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Summary

Satellites in low Earth orbits provide valuable insight on our planet. To meet the
stringent requirements on the accuracy of the computed orbits geopotential Earth
observation satellites are equipped with a high-precision GPS (Global Positioning
System) receiver. Using these GPS observations, the orbit of the satellite is com-
puted with a precision at the few cm level by precise orbit determination (POD)
techniques. A recent development is the addition of a high sensitivity accelerom-
eter on board of such satellite missions, to measure the non-gravitational forces
acting on it. In the instrument transfer functions, biases and scale factors are intro-
duced which are sensitive to instrument operations and the satellite environment.
This leads to the necessity to calibrate the accelerometer measurements before us-
ing them. The objective of the research described in this dissertation is to develop,
implement and validate a strategy to calibrate the accelerometer measurements
of LEO satellites by processing them with precise GPS-based orbit determination
techniques.

The CHAMP mission was the first Earth observation satellite to carry an ultrasensi-
tive accelerometer, the STAR instrument. The GRACE mission carries its more pre-
cise successor SuperSTAR. The GOCE mission is based on differential accelerome-
try, with 6 even more precise accelerometers combined in a gradiometer configura-
tion. The first accelerometers in space were used to measure the atmospheric drag
acting on the spacecraft. Although not the main scientific goal, the accelerometer
measurements of CHAMP and GRACE were soon applied for atmospheric pro-
filing, and more specifically the retrieval of thermosphere density and winds. A
driver for this research is an improved calibration of accelerometer measurements
in support of the retrieval of thermosphere density [Doornbos et al., 2009]. Data of
the CHAMP and GRACE missions were processed for this study.

Because the orbit determination is done only with GPS observations, namely the
undifferenced ionosphere-free linear combination, the performance of the GPS re-
ceivers used in this research is analyzed. This analysis confirms their high quality.
The BlackJack receiver on CHAMP and GRACE and the GRAS receiver, flying on
MetOp-A and based on the same chipset as the Lagrange receiver flying on GOCE,
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show a comparable quality. The Lagrange receiver on board of GOCE proves to
meet its requirements.

The least-squares orbit determination technique has been applied, comprising of
the iterative adjustment of dynamical trajectory and measurement model param-
eters from a set of observations and implemented in the GHOST software. When
applying the accelerometer measurements, they replace the non-gravitational ac-
celerations computed from force models and are directly inserted into the equation
of motion. Scale and bias parameters are estimated in the least-squares adjustment
procedure. For the estimation of the biases, especially in radial and cross-track di-
rection, a good a priori value proved to be necessary because of high correlations
of this parameter with the initial conditions of the orbit (position and velocity at
start time). The a priori bias value is determined by the difference between the
mean of modeled non-gravitational accelerations and the mean of the accelerom-
eter measurements. It was found that in these two directions the GPS-based POD
technique serves more as validation than as calibration. The estimation of em-
pirical accelerations in the POD, to compensate for deficiencies in the employed
dynamical models, improves the orbit determination, while the values of the cali-
bration parameters hardly change.

Five years (2003-2007) of CHAMP and GRACE data are processed, computing
daily calibration parameters. A strong anti-correlation between scale and bias pa-
rameters is apparent when estimating both scale and bias parameters with loose
constraints. A stable (unconstrained) estimation of the scale factor, showing a
small variation, occurs when the signal strength is large. Reversely, with a re-
ducing acceleration strength due to a decreasing solar activity, the formal error
increases, as well as the variation of the estimated parameter. Keeping the scale
factor constant in all three directions results in much smoother bias values, show-
ing a clear trend, and distinct jumps in the bias values are visible, which can be
related to instrument behavior. The resulting GRACE orbits have a 3-dimensional
RMS precision of around 3.5 cm compared to external trajectories, which is sup-
ported by SLR analysis. Phase residuals for GRACE fluctuate under the cm level
and even reach 6 mm when phase center variations maps are incorporated.

The calibration benefits from a sequential procedure, where first daily biases and
scale factors are estimated, after which the average of the scale factor is deter-
mined. In the next step, the scale factor is kept constant and new daily biases are
estimated. The scale factor can also be estimated with a multi-arc technique, where
the normal matrices are stacked for a long period and one scale factor is estimated
for the whole period. With this technique the influence of the signal strength on
the estimation becomes clear, as days with a stronger signal contribute more to the
solution than days with a smaller signal. Therefore, the stacked matrices approach
is conceptually a good technique to estimate the scale parameter.

Although also carrying accelerometers, GOCE differs from the CHAMP and
GRACE missions. The flying altitude is much lower, resulting in higher aero-
dynamic forces acting on the satellite, which are compensated by the drag-free
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control system. On board of GOCE six accelerometers are combined into a gra-
diometer, with the common-mode accelerations formed by combining accelerom-
eter measurements along a gradiometer axis. These common-mode accelerations
are inserted in the orbit determination. When the satellite is not flying in drag-free
mode, a scale factor in along-track and cross-track direction can be estimated un-
constrained and values close to one are found. In radial direction the signal is too
small to estimate a scale parameter. When the drag compensation is active, this
only remains possible in cross-track direction, as now also in flight direction the
signal is small. For a one month period when GOCE was not flying drag-free, the
estimated scale factor in along-track and cross-track direction is stable, showing
small variations. A second period has GOCE in science mode and flying drag-free.
Now only the scale in cross-track direction is estimated freely and has a slightly
higher variation, caused by the smaller signal as the drag-free compensation also
works in this direction. In both cases the bias parameter in flight direction can be
estimated reliably, and in the two other directions this parameter is constrained to
a priori values, because of the before mentioned correlations with the initial con-
ditions. These two months are also processed with the stacked matrices approach,
and the obtained results support that the signal strength is the driving factor for
a reliable estimation of the scale parameter. In general, it can be concluded that
there is no indication that the scale factors for GOCE are statistically different from
one.

The developed method to calibrate accelerometer measurements of LEO satellites
with a GPS based orbit determination technique, produces reliable results in flight
direction, when the acceleration signal is strong enough. In the other directions
it more validates scale factors (obtained e.g with a multi-arc technique) and bias
parameters derived from dynamic models, which can be further improved. The
processing of the accelerometer data of CHAMP and GRACE will be continued
for both missions, and as the analysis on GOCE data was limited in scope, more in
depth analysis can be performed, like the application of individual accelerometer
measurements in the POD and an assessment of the ion engine behaviour.





Samenvatting

Satellieten in een lage baan om de Aarde leveren waardevolle inzichten in onze
planeet. Om te voldoen aan de vereisten gesteld aan de berekende banen zijn
missies gericht op het aardse zwaartekrachtsveld uitgerust met een heel precieze
GPS (Global Positioning System) ontvanger. Met deze GPS metingen wordt de
baan van de satelliet door middel van precieze baanbepalingstechnieken bere-
kend tot een paar cm nauwkeurig. Een recente ontwikkeling hierbij is het inte-
greren van een uiterst gevoelige versnellingsmeter aan boord van dergelijke satel-
liet missies, om de niet-gravitationele versnellingen te meten. De metingen van
dit instrument moeten gecorrigeerd worden voor calibratie parameters (schaal en
constante meetafwijking, zogenaamd ’bias’), die beı̈nvloed worden door de aan-
sturing van het instrument en de omgeving aan boord van de satelliet. Daarom
moeten deze metingen gecalibreerd worden voor gebruik. Het doel van het onder-
zoek beschreven in deze dissertatie is daarom het ontwikkelen, implementeren en
valideren van een strategie om de metingen van de versnellingsmeters aan boord
van boven genoemde satellieten te calibreren, door ze te gebruiken in de precieze
baanberekening gebaseerd op GPS metingen.

De CHAMP missie was de eerste aardobservatie-satelliet met een ultra-gevoelige
versnellingsmeter aan boord, het STAR instrument. De GRACE missie gebruikt
de meer preciese opvolger SuperSTAR. De GOCE missie tenslotte is gebaseerd op
differentiële accelerometrie, met 6 versnellingsmeters gecombineerd in een gra-
diometer configuratie. De eerste versnellingsmeters in de ruimte werden gebruikt
om de atmosferische weerstand die op het ruimtetuig werkt, te meten. Hoewel dit
niet het primaire wetenschappelijke doel is van deze missies, werden de meting-
en van de versnellingsmeters aan boord van CHAMP en GRACE al snel gebruikt
voor atmosferische profilering, namelijk het bepalen van de dichtheid van de ther-
mosfeer. Een motivatie voor dit onderzoek is een verbeterde calibratie van de ver-
snellingsmeter metingen ter ondersteuning van het bepalen van de dichtheid van
de thermosfeer [Doornbos et al., 2009]. Data van de CHAMP en GRACE missies
zijn gebruikt voor deze toepassing.

Omdat de baanberekening uitsluitend gebaseerd is op GPS metingen, namelijk
de niet-gedifferentieerde ionosfeer-vrije combinatie, zijn allereerst de prestaties
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van de GPS ontvangers gebruikt in dit onderzoek geanalyseerd. Deze analyse
bevestigt hun hoge kwaliteit. In het bijzonder, hebben de BlackJack ontvanger van
CHAMP en GRACE en de GRAS ontvanger, aan boord van MetOp-A, een verge-
lijkbare kwaliteit. Deze laatste is gebaseerd op dezelfde chipset als de Lagrange
ontvanger aan boord van GOCE. Een eerste analyse van de Lagrange ontvanger
toont aan dat die aan de voor de lancering gedefinieerde vereisten voldoet.

In het hier beschreven onderzoek is de methode van de kleinste kwadraten
toegepast. Deze bestaat uit het iteratief aanpassen van een dynamische baan en pa-
rameters uit de GPS metingen. Dit is geı̈mplemteerd in de GHOST software. Wan-
neer versnellingsmetingen gebruikt worden, vervangen ze de niet-gravitationele
versnellingen berekend uit krachtmodellen, en worden deze meegenomen in de
bewegingsvergelijkingen. Schaal en bias parameters worden dan bepaald met
de kleinste kwadraten schatting. Voor het schatten van de bias, vooral in ra-
diale richting en de richting loodrecht op het baanvlak (aangeduid met ’nor-
maal’), bleek een goede a priori waarde nodig te zijn, omwille van hoge corre-
laties met de initiële condities van de baan (positie en snelheid op het begintijd-
stip). Deze a priori waarde wordt bepaald door het verschil tussen het gemid-
delde van gemodelleerde niet-gravitationele versnellingen en het gemiddelde van
de versnellingsmeter metingen. Het blijkt dat in deze twee richtingen de precieze
baanbepaling met GPS observaties meer als validatie dient dan als calibratie. Het
meeschatten van empirische versnellingen, die fouten in de gebruikte dynamische
modellen opvangen, verbetert de baanbepaling, terwijl de waarden van de cali-
bratieparameters nauwelijks veranderen.

Vijf jaren (2003-2007) CHAMP en GRACE data zijn verwerkt, waarbij dagelijks
calibratie parameters bepaald zijn. Een sterke anti-correlatie tussen schaal en bias
parameters duikt op wanneer beide geschat worden met losse beperkingen. Een
stabiele (vrije) schatting van de schaalfactor, die een kleine variatie vertoont, is mo-
gelijk als de signaalsterkte groot is. Omgekeerd verhoogt de formele fout bij een
afnemende sterkte van de versnellingen, veroorzaakt door de afnemende zonne-
activiteit, waardoor ook de variatie van de geschatte parameter toeneemt. Een
constante schaalfactor in alle richtingen resulteert in een kleinere spreiding van de
bias waarden, die een duidelijke trend met afgelijnde sprongen tonen, die gerela-
teerd kunnen worden aan het gedrag van het instrument. De zo bepaalde banen
van de GRACE satellieten hebben een 3-dimesionele RMS van ongeveer 3.5 cm
vergeleken met externe banen. Dit werd ook bevestigd door analyse van laser af-
stands of SLR residuen. Fase residuen voor GRACE fluctueren onder de cm grens
en halen zelfs 6 mm wanneer fase-centrum-variaties gebruikt worden.

De calibratie verbetert wanneer gebruik wordt gemaakt van een sequentiële pro-
cedure, waar eerst de dagelijkse schaal en bias paremeters geschat worden, en
vervolgens het gemiddelde van de schaalfactor bepaald wordt. In de volgende
stap wordt de schaalfactor constant gehouden en worden nieuwe dagelijkse bias
waarden bepaald. De schaalfactor kan ook geschat worden met een ’multi-arc’
techniek, waarbij de normaalmatrices opgeslaan worden voor een lange periode
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en één schaalfactor bepaald wordt voor de hele periode. Met deze techniek wordt
de invloed van de signaalsterkte op de schatting duidelijk, omdat dagen met een
sterker signaal meer bijdragen tot de oplossing dan dagen met een zwakker sig-
naal. Daarom is deze multi-arc methode conceptueel een goede techniek om de
schaalfactor te bepalen.

Hoewel GOCE ook versnellingsmeters aan boord heeft, verschilt deze missie van
CHAMP en GRACE. De hoogte waarop deze satelliet vliegt is veel lager, wat
een hogere aerodynamische weerstand als gevolg heeft. Deze weerstand wordt
gecompenseerd door het zogenaamde ’drag-free’ systeem. De zes versnellingsme-
ters aan boord van GOCE worden gecombineerd tot een gradiometer, waarbij
de ’common-mode’ versnellingen verkregen worden door het het gemiddelde
te nemen van versnellingen langs één arm van de gradiometer. Deze common-
mode versnellingen worden gebruikt in de ontwikkelde techniek en komen gro-
tendeels overeen met vesnellingen zoals gemeten door één versnellingsmeter in
het massamiddelpunt van de satelliet (zoals bij CHAMP en GRACE). Wanneer de
luchtweerstand niet gecompenseerd wordt, kan in vlieg- en normale richting een
schaalfactor vrij geschat worden, met waarden dicht bij één als resultaat. Radiaal
is het signaal te klein om een schaalfactor te kunnen schatten. Als de compen-
satie van de weerstand actief is, kan enkel in normale richting nog een schaalfactor
geschat worden, omdat nu ook in vliegrichting het signaal te klein is. Gedurende
een maand wanneer GOCE vloog zonder compensatie van de weerstand, is de
schaalfactor in vlieg- en normale richting stabiel, en toont deze een kleine variatie.
Tijdens een tweede periode vloog GOCE in wetenschappelijke modus, met com-
pensatie van de luchtweerstand. Nu kan enkel in normale richting een schaalfactor
geschat worden, die een iets hogere variatie toont, daar het signaal ook kleiner is
omdat de compensatie van de weerstand ook deels in deze richting werkt. In beide
gevallen kan de bias parameter in vliegrichting betrouwbaar geschat worden. In
de twee andere richtingen wordt deze parameter sterk beperkt tot a priori waar-
den, omwille van de boven genoemde correlaties met de initiële condities. Deze
twee periodes zijn ook verwerkt met de multi-arc methode, en de behaalde resul-
taten bevestigen dat de signaalsterkte de bepalende factor is voor een betrouwbare
schatting van de schaal parameter. Algemeen kan gesteld worden dat er geen in-
dicatie is dat de schaalfactoren van GOCE statistisch beduidend afwijken van één
en dat de metingen dus goed gecalibreerd zijn.

De ontwikkelde methode om metingen van versnellingsmeters aan boord van
satellieten in lage banen om de Aarde te calibreren, produceert betrouwbare resul-
taten in vliegrichting, wanneer het signaal van de versnelling sterk genoeg is. In de
andere richtingen is de techniek meer een validatie van de schaalfactoren (bijvoor-
beeld bepaald met een multi-arc techniek) en bias waarden bepaald uit dynami-
sche modellen. Deze modellen kunnen verder verbeterd worden. Het verwerken
van CHAMP en GRACE data zal gecontinueerd worden voor de levensduur van
beide missies. Omdat de analyse van resultaten van de GOCE satelliet gezien de
recente beschikbaarheid beperkt was in tijd en omvang, kan in de toekomst een
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meer diepgaande analyse uitgevoerd worden. Hierbij kan ook het gebruik van in-
dividuele versnellingsmeters in de baanbepaling onderzocht worden, als ook het
gedrag van de ionenmotor, die gebruikt wordt voor de compensatie van de weer-
stand.



Chapter 1

Introduction

The past decades, low Earth orbit (LEO) has proven to be an excellent observation
platform for our planet. Satellites in orbit around the Earth continue to provide
valuable insight in meteorology, climatology, ocean currents, the Earth interior, etc.
These satellite missions have stringent requirements on the accuracy of the com-
puted orbits, ranging from a few decimeters for earlier missions to the centimeter
level for current and upcoming missions. Errors larger than the specified toler-
ances affect the mission objectives, e.g. the use of altimeter data for oceanography
and glaciology or the recovery of the global Earth gravity field. Therefore such
satellites are equipped with high-precision tracking systems like retro-reflectors
for satellite laser ranging (SLR) and DORIS or GPS (Global Positioning System)
receivers. With the data stemming from such tracking systems the orbit of the
satellite can be determined by precise orbit determination (POD) techniques.

A more recent development is the addition of a highly sensitive accelerometer on
board of a geopotential satellite mission, to measure the non-gravitational forces
acting on it. During the gravity field recovery these measurements help to sep-
arate gravitational and non-gravitational contributions in the observed orbit per-
turbations. The first mission to carry such a high class accelerometer is CHAMP
(CHAllenging Minisatellite Payload), led by the GeoForschungsZentrum (GFZ) in
Potsdam [Reigber et al., 2002] and launched in July 2000. A second one is GRACE
(Gravity Recovery And Climate Experiment), a joint US-German mission for ac-
curate determination of the Earth gravity field and its temporal variation [Tapley
et al., 2004b], launched in March 2002. The most recent is ESA’s GOCE (Gravity
field and steady-state Ocean Circulation Explorer) mission [ESA, 1999], launched
in March 2009. GOCE carries six accelerometers, orthogonally aligned in three
pairs close to the spacecraft’s center of mass, as a gradiometer. The future Swarm
mission [Friis-Christensen et al., 2008] is foreseen to consist of three satellites, each
carrying an accelerometer.

For precise orbit determination purposes all these missions have a dual-frequency
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GPS receiver on board. The application of dual-frequency GPS receivers as main
tracking instrument is evolved into a mature and scientifically well researched
technique. CHAMP and GRACE are equipped with a Black-Jack receiver devel-
oped by the Jet Propulsion Laboratory (JPL), while GOCE flies a Lagrange receiver
developed by Thales Alenia Space (formerly Laben). When the spacecraft carries
an accelerometer, the measured accelerations can be used to replace the models of
the non-gravitational forces, such as air drag and solar radiation pressure, in the
orbit determination.

This dissertation focusses on the latter, where the accelerometer measurements are
introduced in the orbit determination, replacing the accelerations derived from
non-gravitational force models, in an effort to calibrate them. The next section
presents an overview of space borne accelerometry, followed by the objective and
motivation of this research and its contribution to the field of precise orbit deter-
mination (with accelerometer data). A brief introduction of the satellite missions
mentioned above (CHAMP, GRACE and GOCE) is given thereafter, as GPS and
accelerometer data of these missions were processed and the results are presented
and discussed in this dissertation. This introductory chapter is concluded with a
detailed outline of all other chapters.

1.1 Accelerometers on board a spacecraft

Electrostatic space accelerometers have been developed since the seventies. The
Discos [DeBra, 1973] and the Cactus instruments have been respectively launched
in 1972 and 1975 for drag compensation control or drag measurement. Both were
designed around a high density proof mass, the motion of which is measured with
three capacitive sensors. More recently, the ASTRE instrument (French acronym of
Accelerometre Spatial TRiaxial Electrostatique) has been optimized for the moni-
toring of the manned spacecraft environment. The mechanical core of the sensor
is defined with a silica core surrounding a parallelepiped proofmass made of ti-
tanium alloy. The ASTRE accelerometer flew three times on board the Columbia
shuttle in 1996 and 1997. From the ASTRE experience, the STAR (Space Three axis
Accelerometer for Research) instrument has been defined. STAR has an internal
core configuration similar to ASTRE [Touboul, 2001].

The STAR accelerometer was specifically designed for the CHAMP mission, the
first Earth observation satellite mission to carry an ultrasensitive accelerometer.
The measurement of the surface forces acting on the satellite allows to replace rel-
atively inaccurate non-gravitational force models by precise observations in the
accurate determination of the orbit. The gravity signal is deduced from the contin-
uous and three-dimensional tracking of the spacecraft relative to the GPS satellites,
the so-called satellite-to-satellite tracking in the high-low mode (SST h-l). For the
determination of the gravity anomalies at smaller scale, from wavelengths of sev-
eral thousands down to below one hundred kilometers two other techniques are
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applied, the low-low satellite to satellite tracking (SST l-l, GRACE) and the gravity
gradiometry (GOCE). For both, accelerometers with an extremely high resolution
are necessary, which is for GRACE provided by the SuperSTAR instrument (with
an update of the STAR configuration by modifying the core geometry, the position
sensing and the electrostatic actuator sensitivities).

The GRACE mission, consisting of two satellites following each other, measures
the relative motion of the two spacecraft, where again the accelerometer measure-
ments are used to separate the non-gravitational force contributions from the grav-
itational ones in the SST h-l and l-l tracking [Tapley et al., 2004b]. The GOCE mis-
sion is based on differential and common-mode accelerometry, with 6 accelerome-
ters combined in a gradiometer configuration, orthogonally aligned in three pairs
[ESA, 1999]. This gradiometer ultimately (after corrections) measures the gravity
field gradients, the difference in gravitational attraction along the mounted di-
rections, and the non-gravitational accelerations from the common-mode. These
measurements are again combined with SST h-l tracking. GOCE is furthermore
flying in a drag-free mode, where the atmospheric drag at satellite altitude is com-
pensated by an ion thruster, with closed loop controls exploiting the accelerometer
measurements. More sensitive accelerometers will be applied in future scientific
missions in the domain of Fundamental Physics, also requiring satellites flying
drag-free. This is e.g. the case for the LISA satellites [Danzmann, 2000] for the
observation of gravity waves.

As stated in the beginning of this section, the first accelerometers in space were
used to measure the drag on the spacecraft. Although not the main scientific goal
of the before mentioned geopotential missions, the accelerometer measurements
of CHAMP and GRACE were soon applied for atmospheric profiling, and more
specifically the retrieval of thermosphere density and winds. Results on this topic
can be found in [Bruinsma et al., 2003], [Doornbos et al., 2005], [Liu et al., 2006] and
[B.D.Tapley et al., 2007]. The application of the accelerometer measurements in this
field of research was also a driver for the research described in this dissertation,
which is elaborated in the next section.

1.2 Research objective and motivation

The objective of this research is to develop, implement and validate a strategy to
optimally calibrate the accelerometer measurements of LEO satellites by process-
ing them with precise orbit determination techniques. Conventionally, accelerom-
eter measurements are calibrated in gravity field recovery attempts, where the cal-
ibration is not a goal in itself, but a mandatory integral part of the gravity field
retrieval. In this research, the calibration of the accelerometer measurements, the
stability of the calibration parameters and the influence of the measurements on
the achieved orbits is the main objective. The research outcome is insight in the
modeling of non-gravitational forces in POD, application of the calibrated mea-
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surements in the retrieval of thermosphere density and winds and monitoring of
the accelerometer instrument behavior.

As stated earlier, a driver for this research is improved calibration of accelerometer
measurements in support of the retrieval of thermosphere density and winds from
them. This was initiated by an ESA/ESTEC study on ”Air density models derived
from multi-satellite drag observations” [Doornbos et al., 2009]. The study was per-
formed by a group of 4 institutes, under the lead of the chair of Astrodynamics and
Space Missions (of the Faculty of Aerospace Engineering, Delft University of Tech-
nology). Previous studies in this field focused on the retrieval of density from one
sole mission, where the focus of this study was on the gathering of measurements
from different observation platforms, in view of the Swarm mission, which con-
sists of three satellites, all equipped with an accelerometer. Data of the CHAMP
and GRACE missions were processed for this study.

The recently launched GOCE satellite flies in a very low orbit, at around 250 km
altitude. This poses high challenges on the orbit determination and the calibration
of the gradiometer. Furthermore it is flying in a drag-free mode, where the drag
is compensated by the thrust of an ion engine, which is the first application of this
technique in a scientific space mission. Because of the drag-free control, the ac-
celerometer signal along the orbit is small, which is a big difference compared to
the other two missions, where the accelerometer signal along the orbit is the largest
(mainly consisting of atmospheric drag). The developed methods in this disserta-
tion can also be tested on the GOCE data, and be compared with other calibration
efforts and orbit determination products. Part of this research was done in the
framework of the High Processing Facility (HPF) [Koop et al., 2006], an ESA project
performed by the European GOCE Gravity-Consortium (EGG-C), a group of ten
European institutes, of which the chair of Astrodynamics and Space Missions is
one. The purpose of the HPF is the processing of Level 1b data stemming from
the GOCE satellite (gradiometer measurements, GPS and attitude data) to Level 2
data, consisting of calibrated gravity field gradients, the Earth’s static gravity field
and precise orbits of the satellite.

1.3 The CHAMP, GRACE and GOCE satellite

missions

Throughout this research extensive use is made of GPS and accelerometer data
from the CHAMP and GRACE satellite missions, and also data of the recently
launched GOCE satellite are processed. A brief overview of these missions is pre-
sented here.

The Challenging Minisatellite Payload (CHAMP), illustrated in Figure 1.1, is a
German small satellite mission for geoscientific and atmospheric research and ap-
plications. On 15 July 2000 CHAMP was launched into an almost circular, near
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polar orbit with an initial altitude of approximately 454 km. CHAMP’s ten-year
anniversary has been celebrated and it is expected to re-enter in autumn 2010.
The primary mission objectives comprise the accurate determination of the Earth’s
gravity field, the estimation of the magnetic field including its spatial and tempo-
ral variations, and modeling the physical properties of the troposphere and iono-
sphere. To achieve this, the satellite is equipped with the STAR accelerometer, a
JPL BlackJack GPS receiver, multiple magnetometers on a long boom and an au-
tonomous star sensor. A more detailed description of the CHAMP mission can be
found in [Reigber et al., 1996].

The JPL BlackJack GPS receiver onboard of the CHAMP satellite is connected to
four GPS antennas. A zenith-mounted antenna equipped with a choke ring and a
typical cone of 80◦ serves as prime antenna for precise orbit determination, with
a backup POD antenna mounted next to it. On the rear side of the spacecraft a
helix antenna for occultation measurements can be found. The fourth antenna
is mounted on the bottom side (nadir pointing) and was planned to be used for
GPS altimetry. For this research only the GPS data collected by the primary POD
antenna are used, for precise orbit determination and data quality assessment.

