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Life lessons from and for distributed MPC

— Part 1: Dynamics of cooperation

P. McNamara, R.R. Negenborn, J.C. Canizares, M. Farina, J.M. Maestre,
P. Trodden, S. Olaru.

Abstract: This paper and a second accompanying paper (Olaru et al., 2018) explore the
potential of Distributed Predictive Control (DMPC) literature to provide valuable insights into
social behaviour. In particular this first paper focuses on the mechanisms of group regulation
in social systems. It will be noted that there are major differences between the way in which
DMPC algorithms and Social Human Participants (SHPs) form decisions. DMPC can make
optimal decisions but these are only optimal with respect to a given objective and model, both
of which must be explicit. SHPs operate, by and large, with only vague, implicit objectives
and models — which can be surprisingly accurate — but often make sub-optimal decisions both
individually (because of irrationality or poor anticipation and due to a short horizon, bad model
or misjudgement of objectives) and in a group sense (for the previous reasons plus selfishness).
Thus while SHPs’ decisions would typically be suboptimal, with respect to their desired goals,
for the aforementioned reasons, it can be expected that SHPs’ decision making would evolve
towards an optimal solution as groups of SHPs develop more experience within the system
they’re operating in.

© 2018, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved.
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1. INTRODUCTION

Society is composed of groups or individuals, which hence-
forth we will collectively refer to as Social Human Partici-
pants (SHPs), who share common resources. The actions
of SHPs in trying to achieve some goal, typically have
consequences not only for the environment of the SHP
responsible for the action but also for other SHPs who
are connected in some way to the SHP responsible for
the original action. To complicate things further SHPs
are limited in terms of their abilities to manipulate their
environments, and have to devise ways of counteracting
the effects of phenomena which affect the goals they are
trying to achieve. Thus SHPs must constantly monitor the
relevant indicators in the environments they are trying to
manipulate in order to try and achieve their goals, in the
face of varying degrees of uncertainty.

For example, in a car the driver is the SHP, the car
can be considered as the part of the environment over
which the SHP can have an influence via the actions of
manipulating the speed and direction of the vehicle, and
the goal can be considered as safely arriving at a particular
destination. Uncertainties arise in the form of weather
conditions, pedestrians, unpredicted road conditions, etc.
And of course, other SHPs drive other vehicles on the road,
and so SHPs interact and must coordinate their actions so
that each driver may reach their destination safely.

Typically each SHP will have developed a model both of
how its own actions affect itself, and how these actions
affect other SHPs with whom it shares these resources.
These models might be built up over time by the SHP
based on their experience of the system and may be very
simplistic. For example, using the vehicle analogy, the
SHP driver will not have an explicit knowledge of the

internal mechanisms of the engine. Instead they will have
developed a tacit knowledge over time that, by turning the
wheel a certain amount, the vehicle can be expected to go
a certain direction; or that, by pressing the accelerator,
the car can be expected to speed up by a certain amount.

However, these SHPs will in turn be aware that there is
some uncertainty related to these models, and that this
uncertainty is in some way known too. For example, when
groups drive on a road, an individual driver will be aware of
the fact that drivers in adjacent lanes might change lanes
very fast occasionally. Thus that driver will in turn account
for this potential behaviour when driving, assuming that
this can happen for, maybe, 5% of the time. However,
drivers will usually know with great certainty that if they
stop at a traffic light the person behind them is likely to
stop too.

SHPs also know that there are limits associated with the
various inputs and outputs of these systems, and that some
of these limits may arise through the interaction with other
SHPs, e.g., a car can travel at 150 km/h on the motorway
but in a city centre, with heavy traffic, a car can only travel
safely at 20 km/h.

Then SHPs will have a range of goals that they wish to
fulfil and will seek to achieve these goals using the so called
models that they have of the particular system with which
they are engaged. However, as SHPs must share resources
and dynamically interact with other SHPs, some degree
of collaboration with other SHPs is necessary in order to
achieve these goals. Thus, SHPs must consider the actions
of other SHPs in order to reach their objectives. Equally
the models SHPs have of external SHPs will typically
be based on experience. For example, over time people
will have developed a knowledge of what is acceptable
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social behaviour in various situations and will have an
idea of the likely consequences of their actions in various
circumstances.

