Delft University of Technology, Bachelor Seminar of Computer Science and Engineering

Inferring DFAs from Log Traces Using Community Detection

Tommaso Brandirali

Delft University of Technology
Delft, The Netherlands

ABSTRACT

Large software systems today require increasingly complex mod-
els of their execution to aid the analysis of their behavior. Such
execution models are impractical to compile by hand, and current
approaches to their automated generation are either not general-
izable or not scalable enough. This paper addresses this problem
with a new approach based on the interpretation of log traces. We
analyze the effectiveness of using community detection algorithms
for generating system execution models from structured datasets
of log samples. This approach first models sets of log traces as
tree-shaped automata, and then uses graph clustering algorithms
to reduce such tree representations down to more concise models.
This research focuses on analysing the quality of the generated
models in terms of conciseness, accuracy, recall and scalability.
Testing was performed on data samples from the XRP network,
a blockchain-based payment system. During implementation of
a proof of concept, multiple challenges arose which limited the
ability of our study to fully evaluate the approach’s effectiveness.
The partial results obtained show poor performance, both in terms
of runtime and in accuracy of generated models. Due to the limita-
tions of the evaluation performed, the results are to be considered
exploratory and require further testing.

1 INTRODUCTION

As enterprise software systems become increasingly complex and
multi-layered, analysis of their high-level behavior is becoming in-
creasingly challenging. While static analysis and testing are crucial
to detecting low level bugs and flaws before deployment, they can
struggle to detect deviations from intended behavior in long exe-
cution paths. Such high-level dynamic execution analysis requires
system models to be built, either manually or programmatically,
to compare empirical execution data against in order to spot unin-
tended behavior. Building such models is becoming increasingly
difficult as the complexity of software systems increases, and cur-
rent approaches to their generation aren’t sufficiently generalizable.

Popular techniques for dynamic execution analysis today include
profiling, which builds system models by periodically sampling the
state of the program, and tracing, which makes use of code instru-
mentation tools to record a detailed history of the program’s call
stack. These techniques provide structured data about a system’s ex-
ecution with various degrees of accuracy. However, both these tech-
niques perform poorly in high-performance environments: both
of them introduce overhead to the execution which impacts the
overall performance, and the latter also produces large amounts
of data at high rates whose processing can add undue strain on
the underlying machine. Additionally, both these methods produce
data which, while being structured, is often too low-level to provide
useful insights for the system’s maintainers [16]. Another option

Mitchell Olsthoorn
Delft University of Technology
Delft, The Netherlands

Annibale Panichella
Delft University of Technology
Delft, The Netherlands

for collecting data about a system’s execution is log trace analy-
sis. This approach does not have the same performance issues as
the previously mentioned approaches, however it introduces new
challenges for data interpretation. Log data is less structured and
generalisable than execution profiles or traces, due to the variety of
logging schemes and frameworks used in practice. All the formerly
mentioned approaches still require the compilation of high-level
software models as comparison tools for the purpose of detecting
unwanted behavior. Our research focuses on tackling the genera-
tion of such models for the analysis of log data, due to the higher
scalability of log data collection.

Log data interpretation is an open problem in the field, with
promising research being conducted on various techniques. The
goal of these techniques is to process low-level log samples to
generate high-level system models, usually in the form of Finite
Automata. These approaches mostly use combinations of exact and
heuristic strategies for system model synthesis. One such approach
has been developed by Verwer et al. to build concise state models
from log trace samples using a greedy state-merging algorithm
[19], in a tool called flexfringe. Roelvink et al. have further tested
the latter approach by comparing empirical models learned by
flexfringe with theoretical models [14]. Another approach has been
proposed, also by Verwer et al., using a combination of greedy
heuristics and satisfiability solvers [9]. Both these methods obtain
promising results by reducing the system modeling problem to
a problem of synthesizing Deterministic Finite Automata (DFAs).
This synthesis process takes as input a structured representation of
the sample data as branches of a tree-shaped automaton (known
as a Prefix Tree Acceptor), and reduces this prefix tree down to a
concise DFA by iteratively merging closely-related states. Despite
the progress made by such approaches in tackling the problem, all
of them have worse-than-linear time complexities and therefore
scale poorly with the amount of logs. Further research is needed to
improve the performance and scalability of such algorithms.

This research attempts to tackle the DFA synthesis problem with
a new approach, namely: using graph clustering algorithms on the
prefix trees, with a state distance function based on the empirical
probability of state transitions. This approach assumes that the
topology of a prefix tree automaton built from samples of log traces
encodes meaningful data about the high-level execution behavior of
the program that generated the samples. This research aims to test
this assumption by evaluating the accuracy of the models produced
by this approach, and the performance of the associated algorithm.
Specifically, evaluation is conducted in terms of the size reduction
of the models produced (compression), the accuracy of the models
in correctly identifying valid and invalid log traces (recall and
specificity), and the runtime complexity of the algorithm. A proof-
of-concept implementation for this approach was developed and
tested on datasets of log traces from the rippled server, the core

software infrastructure of the XRP network, a blockchain-based
payment platform.

Our study obtained poor results for all three evaluation criteria.
Compression was found to be minimal, accuracy and recall were
found to be comparable to the non-compressed prefix trees due
to the model not recognizing any unseen data, and the runtime
for the classification of unseen data was found to vary by multiple
orders of magnitude depending on the models’ unique topology.
These unsatisfactory results were partly due to technical challenges
encountered during the implementation, which could not fully be
overcome within the timeframe of this study. Due to these issues
encountered, our results validity cannot be fully ensured, and they
are to be considered exploratory results until further testing is
done on this approach. We consider the main contribution of this
paper to be the analysis of the challenges involved in implementing
this approach, which could be useful in further research on similar
problems.

