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In this paper, a linear parameter varying (LPV) modeling and control design approach is applied to a new class of

guided projectiles, aiming to exploit the advantages of the LPV framework in terms of guaranteed stability and

performance. The investigated concept consists of a planar symmetric 155mm fin-stabilized projectile equippedwith

a reduced amount of control actuators and characterized by a predominantly unstable behavior across the analyzed

flight envelope. A dedicated modeling procedure allows reformulating the nonlinear projectile dynamics as a LPV

polytopic system, employed for the controller design. The procedure intends to reduce the computational complexity

and the conservativeness affecting the overall controller synthesis. A trajectory-tracking simulation scenario is

performed in a realistic simulator environment to assess the performance of the resulting LPV polytopic autopilot

across the entire flight envelope.

I. Introduction

I N THE last few decades, the Linear Parameter Varying (LPV)

framework has attracted increasing interest in the modeling and

control of a wide range of aerospace applications. Initial studies

presented the LPV modeling approach as a perfect match for the

well-established gain-scheduling controller design technique, lead-

ing to relevant contributions concerningmissile [1–5] and aircraft [6–

8] applications. Several studies have also focused the investigation on

guided projectiles, intending to improve the accuracy and range

capability of artillery operations. LPV modeling has been coupled

with robust control design for spin-stabilized [9–11] and fin-

stabilized [12,13] projectiles’ architectures. However, the LPVmod-

els were generally obtained as a collection of local linearizations of

the original nonlinear dynamics, leading to the possible loss of

important information regarding the system’s transient behavior.

The gain-scheduled autopilots result from interpolating the corre-

sponding set of linear time-invariant (LTI) controllers, designed at

the trimming conditions selected during the model linearization.

Consequently, fundamental properties such as stability and flight

performances are guaranteed only about the analyzed trimming

points and not at all the remaining flight conditions [14,15].

These limitations motivated the investigation of alternative LPV-
based design approaches, providing a better representation of the
overall system dynamics [16–18] and robustness and performance
properties across the entire flight envelope [19–22]. Concerning
guided projectiles, only recently, a LPVapproach has been developed
in the framework of Model Predictive Control [23], opening several
opportunities for further investigations. The LPV design discussed in
the present paper relies on the polytopic formulation. First introduced
in [24], the polytopic approach allows the synthesis of a controller
that guarantees stability and performance for any conditions of the
varying parameters in a selected convex subset (polytope), defined by
the ranges of variation of each parameter. In particular, the poly-
topic control design only targets the operating conditions charac-
terizing the vertices of the selected convex subset, resulting in a
significantly limited number of local controllers being interpolated
(one per vertex), and reducing the computational complexity at the
implementation stage. However, it requires a nontrivial affine
model-parameters relation characterizing the system, and the over-
all optimization process can be affected by an excessive level of
conservatism that can deteriorate the performance of the controller.
Thus, several studies have focused on the optimization of the poly-
tope’s dimension [generally two-dimensional (2D) convex spaces]
and the consistency of the operating conditions belonging to the
convex subset [25–32].
This paper proposes a LPV H∞ controller design for the pitch

channel dynamics of a new class of long range guided projectiles.
Interesting properties of the analyzed concept derive from selecting a
reduced set of control actuators, leading to a noncoplanar canards/
fins configuration [33,34] and a predominant statically unstable
behavior. During the ballistic ascending phase of the trajectory, the
canards are folded in the sabot, and the projectile is characterized by a
tetragonally symmetric body and a stable configuration. After reach-
ing the apogee, a set of two canards is deployed along the horizontal
plane of the projectile, reducing the symmetry of the body from
tetragonal to planar during the gliding phase of the trajectory. In this
configuration, the aerodynamic contributions generated by the canards
have a destabilizing effect on the projectile dynamics. The design of a
statically unstable configuration aims to improve the maneuverability
of the projectile, compensating for the limited control authority caused
by the reduced number of control surfaces. Recent research on long-
range guided projectiles [35] underlined the impact of the canards/
fins configuration, aerodynamics modeling, and guidance develop-
ment on the overall range capability. In a previous study [36], the full
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nonlinear dynamics of the projectilewas derived and converted into a
corresponding quasi-LPV model through the state transformation
technique [37], trying to minimize the need for model approxima-
tions. The main contribution of the present work relies on the
development of a control-oriented modeling procedure, which
1) reformulates the quasi-LPV model of the projectile to comply
with the requirements of polytopic systems and 2) optimizes the
dimension of the obtained polytope to reduce the conservativeness
of the controller synthesis.
In particular, the optimization analysis is applied on a three-

dimensional (3D) polytope which represents all the possible flight
conditions that can occur during the trajectory of the projectile. The
results of the control design are tested in a simulator environment
through a trajectory tracking scenario where a preliminary ad hoc
implemented guidance law targets the optimization of the aerody-
namic lift-to-drag ratio during the gliding phase of the trajectory
[38,39].
The paper is divided as follows. The nonlinear dynamics of the

guided projectile is first discussed in Sec. II, alongwith the derivation
of the corresponding quasi-LPV model. In Sec. III, the theoretical
formulation of the LPV polytopic class of systems is presented. A
complete approximation analysis allows reformulating the obtained
quasi-LPV model to satisfy the polytopic requirements. Once the
accuracy of the approximations is verified, the dimensions of the
investigated flight envelope are optimized to reduce the complexity
of the controller synthesis process. Later, Sec. IV details the gener-
alized scheme employed for the synthesis of a LPV polytopic con-
troller based onH∞ design. Then, the results of the controller design
are evaluated in the frequency domain. Finally, Sec. V proposes a
reference tracking simulation scenario, employing the LPVpolytopic
controller to target an angle-of-attack guidance trajectory. The ulti-
mate purpose is to prove the capability of the LPV design to ensure
competitive performances and stability properties across all the con-
ditions described by the selected flight envelope.

II. Projectile Pitch Channel Dynamics

This section describes the projectile’s physical concept, design
properties, and operational objectives. The nonlinear model repre-
senting the pitch channel dynamics is discussed, including some
relevant insights concerning the aerodynamic characterization and
the allocation of the control input. Later, the nonlinear model is
converted into a corresponding quasi-LPV one using the State
Transformation technique. The obtained quasi-LPV model will be
reformulated as a polytopic system in the next section and employed
for the robust controller design.

A. Nonlinear Model

The investigated nonlinear model refers to a 155mm fin-stabilized
guided projectile, characterized by a set of two front control canards
and a set of four symmetrical rear fins, noncoplanar to the plane of
symmetry of the canards, as shown in Fig. 1a. The reduced amount of
control surfaces limits the resulting control authority but is justified
by the intention of improving the projectile operating range through a

bank-to-turn (BTT) flight strategy, employed during the gliding

phase of the trajectory, as shown in Fig. 1b.
The full six-degrees-of-freedom (DoF) nonlinear model of the

projectilewas derived in a previous study [36], including an extensive

characterization of the aerodynamic contributions. The results of the

analysis led to the development of the simulator environment

employed in the last session of the present article for the autopilot

performance assessment. The interested reader can find an overview

of the six-DoF projectile dynamics in Appendix A. For the interest of

this study, the analysis focuses on the pitch channel only, consisting

of the dynamics of the aerodynamic angle-of-attack (AoA) α, and of
the pitch rate q, expressed with respect to the system of coordinates

integral to the projectile’s body:

_α�−
X sinα

mV cosβ
� Zcosα

mV cosβ
� g

V cosβ
�sinα sinθ� cosαcosθ cosϕ�

�q−p tanβ cosα− r tanβ sinα;

_q� 1

Iyy
�M−pr�Ixx − Izz�� (1)

