Deep vs Shallow Reinforcement
Learning for low-dimensional
continuous control tasks

V. Arnaoutis

f
U De I ft Bﬁilvtersity of
I Technology Delft Center for Systems and Control

Deep vs Shallow Reinforcement
Learning for low-dimensional
continuous control tasks

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Systems and Control at Delft
University of Technology

V. Arnaoutis

June 28, 2019

Faculty of Mechanical, Maritime and Materials Engineering (3mE) - Delft University of
Technology

Delft
e t University of
Technology

Copyright © Delft Center for Systems and Control (DCSC)
All rights reserved.

Summary

Deep Learning performance dependents on the application and methodology. Neural Net-
works with convolutional layers have been a great success in multiple tasks trained under
Supervised Learning algorithms. For higher dimensional problems, the selection of a deep
network architecture can significantly improve the accuracy of the network, however for low
dimensional problems this might not be true. Shallow Neural Networks have successfully
matched the performance of Deep Neural Networks in multiple tasks in the past and have
been shown to be expressive enough to represent low dimensional continuous control prob-
lems. Through the thesis, the performance and expressiveness of Shallow and Deep networks
is compared for low-dimensional continuous control tasks. The thesis begins by comparing the
two network architectures in a Supervised Learning algorithm and progresses towards state-
of-the-art Reinforcement Learning algorithms. The thesis provides an empirical approach
towards comparison of neural networks and makes conclusions that can support the selec-
tion of a network architecture for continuous control applications using Deep Reinforcement
Learning algorithms.

The selection of a shallow and deep neural network architecture that can learn the target
function for one of the tested benchmarks (inverted pendulum) is achieved by training the
networks in a vanilla Supervised Learning algorithm. The algorithm is then upgraded to
incorporate a progressive tracking of the data, a process which was found capable for both
the shallow and deep network. The complexity of the algorithm was increased by introducing
bootstrapping of the data and removing any pre-collected data that assisted learning. From
bootstrapping the target function, the networks were challenged to learn by themselves, a
condition that motivated additional noise and poor data generation. Bootstrapping has been
proven challenging for the deeper architecture which over-fit in itself. The final stage was the
implementation of the state-of-the-art Reinforcement Learnign algorithm , Deep Deterministic
Policy Gradient. The Reinforcement Learning algorithm completely removed the structured
learning that was present in the previous methods as it forced the network to learn from
simulating episodes. Once again, the deep architecture struggle to learn compared to the
shallow one. At this point, two additional benchmarks were tested on the same algorithm
using a shallow and a deep neural network. The performance for each benchmark varied,

Master of Science Thesis V. Arnaoutis

which suggested that both shallow and deep architectures could achieve sufficient results.

The thesis concluded that a shallow or deep architecture with two hidden layers, can be ap-
propriate for training a low-dimensional continuous control task. The performance difference
of shallow and deep architectures can vary between setups which can be the result of fine-
tuning of hyper-parameters. An important setback that was presented was the repeatability
and reliability of good learning for both architectures. It has been shown that indeed both
network architectures can learn a specific task, however for one good training session, there
could be many bad ones. For future implementations, it is proposed that a deep network
architecture shall be favored, due to the additional expressiveness it can provide, however a
shallow network shall also be tested as a benchmark-test for the deep network.

V. Arnaoutis Master of Science Thesis

Table of Contents

Acknowledgements

1 Introduction

2 Preliminaries
2-1 Introduction to Neural Networks
2-1-1 Definition of Shallow and Deep Neural Networks
2-1-2 Epoch and batchsize

2-1-3 Experience Replay

2-2 Continuous Control Benchmarks
2-2-1 Inverted Pendulum
2-2-2 Magnetic Manipulator
2-2-3 Hopper-v3

2-3 Pre-Generated Data for Inverted Pendulum

2-4 Visualization Techniques for Neural Networks
2-4-1 Neuron Visualisation
2-4-2 Activation Visualisation

2-5 Shallow and Deep Architecture Selection
2-5-1 Training the Neural Network
2-5-2 Stopping criteria L
2-5-3 OQverfit
2-5-4 Computational Time Comparison

2-5-5 Architecture Selection
2-6 Summary and Concluding Remarks L.

3 Tracking Value Iteration
3-1 Tracking Value lteration Dataset
3-2 Analytical comparison between SLand TVI
3-2-1 Deep Neural Network

3-2-2 Shallow Neural Network
3-2-3 Increasing the trainable parameters/width

3-3 Visual comparison of parameters between SL and TVI
3-3-1 \Visualizing the neurons
3-4 Summary and Concluding Remarks L.

4 Bootstrapping Value lteration
4-1 BVImethodology
4-2 Discount factor and Epochs
4-3 Upgrade Reward Function
4-4 State multi-initialization

<

DO == = =
OO OO > DN DO OO0 =1 O i i oW i

Master of Science Thesis V. Arnaoutis

Table of Contents

4-5 Difference between Shallow and Deep
4-5-1 Visualizing the expressiveness

4-6 Summary and Concluding Remarks

5 Reinforcement Learning

5-1 Deep Deterministic Policy Gradient
5-1-1 Action Noise
5-1-2 The Algorithm
5-1-3 Hyper-parameters
5-1-4 Neural Network
5-1-5 Action Scaling - Normalization

5-2 Inverted Pendulumo
5-2-1 Global Inputs L.
5-2-2 Llocallnputs
5-2-3 Computational Time

5-3 Magman
5-3-1 Global Inputs
5-3-2 Locallnputs,
5-3-3 Random Initialization

5-4 Hopper
5-4-1 Training

5-5 Summary and Concluding Remarks

6 Conclusion
-1 Performance

0-2 State-of-the-art algorithms
6-3 Environment complexity
6-4 Computational consideration
6-5 Shallowwvs. Deep
6-6 Future Work and Recommendations

Selection of NN architectures]
A-1 Optimizers and Activation functions

V. Arnaoutis

Master of Science Thesis

Acknowledgements

I would like to thank my supervisor Prof.dr. Robert Babuska for the opportunity to be
involved in this thesis and his consistent attention throughout the year. I would also like to
thank my daily supervisor Ir. Tim de Bruin for his never-ending support and willingness to
help me at any time.

