PCA 0.91 + 0.09 0.97 + 0.03 0.90 + 0.18 0.95 + 0.03

personalization not only improves performance but also ensures consistency across
individuals, effectively capturing subject-specific characteristics of PPG data.

BIOMETRIC IDENTIFICATION

In light of the improved performance achieved through personalization in activity
movement detection, biometric identification ensures that the detected anomalies are
specific to the intended user. Table 4.2 shows the results of biometric identification in
both generalized and personalized scenarios during Sitting Activity. In the generalized
scenario, it can be observed that using representation learning is effective, and it
improves the performance of all anomaly detectors across both datasets. While
representation learning has been successful in improving performance, it still may not
be perfect. This can be attributed to the inter-subject variability present in the data,
as the model must distinguish between multiple people considered normal, which is
challenging.

Considering the personalized scenario results, the performance of all methods is
significantly higher compared to the generalized scenario, with substantially reduced
variability: while in the generalized scenario, the standard deviations of the results are
often around 0.2, in the personalized scenario, it is reduced to below 0.1. Moreover,
representation learning continues to improve performance in the personalized setting,
demonstrating the effectiveness of learned representations. These results indicate that
minimizing inter-subject variability allows the model to better identify the anomalous
person as it is easier to detect the anomalous individual from only one individual
compared to a group.

4.4.3. ROBUSTNESS OF REPRESENTATION DIMENSIONALITY

One key aspect of our anomaly detection framework is the dimensionality of the
learned representation, denoted as h;. Figure 4.4 illustrates the mean performance
of anomaly detectors with varying h; dimensions ranging from 2 to 512 for both
datasets in generalized and personalized scenarios.
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Table 4.2: Mean Test AUC performance of Biometric Identification in the Generalized and
Personalized Scenarios. Results are based on Sitting Activity. The 'RL-’ prefix designates
anomaly detectors that employ learned representations from Representation Learning (RL)
instead of the original data representation.

Biometric Identification AUC Performance
Anomaly Detectors PTT-PPG Dataset Dalia Dataset

Generalized Personalized Generalized Personalized

MVN 0.40+0.26 0.76+0.22 0.43+0.26 0.56 +0.20
RL-MVN 0.60 + 0.22 0.86 + 0.08 0.55 + 0.17 0.78 + 0.09
IF 0.45+0.36 0.58+0.29 0.45+0.29 0.56 +0.24
RL-IF 0.61 + 0.24 0.86 + 0.08 0.53 + 0.18 0.74 + 0.09
PCA 0.39+0.34 0.67+0.24 0.43+£0.26 0.55+0.22
RL-PCA 0.59 + 0.20 0.84 + 0.09 0.55 + 0.16 0.78 + 0.09

As the h; dimensionality increases, the AUC also increases up to a certain point.
This trend suggests that as the dimensionality rises, the representation captures
more valuable information for anomaly detection. However, once we reach a
certain dimensionality, further increases do not provide additional benefits, and the
performance is stable.

In both scenarios, the learned representation improves the AUC compared to
the original signal. Results show that using learned representation leads to better
performance when the dimensionality of h; is reduced to extremely low levels. For
instance, at the low dimensionality of 2 in PTT-PPG and 8 in the Dalia datasets, we
can see the improvements in using learned representation over the original signal.
Even when the dimensionality of the learned representation is the same as the
original signal’s dimensionality (512), it outperforms the original signal. This robust
performance of the representation learning approach highlights its effectiveness in
capturing the essential structure and patterns of the data and learning useful features
across a wide range of low and high dimensionalities.

Choosing the right dimensionality depends on a balance between model
performance and computational efficiency. Based on the results, the dimensionality of
64 for the PTT-PPG and 256 for the Dalia dataset seems to offer an ideal balance
between computational efficiency and performance.

4.5, DISCUSSION AND CONCLUSION

This paper proposes a framework for anomaly detection in PPG data, consisting of two
stages: representation learning and anomaly detection (Activity Movement Detection
and Biometric Identification). We tested the ability of the proposed framework in
generalized and personalized scenarios. Our research demonstrates that through
representation learning and person-specific models, we can effectively address the key
challenges in analyzing PPG signals, such as inter-subject variability, avoiding the
influence of factors like color and skin thickness, weight, bone structure, etc. This




72 4. REPRESENTATION LEARNING AND PERSONALIZATION FOR PPG ANOMALY DETECTION

o
o

°
©
‘\
.
\
°
©

o
©
-y
o
©
»

°
3
%

AUC Performance
° <
3

AUC Performance

o
>

~e~ Generalized - Learned h;

o
£y

-e- Generalized - Learned h;
Personalized - Learned h; H Personalized - Learned h;

# Generalized - Original x; . # Generalized - Original x;
Personalized - Original x; ® Personalized - Original x;

o
o

o
o

o
ks

0 100 200 300 400 500 0 100 200 300 400 500
Representation Dimensionality Representation Dimensionality

(@) (b)

Figure 4.4: Overview of movement detection performance in the generalized and personalized
scenarios for varying dimensions of the learned representation. (a) Results for the PTT-PPG
Dataset and (b) results for the Dalia Dataset. The crosses indicate the performance obtained
with the original representation.

significantly enhances the accuracy of anomaly detection, potentially allowing for the
detection of rare and subtle anomalous patterns.