The lateral contributions of the yaw rate and the aerodynamic

angle-of-sideslip (AoS), r and β, respectively, as well as the influence
of the roll angle and the roll rate,ϕ andp, respectively, are assumed to

be negligible for the pitch channel dynamics. Indeed, the AoS

minimization (BTT) strategy, together with the particular geometry

of the concept, allows the decoupling of the projectile dynamics

between its lateral and pitch axes. The pitch angle θ is not accounted
for as a parameter of the LPV analysis, so a nominal value was

selected based on a set of preliminary simulation tests. The term V
represents the true airspeed in zero relative wind conditions.
In terms of physical parameters, Ixx, Iyy, and Izz correspond to the

moments of inertia relative to the principal axes of the projectile’s

body; m stands for the overall mass; and g stands for the standard

acceleration of gravity, under flat Earth assumptions. Because of the

characteristic second-order rotational symmetry of the projectile’s

body, the off-diagonal inertial coupling terms, Ixy, Iyz, and Ixz,
present in the inertia matrix, are neglected as well.
Additionally, the pitch channel dynamics is highly affected by the

aerodynamic contributions, in the form of longitudinal and vertical

forces, X and Z, respectively, and pitching moment M modeled

through an extensive regression analysis based on a set of computa-

tional fluid dynamics (CFD) data, as follows:

X � �qS�CXα0
� CXα2

sin2α� CXα4
sin4α� CXδ0

� CXδ2
sin2δeff�;

Z � �qS CZα1
sin α� d

2V
CZq

q� CZδ1
sin δq � CZδ3

sin3δq ;

M � �qSd Cmα1
sinα� Cmα3

sin3α� Cmα5
sin5α� d

2V
Cmq

q

� Cmδ1
sin δq � Cmδ3

sin3δq (2)

a) b)

Fig. 1 Long-range guided projectile: a) projectile concept and b) range enhancement flight strategy.
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The aerodynamic model is defined by the set of aerodynamic
regression coefficients related to the longitudinal static (CXα0

, CXα2
,

CXα4
) and control (CXδ0

, CXδ2
) forces; to the vertical static (CZα1

),

damping (CZq
), and control (CZδ1

, CZδ3
) forces; and finally to the

pitching static (Cmα1
,Cmα3

,Cmα5
), damping (Cmq

), and control (Cmδ1
,

Cmδ3
) moments. Each of the previous aerodynamic coefficients has

been obtained as a function of a selected range of subsonic Mach
values M. Additionally, the aerodynamic model depends on the
values of the projectile’s reference surface S and caliber d and on
the dynamic pressure �q, which is defined as a nonlinear function of
the altitude h through the air density variation. The full aerodynamic
model is provided in Appendix B.
Furthermore, the local deflection angles characterizing the right

and the left control canards δr and δl, respectively, are allocated into
a set of virtual deflections. The virtual deflections express the
control action in terms of a roll contribution δp and a pitch con-

tribution δq obtained, respectively, through a differential or a con-

current deflection of the individual surfaces, following the static
allocation strategy:

δp

δq
�

− 1
2

� 1
2

� 1
2

� 1
2

δr

δl
(3)

The longitudinal control contribution, δeff � δ2p � δ2q, has been

modeled as a nonlinear combination of the virtual roll and pitch
deflections. It represents a braking effect due to the additional drag
generated by the canard deflections.

B. Quasi-LPV Model

The nonlinear dynamics in Eqs. (1–3) can be reformulated more
compactly as an output nonlinear system [1]. However, this formu-
lation requires the system to be affine in the input; thus, a first-order
approximation of the aerodynamic control coefficients (CZδ1

, CZδ3
,

Cmδ1
,Cmδ3

) was investigated in detail in [37] and applied to the pitch

channel dynamics. The resulting nonlinear Simplified model is used
for the LPV modeling and control design, accounting for the aero-
dynamic approximations as a source of uncertainties to be handled by
the controller. The remaining nonlinear contributions characterizing
the model are functions of the set of continuous time-varying param-
eters ρ�t�. They can be collected in the generalized terms, f1�ρ� and
f2�ρ�, as:

_α

_q
�

f1�ρ�
f2�ρ�

�
0 A12�ρ�
0 A22�ρ�

α

q
�

B1�ρ�
B2�ρ�

δq;

ρ�t� � �α�t�; V�t�; h�t�� (4)

where:

A12�ρ� � 1� �qSdCZq
cos α

2mV2
; B1�ρ� �

�qSCZδ1
cos α

mV
;

A22�ρ� �
�qSd2Cmq

2IyyV
; B2�ρ� �

�qSdCmδ1

Iyy
(5)

Starting from the output nonlinear Simplified pitch channel
dynamics in Eqs. (4) and (5), a reliable quasi-LPVmodel is obtained
by employing the systematic State Transformation technique [1,2].
The complete derivation of the LPV model from the nonlinear
Simplified one is detailed in [37]. Despite being restricted to a limited
class of systems, the State Transformation approach provides a
quasi-LPV model that corresponds to an exact transformation of the
original nonlinear system, avoiding any additional forms of approxi-
mation. In particular, it aims to hide the nonlinear parameter-varying
terms, f1�ρ� and f2�ρ�, present in themodel through a redefinition of
the nonscheduling state and the input variables of the system, respec-
tively,q and δq in Eq. (4). The new state vector of the quasi-LPVpitch

channel dynamics model includes the AoA and the off-equilibrium
value of the pitch rate qdev defined during the transformation process,
as in Eq. (6). Accordingly, the off-equilibrium value of the virtual
pitch deflection input δq;dev is expressed as

qdev ≔ q − qeq�ρ�; δq;dev ≔ δq − δq;eq�ρ� (6)

where the equilibrium functions qeq�ρ� and δq;eq�ρ� are obtained by
trimming the pitch channel dynamics of the projectile in Eqs. (4) and
(5) across the entire flight envelope described by the variation of the
scheduling vector ρ�t�. An overview of the transformation pro-
cedure is given in Appendix C. The dynamics of the off-equilibrium

variables _qdev and _δq;dev are expressed through the derivatives

of the corresponding equilibrium functions qeq�ρ� and δq;eq�ρ�,
respectively.
Finally, the inclusion of an integrator at the input of the system

defines the new input δq � ∫ σ. This solution allows removing the
dependence of the input from the current equilibrium flight con-
ditions, which was introduced by the transformation process and
can strongly affect the stability of the system [17]. Additionally, the
integration redefines the input matrix B of the quasi-LPV system
in a parameter-independent form. The latter observation represents
a fundamental requirement for the later LPV control design. From
a modeling perspective, the presence of the integrator can be
justified by assuming that the controller intended to be developed
accounts for a pure integral action, formally included in the system
definition.
The resulting integrator Augmented quasi-LPV model of the pro-

jectile pitch channel dynamics corresponds to:

_α

_qdev

_δq;dev

�
0 A12�ρ� B1�ρ�
0 ~A22�ρ� ~B2�ρ�
0 ~A32�ρ� ~B3�ρ�

α

qdev

δq;dev

�
0

0

1

σ;

ρ�t� � �α�t�; V�t�; h�t�� (7)

with:

~A22�ρ� :� A22�ρ� −
∂qeq
∂α

A12�ρ�; ~B2�ρ� :� B2�ρ� −
∂qeq
∂α

B1�ρ�;

~A32�ρ� :� −
∂δq;eq
∂α

A12�ρ�; ~B3�ρ� :� −
∂δq;eq
∂α

B1�ρ� (8)

III. From Quasi-LPV to Polytopic Formulation

In this section, theAugmentedquasi-LPVmodel of the projectile in
Eqs. (7) and (8) is reformulated as a polytopic system, for the later
control design. The main theoretical features and requirements of the
polytopic class of systems are first discussed to verify which aspects
of the obtained quasi-LPVmodelmust be adjusted to complywith the
polytopic formulation. Later, an extensive model-parameter depend-
ence analysis allows for an accurate approximation of the quasi-LPV
model, bymapping the original set of scheduling variables into a new
set of scheduling functions that respect the polytopic requirements.
Finally, the dimensions of the polytope defined by the new set of
scheduling functions are investigated to minimize the conservatism
and the computational complexity affecting the following controller
synthesis.