Delft, University of Technology V. Arnaoutis
June 28, 2019

Master of Science Thesis V. Arnaoutis

Vi Acknowledgements

V. Arnaoutis Master of Science Thesis

Chapter 1

Introduction

Deep Learning has shown great success in image processing and time-series problems [1]
[2] [3] [4] [5] [6]. Since then, Neural Networks have gained the interest of Reinforcement
Learning algorithms, for approximation of complex high dimensional functions [7] [8]. Deep
Reinforcement Learning has been developing in both high and low dimensional systems using
both discrete and continuous control actions [9] [10] [11].

As any neural network is a universal approximator, a selection of an exact network architec-
ture is hard to be supported. Nevertheless the performance of various depth networks can
vary between tasks [12] [13]. The choice of a good performance architecture can be heavily
dependent on the algorithm, environmental constrains and dimensions of the model [14] [15].
While depth can be theoretically proven to perform better or as good as a shallower network,
this is not always true [16] [17]. In an attempt to minimize the variables and achieve an
empirical study on the influence of the neural network architecture, we select to examine
continuous control low-dimensional tasks.

Low-dimensional continuous control tasks have already been shown to learn with Neural
Networks of very few layers [18] [19] [20]. For the thesis, the interesting transition is from
shallow to deep networks, as defined in Chapter 2. Shallow Networks have already shown to
be enough for such approximations, which makes the benefits of depth increase questionable
[9] [21]. Thus, the study uses one architecture of each category, to compare performance.

The term "performance" of a neural network can vary based on the applied problem and
the research goals. For this thesis the performance of a network is summarized in three
properties. The most common performance measure of NNs is the generalization error, that
represents how well the network can predict the output of new data samples with respect to
the true output. This can be accomplished by comparing the NN with previously collected
and unseen data or evaluate it during a simulation in a setup. The second performance
criterion is the computational time and power required for the network to train on the data.
The network’s size and complexity can be a crucial factor of learning as some algorithms
and networks could require multiple hours, even days to process the data. If for those cases,

Master of Science Thesis V. Arnaoutis

2 Introduction

the approach could be replaced by a different network architecture that could achieve similar
or slightly less performance in much shorter period then the faster version shall be favored.
The third criterion is the reliability which is introduced by the control aspect of the problem,
for simulations and real applications, where control models could be fragile and expensive.
Reliability focuses on how well the same network can approximate a function given random
initialization of the parameters. A high reliability of a neural network means that given a
specific network architecture, the algorithm can learn a function consistently, with similar
accuracy.

Supervised Learning can be proven consistent due to the possibly noise free data, which in-
crease the robustness of the network during training [22]. Regression tasks can be learned
by Neural Networks without the hustle of fine tuning multiple hyper-parameters that are
involved with the Reinforcement Learning [23] [24]. The empirical approach followed in this
thesis, is the study of the performance of Shallow and Deep Neural Networks for learning a
function starting from vanilla-Supervised Learning regression task and progressing in incre-
ments towards state-of-the-art Reinforcement Learning. In Chapter 2 the basic properties,
setups and tools used in the thesis will be introduced. In addition, the chapter will present the
first step, the vanilla Supervised Learning, which will aim in identifying a shallow and deep
neural network architecture that can approximate the state-cost function of the Inverted Pen-
dulum model (Section 2-2). Chapter 3, will introduce tracking of the changes of the state-cost
function by training the neural networks in evolving target data. The procedure will con-
tinue by challenging the neural networks to learn from themselves instead of learning through
pre-collected data, by bootstrapping value iteration, as presented in Chapter 4. The final
stage is to train the neural network by collecting sampled data from simulation by running
episodes. In Chapter 5, a state-of-the-art Deep Reinforcement Learning algorithm [19] will be
used to train multiple low dimensional continuous control benchmarks, including an Inverted
Pendulum, a Magnetic Manipulator and a one legged robot. Throughout the thesis, both
Shallow and Deep Neural Networks will be examined in similar conditions of learning and the
learned functions will be evaluated under various scenarios to test the networks performance.

The conclusion will summarise the findings of each chapter of the thesis, covering a different
stage of the transition towards Deep Reinforcement Learning. Using the results and empirical
findings, an educated conclusion will be done on the comparison between shallow and deep
network architectures. A suggestion for the ideal architecture will be presented which could
be favored when considering low-dimensional continuous control systems.

V. Arnaoutis Master of Science Thesis

Chapter 2

Preliminaries

This chapter will introduce the concepts and terminology used throughout this thesis. Part
of the chapter is an introduction to parameters of Neural Networks, related to initializing
and training the network. The three continuous control tasks, Inverted Pendulum, Magnetic
Manipulator and Hopper-v3, will be introduced and used throughout the report as bench-
marks for comparison of the networks. Additional techniques that involved visualization of
the neurons and network parameters will be explained in this chapter and will be used in
later chapters for comparison between NN architectures.