The results from the activity movement detection highlight the effectiveness of
representation learning in improving AUC performance and decreasing inter-subject
variability. However, it’s important to note the variations in the extent of variability
reduction between datasets. For instance, while representation learning significantly
decreases variability in the PTT-PPG dataset, the reduction in the Dalia dataset
is less pronounced. This difference could be attributed to various factors, such
as the inherent complexities of each dataset, differences in signal quality, sensor
types, environmental conditions during data collection, and participant demographics.
Despite these challenges, representation learning not only consistently improved
performance across datasets but also effectively reduced intra-subject variability.
However, for further improvements, personalization combined with representation
learning emerged as a critical factor. By customizing models to individuals, we
achieve more consistent results and effectively capture subject-specific characteristics.
These findings underscore the potential for further advancements in personalization
to address the challenges in variability, especially in complex datasets and in building
reliable and accurate PPG-based health monitoring systems. Note that the original
representation AUC results, which are lower than 0.5, may indicate that flipping the
label is actually beneficial. For example, it can be seen in Table4.1 that an AUC
of 0.28 in the generalized scenario from the PTT-PPG dataset would significantly
improve to 0.72 by flipping, but it still remains worse than the 0.91 obtained by the
RL representation. These results suggest that our approach may be beneficial in
real-world applications.

In addition to the findings from the Activity Movement Detection task, our results
in Biometric Identification further emphasize the key role of representation learning
and personalization. Similar to the previous task, representation learning significantly
enhanced the performance in both generalized and personalized scenarios for
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biometric identification. Using personalization along with representation learning
shows markedly higher performance and reduced variability. This improvement is
attributed to the model’s focus on individual characteristics. The consistency in these
findings across both tasks underscores the efficacy of these methods separately and
also in combination.

To further validate the effectiveness of our approach, we conducted a quantitative
comparison with existing studies in PPG data for similar tasks and scenarios. For
instance, in movement detection, a study [32], employing fully supervised learning,
reported an AUC of 0.89 in personalized and 0.78 in generalized scenarios on the
Dalia dataset (although in a more complex multi-class classification setting). Our
unsupervised approach with representation learning achieved AUCs of up to 0.93 in
the generalized scenario and 0.97 in the personalized scenario, suggesting higher
overall performance. Similarly, for biometric identification, a supervised study [33]
reported an AUC of 0.72 + 0.14 in personalized scenarios (on a different dataset). Our
framework, however, achieved a higher AUC and lower inter-subject variability, with
an AUC of 0.86 + 0.08. Although these numbers cannot be fairly compared, the results
underscore the potential of unsupervised learning methods in PPG anomaly detection,
particularly when combined with representation learning and personalization.

Analyzing the robustness of representation dimensionality underscores its
significance in anomaly detection frameworks. The performance of anomaly
detection in relation to the dimensionality of the learned representation follows
a pattern of initial gains followed by a plateau. This pattern suggests that while
increasing dimensionality can enhance performance, there is a threshold beyond
which additional increases do not yield further benefits. Interestingly, at the same
dimensionality as the original signal, representation learning performs better. This
suggests that learned representations can capture the (nonlinear) underlying patterns
or structures in the data that may not be immediately apparent in the original signal.
Furthermore, the fact that the learned representation can outperform the original
signal even at extremely low dimensionalities signifies that representation learning
can effectively extract and retain the most critical information from the original signal,
thereby enhancing anomaly detection.

In all experiments of our framework, the performance difference between anomaly
detection methods was relatively small. Therefore, we cannot draw a clear conclusion
about which method performs better than the others overall. It seems that the crucial
point in anomaly detection is not the method, but it is the representation and the
personalization.