Section 2 of this paper describes the practical setting of our
implementation and tests, as well as the theoretical background
used in the development of the algorithm. Section 3 describes in
detail our approach and the development of the tool we used to
perform the tests and evaluation. Section 4 introduces the research
questions and details the setup of the empirical tests. Section 5
describes the results obtained from the evaluation and attempts to
explain their nature. Section 6 discusses the challenges encountered
during the implementation and their effect on the results. Section
7 discusses possible threats to the validity and generalisability of
our results, while Section 8 describes the measures taken to ensure
the reproducibility of our results. Finally Section 9 discusses the
contributions of this paper and suggests possible questions for
future research on the topic.

2 BACKGROUND AND RELATED WORK

2.1 Execution Monitoring

Program Execution Monitoring is a well known problem and re-
search field in computer science, which deals with extracting in-
formation from potential data about the sequence of states that a
program traverses during its execution [12]. It is often referred to
as dynamic analysis, as opposed to static analysis which mainly
deals with the interpretation of source code. Dynamic analysis tech-
niques generally involve two main phases: gathering data from the
software under scrutiny, and then interpreting such data with the
goal of achieving some context-specific definition of "program com-
prehension” [5]. It should be noted that dynamic analysis has an
inherent limitation in its necessary incompleteness: it relies on the
analysis of small sample sets from large, possibly infinite execution
domains [5]. Dynamic analysis approaches are therefore heuristic
approaches, rather than exact ones. In contrast with static analysis
approaches, however, dynamic ones are able to find subtler and
more high-level flaws in programs than those which static analysis
can identify. Additionally, some dynamic analysis techniques do
not require access to the program source code, and can therefore
be applied to closed source modules and dependencies.

Tommaso Brandirali, Mitchell Olsthoorn, and Annibale Panichella

2.2 DFA Inference

The problem at the core of this research is a version of the model
inference problem first proposed by Moore in 1956 [10]. It concerns
the synthesis of a Deterministic Finite-state Machine (DFA) from
a set of empirical labeled data sampled from a regular language,
such that the DFA at least recognizes the sampled subset of the
language. This problem is trivial when there are no constraints
on the nature of the final automaton: indeed, it is sufficient to
build the prefix tree acceptor for the samples to obtain some DFA
that meets the aforementioned criteria. However, in practice, there
usually are constraints on the final automata, such as having a
fixed number of states. This latter version of the problem has been
shown to be NP-complete [8]. Additionally, the related problem
of finding an accepting DFA with the minimum number of states
has been proven impossible to approximate with any polynomial
[11], therefore recent research on the topic has focused on heuristic
approaches rather than exact ones.

A related goal often found in applications of the DFA Inference
problem is that the generated automata should generalize to un-
seen data, provided it is generated by the same stochastic process
that generated the training data. This is indeed the case with our
log interpretation problem: we aim to produce automata that accu-
rately model the execution of the software which produced the log
samples, which in practice means that our models should be able
to accurately classify unseen log traces from the same program. To
achieve this, two assumptions have to be made, namely: that log
statements do contain meaningful information about the state of
the underlying program, and that the selection of execution paths
from the execution domain approximates a stochastic process.

Many algorithms for DFA Inference follow the general paradigm
of the ALERGIA algorithm developed in 1994 [4]. The purpose of
the algorithm is to generate a non-trivial DFA accepting a regular
language, based on a complete presentation of the language in the
form of stochastically selected samples. It starts by building the
trivial accepting DFA, the prefix tree acceptor of the sample set.
A prefix tree acceptor is a tree-shaped automaton recognizing a
finite language of words, built from the empirical samples of the
language rather than a general description of it. Whenever two
words in the language share a prefix of one or more tokens, their
accepting paths in the prefix tree overlap in as many nodes as tokens
in the shared prefix. The ALERGIA algorithm builds the prefix tree
and then enriches it with the relative empirical probabilities of
the transitions coming out of each node. It then iteratively merges
nodes in the tree with a greedy strategy: it uses the transition
probabilities to calculate a confidence score for the equivalence
of two nodes and merges pairs of nodes in order of decreasing
confidence until some stopping criterion. While this algorithm is
not often used in practice, due to the requirement that the sample
set be a complete presentation of the language, it provides a popular
algorithmic strategy for problems related to DFA inference.

2.3 Community Detection

Community detection is the process of finding clusters of closely
related nodes in a graph [7]. Community detection algorithms
generally use some definition of distance between nodes in order
to find clusters that minimize the distance between any two nodes

Inferring DFAs from Log Traces Using Community Detection

in the same cluster and maximize the distance between nodes in
different clusters. Hierarchical clustering is a class of community
detection algorithms that build a bottom-up hierarchy of nested
clusters. The product of these algorithms is commonly known as a
dendrogram, and it is usually modeled by a list of merges between
two nodes, in order of increasing merge cost. The dendrogram
defines n merges where n is the number of nodes in the graph. By
truncating the dendrogram at n - k merges we obtain k - 1 clusters.