A. LPV Polytopic Background

The polytopic formulation proposed here is based on [24], com-
plying with the same notation. As previously mentioned, this
approach is restricted to a class of LPV systems characterized
by an affine dependence on the selected set of time-varying sched-
uling variables. This implies the system is linear with respect to
each entry of ρ�t� � �ρ1; : : : ; ρnρ �. Additionally, the system must be

input- and output-parameter independent to satisfy the affine con-
ditions. The latter restriction can be generally relaxed by prefiltering
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the input and the output. Finally, measurements of the scheduling

variables are supposed to be available in real time, while their

variation is assumed bounded between a minimum and a maximum

value:

ρj ≤ ρj ≤ ρj

where j ∈ �1; nρ� and ρj and ρj indicate the upper and lower bounds,
respectively, of the jth scheduling variable. The boundary values of
the scheduling variables define a convex subspace (polytope) of 2nρ

vertices, ω � �ω1; : : : ;ω2nρ �. At each vertex, ωi � �νi1; : : : ; νinρ �
with i ∈ �1; 2nρ �, the jth scheduling variable, νij, equals either ρj
or ρj. The corresponding set of LTI realizations of the system,

evaluated at each vertex of the polytope, allows obtaining a gen-

eral representation of the LPV system as the following convex

interpolation:

A�ρ� B�ρ�
C�ρ� D�ρ�

�
2nρ

i�1

μi
A�ωi� B�ωi�
C�ωi� D�ωi�

(9)

The interpolation function μi�ρ� is computed for each vertex as:

μi�ρ� �

nρ

j�1

jρj − Cc�ωi�jj
nρ

j�1

�ρj − ρj�
> 0;

2nρ

i�1

μi�ρ� � 1 (10)

where Cc�ωi�j indicates the jth element of the vector Cc�ωi�, as
follows:

Cc�ωi�j �
ρj if ωi � ρj

ρj otherwise

B. Projectile Polytopic Modeling Process

The last modeling step, before the control design, consists of the

reformulation of the projectile Augmented quasi-LPV model in

Eqs. (7) and (8) as the generalized polytopic system in Eq. (9).

Through the inclusion of the integrator, the input matrix, B �
�0; 0; 1�T ∈ R3x1, and the output matrix, C � I ∈ R3x3, of Eq. (7)

are constant parameter independent, while the feedthrough matrix

D � 0. Additionally, from the scheduling vector in Eq. (7), nρ � 3.

Thus, the projectile polytopic model is obtained as the convex

interpolation of the 2nρ � 8 local LTI realizations of the system

evaluated at the vertices of the polytope, as in Eqs. (9) and (10).

However, the Augmented quasi-LPVmodel in Eqs. (7) and (8) is still

nonaffine with respect to the selected set of scheduling variables,

ρ�t� � �α�t�; V�t�; h�t��. Indeed, the entries of the state matrix A in

Eq. (5) show an explicit nonlinear dependence on α and V and an

implicit nonlinear dependence on h, through the definition of the

dynamic pressure �q�h�. Thus, the quasi-LPV model cannot be

directly reformulated as a polytopic system. A possible solution

consists of mapping ρ�t� into a new set of scheduling functions
~ρ�t�, which satisfies the affine restriction imposed by the polytopic

formulation. To this purpose, a model approximation and optimiza-

tion procedure is developed in the following two main steps:
1) In model-parameter dependence analysis, identify a new set

~ρ�t�, characterized by the least necessary number of scheduling
functions n ~ρ. Indeed, the computational complexity of the later

controller synthesis tends to rapidly increase with n ~ρ as O�2n ~ρ�.
2) In the polytope’s dimensions reduction, map the convex space

described by the original set ρ�t� into the new one defined by the
previously identified set ~ρ�t�. The intention is to minimize the
conservativeness of the controller synthesis by optimizing the dimen-
sions of the new polytope.

In the following, the procedure is discussed in detail explaining
how each of the steps is applied to the projectile Augmented quasi-
LPV model.

1. Model-Parameter Dependence Analysis

This analysis intends to reformulate themodel in Eqs. (7) and (8) as
a polytopic system. The state matrix A is first parameterized in the
lowest possible number of scheduling functions, selected based on
the following criteria:
1) Favor the selection of nonlinear terms that appear repeatedly in

the state matrix.
2) The functions must be affinewith the system to comply with the

polytopic formulation.
Then, the identified scheduling functions are extensively studied to

assess their relevance in the characterization of the system dynamics.
Based on the results, each function is either included in the new
scheduling vector ~ρ�t� or neglected. The resulting approximated
polytopic model is compared to the original one to estimate the
accuracy of the analysis. In the following, the procedure is applied
to the projectile quasi-LPV model, subdivided into three main steps.

a. Selection. The nonlinear terms characterizing the state matrix in
Eqs. (7) and (8) are selected in accordance with the given criteria and
accounted for as possible candidates for the new set ~ρ�t�:

~ρ1 :�
�qSdCZq

cos α

2mV2
; ~ρ2 :�

�qSCZδ1
cos α

mV
; ~ρ3 :�

∂qeq
∂α

;

~ρ4 :�
∂δq;eq
∂α

; ~ρ5 :�
�qSd2Cmq

2IyyV
; ~ρ6 :�

�qSdCmδ1

Iyy

(11)

As a consequence, the state matrix can be expressed as a function of
the new set ~ρ�t� as in Eq. (12). The reformulated state matrix A� ~ρ� is
still nonaffine in the original set of scheduling variables ρ�t�, but it is
affine in the new set ~ρ�t� as desired. However, this formulation relies
on a large set of scheduling functions, n ~ρ � 6, unfeasible for con-

troller design purposes:

A� ~ρ� �
0 �1� ~ρ1� ~ρ2

0 ~ρ5 − ~ρ3�1� ~ρ1� ~ρ6 − ~ρ3 ~ρ2

0 − ~ρ4�1� ~ρ1� − ~ρ4 ~ρ2

(12)

It is important to notice that a different parameterization of the state
matrix would result in a different set of scheduling functions. This
step requires extensive knowledge of the system dynamics under
investigation.

b. Analysis. To reduce the number of identified scheduling func-
tions, their variation is analyzed as a function of the original set of
parameters ρ�t�. Indeed, ρ�t� represents the envelope of all the flight
conditions characterizing the projectile’s trajectory as a convex sub-
space (polytope). Any trial scheduling function in ~ρ�t�, which is
highly varying inside the original polytope, must be maintained,
while the functions with limited effect on the system dynamics might
be approximated or completely neglected. The evaluation is based on
the flight envelope defined by α ∈ �0, 16� deg, V ∈ �160, 280� m/s,
and h ∈ �1; 14� km. Because the design aims at improving the range
capability of the projectile, only positive values of AoA are consid-
ered. Similarly, h � 14 km corresponds to the maximum apogee
conditions estimated for the range optimization, while h � 1 km is
assumed as the altitude level where the transition from the gliding
phase to the terminal guidance occurs.
First, the scheduling function ~ρ1 is investigated. The results in

Fig. 2 show the variation of ~ρ1 as a function of the airspeed and the
altitude in the selected ranges. In particular, the variation of ~ρ1 is
computed at increasing values of altitude, with an increment ofΔh �
1 km (blue lines). Because of the low order of magnitude, the
variation of ~ρ1 has a negligible impact on the system dynamics at
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any (V,h) flight conditions. The results concerning thevariation of ~ρ1
as a function of the AoA provide the same conclusion and are not

shown for brevity. As a consequence, the following approximation

holds:

~ρ1 ≈ 0 ∣ A12� ~ρ� � �1� ~ρ1� ≈ 1

As observed in Eq. (11), the functions ~ρ2, ~ρ5, and ~ρ6 have a common

affine dependence on the dynamic pressure value �q. In particular, the
definition of �q itself includes the variations of two original scheduling
variables: V and h. Thus, the three scheduling functions can be

approximated uniquely as linear functions of the dynamic pressure.