In some cases it may not be necessary to explicitly commu-
nicate with other SHPs in order to satisfy these objectives.
For example, when walking down the street individuals
can navigate satisfactorily based on their knowledge of
how others are likely to act, and so explicit negotiation
and communication is not necessary between the relevant
individuals. However, for complex problems such as the
coordination of workers in a large factory, SHPs need to
use greater levels of communication in order to coordinate
their responses. Furthermore, the development of suita-
ble hierarchical structures for the efficient processing and
relaying of this communication is of vital importance to
ensure the smooth operation of a particular system.

Finally, SHPs may use some form of prediction based on
their models of a system in order to best determine what
course of action to take over a given period. However, SHPs
are typically aware of the fact that there will be errors in
these predictions and that unpredictable events can change
the trajectory of their predictions, and so they will update
these predictions over time based on an updated “mea-
surement” of their position with regards to fulfilling their
goals, and in turn update their predictions so as to decide
how best to act again. By iterating this process, SHPs
counteract the inherent uncertainty associated with achie-
ving their goals, rather than simply assuming that their
predictions are totally accurate, effectively performing a
continuous replanning process. For example, stock market
investors will use predictions as to how certain stocks
are expected to grow over time in order to inform their
decisions as to how they should invest funds. However, the
decision as to whether to maintain this investment or not
must be updated at regular intervals as it’s highly unlikely
that these predictions will be totally accurate (note here
that these predictions could be based on mathematical
models or objective experience of the investor. Either way,
an individual investor will form some belief as to how the
market will behave in the future and invest accordingly).

In turn, if a given group of SHPs interact and communicate
with each other in order to coordinate their actions over
time, all of them will stand a better chance of satisfying
their goals (of course provided that SHPs’ models of the
system are accurate). In social systems this communica-~
tion, often, may not take the form of a direct coordinating
signal between SHPs. In groups of people often it will be
possible to coordinate actions by observing the actions
of others in the group and acting appropriately. Often
it can be the case that SHPs respond to a coordinating
signal. For example, in the stock market scenario, based
on aggregated information from the market a government
may change the trading value of a currency in order to
attempt to affect the actions of investors. In cases where
it is perceived that systems for coordinating SHPs are not
well designed, analysis of optimal forms of coordination
between SHPs could potentially provide valuable insights
into methods for coordinating groups of interacting SHPs,
allowing for improvements in the construction of these
systems.
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Fig. 1. State-space predictions are used in MPC to deter-
mine optimal control inputs over a prediction horizon

H.

The idea of planning based decision making has been
formalised by engineers in the form of Model Predictive
Control (MPC) (Maciejowski, 2002). Here a discrete-time
system model is used to form predictions as to how the sy-
stem behaves over a prediction horizon of H sample steps,
as illustrated in Fig. 1 (it should be noted that continuous-
time MPC algorithms have been formulated but the results
referred to in this article are all related to the discrete-
time domain). The system monitors a number of states
which indicate how the system is evolving with time, has
a number of inputs that can affect the trajectory of the
states, is typically subject to measurable or unmeasurable
disturbances, and has some outputs which are typically
either one of the states of the system or are derived from
a combination of these states.

Using predictions based on the state-space model of the
system, an optimisation problem is formed which embodies
the goals of the system. Solving this optimisation problem,
while considering the constraints on the system’s parame-
ters, yields the optimal inputs that should be applied to
the system over the full prediction horizon to achieve the
desired goal. The inputs for the first sample step of the
horizon are applied to the system. Then the control system
waits for another sample step and runs this algorithm
again, looking one sample step further into the future than
in the previous sample.

In recent years there has been extensive research into the
area of Distributed MPC (DMPC) (Maestre and Negen-
born, 2014). In DMPC a number of autonomous control-
lers of interconnected systems, called agents, are assig-
ned the control of different interconnected subsystems,
and using different types of communication these agents
coordinate their control actions so as to fulfil their local
objectives. The way in which agents in DMPC make their
decisions and the way in which SHPs make their decision
in society have many commonalities, as has been described
in the previous paragraphs.