Finite automata can be represented as directed graphs, where
nodes represent states and edges represent transitions between
states. This representation allows us to use graph-based algorithms,
including community detection, to extrapolate information from
a DFA as we would from any directed graph. The computation
of a finite automaton on an input word in this case is equivalent
to finding a path through the graph where each node matches a
subsequent token from an input sample. In the rest of this paper,
we will often use the names nodes and states, edges and transitions,
words and log traces, and graphs and automata interchangeably,
since they represent the same entities within the scope of this prob-
lem. Community detection in this context can then be seen as an
algorithm for finding fitting superstates in the DFA. However, as
mentioned, clustering algorithms require some notion of distance
between nodes in order to evaluate pairwise clustering of nodes.
In order to use clustering algorithms on DFAs, these have to be en-
riched with some transition-level data that can quantify the degree
of relatedness of neighbouring nodes. The ALERGIA algorithm
mentioned in section 2.2 provides one such metric: relative transi-
tion probabilities. We can define the distance between a state and
one of its children as the inverse of their transition probability. This
implies that states with a high probability of occurring in succession
in the sample data would be considered closer to each other and
more likely to be placed in the same superstate. Conversely, states
with a low probability of occurring in succession are considered
farther from each other and more likely to be placed in different
superstates.

3 APPROACH

This section details our approach to the problem at hand, the intu-
itions underlying the logical steps and choices made, as well as our
approach’s connections to related problems.

3.1 Syntax Model

Our approach to the interpretation of log traces relies on the identi-
fication of log statements originating from the same location in the
source code as representing the same program state. In other words,
it is necessary for such an approach to incorporate a log syntax
model capable of identifying equivalent log statements, defined as
originating from the same line in the source code. This problem
would be trivial if log statements were exclusively composed of
static text. However, in practice, log statements can contain dy-
namic text representing program variables, which carries little to
no information about the program state. The syntax model must
therefore address the problem of identifying the static components
of log statements, in order to then classify different log statements
as equivalent based on having the same static components. If the

source code of the program being modeled is not available for re-
view, the assumption can be made that log statements with the
same static components found in the same position in an execution
path represent the same low-level state of execution of the program.
Research is being conducted on automating this process using vari-
ous methods, with promising approaches including counting the
frequency of n-grams [6], and using Recurring Neural Networks
to identify semantically different parts of log statements [13]. For
modules with limited amounts of unique log statements, this model
could also be built manually. In any case, such a syntax model is
needed to structure the sample data into a format which encapsu-
lates useful information for the modeling of program states.

3.2 Prefix Tree

While the syntax model allows for structuring the sample data at
the level of single log statements, modeling the entire execution
behavior of the program requires building a structuring of the data
which encapsulates the relationship between unique log statements
within full execution paths. A popular strategy used in existing
approaches to the DFA inference problem is the one introduced
by the ALERGIA algorithm [4], which involves building a prefix
tree acceptor of the available traces. A prefix tree acceptor can be
built by creating a placeholder root and then iteratively scanning
each word in the sample set token by token, searching for a path
in the tree matching the current prefix of tokens. Whenever no
path is found for the current prefix, a new child is added to the last
matched node. Whenever a word is completely scanned, the last
node matched or created is marked as a leaf. When the prefix tree is
fully built, it will have exactly one matching path for each word in
the language. By definition, the prefix tree is entirely specific to the
language samples it is built from: it accepts all and only the words
that were used to create it. Algorithm 1 shows the pseudocode for
a prefix tree generation algorithm.

While the prefix tree can effectively represent the sample set
in a single, searchable data structure, it can contain a significant
amount of redundancy. This is because the words in its language can
contain subsequences made from a single repeated token. This is
especially true in the case of log traces, as loop statements in source
code can result in the same log statement being printed multiple
times. This redundancy can be mitigated by substituting sequences
of equivalent states with a single such state with a self-looping
transition. Notably, this implies some loss of information about loop
iteration constraints, and their influence on legal paths through
the node. In our approach, we assumed that such an information
loss would be negligible in the context of large traces. The gains
resulting from such an optimization are entirely dependent on the
amount of redundancy in the training samples, so its use should be
evaluated on a case-by-case basis.

3.3 Clustering

While the prefix tree does model the input dataset, it is neither a
concise nor generalizable model, therefore it must be processed with
the goal of reducing it to a more concise and more generalizable
representation of the input dataset. This process is where most
approaches to the DFA inference problem differ between each other.
Most such algorithms iteratively merge states in the DFA based

Algorithm 1: Algorithm to generate a prefix tree from a
set of traces
Input: A SyntaxTree instance ST and a list of log traces L,
where each trace ¢ is a list of strings
Output: A PrefixTree instance
1 init PrefixTree PT with placeholder root r

2 foreach trace € L do

3 CurrentState < r

4 foreach log € trace do

5 CurrentChildren «<— CurrentState.children

6 LogState «— node € CurrentChildren | node == log
7 if LogState is null then

8 add log as new child of CurrentState

9 CurrentState « log

10 else

1 if LogState == CurrentState then

12 ‘ add edge from CurrentState to CurrentState
13 else

14 ‘ CurrentState « LogState

15 end

16 end

17 end

18 mark CurrentState as leaf
19 end

on some fitness criterion and within certain boundaries for which
merges are considered legal. This fitness criterion is what defines
the unique intuition of each algorithm, while the criteria for merge
legality define the requirements of the merging algorithm. Merging
states means replacing two states with a single state containing a
union of the data sets contained in each of the original states, and
having transitions from each parent and to each children of both
the original nodes.

The intuition behind our approach is to use the relative, empir-
ically estimated, transition probabilities as a measure of distance
between nodes. These probabilities are measured using the number
of passes through each transition during the construction of the
prefix tree. For each transition, the number of passes is divided by
the sum of passes through the transition’s origin node, to obtain
the (empirically estimated) conditional probability of choosing one
child given the current node. In our approach, however, we want to
consider nodes with a high probability of occurring in succession
as closer together, therefore, we decided to use the complements of
probabilities as a distance measure. This leads us to the following
definition of node distance:

passesaB

> passessx
X €outgoinga

distance(A,B) =1 — (1)

Where A and B are the origin and destination node of the transi-
tion, passes4p is the number of passes on a transition from A to B,
and outgoingy, is the set of child nodes of A.