Figure 1.1 Artist’s impression of the CHAMP satellite in orbit (Source: Astrium GmbH)

The Gravity Recovery and Climate Experiment (GRACE) mission (Figure 1.2) con-
sists of two identical formation flying spacecraft in a near polar, near circular orbit
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with an initial altitude of approximately 500 km. They were launched on March
17 2002. The same bus design as for the CHAMP satellite was applied, without the
frontal boom. The spacecraft have a nominal separation of 220 km. The primary
mission objective is to measure the time varying changes in the Earth’s gravity
field, which is accomplished by the mission’s key instruments, the Ka-Band Rang-
ing System (KBR), the SuperSTAR accelerometers and the BlackJack GPS receivers.
The KBR instrument measures the change in distance (biased range) between both
spacecraft, which is a measure for the change in gravity, within a precision at the
micron level. A complete overview of the entire GRACE mission can be found in
[NASA, 2002].

Figure 1.2 Artist’s impression of the GRACE satellites in orbit (Source: CSR, University
of Texas). The KBR link is illustrated as a beam between the two spacecraft

The Gravity field and steady-state Ocean Circulation Explorer (GOCE) satellite,
depicted in Figure 1.3, was launched on March 17 2009, exactly seven years after
the GRACE satellites. It is the first mission of ESA’a core Earth Explorer program
[Drinkwater et al., 2003]. It is the first satellite to apply gradiometry in space, car-
rying six highly accurate accelerometers, arranged in pairs along three orthogonal
axes. This instrument allows the accurate recovery of the static gravity field of the
Earth. To obtain a high sensitivity to the short wavelengths of the gravity field,
the satellite flies in an unusually low circular orbit, at an altitude of 254 km. To
maintain this orbit under the influence of high anticipated drag forces, the satel-
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Figure 1.3 Artist’s impression of the GOCE satellite in orbit (Source: ESA - AOES
Medialab). The ion propulsion is illustrated at the back of the spacecraft

lite is equipped with an ion thruster, which counteracts the measured atmospheric
drag. The mission duration is expected to be around 20-30 months, depending on
the level of solar activity and fuel budget. The common mode of all accelerometers
contains the signal due to the non-gravitational forces, augmented with the con-
tinuous accelerations of the ion thruster. For POD purposes, the satellite carries a
dual-frequency Lagrange GPS receiver.
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1.4 Outline

Because the orbit determination applied in this dissertation is done with GPS ob-
servations, chapter 2 provides a detailed overview of the different types of obser-
vations used. It deals with the observation modeling, as well as with data quality
aspects, including the analysis of systematic errors and thermal noise in the GPS
observation data. At the end of the chapter the receiver performance of several
space borne GPS receivers is analyzed.

Chapter 3 deals with the forces acting on a spacecraft, both gravitational and non-
gravitational. The models applied in the POD are introduced and at the end of the
chapter the accelerometer instrument is described.

In chapter 4 the theory of precise orbit determination using GPS observations and
its implementation is discussed. The implemented reduced dynamic batch Least-
Squares (LSQ) estimator is discussed in detail, followed by the method developed
to calibrate the accelerometer measurements by precise orbit determination.

Results of the CHAMP and GRACE calibration efforts are presented in chapter 5.

Because the GOCE mission differs largely from the CHAMP and GRACE missions,
first results of GOCE data processing are presented separately in the sequent chap-
ter 6.

At the end of this dissertation the conclusions, recommendations and ideas for
future study are presented (chapter 7).



Chapter 2

GPS observations

The Global Positioning System (GPS), developed by the United States Department
of Defense, is the most mature Global Navigation Satellite System (GNSS) avail-
able, next to the Russian GLONASS, the European GALILEO system, currently
under development and intended to be operational by 2013, and the Chinese Com-
pass system, also in the startup phase. Although initiated for military purposes,
GPS became available to the scientific and commercial world, both benefiting from
it. The latter has today led to the denomination of the acronym to a (portable) car
navigation system.

The system consists currently (Feb. 2009) of 31 active satellites (nominally 24) in
a constellation of near circular orbits with a radius of 26500 km, divided over 6
orbital planes equally spaced around the equator with an inclination of 55◦. This
sphere of satellites provides an attractive tracking system for a Low Earth Orbit-
ing (LEO) spacecraft, because it allows for autonomous and continuous tracking in
three dimensions, with a coverage of typically 7 or more GPS satellites, excluding
the need for ground stations or elaborate antenna pointing. After the success-
ful demonstration of GPS tracking for precise orbit determination on board of the
TOPEX/Poseidon satellite [Yunck et al., 1993], availability of flight-proven and af-
fordable space borne receivers increased and GPS has nowadays evolved into a
well established and accepted tracking system.

GPS positioning is based on the one way measurement of the signal travel time
from GPS satellite to receiver. Multiplication with the speed of light gives the
range between satellite and receiver. For this purpose a common reference time,
GPS time, has been defined which has a constant offset of -19 seconds with respect
to the international atomic time (TAI). The GPS satellites are equipped with atomic
clocks, whereas the receivers use temperature compensated crystal oscillators in
most cases. Both types experience a clock offset δt, which has to be corrected for,
causing the respective GPS satellite (s) and receiver (r) internal times, as function
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of the GPS system time t, to become:

ts(t) = t + δts(t)
tr(t) = t + δtr(t)

(2.1)

The first two sections of this chapter deal with the observation types and linear
combinations used in the orbit determination applied in this dissertation. A thor-
ough discussion can be found in [Misra and Enge, 2001]. In addition, the observa-
tion modeling is discussed and at the end of this chapter the tracking performance
and data quality of space borne GPS receivers on board of the CHAMP, GRACE,
MetOp-A and GOCE spacecrafts is presented. The GRAS receiver of MetOp-A is
interesting because this instrument is the first European built GPS receiver and is
based on the same chipset [Silvestrin et al., 2000] as the Lagrange receiver on board
of GOCE.

2.1 Observation types

Each GPS satellite transmits data on two L-band carrier waves, with frequencies
of 1575.42 MHz and 1227.60 MHz, an integer multiplication of the base frequency
of the satellite’s atomic clock of 10.23 MHz. Both frequencies are modulated with
Pseudo Random Noise (PRN) codes for acquisition and tracking of the GPS sig-
nal. The first frequency L1 is modulated with the Coarse Acquisition (C/A) code
and the second frequency L2 only with the Precision (P) code. The C/A code is
accessible to all users, whereas the P-code is encrypted to the P(Y) code, only ob-
servable by authorized users. Several techniques, such as (semi-)codeless tracking,
have been developed allowing the observation of the P code without the decryp-
tion key, at the expense of a lower Signal to Noise Ratio (SNR) and precision [Woo,
2000]. Since 2005 the L2C signal is broadcasted on newly launched GPS satellites,
which is transmitted on the L2 frequency, but is not encrypted, allowing civil re-
ceivers to receive the full SNR [Meehan et al., 2006]. In 2009 a third frequency
L5 is implemented, at 1176.45 MHz, modulated with two extra codes. These new
signals are not yet supported by presently available spaceborne GPS receivers.

A GPS receiver can measure three different types of observations: code or pseu-
dorange observations, where a copy of the code in the receiver is correlated with
the transmitted one to retrieve the signal travel time; carrier phase observations,
where the phase of the received carrier wave is compared with the sent one; and
the range-rate or instantaneous Doppler observation, where the Doppler shift of
the received signal is measured. This research makes use of only the range and
phase observations, therefore in the next sections the code and carrier phase ob-
servations are discussed in more detail, following [Husti, 2000].
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2.1.1 Code observations

The code observations are a direct measure of the signal travel time and thus of
the range between the antenna phase centers of the transmitting GPS satellite and
the receiver. The observed signal travelling time ts

r(t) at epoch t is written as:

ts
r(t) = tr(t) − ts(t − τs

r (t)) (2.2)

in which tr(t) is the receiver time of reception and ts(t − τs
r (t)) is the satellite time

of signal transmission. The true signal travelling time is denoted as τs
r (t). Substi-

tution of (2.1) into (2.2) yields

ts
r(t) = τs

r (t) + δtr(t)− δts(t − τs
r (t)) (2.3)

Multiplication of this expression with the speed of light and substitution of the
geometric range between the GPS satellite and receiver antenna phase centers,
ρs

r(t) = cτs
r (t), results in a first approximation of the pseudorange observation

P(t) = ρs
r(t) + c(δtr(t)− δts(t − τs

r (t))) (2.4)

The actual observation however is affected by different error sources: atmospheric
effects, instrumental delays in the receiver and satellite, signal multipath and other
systematic errors, and thermal measurement noise. Since this dissertation solely
focuses on space applications the only atmospheric effect influencing the observa-
tions is the ionospheric delay. Stretching from roughly 50 to 1000 km above the
Earth’s surface, the ionosphere consists of ions and free electrons and has a fre-
quency dependent effect on radio waves. The first order ionospheric path delay is
proportional to the inverse square of the carrier frequency, ∆I(t, f ) ∼ 1/ f 2, which
allows for the elimination of this term if dual frequency data are available, as for-
mulated in section 2.2.1.

The measurement thermal noise of the code observation, ǫP(t), is assumed to be
purely random with a zero mean and is typically on the decimeter level for geode-
tic grade receivers. All other errors and biases are contained in one term MP(t),

MP(t) = biP(t) + mP(t) + sP(t) (2.5)

where the GPS satellite and receiver hardware delays are grouped into a code bias
on receiver tracking channel i, biP(t), and the code multipath and other systematic
effects are respectively given by mP(t) and sP(t). Finally the observation equation
for a code observation on any of the two transmitting frequencies yields

P(t) = ρs
r(t) + c(δtr(t)− δts(t − τs

r (t))) + ∆I(t, f ) + MP(t) + ǫP(t) (2.6)

2.1.2 Carrier phase observations

Most GPS receivers are also able of accurately tracking the carrier wave onto which
the code is modulated. The observed carrier beat phase can be expressed as

φs
r(t) = φr(t)− φs(t − τs

r (t)) + Nφ (2.7)
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and consists of a phase difference φr − φs and an unknown integer number of car-
rier cycles Nφ. The GPS receiver carrier phase at the moment of signal reception is
denoted by φr(t), and φs(t − τs

r (t)) represents the carrier phase of the GPS satellite
at time of transmission. These last two terms can furthermore be written as

φr(t) = φr(t0) + f · (t − t0) + f · (δtr(t)− δtr(t0))
φs(t − τs

r (t)) = φs(t0) + f · (t − τs
r (t)− t0) + f · (δts(t − τs

r (t))− δts(t0))
(2.8)

where φr(t0) and φs(t0) represent the initial phases at t0 of the GPS receiver and
GPS satellite and f the transmitting frequency. Substitution of these expressions
into (2.7) yields

φs
r(t) = f τs

r (t) + f · (δtr(t)− δts(t − τs
r (t)) + A (2.9)

in which the ambiguity or bias term

A = Nφ + φr(t0) − f δtr(t0) − φs(t0) + f δts(t0) (2.10)

is a real valued parameter, which is constant over a continuous tracking arc.

After multiplication of (2.9) with the signal wavelength λ and introducing the
same kind of error sourcess as for the code observation, the carrier phase obser-
vation equation is given by

L(t) = ρs
r(t) + c(δtr(t)− δts(t − τs

r (t)))− ∆I(t, f ) + λA + ML(t) + ǫL(t) (2.11)

The first order ionospheric correction to the phase observation has the same mag-
nitude as for the code observation but an opposite sign, because the ionosphere
causes an advance on the phase and similarly a delay on the modulated code ob-
servation. The measurement noise ǫr(t) is again assumed purely random with a
zero mean. All other errors are given by

ML(t) = biL(t) + mL(t) + sL(t) (2.12)

The hardware delays from both receiver and satellite for the phase observable are
grouped into an additional phase bias on the receiver tracking channel i, biL(t), and
the carrier phase multipath and systematic errors are given by mL(t) and sL(t). The
thermal noise of the carrier phase measurement ǫL(t) typically is on the mm level
and multipath errors are confined to a quarter of the signal wavelength, making
this observation type much more precise than code observations.

The major differences between the code and carrier phase observations are the
overall precision, the fact that the carrier phase observations are ambiguous and
the opposite sign of the ionospheric delay (see also section 2.4 on the tracking
performance).

2.1.3 Dual frequency observations

All data analyzed in this dissertation are originating from receivers capable of
tracking both GPS frequencies. Therefore the dual frequency model for the P-code
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and accompanying carrier phase measurements obtained from a same GPS satel-
lite is summarized as

P1(t) = ρs
r(t) + c(δtr(t)− δts(t − τs

r (t))) + ∆I1(t) + MP1
(t) + ǫP1

(t)
P2(t) = ρs

r(t) + c(δtr(t)− δts(t − τs
r (t))) + ∆I2(t) + MP2

(t) + ǫP2
(t)

L1(t) = ρs
r(t) + c(δtr(t)− δts(t − τs

r (t))) − ∆I1(t) + λ1 A1 + ML1
(t) + ǫL1

(t)
L2(t) = ρs

r(t) + c(δtr(t)− δts(t − τs
r (t))) − ∆I2(t) + λ2 A2 + ML2

(t) + ǫL2
(t)

(2.13)

Here, the subscripts 1 and 2 denote the different frequencies, f1 and f2. Although
not given here, when needed the C/A code and carrier phase observables can be
modeled in exactly the same way as the P1 and L1 observables respectively. Fur-
thermore, it must be pointed out that in the dual frequency model the geometric
range ρs

r(t) is assumed to be the same for each observation. As pointed out by
[Teunissen and Kleusberg, 1998] this is not the case in reality, since the signal travel-
ling time slightly varies for each of the frequencies, but with less than 0.1µs. This
results in sub-mm position differences for the GPS satellites, which are negligible
compared to the other errors that are present in the observations.

As stated earlier, the thermal noise for each of the observations is assumed to be
purely random with a zero mean. Furthermore, an important assumption is that
individual observations from a single GPS receiver are completely uncorrelated
temporally, spatially and also between the different observation types and frequen-
cies. This means that the covariance matrix of the observation vector is diagonal
where the entries are derived from the assumed precision of the observations. In
this research the ionospheric-free combination is applied, introduced in the next
section, leading to a 2x2 diagonal covariance matrix Qz = [σ2

PIF
σ2

LIF
].

2.2 Linear data combinations

Several linear combinations can be derived from the above presented dual fre-
quency observations in support of precise orbit determination and for assessing
the quality of the receiver. Two such combinations are discussed here briefly.

2.2.1 Ionosphere free linear combination

This linear combination eliminates the first order ionospheric path delay, thanks to
the frequency-dependent effect on radio waves. It is the main observation combi-
nation used for the precise positioning applications described in this dissertation.
For the code and carrier phase observations the ionosphere free (IF) combination



14 GPS observations

yields

PIF(t) =
f 2
1

f 2
1− f 2

2

P1(t)− f 2
2

f 2
1− f 2

2

P2(t) ≈ 2.546P1(t)− 1.546P2(t)

LIF(t) =
f 2
1

f 2
1− f 2

2

L1(t)− f 2
2

f 2
1− f 2

2

L2(t) ≈ 2.546L1(t)− 1.546L2(t)
(2.14)

Applying this to the dual frequency observations results in the following parame-
terization

PIF(t) = ρs
r(t) + c(δtr(t)− δts(t − τs

r (t))) + MPIF
(t) + ǫPIF

(t)
LIF(t) = ρs

r(t) + c(δtr(t)− δts(t − τs
r (t))) + λIF AIF + MLIF

(t) + ǫLIF
(t)

(2.15)

where it must be noted that the carrier phase ambiguity, AIF, does no longer con-
tain an integer part as a result of the non-integer multiplication with the iono-
spheric wavelength.

A less fortunate consequence of this linear combination is the 3 times higher noise
value compared to the single-frequency measurements, as shown here for the
pseudorange combination after application of the error propagation law:

σPIF
=
√

2.5462 σ2
P1

+ 1.5462 σ2
P2

≈
√

2.5462 + 1.5462 σP1

≈ 3 σP1

(2.16)

under the assumptions related to the observation covariance matrix stated above
(σP1

= σP2
and σP1P2

= 0).

2.2.2 Multipath combination

The multipath combinations [Estey and Meertens, 1999] can be used to assess mul-
tipath and systematic errors and the noise level of the pseudorange observations.
They are constructed using a mix of code and carrier phase observations, where it
is assumed that the systematic errors and noise of the carrier phase measurements
are negligible compared to the ones of the code observations, and result in a ge-
ometry and ionosphere free observation. The first step is to derive an expression
for the ionospheric path delay based on the carrier phase observations:

∆I(t) =
1

α − 1

(

L1(t) − L2(t)
)

− 1

α − 1

(

λ1 A1 − λ2 A2

)

(2.17)

Here, α is the factor describing the square of the ratio between the ionospheric
path delays on both frequencies, α = f 2

1 / f 2
2 . The multipath combinations are now

formed by subtracting the respective carrier phase observations from their accom-
panying pseudoranges and substituting the just formed ionospheric delay. When
neglecting the carrier phase noise and systematic errors, the multipath observation
MP1

MP1(t) = P1(t)−
(

1 +
2

α − 1

)

L1(t) +

(

2

α − 1

)

L2(t) (2.18)
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is parameterized as

MP1(t) ≈ −
(

1 +
2

α − 1

)

λ1 A1 +

(

2

α − 1

)

λ2 A2 + MP1
(t) + ǫP1

(t) (2.19)

consisting of a combined carrier phase bias, constant over a pass, and the sys-
tematic errors and the thermal noise of the pseudorange observations. Similar
combinations can be formed for the C/A and P2 code observations. These linear
combinations are used in section 2.4 for assessing the quality of space borne GPS
receivers pseudorange data.

2.3 Observation modeling

When GPS observations are applied for positioning, they are modeled by replacing
the terms on the right side of the observation equations (2.15) with known values
or estimates of these terms. The differences of the observed and modeled mea-
surements are used in an estimation process, which is further elaborated in chap-
ter 4. The first term in the observation equation, the geometric range between the
phase centers of the GPS satellite antenna and the receiver, involves a linearization
around approximate values, causing the estimation process to be iterative. This
is described in the next section together with some general remarks on the obser-
vation models, following [Kroes, 2006]. The orbits of the GPS satellites and the
behavior of the GPS clocks are assumed to be known and taken from the Inter-
national GNSS Service (IGS) [Dow et al., 2005]. The associated IGS products are
discussed as well.

2.3.1 Linearization for positioning

The parameterization of the geometric ranges ρs
r(t) between the phase centers of

the receiver and GPS satellite antennas in terms of antenna phase center positions
introduces a non-linearity. The geometric range, the distance between the antenna
phase center position of the the GPS satellite, rs(t − τs

r (t)) and the GPS receiver,
rr(t), at the time of signal transmission and reception respectively, is given by:

ρs
r(t) = ‖rs(t − τs

r (t))− rr(t)‖ (2.20)

When approximate values of both positions are obtained, the geometric range be-
comes

ρs
r0(t) = ‖rs

0(t − τs
r (t))− rr0(t)‖ (2.21)

and a linearization around them yields

ρs
r(t) = ρs

r0(t)− es
r(t) · ∆rr(t) + es

r(t) · ∆rs(t) (2.22)
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with ∆rr(t) and ∆rs(t) the phase center position increments of the receiver and
GPS satellite respectively, and the partial derivatives given by

es
r(t) =

rs
0(t − τs

r (t))− rr0(t)

‖rs
0(t − τs

r (t))− rr0(t)‖ (2.23)

equal to the line of sight vector between receiving and transmitting antenna. Sub-
stitution of this linearized range into the observation equations results in linear
observation models, which are now suitable for use in positioning applications.

At this point it has to be noted that although the GPS observations are parameter-
ized with the antenna phase center position(s) (increments), these are in general
not the points of interest for positioning. Throughout this study all positions that
are provided or estimated refer to the center of mass of either the GPS satellites or
the spacecraft onto which the GPS receiver is mounted. The antenna phase center
offsets with respect to the centers of mass of all satellites involved are accounted
for in the different positioning applications. These offsets however, have virtually
no impact on the linearization presented here.

Throughout this research the GPS satellite positions and clock offsets are ob-
tained from external resources and are assumed known on every epoch, result-
ing in ∆rs(t) = 0, and thus rs(t) = rs

0(t). A discussion of these so-called GPS
ephemerides is provided in the next section. It must however be noted that this
introduces an additional uncertainty in the observation model since the externally
generated GPS ephemerides data are only accurate to a certain level. Any error
in a provided GPS satellite clock offset propagates directly into the observation
equations, whereas GPS satellite position errors, ǫrs(t), affect the observations ac-
cording to the previously derived linearization, es

r(t) · ǫrs(t).

Furthermore throughout this research the biases and errors, captured in the Ms
r

terms of the different observations, are neglected and not corrected for, except
when empirical phase patterns are applied, which account for phase center vari-
ations and are introduced in section 2.4.1. The neglected error sources are simply
accounted for in the measurement variances, for which realistic values are deter-
mined using the data analysis in section 2.4.

The ionosphere free observation model, applied in the precise orbit determination,
is now parameterized with the position increment of the GPS receiver antenna
phase center, the GPS receiver clock offset and the ionosphere free carrier phase
ambiguity. When these parameters are adjusted for using observations from mul-
tiple GPS satellites, it must be noted that the mean value of all unmodeled biases
and errors over all observations cannot be separated from the GPS receiver clock
offset and will therefore be biased. Since this will in general only result in a very
slight time offset the impact of this effect on the accuracy of the final position is
negligible, even for spaceborne GPS positioning applications where the GPS re-
ceiver in general moves faster than the GPS satellite. For completeness it has to be
stated that constant phase channel biases can also not be separated from the carrier
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phase ambiguities. Again this has no direct consequence for the resulting position
accuracy.

2.3.2 GPS satellite orbits and clocks

Any type of precise positioning application using GPS data requires an accurate
knowledge of the GPS satellite positions and clock offsets. These GPS ephemerides
are provided by the IGS, which began to provide precise GPS ephemerides infor-
mation for geodetic users and surveyors as early as 1994 [Kouba, 2002] when GPS
had almost reached its fully operational status. Within the IGS, various Analy-
sis Centers derive their own, independent GPS orbit and clock solutions which
are subsequently merged into combined IGS products applying proper weighting
and quality control. Both the network of IGS ground stations and the quality of
the resulting products have continuously increased over time.

The IGS provides three types of GPS ephemerides products: the final, rapid and
ultra-rapid ephemerides. The final IGS ephemerides are released some 13 days
after the end of a GPS week and have a reported position and clock accuracy of
better than 5 cm [IGSCB, 2009]. The rapid products, in contrast, are available
within 17 hours past the end of each day and, meanwhile, achieve an almost iden-
tical accuracy. The ultra-rapid orbit and clock products are made available four
times per day and have a latency of 3 hours past the last GPS observations, with a
similar accuracy for the orbit products and two times less accurate satellite clock
estimates.

All types of IGS ephemerides products provide GPS orbit and clock offset data in
the standard SP3 format [Remondi, 1991] on a regular 15 min grid. The positions
and velocities in the SP3 format are provided in the Inertial Terrestrial Reference
Frame (ITRF) [McCarthy, 1996] and relate to the center of mass of the GPS satellites.
The regular grid point spacing allows for accurate polynomial interpolation of the
GPS satellite position at the time of a measurement, which is accomplished using
an 8th-order Lagrange interpolation method. After interpolation to the epoch of
interest the GPS satellite position is transferred to the transmission time, corrected
for the Earth rotation during transmission and for the antenna phase center offset
and variations. Another correction is added to account for the phase wind-up [Wu
et al., 1993], the phase shift due to a rotation of the transmitting antenna around its
bore axis, which occurs when the GPS satellites’ solar panels are oriented towards
the Sun.

After the introduction of absolute antenna phase center corrections in the pro-
cessing standards of the IGS in GPS week 1400 (November 2006), absolute GPS
satellite-specific antenna offsets and variations became available [Schmid et al.,
2007]. Before that date, only fixed offsets per GPS satellite type were applied in
the tools used throughout this dissertation. These were zero for Block IIR satellites
and 0.279, 0 and 1.023 m for the Block II/IIA satellites in the GPS satellite body
coordinate system, originating in the center of mass of the satellite.
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In contrast to orbital data, high-order polynomial interpolation is not suitable for
clock parameters due to the underlying random noise processes, and linear inter-
polation is therefore advisable. The errors resulting from the interpolation of clock
data depend on the interval size and the Allan variance of the respective clock
[Kouba, 2002] [Zumberge and Gendt, 2001]. Therefore, supplementary to the SP3
ephemerides products, clock offset data at 5 min intervals are made available as
part of separate clock products. In response to the demand for even higher rate
clock data, several IGS Analysis Centers, such as the Center for Orbit Determi-
nation in Europe (CODE) in Bern, Switzerland and the Jet Propulsion Laboratory
(JPL) in Pasadena, CA, have made their clock solutions, now at 5 second inter-
vals, and accompanying orbits publicly available. The high rate clock product is of
particular relevance for the orbit determination of the GOCE spacecraft, which de-
livers RINEX data at 1 Hz. Throughout this dissertation, the use of a self-consistent
product from a single IGS Analysis Center is preferred, therefore CODE high rate
clocks and accompanying orbits are used [Hugentobler et al., 2008]. When data are
processed from before mid 2003, these high rate clocks were not yet available and
IGS final products are applied.

Two relativistic corrections are considered following [Hofmann-Wellenhof et al.,
2001], one affecting the signal due to the space-time curvature, another affecting
the satellite clock, as two clocks at different altitudes run at different rates in the
vicinity of the gravitational field of the Earth. The latter also includes the special
relativity term related to the varying spacecraft velocity.

2.4 Tracking performance of space borne GPS

receivers

The quality of the GPS observations determines the achievable accuracy of GPS
positioning applications. Ideally the data are only subject to random noise with
zero mean and a small standard deviation. However, as discussed in the pre-
vious sections, GPS receivers are subject to channel biases, multipath and other
types of systematic errors, all influencing the final position solution accuracy if
not properly accounted for. Since for this research all these errors are neglected in
the observation model, they have to be accounted for in the stochastic part. The
combination of the unmodeled errors and the thermal measurement noise is still
assumed to be uncorrelated and to have a zero mean, but with a higher variance
than for thermal noise only. This section starts with the performance analyses of
the BlackJack GPS receiver onboard the CHAMP and GRACE spacecraft, using
data obtained from the main POD antennas in analogy with Montenbruck and Kroes
[2003]. This provides an overview of the unmodeled errors and some background
on the observation variances used for the CHAMP and GRACE orbit determina-
tion described in this dissertation. Next, the performance of the GRAS instrument
on board of MetOp-A, launched in October 2006, is touched upon. Finally, a first
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analysis of the performance of Lagrange receiver on board of GOCE (launched in
May 2009) is presented.