Despite the promising results in using representation learning and personalization, it
is important to note that further research is needed to evaluate the effectiveness of RL
on a wider range of different types of real-world anomalies in PPG. This is particularly
important for practical applications, such as using smartwatches and self-monitoring
for anomaly detection in healthcare, where the complexity and variability of real-world
anomalies may be high. Exploring different algorithms or techniques to enhance the
learned representations of PPG data can also be a future direction to further improve
anomaly detection performance and decrease inter-subject variability.
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In conclusion, our proposed framework provides a promising approach for different
types of anomaly detection in PPG data. Combination of representation learning and
personalization provides a more effective approach for developing reliable, robust,
and accurate health monitoring systems.
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RESTAD: RECONSTRUCTION AND
SIMILARITY BASED TRANSFORMER FOR
TIME SERIES ANOMALY DETECTION

Anomaly detection in time series data is crucial across various domains. The scarcity of
labeled data for such tasks has increased the attention towards unsupervised learning
methods. These approaches, often relying solely on reconstruction error, typically fail to
detect subtle anomalies in complex datasets. To address this, we introduce RESTAD,
an adaptation of the Transformer model by incorporating a layer of Radial Basis
Function (RBF) neurons within its architecture. This layer fits a non-parametric density
in the latent representation, such that a high RBF output indicates similarity with
predominantly normal training data. RESTAD integrates the RBF similarity scores with
the reconstruction errors to increase sensitivity to anomalies. Our empirical evaluations
demonstrate that RESTAD outperforms various established baselines across multiple
benchmark datasets.

This chapter has been published as:

R. Ghorbani, M. J. T. Reinders and D. M. J. Tax, "RESTAD: Reconstruction and Similarity Based
Transformer for Time Series Anomaly Detection," 2024 IEEE 34th International Workshop on
Machine Learning for Signal Processing (MLSP), London, United Kingdom, 2024, pp. 1-6, doi:
10.1109/MLSP58920.2024.10734755. [1].

Code available at:
https://github.com/Raminghorbanii/RESTAD
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5.1. INTRODUCTION

Anomalies in time series data, i.e., unexpected patterns or deviations from normal
behavior, can signify critical issues across various domains, from financial fraud to
life-threatening health conditions. Hence, accurate anomaly detection is important.
Given the rarity of anomalies and, thus, the lack of sufficient labeled data, fully
supervised methods are less suited. Consequently, unsupervised learning methods
have gained increasing attention [2]. These methods do not explicitly require labeled
anomaly examples, making them ideal for the detection of unknown or unexpected
anomalies [3].

Various classic unsupervised techniques like distance-based One-Class SVM
(OC-SVM) [4] or density-based Local Outlier Factor (LOF) [5], have been widely used.
However, they struggle with the temporal dependencies, high dimensionality, and
complex generalization demands of time series data [6]. Recent developments in deep
learning offer promising solutions for handling these challenges [7]. Architectures
like Transformers and LSTMs excel at capturing temporal patterns and automatically
learning hierarchical and non-linear features from time series data [8-10]. Building
on these advancements, several effective anomaly detection methods have been
developed, largely focusing on the reconstruction error as a primary anomaly
criterion [11-13]. These methods typically assess the deviations between a given
input and its reconstruction to identify anomalies. The underlying assumption is that
typical data will have lower reconstruction errors, whereas anomalous data will exhibit
higher errors due to the unfamiliarity of the model with these patterns [12, 14, 15].

A major issue of using the reconstruction error for anomaly detection is
over-generalization [16]. Models fitted to capture the predominant patterns in the
training data, generalize these patterns to include subtle variations as well. Therefore
subtle anomalies can also be reconstructed well by these models. As a result,
these anomalies are less distinguishable from typical patterns, reducing the model’s
detection sensitivity [17]. This effect is depicted in Figure 5.1.a, where the original
signal includes a subtle anomaly at time point fj and a significant anomaly at ;. The
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Figure 5.1: Comparison of traditional reconstruction and RBF-enhanced anomaly detection:
a) Original signal with subtle and significant anomalies compared to its reconstruction.
b) Reconstruction errors for the signals in (a), highlighting challenges in detecting subtle
anomalies. c) Visualization of a model integrated with an RBE shown via a 2D scatter plot
that includes typical data, subtle and significant anomalies, and the RBF center with its
influence radius, showing the RBF’s ability to differentiate typical points from anomalies. d)
Enhanced anomaly score using the RBE which shows improved detection of subtle anomalies.
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reconstructed signal is a slightly smoothed version of the original signal, and by using
the reconstruction error alone, the subtle anomaly is missed as the reconstruction
error remains below the detection threshold, as shown in Figure 5.1.b.