All the remaining parameters affecting ~ρ2, ~ρ5, and ~ρ6 are frozen to a
nominal average value ( �V; �CZδ1

; �Cmq
; �Cmδ1

) in their range of varia-

tions, leading to the approximations:

�ρ2� �q� �
�qS �CZδ1

m �V
≈ ~ρ2; �ρ5� �q� �

�qSd2 �Cmq

2Iyy �V
≈ ~ρ5;

�ρ6� �q� �
�qSd �Cmδ1

Iyy
≈ ~ρ6 (13)

In particular, the aerodynamic coefficients are functions of the

Mach value, hence of V and h, but their variations are very

limited, thus negligible. Similarly, the impact of the AoA varia-

tion on ~ρ2 is assumed negligible for the present analysis. The

accuracy of these approximations is verified at each flight con-

dition (V, h) as the root mean square error evaluated in the full

range of α � �0; : : : ; 16� ∈ RN and normalized (NRMSE) by the

mean value of the original scheduling function at the same flight

point:

NRMSE~ρj �V; h� :�
N

i�1
� ~ρj�αi ;V;h�−�ρj�αi ;V;h��2

N
N

i�1
~ρj�αi ;V;h�
N

; j ∈ �2; 5; 6�

The results related to ~ρ2 are shown in Fig. 3a. The approximation

error is minimum at the airspeed conditions around the selected

nominal value, �V � 220 m/s. However, it does not exceed 20% in

the main range of variation occurring during the gliding phase,

regardless of the �α; h� values. Similarly, the accuracy of ~ρ5 is

lower at lower airspeed values (less than or equal to 20%) and

improves at higher conditions (less than or equal to 10%). Indeed,

conditions of V ≥ 240 m/s never occur at low altitude levels, due

to the characteristic gliding trajectory of the projectile. Thus, the

upper curves on the right half of Fig. 3b are not relevant to the

analysis. Finally, the approximation of ~ρ6 provides extremely

accurate results as observed in Fig. 3c. Indeed, this function is

not dependent on the inverse of V, as the previous, but only on

the dynamic pressure. All the previous results are summarized in

Table 1.

a) b)

c)

Fig. 3 Approximation analysis: a) NRMSE of ~ρ2, b) NRMSE of ~ρ5, and c) NRMSE of ~ρ6.

Table 1 Normalized root mean square errors

Functions NRMSE maximum NRMSE minimum Reference error, %

~ρ2 0.31 0.02 20

~ρ5 0.25 0.001 10

~ρ6 0.064 0 2

Fig. 2 Approximation analysis: ~ρ1 at α � 12 deg.
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Based on the analysis, the approximations in Eq. (13) hold, and the
variation of three scheduling functions ( ~ρ2, ~ρ5, and ~ρ6) can be
represented in terms of the dynamic pressure variation only. By
including �q instead of ~ρ2, ~ρ5, and ~ρ6 in the new scheduling vector,
the corresponding dimension n ~ρ reduces significantly.

Concerning the remaining functions ~ρ3 and ~ρ4 the curves in
Figs. 4a and 4b, respectively, reveal the highly nonlinear behavior
characterizing the derivatives of the equilibrium functions ∂qeq∕∂α
and ∂δq;eq∕∂α. Additionally, their complex symbolic expressions

prevent any possible parameterization as a linear function of the
dynamic pressure or of the original set of scheduling variables. As
a consequence, they are directly assumed as new scheduling
functions, leading to the definition of the final scheduling vector,
ρ̂ � �ρ̂1, ρ̂2, ρ̂3�, as:

ρ̂1 :� �q; ρ̂2 :�
∂qeq
∂α

; ρ̂3 :�
∂δq;eq
∂α

(14)

Consistently, the state matrix in Eq. (12) can be reformulated in a
parameter affine form as:

~A�ρ̂� �
0 1 �A13�ρ̂1�
0 �A22�ρ̂1� − ρ̂2 �A23�ρ̂1�
0 −ρ̂3 −ρ̂3 �A13�ρ̂1�

(15)

where �A13 � �ρ2 and �A22 � �ρ5 are the approximated forms of ~ρ2
and ~ρ5, respectively, discussed in Eq. (13). As a final approxima-

tion, the matrix entry �A23 �
�qSd �Cmδ1

Iyy
− ρ̂2 �A13 ≈

�qSd �Cmδ1
Iyy

since the

term ρ̂2 �A13 is negligible.

c. Verification. To assess the accuracy of the overall procedure,
Figs. 5a and 5b show a comparison between the pole-zero maps of
the original (full) and the approximated (aprx.) models. Specifically,
Fig. 5a corresponds to stable flight conditions, assuming α � 12 deg
and increasing values of V and h, while Fig. 5b compares a stable
(α � 10 deg) and an unstable (α � 7 deg) configuration for increas-
ing values of V and a constant h � 8 km. Different axes scales are
selected to improve the readability of the presented results. A slight

difference between the original and the approximated poles is
observed, especially for higher values of V and lower values of h.
However, the effects of the approximations do not generate relevant
modifications in the system dynamics, confirming the accuracy of the
modeling procedure. These new sources of uncertainties are
addressed at the control design stage, discussed in the next section.

2. Polytope’s Dimensions Reduction

The second step of the procedure focuses on the analysis
of the convex polytope defined by the new set of scheduling
functions, ρ̂ � �ρ̂1�V; h�; ρ̂2�α; V; h�; ρ̂3�α; V; h��. Indeed, it is nec-
essary to properly map the original envelope, α ∈ �0; 16� deg,
V ∈ �160; 280� m∕s, and h ∈ �1; 14� km, into the corresponding

new one, ρ̂j ∈ �ρ̂j; ρ̂j�, with j � 1; 2; 3, and where ρ̂j and ρ̂j are

scheduling functions the upper and lower bounds, respectively, to
define the vertices of the new polytope. The following steps allow for
estimating the upper and lower values of each scheduling function ρ̂j
across the entire set of flight conditions described by α, V, and h.

a. Selection. Because the scheduling functions in ρ̂ are highly non-
linear, the flight envelope is sampled into a fine 3D grid of flight
points (α, V, h). However, the scheduling functions are evaluated
only on a subset of the overall grid, which respects the physical
constraints affecting the variables. Indeed, Fig. 6 shows the specific
relationship characterizing h∕V in a standard gliding phase trajec-
tory scenario. The trajectory was obtained through a closed-loop
guidance simulation, employing a simplified planar point-mass
model of the projectile dynamics. The figure shows how certain
(h, V) conditions are inconsistent with the targeted projectile’s
trajectory; thus, they must be neglected in the mapping process.
As a first formof polytope reduction, a cluster ofnc flight conditions
(red points) is selected only around the reference trajectory. The
selection of the nc points relies on a process where a progressively
finer grid of conditions has been employed for a more accurate
estimation of the boundaries of each scheduling function. The final
3D design grid additionally accounts for the range of variation of
the AoA, as shown in Fig. 7a.

b. Map. The scheduling functions in ρ̂ are evaluated across the
selected nc flight points, generating a new 3D convex subspace,

a) b)

Fig. 4 Approximation analysis: a) ~ρ3 variation at α � 12 deg and b) ~ρ4 variation at α � 12 deg.