2.4.1 BlackJack receivers on board of CHAMP and GRACE

The BlackJack GPS receivers are developed specially for orbital applications and
atmospheric profiling by radio occultation by NASA’s JPL and are operational on
several space missions, such as the altimeter mission Jason-1, the Earth observa-
tion ICESat (Ice, Cloud and land Elevation Satellite) and CHAMP and GRACE.
The receivers on board of the latter spacecraft can track up to 10 satellites at the
same epoch. Figure 2.1 presents a histogram of the useful GPS satellites per epoch
for a day in 2005, derived from editing based on elevation angle, SNR value, the
Position Dilution of Precision (PDOP) value and after removing outliers and cycle
slips. Most of the time between six and ten observations can be used each epoch.
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Figure 2.1 Histogram of the number of selected observations per epoch for the CHAMP
and GRACE B satellites, for DOY 103 in 2005, with a 10 s time interval
(maximum of 8640 epochs).

A pre-flight validation test of the BlackJack follow-up, the Integrated GPS Occul-
tation Receiver (IGOR) flying on the German TerraSAR-X mission, gave insight on
the receiver biases and correlations [Montenbruck et al., 2005b]. Code biases re-
sulted in displacements of 0.05 mm for the GPS satellites and 0.14 mm for a LEO
spacecraft, values that can be neglected in POD applications. Inter-channel biases
were small and around zero, and no evidence of correlation between the noise
of the P1 and P2 code observations was found. Correlations between the noise
of the carrier phase observations are expected, as show earlier for geodetic GPS
receivers [Tiberius et al., 1999], because the carrier phases of the encrypted codes
cannot be properly tracked without the help of the C/A code phase and each other.
A zero baseline test, required to find such correlations, was not carried out in the
pre-flight validation test. Nevertheless all observations are treated as uncorrelated
throughout this research.
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Multipath, caused by the superposition of the direct signal with interfering sig-
nals, in case of spaceborne GPS exclusively caused by the satellite’s surface reflec-
tions, is for the carrier phase confined to a quarter wavelength, while the maxi-
mum path delay for the code observations is of the order of the linear spacecraft
dimension. Other types of systematic errors cannot be separated easily from mul-
tipath errors, because they mostly exhibit a similar pattern. Already shown in
[Montenbruck and Kroes, 2003], the pseudorange data obtained from the CHAMP
POD antenna are severely influenced by systematic errors, amounting to 0.6 m for
low elevations. These errors were attributed to cross-talk interference between the
GPS occultation and the POD antenna. As the occultation antenna on board of
the GRACE spacecraft is only activated occasionally, systematic patterns for the
individual code observations of the GRACE satellites were found to be on the sub-
dm level in [Kroes, 2006]. The ionosphere free pseudorange systematic errors are
slightly higher, around 2 dm. By collecting post-fit residuals of ionosphere free
carrier phase observations the systematic errors on these measurements can be
quantified. They are generally small and have maximum values of around 1 cm.

All GPS observations are subject to random thermal noise, with a level depending
on the observation type and signal strength. Therefore the noise standard devia-
tion is typically expressed as a function of the carrier to noise density ratio (C/N0).
The CHAMP and GRACE observation files contain the SNR value of all code and
accompanying phase types, from which the carrier to noise density ratio can be
derived. For the BlackJack receiver, following [Montenbruck and Kroes, 2003], this
relationship is

C/N0 = 20 log10

(

SNR√
2

)

. (2.24)

The noise level of the in-flight GPS code observations is assessed by grouping ob-
servation residuals of the multipath combination (2.18) in C/N0 bins and calculat-
ing the standard deviation of each bin. Small systematic errors can still be present,
so this value represents an upper limit of the code measurement noise standard
deviation. The results of this analysis for a 20 day period in 2003 (DOY 201-220)
are presented in Figure 2.2 for CHAMP and GRACE.

The low noise on the C/A code is caused by the fact that this observation can be
tracked directly, whereas the P1 and P2 code observations are obtained using a
form of semi-codeless tracking. The figure shows a large difference between the
code noise for GRACE A and GRACE B, where the latter has the lower noise levels.
The reason for the better performance of the receiver on board GRACE B remains
unclear.

Some information on the carrier phase noise can be obtained from the difference
between the carrier phase observations on the P1 and C/A code, L1 and LA. Since
these are taken on the same frequency the ionospheric path delay and multipath
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Figure 2.2 Code noise as function of the carrier to noise density ratio (C/N0) for GRACE
A and B (top) and CHAMP (bottom left) and upper limit for the phase noise
on the L1 observation for the three satellites (bottom right).

and systematic errors are the same. When taking the difference of these obser-
vations the only parameters remaining are the difference between the (constant)
carrier phase biases on each of the observations and the combined thermal noise.
When again assuming no correlation, the combined noise

σ(L1−LA) =
√

σ2
L1

+ σ2
LA

> σL1
> σLA

, (2.25)

can now serve as an upper limit of the noise on L1, assuming this noise is larger
than the one on the C/A code phase observable. For each continuous pass this
carrier phase difference is constructed and corrected for its bias. The resulting
carrier phase noise is then again grouped into C/N0 data bins, from which a curve
in analogy with the code noise is created. For all three satellites the carrier phase
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noise curves are presented in the bottom right plot in Figure 2.2, where again the
noise of the GRACE A phase observation is slightly higher than of GRACE B.

Phase center variations of the receiver antenna remained for long an uncertainty
for high precision orbit determination. A calibration of the Sensor Systems S67-
1575-14 antenna, the main POD antenna on the satellites described here, has been
conducted, triggered by the adoption of absolute phase patterns in the IGS process-
ing standards. Nominal phase patterns were obtained and used in [Montenbruck
et al., 2008a] to asses the impact of the patterns on the positioning accuracy. Fur-
thermore in-flight phase center distortions were obtained based on POD carrier
phase residuals. It is shown that the combined ground and in-flight calibration
improves the carrier phase modeling accuracy to a level of 4 mm, close to the re-
ceiver noise.

2.4.2 GRAS instrument on board of MetOp-A

The global navigation satellite system receiver for atmospheric sounding (GRAS)
[Loiselet et al., 2000] is the first European spaceborne GPS receiver providing dual-
frequency navigation measurements on a routine basis. It flies on board of MetOp-
A [Edwards et al., 2006], launched in a near-polar orbit at 800 km altitude on 19
October 2006. The receiver is based on ESA’s AGGA-2 correlator chip [Silvestrin
et al., 2000], which is also used in the Lagrange receiver [Zin et al., 2007] flying
on GOCE, and in new receivers under consideration for Swarm [Reichinger et al.,
2006] and Sentinel-3. MetOp is a joint project from ESA and Eumetsat, the Eu-
ropean organisation for the exploitation of meteorological satellites. To asses the
tracking performance of the GRAS instrument, a study has been performed by
DLR, AUIB and DEOS on a 3-day data set for 26-28 December 2006. The results
are presented in [Montenbruck et al., 2008b] and are highlighted here. The receiver
has an elevation limit of 10◦ and has eight channels available for tracking, with
most of the time (98.7%) six or more GPS satellites tracked.

The ultrastable oscillator (USO) exhibits a frequency offset of about 3 ns/s, which
results in an almost linear growth of the receiver time clock offset, accumulating
to 0.5 ms over a 24 h arc, equal to a pseudorange offset of 150 km. A clock-offset
correction prior to the use of the GRAS measurements is therefore desirable for
POD applications. Because the oscillator is highly stable, the clock offset may be
represented by a second order polynomial in receiver time. A frequency variation
of 2x10−11/K was found, well within the specifications.

The carrier to noise density ratio has peak values of 57 dB-Hz for L1 C/A code
tracking with a mean value of 40 dB-Hz at the 10◦ elevation limit. The variation
of C/N0 with elevation matches that of the receiver/antenna configurations on
CHAMP and GRACE, despite different hardware design. For the semi-codeless
P-code tracking on L1 and L2, the C/N0 values vary between 50 dB-Hz at high
elevations to a mean value of 19 dB-Hz at the low elevations. The semi-codeless
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Figure 2.3 Code (left) and carrier phase (right) noise as function of the carrier to noise
density ratio (C/N0) of the GRAS and IGOR receivers [Montenbruck et al.,
2008b]

tracking losses grow linearly with decreasing signal strength, from about 12 dB at
a C/A code C/N0 value of 50 dB-Hz to 22 dB at 40 dB-Hz.

The pseudorange noise is assessed by forming the geometry and ionosphere-free
multipath combination (2.19). The results are presented in Figure 2.3 (left) as a
function of carrier to noise density ratio. As a comparison the values of the IGOR
receiver are included in the figure [Montenbruck et al., 2008b]. The C/A code noise
is a bit smaller than the P1 and P2 code noise. P1 and P2 code noise are almost
identical, only at the low C/N0 range the P1 code noise is smaller. The noise val-
ues of the GRAS receiver are up to two times higher than the values of the IGOR
receiver, which can be attributed to the more conservative tracking loop settings
of the GRAS instrument.

At the right side of Figure 2.3 the phase noise is plotted with respect to the carrier
to noise density ratio. The phase noise is retrieved from the scatter of 3 Hz raw
measurement samples relative to a fourth order Savitzky-Golay smoothing poly-
nomial [Press et al., 1992] over a sliding 7 s interval. For the LA phase observations
this results in noise values ranging from 0.2 to 0.5 mm, for the L1 and L2 phase
the noise varies between 0.1 mm and 5 mm, where the L1 noise is smaller from a
C/N0 value of 35 dBHz and below.

The combined effect of P1 and P2 code-multipath on the ionosphere-free combi-
nation is illustrated in Figure 2.4 (left). There is no evidence of cross-talk between
the occultation and navigation antenna. In addition to the static multipath compo-
nent, occasional strong reflections with C/N0 variations up to 5 dB and multipath
amplitudes up to 2 m were identified, an example of which is presented in Figure
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Figure 2.4 left: Multipath-map for the ionosphere-free P1/P2 pseudorange combination
of the GRAS receiver, right: Multipath of the P1 code measurements of
GRAS and associated C/N0 in the course of a strong reflection event of PRN
6 (day 361/2006, 2:02 to 2:30 UTC). C/N0 values have been detrended to
remove the nominal elevation dependence.

2.4 (right). These do not show up in the average multipath map and are apparently
dependent on the solar panel orientation.

Overall, the results confirm the high quality of the GRAS receiver which is com-
parable to the BlackJack/IGOR receiver. It shows a very similar sensitivity, where
differences in measurement noise can be attributed to different tracking loop set-
tings employed.

2.4.3 Lagrange receiver on board of GOCE

Because the orbit determination in this research is done solely with GPS observa-
tions, it is important to asses the quality of a GPS receiver before using its mea-
surements for POD, after launch and commissioning. Such an assessment gives
information on the tracking behaviour and noise level of the measurements, and
supports the values for editing criteria and measurement weights applied in the
orbit determination. A first analysis of the measurements of the Lagrange GPS
receiver on board of the GOCE spacecraft indicates that the receiver meets its re-
quirements. It is capable of tracking up to 12 satellites, which it does frequently, as
is visible from Figure 2.5 showing the tracked GPS satellites during a typical day
(DOY 201 in 2009). Around 95% of the time 10 or more satellites are tracked.
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Figure 2.5 Number of satellites tracked by the GPS receiver on board of GOCE, DOY
201 of 2009

The noise level of the pseudorange observations is assessed by inspecting the
residuals of the multipath combination (2.18). The residuals are grouped in carrier-
to-noise density ratio (C/N0) bins and the Root-Mean-Square (RMS) value of each
bin is plotted in a graph. The result of a representative 3-day analysis is given in
Figure 2.6. Comparing this plot with Figure 2.2 with the CHAMP and GRACE
code noise and Figure 2.3 reveals some differences. The C/A code has the same
noise characteristics as the GRAS receiver (and different from the BlackJack), while
for the Lagrange receiver the P1 code has the same noise characteristics as the
C/A code. The overall noise level of the code observations is also at least twice
as high compared to the BlackJack code noise. It has to be noted that the GOCE
GPS observations are delivered at 1 Hz, whereas the BlackJack RINEX files have
preprocessed measurements at a rate of 0.1 Hz, obtained by fitting a polynomial
through 1 Hz data points. The Lagrange receiver does not provide an indepen-
dent L1 phase measurement, so the noise of the LA phase observation cannot be
assessed by forming the L1-LA combination (2.25). An upper limit of the the phase
noise of the ionospheric phase combination is obtained by inspecting the residuals
of a reduced dynamic orbit determination, which fluctuate around 7.2 mm (for the
period of DOY 20-29 in 2010), thus a noise level below 2.4 mm.

The clock offset of the Lagrange receiver drifts over time and can reach large val-
ues. This is illustrated in Figure 2.7, where daily mean clock offsets are plotted for
a 10-day period, displaying a clear drift of about 0.3 ms/day.
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Chapter 3

Forces acting on a LEO
satellite

Orbit determination of a satellite, from here on referring to an engineered vehicle,
involves the propagation of the spacecraft’s state, its position and velocity, from
one epoch to the next by integrating the equation of motion, describing the accel-
erations experienced by the satellite. These accelerations are calculated from force
models, which are inevitably an approximation of the real world. The different
forces acting on a satellite orbiting the Earth are discussed in the first two sections
of this chapter, divided in gravitational and non-gravitational forces, with a de-
scription of the modeling in the GHOST software, which is used throughout this
dissertation, and in other software used for some analysis. The discussion of the
different forces follows the standard literature on satellite orbit determination like
[Montenbruck and Gill, 2000] and [Tapley et al., 2004a].

An accelerometer placed in the center of mass of a satellite measures the non-
gravitational forces acting on it. It’s working principle and performance on board
of CHAMP and GRACE are described in section 3.3. When applying the ac-
celerometer data in precise orbit determination, the non-gravitational force models
are replaced by the accelerometer measurements.

3.1 Gravitational forces

3.1.1 Gravity field of the Earth

The largest force acting on an Earth orbiting satellite is the gravitational force of
the Earth. Because the mass of the Earth is not homogeneously distributed over
the planet and the Earth itself is not a perfect sphere, the gravity field is described
by the gravity potential U which results from summing up the contributions of
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individual mass elements dm = ρ(s)d3s according to:

U = G
∫

ρ(s)d3s

|r − s| (3.1)

Here G is the gravitational constant, s is the position of a point inside the Earth,
ρ(s) the density at that point and r the position of the satellite. The acceleration on
an object due to the Earth’s gravity field is given by the gradient of the potential:

r̈ = ∇U (3.2)

In order to evaluate the integral in (3.1) the inverse of the distance |r − s| is ex-
panded in series of Legendre polynomials. This leads to the expansion of the
Earth’s gravity potential into spherical harmonics:

U =
GM⊕

r

∞

∑
n=0

n

∑
m=0

Rn
⊕

rn
P̄nm(sin(φ))(C̄nmcos(mλ) + S̄nm sin(mλ)) (3.3)

Here M⊕ represents the Earth’s mass and R⊕ the Earth’s mean equatorial radius.
The distance of the satellite to the Earth’s center is given by r, the longitude by λ
and the geocentric latitude by φ. P̄nm stands for a normalized Legendre polyno-
mial of degree n and order m. The normalized geopotential coefficients C̄nm and
S̄nm in (3.3) describe the dependence of the gravity field on the Earth’s internal
mass distribution. Because the mass distribution is not known, these coefficients
have to be determined indirectly from measurements like satellite tracking (ob-
serving the perturbations in satellite orbits), surface gravimetry (measuring the
local gravitational acceleration) and altimeter data (relation between the mean sea
surface and the equipotential surface). When the geopotential coefficients have
been determined they are combined in a gravity field model.

The nominal gravity field model used throughout this dissertation is the GRACE
Earth Gravity Model 02 (GGM02S), based on GRACE satellite data and computed
by the Center for Space Research (CSR), Austin [UT/CSR, 2004]. When other grav-
ity field models are applied, this is explicitly mentioned. The higher the considered
degree n and order m, the more precise the model in general is. The accelerations
on the satellite, equal to the gradient of U (3.3), are calculated directly by recur-
rence relations derived in [Cunningham, 1970].

3.1.2 Third body attractions

An Earth orbiting satellite is not only attracted by the Earth, but also by the other
celestial bodies. Only the gravitational forces of the Sun and the Moon are con-
sidered, as the influence of other planets is much smaller and can be neglected.
The perturbing acceleration of the Sun or the Moon on the satellite is given by the
following relation of the third body induced acceleration:

r̈ = GM

(

s − r

|s − r|3 − s

|s|3
)

(3.4)
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Here M is the mass of the perturbing body, r denotes the geocentric position of
the satellite and s the geocentric position of the perturbing body. The first term in
(3.4) is known as the direct effect, while the last term is referred to as the indirect
effect, which is independent on the satellite (2nd body) position and accounts for
the inertial acceleration of the geocenter due to the third body, as (3.4) describes the
motion with respect to the Earth’s center of mass. The positions of the Sun and the
Moon are calculated using analytical series expansions of luni-solar ephemerides
[Chapront-Touze and Chapront, 1988], [Francou et al., 1983] .

3.1.3 Tides

The gravitational force of the Sun and the Moon is also acting on the Earth itself,
leading to a time-varying deformation of the Earth. The small periodic deforma-
tions of the solid body of the Earth are called solid Earth tides, while ocean tides
describe the response of the oceans to the lunisolar attraction. As a consequence
the Earth’s gravity field shows small periodic variations, which affect the motion
of a satellite. Both tides are modeled by an expansion of the tidal-induced gravity
potential using spherical harmonics, similar to the expansion of the static gravity
field of the Earth as described above. This leads to time-dependent corrections
to the geopotential coefficients: ∆C̄nm and ∆S̄nm, see equation (3.3). The practi-
cal computation of the solid Earth tides follows the IERS 2003 conventions [Mc-
Carthy and Petit, 2003] and a CSR ocean tide model based on TOPEX data is used
[UT/CSR, 2006].

3.1.4 Overview of modeled gravitational accelerations

As a means to illustrate the magnitude of the gravitational forces, the accelerations
acting on GRACE B are depicted in Figure 3.1 and 3.2 for two orbital revolutions
in the RTN frame, with axes in the Radial direction, the associated perpendicular
(almost Tangential) direction in the instantaneous orbital plane and the cross-track
or Normal direction. The Earth’s gravity has the largest effect in radial direction,
where the satellite experiences a near constant attraction. The effect in tangen-
tial direction is three orders of magnitude smaller, and has a dominant twice per
revolution period, the effect in normal direction is a magnitude smaller and has
a dominant once per revolution period. The attraction of the Sun and Moon has
a magnitude which is similar in radial and tangential direction, and a twice per
revolution signature. In cross-track direction, a once per revolution period is ob-
served, and the Moon has a ten times larger effect than the Sun. The solid Earth
tides (Figure 3.2, top) have the largest effect in radial direction, and are two times
smaller in the other directions. Again, in cross-track direction the period is once
per revolution. Ocean tides have the most irregular pattern of all gravitational
tides, were no dominant period is clearly visible. The ocean tide model presents
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Figure 3.1 Earth gravitational acceleration (up), attraction of Sun (mid) and Moon (down)
acting on GRACE B, DOY 103 in 2005, first 2 revolutions (note the difference
in scale and units)
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Figure 3.2 Solid Earth (up) and ocean tidal (down) acceleration acting on GRACE B,
DOY 103 in 2005, first 2 revolutions

furthermore the biggest uncertainty of all gravitational forces (O. Montenbruck,
priv. comm., 2008).

3.2 Non-gravitational forces

3.2.1 Atmospheric drag

The largest non-gravitational forces acting on a LEO satellite are atmospheric
forces for altitudes below about 800 km. Accurate modeling of them is difficult
because the physical properties and the concentration of the constituents of the
atmosphere are not known very accurately, the interaction of neutral and charged
particles with the satellite (surface) is complex and the attitude of the satellite with
respect to the particle flux has to be taken into account and known precisely. For
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LEO satellites charged particle drag can be neglected, a rigorous description of this
type of drag can be found in [Andrés, 2007]. In GHOST, the atmospheric force is
assumed to consist of drag solely, acting opposite to the velocity of the satellite
with respect to the atmosphere, vr (thus neglecting lift or binormal forces). The ac-
celeration due to atmospheric drag is calculated with the following formula from
aerodynamic theory, with A the satellite’s cross sectional area, m the mass, ev the
unit vector of the velocity relative to the atmosphere, CD the drag coefficient and
ρ the atmospheric density at the location of the satellite:

r̈ = −1

2
CD

A

m
ρv2

r ev (3.5)

For the calculation of the relative velocity vr the assumption is made that the at-
mosphere co-rotates with the Earth. This leads to:

vr = v − ω⊕ × r (3.6)

with v the inertial velocity vector of the satellite, r the position vector and ω⊕ the
Earth’s angular velocity.

The two main difficulties associated with evaluating (3.5) are the determination
of the exact values for the drag coefficient CD and the upper atmosphere density
ρ. The drag coefficient describes the interaction of the atmosphere’s components
with the satellite’s surface and is not well known a priori because of the com-
plex dependence on the satellite’s surface material, the chemical constituents of
the atmosphere, etc. Therefore this coefficient is estimated during the orbit de-
termination process. Another bottleneck is the calculation of the density of the
upper atmosphere, which depends in a complex way on a variety of parameters
like altitude, distribution of the chemical constituents, temperature and solar and
geomagnetic activity. Furthermore the temporal evolution of density and tempera-
ture of the neutral atmosphere depends on the 11 year solar cycle, the geomagnetic
activity, local solar time and latitude variations and the semi-annual cycle. Luckily
there exist relatively simple atmospheric models that provide a reasonable density
prediction based on the just listed dependences [Montenbruck and Gill, 2000]. The
Jacchia 1971 model has been implemented in the GHOST software. This model
[Jacchia, 1971] is based upon the geodetic height and temperature and includes
density variations as a function of time. The computation of the atmospheric den-
sities is done in three steps. First the exospheric temperature T∞ is computed from
data on solar activity (F10.7) and the geomagnetic index (Kp) and a model of the
diurnal variation. When T∞ is known the standard density is computed using co-
efficients of a bi-polynomial approximation of the Jacchia 1971 standard density
model [Gill, 1996]. Finally time-dependent corrections are applied.

To illustrate, the drag acceleration calculated by the GHOST software on GRACE
B for two orbital revolutions is plotted in the upper part of Figure 3.3. The biggest
effect is in tangential direction, not surprising as drag is working opposite the
satellite’s (relative) velocity. The acceleration in radial direction is negligible, and
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in cross-track direction the magnitude is about 20 times smaller. A once per revo-
lution signature is present in all directions.
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Figure 3.3 Modeled atmospheric drag (up) and direct solar radiation pressure (down)
acting on GRACE B, DOY 103 in 2005, first 2 revolutions

3.2.2 Solar radiation pressure

A satellite exposed to radiation from the Sun experiences a small force arising from
the absorption and reflection of emitted photons. This force is modeled by:

r̈ = ν CRP⊙
A

m
AU2 r − r⊙

|r − r⊙|3
(3.7)

with A the cross sectional surface of the satellite perpendicular to the incoming
radiation. CR is the solar radiation pressure coefficient accounting for the reflectiv-
ity and absorption properties of the satellite and this parameter is estimated in the
orbit determination. P⊙ is the solar radiation pressure in the vicinity of the Earth,
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at 1 AU (Astronomical Unit), with a flux (pressure times speed of light) amounting
to 1367 Wm−2. r⊙ is the geocentric position vector of the Sun and m is the mass of
the satellite. The shadow function ν is a value between 0 (in shadow) and 1 (fully
illuminated), calculated with a shadow model with umbra and penumbra cones,
ignoring atmosphere and flattening of the Earth.

The bottom part of Figure 3.3 presents the solar radiation pressure during the spe-
cific period already mentioned above. This force especially depends on the orien-
tation of the orbital plane with respect to the Sun, influencing the occurrence of
eclipses.

3.2.3 Earth radiation pressure

Besides the Sun, also the Earth emits radiation, which can be distinguished in
optical and infrared radiation. The first is referred to as albedo radiation and is
produced by reflection and scattering of solar radiation on the Earth’s surface.
The amplitude of the albedo acceleration for LEO satellites is around 10% to 35%
[Knocke et al., 1988] of the acceleration due to direct solar radiation, depending
amongst others on cloud coverage and Earth surface characteristics. Typically an
average albedo radiation of 460 Wm−2 is assumed. The second type is infrared ra-
diation and consists of the reemission of the direct solar radiation absorbed by the
Earth and its atmosphere. The effective radiation of this infrared emission of Earth
surface elements is around 230 Wm−2. As emitted by the Earth, both types of radi-
ation result in (mainly) a radial acceleration on a LEO satellite. Because these forces
results in small accelerations, neither effects are modeled in the GHOST software.
The consequences of this are discussed in section 5.4.

3.2.4 Advanced modeling of non-gravitational forces

As the non-gravitational forces in the GHOST software are relatively simply mod-
eled, or some not at all, more advanced external models are applied to analyze the
accelerometer accelerations. In the orbit determination, the force modeling does
not need to be perfect, as typically empirical accelerations are estimated which ac-
count for force model deficiencies, which is described in more detail in the next
chapter. When the accelerometer data on the other hand are used to retrieve ther-
mosphere density and winds, accurate models of the non-gravitational forces and
the satellite itself are required. The models described here briefly are applied for
that purpose and are also used in this dissertation for pre-processing and analysis
of the accelerometer data.

The satellites are modeled with the so-called panel-method according to the satel-
lite specifications in [Bettadpur, 2007]. The aerodynamic forces are modeled fol-
lowing Sentman [Sentman, 1961], with thermospheric densities from NRLMSISE-
00 [Picone et al., 2002] and winds from HWM-93 [Hedin et al., 1996]. Eclipse transi-
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Figure 3.4 Advanced modeled atmospheric drag (up) and direct solar radiation pressure
(down) acting on GRACE B, DOY 103 in 2005, first 2 revolutions

tions and the variable Earth albedo and infrared radiation are computed with the
ANGARA software [Fritsche et al., 1998].