Tools such as Game Theory have been used previously
to provide new perspectives on the behaviour of groups
of interacting agents Dawkins (1976); Axelrod (2006);
Binmore (2005). A wide variety of DMPC methods have
been developed which provide an array of options for
distributing control between agents in a stable fashion,
and in turn these algorithms provide new perspectives on
group coordination. Thus far the application of DMPC
techniques has focused on typical engineering applications
such as electrical power systems Hermans et al. (2012);
Moradzadeh et al. (2011); Negenborn et al. (2008), pro-
cess engineering systems Venkat (2006); Liu et al. (2009),
water networks Leirens et al. (2010); Zafra-Cabeza et al.
(2011), etc. However, there is the potential for the results
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from DMPC to provide valuable insights into multi-agent
behaviour in general, which in turn could be used for
the analysis of non-engineering systems such as social,
biological, or economic systems. Indeed, it has been been
demonstrated previously how the integration of MPC with
such systems has the potential to significantly enhance
the decision making of individual SHPs, as in the case of
Human-in-the-Loop Model Predictive Control van Over-
loop et al. (2015). However, one must be cautious when
making analyses of these systems based on mathematical
concepts as one could be drawn to inaccurate conclusions
if the assumptions made in the mathematical models are
not accurate for the system being studied.

In this paper we explore the potential of various results
from the DMPC literature to provide valuable insights into
social behaviour, focusing in particular on ways in which
DMPC could be used to provide insights into the mecha-
nisms of group regulation in social systems. It is important
to note the nature of these observations. Almost inevitably
the group decisions made by SHPs will be suboptimal,
as interacting SHPs, in general, do not use computation
for decision making in the sense that DMPC does, and
the “models” used by SHPs will never be as exact as
those used by DMPC for typical engineering applications.
However, it can be expected that SHPs’ decision making
would evolve towards an optimal solution as groups of
SHPs develop more experience within the system they’re
operating in. Thus observations of how optimal decision
makers behave can be used to provide insight into how
certain properties of SHP decision making came to evolve
or might evolve into the future. Thus observations made
in this paper effectively provide qualitative insights into
certain aspects of decision making where groups of SHPs
are involved, as opposed to providing explicit formulations
of how a particular SHP might make a decision. Given
the potential for naively analysing systems of SHPs using
DMPC, some caveats need to be considered as regards
the straightforward application of these results for social
systems analysis.

2. TYPICAL DMPC FORMULATION

Typically the following model is used for the dynamics of
a subsystem i,

y;(k) = Cizi(k), (2)
The matrices A;, B;, V;, and C; are the relevant state-
space matrices that embody the dynamics of the i*®
subsystem and the influence of control inputs (u;(k)). The
external inputs from other subsystems is represented by
v;(k). The effects of noise or uncertainties may also be also
be included in these models depending on the particular
approach that is used. Predictions can be made as to the
™ subsystem’s trajectory over H sample steps, where H
is called the prediction horizon. Using a centralised MPC
approach, the following optimisation is performed each
sample step for a system of IV interconnected subsystems

S w1 ), (3)

i=1
subject to constraints, where the cost function J°°2!(k)
embodies the control goals of area 4, @;(k) are the values

of u; over the H predicted samples steps, and the weight w;
determines the relative importance of minimising J°°®!(k)
in the cost function. Agents then apply only w;(k) to
the system and repeat this process each sample step. It
should be noted that tuning of the weights w; can have a
significant effect on how the system operates. A discussion
of some of the implications of weight tuning in the context
of distributed MPC is given in Section 4.

Some distributed controllers are capable of solving (3) in
a non-centralised iterative fashion, where the " agent
solves for w;, and the result is Pareto optimal Venkat
(2006). This implies that each agent has access to the
global system model that a centralised controller does,
and all agents can communicate with each other. As in
cooperative optimization routines in game theory these
agents seek to solve the global system goal of (3) based on
access to a global system model. These algorithms are also
called Cooperative DMPC algorithms. Often agents only
have access to local variables and then may be only capable
of communication with agents with whom they share an
interconnecting variable. Given that these algorithms are
based on local cost functions they are referred to as Non-
Cooperative distributed MPC algorithms. In the most
extreme form of these algorithms agents will solve:
: local