0.0030.00750.0130.0180.024

0.036

0.07

0.0030.00750.0130.0180.024

0.036

0.07

a) b)

0.10.20.30.4
0.55

0.7

0.9

0.10.20.30.4
0.55

0.7

0.9

Fig. 5 Pole-zero maps: a) (V, h) variation at α � 12 deg and b) stable/unstable α conditions.
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as in Fig. 7b. The vertices of the new polytope are defined by the

boundary values for each scheduling function: ρ̂1 ∈ �0.5; 3� × 104,
ρ̂2 ∈ �0.05; 0.5�, and ρ̂3 ∈ �−1; 4�. The new polytope is still affected
by a certain level of conservatism because the selection of the grid
points was based on an approximated reference trajectory.

c. Reduction. By employing the polytope defined in step 2b, it is
possible to design a first LPV polytopic controller, as detailed in the
following section, and test the closed-loop system in the nonlinear
simulator environment. During the tests, the online evaluation of the
scheduling functions ρ̂ allows for redefining the boundaries of the
polytope, based on more accurate and realistic trajectories. Indeed,
the initial selection of flight conditions in Fig. 6 is affected by a
certain level of conservatism. By iteratively adjusting the dimensions
of the polytope and updating the controller design, it is possible to
significantly reduce the ranges of the scheduling functions to

ρ̂1 ∈ �0.5; 2� × 104, ρ̂2 ∈ �0.05; 0.35�, and ρ̂3 ∈ �−1; 2�, as shown in
Fig. 7c. Because inconsistent flight conditions are neglected, the
controller design results are progressively less affected by optimiza-
tion conservatism.

IV. Polytopic Controller Design

In this section, the controller design methods and objectives
are presented. The overall generalized plant architecture is first
introduced, followed by the formulation of the LPV H∞ controller

optimization problem. The controller synthesis addresses the flight
envelope represented by the variation of the scheduling variables:
α ∈ �0; 16� deg, V ∈ �160; 280� m∕s, and h ∈ �1; 14� km. The poly-
tope is defined through the corresponding ranges of variation of the
new set of scheduling functions (ρ̂1, ρ̂2, ρ̂3) obtained in Sec. III as a
result of the approximation process.
The LPV H∞ polytopic approach allows directly shaping the

frequency properties of the closed-loop system, guaranteeing stabil-
ity and performance at any flight conditions belonging to the poly-
tope. Indeed, if the frequency constraints are respected at each vertex
of the polytope, the same performances are guaranteed for any
controller interpolated at intermediate flight conditions.

A. Generalized Plant Architecture

The general architecture employed for the controller design is
presented in Fig. 8a. A second-order model is included in the defi-
nition of the generalized plant to account for the actuator dynamics,
together with the approximated polytopic quasi-LPVmodel described
in Eqs. (14) and (15). A set of first-order weighting functionsWe and
Wu imposes the desired closed-loop performances by targeting the
tracking error, e � r − α, and the derivative of the control deflection

input _δq;cmd, respectively. The reference signal r consists of an AoA

trajectory defined through a lift-to-drag ratio optimization law [38,39].
Theweighting functions are selected to achieve a suitable compromise
between tracking capability, disturbance rejection, and overall order of
complexity.
Because tracking capability and disturbance rejection are conflict-

ing properties, they cannot be simultaneously optimized through the
imposition of a single filter. The bandwidth of We is dedicated to
ensuring a reliable output disturbance rejection to the system, while a
first-order reference model fref sets the desired time response the
system should achieve. An additional first-order weighting function
Wr is applied to the resulting response error, er � fref − α, to impose
tighter bandwidth restrictions and improve the tracking capability of
the guidance reference signal. In particular, a core objective of the ref-
erence model selection relies on minimizing the overshoot affecting
the system response. Indeed, in a gliding flight scenario, the guidance
reference signal is generally engaged at the apogee of the projectile’s
trajectory, generating sudden and sharp variation in the projectile’s
attitude. A large overshoot on the AoA might lead to the saturation of
the aerodynamic control surfaces, critical for control purposes.

Fig. 7 Polytope maps: a) (α, V, h) subspace, b) (ρ̂1, ρ̂2, ρ̂3) subspace, and c) reduced (ρ̂1, ρ̂2, ρ̂3) subspace.

a) b)

Fig. 8 Design scheme: a) detailed architecture and b) general control configuration.

Fig. 6 Flight points selection: V − h trajectory constraints.
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Concerning the control input, the rolloff frequency ofWu is selected
in accordance with the characteristic bandwidth of the actuator model
to prevent stall events. Additionally, constant weights,Wdi � 0.1 and

Wdo � 0.1, are applied to the input and output disturbance signals di
anddo, respectively, aiming toproperly scale the disturbance effects on
the model. As a relevant remark, the weighting functions are indepen-
dent of the scheduling functions, meaning that the same performances
are imposed at each vertex condition of the polytope, leading to
possible conservativeness in the synthesis results.
The control scheme in Fig. 8a is then generalized as in Fig. 8b,

where the LPV plant P�ρ̂� includes the dynamics of the actuator,
the projectile polytopic model, the reference model, and the weight-
ing functions. Thus, the overall generalized state vector is defined

as xP � �x, xact, xref , xWe
, xWu

, xWr
�T ∈ R9, with x � �α, qdev,

δq;dev�T ∈ R3. The generalized exogenous input vector, ω � �r, di,
do�T ∈ R3, accounts for the reference guidance signal and the
input and output disturbances, while the generated control input,
u ∈ R, corresponds to the commanded virtual pitch deflection

rate _δq;cmd imposed on the canards. Indeed, the result of the inclusion

of the integrator dynamics during the state transformation pro-
cess is the redefinition of the quasi-LPV model input σ as the
derivative of δq. Finally, the generalized controlled output vector,

z � �z1, z2, z3�T ∈ R3, includes the control optimization objectives,

while the set of available measurements, y � �e, qdev, δq;dev�T ∈ R3,

is employed as input to the controller. In the LPV polytopic control
design, the generalized plant is evaluated at each flight condition
corresponding to a vertex of the polytope, by substituting the corre-
sponding values of the scheduling functions. The resulting LTI
system realizations are employed in the formulation of the set of
linear matrix inequalities (LMIs) that defines the controller synthesis
optimization.

B. H∞ Controller Synthesis

In the standard H∞ robust control framework, the design aims to
minimize the closed-loop induced L2 norm, of the defined general-
ized plant, such that:

kzk2 ≤ γ∞kwk2; γ∞ > 0 (16)

The index γ∞ in Eq. (16) expresses how closely the frequency
properties of the obtained closed-loop system match the desired
performances, imposed through the weighting functions.
In the specific case of the LPV polytopic design, the controller

synthesis is formulated as the resolution of a convex optimization
problem, defined by the imposition of the same closed-loop perfor-
mances at each realization of the LPV system. Thus, the optimization
problem consists of a set of LMIs computed at each vertex of the
polytope and solved offline through the identification of a constant
Lyapunov function that guarantees the same stability and perfor-
mance for each flight condition belonging to the polytope [24].
The solution corresponds to a set of LTI local controllers Ki, one
for each of theVxi vertices, with i � 1; · · · ; 8. The general polytopic
controller K�ρ̂� for any combinations of the scheduling functions
vector is obtained through the convex interpolation of the set of LTI
controllers:

K�ρ̂� �
8

i�1

μi�ρ̂�Ki

The design results obtained with the LPV H∞ technique are
investigated in the frequency domain in Fig. 9. Each figure represents
a specific closed-loop property of the system, evaluated at each of the
eight vertex conditions of the polytope (blue lines). As a first obser-
vation, Fig. 9a shows how the peak of the output Sensitivity function
remains less than or equal to 6 dB for each curve, ensuring reliable
stability margins at the vertices of the polytope. The transient dynam-
ics of the system tend to be slightly less responsive due to the LMIs
optimization which satisfies simultaneously the frequency require-
ments at each of the flight conditions. Therefore, the polytopic design
is generally affected by a certain level of conservativeness, possibly
deteriorating the performance of the controller. However, the
employment of the pair of weighting functions (We,Wr) successfully
imposes a reasonable bandwidth to the output Sensitivity and con-
siderably improves the low-frequency disturbance rejection capabil-
ity of the system, as shown in Fig. 9c. The latter property is
fundamental to guaranteeing the controller can handle not only the
uncertainties introduced during the modeling and approximation
procedure but especially the external disturbances affecting the oper-
ating conditions of the projectile (e.g., wind contributions).