Efforts have been made to improve unsupervised anomaly detection by adding
other types of scores to the conventional reconstruction error-based anomaly scores.
For instance, AnomalyTrans [18] utilizes the concept of association discrepancy, which
considers the similarity of a time point with its adjacent time points. It then reweights
the reconstruction error accordingly to formulate the final composite anomaly score.
However, in this method a normalization is performed, which can exaggerate the
discrepancy scores for normal time points when no anomalies are present, potentially
leading to false positives. This can misleadingly highlight normal data points as
anomalies. Although this approach is effective for identifying clear outliers, it can
inadvertently misrepresent subtle normal fluctuations as anomalies.

To overcome the challenges of scoring based on reconstruction error and the
limitations of the association discrepancy method, we propose combining the
reconstruction error with a specialized non-linear transformation like the Radial Basis
Function (RBF) kernel [19]. The RBF kernel generates a similarity score that measures
how close a data point is to a reference point or center, making it highly effective for
anomaly detection. Anomalies, data points that deviate (are far away) from typical
patterns, yield lower similarity scores with the RBF kernel, thus directly measuring
how anomalous a point is. This score can effectively complement the reconstruction
error and improve the sensitivity to subtle anomalies that might be overlooked by the
reconstruction error. The effectiveness of combining RBF scores with reconstruction
error is illustrated in Figure 5.1.c, where an RBF kernel is applied to typical data in the
latent representation of a Transformer. By combining reconstruction error with RBF
similarity scores, we create a comprehensive composite anomaly score that not only
captures deviations from expected patterns but also ensures that subtle anomalies
are still flagged. This composite anomaly score is shown in Figure 5.1.d, where the
anomaly scores for both anomaly types are now above the detection threshold.

This paper presents an adaptation of the Transformer model, chosen for its ability
to capture temporal dependencies in sequential data. By integrating the RBF neurons
into the Transformer architecture, we develop a model that synergistically utilizes
both similarity scores and reconstruction error to compute a distinctive anomaly
score. Through an extensive evaluation, we show that this new REconstruction and
Similarity based Transformer for time series Anomaly Detection, RESTAD, outperforms
existing baselines across a range of benchmark datasets.

5.2. METHODOLOGY

Assume that the observed time series dataset consists of N sequences with length T.
Each sequence in this dataset is denoted by &; = {xi,t}thl where x; ; represents the

observed time point for i-th sequence at time ¢, having d dimensions, i.e., x;; € R4,
Our task is to determine if a given x; ; shows any anomalous behavior or not.
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5.2.1. RESTAD FRAMEWORK

In our study, we incorporate the anomaly detection mechanism into the vanilla
Transformer [9] through a specific layer of RBF neurons, see Figure5.1.c. This RBF
layer operates on the latent representations from the preceding layer, denoted by
H; ={h;, t}thl’ where h; , € R% This layer computes the similarity of each data point
h; ; to a set of learnable reference points (centers), denoted by € = {cm}lr\n’le, where
¢, € R% This computation results in the RBF output, Z; = {zi,t}thl, where z; ; € RM,
which then serves as the input to subsequent layer of the model. Specifically, the RBF
similarity output for each data point relative to each center is defined by:

1
z;f’t(hi,t.cm) =exp —Eeyllh,-,[—cmll2 (5.1)

Here, the parameter y controls the width of the RBE influencing how it considers
data points at varying distances from the center. This parameter is initialized and
adjusted during training. Using the exponential of y ensures the positivity of the
scale parameter, simplifying the optimization process without enforcing a positivity
constraint.

Anomaly Score: RESTAD is trained by minimizing the Mean Squared Error (MSE) to
achieve accurate reconstruction. For anomaly detection, a composite anomaly score,
RESTADgcore, is introduced by combining the normalized RBF similarity scores and
reconstruction errors. The normalization is based on MinMax to ensure comparability.
The RBF similarity score measures how closely x; ; aligns with the learned centers. A
higher similarity suggests normal behavior, whereas a lower similarity (or greater
distance to the RBF centers) signals anomalies. This score is derived from averaging
the RBF output z;; across all centers. The reconstruction error is the squared
difference between the actual data x;; and its reconstruction xj ;. The RESTADg:ore
is formulated as:

RESTADgcore(%i,) =€ X €5 (5.2)

where €, = ||x;, ,—xf,tllz represents the reconstruction error, and €5 = (1 - % Z%zl z;f’t)
measures dissimilarity. This combination highlights subtle anomalies characterized by
both low reconstruction errors and RBF scores, as well as significant anomalies with
high reconstruction errors or low RBF scores.