The aerodynamic accelerations on GRACE B modeled as described above are plot-
ted in the upper part of Figure 3.4, the radiation pressure accelerations in the bot-
tom part, here in the Science Reference Frame (SRF), which agrees closely with the
RTN frame for the GRACE spacecraft. Comparing these with the GHOST mod-
eled non-gravitational accelerations in Figure 3.3 reveals that for the aerodynamic
accelerations in radial direction a difference is visible. The radiation pressure ac-
celeration is largely underestimated in the GHOST software, by a factor five in
radial and cross-track direction, and two times in along-track direction, which can
be attributed to the simple canon ball model and cross-sectional area applied.
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3.3 Accelerometer performance

The STAR and SuperSTAR instruments, developed by ONERA/CNES (France),
are placed in the center of mass of respectively CHAMP and GRACE and are ex-
tremely sensitive capacitive accelerometers with a designed accuracy of the sen-
sitive axis of up to 10−9 m/s2/Hz1/2 (STAR, XSBF- and YSBF-axis) and 10−10

m/s2/Hz1/2 (SuperSTAR, XSBF- and ZSBF-axis), with the XSBF-axis of the Space-
craft Body Frame (SBF) nominally pointing in the direction of the orbital velocity,
the Z-axis pointing towards the Earth and the Y-axis completing a right-handed
orthogonal frame. The operation of the accelerometer is based on the levitation of
a charged proof mass in the center of an electrostatic cage. The proof mass is kept
in the center of the cage by adjusting the voltages of 6 pairs of electrodes, which are
proportional to the surface forces acting on the satellite and provide the linear and
angular accelerations after transformation. In the instrument transfer functions,
biases and scale factors are introduced which are sensitive to instrument opera-
tions (on/off, reboot, calibration tests, degradation) and the satellite environment
(temperature, attitude, maneuvers, etc.) [Perosanz et al., 2005]. This leads to the
necessity to estimate calibration parameters for the accelerometer measurements.

The STAR accelerometer on CHAMP is subject to jumps or spikes of up to 10−8

m/s2, which partly have been correlated with events on board the spacecraft,
and partly remain unexplained [Perosanz et al., 2003]. Furthermore one electrode
showed an anomalous behavior, affecting the radial linear acceleration (and roll
and pitch angular accelerations). Therefore the Level 1B data (1 Hz sampling) are
preprocessed to correct the anomalous data by filtering, identifying and correcting
outliers and smoothing. Also the intervals of thruster pulses are cut out [Förste and
Choi, 2005]. This results in Level 2 data products with a 0.1 Hz sampling. These
products are used throughout this dissertation.

The SuperSTAR accelerometers are behaving closely to the specifications, where
recently a noise level of 10−10 m/s2/Hz1/2 was verified [Flury et al., 2008] for fre-
quencies above 30 mHz. For lower frequencies, the accelerometer noise is buried in
the signal of the non-gravitational accelerations, and accuracy information may be
gained from the analysis of relative accelerations between both GRACE spacecraft
[Frommknecht et al., 2006], which revealed a performance up to 3 to 10 times above
specifications. The GRACE accelerometer measurements are provided as Level
1B data with a 1 Hz sampling and are obtained from Level 1A data by applying
a low-pass filter and a time correction [Wu et al., 2006]. Thruster firings, which
occur frequently to maintain the satellite attitude and pointing requirements, are
not eliminated. Spikes with amplitudes between 10 and 70 nm/s2 are observed in
the Level 1A data [Flury et al., 2008] and are related to heater switching, where
the exact explanation is not yet found, although deformation of small parts in the
satellite are a likely cause. Other observed effects, labelled twangs, are short and
strongly damped oscillations, possible related to vibrations in the multi layer in-
sulation of the satellite. Because the latter two effects occur at high-frequencies,
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they are almost completely removed through the application of a low-pass fil-
ter [Frommknecht, 2007]. Thruster effects remain visible, as these represent an
actual acceleration of the satellite, which is not disadvantageous when using the
accelerometer measurements for POD purposes. The accelerometer is assumed to
be perfectly located in the center of mass of the satellite (on the GRACE spacecraft
this is accomplished by a trim mechanism). However, still small misalignments
errors can be present. The magnitude of these errors is believed to be small [Kim
and Tapley, 2002].
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Figure 3.5 Comparison of observed and modeled non-gravitational accelerations on
GRACE B in along-track direction for October 29, 2003 [Van Helleputte and
Visser, 2008]

An interesting case to illustrate the accelerometer performance is the period of late
October and early November 2003, when a series of violent solar eruptions took
place with a broad impact on space weather [Gopalswamy et al., 2005]. As the solar
activity has a strong effect on the atmospheric drag acting on a spacecraft, these
events are registered by the accelerometer. An example of the observed (corrected
for the calibration parameters) and modeled accelerations on GRACE B in tangen-
tial direction during these days are presented in Figure 3.5 for October 29 in 2003.
The modeled accelerations (GHOST) follow the same trend but cannot account for
the high frequency fluctuations. This is clearly illustrated in Figure 3.6, where the
frequency versus amplitude spectral density of the observed and modeled along-
track accelerations is plotted for this day. In both cases a one revolution and half
a revolution period is visible, whereas the accelerometer picks up the higher fre-
quency part of the experienced accelerations in case of the strong solar events. For
reference purposes, the same analysis is shown for a more quiet day. For both days
the accelerometer signal is stronger for the half a revolution period, indicating that
also for the low frequency part of the spectrum the accelerometer outperforms the
model applied.
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Figure 3.6 Spectral analysis of the observed and modeled along-track accelerations of
GRACE B, for July 19 (DOY 200, bottom) and October 29 (DOY 302, top)
2003



Chapter 4

Precise orbit determination
with accelerometer

measurements

Many Earth observation missions have stringent requirements on the accuracy of
the post-facto determined orbits in order to fulfill the scientific mission objectives,
ranging from a few decimeters for past missions to the centimeter level for cur-
rent and upcoming missions. Errors larger than the specified requirements affect
the applications, e.g. the use of altimeter data for oceanography and glaciology,
SAR interferometry, the recovery of the global Earth gravity field or spacecraft
formation flying applications. Therefore these satellites are equipped with high-
precision tracking systems like retro-reflectors for satellite laser ranging (SLR),
DORIS or GPS receivers or a combination. In chapter 2 the benefits of GPS as
precise tracking system was already highlighted and elaborated. In the sequel,
only the use of GPS as tracking system will be considered, although SLR observa-
tions will be used to asses the quality of GPS-based orbit solutions. These solutions
are based on undifferenced GPS observations with known GPS satellite clocks and
ephemeris.

Precise orbit determination involves the computation of a spacecraft’s position and
velocity as accurately as possible based on tracking data. The three main tech-
niques to determine the orbit of a satellite precisely are kinematic, dynamic and
reduced dynamic orbit determination (OD).

Kinematic orbit determination [Svehla and Rothacher, 2003], also referred to as point
positioning, is a geometric approach where each epoch the instantaneous position
of the satellite is estimated directly from all the available observations, without
considering any force on the LEO satellite or other trajectory information. The po-
sitions are generally determined by a least-squares or batch estimator, which tries
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to find the positions and observation model parameters (e.g. biases) for which
the squared sum of the residuals between the actual and modeled observations is
minimized. Each epoch the position components (Cartesian coordinates) and ob-
servation parameters (clocks, ambiguities, ...) are estimated. This method requires
dense and continuous tracking providing a large number of geometrically well
distributed observations, as the accuracy depends on the strength of the observing
geometry. The quality further depends on the continuity and the precision of the
observations, affected by systematic errors and data noise.

Dynamic orbit determination [Schutz et al., 1994] relies on an accurate model of
the forces acting on the satellite and the laws of motion, together referred to as
the spacecraft dynamics. These models include force model parameters which are
not exactly known like drag and solar radiation coefficients, density parameters,
etc. The equations of motion are integrated from an initial state to the epoch of
interest. The initial state together with the force model parameters have to be
estimated using observations, mostly by a least-squares method. The residuals
between the actual observations and the observations modeled on the integrated
orbit are minimized in an iterative least-squares adjustment of the initial state,
force model and observation parameters. This approach has a lower number of
parameters to be estimated compared to the kinematic technique, which results in
a decrease of the number of required observations. Dynamic orbit determination is
the most traditional technique, already used in the first days of space exploration
when only a sparse tracking network was available. The accuracy of the computed
orbit depends heavily on the quality of the force models. Inaccurately modeled
dynamics result in a solution with large systematic errors. In addition to the batch
least squares method, the estimation of the different parameters can be carried
out with a sequential estimator such as a Kalman filter. This approach allows a
sequential update of the state information with each observation.

Because the kinematic orbit determination is highly sensitive to the continuously
changing observation geometry and the quality of the observations, and in the dy-
namic approach any kind of mismodeling will be propagated along the orbit solu-
tion, the two techniques can be combined into reduced dynamic orbit determination
[Yunck et al., 1990]. In the reduced dynamic method a means to mitigate errors
in the force models is implemented, by considering the satellite dynamics as the
sum of the standard deterministic part (the applied force models) and a stochastic
component [Jäggi et al., 2006], the so-called empirical accelerations.

The reduced dynamic technique is used extensively for the research described in
this thesis and is explained in detail in section 4.2 of this chapter. First, reference
frame transformations applied in the orbit determination (OD) processing are de-
scribed, allowing the connection of e.g. GPS ephemeris in an Earth fixed frame
with orbit integration in an inertial frame. In section 4.3 the introduction of the
accelerometer measurements in the OD is discussed, which are used instead of
non-gravitational force models and allow for the calibration of the instrument by
estimating scale factors and biases. In section 4.4 kinematic orbit determination is
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described, as this technique provides orbits independent of dynamic information
which can be compared with the (reduced) dynamic ones to reveal systematic off-
sets and other differences. Finally, the implementation of all these techniques in
the GHOST software and it’s use for POD are discussed at the end of this chapter.

4.1 Reference frame transformations

In the orbit determination applications discussed in this chapter position, velocity
and acceleration coordinates are expressed in different reference systems. First,
the force models described in the previous chapter provide accelerations of the
satellite in an inertial reference system, which is realized by the International Ce-
lestial Reference Frame (mean equator and equinox of J2000) [McCarthy and Pe-
tit, 2003]. The propagation of these accelerations results in a position and veloc-
ity vector in the ICRF. On the other hand, the coordinates of the GPS satellites in
the IGS ephemerides file are given in an Earth-fixed, co-rotating reference system,
the International Terrestrial Reference System, realized by the ITRF2005, the In-
ternational Terrestrial Reference Frame (reference pole and Greenwich meridian).
Therefore the GPS observations are modeled in the ITRF frame. As a consequence
a transformation from ICRF coordinates to ITRF has to take place:

rITRF = UICRF
ITRF (t) rICRF (4.1)

Here the matrix UICRF
ITRF (t) = Π(t)Θ(t)N(t)P(t) stands for the transformation ma-

trix from ICRF to ITRF (reflecting IERS1996 standards [McCarthy, 1996]) and is
built up from 4 rotation matrices describing coordinate changes due to precession
P(t), nutation N(t), Earth rotation Θ(t) and polar motion Π(t). A detailed de-
scription of these effects, the different reference systems in general and the deriva-
tion of the transformation matrices can be found in [Montenbruck and Gill, 2000].
The required input for these models, such as polar motion parameters or the UT1-
UTC time offsets, are captured in the so called Earth rotation parameters, obtained
from the IGS.

In the transformation of the velocity vector the rotation of the axis of the Earth-
fixed reference frame has to be accounted for:

vITRF = UICRF
ITRF (t) vICRF +

dUICRF
ITRF (t)

dt
rICRF (4.2)

The derivative of U(t) with respect to t is calculated using a second order sym-
metric difference quotient. The transformation from ITRF to ICRF is obtained by
taking the transposed matrices of U(t) and the derivative matrix.

Another reference frame used frequently is the spacecraft body frame (SBF), which
is defined in section 3.3 in the previous chapter. The 3× 3 orthonormal matrix C(t)
describes the transformation between coordinates in the spacecraft body frame
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rSBF and in the ICRF as

rICRF = C(t)rSBF (4.3)

This transformation matrix is constructed using precise spacecraft attitude data,
which is obtained from star camera observations, and provided as quaternions.
The exact definition of how the quaternions are handled for this research can
be found in [Montenbruck, 2000]. When required, a transformation between the
spacecraft body frame and the ITRF can now be simply handled by

rITRF = U(t)C(t)rSBF (4.4)

Because both U(t) and C(t) are orthonormal, their inverse, required for a trans-
formation in the other direction, is simply given by their transpose and then the
multiplication is reversed.

4.2 Reduced dynamic POD technique

Due to the limitations of both pure kinematic and pure dynamic orbit determina-
tion the concept of reduced dynamic orbit determination has been proposed and
successfully demonstrated [Wu et al., 1991] [Yunck et al., 1990]. The first step in
reduced-dynamic OD involves the propagation of the spacecraft’s state from one
epoch to the next by integrating the equations of motion. To this extent, the dif-
ferent forces acting on the satellite are modeled with respect to the variables they
depend upon, which was described in the previous chapter. These models depend
on several parameters which are estimated in the OD process. Due to the complex-
ity and non-linearity of the models these parameters can hardly be solved directly
from a given set of observations. Therefore the relation between the observables
and the independent parameters is linearized and thus iteration is necessary. This
requires a large number of partial derivatives, which are described in the next sec-
tion. Next, the concept of empirical accelerations is introduced, followed in section
4.2.3 by the theory of batch least squares estimation and the specific set up of the
normal equations in the GHOST software. At the end of this section the numerical
integration method and the applied integrator are discussed.

4.2.1 Variational equations

In orbit determination, the prime parameter of interest is the satellite (initial) state
vector

y(t) =

(

r(t)
v(t)

)

(4.5)

consisting of its position r and velocity v. This state vector is propagated over time
to the observation epochs by means of numerical integration of the equation of
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motion, converted to a first order differential equation

d

dt
y(t) = f(t, y(t), p) =

(

v(t)
a(t, r, v, p)

)

(4.6)

The gravitational and non-gravitational dynamic force models are used to com-
pute the accelerations a(t, r, v, p) acting on the spacecraft, which depend on the
time t, position and velocity of the spacecraft as well as on force model parameters
p. Since y(t0), the initial state vector at t0, and the selected force model parameters
are actually being estimated as part of the orbit determination process, the partial
derivatives of the satellite state at an arbitrary time t with respect to these estima-
tion parameters are required and the computation of these partial derivatives also
requires the use of the dynamic force models. These dependencies are described
below, following [Montenbruck and Gill, 2000].

In space-flight dynamics the state transition matrix Φ(t, t0) describes the first-
order dependence of the state vector y at epoch t on the initial values at t0:

Φ(t, t0) =
∂y(t)

∂y(t0)
(4.7)

which is 6× 6 dimensional and can be obtained by differentiating equation (4.6) to
the initial state:

∂

∂y(t0)

d

dt
y(t) =

∂f(t, y(t), p)

∂y(t0)
=

∂f(t, y(t), p)

∂y(t)
· ∂y(t)

∂y(t0)
(4.8)

This last equation can be rewritten to

d

dt
Φ(t, t0) =

∂f(t, y(t), p)

∂y(t)
· Φ(t, t0) (4.9)

or more specifically, by substituting the state vector:

d

dt
Φ(t, t0) =





03×3 13×3

∂a(t, r, v, p)

∂r(t)

∂a(t, r, v, p)

∂v(t)





6×6

· Φ(t, t0) (4.10)

which is a first order differential equation with the identity matrix as the initial
value, Φ(t0, t0) = 16×6.

In a similar way the partials of the state vector with respect to the force model
parameters are captured in the 6 × np dimensional sensitivity matrix, with np the
number of estimated force model parameters:

S(t) =
∂y(t)

∂p
(4.11)
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When differentiating equation (4.6) to the force model parameters,

d

dt

∂y(t)

∂p
=

∂f(t, y(t), p)

∂y(t)
· ∂y(t)

∂p
+

∂f(t, y(t), p)

∂p
(4.12)

a first order differential equation is again obtained:

d

dt
S(t)6×np =




03×3 13×3

∂a(t, r, v, p)

∂r(t)

∂a(t, r, v, p)

∂v(t)





6×6

· S(t) +





03×np

∂a(t, r, v, p)

∂p





6×np

(4.13)

Since the initial satellite state does not depend on any of the force model parame-
ters the initial value of the sensitivity matrix yields S(t0) = 06×np .

The derived expressions for both the state transition and sensitivity matrix can
now be combined into the following first order differential equation, also referred
to as the variational equations:

d

dt
(Φ, S) =

(

03×3 13×3
∂a

∂r

∂a

∂v

)

6×6

· (Φ, S) +





03×6 03×np

03×6
∂a

∂p





6×(6+np)

(4.14)

These equations are integrated simultaneously with the state vector, because the

position and velocity of the satellite are required to evaluate
(

∂ a
∂ r

)

and
(

∂ a
∂ v

)

in

(4.14). By computing the partial derivatives along with the acceleration itself using
common subexpressions, the computing effort is reduced considerably. Further-
more, in solving the variational equations some simplifications can be made in the
force modeling without losing much accuracy of the state transition and sensitivity
matrix.

For solving the variational equations, in the GHOST software the gravitational
force is simplified to the central and J2 terms of the gravitational potential only,
and the attraction of the Sun and Moon and tides is further neglected. Because in
the simultaneous integration of the state vector and the variational equations for
solving equation (4.14) consistent models have to be used [May, 1980], the equa-
tion of motion is once integrated with the full force model and once along with
the variational equations using the simplified force model just described. For the
computation of the partial derivative of the acceleration with respect to the po-
sition ∂ a/∂ r, only the gravitational attraction of the Earth is considered, as this
derivative has a much larger magnitude compared to the derivative of other accel-
erations with respect to the position. A difference quotient approximation is used
for it’s computation, with ∆d a position increment of e.g. 1 m:

∂ a

∂ x
=

agrav(x, y, z)− agrav(x + ∆d, y, z)

∆d
(4.15)



4.2 Reduced dynamic POD technique 45

with a similar expression for the y and z component of the position vector. Approx-
imation errors are eliminated due to the iterative nature of the POD process. The
partial derivatives of the acceleration with respect to the velocity are neglected,
∂ a
∂ v = 0. The partials with respect to the drag and solar radiation pressure co-
efficients, CD and CR, follow out of equations (3.5) and (3.7) by deriving these
expressions with respect to the respective coefficients. The empirical accelerations,
described in the next subsection, are defined in a RTN-frame, therefore the deriva-
tives of the inertial acceleration with respect to these empirical accelerations are
equal to the unit vectors of the RTN-frame:

∂ a

∂ aemp
= (eR, eT, eN) (4.16)

4.2.2 Empirical accelerations

To compensate for any deficiencies in the employed dynamical models, empiri-
cal accelerations are considered, also referred to as pseudo-stochastic parameters.
These are defined in the RTN frame and are estimated as part of the orbit determi-
nation process.

Following [Bierman, 1977], the theory of random processes with exponentially
correlated (or ’colored’) process noise provides a suitable mathematical framework
for the description of these unmodeled accelerations. A first-order Gauss-Markov
process p(t) [Brown and Hwang, 1997] exhibits an exponential autocorrelation

R(∆t) = E
[

p(t)p(t + ∆t)
]

= σ2e−|∆t|/τ (4.17)

where σ2 denotes the steady-state variance of the process and τ is the correlation
time scale. In a time-discrete form, the process satisfies the first-order difference
equation

p(ti+1) = mi p(ti) + wi (4.18)

with mapping factor

mi = e−|ti+1−ti|/τ (4.19)

where the process noise wi is an uncorrelated random sequence with zero mean
and variance

E(w2
i ) = σ2(1 − m2

i ) (4.20)

In the GHOST software, for practical purposes the empirical accelerations are con-
sidered to be piecewise constant in pre-defined sub-intervals, which facilitates
both the trajectory propagation and the overall parameter adjustment. Other pa-
rameterizations such as instantaneous velocity changes or piecewise linear and
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continuous accelerations are considered in [Jäggi et al., 2006]. In case of a batch
least-squares estimator, the entire data arc is divided into n intervals of equal du-
ration τ and an independent set of empirical acceleration parameters (aR, aT, aN)
is estimated each interval. A priori information is used in the normal equations to
constrain the individual parameters to a nominal value of zero with a predefined
weight. The choice of an adequate interval length reflects a compromise between
observability, computational effort and the capability to resolve time varying phe-
nomena. Given an orbital period of roughly 6000 s for LEO satellites and a rep-
resentative measurement interval of 30 s, intervals of 600 s duration have been
found to be suitable [Montenbruck et al., 2005a] and are adopted throughout this
research. While shorter intervals provide a smoother variation of the estimated
accelerations, no significant improvement of the overall orbit determination accu-
racy has been observed that would justify an associated increase in computation
time. Longer intervals, in contrast, appeared insufficient to sample the character-
istic time scales of dynamic force model errors.

In a sequential filter, as shown in [Lichten, 1990] and [Van Helleputte, 2004], the
mapping factor (4.19) can be directly inserted into the state transition matrix and
the process noise added to the propagated covariance matrix. In this approach,
the choice of steady state variance and autocorrelation time determines the relative
weighting between the dynamics and observations, hence the expression reduced
dynamic OD.

4.2.3 Batch least-squares estimation

The least-squares OD technique comprises the iterative adjustment of dynamical
trajectory and measurement model parameters from a set of observations. The
spacecraft trajectory is integrated from a priori conditions across the entire data arc
and residuals are formed as the difference between the observation and modeled
measurements. Making use of the partial derivatives of the modeled observations
with respect to the parameters of interest, corrections to the a priori parameters are
obtained from the least-squares solution of an overdetermined linear set of equa-
tions. This is done in such a way that the squares of the measurement residuals
are minimized. Aside from the following brief overview, the fundamental concept
of weighted linearized least-squares is extensively covered in literature, such as
[Teunissen, 2000] and [Montenbruck and Gill, 2000], where in the latter the problem
is discussed in the context of satellite orbit adjustment. The brief overview here fo-
cusses on those aspects of relevance for GPS based orbit determination and follows
the discussion in [Kroes, 2006].

When considering a linearization of the modeled GPS measurements h(y) around
an initial value y0 of the estimation parameters y, the least-squares update of this
initial value is given by

∆y = (HTWH)−1HTW(z − h(y0)), (4.21)
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resulting in the updated estimation parameters y0 + ∆y. Here, z is the vector con-
taining the actual GPS observations and W = Q−1

z is the accompanying weighting
matrix, given by the inverse of the covariance matrix, introduced in section 2.1.3.
Furthermore, the design matrix H = (∂h(y0)/∂y0) contains the linearized partial
derivatives of the modeled measurements with respect to the estimation parame-
ters. The part requiring inversion, N = HTWH, is also referred to as the normal
matrix. Non-linear estimation problems, such as GPS positioning applications, can
be coped with by means of multiple iterations, where the updated estimation pa-
rameters are used as the initial values for the next iteration. The parameterization
of the pseudorange and carrier phase observations is done according to the undif-
ferenced ionosphere free GPS observation model (2.15), and the linearization from
equation (2.22).

In the reduced dynamic OD technique implemented in GHOST, the estimation pa-
rameter vector comprises the following dynamic unknowns: the 6-dimensional
initial spacecraft state vector y0 = y(t0) at a reference epoch t0, relating to the
spacecraft center of mass expressed in the ICRF, a solar radiation pressure coeffi-
cient CR that acts as an adjustable scaling factor for the surface reflectivity in the
modeling of solar radiation pressure forces, a drag coefficient CD that acts as an
adjustable scaling factor in the modeling of drag forces and the empirical accel-
erations a = (aR, aT, aN) in consecutive time intervals. Besides these, the GPS
observation parameters added to the estimation vector are the receiver clock offset
cδtr at each measurement epoch and an ionosphere free carrier phase ambiguity
b = λIFAIF for each arc (or pass) of a continuously tracked GPS satellite.

These estimation parameters are grouped in separate vectors, which eases the for-
mulation of the least-squares system. These contain the receiver clock offsets in
the nT-dimensional vector

T =
(

cδt0; . . . ; cδtnT−1

)

(4.22)

the dynamic estimation parameters in the nY = 8 + 3na dimensional vector con-
cerning the satellite trajectory modeling

Y =
(

y0; CR; CD; a0; . . . ; ana−1

)

(4.23)

and the carrier phase biases in the nB-dimensional vector

B =
(

b0; . . . ; bnB−1

)

(4.24)

Considering a 24 hour data arc in which the measurements are processed in 30
second steps, this results in a total of 2880 clock offsets. Due to the fast changing
viewing geometry for LEO spacecraft GPS satellites are observed for a maximum
of about 40 minutes resulting in typically 15 (phase connected) passes with con-
stant ambiguities for a single GPS satellite. Most of the time the total number of
independent ambiguity parameters over 24 hours is approximately 450 to 500 for
space-borne scenarios. In addition, when using 600 second intervals for the em-
pirical accelerations this results in 432 dynamical estimation parameters. The total
number of estimation parameters now becomes approximately 3800.
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The GPS observation model is linearized around initial values of the estimation
parameters (T0, Y0, B0)

T = T0 + ∆T

Y = Y0 + ∆Y

B = B0 + ∆B

(4.25)

for which updates (∆T;∆Y;∆B) are computed by solving the least-squares system.

The construction and solution of the least-squares problem is greatly simplified by
the specific structure of the normal equations associated with the above division
of estimation parameters:

(

∂h

∂(T0, Y0, B0)

)T

W

(

∂h

∂(T0, Y0, B0)

)





∆T
∆Y
∆B





=

(

∂h

∂(T0, Y0, B0)

)T

W
(

z − h(T0, Y0, B0)
)

(4.26)

These are used to compute the corrections (∆T;∆Y;∆B) of a priori parameter val-
ues from the vector of modeled observations h(T0, Y0, B0), the vector of measure-
ments z and the weighting matrix or the inverse of the measurement covariance,
W = Q−1

z .