Tommaso Brandirali, Mitchell Olsthoorn, and Annibale Panichella

This distance definition allows us to use topological clustering
algorithms for graphs to guide the selection of merges in the re-
duction of the prefix tree. What we need from such algorithms is
a definition of a hierarchy of merges to be performed in succes-
sion and in order of decreasing fitness, so that the merging may
be stopped once it crosses a threshold of desirability. Various clus-
tering algorithms are available which fulfill exactly such a need,
namely: hierarchical clustering algorithms. Such algorithms pro-
duce data structures called dendrograms, represented as lists of
merges ordered by decreasing fitness. These dendrograms can be
used to guide the iterative merging of the prefix tree. We opted
to use the Louvain method [1] as a clustering algorithm due to its
performance and wide availability of implementations.

Clustering algorithms generally do not account for the require-
ments of DFAs, and applying their merges on DFAs can result
in the introduction of non-deterministic transitions (nodes having
multiple equivalent children). This requires the use of a determiniza-
tion subroutine after each merge, which would resolve any non-
determinism in the graph by merging equivalent children together.
If this is applied, a single merge from the dendrogram can result in
more than two nodes being merged together, as the determinization
can affect multiple pairs of nodes. As a result, not all merges from
a clustering dendrogram will be applicable, as some will have been
invalidated by previous determinizations. Algorithm 2 describes
the pseudocode for this prefix tree reduction. It assumes that a
dendrogram is given as a list of tuples, each tuple representing the
nodes to be merged. The stopping condition for the algorithm is to
be chosen on a case-by-case basis.

Algorithm 2: Algorithm to reduce a prefix tree using a
dendrogram

Input: A PrefixTree instance PT and a dendrogram D
Output: The reduced graph

1 foreach s1,s2 € D do

2 if s1, s2 not yet merged then

3 MERGE(s1, s2)

4 DETERMINIZE(s1, s2)
5 end

6 if stopping condition then
7 ‘ break

8 end

9 end

4 EMPIRICAL STUDY AND TESTING

This section will detail our research questions, together with the ex-
perimental context and benchmarks used to define those questions.
This section will also detail steps taken during the implementa-
tion in order to allow for benchmarking to take place, and which
parameters have been used during benchmarking.

4.1 Research Questions

We can now define with more precision the questions our research
aims to answer:

Inferring DFAs from Log Traces Using Community Detection

RQ1 How effective is our approach at reducing prefix trees, in terms
of the compression ratio of the generated models?

RQ2 How accurate are the models produced by our approach, in
terms of specificity and recall evaluated on unseen test data?

RQ3 How efficiently can our approach’s generated models be used
to classify unseen traces, in terms of runtime?

4.2 Evaluation Criteria

The goal of this research is to evaluate the quality of models gener-
ated using the algorithm described in the previous section, as well
as the performance of the algorithm itself. The research questions
will be evaluated in terms of the following factors: the size of the
generated models in comparison to the size of the original dataset
(Q1), the accuracy of the models in classifying valid and invalid
unseen traces (Q2), and the runtime of the program when using the
models to classify unseen data (Q3). The following subsections will
detail the definition and benchmarking of each of these criteria:

4.2.1 Size. One of the core goals in most approaches to this prob-
lem is to generate concise models: models with a significantly
smaller size than the sample dataset. For our first research question,
rather than measuring an absolute size, what we are interested in is
the reduction in size of the models compared to a baseline reference,
in other words: the compression ratio. As this reference, we chose
to use the size of the initial Prefix Tree, measured in number of
nodes. This results in the following formula for the compression,
where PT is the initial Prefix Tree, M is the reduced model, and
size() is a function that returns the number of nodes in the graph:

size(PT)

size(M) @

compression =
4.2.2 Specificity and Recall. For the second research question we
aim to evaluate the accuracy of our models in classifying unseen
data. In order to achieve this we need to define two classes of unseen
data: positive traces and negative traces. Positive traces are valid
unseen traces produced by the same system, which are expected to
be positively recognized by a model of the system. Negative traces
are invalid traces not directly generated by the source system, which
we expect the model to not recognize. While positive traces can
simply be gathered by splitting the original dataset into a training
and a test set, negative traces have to be procedurally generated
for this purpose. In order to do this, we used an approach similar
to the one used by Roelvink [14]: we took a subset of traces from
the training set, and to each one applied a randomized number of
mutations from 1 to 3. Each mutation is an operation on one or
more sections of lines in a trace, where a section is defined as a
set of subsequent lines having the same template. The type of each
mutation was also randomly selected between three ones: deletion,
which deletes a section outright; swap, which swaps two adjacent
sections; random swap, which swaps two random sections in the
trace. We additionally tested these invalid traces using a computed
prefix tree in order to ensure that they were indeed invalid and did
not represent alternative valid execution paths.
These two test datasets are the basis for our evaluation of accu-
racy. We measure this by using the generated models to classify
each test trace as either a true or false trace, and then comparing

Table 1: Overview of the result classes

Result: True Result: False
Positive | Valid traces classified as | Invalid traces classified
valid (TP) as valid (FP)
Negative | Invalid traces classified | Valid traces classified as
as invalid (TN) invalid (FN)

these results to the original classes. This process yields a final classi-
fication of the test results into one of four categories: True Positives
(TP), False Positives (FP), True Negatives (TN), False Negatives (FN).
Table 1 shows the definition of these result classes.