Initialization of RBF Layer Parameters: Proper initialization of the RBF parameters,
including the centers ¢ and scale parameter 7y, is crucial for our methodology. We
explore two initialization strategies: Random and K-means, to assess their impact on
model performance. For Random initialization, parameters ¢ and y are drawn from a
normal distribution with zero mean and unit standard deviation. Although it is simple,
it may lead to slower convergence, risk of local minima, and may not effectively
represent the data distribution initially, possibly resulting in instability. In contrast,
K-means initialization uses the inherent data structure for a more representative
starting point. In this approach, initially, a base model (without the integrated RBF
layer) is trained to minimize the MSE of reconstruction:
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Figure 5.2: Overview of the proposed RESTAD model. Here, the RBF layer is added after the
second encoder layer.
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After achieving satisfactory reconstruction accuracy from the base model, the latent
representation is extracted from the specific layer where the RBF layer is intended to
subsequently be integrated. This representation is then used to initialize ¢ via the
K-means clustering algorithm. The scale parameter y is initialized using 62, the mean
squared distance from each data point to its nearest cluster center:

1 N T
~2 _ . o 2
Y ——NT;;mngnllhz,r eml®, ¥men, M (5.4)

Here, h;; denotes the latent representation vector of the i-th sample at the ¢-th
time step, and ¢, is the m-th cluster center obtained from the K-means algorithm.
This value, 62, is used to initialize y as y = %, ensuring that the RBF function has a
spread informed by the average dispersion of the data points around their respective
centers.

5.3. EXPERIMENTAL SETUP
5.3.1. DATASETS AND PREPROCESSING

We use three public widely used benchmark datasets for our experiments: 1) Server
Machine Dataset (SMD) [12], 2) Mars Science Laboratory (MSL) Rover [10], and 3)
Pooled Server Metrics (PSM) [20]. Further information on each dataset is available in
our code repository.

Data preprocessing involves normalizing each feature to zero mean and unit
variance across the time dimension. Subsequently, the normalized signal is segmented
into non-overlapped sliding windows [21] with a fixed length of 100 data points, a
common setting based on previous related works [11, 18].

5.3.2. IMPLEMENTATION

RESTAD Model: The RESTAD model is an adaptation of a vanilla Transformer,
incorporating an RBF kernel layer as detailed in Figure 5.2. It includes a
DataEmbedding module that combines both token and positional embeddings,
followed by an encoder with three layers. Each layer includes a multi-head
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Table 5.1: Performance metrics of baselines and RESTAD on test sets. Initialization methods are
denoted as (R) for Random and (K) for K-means. For all measures, a higher value indicates
better anomaly detection performance.

Dataset | SMD MSL PSM
Q Q Q Q Q Q
<} [ [
s 2 E B |5 2 E B §|3 2 E g f§
% g g 12 12 7 g:)g g %) %) P (:.DJ g 2 2
Models £ 2 2 2 2|/ 2 2 2 B/ 2 2 2 B
LSTM 012 074 017 079 020|006 056 0.4 063 019|011 073 050 072 051
USAD 013 063 011 072 014|006 053 0.4 059 0.18 007 060 041 0.61 043
PatchAD | 0.01 0.50 0.04 061 0.8 | 0.03 0.50 0.10 057 0.15|0.02 050 028 055 033
Transformer | 0.11 0.75 0.9 0.80 0.22|0.06 056 014 063 019|013 071 049 070 0.50
AnomalyTrans | 0.03 0.49 0.04 050 007 | 0.02 049 0.10 052 0.14 | 002 051 030 053 0.34
DCDetector | 0.01 050 0.04 051 0.8 |0.02 050 0.1 058 015|002 050 028 052 0.32
RESTAD (R) |0.23 0.78 0.23 0.82 0.24 [ 0.07 0.68 0.18 0.72 0.23 | 0.15 0.79 0.59 0.76 0.57

RESTAD (K) | 0.20 0.79 0.24 0.83 0.25 | 0.07 0.66 0.18 0.71 0.23 | 0.14 0.79 0.57 0.76 0.56

self-attention mechanism and feed-forward networks. The model has a latent
dimension of 32, an intermediate feed-forward network layer with a dimension of 128,
and 8 attention heads. The RBF layer is placed after the second encoder layer (other
placements are also possible, see section 5.4.1). Optimization is performed using the
ADAM optimizer, and hyperparameters are determined through systematic search to
optimize reconstruction task performance. Additional hyperparameter details are
available in our code repository’.

Evaluation: Anomaly scores (Eq. 5.2) exceeding a threshold 6 are identified as
anomalies. Performance is evaluated using the Fl-score for threshold-dependent
evaluation. Here, we follow [18] by setting 6 to label a predefined proportion of
data points as anomalies (0.5% for SMD, 1% for others). For threshold-independent
analysis, we use AUC-ROC, AUC-PR, VUS-ROC, and VUS-PR metrics [22]. We
exclude the point-adjustment method [23] due to its overestimation [24]. Our model
is compared against baselines and state-of-the-arts models: LSTM [10], vanilla
Transformer [18], USAD [14], PatchAD [13], AnomalyTrans [18], and DCdetector [11].