min J; (k), (4)
subject to some constraints. If agents are allowed some
inter-agent communication it is typically then possible for
them to achieve performance ranging from that achievable
using (4) to that using (3). Many of these solutions will
take a form similar to the following:

wijilocal(k) _|_Jlinter(k,), (5)

min

% (k),0:(k)
subject to constraints, where the J™*(k) cost is designed
to allow agent ¢ deal with interconnecting constraints, and
0, is a vector of variables used to coordinate the actions
of the " agent with other agents with whom the 4"
agent shares an interconnecting variable. For example, in
Negenborn et al. (2008) Ji"°r(k) is used to allow agents
to reach consensus on interconnecting variables over the
prediction horizon in an iterative fashion, and 6; are the
values of the interconnecting variables that the i*" agent
would like to receive.

The preceding paragraphs are by no means an exhaustive
account of the range of distributed MPC algorithms that
have been developed, and merely serve to give a general
flavour of the way in which distributed MPC can be solved.
A vast array of techniques have been developed based on
varying mathematical approaches, and system and com-
munication architectures. For more technical descriptions
the reader is referred to Maestre and Negenborn (2014);
Negenborn and Maestre (2014).

3. INSIGHTS INTO THE DYNAMICS OF
COOPERATION

Results from the DMPC literature provide insights into the
dynamics involved in the coordination of groups of agents
in control of interacting subsystems. In particular the
literature on this area has provided a number of insights
into the degree of communication needed between agents
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to effectively cooperate their responses and the dynamics
of the cooperation itself.

3.1 Transparency, Optimality, and Stability

Right across modern society, in its economic, social, en-
vironmental, and political systems, for example, groups
of individual decision makers are responsible for making
decisions that not only affect the subsystem under their
own control, but affect other connected subsystems not
under their direct control. With the onset of globalisa-
tion, the ties between these individual areas are becoming
stronger and the effects of individual actions may have
unpredictable consequences. It is perceived that it is these
interconnections that are responsible for many of the insta-
bilities that have plagued these systems in the modern era.
For example, while the 2008 economic crisis started with
institutions based in the United States, the decisions taken
with regard to these institutions had knock on effects on
economies across the world. In turn the question arises as
to what sort of control structures we should expect given
such an increasingly interconnected system, and what is
the main driving force behind the necessary evolution of
these control structures.

From the game theoretic literature, it is widely known
that the more information that is shared between agents,
the better the overall performance of the system will be.
The concepts of the Nash and Pareto equilibria are well
known, describing situations where agents reach agreement
on those variables connecting their objectives, and the
situation where agents have access to the same level of
information to make their decisions as would be afforded to
a central coordination agent, respectively Venkat (2006).
Equally concepts such as the Price of Anarchy (PoA) have
been developed in the game theoretic literature in order
to quantify the loss in performance when all agents in a
system act selfishly as opposed to cooperatively.

The DMPC literature contains a wide variety of techniques
that use increasing levels of communication and, as would
be expected, the general trend with these control sys-
tems is for performance to improve as the inter-controller
communication increases Venkat (2006); Hermans et al.
(2012); Alvarado et al. (2011); Maestre et al. (2015). Of
note, in Venkat (2006), is the fact that as the strength of
interconnections between areas increases, it is necessary to
increase the level of information that participating agents
have access to in order to maintain stable control of the
overall system. As the strength of interconnection is incre-
ased, first a communication free decentralised controller
is driven unstable, and then a Nash equilibrium seeking
controller is driven unstable. Only a Pareto equilibrium
seeking distributed algorithm is capable of stabilising the
system at this stage, which implies all agents have access to
the same level of information as a centralised coordinator,
that is, all inputs, states, matrices and cost functions are
available to the all agents in the system.