This latter classification allows us to compute two measures
which define the accuracy of our models: specificity and recall.
Specificity is defined as:

ITN|
TN TEDL ©)
|TN| + |FP|

and it represents the fraction of negative traces which the model
correctly classifies as negatives. Recall is defined as:

specificity =

TP
= 4)
|TP| + |FN|

and it represents the fraction of positive traces which the model
correctly classifies as positives.

recall =

4.2.3 Runtime. For the third research question we aim to evaluate
the speed of our implementation when using the models for their
classification purposes. This criterion has to be evaluated in relation
to the size of the input dataset used for the benchmarking. This is
a crucial criterion since it significantly impacts the usability of this
approach in a production environment. Rather than evaluating the
runtime measurements in absolute terms, we chose to plot their
growth against another evaluation parameter such as the size of
the training set and the compression ratio of the model.

4.3 Evaluation Benchmark

Our approach was evaluated on a dataset of log traces from the
XRP Ledger. The XRP Ledger is a decentralized blockchain-based
payment system based on the Ripple Consensus Protocol [15]. The
core software is the rippled server, which acts as a node in the
network and can serve multiple purposes, including: submitting
transactions, validating transactions, and managing API access to
the ledger history. The dataset used for the proof-of-concept im-
plementation and benchmarking of our approach consisted of log
traces from a rippled server instance and is available at [3]. The
rippled server is open source, and is distributed under a mix of
copyleft licenses. Due to its critical role in maintaining trust within
the network, it is crucial that the execution behavior of the server be
stable and predictable. Unexpected or unusual behavior threatens
the trust intrinsic to the network and therefore must be promptly
identified and addressed. For this purpose, the server can produce
large amounts of semi-structured logs at different severity levels.
However, this raises a different problem: manual interpretation
of these logs is unfeasible due to their scale. While automatically
identifying errors or warnings is trivial, the same cannot be said for

unusual and unintended execution paths which do not trigger inter-
nal consistency checks. This latter case requires building a model
of the software’s execution domain which is capable of detecting
unusual paths, and which can be used for Program Execution Mon-
itoring. For these reasons the rippled server constituted an ideal
subject for testing our approach. The rippled server consists of
various different modules, but for the scope of this research we
exclusively focused on the Consensus Protocol module, as its exe-
cution follows a well-defined state machine with single entry and
termination states.

4.4 Implementation

The implementation was done in Python 3.8 and is available at
[17]. The implementation uses the scikit- network [2] library
API to generate the clustering dendrogram from the Prefix Tree.
During the implementation, we encountered technical and practical
challenges related to the determinization of nodes after merging,
which could not be fully overcome within the available time. These
issues will be discussed in depth in section 6. Due to them, our gen-
erated models were not completely determinized and did contain
non-deterministic transitions, which had a significant impact on the
runtime complexity of the evaluation. As a result, our evaluation
was limited to small sample sizes.

4.5 Evaluation Setup

All of the empirical testing was conducted on a Windows machine
with an Intel i7 12-core processor, with a base speed of 2.21 GHz.

Due to the runtime issues described in the section 6, the evalua-
tion of runtime, specificity, and recall had to be limited to relatively
small trees and a limited number of merges. Our evaluation proce-
dure consisted of n iterations of the following steps:

(1) Select a new set of m traces as training set
(2) Build the prefix tree from the training set
(3) Build the clustering dendrogram from the prefix tree
(4) Iteratively perform the first j merges from the dendrogram,
every k merges perform the following:
(a) Evaluate specificity and recall of the tree
(b) Estimate runtime of the last evaluation
(5) Calculate final size of the model

The evaluation performed in step 4a consists of classifying 100
positive and 100 negative traces with the model at its current state,
then calculating the specificity and recall values as described in
section 4.2.2. The test trace sets were the same for each iteration,
and were disjoint from any of the training sets. Results are discussed
in section 5.

The aforementioned evaluation parameters n, m, j, and k were
chosen in order to maximize the scope of the evaluation within the
limitations of the evaluation time’s exponential growth. m and j
in particular were the main parameters affecting this growth, and
therefore had to be manually tuned accordingly. The following
parameter values were used to produce the final results: n=18,
m=>50, j=800, k=10.

The size evaluation was not affected by the runtime issues, there-
fore we were able to evaluate the maximum compression achievable
using the full dendrogram. However, we were limited by the clus-
tering library’s implementation, which seemingly makes use of

Tommaso Brandirali, Mitchell Olsthoorn, and Annibale Panichella

recursion, and therefore easily reaches Python’s maximum recur-
sion limit for graphs bigger than 100,000 nodes. Due to this, we
were only able to evaluate graphs built from up to 150 traces. This
evaluation was conducted in the following steps:

(1) Select a new set of m traces as training set

(2) Build the prefix tree from the training set

(3) Build the clustering dendrogram from the prefix tree
(4) Perform all merges from the dendrogram at once

(5) Evaluate the final size

(6) Repeat all steps from 1 n times

Results from this procedure were aggregated into an average
compression ratio, then the entire procedure was repeated for a
different value of m. In total, 10 different values of m between 50
and 150 were tested and tabulated.

5 RESULTS

This section will show and describe the results obtained from the
evaluation and their limitations. It will also compare results ob-
tained with our approach with alternative approaches tested on the
same dataset.

5.1 Compression

1.100

1.075

050

avg_compression

w’/\/—

1.000

50 60 70 &0 %0 100 110 120 130 10 150
n_traces

Figure 1: Average compression over number of traces

Figure 1 shows the average compression ratios for models over
the number of traces used. The ratios were calculated on models
from 50 to 150 traces and oscillated around 1.02, with a surprisingly
low variation, oscillating between a minimum of 1.0166 for 80-
trace models and a maximum of 1.024 for 120-trace models. No
significant trend was present beyond what could be attributed to
random differences in the training set composition. This result
highlights the significant drawbacks of the mismatch between the
clustering algorithm’s implementation and the requirements of
Finite State Machine processing. Notably, the average reductions
did not seem to be affected by the increase in size of the graphs, at
least within the range of sizes tested during our evaluation. The
variance in reduction rates is also noticeably small, within a margin
of 0.1, which seems to suggest that the ratio of dendrogram merges
performed over the entire dendrogram does not vary with the size of
the graph. In any case, it is clear that the graph’s topology diverges

Inferring DFAs from Log Traces Using Community Detection

quickly from the dendrogram’s representation as more nodes are
merged during determinization.