5.4. RESULTS

Our empirical results, as detailed in Table 5.1, highlight the effectiveness of the
RESTAD for anomaly detection. RESTAD outperforms all baseline models across
the benchmark datasets and evaluation metrics, regardless of the RBF initialization
strategy. While there are slight performance differences between initialization methods,
these variations are not significant enough to establish the superiority of one method
over another.

To visually show detection differences, Figure 5.3 displays anomaly scores for a
short segment of the SMD dataset. PatchAD, DCdetector, and AnomalyTrans models
reveal many false detections, with DCdetector showing a pattern of repeated false
positives and PatchAD resembling random scoring. LSTM, USAD, and Transformer
models miss some anomalies or detect them weakly; for example, the first anomaly
area is undetected by USAD, and only weakly detected by LSTM and Transformer. In
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contrast, the RESTAD model demonstrates robust detection, effectively identifying all
anomaly sections.
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Figure 5.3: Anomaly scores of different models for a segment of SMD dataset. The highlighted
regions in red indicate the true anomaly periods (labeled by an expert).

5.4.1. ABLATION ANALYSIS

The ablation experiments are based on the RBF layer with random initialization. This
decision is based on our findings that random initialization is as effective as the
K-means strategy (see Table 5.1), while offering greater simplicity and computational
efficiency.

Anomaly Score Criterion: Table 5.2 highlights the impact of integrating the RBF score
into anomaly detection. Multiplying the RBF layer’s dissimilarity score (e¢5) with the
reconstruction error (e,) to form the composite anomaly score (e, x €;,) is found to
be the most effective, consistently enhancing detection across all benchmarks and
metrics. Adding the RBF layer to the vanilla Transformer with only reconstruction
error €, as the anomaly score offers marginal improvements on some datasets.
In contrast, using only the dissimilarity score (e¢5) or adding it directly to the
reconstruction error (€5 +¢€,) shows no significant benefits.

Figure 5.4 visually illustrates the superiority of our composite anomaly score over
the traditional reconstruction score (e,) by showing subsets from all three datasets
and the corresponding anomaly scores. Our anomaly score effectively identifies
anomalies that are overlooked by the model relying solely on reconstruction error,
with detections notably stronger and typically exceeding the threshold. Note that the
thresholds depicted in the figures are the best optimized ones based on the entire
dataset. Altering this threshold for the subset of data presented in the figures could
diminish the overall performance and is therefore not possible.
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Table 5.2: Effect of integrating RBF layer and the choice of anomaly score. For all measures, a
higher value indicates better anomaly detection performance.
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Figure 5.4: Effect of our composite anomaly score (€ x €5) compared to reconstruction error
(er) across segments of all datasets. The highlighted regions in red indicate the true anomaly
periods (labeled by an expert).

RBF Layer Placement:We explored the flexibility of RBF layer placement within the
vanilla Transformer by integrating it after each of the three encoder layers. Figure 5.5a
demonstrates that performance remains robust across all datasets, irrespective of the
RBF layer’s location. Note that placing the RBF layer after the second encoder layer
results in marginally better performance across all datasets. This slight advantage
influenced our decision to position the RBF layer after the second layer in the final
model architecture (see Figure 5.2).

Number of RBF Centers: Figure 5.5b represents the impact of the number of centers,
ranging from 8 to 512, in the RBF layer of RESTAD. Results indicate that the optimal
number of RBF centers is data-dependent. Additionally, beyond a certain threshold,
increasing the number of centers does not enhance performance and may even
reduce it.

5.5. DISCUSSION AND CONCLUSION

We introduced RESTAD, an adaptation of Transformers for unsupervised anomaly
detection that improves on the limitations of using only reconstruction error as the
anomaly score. By integrating an RBF layer into the Transformer, we combined
RBF similarity scores with reconstruction error, enhancing the sensitivity to subtle
anomalies. RESTAD consistently outperforms established baselines across various
datasets and evaluation metrics.
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Figure 5.5: Visualizations of RESTAD performance metrics: (a) with varying RBF layer

placements and (b) across varying numbers of RBF centers. Here, shaded areas indicate +
standard deviation, illustrating variability across multiple runs.