The overall design matrix
(

∂h

∂(T0, Y0, B0)

)

=
(

HT HY HB

)

(4.27)

is constructed from the three partitioned ones and contains the partial derivatives
of the modeled GPS observations h with respect to the estimation vector parame-
ters. This results for the partials of the modeled GPS observation hs of GPS satellite
s with respect to the clock offset vector in

∂hs

∂T
=
(

0(0), . . . , 0(i−1), 1(i), 0(i+1), . . . , 0(nT−1)

)

(4.28)

which are only set for the epoch, ti the measurement was taken. The same is true
for the partials with respect to the carrier phase ambiguities. In this case only the
partial of the concerning bias parameter of a carrier phase observation of a pass k
is set

∂hs

∂B
=
(

0(0), . . . , 0(k−1), 1(k), 0(k+1), . . . , 0(nB−1)

)

(4.29)

For pseudorange observations these partials are always zero. Finally, the partials
with respect to the dynamic estimation parameters refer to the point in the trajec-
tory at which the measurement was taken:

∂hs

∂Y
=

(

∂hs

∂y0
,

∂hs

∂CR
,

∂hs

∂CD
,

∂hs

∂a0
, · · · ,

∂hs

∂aj−1
,

∂hs

∂aj
, 0T

(j+i)
, · · · , 0T

(na−1)

)

(4.30)
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meaning that if the measurement at epoch ti falls within the jth interval of empir-
ical acceleration parameters, the partials up to this point are set accordingly. This
follows from the physical explanation that the empirical accelerations in the past
contributed to the trajectory shape in the present and the future. No fading char-
acteristics as for e.g. a Gauss-Markov process have been applied. A more generic
expression for this last set of partials is given by

∂hs

∂Y
=

(

∂hs

∂y0

∂hs

∂p

)

(4.31)

where the dynamic estimation parameters are divided into the initial state vector
and the estimated force model parameters, p = (CR; CD; a0; . . . ; aj; . . . ; an). In ad-
dition, the partials of the measurement with respect to the current satellite state
are given by

∂hs

∂yi
=
(

− (UT(ti)es(ti))
T 01×3

)

(4.32)

where the line of sight vector es(ti) from equation (2.23) is transformed to the in-
ertial reference frame using the transformation matrix U(ti) described in section
4.1. Combining the last two equations leads to an expression for the partials with
respect to the dynamic estimation parameters, introducing the state transition and
sensitivity matrix:

∂hs

∂Y
=

(

∂hs

∂yi

∂yi

∂y0

∂hs

∂yi

∂yi

∂pi

)

=

(

∂hs
i

∂yi
Φ(ti, t0)

∂hs

∂yi
S(ti)

)

(4.33)

In practice the construction of these partials and the accompanying measurement
residual, z − h(cδtr(ti), y(ti), bk), are not so trivial anymore, since they require the
numerical integration of the spacecraft trajectory along with the variational equa-
tions. The integration over the entire batch of observation data, with a restart at
every new interval of empirical accelerations, is accomplished using the variable
order variable step-size multi-step numerical integration method DE [Shampine
and Gordon, 1975], which is described in more detail in the next subsection. Fur-
thermore, it must be noted that the modeling of the GPS observations is done in
the ITRF, using the GPS receiver antenna phase center position. This is internally
handled by the appropriate transformations and corrections in the calculation of
the modeled measurements.

As the above discussion has made clear, the normal equations matrix is not fully
populated, which is illustrated in Figure 4.1 for a 3 hour data arc, processed in
30 second steps and a 600 second interval for the empirical accelerations. Sparse
matrix techniques are applied in storing and handling the individual matrix ele-
ments. When substituting the partitioned notation of the design matrix (4.27) in
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clocks

dynamic
parameters

biases

Figure 4.1 Structure of the normal equations for least-squares batch estimation of
epoch-wise clock corrections, dynamic orbit parameters and carrier phase
biases over continuous tracking arcs (3 hour data arc).

the least-squares system (4.26), this is rewritten as





HT
TWHT HT

TWHY HT
TWHB

HT
YWHT HT

YWHY HT
YWHB

HT
BWHT HT

BWHY HT
BWHB









∆T
∆Y
∆B



 =





HT
TW
(

z − h(T0, Y0, B0)
)

HT
YW

(

z − h(T0, Y0, B0)
)

HT
BW
(

z − h(T0, Y0, B0)
)



 (4.34)

which can furthermore be reduced to




NTT NTY NTB

NYT NYY NYB

NBT NBY NBB









∆T
∆Y
∆B



 =





nT

nY

nB



 (4.35)

From this structure of the partitioned normal equations it may be recognized that
only NYY is a full matrix. In contrast to the dynamic parameters Y the partials
with respect to T and B result in a large number of zero elements and sparsely
filled matrix blocks. NTT, in particular, is a purely diagonal matrix since measure-
ments only depend on one clock offset parameter at each epoch. Likewise NTB and
its transpose exhibit a narrow band structure (assuming a proper ordering of the
bias parameters), since measurements at a specific epoch depend only on a limited
number of bias parameters. The number of non-zero elements in each row of this
sub-matrix is always limited to the number of active tracking channels. Finally,
NTY exhibits a triangular structure, reflecting the fact that the number of empirical
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acceleration parameters, on which the measurements at a particular epoch depend,
increases continuously towards the end of the data arc.

To solve the normal equations, the dynamic and bias parameters are combined in a
common vector X = (Y, B), which allows the redefinition of the normal equations
to the following system:
(

NTT NTX

NXT NXX

)(

∆T
∆X

)

=

(

nT

nX

)

(4.36)

Thanks to the purely diagonal form of NTT , its inverse can easily be computed,
which is then substituted in the updated equation of the dynamic and bias param-
eters:

∆X =
(

NXX − NXTN−1
TTNTX

)−1(
nX − NXTN−1

TTnT

)

(4.37)

These updates ∆X are subsequently back-substituted to obtain the updates for the
clock offsets

∆T = N−1
TT

(

nT − NTX∆X
)

(4.38)

After having obtained the updates for the estimation parameters the initial esti-
mates are corrected for, and the newly obtained values are now used as initial
values for a second run. Multiple iterations of this kind are required to cope with
the non-linearity of the reduced dynamic estimation problem, and convergence is
typically achieved within 3 to 4 iterations.

The formal covariances of the estimation parameters are given by

QXX =
(

NXX − NXTN−1
TTNTX

)−1
(4.39)

which were already computed when solving for the dynamic estimation and bias
parameter updates, and by

QTT = N−1
TT +

(

N−1
TTNTX

)

QXX

(

N−1
TTNTX

)T
(4.40)

Although the normal equations are generally not singular when both code and car-
rier phase observations are processed, and can thus be inverted, a stable estimation
is in general not possible due to high correlations between estimated parameters.
In order to prevent divergence of the satellite trajectory, uncorrelated a-priori in-
formation Yapr with a predefined weight ΛY is added to the concerning part of the
normal equations to constrain the dynamic estimation parameters. A priori infor-
mation must also be added to the carrier phase biases Bapr and ΛB if pseudorange
observations are not processed. Ideally, this a-priori information only concerns one
bias parameter for each carrier phase interconnected data arc. When incorporating
the a-priori information the normal equations read




NTT NTY NTB

NYT NYY + ΛY NYB

NBT NBY NBB + ΛB









∆T
∆Y
∆B



 =





nT

nY + ΛYYapr

nB + ΛBBapr



 (4.41)
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where ΛB is zero if both code and carrier phase observations are processed. The
incorporation of a priori information leaves the fundamental structure of the nor-
mal equations unchanged, and the block elimination technique described above
can still be used.

4.2.4 Numerical integration

As stated in the previous subsection, the integrator used to integrate the differ-
ential equations (4.6) and (4.14), the equation of motion and the variational equa-
tions, is the variable order and variable stepsize multistep DE integrator, described
in detail in [Shampine and Gordon, 1975].

Generally formulated, the following first order differential equation has to be inte-
grated over time

d

dt
y(t) = f(t, y) (4.42)

The DE integrator is a predictor-corrector (PECE) algorithm with an Adams-
Bashforth method as predictor and an Adams-Moulton method as corrector. The
Adams-Bashforth multistep method makes use of already obtained solutions of
the differential equation at previous time steps. Because the function in (4.42) de-
pends itself on the unknown solution y, the function is replaced by a polynomial
interpolating m function values of previous steps up to ti: f i = f (ti, ηi), with m
the order of the method. This leads to:

ηi+1 = ηi + hΦAB (4.43)

Here h is the time step and ΦAB the increment function where the polynomial
is integrated of the interval (ti, ti+1). The mth order Adams-Moulton method
uses a polynomial which interpolates m function values at time steps ti−m+2

to ti+1. This yields a better approximation of the function value at that point
compared to the polynomial up to the previous point of the Adams-Bashforth
method. Since the function value at ti+1 depends on the solution at this time step,
f i+1 = f (ti+1, ηi+1), this is an implicit method which makes it impossible to calcu-
late an explicit solution as is done in (4.43). Therefore the Adams-Moulton method
is combined with an Adams-Bashforth method in a PECE-algorithm. This algo-
rithm consists of four steps. In the first step a prediction of the solution at ti+1 is
calculated with the Adams-Bashforth method (4.43):

η
p
i+1 = ηi + hΦAB (4.44)

In the next evaluation step the corresponding function value is calculated:

f
p
i+1 = f (ti+1, η

p
i+1) (4.45)
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In the third step, the corrector, an improved value of the solution at the current
time is calculated with the Adams-Moulton method:

ηi+1 = ηi + hΦAM( f
p
i+1) (4.46)

In the final step the function value is updated which can then be used at the start
of the next step. The solution at the time of interest is obtained by interpolating
neighboring computed values.

The DE integrator is self-starting. It starts with order one and a very small ini-
tial stepsize, then both order and stepsize are increased to reach an optimal value
within a few steps. The selection of the order and stepsize for the next integration
step is determined by comparing the local truncation error for the order currently
in use with the expected errors of higher or lower orders. The order is lowered
when the predictor step was unsuccessful and raised when the corrector step was
successful and the higher order leads to a smaller expected error. When the order
is set, the appropriate step size is determined by checking if the predicted error
gets smaller. Since changes in stepsize require an increased computational effort
the stepsize is only changed by a factor of at least two. The maximum order is re-
stricted to seven, because it was found in the course of this research that in the POD
implementation with empirical acceleration intervals of 600 seconds and observa-
tions each 30 seconds a higher maximum order did not result in large stepsizes
and associated higher orders. The average stepsize (for the state vector integration
of a LEO) amounts to 6 seconds, with a maximum of around 16 seconds.

4.3 Using accelerometer data

The focus of this dissertation is the fusion of accelerometer data with the reduced
dynamic orbit determination, in an effort to calibrate the accelerometer measure-
ments and to improve the orbit accuracy. To this end, these measurements replace
the non-gravitational accelerations, computed from force models, in the batch
least-squares technique described above. As already stated in section 3.3, the ap-
plication of the accelerometer data requires a correction for a scale factor and bias.
These parameters are in this approach estimated during the OD, for each instru-
ment axis. The applied accelerometer measurement model and the changes in the
batch least-squares setup, are described here.

The calibration equation applied in this research is formulated as

acal = S · aobs + b (4.47)

with aobs being a three-dimensional vector with the accelerometer observations
and acal the calibrated observations in the instrument frame, which coincides with
the Spacecraft Body Frame (SBF), S being a 3 × 3 diagonal matrix containing a
scale factor in each direction and b the bias vector. The bias parameter refers the
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measurements to the correct offset while the scale factor adjusts the amplitude of
the variations. The calibrated accelerometer measurements are directly inserted
as error-free into the equation of motion and the scale and bias factors are esti-
mated in the least-squares adjustment procedure. This results in the augmentation
of the estimation parameter vector with six parameters, three scale factors and
three biases (with the drag and solar radiation coefficients removed). Although the
GRACE Level 1B accelerometer data are delivered at a 1 Hz sampling, as stated in
section 3.3, 10 second samples are used and linearly interpolated in between to the
integration times to limit computational time and to match the GPS observation
time interval. The CHAMP Level 2B accelerometer data are provided at 0.1 Hz.

Because the spacecraft equation of motion is defined and integrated in an inertial
reference frame the measured accelerations have to be transformed from the SBF
to the inertial reference frame according to equation (4.3), with the transforma-
tion matrix C(t), based on the quaternion attitude information. When no attitude
data are available, no accelerometer measurements are used, also the correspond-
ing GPS observation is not applied in the OD process, resulting in a data gap over
which the trajectory is integrated (considering the GRACE data, quaternion data
gaps occurs rarely, for CHAMP, a reprocessed interpolated data set is used). The
entries in the sensitivity matrix are updated accordingly taking into account the
transformation from SBF to the inertial frame. The derivative of the inertial accel-
erations with respect to the scale vector (grouping the three scale factors) is equal
to the transformation matrix C(t) times a diagonal matrix with the measured accel-
erations on the diagonal. The derivative with respect to the biases (again grouped
in a vector) equals the transformation matrix C(t) times the three dimensional
identity matrix.

For the estimation of the biases, a good estimate of the a priori value proved to
be necessary to guarantee and accelerate convergence. As the bias is a shift of the
measurements to the (unknown) true value, the determination of an a priori bias
is analogously composed of two steps. First the mean value of the accelerometer
measurements is determined, and subtracted from the observations, which shifts
them to fluctuate around zero. These reduced measurements are used in the POD
process. Second, the mean value of the non-gravitational accelerations, modeled
in the GHOST software or using the more advanced models described in section
3.2.4, is determined. The a priori bias is set to this value. This shifts the reduced
accelerometer measurements to a magnitude which is expected to be close to the
correct value. Summarizing, the a priori bias value is determined by the difference
between the mean of modeled non-gravitational accelerations and the mean of the
accelerometer measurements.

The results of the calibration efforts with this technique are described extensively
in the next chapter, together with the numerical values of all OD setup parameters.
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4.4 Kinematic orbit determination

As stated in the introduction to this chapter, kinematic orbit determination in-
volves the reconstruction of the spacecraft trajectory based solely on the GPS ob-
servations and assumed known GPS ephemeris and clocks. At any given mea-
surement epoch ti both pseudorange and carrier phase observation types are pa-
rameterized with the phase center position of the GPS receiver antenna and the
GPS receiver clock offset, xi = (xi; yi; zi; cδti). Since the spacecraft is continuously
moving, a new position (in the ITRF) and clock offset have to be determined at ev-
ery epoch. In addition, the carrier phase observations also contain the ionosphere
free bias parameter bj = (λIFAIF)j, which remains constant over time until a cycle
slip or phase break occurs. A typical 24 hour data arc counts a total of nX = 8640
epochs to be processed, when the measurements are processed at 10 second inter-
vals. Most of the time the total number of independent ambiguity parameters over
24 hours is approximately nB ≈ 450− 500 for space-borne scenarios. Together this
results in a total number of roughly 4nX + nB ≈ 35000 estimation parameters that
need to be adjusted for a single day.

Although the total number of estimation parameters is quite large, they can be
efficiently solved for when grouped into the 4nX dimensional position and clock
offset vector

X =
(

x0; · · · ; xi; · · · ; xnX−1

)

(4.48)

and the nB dimensional carrier phase ambiguity vector

B =
(

b0; · · · ; bj; · · · ; bnB−1

)

(4.49)

allowing a partitioned solution of the normal equations similar to the partition-
ing described above for the batch least-squares orbit determination, which here
becomes
(

NXX NXB

NBX NBB

)(

∆X
∆B

)

=

(

nX

nB

)

(4.50)

The entry in the design matrix related to the partials of a modeled measurement of
GPS satellite s with respect to the position and clock offset only relate to the epoch
ti the measurement was taken, where the position partials equals the line of sight
vector

∂hs
i

∂X
=
(

0T
(0), . . . , 0T

(i−1),
(

es(ti) ; 1
)T
(i) , 0T

(i+1), . . . , 0T
(nX−1)

)

(4.51)

The partials of the modeled carrier phase measurement of GPS satellite s with re-
spect to the ambiguity parameters equals equation (4.29).

Thanks to the partitioned formulation, the normal equations can be solved more
efficiently than by direct inversion of the full matrix. The part relating to the po-
sitions and clock offsets, NXX, is a block diagonal matrix with 4 × 4 elements.
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Inversion of this matrix (N−1
XX) is easily accomplished by a simple inversion of the

individual 4× 4 diagonal sub-matrices. Therefore, first the bias parameter updates
are solved for

∆B =
(

NBB − NBXN−1
XXNXB

)−1(
nB − NBXN−1

XXnX

)

(4.52)

which are subsequently back-substituted to find the updates for the positions and
clock offsets,

∆X = N−1
XX

(

nX − NXB∆B
)

(4.53)

Due to the fact that both GPS pseudorange and carrier phase observations are pro-
cessed the normal equations can readily be inverted. It is however also possible to
process solely ionosphere free carrier phase data, which could be more accurate.
This requires the same parameters to be adjusted, but with roughly half of the
observation data available. The resulting system however is no longer overdeter-
mined since a singularity is now introduced. A common shift in the carrier phase
bias parameters can no longer be separated from a common shift in all receiver
clock offsets and vice versa. A solution to this is adding (uncorrelated) a-priori in-
formation to e.g. the bias parameters. The a-priori bias values Bapr, derived from
pseudoranges, and their accompanying data weights, or information matrix, ΛB

are added to the normal equations as

(

NXX NXB

NBX NBB + ΛB

)(

∆X
∆B

)

=

(

nX

nB + ΛBBapr

)

(4.54)

which can still be solved in the same way as before, since the general structure has
not changed.

4.5 GHOST processing

Within GHOST, precise orbit determination based on undifferenced GPS observa-
tions is a three step process, illustrated in Figure 4.2, which is fully self-contained.
The first step is the generation of kinematic single point position solutions at dis-
crete (measurement) epochs using only ionosphere free GPS pseudoranges, imple-
mented in the Single Point Positioning for LEO satellites (SPPLEO) program. The
second step involves the dynamical filtering of these kinematic positions using a
reduced-dynamic batch least-squares approach, where the SPPLEO position esti-
mates, instead of GPS observations, are used as measurements. This is done in the
so-called Position Fit (PosFit) program. The output of this second step is a continu-
ous and smooth orbit with medium precision (15-25 cm, 3-dimensional), provided
in the SP3 format [Spofford and Remondi, 2009]. The third and final step of the
process consists of the actual precise orbit determination where the just derived
coarse a-priori orbit is used for GPS data editing, as described at the end of this
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section. The reduced dynamic batch least-squares technique described in section
4.2 is implemented in the tool called Reduced Dynamic Orbit Determination (RDOD).
Kinematic orbit determination as described in the previous section, is performed
by the Kinematic Point Positioning (KIPP) program, and an extended Kalman filter,
implemented in the Filter for Adjustment of Satellite Trajectories (FAST) tool, is also
able of computing reduced dynamic orbits. The latter tool is not considered for the
research in this dissertation, as the use of accelerometer data implies estimating a
scale and bias which remain constant over the considered data arc, where typically
a Kalman filter is useful to estimate epoch-varying parameters. The KIPP program
is used to determine the GOCE rapid science kinematic orbits [Visser et al., 2008].

Figure 4.2 Processing scheme for GPS-based batch least squares precise orbit
determination of LEO satellites using the GHOST toolkit
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A crucial factor of GPS based precise orbit determination is the quality of the data
used. Therefore proper methods for data screening have to be applied in order to
detect outliers and bad measurements, which are regularly encountered. The three
POD programs within the GHOST toolkit validate the GPS measurements prior to
the actual orbit determination process using a combination of different statistical
tests and simple limit checks. For example, user configurable thresholds are used
to discard any observations taken below a certain elevation or below a minimum
SNR ratio. Also the presence of GPS satellite orbit and clock data is verified since
this is required for processing the observations.

In addition to these simple limit checks the quality of the GPS code and carrier-
phase measurements is assessed more thoroughly by comparison with modeled
observations with respect to the a-priori coarse orbit determined in the second
step of the GHOST processing scheme. At each epoch these modeled geometric
ranges are used in conjunction with the observed ionosphere free pseudoranges to
determine the GPS receiver clock offset value. From the set of n ≥ 2 observations
at epoch tj an estimate

cδtr(tj) =
1

n

n

∑
i=1

(

Pi
IF(tj) −

(

ρi
r(tj) − cδti(tj)

)

)

(4.55)

of the receiver clock offset and the associated residuals

resi(tj) = Pi
IF(tj) −

(

ρi
r(tj) + cδtr(tj) − cδti(tj)

)

(4.56)

are now obtained. Whenever the standard deviation of these residuals exceeds a
predefined threshold, the code observation that contributes the dominating error
is identified through subset solutions and removed from the set of observations. If
necessary, the process is repeated to reject multiple outliers at the same epoch. The
GPS receiver clock offsets determined in this way can be used as a-priori values
in the orbit determination process later on. This approach to pseudorange editing
provides a safe and robust way to identify outliers. Although the receiver position
from the a-priori orbit also exhibits an error, this is largely absorbed by the receiver
clock offset. The small remaining contribution as well as pseudorange multipath,
systematic errors and noise not absorbed can be accounted for by the size of the
standard deviation threshold.

Whereas the code observations are subject to outliers, which need to be detected,
the carrier phases have to be accurately screened for cycle slips, i.e. sudden jumps
in the carrier phase bias. Since the carrier phase biases are constant over time a
sudden jump can be detected by examining time differenced carrier phase mea-
surements between two consecutive measurement epochs, tj−1 and tj, in a similar
process as for the code observations. Instead of the receiver clock offset the time
difference of two consecutive clock offsets is determined. From the set of n ≥ 2
observations an estimate

cδtr(tj−1, tj) =
1

n

n

∑
i=1

(

Li
IF(tj−1, tj) −

(

ρi
r(tj−1, tj) − cδti(tj−1, tj)

)

)

(4.57)
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of the time differenced receiver clock offset between the measurement epochs tj

and tj−i and the associated residuals

resi(tj−1, tj) = Li
IF(tj−1, tj) −

(

ρi
r(tj−1, tj) + cδtr(tj−1, tj)

− cδti(tj−1, tj)
)

(4.58)

of the time differenced carrier phase observations is determined. Again, whenever
the standard deviation of these residuals exceeds a predefined threshold, the car-
rier phase observation that contributes the dominating error is assumed to have
experienced a cycle slip and is removed from the set of observations. If necessary,
the process is repeated to identify multiple cycle slips. The threshold for this pro-
cess however must be set small enough in order to guarantee no undetected cycle
slips. This is possible due to the low noise level in the carrier phase data and the
fact that errors in the a-priori positions used almost cancel completely over short
time spans.





Chapter 5

Accelerometer calibration:
CHAMP & GRACE results

After the description of the GPS observations, the forces acting on a LEO satellite
and the detailed explanation of the applied estimation technique in the previous
chapters, here the analysis of the calibration of the accelerometer measurements
of board the CHAMP and GRACE spacecraft is given ( [Van Helleputte and Visser,
2008], [Van Helleputte et al., 2009]).

In the first section, the a priori settings applied in the orbit determination are intro-
duced and the different cases which are treated in the continuation of this chapter
are summarized. After that, the estimated calibration parameters are presented.
First the results of an unconstrained estimation are given, where the calibration
parameters are estimated freely from the observations. The discussion in the con-
secutive sections is divided into two parts, section 5.3 (flight axis) and 5.4 (radial
and cross-track axes). First, in section 5.3, the results in flight direction are dis-
cussed. In this direction, the estimation of the calibration parameters by the tech-
nique of GPS-based orbit determination is the most stable because of the large
non-gravitational acceleration level in this direction. In the other two directions,
radial and cross-track, the estimation of the accelerometer scale factor and bias
values is more challenging, which is treated in more detail in section 5.4. For
the GRACE satellites, the accelerometer measurements are defined in the Space-
craft Body Fixed frame (SBF) [Bettadpur, 2007], which is depicted for the trailing
GRACE satellite in Figure 5.1. The SBF has the XSBF-axis nominally pointing in
the direction of the orbital velocity. The attitude of the satellite is kept aligned to
within one degree of the orbit frame (RTN). The leading GRACE satellite has the
XSBF-axis pointing towards the trailing spacecraft. CHAMP has the same general
alignment of the SBF and RTN frame as the trailing GRACE satellite, although this
alignment is kept within a more tolerant two degrees.

Following the discussion on the estimated calibration parameters, in section 5.5
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Figure 5.1 SBF and RTN frame definitions for the trailing GRACE spacecraft

some special topics are covered, namely the estimation of empirical accelerations
and the variation of the estimation arc length. Next, in section 5.6, an assess-
ment of the quality of the orbit solutions obtained when using and calibrating
the accelerometer measurements is given. After that an alternative technique, the
stacked normal matrices approach (i.e. multi-arc technique), is introduced in sec-
tion 5.7 and the results of this technique are presented. At the end of this chapter
two methods of validating the calibration results are outlined in section 5.8.

5.1 Selected cases: force models and estimated

parameters

To start with, the force models used in generating the results described in this chap-
ter are summarized. The nature of these forces and the references for the models
applied have already been discussed in chapter 3. As the accelerometer measure-
ments are introduced in the orbit determination to replace the non-gravitational
forces, no non-gravitational models are used in the estimation. The applied grav-
itational force models are listed in Table 5.1. The GRACE GGM02S model is used
for all the processing described in this chapter, and although more recent (and
thus possibly more accurate) gravity field models have become available after the
research described in this dissertation, this model proved useful enough for the
analysis presented here. According to a calibrated gravity field covariance matrix
kindly provided by the NASA Goddard Space Flight Center (priv. comm., Dave
Rowlands), the gravity field induced orbit error for satellites flying orbits similar
to CHAMP and GRACE is equal to 3, 50 and 4 mm for the radial, along-track and
cross-track direction, respectively. These are in fact conservative numbers, assum-
ing a fully dynamic orbit propagation.
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Item Description

Static gravity field GRACE GGM02S model, 100 × 100
Tidal perturbations Solid Earth tide (4 × 4, diurnal)

Polar tide (IERS/IGS)
Ocean tides (TOPEX 4.0)

3rd body gravity Analytical series expansions of luni-solar coordinates

Table 5.1 Overview of the gravitational dynamical models applied in the processing of
the accelerometer measurements

A-priori standard deviation
σr [m] 100.0
σv [m/s] 100.0

σaR [nm/s2] 5.0
σaT [nm/s2] 10.0
σaN [nm/s2] 10.0

σbiasCP
[m] 1.0

Auto-correlation time
τa(R,T,N)

[s] 600.0

Observation weight
σPR [m] 0.7
σCP [m] 0.03

Table 5.2 A-priori constraints and observation weights used for the processing of the
accelerometer measurements. Identical values are applied to the GRACE
and CHAMP spacecraft.