Fig. 9 Frequency results: a) sensitivity function, b) complementary sensitivity, c) plant sensitivity, and d) controller sensitivity.
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Similarly, the polytopic design provides reliable high-frequency
noise attenuation to handle possible distortion affecting the measure-
ments, as shown in Fig. 9b. Indeed, the peaks of the Complementary
Sensitivity functions are maintained at less than or equal to 1 dB.
Concerning the performances imposed on the control effort by the
weighting function Wu, the controller respects the limitations at all
the flight conditions, both in terms of the operating bandwidth and
in terms of the low-frequency steady-state amplitude, as shown in
Fig. 9d. The presence of the reference model increases the effort re-
quired by the actuators to provide the desired performance, but the lim-
itations guarantee considerable margins from saturation occurrences.

V. Trajectory Tracking Simulation

In this section, the LPVpolytopic controller is tested in a trajectory
tracking simulation scenario. The controller is implemented in a
complete nonlinear simulator environment to verify its capability to
handle all the possible uncertainties introduced by the modeling and
approximation process.
The reference signal corresponds to a realistic AoA trajectory αref

generated through the online evaluation of a range-extending guid-
ance law, based on the lift-to-drag ratio optimization. The simulation
aims to cover most of the range of variation of each scheduling
function to assess the performances of the controller and to verify
which areas of the polytope are interested in the trajectory.

A. Simulator Architecture

The scheme in Fig. 10 presents the overall nonlinear simulator
environment, developed in a previous work [36]. Besides the imple-
mentation of the polytopic controller and the actuator dynamics, the
nonlinear simulator also targets the following aspects.

1. Guidance

This block implements the online lift-to-drag ratio optimization
law proposed in [39]. The algorithm provides a tradeoff between
highly complicated head-on approaches and suboptimal architecture
based on a set of open-loop offline evaluations of standard pitch-
attitude dynamics. Assuming quasi-steady state glide equilibrium
conditions with approximately constant dynamic pressure for two-
DoF pitch-attitude dynamics and assuming that an optimal lift-to-
drag ratio LDmax exists at each flight condition, the corresponding
equilibrium flight-path angle γeq can be expressed as:

γeq � −
1

LDmax 1� βatm�V2

2g�

where βatm � 1.389 ⋅ 10−4 1/m represents the exponent of the atmos-

phere density, modeled as ρatm � ρatm;0e
−βatmh with ρatm;0 �

1.227 kg∕m3. A reference AoA command αref can be derived from
the combination:

αref � αLD;max � kγ�γeq − γ�

where αLD;max consists of the optimal AoA, obtained by trimming the

pitch-attitude dynamics at each LDmax condition and γ is the actual
flight-path angle measured along the trajectory. The coefficient kγ
allows adjusting the relevance of the flight-path angle correctionwith

respect to the trimmed αLD;max, aiming to find an optimal tradeoff and

to avoid excessively sharp variation of the resulting reference signal.
For the present study, kγ � 0.35 has been selected, and a data set of

(LDmax, αLD;max) has been provided through dedicated CFD cam-

paigns on the complete projectile dynamics to increase the accuracy.

2. Actuator

The actuators are modeled as second-order systems characterized
by the transfer function:

Tδ �
ωδ

s2 � 2ωδξδs� ω2
δ

where ωδ � 150 rad/s is the actuator bandwidth and ξδ � 0.707
represents the damping ratio. Additionally, the saturation affecting
the angular position and angular rate is also addressed.

3. Airframe

The airframe block contains a complete description of the flight
mechanics, the environment, and the generation of the aerodynamic
contributions, as presented in Fig. 11. In particular, the environment
model provides a general model for the atmosphere following the
International Standard Atmosphere (ISA) 1975, ISO 2533 [40]. In
addition, it targets the wind contributions (shear, gusts, and turbu-
lence), employed as sources of disturbance to assess the robustness of
the controller in more realistic scenarios. Concerning the Aerody-

namic Model, the general Multivariable static model and the com-
plete control contributions described in Appendix B are employed in
the simulator environment. Based on a significant CFD data set, this
model allows accounting for all the possible flight configurations the
projectile might experience during the trajectory. Indeed, the simul-
taneous variations ofM,α, and β are considered in the formulation of
the aerodynamic forces and moments. The flight mechanics block
implements the six-DoF model of the projectile, including the kin-
ematic and dynamic equations of motion provided in Appendix A.
Finally, the control allocator converts the individual right and left
canards’ deflections into a combined pitch and roll contribution, as
previously expressed in Eq. (3).

4. Output Deviation

The output of the six-DoF nonlinear model is partially adjusted in
postprocessing in order to comply with the formulation of the quasi-
LPV pitch channel dynamics employed for the controller design.
Indeed, the output of the model in Eqs. (7) and (8), obtained through
the State Transformation approach, consists of the off-equilibrium
states qdev and δq;dev. Because these measurements are employed as
input to the LPV controller, the output of the overall six-DoF nonlinear
model needs to be deviated consistently by evaluating online the
equilibrium functions qeq and δq;eq at each flight condition. These

implementation solutions can result in additional sources of model
uncertainties that may affect the robustness properties of the controller.
As a final remark, the quasi-LPV model was augmented with an

integrator at the plant’s input to cancel the internal feedback loop
affecting the stability of the system. Thus, an integrator is interposed
between the output of the controller and the input of the actuator
model in the nonlinear simulator of Fig. 10 to ensure consistency.

B. Simulation Results

The complete ballistic-gliding trajectory results of the projectile
simulation are shown in Fig. 12. The trajectory is expressed in the

Fig. 10 Nonlinear simulator environment. Fig. 11 Airframe simulation scheme.

VINCO ETAL. 441

D
ow

nl
oa

de
d 

by
 T

ec
hn

is
ch

e 
U

ni
ve

rs
ite

it 
D

el
ft

 o
n 

Fe
br

ua
ry

 3
, 2

02
5 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/1

.G
00

77
26

 



local-level coordinates. An initial firing angle, θ0 � 60 deg, and an
initial velocity, V0 � 939 m∕s, are set to reach the desired apogee
conditions. During the ballistic phase, the canards are folded in the
sabot of the projectile to minimize the aerodynamic drag and avoid
any destabilizing lift contribution. Once the apogee is reached, the
canards are deployed and set with an initial zero local pitch deflection
δq0 , and the guidance evaluation algorithm is launched.

A sudden rise in the AoA is observed in Fig. 13a, corresponding
to the initialization of the controller and the tracking of the guidance
reference. As desired, the overshoot generated by the initialization
is handled by the controller, which rapidly stabilizes and converges
to the reference signal, minimizing the tracking error (less than or
equal to 1% at the steady state) for the rest of the trajectory. Addi-
tionally, Fig. 13b shows how the total pitch deflection of the canards
αcan is maintained at a relatively low amplitude during the entire
trajectory, far below the saturation limits. The total pitch deflection
corresponds to the overall deflection angle perceived by the
canards, expressed as the linear superposition between the local
pitch deflection commanded by the controller and the AoA charac-
terizing the trajectory of the projectile, as αcan � α� δq;cmd.