5.2 Specificity and Recall

Benchmarking conducted to estimate the specificity and recall of
the models through the merging process did not show any mean-
ingful change in the measured values. Due to the nature of our
benchmarking setup, the initial specificity for the prefix tree was
1.0, while the initial recall was 0.0. This reflects the fact that the
initial prefix tree accepts all and only the training samples, with-
out however accepting any of the test samples, either positive or
negative. The compressed models did not show any change in the
measured values for specificity and recall within the scope of the
testing conducted.

The specificity value remained fixed at exactly 1.0 throughout the
merging process, indicating that no false positive classifications had
ever taken place. This seems to suggest that our merging approach
is complete, within the scope of the benchmarking conducted. This
is also surprising, however, as a certain degree of error is expected
by heuristic approaches such as ours when attempting to generalise
a classification problem from samples.

The recall values also remained fixed at 0.0 throughout the merg-
ing. This shows that no positive trace was recognized from the
test set, or, in other words, that our models do not generalize at all
to unseen traces. This is possibly due to the fact that the number
of merges performed was insufficient. However, it is surprising
that not a single positive trace was ever recognized throughout the
testing, this might suggest a flaw in one of our assumptions.

It should be once again noted that such results were obtained
on limited sample sizes with limited compression ratios, due to the
restrictions and limitations of the proof-of-concept implementation.

5.3 Runtime

Runtime (s)

10
Evaluation

Figure 2: Runtime growth of various models during merging

Figure 2 shows the runtime growth during merging for multiple
equivalent models. In contrast to the previous three evaluation
criteria measurements, which showed very limited variation, the
measured runtimes varied randomly by multiple orders of magni-
tude, making them difficult to analyse or plot meaningfully. The
variations were so significant, in fact, that not all of the iterations

could be completed successfully as some models’ evaluation re-
quired more time than was manageable and had to be interrupted.
Notably, this significant variation was measured in the evaluation
of models built and compressed with the same parameters, indi-
cating that the runtime heavily depends on the intrinsic topology
of the training sample sets, even though they are generated from
traces from the same system. This can be explained by the fact that
the runtime is theorically expected to grow exponentially with the
number of non-deterministic transitions introduced during merg-
ing. These results suggest that random differences in the topology
of training sample sets have a significant and unpredictable effect
on the runtime of the models’ evaluation. Notably, this high vari-
ability was observed over multiple sample set sizes and number of
merges performed, although both of these parameters could only
be tested in limited ranges due to the issues described in the next
chapter.

6 DISCUSSION OF IMPLEMENTATION
CHALLENGES

During the implementation of the proof of concept program various
technical and practical challenges arose. Some of these could not be
fully overcome within the timeframe of the project, and therefore
affected the study’s results. This section will detail the nature of
these challenges and their effects on the results.

6.1 Non-determinism and Exponential Growth

As previously mentioned in section 3.3, merging states in a DFA
while maintaining determinism requires a specialized determiniza-
tion algorithm to be executed after each merge. Such an algo-
rithm should traverse the graph and merge equivalent nodes to-
gether whenever they are children of the same node. Each merge
that such an algorithm performs can cause new instances of non-
deterministic transitions to occur, cascading changes throughout
the entire graph. Designing an effective determinization strategy
therefore requires ensuring the ability of the algorithm to keep
traversing the graph until the latter is fully deterministic.

In the case of a tree-shaped automaton, a simple recursive strat-
egy is enough to guarantee determinism: recursively determinizing
children of a node created by a merge is guaranteed to terminate
once the leaf nodes are reached. However, implementing deter-
minization in a directed graph with possible cycles poses significant
additional challenges. Firstly, since in such a graph there can be a
path from a node to any other, a single determinization run can,
in the worst case, continue merging nodes until there is only one
left in the entire graph. Secondly, the implementation of such an
algorithm is difficult due to the fact that each recursive call made
within a stack frame can invalidate object references used within
the same frame, due to cyclical paths in the graph.

Merging determinization is an open problem in the field, as no
conclusive solution was found by our research. While mentions of
similar determinization algorithms were found in related literature,
we could not find any stable and publicly available implementa-
tion. Verwer and De Weerdt describe the need for an analogous
algorithm in [20] and imply having a working proof of concept
implementation in [18]. However, they provide neither access to
their implementation, nor a description or pseudocode of such an

algorithm that could be used to inform an independent implemen-
tation. Due to the time constraints of this project, we were not able
to develop a full determinization algorithm. We instead decided to
implement the naive version previously described as sufficient for
tree-shaped automata. This allowed us to partially mitigate issues
related to non-determinism, but not solve them outright.

The non-deterministic nature of the generated models means
that the runtime of the sample classification process increases expo-
nentially with the number of non-deterministic transitions present
in the model. While a DFA can only have one path that matches
an input word, an NFA may have multiple ones, which have to be
computed in parallel. In other words, every non-deterministic tran-
sition encountered during a traversal of the graph multiplies the
time required to complete the traversal by the amount of possible
paths. Since each merge performed during the model generation
can introduce one or more non-determinism instances, the growth
in evaluation runtime due to non-deterministic merges far outpaces
the decrease due to the shrinking of the model. We observed this in
practice during our evaluation tests, as the growing runtime made
it practically impossible to evaluate models beyond a limited input
size and number of merges. We attempted to mitigate this issue by
using a Depth-First Search strategy for finding paths, which did
marginally improve the average performance, but overall did not
make a significant difference.