2-1 Introduction to Neural Networks

A basic previous understanding is expected from the reader to follow the remaining of the
thesis. Terminologies that were not defined explicitily in the thesis follow their common
definition, that in most cases can be found in [25] [24] [26]. Some unique or modified parameter
explanations can be found in this section.

2-1-1 Definition of Shallow and Deep Neural Networks
The definition of shallow and deep networks can vary between literatures. With the success of
convolutional layers in high-dimensional problems, deep network architectures exist in many

sizes. To provide clear distinction between shallow and deep networks, each architecture is
defined as shown below:

Shallow Neural Network

A shallow network is any network whose architecture includes only one Fully-Connected (FC)
hidden layer, inbetween the input and output layer. The use of activation functions, dropout

Master of Science Thesis V. Arnaoutis

4 Preliminaries

layer and other normalization techniques is not considered as depth increase but simply as
additional characteristics to the existing hidden layer.

Deep Neural Network

A deep network is defined as any network with more basic hidden layers than a SNN (i.e. 2
hidden layers or more). As convolutional layers are not introduced in this research and the
hidden layer type remained FC for all experiments, the DNN definition includes all FC-NN
that have higher depth than the SNN. In practice, the DNNs used in the report do not exceed
the depth of 4 FC hidden layers.

2-1-2 Epoch and batch size

Two terminilogies associated with learning in Neural Networks are the epoch and batch-size
[27]. A single epoch represents one complete use of the whole data-set. When the data used
for a parameter upgrade is smaller than the whole data-set then it is referred to as mini-batch.
In general, the size of the data used for one gradient step is referred to as batch-size.

2-1-3 Experience Replay

The term Experience Replay (ER) is used to describe a memory buffer that is used to store
data samples [28]. In both offline and online RL algorithms, where data is generated from
running episodes, each step in an episode is stored in a large database out of which batches
are randomly selected to train the network [29]. Each step in the memory buffer consists
of a tuple that is constructed from the current state, next state, action taken, reward and
state-cost. The use of memory replay assists in the de-correlation of data and train from
multiple episodes. Improvements on the simple ER have been done in the past out of which
one of the most popular is the Prioritised ER that chooses data samples that can increase
the learning speed [30].

2-2 Continuous Control Benchmarks

This section will introduce the continous tasks that will be used for training the NNs. The
section will provide information that will be referred later in the report and are foundamental
to understand later chapters. The models include the Inverted Pendulum, a 1-DOF under-
actuated system, the Magnetic Manipulator and the Hopper-v3, a popular low-dimensional
continuous control benchmark for DRL from OpenAI-Gym [31].

2-2-1 Inverted Pendulum

The 1-DOF Inverted Pendulum system (IP) is a digital twin of an existing setup, created and
owned by the Technological University of Delft. The dynamical model used to predict the

V. Arnaoutis Master of Science Thesis

2-2 Continuous Control Benchmarks 5

Figure 2-1: An image of the real Inverted Pendulum from which the dynamical model is extracted
to be used in simulation.

response of the pendulum, corresponds to the exact dynamics of the pendulum (cite to be
placed).

The Setup

The one degree of freedom underactuated pendulum is the main system of the thesis. Due
to its underactuation characteristics and unstable equilibrium this low-dimensional system
has a complex state-value function. With only two states required to control the model, the
cost function of the IP can be easily plotted which makes this setup ideal for the thesis.
The full motion of the pendulum can be described with two states, the position and velocity.
The position of the Inverted Pendulum (IP) can be wrapped to a single loop with range 2.
Throughout the report the wrapping will be done either (a) from 0 to 27 radians, with 0
and 27 describing the angle of the lowest position or (b) from —m to 4, without shifting
the states (i.e. 0 describes the lowest position and 7 describe the upper position). The
velocity range is set from —30 to 430 rad/s. The velocity range is greater than the maximum
speed required to achieve swing up, which guarantees an extra margin for exploration. To
actuate the pendulum a single input is used that is translated to the torque of the actuator
with allowable range between +2V. Figure 2-1 represents a picture of the real setup, whose
properties were used to design the environment which the NN will be trained on.

Simulating a swing-up

One of the performance metrics that were used during the report is the success rate of the
pendulum achieving a swing up and upper position stability. Throughout the report the
initial position of the pendulum varied from the lowest position to multiple positions to cover
uncertainty and noisy V-functions. To simulate the swing up, the dynamical model of the
pendulum is used. Before introducing an actor network to provide continuous action, the
input control used was selected from a discretised space. For each discrete action the next
state was calculated, using the dynamic model of the IP. The next states were fed into the NN

Master of Science Thesis V. Arnaoutis

6 Preliminaries

which predicted the state-value cost. Thereafter, the optimal action was selected using the
equation a* = argmaxV (s’). The complete algorithm for the action selection can be seen in
Algorithm 1. For the Reinforcement Learning implementation, where the actor-critic method
was used, the action was predicted by the actor NN by providing the current states of the IP
as inputs.