The results in Fig. 14a allow for verifying the relation V − h.
Despite the different apogee conditions, the simulation results belong
perfectly to the areas of the flight envelope considered during the

polytopic modeling process. The reference trajectory (dashed green)
represents the guidance point-mass model simulations previously
presented in Fig. 6 and employed in the selection of the grid points.
Coherently, Fig. 14b shows that the entire gliding phase of the
trajectory occurs at a subsonic-transonic regime, with M < 1 as
expected.
Concerning the polytope dimensions, Figs. 15a–15c present the

simulation trajectories related to the scheduling functions ρ̂1, ρ̂2, and
ρ̂3, respectively. As a first observation, all the trajectories perfectly
belong to the boundaries imposed through the definition of the
polytope. The function ρ̂3 is characterized by an evident dependence
on the variation of the AoA because the trajectories have very similar
shapes. As a consequence, ρ̂3 is subjected to a sudden and sharp

increment causing the variation rate _̂ρ3 → ∞. This observation
exploits one of the main advantages of LPV polytopic design com-
pared to the standard gain-scheduling strategy. Indeed, one of the
major limitations affecting gain-scheduling design relies on the lack
of performance guarantees in the case of rapid variation of scheduling
parameters. Differently, the polytopic approach allows accounting
for an infinite variation rate, under the condition of an affine model-
parameter relation.
As a further source of analysis, Fig. 15d exhibits the trajectories of

the controller interpolation functions associated with each of the LTI
local controllers designed at the vertices of the polytope. The data in
Table 2 provide an overview of the relevance of each local controller
(at the Vxi vertex, with i � 1; · · · ; 8) on the overall interpolation
process across the entire trajectory of the projectile. As expected,Vx1
andVx3 show a prevalent percentage in the controller interpolation at
the beginning of the simulation, while the influence of Vx6 and Vx8
increases along with the trajectory and provides on average the most
relevant contributions. Despite the fact that the 3D trajectory of the
scheduling functions in Fig. 16 seems to be quite independent of the
local controllers of Vx4, Vx5, and Vx7, the results in Table 2 show
their nonnegligible role in the interpolation. On the contrary, the last
controller Vx2 appears to be generally of marginal importance.
The restricted subspace covered by the 3D trajectory in Fig. 16

suggests that a redefinition of the polytope’s shape might further
improve the optimization of the controller design.

a) b)

Fig. 13 Simulation results: a) AoA trajectories and b) total pitch deflection.

Fig. 12 Simulation results: projectile’s full trajectory.

a) b)

Fig. 14 Simulation results: a) V − h physical relation and b) Mach number trajectory.
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The results of the simulation confirm the quality of the modeling
and approximation process performed to convert the nonlinear pitch
channel dynamics of the projectile into a quasi-LPV polytopic model
as well as the advantages of the polytopic controller design. Indeed,
the resolution of the set of LMIs only at the vertices of the polytope
drastically reduces the overall computational complexity, allowing
the synthesis of a controller able to stabilize the system at any flight
conditions belonging to the polytope. As a drawback, the polytopic

approach tends to generate conservative results that can deteriorate
the performance of the controller. The employment of a systematic
analysis of the scheduling variable ranges to optimize the polytope’s
dimensions reduces significantly the conservativeness of the con-
troller synthesis, while leveraging guarantees provided by the LPV
polytopic design.

VI. Conclusions

In this paper, a systematic procedure is proposed to model the
nonlinear pitch channel dynamics of a new class of guided projectiles
as a polytopic system. The nonlinear dynamics is first converted to a
reliable quasi-LPV model, using the State Transformation method.
The quasi-LPV model is later reformulated to comply with the
polytopic requirements of an affine model-parameter relation
through a process that maps the original set of scheduling variables
into a new set of scheduling functions. The process requires an
extensive investigation of the system dynamics to identify a suitable
set of new scheduling functions, consistent with the original flight
envelope. However, it allows modeling the flight envelope as a
convex subspace (polytope) whose vertices correspond to the combi-
nation of the boundary values of each new scheduling function. Then,
the LPV polytopic controller synthesis is performed, accounting for
the design constraints imposed only at the vertices conditions of
convex subspace, reducing the overall computational complexity.
The synthesis results in a set of local realizations of the LPV con-
troller corresponding to the each of polytope’s vertices. Thus, the
LPV controller, evaluated at any intermediate flight points belonging
to the convex space, is obtained from the interpolation of a reduced
set of local controllers, simplifying the implementation stage. As a
main drawback, the polytopic approach tends to introduce conserv-
ativeness in the controller optimization synthesis. Thus, the final step
of the proposed modeling procedure aims to adjust the ranges of
variation of the new scheduling functions to optimize the dimensions
of the polytope.
The controller design is based on the H∞ mixed sensitivity

approach. The frequency domain results show how the polytopic
controller ensures relevant disturbance rejections, reliable tracking
capability, and reasonable control effort requirements properties at
all the investigated flight conditions. The controller is later imple-
mented in a complete nonlinear simulator environment to assess its

a)

c)

b)

d)

Fig. 15 Simulation results: a) scheduling function ρ̂1, b) scheduling function ρ̂2, c) scheduling function ρ̂3, and d) interpolation trajectories μ.

Table 2 Controller interpolation functions

Inter-
polation
function Vertices ρ̂1 ρ̂2 ρ̂3

Maximum,
%

Minimum,
%

Average,
%

μ1 Vx1 0.5 ⋅ 104 0.05 −1 86 0.5 6

μ2 Vx2 2 ⋅ 104 0.05 −1 7 0.6 5

μ3 Vx3 0.5 ⋅ 104 0.05 2 57 0.1 10

μ4 Vx4 2 ⋅ 104 0.05 2 20 0.1 6

μ5 Vx5 0.5 ⋅ 104 0.35 −1 17 0.8 11

μ6 Vx6 2 ⋅ 104 0.35 −1 65 0.3 32

μ7 Vx7 0.5 ⋅ 104 0.35 2 26 0.2 10

μ8 Vx8 2 ⋅ 104 0.35 2 25 ≈0 19

Fig. 16 Simulation results: scheduling functions in the 3D polytope.
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performance in a gliding phase simulation scenario. A lift-to-drag

ratio optimization guidance law is employed to generate a reference

angle-of-attack trajectory that maximizes the operating range of the

projectile. The results confirm the capability of the LPV polytopic

controller to successfully stabilize the projectile dynamics across the

entire flight envelope described by the polytope and to properly track

the reference guidance signal. However, the trajectories of the con-

troller interpolation functions reveal the limited relevance of the

controller local realizations at certain vertices of the polytope. A

redefinition of the polytope’s shape might improve the LPV H∞
design by neglecting those specific flight points in the overall opti-

mization process.

Appendix A: Six-DoF Nonlinear Dynamics

The nonlinear dynamics of the guided projectile complies with the

flight mechanics tensor formulation presented in [41]. The transla-

tional dynamics expresses the linear motion of the projectile’s center

of gravity, while the attitude dynamics represents the angular motion

of the projectile’s body frame B with respect to the inertial Earth

frame E. These equations are projected into the system of coordinates

associated with the projectile’s body as in Eqs. (A1) and (A2),

respectively:

_u

_v

_w

� 1

m

X

Y

Z

−

0 −r q

r 0 −p

−q p 0

u

v

w

(A1)

_p

_q

_r

�

1
Ixx

0 0

0 1
Iyy

0

0 0 1
Izz

L

M

N

−

0 −r q

r 0 −p

−q p 0

×

Ixx 0 0

0 Iyy 0

0 0 Izz

p

q

r

(A2)

The projectile linear velocities are expressed by the state variables

�u; v;w�, whereas the angular velocities correspond to the triple

�p; q; r�. The external aerodynamic forces �X; Y; Z� and moments

�L;M;N� are discussed in detail in the next section. Finally, Ixx, Iyy,
and Izz are the principal moments of inertia of the projectile’s body,

while m corresponds to the projectile’s mass.

Appendix B: Aerodynamic Model

The aerodynamic forces and moments models in Eqs. (B1)

and (B2), respectively, account for the static coefficient contribu-

tions �CXS
; CYS

; CZS
; CmS

; CnS�, the damping coefficient contribu-

tions �CYr
; CZq

; Clp ; Cmq
; Cnr �, the control coefficient contributions

�CXδeff
; CZδq

; Clδp
; Cmδq

�, and the gravitational contributions g based

on the parameterizations:

X

Y

Z

� �qS

CXS
�M; α; β�

CYS
�M; α; β�

CZS
�M; α; β�

� d

2V

0

CYr
�M�r

CZq
�M�q

�
CXδeff

�M; δeff�
0

CZδq
�M; δq�

�mg

− sin θ

0

cos θ

(B1)

L

M

N

� �qSd

0

CmS
�M; α; β�

CnS�M;α; β�
� d

2V

Clp�M�p
Cmq

�M�q
Cnr�M�r

�
Clδp

�M; δp�
Cmδq

�M; δq�
0

(B2)

where S and d stand for the projectile’s reference surface and caliber,

θ represents the pitch angle, V is the airspeed, and �q consists of the

dynamic pressure.
The static models were obtained through an exhaustive regres-

sion analysis, based on a set of CFD campaigns. The regression

analysis was performed with respect to the variation of the angle

of attack α, the angle of sideslip β, and the Mach number M.