6.2 Merge-skipping and Information Loss

As mentioned in section 3.3, during the model generation merges
from the dendrogram have to be skipped if they were affected by a
previous determinization. As subsequent determinizations affect
a growing share of the graph’s nodes, the share of dendrogram
merges applied decreases. This means that, despite the dendrogram
describing merges up to a fully merged graph with one node, the
number of merges applicable in our algorithm is limited, which
limits the compression ratio. As a result, we were not able to utilize
the full information provided by the clustering algorithm, due to a
mismatch between the functionality of the clustering implemen-
tation and the requirements of ours. In practice, we observed this
issue having drastic impacts on the compression of our generated
models. Smaller models appeared to be more susceptible to this
issue, with a compression ratio limited to 1.02 in the worst case for
a 7900-node graph. This issue was compounded by the nature of
our merging implementation, which did not preserve information
about the identity of merged nodes, and by the nature of the clus-
tering implementation we used, which was not designed to support
only a selection of merges being performed.

7 THREATS TO VALIDITY

This section will briefly discuss the features of our study which
might threaten its validity and generalizability.

7.1 External Validity

External validity refers to the generalizability of the results to differ-
ent contexts. Our approach assumes that log statements do indeed
encode meaningful information about the state of their origin sys-
tem. We confirmed this assumption by manually analyzing the
source code of the Ripple Consensus Protocol module. However,

Tommaso Brandirali, Mitchell Olsthoorn, and Annibale Panichella

this assumption’s validity entirely depends on the nature of the log-
ging scheme used. Logging in practice is not only used for Program
Execution Monitoring. Different applications of logging require dif-
ferent criteria for the placement and formatting of log statements,
which may imply that less information about the execution state
of the system can be inferred from log traces. Similar issues can
arise from the variable frequency and distribution of log statements
in source code. Infrequent logging may not provide enough in-
formation for the system models to be reliable, while an uneven
distribution of logs in different submodules may bias the models
into incorrectly estimating the topology of the system.

7.2 Internal Validity

Internal validity refers to the quality of the evaluation conducted.
The main issue in this regard is the small sample sets used in the
evaluation. The non-determinism issue discussed in section 6.1
meant that our evaluation was limited to single sets of less than 50
traces, which is not necessarily a large enough sample size to draw
satisfying conclusions. Smaller sample sets are more affected by the
natural stochastic variation in the topology of the samples, which
was reflected in the fluctuations observed in the results, particularly
in the runtime evaluation. Due to the nature of our approach, which
was heavily affected by the natural topology of the prefix trees, the
sample size used in our evaluation was not sufficient to ensure the
internal validity of our results.

8 RESPONSIBLE RESEARCH

As a matter of theoretical computer science, our research did not
imply significant ethical issues. However, we consider two matters
worth addressing: data identifiability and reproducibility.

The log datasets we used to train the models contained informa-
tion about other nodes on the XRP Network. We did not consider
such data to be sensitive, since all its information is already pub-
licly available on the XRP ledger. Additionally, XRP wallets are
pseudonymous, which decreases the risk of personal identification.
A case could be made that it would still be good practice to not re-
lease the training data despite the low risk of personal identification,
but this has to be weighted against the need for reproducibility of
the study. In any case, it should be noted that the generated models
do not contain any of the dynamic data from the network, since it
is filtered out by the usage of the Syntax Tree.

While computer science is not as affected by the so called "repli-
cation crisis" as the social sciences, it is still crucial for the reliability
of scientific results that they be replicable. We took multiple steps
during our process to ensure this replicability. The source code
we used to perform all steps of the implementation, including the
evaluation and data visualization, is freely accessible on a Github
repository [17]. The parameters and settings used in the evaluation
are mentioned in section 4.5, and the full dataset used is available
at [3]. The decision to publish the dataset is in violation of the
previously mentioned good practice of not publishing data which
may be somewhat identifiable, however, we deemed the risk of
identification from publicly available pseudonymous data already
hosted on a blockchain low enough to be shadowed by the need
for replicability of the study results.

Inferring DFAs from Log Traces Using Community Detection

9 CONCLUSIONS AND FUTURE WORK

This study was aimed at evaluating the performance of an approach
to the DFA inference problem using hierarchical graph clustering,
with a proof-of-concept implementation built on data from the Rip-
ple Consensus Protocol. The performance evaluation was based on
four metrics: size reduction, specificity, recall, and runtime. The im-
plementation incurred into issues which highlighted the challenges
posed by this approach, some of these issues could not be resolved
within the timeframe of the project, and affected the results. As
a result, the evaluation was limited in scope, and constrained to
small sample sizes and incomplete model generation.

Results obtained from the evaluation are not promising: while
the computational cost of using the generated models increases
exponentially, they do not seem able to generalize to unseen data,
and their size reduction is limited. However, the limitations of the
evaluation mean that such results are to be considered inconclusive.
The implementation challenges highlighted during this project have
to be tackled first, before conclusive results can be achieved about
the efficacy of this approach.

Firstly, a reliable algorithm must be developed for determinizing
a DFA after merging states, with support for cyclical DFAs. Another
challenge is better integration of the hierarchical clustering with
the DFA requirements. If possible, a custom clustering algorithm
should be implemented which natively maintains determinism in
its clusters. Such an algorithm would likely require a different
implementation of the Graph data structure, which should also be
improved. Finally, we have not properly tested the assumption that
relative empirical transition frequencies provide a good measure
for the relatedness of DFA states. Further research should test this
assumption and either confirm it, or design better measures for
estimating the relatedness of neighboring DFA states.