Here it can be seen that without a certain level of com-
munication and cooperation in tightly interconnected sy-
stems, agents will not be capable of achieving their goals,
and this in turn will result in instabilities in the system.
This emphasises that instability as opposed to impro-
vements in optimality could be the main driving force in

the development of adopting open, transparent control sy-
stems that can maintain stability in heavily interconnected
systems. This then provides further insight into the form
that the control systems in tightly coupled societies could
be expected to take. When societies were not highly inter-
connected, it was not necessary for governments to coor-
dinate their responses as the decentralised control of the
system would not have resulted in instabilities. Through
the process of globalisation as countries increasingly in-
teract and become interdependent, it has been necessary
for countries to increasingly coordinate their actions in
order to maintain stability. A prime example of such
interconnection causing instability would be the case of
interconnection in the banking system where deleveraging
resulted in systematic instabilities due to the high degree
of interconnection between financial institutions Caccioli
et al. (2014). Given that the strength of these intercon-
nections is increasing continuously it would be expected
that it will be necessary for countries to at least consider
the objectives of other countries in their responses or for
decision making to be centralised such that the objectives
of all countries can be considered simultaneously. Indeed,
this process would reflect what has been seen throughout
history, where the trend for increasingly interconnected
societies has been to increase cooperation and empathy
between those interconnected agents in society, and to cen-
tralise the structures responsible for coordination between
the agents in this system Diamond (1998).

Thus, the lesson that is presented by the DMPC literature
here is that increasing interconnection between social
systems can act as a means by which these social systems
will eventually seek to increase their cooperation due to
the increased threat of instability in the overall system.

3.2 Decisions based on models of others

A notable aspect related to the problem of group coordi-
nation in social systems arises from the fact that their ob-
jectives or constraints are often conflicting: actions driven
purely by self-interest can lead to compromised outcomes
for all. Thus, an interesting question is to what degree
should a SHP anticipate the actions or intentions of others
in deciding upon his own strategy?

Cooperative DMPC aims to endow control agents with
a sense of anticipation about the actions of others. For
example, in Trodden and Richards (2013), each agent
devises not just its own plan for the future, but also hypot-
hetical plans for other agents, in which their objectives
and constraints are taken into account. The idea is that
an agent considers, as part of its internal decision making,
what other agents might be able to achieve in the future in
response to its own actions. Meanwhile, special constraints
in the local optimization problem ensure that the coupled
constraints, constraints that result in interactions between
the two agents optimization problems, are guaranteed to
be satisfied regardless of the outcome, that is, whether the
other agents take advantage of the situation (by adopting
something like the hypothetical plan) or not.

Social group decision problems closely resemble the DMPC
problem for dynamically decoupled subsystems sharing
constraints and possibly an objective. The question of the
degree of anticipation by SHPs in a social system is ana-
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logous to the questions in cooperative DMPC of how and
when to use cooperation. Social group decision problems
closely resemble DMPC problems in which dynamically
decoupled subsystems share constraints and possibly an
objective. The question of the degree of anticipation by
individuals in a social system is analogous to the questions
in cooperative DMPC of how and when to use cooperation.

Tuning the cooperative DMPC objective between self-
interest and interest only for other agents, maps to dif-
ferent plans between the extremes of acting selfishly and
altruistically. For the latter, the local agent is willing to
sacrifice its own performance and a less selfish plan is
seen to result. No negotiation or iteration is required; an
agent unilaterally chooses a cooperative plan. In terms of
society, this indicates that mutually satisfactory outcomes
can result from SHPs anticipating and accommodating the
actions of others in furthering their own interests - the
philosophy of enlightened self-interest. Research has shown
that there is most benefit to system-wide performance
when actively-coupled neighbours cooperate Trodden and
Richards (2009). The potential benefit can be estimated
from the predicted cost of hypothetical plans. In a societal
setting, this suggests that group decision making can be
made more mutually beneficial if SHPs consider the ob-
jectives, and anticipate the actions, of those with whom
their interests are most conflicting.

3.8 Long term coordination is easiest

A general observation that might be made about the abi-
lity of large groups of SHPs to coordinate their responses
is that it is always easiest for conflicting parties to agree
on things in the long term, but it is always the short term
plans that are the most difficult to agree on. Everyone will
always agree that in long term they want world peace,
a clean, pollution-free environment, and resources to be
shared fairly amongst the nations of the world. However,
usually the agreements on what countries will do next week
or next year are far more difficult to settle on.