Two aerodynamic models of different complexity were developed.

The first relies on a simple linear regression, which considers only

the extreme configurations of the projectile dynamics, where the

longitudinal and the lateral channels are assumed decoupled. Thus,

either the effect of α or β is considered for each coefficient

regression:

CXS
�M;α� � CXα0

�M� � CXα2
�M�sin2α� CXα4

�M�sin4α;
CYS

�M; β� � CYβ1
�M� sin β;

CZS
�M;α� � CZα1

�M� sin α;
CmS

�M;α� � Cmα1
�M� sin α� Cmα3

�M�sin3α� Cmα5
�M�sin5α;

CnS�M; β� � Cnβ1
�M� sin β (B3)

The second model is based on a multivariable regression, where

the projectile longitudinal and lateral channels are coupled by the roll

effect, and the simultaneous variations of α and β become relevant:

CXS
�M;α; β� � CX0

�M� � CX2
�M� cos α cos β

� CX4
�M�cos2αcos2β;

CYS
�M;α; β� � CY1

�M� sin β� CY2
�M� sin β cos β cos α;

CZS
�M;α; β� � CZ2

�M� sin α cos β;
CmS

�M;α; β� � Cm2
�M� sin α cos β� Cm4

�M� sin α cos αcos2β;
CnS�M;α; β� � Cn1�M� sin β� Cn2�M� sin β cos β cos α (B4)

All the elementary coefficients (e.g., CXα0
) represent the param-

eters identified during the regression analyses. Likewise, the

aerodynamic control contributions were modeled through a

regression analysis on a dedicated CFD data set, as a function

of the Mach number, and the virtual control deflection angles δq,
δp, and δeff :

CXδeff
�M; δeff� � CXδeff0

�M� � CXδeff2

�M�sin2δeff ;
CZδq

�M; δq� � CZδq1
�M� sin δq � CZδq3

�M�sin3δq;
Clδp

�M; δp� � Clδp1
�M� sin δp � Clδp3

�M�sin3δp;
Cmδq

�M; δq� � Cmδq1
�M� sin δq � Cmδq3

�M�sin3δq (B5)

The Simple Linear static model in Eq. (B3) is employed for the

autopilot design, together with a first-order linear approximation

of the control coefficients in Eq. (B5) �CXδeff
is completely

neglected), whereas the complete Multivariable static model in

Eq. (B4) is included in the simulator environment with the full

control coefficients in Eq. (B5), for a more realistic testing

purpose.
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Appendix C: State Transformation Procedure

Assuming the output nonlinear model, expressed as a function of

the time-varying parameters in ρ�t�, as:

_α

_q
�

f1�ρ�
f2�ρ�

�
0 A12�ρ�
0 A22�ρ�

α

q
�

B1�ρ�
B2�ρ�

δq;

ρ�t� � �α�t�; V�t�; h�t�� (C1)

where:

A12�ρ� � 1� �qSdCZq
cos α

2mV2
; B1�ρ� �

�qSCZδ1
cos α

mV
;

A22�ρ� �
�qSd2Cmq

2IyyV
; B2�ρ� �

�qSdCmδ1

Iyy
;

f1�ρ� � −
X sinα

mV
� �qSCZS

cos α

mV
� g

V
sin α sin �θ� cos α cos �θ ;

f2�ρ� �
�qSdCmS

Iyy

by zeroing the dynamics associated with α, and q, it is possible to
define the system trimming conditions as a function of ρ�t� as

follows:

f1�ρ� � A12�ρ�qeq � B1�ρ�δq;eq � 0

f2�ρ� � A22�ρ�qeq � B2�ρ�δq;eq � 0
(C2)

The solution of the system of equations in Eq. (C2) leads to the

parameter-varying equilibrium functions related to the pitch rate and

to the input virtual deflection, respectively:

qeq�ρ� �
B1�ρ�f2�ρ� − B2�ρ�f1�ρ�
A12�ρ�B2�ρ� − A22�ρ�B1�ρ�

;

δq;eq�ρ� � −
A12�ρ�f2�ρ� − A22�ρ�f1�ρ�
A12�ρ�B2�ρ� − A22�ρ�B1�ρ�

Then, by subtracting the trimming conditions in Eq. (C2) from the

nonlinear dynamics in Eq. (C1), the transformed model is obtained:

_α
_q

� 0 A12�ρ�
0 A22�ρ�

α
qdev

� B1�ρ�
B2�ρ� δq;dev (C3)

where the new off-equilibrium values of the pitch rate qdev and virtual
pitch deflection input δq;dev are defined by the transformation as:

qdev :� q − qeq�ρ�; δq;dev :� δq − δq;eq�ρ� (C4)

The dynamics of the off-equilibrium state qdev is expressed

through the partial derivatives of the corresponding equilibrium

function qeq�ρ� as:

_qdev :� _q − _qeq; (C5)

with:

_qeq �
dqeq
dt

� ∂qeq
∂α

_α� ∂qeq
∂V

_V � ∂qeq
∂h

_h (C6)

The partial derivatives related to the exogenous scheduling variables

V and h are neglected, in reason of the very limited impact they have

on the off-equilibrium dynamics. They are generally assumed as

external sources of disturbance to be compensated during the control

design stage [15,17].

By substituting the dynamics of α, defined in Eq. (C3), into
the approximated version of Eq. (C6), the following expression is
obtained:

_qeq ≈
∂qeq
∂α

_α

� ∂qeq
∂α

�A12qdev � B1δq;dev� (C7)

As a result, by considering the dynamics of q in Eq. (C3) and the
equilibrium dynamics in Eq. (C8), the off-equilibrium dynamics
defined in Eq. (C5) can be expressed as:

_qdev � A22 −
∂qeq
∂α

A12 qdev � B2 −
∂qeq
∂α

B1 δq;dev (C8)

Thus, the (state transformed) quasi-LPV version of the original non-
linear model in Eq. (C1) corresponds to:

_α

_qdev
�

0 A12�ρ�
0 A22 −

∂qeq
∂α A12

α

qdev
�

B1�ρ�
B2 −

∂qeq
∂α B1

δq;dev

However, the obtained quasi-LPVmodel is expressedwith respect
to the off-equilibrium input δq;dev and, consequently, as a function of
the trimming condition δq;eq that has to be continuously updated. In
terms of system stability and robustness, this internal feedback loop
might be critical. A straightforward solution consists of restricting
the validity of the formulation to those flight conditions where
δq;eq � 0. Nevertheless, this imposition represents a strong limitation

to the operating flight envelope of the projectile quasi-LPV model.
A standard alternative solution consists of augmenting an integra-

tor at the plant input [1,15], defining:

δq � σ

In this way, the new input σ is uniformly zero at every equilibrium
point, and the internal feedback loop does not affect the system
dynamics anymore.
By repeating the same procedure as in Eqs. (C5–C8) for the off-

equilibrium input dynamics δq;dev, defined in Eq. (C4), the final
integrator-augmented quasi-LPV system is obtained:

_α

_qdev

_δq;dev

�
0 A12�ρ� B1�ρ�
0 A22�ρ� − ∂qeq

∂α A12�ρ� B2�ρ� − ∂qeq
∂α B1�ρ�

0 − ∂δq;eq
∂α A12�ρ� − ∂δq;eq

∂α B1�ρ�

×

α

qdev

δq;dev

�
0

0

1

σ
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