Our findings reveal that RESTAD’s performance is relatively invariant to RBF layer
initialization methods, indicating robustness against initialization variability. The
significant performance gains are primarily due to the multiplicative fusion of RBF
similarity scores with reconstruction error, markedly improving anomaly detection
capabilities. The RBF layer’s placement within the architecture did not significantly
affect performance, revealing architectural flexibility in integrating the RBF layer.
However, the optimal number of RBF centers is data-dependent. These findings
motivate future studies for the exploration of integrating RBF layers into other deep
learning architectures for anomaly detection tasks.
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DISCUSSION AND CONCLUSION

We will discuss the contributions described in this thesis on three themes: 1)
evaluation metrics, highlighting the development of Proximity-Aware Time Series
Anomaly Evaluation (PATE); 2) representation learning, focusing on self-supervised
learning approaches to address challenges such as label scarcity, high inter-subject
variability, and long temporal dependencies; and 3) anomaly scoring mechanisms,
centered on an innovative framework (RESTAD) for detecting subtle anomalies.
Together, these themes provide a comprehensive overview of the thesis’s contributions
while identifying opportunities for future advancements.

6.1. EVALUATION METRICS FOR TIME SERIES ANOMALY
DETECTION

Time series anomaly detection requires evaluation metrics capable of capturing
temporal complexities, such as Early or Delayed detections, Onset response time, and
Coverage level of detections over anomaly intervals. Existing metrics often fail to
account for these aspects, leading to biased assessments that can misguide both
researchers and experts. To address these shortcomings, Chapter 2 introduced PATE
(Proximity-Aware Time Series Anomaly Evaluation), a novel metric that integrates
proximity-based weighting with buffer zones around anomaly intervals and computes
a weighted version of the Area Under Precision and Recall curve. Experimental results
demonstrated PATE’s ability to highlight meaningful performance differences across
models and different scenarios.

PATE offers a more reliable benchmark for model evaluation, aligning results
with user expectations and real-world requirements. This is particularly critical in
high-stakes applications such as healthcare and finance, where misleading evaluations
can delay responses or lead to costly errors. By addressing these shortcomings, PATE
ensures that performance assessments are both practical and relevant, enabling the
selection of models that are truly effective. For the research community, PATE’s
adoption reduces the risk of misaligned evaluation benchmarks, fostering innovation
and guiding future advancements with meaningful and well-aligned evaluation criteria.

Despite its strengths, PATE has certain limitations. Its methodological complexity
poses challenges for practitioners unfamiliar with advanced metric design, particularly
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in non-academic or less technical environments. Interpreting PATE scores requires
additional context or complementary metrics to define what constitutes a “good”
performance, limiting its immediate practicality. Furthermore, PATE’s reliance on
buffer zones and temporal proximity introduces subjectivity in parameter selection,
complicating deployment across diverse applications. Although the method ensures
consistent model rankings, customizing these settings for specific domains adds
overhead. Lastly, evaluating multiple buffer settings and thresholds increases
computational costs, making scalability a challenge, particularly for large datasets or
systems prone to frequent false alarms.

Future work could focus on developing intuitive interfaces or tools that simplify
PATE’s application and provide domain-specific default settings and evaluation criteria
to streamline adoption across fields while maintaining flexibility for customization.
In industrial contexts, domain experts could guide parameter adjustments to align
PATE’s configurations with operational needs. Establishing standardized guidelines
for interpreting PATE scores, including clear performance thresholds and visual
diagnostics (e.g., visualizing the impacts of buffer zones and proximity weights),
would improve accessibility and usability. Research into optimizing the evaluation
process, such as pruning unnecessary configurations or parallelizing computations,
could enhance scalability.

6.2. REPRESENTATION LEARNING FOR UNSUPERVISED TIME

SERIES ANOMALY DETECTION

This thesis addresses the challenges of unsupervised time series anomaly detection
through representation learning. Chapter 3 represented the first application of
self-supervised learning (SSL) to photoplethysmogram (PPG) data in a label-scarce
regime. Using reconstruction as a pretext task, the model learned low-dimensional,
noise-robust representations from unlabeled data, improving downstream task
performance and enabling the use of simpler models. However, reconstruction-based
task struggled to learn invariant representations, limiting their ability to handle high
inter-subject variability. This motivated the exploration of alternative pretext tasks.

Building on this, chapter 4 introduced an SSL approach using classification of
augmented signal transformations as a pretext task. This method successfully learned
robust and invariant representations, better addressing label scarcity and inter-subject
variability. The chapter further demonstrated that personalization—tailoring models to
individual users—significantly improved performance compared to universal models.
These findings highlight the potential of SSL and personalized approaches to improve
anomaly detection in real-world applications.