Interestingly results from the DMPC literature reflect this
trend. In Negenborn (2007) distributed controllers are
designed that act in an iterative fashion to converge on a
Nash equilibrium solution each sample step. In Chap. 2 of
Negenborn (2007) a number of figures illustrate how two
connected areas typically converge on the agreed values
for the final trajectory of an interconnecting variable. It
is seen in these diagrams that the values for the variable
at the end of the prediction horizon are the first to reach
agreement and the values then reach agreement working
their way from the final stage of the prediction horizon
to the first. A rationale for this could be that the final
stage of the horizon offers the most degrees of freedom
for reaching cooperation and so requires the least effort
in terms of reaching an agreed value. Also, the rules
of dynamic programming come to mind here where the
optimal trajectory is found by working backwards from
the end of the horizon to the start.

The lesson that is found here is that if optimal coordi-
nation algorithms find it easiest to coordinate the longest
term responses but more difficult to coordinate their short
term responses, then it should not be surprising that this
would be seen in real world negotiations too.

4. INSIGHTS BASED ON THE WEIGHTING OF
DECISION AGENTS

In decision making processes, usually certain decision
making agents will have a greater influence than other
agents. In the optimisation and control literature this
preference is reflected in the different weights allocated
to decision makers in the cost function. It is of interest
to see how the choice of these weights affects negotiation
processes. Interesting insights into these processes can
be found in the DMPC literature on weight tuning. In
Mc Namara et al. (2013) the weights of a non-cooperative
DMPC system were optimised, in order to minimise a
setpoint tracking criterion for a highly interconnected
power system. It was observed here that each of the agents
in the optimal weight case experienced improvements in
performance despite some agents’ optimal weights being
significantly larger than others.

Thus these results imply that it may not be in an SHPs
best interests to seek to maximise its own weight in
negotiations. Thus this would seem to contradict the
intuitive assumption that an SHP should always seek to
maximise their weight in negotiations to improve their
returns. However, in real life systems the determination
of what exactly is an optimal weighting for each SHP is
highly non-trivial, and the idea of a SHP purposefully
minimising their weight in a negotiation is, in general,
undesirable from their perspective and unlikely to occur
voluntarily.

However, the consideration of weights as fixed constants
is not always the ideal way to model group negotiation.
Equally, the modelling of SHPs as maximisers may not
always be accurate, particularly in social systems where
SHPs may not desire more of a resource once they have
satisfied their need for it. A preferable method for mo-
delling SHPs may be to assume that a SHP i is satisfied
once their cost function is within a certain level v;. In the
DMPC literature an agent which coordinates its actions
with other agents in this way is called a satisficing agent.

A distributed satisficing MPC method is described in
de Lima et al. (2015). It is illustrated in this paper how
a distributed algorithm can be designed to minimise the
following equivalent centralised satisficing problem:
N

min —log(v; — Ji(k)), (6)
In this paper it is in turn shown that (6) is equivalent
to the centralised MPC problem given in (3) where the
weight associated with area ¢ are given by:

1
Thus this shows that the satisficing problem is equiva-
lent to a centralised MPC problem in which the weights
adaptively change, such that agents who are more satisfied
are given less preference, and those who are less satisfied
receive more. This view on satisficing as a form of centrali-
sed MPC with adaptive weights highlights the advantages
groups of satisficers have over groups of maximisers, i.e,
satisficers naturally adapt to the situation faced by the
group, while maintaining the optimality of a centralised
maximisation problem, while groups of maximisers conti-

w; =
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nue to give preference to the same individual regardless of
the situation. This could in turn provide an evolutionary
perspective as to why groups would evolve as satisficers
instead of maximisers. The recent work Barreiro-Gomez
(2018) discuss the role of population games in the design
of optimization-based controllers.

5. CONCLUSION

In this paper, a number of observations from the Distribu-
ted Model Predictive Control (DMPC) literature are used
to illustrate the potential of this body of work to provide
insights into the operation of social systems. It is pointed
out that the quantity of information shared among the
subsystems influences the global performances and gives a
primal role to the interconnection in the stability analysis
of both DMPC aand SHP. Next, the prediction-based stra-
tegy being related to an anticipative capability, it is shown
that cooperative MPC relates to altruistic behavior in
SHP. Ultimately, the length of the prediction horizon and
the weightings in cost function play an important role in
the coordination of DMPC as well as in the negociations of
SHP. In a companion paper, additional insights related to
arrangement of group decision making are presented and
a number of caveats are provided as regards applying such
analysis to social systems, as opposed to the application of
these techniques in their traditional application domains.
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