REFERENCES

[1] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. Journal of Sta-
tistical Mechanics: Theory and Experiment 2008, 10 (Oct 2008), P10008. https:
//doi.org/10.1088/1742-5468/2008/10/p10008

[2] Thomas Bonald, Nathan de Lara, Quentin Lutz, and Bertrand Charpentier. 2020.
Scikit-network: Graph Analysis in Python. Journal of Machine Learning Research
21, 185 (2020), 1-6. http://jmlr.org/papers/v21/20-412.html

[3] Tommaso Brandirali, Calin Georgescu, Pandelis Symeonidis, and Thomas
Werthenbach. 2021. XRP Ledger Consensus Protocol Debug-level Log Traces.
https://doi.org/10.5281/zenodo.5035325

[4] Rafael C Carrasco and Jose Oncina. 1994. Learning stochastic regular grammars
by means of a state merging method. In International Colloquium on Grammatical
Inference. Springer, 139-152.

[5] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and Rainer
Koschke. 2009. A systematic survey of program comprehension through dynamic
analysis. IEEE Transactions on Software Engineering 35, 5 (2009), 684-702.

[6] Hetong Dai, Heng Li, Che Shao Chen, Weiyi Shang, and Tse-Hsun Chen. 2020.
Logram: Efficient log parsing using n-gram dictionaries. IEEE Transactions on
Software Engineering (2020).

[7] Santo Fortunato. 2010. Community detection in graphs. Physics reports 486, 3-5
(2010), 75-174.

[8] E Mark Gold. 1978. Complexity of automaton identification from given data.
Information and control 37, 3 (1978), 302-320.

[9] Marijn JH Heule and Sicco Verwer. 2013. Software model synthesis using satisfi-

ability solvers. Empirical Software Engineering 18, 4 (2013), 825-856.

Edward F Moore. 2016. Gedanken-experiments on sequential machines. In

Automata Studies.(AM-34), Volume 34. Princeton University Press, 129-154.

[11] Leonard Pitt and Manfred K Warmuth. 1993. The minimum consistent DFA

problem cannot be approximated within any polynomial. Journal of the ACM

(JACM) 40, 1 (1993), 95-142.

Bernhard Plattner and Juerg Nievergelt. 1981. Special feature: Monitoring pro-

gram execution: A survey. Computer 14, 11 (1981), 76-93.

=
=2

[12

[13] Jared Rand and Andriy Miranskyy. 2021. On Automatic Parsing of Log Records.

In 2021 IEEE/ACM 43rd International Conference on Software Engineering: New

Ideas and Emerging Results (ICSE-NIER). IEEE, 41-45.

Marijn Roelvink, Mitchell Olsthoorn, and Annibale Panichella. 2020. Log in-

ference on the Ripple Protocol: testing the system with an empirical approach.

(2020).

[15] David Schwartz, Noah Youngs, Arthur Britto, et al. 2014. The ripple protocol
consensus algorithm. Ripple Labs Inc White Paper 5, 8 (2014), 151.

[16] Sameer Shende. 1999. Profiling and tracing in linux. In Proceedings of the Extreme
Linux Workshop, Vol. 2. Citeseer.

[17] TommasoBrandirali, Mitchell Olsthoorn, and Annibale Panichella. 2021. Tomma-
soBrandirali/WhatTheLog: 1.0. https://doi.org/10.5281/zenodo.5035298

[18] SE Verwer, MM De Weerdt, and Cees Witteveen. 2007. An algorithm for learning

real-time automata. In Benelearn 2007: Proceedings of the Annual Machine Learning

Conference of Belgium and the Netherlands, Amsterdam, The Netherlands, 14-15

May 2007.

Sicco Verwer and Christian A. Hammerschmidt. 2017. flexfringe: A Passive

Automaton Learning Package. In 2017 IEEE International Conference on Software

Maintenance and Evolution (ICSME). 638-642. https://doi.org/10.1109/ICSME.

2017.58

Sicco E Verwer, Mathijs M De Weerdt, and Cees Witteveen. 2006. Identifying an

automaton model for timed data. In Benelearn 2006: Proceedings of the 15th Annual

Machine Learning Conference of Belgium and the Netherlands, Ghent, Belgium,

11-12 May 2006.

[14

[19

[20

https://doi.org/10.1088/1742-5468/2008/10/p10008
https://doi.org/10.1088/1742-5468/2008/10/p10008
http://jmlr.org/papers/v21/20-412.html
https://doi.org/10.5281/zenodo.5035325
https://doi.org/10.5281/zenodo.5035298
https://doi.org/10.1109/ICSME.2017.58
https://doi.org/10.1109/ICSME.2017.58

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Execution Monitoring
	2.2 DFA Inference
	2.3 Community Detection

	3 Approach
	3.1 Syntax Model
	3.2 Prefix Tree
	3.3 Clustering

	4 Empirical Study and Testing
	4.1 Research Questions
	4.2 Evaluation Criteria
	4.3 Evaluation Benchmark
	4.4 Implementation
	4.5 Evaluation Setup

	5 Results
	5.1 Compression
	5.2 Specificity and Recall
	5.3 Runtime

	6 Discussion of Implementation Challenges
	6.1 Non-determinism and Exponential Growth
	6.2 Merge-skipping and Information Loss

	7 Threats to Validity
	7.1 External Validity
	7.2 Internal Validity

	8 Responsible Research
	9 Conclusions and Future Work
	References