CHAMP GRACE A GRACE B

SX 0.833 0.96 0.96
SY 0.875 0.98 0.97
SZ 1.0 0.94 0.92

Table 5.3 A priori scale factors in the Spacecraft Body Frame, obtained from
[Bettadpur, 2003; Förste, 2002]
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This covariance matrix was derived from only 1 month of GRACE data for a spher-
ical harmonic expansion complete to degree and order 60. GGM02S is based on
about one year of GRACE observations. The truncation to degree and order 100
gives a reduction in processing time. Including higher degrees does not result in
significantly different orbits. The other gravitational models were already used in
generating reduced dynamic orbits in [Montenbruck et al., 2005a].

Table 5.2 gives an overview of the a priori settings which are common for all cases
described later on. These include the standard deviation of the position and ve-
locity vectors, σr and σv, the a priori stand deviation of the empirical accelerations
in Radial, Tangential and Normal direction, σaR , σaT and σaN , the auto-correlation
time τa(R,T,N)

of these parameters and the a priori standard deviation of the car-

rier phase bias, σbiasCP
. The observation weights of the pseudorange and carrier

phase observations, σPR and σCP, are given and stem from the analysis in section
2.4, where here more relaxed values are applied, to reflect the noise and systematic
errors and to scale the formal errors.

The empirical accelerations were introduced in section 4.2. Because drag and so-
lar radiation pressure models imply a higher amount of uncertainty compared to
the direct observation by an accelerometer, the a priori standard deviation of the
along-track empirical accelerations is reduced to a value of 10 nm/s2, compared to
a higher value of about 30 nm/s2 in a standard reduced dynamic orbit determina-
tion.

The a priori scale factor values listed in Table 5.3 for the CHAMP and both GRACE
spacecraft are used throughout the analysis described in this chapter, unless stated
otherwise. They are based on advertised values [Bettadpur, 2003; Förste, 2002].

To conclude this introductory section, Table 5.4 gives an overview of the different
cases which are treated in this chapter, where in general complexity is increased in
the sequence of cases. The table includes a notion of the characteristic of each case,

case emp acc section(s) figure(s) & table(s)

unconstrained estimation no 5.2 Fig.5.2, Fig. 5.3, Tab.5.5
unconstrained estimation yes 5.2 Tab.5.5
varying scale factor yes 5.3.1 Fig.5.4
constant scale factor yes 5.3.2, 5.4 Fig.5.5, Fig.5.7, Fig. 5.8,

Tab.5.6
constant scale factor & different
a priori biases yes 5.4 Fig.5.9
constant scale factor no 5.5.1 Tab.5.8

Table 5.4 Overview of the different cases treated in this chapter with a reference to the
section where the case is discussed, the related figures and tables, and an
indication whether empirical accelerations are estimated (yes) or not (no)
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the section where the case is discussed and a list of the tables and figures which
relate to the specific case. First, only six state parameters are estimated together
with three scale and bias parameters, where no constraints are put on the calibra-
tion parameters. This is a first step to analyze how well these parameters can be
determined from the GPS observations. It turned out that only the scale in flight
direction can be estimated reliable, therefore in the other directions constraints are
necessary, which is done in the other cases. A further division is then made in
the estimation of the scale factor in flight direction, first it is estimated on an arc
by arc basis, next it is kept constant (as well as the scale factors in the other two
directions). Furthermore in the table it is indicated whether or not empirical accel-
erations are estimated as well, as some tests were done without. A more thorough
explanation of all cases is given in the corresponding sections.

5.2 Unconstrained estimation

As a first test the calibration parameters are estimated without constraints. The
results of such an unconstrained estimation are presented in Table 5.5 for a 30 day
test period for GRACE B, where the two columns represent an estimation with (1)
and without (2) empirical accelerations. Without applying empirical accelerations
(or so-called pseudo-stochastic parameters), the estimation is close to a purely dy-
namic orbit determination. In a standard reduced dynamic POD technique the
addition of empirical accelerations gives better results, therefore also a test is done
with empirical accelerations. For an unconstrained estimation, the most stable re-
sults in flight direction are obtained when no empirical accelerations are applied.
When they are estimated, the extra degrees of freedom apparently give an incor-
rect distribution of information in this case, although the orbit fit (defined as the
RMS of orbit coordinate differences) improves in the latter case from about 10 cm
to 6 cm.

Without empirical accelerations, the scale factor in along-track direction is stable,
showing a small variation of 0.015 and a value of 0.95, close to the advertised value.
In radial direction, the scale can not be determined reliably with this method. In
cross-track direction, the scale factor is about 1.05, with a variation of about 0.15,
which is slightly lower when empirical accelerations are estimated. When a 5 year
period (2003-2007) is analyzed in this manner, see Figure 5.2, it becomes apparent
that only during periods with a strong signal this method gives a stable (along-
track) scale factor. Over the whole period the variation increases, while at the
same time the variation of the non-gravitational signal decreases (as depicted at
the bottom of Figure 5.4 in section 5.3.1). The mean value of 0.95 is the same as for
the short test period. Results for the scale factor in flight direction of the GRACE
A satellite for the same 30 day test period are 0.96 ± 0.014 and 0.85 ± 0.024 for
CHAMP.



66 Accelerometer calibration: CHAMP & GRACE results

03 04 05 06 07

0.80
0.90
1.00
1.10

S
x 

[−
]

Year, GRACE B

0.95+/−0.043

Figure 5.2 Scale in X-direction for GRACE B determined by an unconstrained estimation
(without empirical accelerations)
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Figure 5.3 Formal errors of scale parameters for GRACE B determined by an
unconstrained estimation (without empirical accelerations)

(1) (2)
SX [-] 0.97 ± 0.024 0.95 ± 0.015
SY [-] 1.04 ± 0.138 1.05 ± 0.149
SZ [-] 1.47 ± 1.07 1.0 ± 0.536
BX [nm/s2] -569 ± 11 -559 ± 7
BY [nm/s2] 9800 ± 1301 9904 ± 1408
BZ [nm/s2] -1105 ± 927 -702 ± 462
3D RMS [cm] 5.81 9.39

Table 5.5 Scale and bias parameters for GRACE B of DOY 270-300 in 2003, with (1) σS
= 10, σB = 500 nm/s2 (2) idem, no empirical accelerations
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In Figure 5.3 the formal errors of the scale factors for GRACE B are plotted for
an unconstrained estimation. Clearly, only in X-direction very small values are
reached, while in Y- and Z-direction the lowest value obtained is about 0.01.

Near the end of the five year period, also the formal error in X-direction increases,
which is also caused by the gradually decreasing signal strength, as depicted at
the bottom of Figure 5.4, included in the next section.

5.3 Calibration parameters in flight direction

In this section, dealing with the calibration parameters in flight direction (along
the XSBF-axis), two different approaches are discussed. The first one is referred
to as varying scale factor (section 5.3.1), where the scale factor in this direction
is estimated for each orbital arc. In the second approach (section 5.3.2) the scale
factor is kept constant to assess the stability of the bias estimation.

5.3.1 Varying scale factor

Five years (2003-2007) of CHAMP and GRACE data were processed, computing
daily calibration parameters. As was shown in the previous section, an uncon-
strained estimation of the scale factor in radial and cross-tack direction results in
a large variation. Therefore these parameters are tighter constrained in these di-
rections. The a priori standard deviation of the scale and bias parameter in flight
direction are 0.1 and 100 nm/s2, and 0.01 and 1 nm/s2 in radial and cross-track di-
rection. The reason for the tighter constraints on the bias parameters is elaborated
in more detail in section 5.4. The a priori standard deviation of the other estima-
tion parameters, including the empirical accelerations which are here estimated as
well, were listed in Table 5.2. These settings are used for the whole period and re-
sulted from tuning towards small ionospheric-free carrier phase residuals (around
9 mm) and an orbit fit of about 3.5 cm in 3D RMS sense with respect to JPL ref-
erence orbits [Case et al., 2002] for GRACE orbits, and around 6 cm for CHAMP
orbits with respect to DEOS reference orbits [Van den IJssel et al., 2003]. All refer-
ence orbits are computed with different software and without accelerometer data.
The good fit is supported by computing Satellite Laser Ranging (SLR) residuals,
which are presented in a more detailed orbit quality analysis in section 5.6.

In Figure 5.4 the bias (Bx) and scale factor (Sx) in X-direction are presented for
the GRACE B satellite. What is immediately apparent when inspecting the figure
is the strong anti-correlation between scale and bias parameters. This makes it
not straightforward to assess instrument behavior. The standard deviation of the
scale factor amounts to 0.028. With this approach, the total non-gravitational ac-
celeration of the spacecraft is calibrated, rather than the scale and bias parameters
separately.
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Figure 5.4 Bias and scale in X-direction for GRACE B, combined with formal error of the
scale factor and RMS about mean (standard deviation) of the accelerometer
measurements

To investigate the large variation of the scale in flight direction more closely, Fig-
ure 5.4 groups the scale factor with the formal error of this parameter and the RMS
about the mean of the accelerometer measurements (accx), which is a measure for
the signal strength. The formal error of the scale factor is an order of magnitude
smaller than the constraint (0.1), meaning that the scale is determined largely by
the observations (as it preferably would be). Inspecting the bottom two plots con-
firms that the formal error is strongly anti-correlated with the signal strength. With
a reducing acceleration strength, due to a decreasing solar activity, the formal error
increases, as well as the variation of the estimated parameter. Reversely, a stable
estimation of the scale factor, showing a small variation, occurs when the signal
strength is large.

The influence of the quality and availability of the GPS observations and attitude
data was also investigated, but no correlation between these two data sets and the
variation of the estimated scale factor could be found. The same holds for the orbit
geometry, where the shadow periods and variation of β-prime, the angle between
the orbital plane and the sun vector, did not reveal apparent correlations.

5.3.2 Constant scale factor

Because of the strong correlation between scale and bias, and because a compar-
ison of the data with non-gravitational force models (e.g. eclipse transitions, E.
Doornbos, DEOS, private communication) indicates that the scale is not expected
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Figure 5.5 Bias in X-direction for GRACE A and B, estimated with a constant scale factor

to show large variations, another approach is proposed, where the scale factor in
all three directions is kept constant. The scale factors are set equal to the values
listed in Table 5.3. The a priori standard deviation of the bias parameters is the
same as described above, so the value in X-direction is a hundred times larger than
in the other two directions. The resulting bias values are now much smoother, il-
lustrated in Figure 5.5 with the bias parameter in flight direction for the GRACE
spacecraft. All sequences show a clear trend, and distinct jumps in the bias values
are now visible. The outlier points can be attributed to maneuvers or data gaps
in the GPS or attitude data. For CHAMP, the bias in X-direction is presented in
Figure 5.6, where marks are inserted which are related to events onboard the satel-
lite, and more specific to the accelerometer. These events were provided by the
CHAMP team (H. Lühr, GFZ, private communication) and consist of resets, soft-
ware updates an switches of the redundant electronics. The large jumps in the bias
can be related to such events (start of 2003 and 2004) and were recognized by the
CHAMP project team, who needed to include these in their bias function to get
reasonable results. Furthermore lots of events can be observed in the start of the
mission, which are mentioned in [Perosanz, 2003].

It can be concluded that the calibration benefits from a sequential procedure,
where first daily biases and scale factors are estimated, for example as described
in the previous section, after which the average of the scale factor is determined.
Another possibility is the use of a multi-arc technique, where a constant value for
a longer period is estimated. This is described at the end of this chapter. In the
next step the scale factor is kept constant and new daily biases are estimated.
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Figure 5.6 CHAMP bias in X-direction with grey lines indicating known satellite
(acceleromter) events, such as rests and switches of redundant electronics

5.4 Calibration parameters in radial and cross-track

direction

After the discussion of the calibration parameters in flight direction in the previ-
ous section, here the results of the estimation in radial and cross-track direction
are discussed. In Figure 5.7 the bias parameters in Y- and Z-direction (By and Bz)
are presented for the GRACE B satellite. The scales in these two directions are not
included because they show little variation with respect to the a priori values, be-
cause of the applied constraints (an a priori standard deviation of 0.01 as stated in
section 5.3.1). The solid lines show the advertised values [Bettadpur, 2003], where
it has to be mentioned that their period of applicability is stated to be limited until
November 1st, 2003. However, it is clear that the user of the accelerometer data
has to calibrate the accelerometer measurements. The jumps in the bias parameter
in Z-direction in 2003 are already visible in the accelerometer data.

Figure 5.8 shows the signal strength, computed as the RMS about mean (standard
deviation) of each day, for the two directions described here (accy and accz). In both

directions the signal is rather small, below 25 nm/s2, and there is little variation
over the years, compared to the accelerometer signal in flight direction, which was
shown at the bottom of Figure 5.4.

When estimating the calibration parameters, the scale and bias factors in YSBF and
ZSBF direction are tightly constrained to their a priori values. It was found that the
formal errors of an unconstrained estimation are about 100 and 30 times larger for
the scale factors in Y and Z direction, and 30 and 100 times larger for the biases
in these directions, compared to the formal errors in X direction, which indicates
that unconstrained estimation of these parameters is unstable, as was shown in
section 5.2. As mentioned earlier, the estimation of the bias parameter in Y- and
Z-direction is tightly constrained to the a priori values, because of a strong cor-
relation between these parameters and the initial state. This is supported by the
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statistics in Table 5.6, where σ represents the a priori standard deviation of the
scale and bias parameters. In case (2) the constraints on the bias are relaxed to
100 nm/s2 and a mean offset with respect to the reference trajectory in radial and
cross-track direction is visible. The GPS-based orbits are also confronted with SLR
observations, and a big shift in the bias value and in the SLR residuals mean and
RMS value can be seen. This indicates that the bias values in radial and cross-track
direction, estimated in case (2), are less reliable. The difference in the bias values
in Y- and Z-direction and the corresponding shift of the orbit can be attributed for
a large part to coupling with the central term of the gravity field.

The a priori bias parameter consists of the mean of modeled non-gravitational
forces, computed with the GHOST software, which does not include albedo ra-
diation and has a canonball solar radiation pressure model. To check the effect of
neglecting albedo radiation and the simple radiation pressure model, another set
of a priori biases for the GRACE satellites were computed with the more accurate
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(1) (2)
BX [nm/s2] -566 ± 0.5 -564 ± 0.5
BY [nm/s2] 9214 ± 15 9164 ± 22
BZ [nm/s2] -786 ± 2 -633 ± 4
mean R [cm] -1.02 3.12
mean T [cm] 0.02 -0.19
mean N [cm] -0.50 3.49
3D RMS [cm] 3.35 5.75
mean SLR [cm] -0.80 -3.12
RMS SLR [cm] 1.79 4.00

Table 5.6 Bias values (mean and standard deviation) for GRACE B of DOY 270-300 in
2003, with (1) σS = 0.001, σBY,Z

= 1 nm/s2 (2) σS = 0.001, σBY,Z
= 100 nm/s2 ,

mean offset wrt JPL reference orbits and SLR residual statistics
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Figure 5.9 Differences in bias values for GRACE B in 2007 in Y- and Z-direction,
estimated with a priori values determined with a different force modeling

non-gravitational force models described in section 3.2.4. There is no difference in
flight-direction, the calibration parameters in this direction are estimated almost
freely, without tight constraints to an a priori value. The difference in the result-
ing bias values in Y- and Z-direction for GRACE B are presented in Figure 5.9 for
2007. As the bias in these directions is constrained to 1 nm/s2 to the a priori value,
this reflects mainly the difference in the non-gravitational force models used to de-
termine the a priori bias. The effect on the bias in Z-direction is a small varying
offset, where the difference in Y-direction builds up when the orbital plane is more
perpendicular to the sun vector, which is further discussed in section 5.6 about the
orbit quality analysis. This illustrates that in Y- and Z-direction the bias parameters
can not be determined very precisely from the GPS observations with this method.
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mean [nm/s2] RMS about mean [nm/s2]
CHAMP along-track 0.06 ± 0.1 10.9± 2.4

cross-track 0.35 ± 0.6 28.0 ± 2.3
GRACE A along-track 0.04 ± 0 4.4± 1.4

cross-track -1.04 ± 0.2 7.3 ± 1.5
GRACE A along-track 0.79 ± 3.4 27.2± 11.2
(no acc data) cross-track -0.97 ± 0.2 7.5 ± 1.4

Table 5.7 Variation of the estimated empirical accelerations, for a period of one year
(2003) for CHAMP, GRACE A, and GRACE A without applying accelerometer
data (standard reduced dynamic technique)

5.5 Special topics: empirical accelerations and arc

length

5.5.1 The influence of the estimation of empirical accelerations

In the standard processing, with the input parameters listed in Table 5.2, empiri-
cal accelerations are estimated to account for deficiencies in the gravitational force
models and in the case of CHAMP to account for accelerations due to maneu-
ver events, which are not included in the accelerometer data (whereas these are
present in the GRACE accelerometer data). When using accelerometer measure-
ments, the estimated empirical accelerations in along-track direction are small,
where in cross-track direction the pattern remains largely unaffected (comparing
the case with and without accelerometer data), which is an indication that the ap-
plied gravitational force models, specially in cross-track direction, can be further
improved. The estimated empirical accelerations do not show a significant mean
value, which indicates that their estimation does not affect the estimation of the
accelerometer bias parameter. Table 5.7 summarizes the mean and standard devi-
ation of the empirical accelerations for CHAMP and GRACE A (for the year 2003),
for the case with constant scale factors. The difference in magnitude of the empir-
ical accelerations between the two spacecraft is clearly visible. Also the statistical
information of the empirical accelerations for the standard reduced dynamic tech-
nique for GRACE A is included at the bottom of the table. This illustrates again
a larger variation in along-track direction and almost no difference in cross-track
direction. The formal errors of the empirical accelerations are about 4.97, 8.5 and
9 nm/s2 in radial, along-track and cross-track direction for GRACE B, which indi-
cates that these parameters are dominated by the constraints.

To check the influence of estimating empirical accelerations, a test is done with-
out them, for CHAMP and GRACE A during the same period (2003), where only
the initial state vector and bias and scale factors in three directions are estimated,
with the scale factors tightly constrained. The resulting calibration parameters are
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CHAMP GRACE A
SX [-] 0.84 ± 0.03 0.96 ± 0.015
SY [-] 0.52 ± 0.19 0.95 ± 0.093
SZ [-] 1.05 ± 0.38 0.95 ± 0.047
BX [nm/s2] -2964 ± 95 -1113 ± 22
BY [nm/s2] 135 ± 68 26948 ± 2644
BZ [nm/s2] 11 ± 61 -504 ± 26

Table 5.8 Calibration parameters for CHAMP and GRACE A without estimating
empirical accelerations (2003)

presented in Table 5.8. The values in X-direction show little variation compared to
the case including empirical accelerations, which are the advertised values of 0.83
and 0.96 for CHAMP and GRACE A, where the parameters in Y- and Z-direction
show a larger variation. In the case of CHAMP this variation becomes high. The
resulting orbit precision with respect to reference orbits now amounts to about 10
cm for GRACE orbits and around 30 cm for CHAMP orbits. All this supports the
difference in magnitude of the estimated empirical accelerations presented in Ta-
ble 5.7, and consequently the fact that maneuvers, which occur frequently, are not
included in the CHAMP accelerometer data.

5.5.2 The variation of the arc length

The length of the arc over which observations are used also has an influence on the
estimated parameters. A shorter arc has less observations available to determine
the solution, but has a smaller effect of force model errors, which build up over
time. The opposite holds for a longer arc. Three tests with different arc lengths are
conducted with CHAMP data for the second half of 2003 (DOY 200-365): an arc
length of half a day, 2 days, and equal to an integer number of orbital revolutions
closest to a full day. The last test resulted in no significant differences in estimated
scale and bias parameters compared to the standard one day processing. An arc
length equal to half a day or two days has a bigger impact on the calibration pa-
rameters. The tests are compared in Table 5.9. A shorter arc results in a larger
deviation in X-direction, and a smaller deviation for a longer arc, where also the
formal errors get smaller. On the other hand systematic errors have a higher im-
pact for a longer arc. In Y direction, the estimated scale factor deviates less from
the a priori value for a short arc, where for a longer arc the estimated value deviates
more from the a priori scale factor values. As described in the introduction, the cal-
ibrated accelerations were used in [Doornbos et al., 2009] for thermospheric density
and wind modeling. During this study, wind speed calculations for the CHAMP
satellite, derived from the accelerometer measurements, suggested a lower cross-
track scale factor than the advertised values. Together with the (slightly) more
stable estimation in X-direction this pleads in favor of the longer arc estimation.
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1/2 day 1 day 2 days
SX [-] 0.85 ± 0.03 0.85 ± 0.02 0.85± 0.02
SY [-] 0.83 ± 0.02 0.78 ± 0.03 0.73 ± 0.05
SZ [-] 1.0 1.0 1.0
BX [nm/s2] -2979 ± 84 -2982 ± 75 -2980 ± 62
BY [nm/s2] 239 ± 18 225 ± 18 208 ± 20
BZ [nm/s2] 9 ± 5 7 ± 5 4 ± 4

Table 5.9 Calibration parameters for varying orbit arc lengths (CHAMP)

However, because of the small impact in flight direction, the remaining uncertainty
in cross-track direction and the longer run-time, this approach is not applied to a
larger data set. In the stacked normal approach however, which is discussed at
the end of this chapter, one scale factor is estimated for a longer period based on a
multi-arc technique.

5.6 Orbit quality analysis

The quality of the orbits can be assessed by a comparison with externally com-
puted orbits. For the GRACE satellites these are determined by the Jet Propul-
sion Laboratory (JPL), using the reduced-dynamic technique (without accelerom-
eter data) [Case et al., 2002], which have a claimed accuracy of better than half
a decimeter. This is confirmed by computing SLR residuals, which are included
for the GRACE B JPL orbits in Table 5.10. The SLR observations were not used to
compute the orbits.

Figure 5.10 shows the 3D RMS values with respect to the reference orbits for the 5
year period analyzed, where the total RMS amounts to 3.42 cm for GRACE B and
3.68 cm for GRACE A. The first half of 2003 has higher RMS values, which is due to
the absence of high-rate GPS satellite clock information, which the Center for Orbit
Determination (CODE) in Bern, Switzerland, started producing from mid 2003 on.
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Figure 5.10 3D RMS of the GRACE B orbits with respect to the JPL reference trajectories
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Figure 5.11 Cross-track mean offsets of the 2007 GRACE B orbits with respect to JPL
reference trajectories, with different a priori bias values (top: determined with
the GHOST models, bottom: determined with the more accurate models, see
chapter 3)

Before that time, IGS 5 minute clock products were interpolated. Figure 5.11 shows
the mean cross-track offset of GRACE B orbits for the year 2007, obtained with
different sets of a priori bias values, where in the bottom figure the more accurate
non-gravitational force models, described in section 5.4, are applied. This cross-
track offset shows a pattern which follows β-prime, the angle between the orbital
plane and the sun vector, and was already observed in [Kroes, 2006], where solar
radiation pressure mismodeling was the prime suspect for this behavior. Now
this can be attributed with certainty, as a test with a priori bias values based on
more accurate force models removes the pattern from the mean cross-track offset.
As stated in the previous section, the bias in Y-direction (cross-track) is tightly
constrained to the a priori value, derived from the mean value of the modeled
non-gravitational forces in the GHOST software, which is a simple canonball solar
radiation pressure model.

From Figure 5.9 it is clear that this model is inaccurate when the angle between
orbital plane and sun vector increases. All this indicates that the estimation of dy-
namic parameters from GPS observations in cross-track direction lacks sensitivity,
as the bias can not be estimated reliably and the empirical accelerations in this
direction do not counteract the mismodeling properly.

The SLR residual statistics for all satellites are summarized in Table 5.10. The val-
ues for GRACE B are somewhat smaller than for GRACE A, and the CHAMP
residuals are slightly higher. The mean offset can partly be attributed to the ab-
sence of albedo modeling in the GHOST software, as the mean offset for the 2007
test of GRACE B with different a priori bias values shows a reduction from -0.43
cm to -0.25 cm. The residuals of the JPL orbits for GRACE A and B, and of two
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Mean [cm] RMS [cm] # points
GRACE A -0.83 2.33 163850
GRACE A (JPL orbits) -1.13 2.40 166944
GRACE B -0.56 2.15 154176
GRACE B (JPL orbits) -0.87 2.17 158251
CHAMP -0.54 2.80 167012
CHAMP (DEOS orbits, 03-04) -1.04 3.26 68430

Table 5.10 SLR residual statistics for the 5 year period (2003-2007)
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Figure 5.12 Daily RMS of phase residuals of the ionospheric free combination for the
GRACE satellites and CHAMP

years of DEOS orbits for CHAMP are also included in the table, to demonstrate
that all the orbits have a similar quality, where the GHOST computed orbits seem
to be slightly more precise, which might be due to the fact that the same software
(GHOST) was used to compute the SLR residuals.

Another indication for the quality of the estimated orbits are the phase residuals.
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These are plotted in Figure 5.12, where the distinct lines are due to a 3 digit output
of the values (1 mm round-off). The residuals for GRACE fluctuate around 9 mm.
The scatter increases in 2006. From the end of 2006, an improvement is visible,
which can be attributed to the incorporation of nominal phase center variations
[Montenbruck et al., 2008a], after the adoption of absolute phase centers by the IGS.
The CHAMP residuals are consistent over the period until the end of 2006, where
the values increase. A possible explanation can be that the same phase center vari-
ations were used as for the GRACE satellites, without changing the antenna center
offset. The increase in phase residual values indicates that when applying phase
center variations for CHAMP, a different offset should be used. The applied phase
center offsets used amount to 0.0, 0.0 and -0.414 m for the GRACE satellites in the
SBF and -1.488, 0.0 and -0.393 for the CHAMP satellite.

A last means to check the quality of the GRACE orbits is a comparison with the
K-band range (KBR) measurements. To this end, KBR residuals are plotted for
the whole period in Figure 5.13. No significant improvement in KBR fit is ob-
served when using accelerometer measurements. The presented residuals show
a strong correlation with the β-prime angle. This pattern also shows up when
the a priori bias values based on more accurate non-gravitational force models are
used and with standard reduced-dynamic orbits determined without accelerome-
ter data. The mean RMS value of 1.7 cm is in agreement with the KBR residuals
of the JPL reference trajectories, which show a smaller variation (3 mm in stead of
5 mm), and no periodic pattern. The outliers in the first half of 2004 are present
in both sequences. The observed pattern is also visible in KBR residuals presented
in [Jäggi et al., 2009] and a probable cause is the use of observations of eclipsing
Block IIA satellites (A. Jäggi, priv. comm., 2010). These Block IIA satellites have
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Figure 5.13 GRACE KBR range residuals (daily RMS) and β-prime angle
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horizontal antenna offsets and introduce systematic errors in the LEO orbits due
to the GPS satellite attitude motion during eclipse phases and after shadow exit.