Algorithm 1: Selection aglorithm for optimal action a* using discrete actions and the

state-value function V
sactions — current state
actions — all discrete actions
V — empty list or vector with same length as actions
for a in actions do
s’ = from_ dynamic_ model(s, a)
V' = neural_network_ predict(s’)
V « V' % appends predicted cost to the current list
end
a* = argmax (V)

2-2-2 Magnetic Manipulator

The Magnetic Manipulator (MagMan) is the second low-dimensional continuous control bench-
mark used in the thesis. The magman uses coils and magnetic force to move a metallic ball
to a specific position. The physical system, as shown in Figure 2-2, consists of four coils,
however during the experiments in this thesis only the two will be used. Magman, similar
to the IP, has only 2 observable states, the position and velocity of the ball and has two
actions, the voltage input of the two controllable coils. The task of magman is to stabilize
the metallic ball in-between the two coils starting from the same initial position. The reward
is the absolute difference between the target and current position. During training, the states
and actions are standardized and normalized between [-1, 1].

Figure 2-2: An image of the real Magnetic Manipulator from which the dynamical model is
extracted to be used in simulation.

V. Arnaoutis Master of Science Thesis

2-2 Continuous Control Benchmarks 7

2-2-3 Hopper - v3

The Hopper-v3 (Hv3) environment is based on the MuJoCo physics engine and is a simulation
of a 3 joint robot [31]. Hopper, shown in Figure 2-3 is a higher dimensional problem that
is expected to learn hopping and moving forward. The Hopper has 12 observable states (6
positions and 6 velocities) and can be controlled by three joints. As the hopper is expected
to learn to move forward with a similar and constant pace, the exact position on the map is
not necessary for learning the correct policy. If the x-position is used as network input then
it will introduce redudancy and increase trainable parameters to the network as the optimal
action should be uncorrelated with the x-position. Such a network construction could reduce
and make more difficult the NN training. Thus, for training a Neural Network, only 11 states
are used.

position # translation
endpoint horizontal 0 linear
endpoint vertical 1 linear
joint 1 (endpoint) 2 angular
joint 2 (actuated) 3 angular
joint 3 (actuated) 4 angular
joint 4 (actuated) 5 angular

Figure 2-3: An image of the simulation of OpenAl Gym from the continuous control task;
Hopper-v3. The three joint robot is trained to hop forwards while keeping its torso above a
threshold value. The observable positions can be seen in the list, where joint 1 is not controllable
however it is used to track the linear movement of the hopper. Position states 1-5 are used to
train the neural network in addition to the corresponding 6 velocities of positions 0-6.

Reward

The reward function is a composed by the horizontal velocity, the control action and a boolean
parameter (i.e. 0 or 1) which determines healthiness, as shown in Equation 2-1. The health-
iness is satisfied when the upper joint of the hopper is above a specific height (i.e. guarantee
that the hopper is still standing on its leg and has not fallen).

. -3 2
R = Lyelocity =+ \h’_/ —le Z a; (2_1)
. —_————
forward velocity healthiness control cost

Termination

The termination criteria occur either when the healthiness is not satisfied (i.e h = 0) or when
the model is outside of the defined space. This way the hopper never experiences bad states,
which means that if it reaches a state out of its healthiness it will not learn to recover. In
addition, episodes have different lenghts with maximum lenght the time it will need to escape

Master of Science Thesis V. Arnaoutis

8 Preliminaries

from the whole space. To counter these disadvantages, in some algorithms it is suggested that
the environment is run for a fixed number of steps. A negative effect that can be presented
by the fixed number of steps is that the hopper might learn to dive before the end of the
episode to cover more ground and receive higher reward. Terminating by a fixed number of
steps is not ideal for the specific environment as the healthiness cost in the reward function
is usually not enough to guarantee proper form of hopping [32]. During our experiments the
task is always terminated when the healthiness or environment boundary conditions are not
satisfied.

2-3 Pre-Generated Data for Inverted Pendulum

The project was initialized on existing research, which provided material that could be used to
kick-start the thesis. A previously used Basis-function (BF) value iteration method was used
on the same setup to construct the state value function of the pendulum [33]. The data was
generated on a 51 x 51 grid as shown in Figure 2-4. The BF method was used throughout the
project to generate data for comparison by modifying the grid, reward equation and gamma
variables appropriately.

30 [

20 -5

Angular velocity [rad/s]

-20

-20

-30

Angle [rad]

Figure 2-4: A representation of the BF value function of the 1-DOF pendulum. The graph is
plotted on a grid of 51x51 points with respect to the angular velocity [-30,4+30] and angular
position [0,427].

An example of the learned value-function can be seen in the simulation of a single episode
where the pendulum attempts swing up from the lowest position. Figure 2-5 shows the states
and reward during the swing up. The learned function is capable of achieving swing up within
the given domain and can easily stabilise at the upper position with minimal control action.

V. Arnaoutis Master of Science Thesis

2-4 Visualization Techniques for Neural Networks 9

Value function and state trajectory 4 Time-domain response

E
—
e — 2

9
S 2 0
2 ;|
: "
2 | L4 | |

< 6 0 0.5 1 1.5
Angle [rad] Time [s]

Figure 2-5: A representation of the trajectory of the pendulum with respect to the Value function
and within a time domain. The pendulum using the BF Value function can achieve swing up within
1 second.

2-4 \Visualization Techniques for Neural Networks

The section will introduce a series of concepts and performance tools used throughout the
thesis in order to compare or collect insights of the Neural Networks (NN).

2-4-1 Neuron Visualisation

For a NN with two inputs, the predicted output can be plotted in a 3D graph [34]. The
visualization of the approximated function can provide better insight to what the NN learned
and where the learning failed [35]. An example is a NN that approximates the Value function
of the IP with two states, position and velocity. The V-function, as seen in Figure 2-6, is the
value of the output layer of the NN.