Despite the insights and advancements in representation learning, certain limitations
remain. In Chapter 3, the representations learned through SSL were too complex for
simple linear classifiers like Logistic Regression, suggesting that while they captured
non-linear patterns, they did not simplify downstream task. Furthermore, the reliance
on a single dataset and a specific task raises concerns about the generalizability of
the framework. In Chapter 4, although the augmented transformation classification
pretext task improved representation effectiveness, the reasons behind its success
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remain unexplored. The study did not evaluate simpler designs, such as binary
augmented transformation classification tasks, or the contribution of individual
transformation classes. Additionally, reliance on Area Under the ROC curve for
evaluation may introduce bias, especially in imbalanced datasets, highlighting the
need for alternative metrics.

Optimizing pretext task design remains an open area of investigation, with
promising directions including exploring additional augmentations such as Gaussian
Amplitude Modulation, where the signal’s amplitude is modulated by a Gaussian
random factor. Our preliminary results suggest that such an augmentation can
further improve downstream task performance; however, the model architecture
may need to be adapted to perform well with the pretext task. Another idea is
cut-paste augmentation, which introduces anomalous labels by rearranging parts of
the signal. This binary classification pretext task, proven effective for images, could
offer valuable insights into its applicability and impact on biomedical signals like
PPG. Exploring multitask learning setups that combine multiple pretext tasks, such
as reconstruction and classification, offers another promising avenue for optimizing
representation learning. Additionally, examining the effects of binary classification for
augmented transformations or testing various combinations of augmentations could
clarify their individual contributions and further improve pretext task design. Studying
the relationship between the dimensionality of learned representations and the design
of pretext tasks models is another critical area. For example, investigating whether
changes in model architecture, such as adding layers or altering complexity, affect
downstream task performance while maintaining pretext task performance could
enhance understanding of the representation learning process. Expanding evaluations
to diverse datasets and downstream tasks is essential for validating the robustness
and generalizability of these methods. Specifically, applying representation learning
techniques to high-dimensional multivariate time series data could address the added
complexity of handling multiple correlated signals, which is common in domains
such as healthcare and industrial monitoring.

6.3. ANOMALY SCORING MECHANISM FOR SUBTLE TIME

SERIES ANOMALIES

Detecting subtle anomalies in time series data is challenging, as traditional
reconstruction-based methods often overgeneralize, missing small deviations from
normal patterns. Chapter 5 introduces RESTAD (REconstruction and Similarity-based
Transformer for Anomaly Detection), a framework that combines reconstruction
errors with similarity-based scores. By leveraging a Radial Basis Function (RBF) layer
within a Transformer architecture, RESTAD computes a composite anomaly score that
enhances sensitivity to subtle deviations.

Benchmark evaluations demonstrate RESTAD’s superior performance in detecting
both subtle and prominent anomalies. This is particularly critical in high-stakes
applications, where undetected anomalies can lead to severe consequences. RESTAD
addresses the limitations of traditional reconstruction-based models and offers a
practical foundation for more sensitive and reliable anomaly detection systems.
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Despite its strong performance, RESTAD has limitations. The number of RBF
centers is a sensitive hyperparameter that requires careful dataset-specific tuning.
Beyond a certain point, increasing the centers does not improve performance and
may degrade it, complicating deployment. While RESTAD integrates RBF layers within
a Transformer architecture, its applicability to other architectures, such as LSTMs or
CNNs, remains unexplored.

Future research could explore applying RESTAD’s scoring mechanism to other
architectures to broaden its utility across diverse modeling paradigms. Our preliminary
experiments integrating the RBF layer into LSTMs have shown promising results,
suggesting that this approach could enhance performance and encourage further
investigation. Another promising direction involves refining the training process of the
RBF layer by maximizing the likelihood under the RBF kernels while ensuring accurate
data reconstruction. This may include designing a regularization term to prevent any
single RBF center from disproportionately influencing the output, encouraging an
effective distribution of centers that promotes high likelihood for the training data
and enhances the RBF layer’s representational efficiency.

6.4. FINAL WORDS

This thesis advances the field of time series anomaly detection by addressing
key challenges through innovative methodologies and practical solutions. The
contributions span the development of robust evaluation metrics, the application
of representation learning for unsupervised anomaly detection, and novel scoring
mechanisms for subtle anomalies. Together, these efforts lay the groundwork for more
reliable, scalable, and generalizable anomaly detection systems.

At its core, this work emphasizes the importance of aligning research priorities with
real-world challenges. By bridging theoretical innovation with practical applicability, it
highlights how robust evaluation, representation learning, and anomaly scoring can
redefine state-of-the-art practices. These contributions not only address current gaps
but also set a trajectory for future advancements in anomaly detection research and
applications.

Looking ahead, the challenges identified throughout this thesis provide a roadmap
for continued exploration. This research serves as both a foundation and an invitation
for the community to build upon, fostering innovation in a field where precision and
reliability are critical.
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