5.7 Stacked normal matrices approach

An additional method is implemented as well, where one scale factor is estimated
for a longer period (here one year). This multi-arc method has the benefit that
all observations taken during this period are used for one estimate of the scale
factor which gives the best consistency over the whole period. In this manner,
days with a stronger signal contribute more to the solution than days with a lower
accelerometer signal level.

First, the bias parameters are determined by the nominal daily estimation tech-
nique where the scale factor is kept fixed (section 5.3.2), after which the part of
the normal matrix related to the scale factors, without constraints, is stored and
stacked for the defined period. After stacking, one scale factor is determined in
each direction for the whole period. The precise implementation is described next,
followed by a discussion of the results.

5.7.1 Method and implementation

After convergence of the bias parameters, with the scale factors fixed at the prede-
fined values listed in Table 5.3, the normal equations are partitioned. The part for
the scale factors, x2, is unconstrained. The part indicated by x1 contains all other
parameters (state, bias parameters and GPS receiver clock and ambiguities). In
this approach no empirical accelerations are estimated.

(

N11 N12

N21 N22

)(

x1

x2

)

=

(

b1

b2

)

(5.1)

The three-dimensional vector containing the scale factors can be factored out, re-
sulting in:

(N22 − N21N−1
11 N12)x2 = (b2 − N21N−1

11 b1) (5.2)

The left and right hand sides of this equation are subsequently stored for each day
and summed up, according to:

nday

∑
i=1

NixSF =
nday

∑
i=1

ri (5.3)
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GRACE B CHAMP
∆Sx ∆Sy ∆Sz ∆Sx ∆Sy ∆Sz

2004 -0.014 -0.066 0.028 0.010 -0.040 -0.183
2005 -0.015 -0.109 0.067 0.011 -0.026 -0.105
2006 -0.012 -0.125 0.059 0.013 -0.032 -0.096
2007 -0.014 -0.059 0.042 0.011 -0.032 -0.186

Table 5.11 Corrections to the scale factors for a one year period for the GRACE B and
CHAMP satellites

after which one set of scale factors can be determined for the whole period, with
nday the number of days (or e.g orbital arcs).

5.7.2 Results

With the stacked normal matrices approach, one set of accelerometer scale factors
is obtained. The corrections to the a priori scale factors for one year periods for
GRACE B and CHAMP are summarized in Table 5.11, for the years 2004 to 2007.
From these values it is clear that especially in flight direction, the determined scale
factor is extremely stable, which supports the assumption that the scale factor in
reality is constant. The small negative correction of about 0.014 in X-direction to
the advertised value of 0.96, agrees with the value found in section 5.3.1, where the
scale factor was estimated as a daily value and averaged afterwards, resulting in a
value of 0.95. In Y-direction, the corrections are larger, while the variations are rela-
tively small. These values however are considerably smaller than when computed
with the standard technique described above, where daily values are computed.
A test during the period DOY 270-300 in 2003 with an unconstrained daily estima-
tion of the scale factor (and a constrained bias in Y- and Z-direction) resulted in
variations of the scale of 0.01, 0.15 and 0.45 in the respective SBF-directions.

Applying a higher order gravity field model, a different ocean tides model or the
modeled non-gravitational accelerations in the a priori bias determination, did not
result in smaller variations, which suggests that the low accelerometer signal in
this direction is probably the cause for these values, and the larger variations over
time.

The results in Z-direction, for GRACE B, also show a larger variation over time,
caused by the small signal strength. However the variation is considerable smaller
than the 30 day test described above or the completely unconstrained estimation
presented in section 5.2. For CHAMP, modeled accelerations were used in this
direction (and an a priori scale factor of 1), the corrections determined here indicate
that these modeled accelerations are (scaled) too high.

Besides the values covering a long period, also the daily scale factor corrections
offer some insight in the evolution over time of these parameters. The daily scale
factor corrections for GRACE B in 2004 are presented in Figure 5.14. This figure
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Figure 5.14 Daily corrections to the scale factor and the associated formal errors for
GRACE B in 2004. At the bottom the β-angle is plotted

again shows that the estimation in X-direction has the highest certainty (a small
formal error). Furthermore, when the β-angle becomes large, the formal error in
all directions increases, and as a consequence the contribution of these values in
the long period solution becomes smaller. In Y-direction, there are also large ex-
cursions when the β-angle crosses zero. In between these periods, in all directions
the daily corrections to the scale factors remain more or less stable (note the differ-
ent scale in the figures). This supports that the stacked matrices approach can be
applied to determine the scale factor reliably, over a long period.



82 Accelerometer calibration: CHAMP & GRACE results

5.8 Validation

In this section, two methods are briefly outlined that validate with independent
data the calibration parameter results presented in this chapter. For CHAMP, a first
validation was already given with the discussion of the bias and instrument events
plotted in Figure 5.6. The two methods described here are a comparison of the
calibrated accelerations with modeled non-gravitational accelerations, and second
the retrieval of thermosphere density and winds from the calibrated accelerometer
measurements.

5.8.1 Comparison with non-gravitational force models

For this validation method, the calibrated measurements are compared with the
non-gravitational (and empirical) accelerations as modeled in the GHOST soft-
ware, which is discussed in section 3.2. The correlation coefficient ρ is determined
between the calibrated (x) and modeled accelerations (y) in radial, along track and
normal direction (both in this reference system), according to:

ρ =
∑

n
i=1(xi − x̄)(yi − ȳ)

√

∑
n
i=1(xi − x̄)2

√

∑
n
i=1(yi − ȳ)2

(5.4)

with x̄ and ȳ the mean of the number n values.

This is illustrated for GRACE B for the second half of 2003 in Figure 5.15 and for
CHAMP for the same period in Figure 5.16.

For GRACE B, the mean value of the correlation coefficients is 0.88 in radial direc-
tion, 0.94 in along-track and 0.85 in cross-track direction. For GRACE A similar
values are found. These numbers reflect the quality of the determined calibra-
tion parameters and the applied force models. The higher value in along-track
direction supports the result that the estimation of the calibration parameters and
empirical accelerations in this direction, using the respective techniques, is the best
determined. Days with a decreasing value have in most cases attitude maneuvers
experienced by spacecraft, which is clearly visible in cross-track direction. These
maneuvers are measured by the GRACE accelerometer, but not picked up by the
empirical accelerations. The values in radial direction between DOY 260 and 290
are lower. A possible explanation is that during that period the satellite was in
eclipse free conditions, resulting in a larger albedo force acting on the satellite,
which is not modeled in the GHOST software.

For CHAMP, the comparison in radial direction can not be done because of the
malfunctioning of the accelerometer in Z-direction. The other directions show a
good agreement, where the cross-track mean value is higher compared to GRACE.
This is because in the CHAMP accelerometer data the manoeuvers are excluded
in the pre-processing, which is beneficial when comparing force models and ac-



5.8 Validation 83

200 220 240 260 280 300 320 340 360

0.6

0.8

1

co
rr

 R
 [−

]

Mean: 0.88

200 220 240 260 280 300 320 340 360

0.6

0.8

1

co
rr

 T
 [−

]

Mean: 0.94

200 220 240 260 280 300 320 340 360

0.6

0.8

1

Day Of year 2003, GRACE B

co
rr

 N
 [−

]

Mean: 0.85

Figure 5.15 Correlation coefficient between GRACE B calibrated accelerometer
measurements and modeled non-gravitational (and empirical) accelerations
in the GHOST software
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Figure 5.16 Correlation coefficient between CHAMP calibrated accelerometer
measurements and modeled non-gravitational (and empirical) accelerations
by the GHOST software

celerometer measurements. At the end of the period, the GPS and attitude data
are of lower quality (lots of gaps), which is reflected in the lower agreement.
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5.8.2 Density retrieved from accelerometer measurements

As mentioned earlier, the retrieval of thermosphere density and winds [Doornbos
et al., 2009] was a driver for the research presented here. The purpose of the study
was to investigate the optimal derivation, calibration and use of density and wind
data derived from the combination of instruments on CHAMP, GRACE, Swarm
and other (future) accelerometer missions. The processing methodology and the
results of the study can be found in the final report [Doornbos et al., 2009].

The calibration parameters presented in section 5.3.2 were applied in the study.
A statistical comparison of the retrieved density and empirical models resulted in
mean offsets of the data/model ratios deviating up to around 30% and standard
deviations between about 15% and 30% for CHAMP and between about 24% and
45% for GRACE which is consistent with the expected quality of the underlying
models. Also the consistency of the retrieved densities with the calibrated HASDM
model, based on contemporaneous satellite data, is better compared to the empir-
ical models, which proves that the calibration of the accelerometer measurements
as done in this research helps. The better agreement for the CHAMP derived den-
sities probably stems from the lower flying altitude, as errors in calibration and
solar radiation modeling are relatively smaller with respect to the higher density
at the lower altitude, compared to GRACE.

Furthermore, the outcome of the study helped to formulate recommendations for
the Swarm mission (also equipped with accelerometers), to enhance the retrieval
of thermospheric density and winds from this future data set. Current and future
accelerometer missions will provide together a level of temporal and spatial de-
tail on density variations in the thermosphere, which is beyond the capabilities of
existing global models.



Chapter 6

Processing of GOCE data

Results presented in the previous chapters were all stemming from data of satel-
lites flying already some time in orbit (CHAMP was launched in 2000, GRACE in
2002), meaning that the data are well known and extensively researched. In this
chapter, results of the relatively recently (March 2009) launched GOCE satellite are
presented. GOCE is the first of ESA’s core Earth explorer missions, measuring the
Earth gravity field with unpreceded precision by applying the gradiometer tech-
nique for the first time in space. GOCE differs from the CHAMP and GRACE
missions on different levels. The flying altitude of GOCE is much lower, resulting
in higher aerodynamic forces acting on the satellite, which are compensated by the
drag-free control system, resulting in a small net acceleration in along-track direc-
tion. Furthermore the satellite experiences a yaw motion, caused by the aerody-
namic torques (the spacecraft has its nose in the wind) and stabilized by magnetic
torquers, where the attitude of CHAMP and GRACE is steered according to the
flight direction and Earth pointing and kept within a narrow band. Finally the gra-
diometer, consisting of six accelerometers with the common-mode accelerations
used to represent the non-gravitational accelerations (explained in section 6.3), is
the biggest difference, compared to the single accelerometers on board CHAMP
and GRACE. All this makes it interesting to test the developed accelerometer cali-
bration method on the GOCE data, which is done in this chapter.

In the first section an overview of the satellite is presented, describing the main sci-
entific instruments and the High-level Processing Facility (HPF), which processes
the Level 1 data to Level 2 products. In section 6.2 the results of GOCE precise
orbit determination are discussed. In the last section of this chapter, the calibration
of the common-mode accelerations by including them in the precise orbit determi-
nation is discussed, covering three cases. First, the case when the satellite is not
yet in drag-free mode is analyzed, which is the most similar to the CHAMP and
GRACE accelerometer calibration, because the drag-free control is not active and
the accelerometer measurements give the total uncompensated non-gravitational



86 Processing of GOCE data

accelerations experienced by the spacecraft. The second case deals with the satel-
lite flying in drag-free mode, which is the operational mode. In this case, there
is only a small acceleration signal in along-track direction, which is expected to
make the determination of the scale factor in this direction difficult. A last case
analyses a day with manoeuvers, which are also measured by the accelerometers.
After establishing the baseline calibration setup for GOCE, two months of data are
analyzed, covering periods before and after drag-free activation.

6.1 Satellite overview and data processing

The overview presented in this section is a summary of the more detailed intro-
duction of the GOCE mission in [Drinkwater et al., 2003]. The mission was selected
for phase A development in 1996 with an expected launch date in 2006. The gra-
diometer measurement principle was already long before introduced, and well an-
alyzed in preparatory studies for GOCE’s predecessor mission concepts SESAME
and ARISTOTELES. The GOCE satellite was built by an industrial consortium led
by Thales Alenia Space (Turin, Italy), and eventually launched on March 17 in
2009 from Plezetsk, Russia with a Rockot launcher with a Breeze upper stage. The
nominal measurement altitude is 254 km and the satellite flies in a dawn-dusk
sun-synchronous orbit with an inclination of 96.7◦.

The primary mission objectives are to determine the Earth’s gravity field with an
accuracy of 1 mGal (10−5m/s2) and determine the geoid, the equipotential surface
for a hypothetical ocean at rest, with an accuracy of 1 cm, both achieved at length
scales down to 100 km. These objectives serve scientific research in oceanography,
solid Earth physics, geodesy and glaciology, all enhancing the understanding of
the Earth interior and the climate system.

The main instrument on board of GOCE is the electrostatic gravity gradiometer,
measuring the components of the gravity-gradient tensor. It is designed and devel-
oped by ONERA (Châtillon, France) and consists of three pairs of three-axes servo-
controlled capacitive accelerometers mounted on an ultra-stable carbon structure.
The accelerometers have a design measurement bandwidth (MBW) of 5x10−3 to
10−1Hz and a noise level in the MBW of 10−12m/s2Hz−1/2 for the most sensi-
tive axes (2 out of 3 for each accelerometer). A pair of accelerometers is mounted
on a platform 50 cm apart, forming a gradiometer arm. Three identical arms are
mounted orthogonally to one another. The difference between the accelerations
measured by each of the arm’s accelerometers provides the gradiometric measure-
ment, half the sum of each pair forms the common-mode measurement, the non-
gravitational accelerations acting on the spacecraft (Figure 6.1).

A second indispensable instrument is the Satellite to Satellite Tracking Instrument
(SSTI), the Lagrange GPS receiver, which was newly developed by Laben for this
mission. It is a dual-frequency receiver connected to a helix antenna, capable of
tracking 12 channels and delivering pseudorange and carrier phase measurements
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Figure 6.1 GOCE gradiometer, three accelerometers are visible at the top of the
instrument, source: ESA - AOES Medialab

with a sampling rate of 1 Hz. The measurements are used for gravity field recovery
in the SST-hl mode (explained in introductory section 1.1), thus complementing
the gradiometer measurements. In addition, the SSTI data are used for precise
orbit determination, real-time on board navigation and time tagging and precise
geolocation of the gradiometer observations.

Another important instrument is the Ion Thruster Assembly (ITA), developed by
QinetiQ (Farnborough, United Kingdom). This thruster has already flown on
board the EURECA-1 and ARTEMIS spacecraft. However, the ITA on board of
GOCE is an advanced development and can provide variable thrust levels. It is
coupled with the common-mode gradiometer measurements to enable a drag-free
control of the satellite. Furthermore the spacecraft carries a Laser Retro Refractor
for SLR observations, and three star camera’s for precise attitude determination,
with two always observing simultaneously.

The raw instrument data stemming from the instruments described above are pro-
cessed by the Payload Data Segment (PDS) located at ESRIN (Frascati, Italy). The
PDS is responsible for the mission performance assessment, the calibration and
verification of the measurements and monitoring of the performance of the space
and ground segment.

The level 1 data are processed to level 2 products by the High-level Process-
ing Facility (HPF) [Koop et al., 2006], operated by the European GOCE Gravity-
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Consortium (EGG-C). EGG-C is a group consisting of the following ten European
institutes:

Astronomical Institute of the University of Bern (AIUB), Switzerland

Centre d’Etudes Spatiales (CNES), Toulouse, France

Astrodynamics and Space Missions (AS), Faculty of Aerospace Engineering,
Delft, The Netherlands

Helmhotz Center Potsdam (GFZ), Germany

Institute for Astronomical and Physical Geodesy (IAPG), Technical University
of Munich, Germany

Institute for Theoretical Geodesy (ITG), University of Bonn, Germany

Politechnico di Milano (POLIMI), Italy

National Institute for Space Research (SRON), Utrecht, The Netherlands

Institute of Navigation and Satellite Geodesy, University of Technology (TUG),
Graz, Austria

Department of Geophysics, University of Copenhagen (UCPH), Denmark

HPF tasks comprise the pre-processing, external calibration and validation of the
level 1b data and the determination of quick-look and precise level 2 orbit and
gravity field products. IAPG hosts the principal investigator and HPF manage-
ment. The latter is done together with SRON, which also hosts the Central Process-
ing Facility (CPF), responsible for the scientific pre-processing and distribution of
the data. Rapid GOCE science orbits (RSO) with a 1 day latency are determined
at AS, while AIUB provides the precise science orbits (PSO, latency of 2 weeks)
[Visser et al., 2008]. Results of the orbit determination are presented in the next sec-
tion. For gravity field processing three techniques are implemented: the classical
direct method based on orbit perturbation theory for the GPS STT observations
(GFZ, CNES), the time-wise approach, based on an epoch-wise processing of the
SST and gradiometer observations (TUG, ITG) and the space-wise method, where
the data are interpreted as gravity functional of location in space (POLIMI, UCPH).
A final step is the validation of the gravity field products by internal and external
comparison with independent data sets (IAPG, AS).

6.2 Kinematic and reduced dynamic POD results

The auxiliary products used to generate the results presented in this section are
identical to the ones used in the processing of the GOCE RSO kinematic orbits:
rapid CODE GPS ephemeris with high-rate (5 second) clock products and rapid
Earth orientation parameters. The applied GPS antenna offsets are 0.6944, -0.0069
and -1.1697 m in the spacecraft body frame, defined with the X-axis aligned with
the long axis of the satellite, the Z-axis perpendicular to the X-axis and zenith
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pointing, and the Y-axis completing a right-handed orthonormal frame. The GOCE
satellite is not perfectly Earth pointing, as the attitude changes because of aerody-
namic torques and because of torques induced by magneto-torquers, resulting in
yaw, roll and pitch angles of a few degrees. In the orbit determination an empiri-
cally derived phase center variation (PCV) map is applied, as described in [Jäggi
et al., 2009] and generated by AIUB in the framework of the PSO processing.

In the framework of the HPF-processing chain, the kinematic RSO products are
generated daily with a latency of 1 day. Measurement weight values are set to 2
cm for the phase observations (to capture noise and systematic effects) and 6 m
for the code measurements (the code observations serve to stabilize the solution as
explained in section 4.4).

Thanks to the quality of the applied rapid GPS ephemeris and clock products,
generated by the CODE IGS analysis center of the AIUB, a precision of around
3.8 cm (3D) is achieved compared to the reduced dynamic precise science orbits,
also produced at AIUB [Bock et al., 2007]. Because of the high quality of these rapid
products, no re-computation was done with the final IGS products. In Table 6.1 the
statistics of the fit of the kinematic RSO products are listed for a ten day period.
No systematic offset is present and the standard deviation varies from about 2.6
cm in radial direction to 1.5 cm in cross-track direction.

Next to the kinematic orbits also reduced dynamic orbits are computed with the
GHOST software for this period, using the same CODE ephemeris and clock prod-
ucts and observations weights as described above. The gravity field model applied
is the EIGEN-5S model [Foerste et al., 2008] to degree and order 120, and no drag
and solar radiation coefficients are estimated (the satellite is in operational mode
during this period, thus flying drag-free). The standard deviation of the empirical
accelerations is set to 20 nm/s2 in radial direction and 50 nm/s2 in tangential and
normal direction. The statistics of the fit of the reduced dynamic orbits with the
PSO products is given in Table 6.2. The 3D RMS is about 2.4 cm, with no clear
offset in any direction. The standard deviation varies between 1.0 cm and 1.6 cm
in all directions. The estimated empirical accelerations have a mean and variation
of 60 nm/s2 ± 50 in radial direction (with a formal error of 15 nm/s2) , -2 nm/s2 ±
40 in tangential direction (10 nm/s2 formal error) and -100 nm/s2 ± 100 in normal
direction (10 nm/s2 formal error). As expected, the largest acceleration is work-
ing in normal direction and includes the effect of direct solar radiation pressure
(GOCE is flying in a sun-synchronous dawn-dusk orbit).



90 Processing of GOCE data

mean stand dev RMS
R [cm] T [cm] N [cm] R [cm] T [cm] N [cm] 3D

[cm]
20 0.1 0.6 -0.9 3.8 2.5 2.2 5.2
21 0.2 0.4 -0.7 2.4 1.8 1.7 3.6
22 0.2 0.6 -0.6 3.4 2.6 1.5 4.6
23 0.0 0.4 -0.6 2.8 2.4 1.8 4.2
24 0.0 0.3 -0.9 2.1 1.8 1.7 3.4
25 -0.1 0.4 -0.3 2.1 1.9 1.1 3.1
26 -0.2 0.5 -0.1 2.5 2.1 1.4 3.5
27 -0.1 0.5 -0.3 2.3 1.7 1.1 3.1
28 0.5 -0.6 1.4 2.5 1.9 1.6 3.9
29 0.7 -0.8 1.2 2.2 2.0 1.3 3.6
mean 0.1 0.2 -0.2 2.6 2.1 1.5 3.8

Table 6.1 Orbit fit statistics in the RTN-frame (mean, standard deviation and root-mean
square of the position differences) of GHOST kinematic RSO products
compared to AIUB reduced dynamic precise science orbits, for the period
DOY 20-29 2010.

mean stand dev RMS
R [cm] T [cm] N [cm] R [cm] T [cm] N [cm] 3D

[cm]
20 0.3 0.5 -0.1 1.0 1.3 1.1 2.1
21 0.3 0.4 0.0 1.5 1.4 1.1 2.4
22 0.2 0.5 0.0 1.3 1.3 1.3 2.4
23 0.1 0.7 0.5 1.0 1.5 1.0 2.3
24 0.1 0.4 0.0 1.0 1.4 0.9 2.0
25 0.1 0.4 0.1 1.1 1.5 1.0 2.1
26 0.2 0.8 0.8 1.2 1.9 1.2 2.8
27 0.1 0.5 0.0 1.2 1.3 0.8 2.0
28 0.7 -0.7 1.8 1.3 1.4 1.1 3.0
29 0.8 -0.9 1.6 1.1 1.6 0.8 2.9
mean 0.3 0.3 0.5 1.2 1.5 1.0 2.4

Table 6.2 Orbit fit statistics in the RTN-frame (mean, standard deviation and root-mean
square of the position differences) of GHOST reduced dynamic orbits
compared to AIUB reduced dynamic precise science orbits, for the period
DOY 20-29 2010.
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6.3 Calibration of the common-mode accelerations by

POD

Although on board of GOCE the non-gravitational forces acting on the spacecraft
are measured as well, this mission differs greatly from the CHAMP and GRACE
missions. First the flight altitude is considerably lower, around 250 km for GOCE
compared to an initial altitude of 485 km for GRACE and 454 km for CHAMP.
This results in larger aerodynamics forces acting on the spacecraft, as atmospheric
density decreases exponentially with altitude. The aerodynamic accelerations ex-
perienced by GOCE are compensated by the ion engine thrust, thus nominally the
satellite is flying in a drag-free mode, resulting in a small (non-gravitational accel-
eration) signal in along-track direction. The drag-free control especially compen-
sates atmospheric drag in the along-track direction and causes parasitic accelera-
tions in the radial and cross-track direction. Another difference is the gradiometer
measurement principle and the combination of accelerometer measurements.

With the center of the gradiometer almost coinciding with the GOCE center of
mass (the c.o.m. offset is around a few cm), the common-mode accelerations are
defined as half of the sum of two accelerometers along a gradiometer arm and
closely represent the non-gravitational accelerations experienced by the spacecraft
including the propulsive acceleration of the ion engine. The accelerations observed
by the i-th accelerometer (with i = 1 to 6) can be written as [Visser, 2008]:

aobs,i = Si[Mi(Γ + R)xi + anon−grav] + bi + ǫi (6.1)

with Si the diagonal matrix of accelerometer scale factors (along the three ac-
celerometer axes) and Mi the accelerometer orientation matrix in the Gradiome-
ter Reference Frame (GRF). Ideally Mi is the identity matrix, but includes possible
misalignments. These misalignments are due to instrument imperfections and are
represented by rotations around the individual accelerometer axes. It is assumed
that these errors are small, and in the following, they are ignored. Γ is the gravity
gradient matrix containing the second order derivatives of the gravity field poten-
tial at the satellite location. The matrix R contains the rotational terms, consisting
of centrifugal accelerations and angular acceleration rates around the accelerome-
ter axis, the effect of taking measurements in a moving reference system (fixed to
the satellite). anon−grav contains the non-gravitational accelerations working on the
spacecraft, which are the combination of the accelerations due to non-gravitational
forces including thruster firing. bi represents the accelerometer bias and ǫi the ob-
servation noise for the three accelerometer axes. Finally, xi is the vector containing
the coordinates of the accelerometer with respect to the spacecraft center of mass
in the GRF. Besides the misalignment errors mentioned above, the accelerometers
are also affected by non-orthogonalities, coupling and quadratic terms [Cesare and
Catastini, 2005]. These effects are all assumed to be corrected for by the in-flight
calibration and neglected in the analysis described here.
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Because the accelerometers are positioned symmetrical with respect to the center
of the gradiometer and this center is located closely to the center of mass of the
satellite, the gravity gradient and rotational terms cancel out when taking the sum
of the observations of two accelerometers along a gradiometer arm, resulting in
two times the non-gravitational accelerations anon−grav, and only one scale factor
and bias for the combined accelerometer observations can be determined, which
is a mix of the bias and scale factors for the two individual accelerometers. Half of
this sum is defined as the common-mode acceleration and is a measure of the non-
gravitational forces working on the spacecraft. Each common-mode combination
has measurements along the three accelerometer axis, however, only the combina-
tion along the gradiometer arm where the two accelerometers are mounted on are
considered here, which are per definition along the accelerometer most sensitive
axes.

The common-mode accelerations introduced above are applied in the precise or-
bit determination, after proper transformations and as described earlier in chapter
4. It has to be noted that because of the attitude motion of the spacecraft, the
SRF axes do not align perfectly with the radial, along-track and cross-track di-
rections, as mentioned before. The analysis presented here covers three different
cases: one when the drag-free control was not yet active, which resembles the
most the CHAMP and GRACE situation, where GOCE experiences higher aerody-
namic accelerations. Another case has the drag-free control active, which results
in a small (non-gravitational acceleration) signal in along-track direction. The last
case has manoeuvres executed by the spacecraft, which are also measured by the
accelerometers. The empirical accelerations determined in a standard batch re-
duced dynamic orbit determination (with no drag or solar radiation coefficient es-
timated) and the common-mode accelerations are presented in Figure 6.2 for three
days, representing the different cases. The radial direction is not included, because
the acceleration signal in this direction is small (less than 30 nm/s2). The different
parts of this figure are described in more detail in the following sections.