Similar to plotting the output function, the outputs of each hidden neuron can be plotted
separately [34]. The possibility of visualizing neurons within the hidden layers can provide
insight to the subfunctions and shapes learned by the NN during training. In the first hidden
layer of either a shallow or deep NN, the output of invididual neurons are expected to be
of the complexity of the activation function chosen for the layer. As seen in Figure 2-7 for
the first hidden layer, a ReLU activation function will result in a piecewise linear function
with clipped negative values at 0, while a tanh function will generate a smooth function
between the values —1 and 1. The expressiveness of the function increases by going deeper to
the hidden layers, with the neuron to be able to approximate more complex functions, those
being either smooth or piecewise-linear dependending on the activation function. An example
of a Deep Neural Network (DNN) with two hidden layers and a ReLU activation function can
be seen in Figure 2-7 where each neuron is visualized invididually. The presented outputs are
the results of the output of the neuron as a function of the network inputs, which takes into
account the weights and biases of all previous layers. In fully-connected NNs, all the neurons
of the previous layers are used to form the output of the new neuron based on the weights,

Master of Science Thesis V. Arnaoutis

10 Preliminaries

30.0

0.0

-30.0

Figure 2-6: An example of the output function plotted by a NN with two inputs. Here, the
Value function (i.e. output of the NN) is normalized between [0, —1].

bias and activation functions. By visualizing each neuron as a function of the network inputs,
all neurons can be compared and visualized side-by-side as they are expressed under the same
inputs. Each neuron exact characteristics can be easily reflected to the neurons of the next
layer and the output of the NN (which is in fact the visualization of the neuron at the output
layer).

Figure 2-7: The plots represent 10 neurons from a two hidden layer NN architecture. The 5
neurons to the left are taken from the first hidden layer with a relu activation function, which
result to a simple linear function with the negative part being clipped to zero. The 5 neurons to
the right are extracted from the second hidden layer of the DNN and can be seen to have a more
complex architecture, however given that the activation function remains relu, the function is also
piece-wise linear. Depth increases the complexity the function that a neuron can approximate.

V. Arnaoutis Master of Science Thesis

2-4 Visualization Techniques for Neural Networks 11

2-4-2 Activation Visualisation

Visualising the output of each neuron provides insight to the learned subfuctions of the NN
and its expressiveness [35] [36]. Based on the width of the NN, it is impractical to visualize
each neuron individually. An alternative method of visualization could be the visualisation
of all the activation functions. By observation of the hidden layer neuron outputs, it can be
noted that for low depth networks (1-3 hidden layers) with ReLU activations, the learned
function can be captured by the activation transition (ActTran). The activation transition is
defined as the neuron output function f(x1,z2) = 0 with 1,22 being the inputs of the NN
with a ReLLU activation. The ActTran exist where the neuron output transitions from zero to
positive values. In other terms, each neuron has an output function f(xz) = 0 where a slight
change in the states x would output values other than zero.

ActTran@ f(x1,22) =0
for 21,9 = f(x1 +e,29+¢e) =07 (2-2)

For a neuron in the first hidden layer the ActTran corresponds to a linear function. The
function is constructed by the inputs x1, x2, their weights and the neuron bias. The equation
can be seen in 2-3.

f(xlv x2) = (wli’ in) (i;) + b, (2'3)

For a neuron after the first hidden layer the ActTran function becomes piecewise-linear and
is composed by all the neuron outputs of the previous layer, the new weights and the current
neuron bias. An example of the ActTran in the first and second hidden layer can be seen
in Figure 2-8. For the second hidden layer, the ActTran changes direction when it interacts
with an ActTran from the previous layer. This represents the importance of the first hidden
layer and its effect in the additional hidden layers.

This representation concludes that additional hidden layers can represent more complex func-
tions however they are always influenced by the neurons of the first hidden layer. The visu-
alization technique can help us investigate under which conditions the NN learns meaningful
representations and when the depth becomes a computational burden without influencing the
NN capacity.

Master of Science Thesis V. Arnaoutis

12 Preliminaries

30
20
14.4
10
12.0
ey 9.6
(%4
o 0
E 7.2
>
4.8
-10 2.4
0.0
-20
-30
-3 -2 -1 0 1 2 3
angle

Figure 2-8: The graph displays the activation transitions of a single neuron from the second
hidden layer. The black lines express the activation transitions of the previous layer, while the red
line is the activation transition of the presented neuron. When the red lines meets a black line, it
changes the trajectory of the red lines. This shows the impact the previous layer has on the next
layers. By increasing the layers, a more expressive neuron can be generated, nevertheless the first
layer is the foundation of the NN.

2-5 Shallow and Deep Architecture Selection

The section will introduce a Supervised Learning implementation on the IP. The goal of the
section is to identify the architectures of NNs that can fit the Value function of the pendulum.
The V-function data is already collected from a basis-function value iteration method and
is used for training the NNs. The section will conclude on the optimal NN architecture for
both a Shallow and Deep NN, with respect to trainable parameters, computational time and
generalization error. The section is the first stage of the conversion from Supervised Learning
to Reinforcement Learning.

The data used in this section was generated from the BF method, Section 2-3. The grid used
was a 151 x 151 with approximately 23K samples. The data, including the position, velocity
and state-cost value, was shuffled to reduce correlations between the samples. When less data
was required, the data was randomly selected from the 23K sample pool.

2-5-1 Training the Neural Network

The NN was constructed to fit the regression problem. Following common standards, the
data was divided into training and testing subsets using 80% and 20% samples respectively.