In the remainder of this chapter, the estimation of the calibration parameters for
each case is described, where different approaches are followed. First the scale
and bias parameters are estimated without constraints and without empirical ac-
celerations. This results, as expected, in a weak estimation of the scale factor in
Z-direction (because of the small signal). Next the scale factor is kept constant at
1.0 in the directions with a small signal (along the Z-axis in all cases and along the
X-axis when in drag-free mode). The latter case is repeated with empirical accel-
erations estimated as well, to account for deficiencies in the applied gravitational
force models. A final approach has the bias values in these directions fixed to a
priori values, and the scale factor in all directions constant. The estimated calibra-
tion parameters and resulting orbit fit are grouped in Table 6.3 according to the
approaches described here, to enable comparison between the different cases.

The test cases described earlier serve to establish a good setup to process two
longer periods, presented in section 6.3.4. The calibration parameters for two dif-



6.3 Calibration of the common-mode accelerations by POD 93

ferent months are determined: July 2009, when GOCE was not yet flying drag free,
and December 2009, when the drag-free mode was active. For these two months of
data, also the multi-arc technique is applied, introduced at the end of the previous
chapter.

6.3.1 Case with the drag-free mode not active

A day when GOCE was not flying in drag-free mode is July 7, 2009 (DOY 200),
depicted in the upper part of Figure 6.2. The large acceleration in flight direction
is immediately apparent and the estimated empirical accelerations agree well with
the common-mode accelerations.

From the calibration parameters in Table 6.3 (top part) it can be concluded that the
unconstrained estimation of a scale factor in Z-direction is unreliable. In the other
two directions the scale parameter is close to one, indicating the measurements
are properly calibrated. Constraining the scale in Z-direction (to a value of 1.0)
has little effect on the other parameters. A bigger change occurs when empirical
accelerations are estimated as well, where this can be explained by the fact that the
estimation of the calibration parameters weakens because of the extra estimated
parameters, which is also reflected by a higher formal error of these parameters
(the formal error of the scale factor increases from less than 0.0001 to five times that
value). The 3D RMS (compared to the reduced dynamic PSO) of about 5 cm in the
latter approach is composed for a large part of a cross-track offset (up to 3 cm). This
is similar to the results obtained for the CHAMP and GRACE calibration in cross-
track direction, as described in the previous chapter and caused by correlations
with the initial state.

Constraining the bias in Y- and Z-direction (to an a priori value obtained with the
standard reduced dynamic technique, taking the mean of the empirical accelera-
tions) results in a better fit and no offset. The values listed in the last column of
Table 6.3 are obtained with a scale factor constant and equal to 1 in all directions.
The standard deviation of the empirical accelerations is set to 3 nm/s2 in each di-
rection. The estimated accelerations amount to 0 nm/s2 ± 13, -3 nm/s2 ± 21 and
-8 nm/s2 ± 38 in radial, along-track and cross-track direction. The estimated val-
ues have a much higher variance than the a priori standard deviation, indicating
that GOCE orbit resonances are probably not very well represented by the a priori
gravity field model (EIGEN-5S) and thus improvements can be anticipated when
GOCE gravity field models are used.

A higher value of the empirical acceleration standard deviation in cross-track di-
rection (10 nm/s2) resulted in a large offset of the empirical accelerations in this
direction, of about 100 nm/s2. When estimating one constant empirical accelera-
tion in cross-track direction (the time interval τ set equal to 24 hours) and checking
the correlations of the covariance matrix, a high correlation of this parameter with
the state vector was found. In the case of CHAMP and GRACE such an offset was
not observed. For GOCE the uncertainty of the force models (gravity) is larger
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than for CHAMP and GRACE and due to the high correlations between estimated
parameters such errors have a strong impact. Consequently for GOCE a proper
tuning of the empirical accelerations has to be applied.

6.3.2 Case with the drag-free mode active

In September 21, 2009, (DOY 264) GOCE was flying in drag-free mode, as is visible
in the middle part of Figure 6.2. In along-track direction the common-mode signal
is small, while the still present, albeit small empirical accelerations mainly account
for deficiencies in the gravitational force models or residual non-gravitational ac-
celerations.

In this case both the unconstrained estimation of the scale factor in X- and Z-
direction is unreliable, as can bee seen in the middle part of Table 6.3. This also
affects the estimation of the scale parameter in Y-direction, which deviates largely
from 1. When constraining the scale factor in the former two directions, the sit-
uation does not improve. The scale in Y-direction still deviates largely from one,
and above that, the orbit fit is about twice as bad compared to the unconstrained
estimation approach. This can be explained by the fact that here, with the scale
factors in X- and Z-direction constrained, no degree of freedom for force model de-
ficiencies in these directions remains. In the previous case this was not observed,
because there the scale factor in X- and Z-direction was able to vary. The drag-free
control of GOCE is thus functioning very well, preventing a stable estimation of
the scale factor in X-direction by POD.

Estimating empirical accelerations as well again results in an orbit fit mainly dom-
inated by a cross-track offset (of -13.4 cm), and a small radial offset (of -1 cm). This
improves again when constraining the bias in Y- and Z-direction to an a priori
value, with a 3D RMS fit of 3.9 cm and no offsets.

6.3.3 Manoeuvres case

During September 18, 2009, (DOY 261) small manoeuvres were executed on GOCE
by the ion thruster, which are visible in the accelerations in along-track direction in
the bottom part of Figure 6.2 as a positive and negative offset after mid-day. The
offsets differ by about 200 nm/s2 equivalent to 0.2 mN steps of the ion thruster
(the mass of GOCE is approximately 1000 kg).

Inspecting the estimated calibration values for this case in the bottom part of Table
6.3 reveals that in this case a scale factor in X-direction can be estimated freely.
However, the scale parameter in Y-direction deviates largely from one. This does
not improve when constraining the scale factor in Z-direction, and the resulting
orbit fit is, as observed in the previous case, more than twice as high.
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Figure 6.2 GOCE common-mode accelerations (black lines) and estimated empirical
accelerations (gray lines) in along-track and cross-track direction for GOCE
during DOY 200 (top, drag-free mode not active), DOY 264 (middle, drag-free
mode active) and DOY 261 (bottom, manoeuvres) of 2009
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DOY 200 no con- SZ=1.0 SZ=1.0, S=1.0,
drag-free off straints + emp accs B=Bapriori,

+ emp accs
SX [-] 1.020 1.020 1.038 1.0
SY [-] 1.025 1.023 1.021 1.0
SZ [-] 2.12 1.0 1.0 1.0
BX [nm/s2] -193 -193 -174 -210
BY [nm/s2] 400 396 283 322
BZ [nm/s2] 1.2 19 -24 -22
3D RMS [cm] 24.7 25.5 5.3 4.3
DOY 264 no con- SX=1.0, SX=1.0 S=1.0,
drag-free on straints SZ=1.0 SZ=1.0, B=Bapriori,

+ emp accs + emp accs
SX [-] -14.8 1.0 1.0 1.0
SY [-] 0.882 0.843 1.030 1.0
SZ [-] 2.58 1.0 1.0 1.0
BX [nm/s2] 2756 -185 -183 -185
BY [nm/s2] 162 179 104 295
BZ [nm/s2] -119 -7.9 15 -50
3D RMS [cm] 19.9 44.5 14.2 3.9
DOY 261 no con- SZ=1.0 SZ=1.0, S=1.0,
manoeuvres straints + emp accs B=Bapriori

+ emp accs
SX [-] 1.007 1.010 1.014 1.0
SY [-] 0.863 0.920 1.102 1.0
SZ [-] 3.29 1.0 1.0 1.0
BX [nm/s2] -187 -188 -186 -185
BY [nm/s2] 233 291 160 321
BZ [nm/s2] -58 -38 23 -40
3D RMS [cm] 24.6 56.4 13.3 3.4

Table 6.3 Scale and bias parameters for the GOCE common-mode accelerations in the
gradiometer reference frame, for DOY 200, 261 and 264 in 2009. First results
of a free estimation (no constraints and no empirical accelerations) are given,
next SZ is constant at 1.0 (and no empirical accelerations), then the same is
repeated with empirical accelerations. When in drag-free mode (DOY 264),
the second and third approach have SX constant at 1.0 as well. Finally, the
bias in radial and cross-track direction is constrained to a priori values, with
the scale factor in each direction constant to 1.0. To indicate the orbit quality,
the 3D RMS fit with respect to PSO reduced dynamic orbits is also provided.
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Although the scale factor in X-direction is hardly constrained here, now the con-
stant (manoeuvre) signal in this direction does not allow to account for any defi-
ciencies (other than a constant offset) in X- and Z-direction.

When estimating empirical accelerations, again a large cross-track offset is ob-
served, which disappears when constraining the bias in this direction to an a priori
value.

6.3.4 Analysis of 2 months of data

To further asses the possibility to estimate stable common-mode calibration pa-
rameters, two one-month data sets are analyzed. These cover a period when the
drag compensation was not yet active, July 2009, and one when GOCE was flying
in drag-free-mode, December 2009. Three approaches are presented, first a purely
dynamic estimation, where only 12 parameters are estimated each day. Then the
same is repeated with a different gravity field model (GGM01S), to check the in-
fluence of gravity field model errors. Finally, the scale factors are kept fixed to
one, the bias parameters (in Y- and Z-direction) are constrained to a priori val-
ues (obtained by a classic reduced dynamic technique) and empirical accelerations
are estimated, which gives the best orbit fit (w.r.t PSO orbits). The calibration pa-
rameters for these data sets are grouped in Table 6.4. Finally, also the multi-arc
technique is applied for these two months, and these results are presented at the
end of this section.

Daily estimated parameters

The top part of the table corresponds to a period when GOCE was not flying drag-
free (and still in commissioning phase), namely July 2009. Some days were ex-
cluded (DOY 183-184, 186-188, 202 and 209), because they showed gaps in the
common-mode accelerations. Inspecting the values in the table of the uncon-
strained estimation (in X- and Y-direction) reveals that the estimated scale factors
in these directions are quite stable, with respectively variations of 0.01 and 0.03.
Because of the low altitude of GOCE, the influence of gravity field model errors
is large, causing bigger variations in the estimated scale factor, especially in the Y-
direction. The variation in X-direction is still small, only 0.02, when using an older
gravity field model. When keeping the scale factor constant, the bias values differ
a lot. This is explained by the fact that the total signal is much larger and in the
first two approaches scale and bias parameters are anti-correlated.

The bottom part of the table corresponds to December 2009, with GOCE in science
mode and flying drag-free. In this case the scale in X-direction is always kept
constant at one, because of the small signal in this direction. The estimated scale in
Y-direction is now smaller than one and also the variation is higher, up to 0.09. The
signal in Y-direction in drag-free mode is about four times as small compared to the
first case (the ion engine thrust also affects this direction), with an average signal



98 Processing of GOCE data

07/2009 (1) (2) (3)
SX [-] 1.02 ± 0.01 1.03 ± 0.02 1.0
SY [-] 1.00 ± 0.03 1.05 ± 0.09 1.0
SZ [-] 1.0 1.0 1.0
BX [nm/s2] -191 ± 1 -188 ± 20 -210 ± 6
BY [nm/s2] 378 ± 90 363 ± 105 311 ± 18
BZ [nm/s2] -17 ± 145 172 ± 262 -21 ± 12
3D RMS [cm] 32 80 4.8
12/2009 (1) (2) (3)
SX [-] 1.0 1.0 1.0
SY [-] 0.96 ± 0.09 0.96 ± 0.42 1.0
SZ [-] 1.0 1.0 1.0
BX [nm/s2] -184 ± 1 -183 ± 3 -184 ± 3
BY [nm/s2] 304 ± 74 298 ± 244 299 ± 16
BZ [nm/s2] -72 ± 118 -179 ± 308 -11 ± 9
3D RMS [cm] 35 107 4.7

Table 6.4 Scale and bias parameters for the GOCE common-mode accelerations in the
gradiometer reference frame, for July 2009 (excluding DOY 183-184,
186-188, 202 and 209) and December 2009 (bottom of the table). First
results of a free estimation are given, except with SZ constant at 1.0 (1). Next
a different gravity field model, GGM01S, is applied (2). Finally, the bias in
radial and cross-track direction is constrained to a priori values, with the
scale factor in each direction constant to 1.0 and empirical accelerations are
estimated (3). The 3D RMS fit with respect to PSO reduced dynamic orbits is
also provided.

strength of 75 nm/s2 for this period compared to 300 nm/s2 for July. Consequently
the formal error of the estimated scale factor in Y-direction is also higher, consistent
with a larger variation.

Inspecting the value of the bias in X-direction over the two periods (interval of 5
months) shows a difference of 26 nm/s2 (for the approach (3), with constant scale
factors). In the other two directions the change is smaller and it has to be noted
that the bias in these 2 directions is more influenced by the a priori values. The last
approach, keeping all scale factors constant and constraining the bias (in Y- and
Z-direction) to a priori values results in both cases in good orbit fits w.r.t the PSO
orbits, below 5 cm (3D).
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Multi-arc technique

The two months analyzed in this section are also processed with the stacked ma-
trices approach, introduced in section 5.7. The results are presented in Table 6.5 for
periods of 3, 12 and 24 days, as deviations from the a priori value of 1. These re-
sults confirm that a multi-arc technique gives more stable results, as the variation
of the parameter reduces with a longer period.

When not flying drag-free, the estimation (of the correction to the scale factor) in
X-direction is stable, a correction of 0.026 is found. It seems that this is also possible
when flying drag-free, as the correction amounts to 0.036. However it turned out
that this value is driven by two days during which a manoeuvre took place (DOY
354 and 355). This is supported by the results of the shorter arcs, which show
corrections of about 4 and 3. The estimation in Y-direction is stable during both
periods, showing the smallest formal error (between brackets at the bottom part of
the table). The estimation of the scale factor in Z-direction is unreliable, especially
in July because of the small signal strength (on average only 9 nm/s2) and also
possibly because of the gravity model error. In December, it is twice as high (18
nm/s2 on average), and this is reflected by the smaller correction and formal error.

Again, this illustrates the advantage of the multi-arc technique, where days with a
stronger signal contribute more to the solution. In December, the 24 day solution
in X-direction is driven largely by these two days with manoeuvres taking place.
Excluding these days, the signal strength in X-direction when flying drag-free is
too small (RMS about mean of only 2 nm/s2) to allow a reliable estimation.

July December
3 days

SX [-] 0.026 ± 0.012 4.1 ± 9.1
SY [-] 0.004 ± 0.026 -0.04 ± 0.074
SZ [-] -0.893 ± 0.623 -0.116 ± 0.18

12 days
SX [-] 0.023 ± 0.009 3.25 ± 4.5
SY [-] 0.014 ± 0.006 -0.037 ± 0.023
SZ [-] -0.906 ± 0.33 -0.12 ± 0.053

24 days
SX [-] 0.026 (0.0002) 0.036 (0.0026)
SY [-] 0.014 (0.00007) -0.039 (0.0004)
SZ [-] -0.945 (0.025) -0.145 (0.011)

Table 6.5 Corrections to the a priori scale factors (equal to one) of the GOCE
common-mode accelerations in the gradiometer reference frame, obtained
with the multi-arc technique for a period of 3, 12 and 24 days (with the formal
error between brackets for the longest period) in July and December 2009
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To conclude, it can be stated that the multi-arc technique is only a good approach to
determine the scale factors for GOCE in X- and Y-direction when not flying drag-
free. In that case, the obtained parameters do not deviate statistically significant
from one, which indicates that the in-flight calibration of the gradiometer is done
well.



Chapter 7

Conclusions and outlook

The main objective of the research described in this dissertation was to develop
and implement a method to calibrate accelerometer measurements of LEO satel-
lites by processing them with a GPS based orbit determination technique. The
batch least squares estimator of the GHOST software suite, providing reduced dy-
namic orbits, is adapted to process accelerometer measurements. Data from the
CHAMP, GRACE and GOCE satellite missions have been analyzed with the devel-
oped method. For the first two missions, calibration parameters were estimated on
a routine basis for a 5 year period. In other research, such as gravity field determi-
nation, these parameters are adjusted together with the gravity field coefficients.
In this research the calibration parameters themselves are of interest and the or-
bit products provide insight in the data and processing quality over the long time
span. As is shown in the previous chapters, calibration of accelerometers by POD
is complicated. In general, in flight direction the calibration can be done precisely.
In the other directions, the POD technique is more a validation than a calibration.
This is elaborated further in the next section.

First, an overview of the main conclusions of the accelerometer calibration of the
before mentioned missions is given. Because the GOCE mission differs from the
CHAMP and GRACE missions on several aspects, with the most important one
the drag compensation on board of GOCE, the discussion starts with the CHAMP
and GRACE cases. Conclusions about the calibration of the GOCE common-mode
accelerations are given afterwards. This chapter ends with an outlook discussing
topics for further research, which might enhance the current research and might
be relevant for the processing of future data sets.
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7.1 Conclusions

CHAMP and GRACE accelerometer calibration

For CHAMP and GRACE, the calibration parameters in flight direction can be well
determined with the GPS-based orbit determination technique. The accelerometer
signal strength is the driving factor to accurately determine the scale. When the
non-gravitational signal is strong enough, the along track scale factor can be esti-
mated purely dynamically, without constraints and empirical accelerations, with
a consistency level of 0.015 for the GRACE satellites and 0.024 for CHAMP (for a
30 day test period with an above average signal strength and for daily arcs). In the
other two directions the accelerometer signal strength is too low to enable a reli-
able estimation. When the scale factor is not constrained, scale and bias parameters
are highly anti-correlated. A much smoother bias series is found when the scale
factor is kept constant. In this case, a trend in the bias values and occasional jumps
are visible, which can be related to instrument behavior. For the CHAMP satellite,
the same trend and jumps were found by the CHAMP project team calibration (H.
Lühr, GFZ, private communication). In radial and cross-track direction, the esti-
mation is less stable and strong constraints to a priori bias values are necessary.
Otherwise there is a strong correlation with the state vector, resulting in offsets
of the estimated orbit in these two directions. Therefore in these two directions
this technique is more a validation of the a priori bias and scale values. The best
consistency with high-quality reference orbits is obtained when small empirical
accelerations are estimated as well (an RMS around mean of 5 nm/s2), to account
for deficiencies in the applied gravitational force models. Over 5 years of CHAMP
and GRACE data were processed in this manner, and the calibrated accelerometer
measurements were used successfully to retrieve thermosphere density and winds
[Doornbos et al., 2009].

From the above it can be concluded that an optimal calibration consists of an itera-
tive procedure, where in the first step daily biases and scale factors are estimated,
after which the average of the scale factor is determined. In the second step, this
scale factor is kept constant and new bias parameters are estimated, which are
no longer explicitly correlated with the scale factor. The scale factor can be ob-
tained with a free estimation or with other techniques, such as the stacked normal
matrices approach, where one value for a long period is determined. This is im-
plemented and tested as well. Again the signal strength is the determining factor,
as in the multi-arc approach, days with a lower signal strength implicitly have a
smaller contribution. With this technique, also in radial and cross-track direction a
more reliable scale factor can be estimated compared to the daily estimation. Con-
ceptually, the stacked matrices approach is an optimal technique to estimate the
scale parameter.

The developed method results in high quality orbits, comparable to external re-
duced dynamic trajectories, with a fit of 3.5 cm (3D RMS) for GRACE orbits com-
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pared to JPL reduced dynamic orbits and 6.0 cm for CHAMP orbits with respect to
reduced dynamic orbit solutions computed with GEODYN. Analysis of SLR resid-
uals supports this quality as well, with an RMS of the residuals below 3 cm for both
missions. Ionosphere-free phase residuals fluctuate around 9 mm for the GRACE
satellites and are further reduced to about 6 mm when phase center variation maps
are applied.

In the GHOST software a cannonball model is used to compute the solar radiation
pressure and thus the a priori bias. This is not accurate enough, especially when
the angle between the orbital plane and the sun vector increases. A large periodic
cross-track offset with respect to external orbits became apparent, correlated with
this angle. When an a priori bias determined with more accurate force models is
applied, the periodic offset is no longer present (see also section 7.2).

Finally, in case of strong solar activity, the application of accelerometer data is
beneficial over the estimation of empirical accelerations, as the accelerometer also
picks up the higher frequency part of the experienced accelerations, which are
difficult to account for by empirical accelerations [Van den IJssel and Visser, 2007].

GOCE orbit determination and common-mode acceleration calibration

In the framework of the GOCE High-level Processing Facility (HPF), rapid kine-
matic orbits are determined with a latency of one day. These orbits have a precision
of around 4 cm (3D RMS) with respect to precise (reduced dynamic) science orbits
determined by AIUB, indicating the high quality of the GOCE GPS receiver. Re-
duced dynamic orbits, after proper tuning, reach a consistency level with the AIUB
orbits of 2.5 cm (3D RMS).

Although the GOCE spacecraft also has accelerometers on board, the mission dif-
fers from CHAMP and GRACE in several aspects. GOCE flies at an altitude of
254 km which is much lower, resulting in higher aerodynamic forces acting on the
spacecraft. These are compensated by the drag-free control system when in science
mode, resulting in a small net acceleration in along-track direction. The common-
mode accelerations are applied in the precise orbit determination technique, and
calibration parameters for these combined measurements are estimated.

When the satellite is not flying in drag-free mode, a scale factor in X- and Y-
direction (which predominantly coincide with along track and cross-track direc-
tion) can be estimated unconstrained and values close to one are found. The scale
in Z-direction is constrained to one because of the small signal in this direction.
When the drag compensation is active, also the the scale factor in X-direction is
kept constant at one, as the common-mode signal in this direction is also small
now. The bias parameter in flight direction can still be estimated reliably. The scale
parameter in Y-direction shows a larger variation from one in this case, as a part of
the ion thrust also works in this direction. A constant scale factor in all directions,
constraining the bias in Y- and Z-direction to a priori values and estimating em-
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pirical accelerations, results for both months in the best orbit fit, below 5 cm with
respect to external reduced dynamic orbits, with no offsets in any direction.

Two one month data sets are processed, to check the stability of the common-
mode calibration parameters. For a period when GOCE was not flying drag-free,
July 2009, the estimated scale factor in X- and Y-direction is stable when estimated
freely, with respectively variations of 0.01 and 0.03. A second period corresponds
to December 2009, with GOCE in science mode and flying drag-free. Now only the
scale parameter in Y-direction is estimated freely and the resulting average value is
smaller than one and also the variation is higher, up to 0.09. These two months are
also processed with the stacked matrices approach, and results of this technique
support that the signal strength is the driving factor for a reliable estimation of
the scale parameter. From all obtained results, it can be concluded that there is no
indication that the scale factors for GOCE are statistically different from one.

7.2 Outlook

As already mentioned, over 5 years of CHAMP and GRACE accelerometer data
are processed. The processing of the accelerometer data will be continued for the
rest of the lifetime of both missions, with CHAMP probably reaching the end of its
lifetime in the summer of 2010 and GRACE lasting for more years to come. Also
GOCE is interesting for this kind of research, where the common-mode accelera-
tions in flight direction have to be augmented by the thrust of the ion-engine to
retrieve the total aerodynamic force acting on the satellite. The Swarm mission
will also carry accelerometers (status May 2010), and the calibration method de-
scribed in this dissertation can readily be applied to this mission, as each Swarm
satellite will carry an accelerometer, a GPS receiver and star cameras for attitude
observation.

Furthermore, as shown earlier, the force modeling in the GHOST software, cer-
tainly of the solar radiation pressure, can be improved, e.g. by considering a more
advanced box model. Also the procedure to obtain the calibration parameters can
be improved, which now involves some manual interference. It can be imple-
mented such that only one orbit determination run is necessary, where the calibra-
tion parameters are a by-product of the precise reduced dynamic orbit.

The GOCE results presented in this dissertation are limited in scope, as they stem
from preliminary analysis because of the short time available to analyze and pro-
cess them. More in depth analysis have to be performed. First, different combi-
nations of accelerometer measurements can be formed and applied in the precise
orbit determination, to check whether the combinations are consistent or some
perform better. Also the individual accelerometer measurements can be used, if
corrected for gravitational and rotational effects. This allows a calibration of the
individual accelerometers, instead of the combination used in the common-mode
accelerations [Visser, 2009]. Because the total non-gravitational acceleration on
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the spacecraft is measured, it can be investigated if the ion engine thrust can be
applied for calibration purposes, e.g. by changing the thrust as is done when exe-
cuting manoeuvres (see section 6.3.3). Finally a GOCE gravity field model can be
applied, as only pre-launch models are used for the analysis presented here (at the
time of research, no final GOCE gravity field models were available yet).

In the coming years the European Galileo system will become operational, and also
the improved Russian GLONASS and newly developed Chinese BEIDOU system.
Additional observations will not help to resolve fundamental problems, such as
unobservability due to small signal strength (e.g. drag-free control) or high cor-
relations between certain estimated parameters. However, the different systems
can help to mitigate such problems. The amount of available highly precise phase
observations each epoch will increase, which can augment the strength of the esti-
mated orbit. However, as the research in this dissertation pointed out, calibration
of accelerometer data by GPS based POD is limited by other factors than observa-
tion accuracy and availability.

As pointed out earlier, the acceleration signal strength is the most important factor
for a stable estimation of calibration parameters. In flight direction the developed
method gives reliable results, where in the other directions it is more a validation of
scale factors (obtained e.g with a multi-arc technique) and bias parameters derived
from dynamic models, by comparing with high-quality reference orbits. These
models, both non-gravitational and gravitational, can further be improved.





Bibliography

Andrés, J.I. (2007), Enhanced Modelling of LAGEOS Non-Gravitational Perturbations,
Ph.D. dissertation, Delft University of Technology, ISBN 978-90-5623-081-4.

B.D.Tapley, J.C. Ries, S. Bettadpur, and M. Cheng (2007), Neutral density mea-
surements from the gravity recovery and climate experiment accelerometers,
Journal of Spacecraft and Rockets, 44(6), 1220–1225.

Bettadpur, S. (2003), Recommendation for a-priori Bias & Scale Parameters for
Level-1B ACC Data (Release 00), GRACE TN-04-02.

Bettadpur, S. (2007), Gravity recovery and climate experiment product specifica-
tion document (rev 4.5 – february 20, 2007), Center for Space Research, The
University of Texas at Austin.

Bierman, G.J. (1977), Factorization Methods for Discrete Sequential Estimation, Aca-
demic Press, Inc., New York.
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