V. Arnaoutis Master of Science Thesis

2-5 Shallow and Deep Architecture Selection 13

The training data was further split 75% and 25% for training and validation. The NNs
were trained using mean-absolute-error (MAE) loss function and adaptive moment estimation
(Adam) [37] [38]. An additional metric value of root-mean-squared-error (RMSE) was used
for observation and comparison towards MAE. RMSE will penalize larger variance between
the data, compared to the MAE. By observing both methods it can be concluded how evenly
distributed the error is throughout the samples [39]. The network inputs were representing
the angular velocity and angle of the pendulum. The output was representing the expected
return of the state value function. The hidden layers had ReLU activation functions. The
weights were initialized from a glorot distribution set which was reported to improve learning
of ReLU functions [40] [41]. The activation function and optimization method selection was
based on initial experiments which are summarised in Appendix A-1.

With only the depth and width being the undefined variables in the NN architecture, the
NN was trained on the V-function regression problem. The hidden layers varied from 1 to
4 while varying the number of hidden units per layer. The training was stopped after the
validation loss did not improve for 10 consecutive epochs. This method will be later referred
to as patience stopping criteria with a patience of 10. The results from multiple runs can
be seen in Table 2-1. The table shows the hidden layers and units alongside their final loss
(MAE) and RMSE. The loss values seem to be low for all networks which suggests that the
NN is capable of learning the required V-function. Nevertheless, the results point towards a
problematic stopping criteria which is further discussed in the next section 2-5-2.

Table 2-1: Experimental results of various NN architectures trained to approximate the value
function of the 1DOF pendulum. The results include both the loss value obtained using MAE
and the metrics RMSE captured at the last trained epoch. The loss seem to be inconsistent with
the increase of parameters which suggests a bad use of stopping criteria. Nevertheless, NNs with
2-4 hidden layers seem to have better performance compared to the shallow NNs.

Neural Network Architectures Training Testing
H. Layers H. Units/layer ~ Parameters | Loss RMSE Loss RMSE
1 50 201 0.5497 0.7685 0.5454 0.7606
1 100 401 0.6781 0.9890 0.6923 0.9926
1 200 801 0.3463 0.5107 0.4580 0.6050
2 50 2751 0.2181 0.2908 0.2297 0.3102
2 100 10501 0.2667 0.3544 0.2424 0.3135
2 200 41001 0.1769 0.2379 0.1557 0.2042
3 200 81201 0.2250 0.3059 0.2419 0.3116
4 (200,100,50,50) 28351 0.2323 0.3157 0.2588 0.3721
4 (50,100,200,100) 45651 0.1615 0.2292 0.1404 0.1991
4 200 121401 0.1784 0.2511 0.1750 0.2525
4 1000 3007001 0.2475 0.3567 0.2601 0.4110

From Table 2-1 it can be observed that all deep NNs examined have loss less than 0.3 while
the shallow NNs were unable to generalize as good. This could be explained by the increase
of parameters with the addition of hidden layers. To investigate this theory, a comparison
is done between a shallow and a two hidden layer NN with the same total parameters. A
NN with two hidden layers of 200 units each is compared (= 41001 trainable parameters)
with a shallow network of 10 thousand hidden units (= 40001 trainable parameters). Both

Master of Science Thesis V. Arnaoutis

14 Preliminaries

networks are trained on 5000 epochs and tested on the whole data-set (2601 samples). The
training loss after each epoch can be seen in Figure 2-9. This shows that increasing depth by
1 hidden layer can reduce the generalization error better than exponentially increasing the
width. With the current experiment it can be concluded that the target function is complex
enough to challenge the expressiveness of a shallow NN. However, it will be later shown that
lower loss of the SNN could suggest worse fit on the approximated function but does not
necessarily worsen the pendulum performance in simulations.

— H.L. 1 H.U. 10000
—— H.L. 2 H.U. 200
5 -
4 -
[m)
<
=
o 3
>
©
>
7]
S 21
1 -
0 -
0 1000 2000 3000 4000 5000
epochs

Figure 2-9: A comparison between different NN architectures with same trainable parameters.
The shallow network performs worst with more fluctuations of the loss value compared to the
deeper network, even if they have the same number of trainable parameters. The loss value
represents the loss of the network when tested on a larger dataset of the V-function.

2-5-2 Stopping criteria

Bad stopping criteria can affect the learning of the NN. Before experimenting further with
the NN it is necessary to understand how the stopping parameters affect learning. Stopping
the training too early can result in under-fitting while training for too long can result in
over-fitting of the function. From section 2-5-1, the NNs trained with a patience of 10 on
the validation loss showed inconsistency on results as bigger NNs performed worse than NNs
with less parameters. Table 2-2 repeats the training while it observes the epoch which it was
stopped. The premature stopping can be seen from the 3 hidden layer NN compared to the
NN with 2 hidden layers.

V. Arnaoutis Master of Science Thesis

2-5 Shallow and Deep Architecture Selection 15

Table 2-2: Experiments with varied hidden layers on a large sample data (22K samples) and
early stopping.

Neural Network Architectures Training Testing Stopped Epoch
H. Layers H. Units/layer Parameters | Loss RMSE Loss RMSE #
1 200 801 0.3771 0.5330 0.3814 0.5328 223
2 200 41001 0.2043 0.2755 0.2199 0.3351 49
3 200 81201 0.2650 0.3584 0.4243 0.5586 17
4 200 121401 0.2062 0.2871 0.3019 0.4535 34

The validation loss of the NNs from Table 2-2 is plotted in Figure 2-10 (Left). The stopping
criteria evaluates the validation loss after each epoch and stops training when the valida-
tion loss does not improve for 10 consecutive epochs. Random weight initialization and the
stochasticity of the optimizer can result in the criteria being met prematurely. Figure 2-10
(Right) shows one NN with 4 hidden layers and 200 units being trained 5 times with random
weight initialization and patience stopping criteria.

4.0
—— H.Layers 1 2.001 — Runl
354 H.Layers 2 Run 2
’ —— H.Layers 3 1.754 —— Run 3
—— H.Layers 4 —— Run4
3.01
1.50 1 — Run5
[m)] [m)
g 25 <1254
o o
52 S
E 0 E 1.001
815 2
sS* S5 0.751
1.04 0.50 4
0.5 0.25
0.01— v T v T T T v v y v v
0 50 100 150 200 0 10 20 30 40 50 60
epochs epochs

Figure 2-10: (Left) The validation loss values for each epoch of four neural networks with 200
hidden units per layer and varied number of hidden layer from 1 to 4. It can be seen that the
shallow network takes the longest to stop however it achieves worse loss value than its deeper
counterparts and has the slowest convergence. (Right) Multiple runs of the same 4 hidden layer
NN with patience stopping criteria and random initialization. The NN terminates training at
different instances. Longer training slowly converges to a lower loss value.

A premature termination of training will result in higher generalization error. This suggests
the removal of the stopping criteria. The Figure 2-11 shows four NNs with 200 hidden units
per layer and hidden layers from 1 to 4 trained for 1000 epochs. Non of the networks overfit
on the data and all NNs are converging. The shallow NN (1 hidden layer) performs slightly
worse than the deeper networks. The shallow NN converges (or slowly decreases) to a higher
validation loss value than the deeper NNs. The results suggest that a NN with 2 hidden layers
can fit faster than a SNN on the V-function given the selected training parameters. Deeper
NNs can fit with similar accuracy to the 2 hidden layer DNN, thus their depth is considered
redundant.

The patience stopping criteria shall not be included in the training of the NNs as they can

Master of Science Thesis V. Arnaoutis

16 Preliminaries

IS
o

—— H.layers 1

H.Layers 2
—— H.layers 3
—— H.layers 4

Loss Value (MAE)
- ~ ~ w w
n ° n o n

-
o

o
n

o
o

0 200 400 600 800 1000
epochs

Figure 2-11: The validation loss value of different NNs with 200 hidden units per layer and varied
depth. The training was run for 1000 epochs without early stopping option. The shallow network
perform worse than the deeper networks with higher loss value and more fluctuations. The NNs
with hidden layers 2 to 4 seem to have similar performance and convergence time.

result in premature stopping. Alternatively, the NNs could be trained on a fixed number
of epochs or until a threshold in validation loss is achieved. From the figures presented in
this section, the over-fitting of the NN was not observable. The reasons why over-fitting is
not visible in the loss graph and why the stopping criteria selected was a fixed epoch will be
presented in Section 2-5-3

2-5-3 Overfit

A well-trained network exists when it reaches its optimal capacity [42]. One way to visualize
the optimal-fit is by over-training the network to observe the transition from under-fitting to
over-fitting. From Figure 2-9 of the previous section, it can be seen that the NN does not
overfit on the data. This could be explained by the complexity of the value-function and the
high sampling data. In order to confirm the assumption, the NN was trained on much less
samples to guarantee an overfit. Figure 2-12, shows the logarithmic loss of a NN trained on
50, 100 and 250 samples. With only 50 samples the value-function is not sufficiently expressed
which explains the gap between validation and training loss. On epoch 60,000 the validation
loss is increasing while training loss is decreasing and the NN is over-fitting on the training
data. When the NN is trained on 100 samples the over-fitting is not as visible, but it could
be seen after the 20,000 epochs. Training on 250 samples, causes the validation loss to follow
the same curve with the training loss but with higher loss values. The results from this
experiment suggest that the more sampling data used, the better the value-function can be
represented.

V. Arnaoutis Master of Science Thesis

2-5 Shallow and Deep Architecture Selection 17

—— train_loss
val_loss. val_loss.

—— train_loss

—— test_loss —— test_loss

Loss Value
Loss Value

0 10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000 50000 60000 70000 80000

(a) 50 samples (b) 100 samples

10! 4 —— train_loss.
val_loss
—— test_loss

Loss Value

100 4

o 10000 20000 30000 40000 50000 60000 70000 80000

(c) 250 samples

Figure 2-12: Logarithmic loss of a NN with two hidden layers and 20 hidden units per layer.
The NN is trained on (a),(b),(c) samples for 80,000 epochs where each epoch is one gradient
update. Unlike the other experiments the mini-batches were removed from training due to the
small sampling sizes used. From the loss curve, under-fitting and over-fitting can be clearly
distinguished. However the loss value is not low enough, which suggests that the NN does not
actually learn the function. The test loss is calculated on the remaining samples out of the 22
thousands samples and only on 20 epochs throughout training.

With enough sampling data and a complex function, the NN is less likely to overfit. As
already shown increasing the sampling data reduces the gap between validation and training
loss and minimizes over-fitting. Figure 2-12 confirmed that 250 samples were enough for the
validation and training loss to have similar loss curves but the magnitude of loss was different.
Under-fitting could exist when the training data is not enough. Figure 2-13 shows the loss
when training the NN with larger data-sets. While some over-fitting can be still observed,
the density of data does not allow the NN to learn something completely wrong. Training on
5000 samples reduces the loss between training and validation without visualizing over-fitting.
Due to the functions complexity and gridded sampling, the NN is potentially learning the grid
pattern thus why over-fitting could be taking place without being visualized.

Master of Science Thesis V. Arnaoutis

18

Preliminaries

Loss Value

10° 4

10 4 —— train_loss
—— val_loss
—— test loss

pal

"

Laat

T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000

(a) 1000 samples

Loss Value

10! 4

10° 4

—— train_loss
—— val_loss
—— test_loss

T T T T T T T T T
0 10000 20000 30000 40000 50000 60000 70000 80000

(b) 5000 samples

Figure 2-13: Logarithmic loss of a NN with two hidden layers and 20 hidden units per layer. The
NN is trained on (a),(b) samples for 80,000 epochs where each epoch is one gradient update.

Over-fitting a NN can be achieved by increasing the trainable parameters of the network with
respect to the sampling data. In the latest experiment the data was 10 times higher than
the trainable parameters without any over-fitting being observed (i.e. 5000 data on a NN
with 501 parameters). In an attempt to visualize over-fitting we train a NN with 200 neurons
per hidden layer (41,000 parameters) on the 5000 data. The NN achieves lower loss in less
epochs without over-fitting, as shown in Figure 2-14. Thus the size of the network is not the
reason for the lack of over-fitting. This concludes that the function is complex enough or that
the grid is structured for the network to "visually" overfit. Another explanation can be the
implicit regularization of the NN caused by gradient decent methods as suggested in [43].

101 4

109 4

Loss Value

1071

—— train_loss
—— val_loss
— test_loss

T T T
0 2500 5000 7500

T T T T T
10000 12500 15000 17500 20000
Epoch

Figure 2-14: Logarithmic loss of a NN with two hidden layers and 200 hidden units per layer.
The NN is trained on 5000 samples for 80,000 epochs where each epoch is one gradient update.
The validation and training loss values are very close and no over-fitting is observed.

The training must be stopped on the perfect-fit. As discussed above, stopping criteria could
dramatically change what the NN learns. Using a patience criteria has already been discarded

V. Arnaoutis

Master of Science Thesis

2-5 Shallow and Deep Architecture Selection 19

due to the unpredicted fluctuations of the loss between epochs. An alternative method is to
use a benchmark value before taking into account the patience criteria. From this section it
can be concluded that, if the validation loss is lower than 0.2, then it is a good indication
that the NN is actually learning. The constant 0.2 can thus be used as a benchmark before
applying the patience criteria and introducing early stopping. In addition, as over-fitting is
unobservable with large sampling data, a large number of epochs can also be considered as
viable learning method as long as the sampling data-set is large.

2-5-4 Computational Time Comparison

In order to compare the computational time between neural networks of different depth, a
simple experiment was run that investigates the time required to complete training. To allow
fair comparison, the same trainable parameters have been set for NNs with hidden layers
from 1 to 4. The comparison was done by training each NN on the same sampling data for
increasing number of epochs from 1 until 100. The results can be seen in Figure 2-15. The
computational time between shallow and deep networks does not vary which suggests that in
such a small increments of depth, computational complexity is not easily visible and does not
have a great impact.

1.75 A
Hidden Layers / parameters
— 1-513
1.50 | — 2-501
— 3-541
1.25 4 — 4-517
«» 1.00 4
©
c
o
v
$ 0.75 4
0.50 1
0.25
0.00

0 20 40 60 80 100
index of epochs

Figure 2-15: A comparison between the computational time of NNs with hidden layers from 1 to 4
and approximately the same parameters. The increase of depth does not affect the computational
time using vanilla SL.

2-5-5 Architecture Selection

Having gained the necessary knowledge to train the NN, the final architectures were selected.
For the representation of shallow NNs, the width of the network was minimized to 128 neurons
(513 parameters). The number of trainable parameters was selected as the minimum width
that can learn the target function. It was already shown that the SNNs were unable to reach
as low loss values as the DNNs, however they were capable to learn the value-function with
enough accuracy so that the pendulum would achieve swing up. For the representation of the

Master of Science Thesis V. Arnaoutis

20 Preliminaries

DNN, it has already been noted that increase of depth more than two layers does not reduce
the generalization error and simply increase computational costs. Due to this conclusion, a
two hidden layer NN was selected with 20 neurons per hidden layer (501 parameters). Similar
to the SNN, the architecture was aiming at low loss, consistent performance and almost the
same parameters with the SNN. Both NN designs can be seen in Figure 2-16.

r
"
’
’
(]
r
’
i
'
'
[
"
e
[
+
[
[
v
+
¥
[
)
)
[

LA

e

(a) Shallow Neural Network (b) Deep Neural Network

Figure 2-16: The selected NN architecture for both Shallow (a) and Deep (b) Neural Networks.
The SNN with 128 neurons on the hidden layer has a total of 513 trainable parameters. The
DNN with 20 neurons per each hidden layer has a total of 501 trainable parameters.

2-6 Summary and Concluding Remarks

The chapter introduces the basis of the thesis. Some terminologies of Deep Learning are
explained in order to establish common vocabulary. In addition, visualization tools and
benchmarks are presented. An initial examination of the NN performance is shown, where
using vanilla-SL, the deep and shallow NN architectures are evaluated and selected for minimal
training parameters and successful learning on the IP benchmark.

V. Arnaoutis Master of Science Thesis

Chapter 3

Tracking Value lteration

The chapter introduces the concept of learning a target value function by tracking function
changes from existing data. By changing the target function, the NN is challenged in the
adaptability to new target data by moving from simpler to more complex functions. The
goal of the Tracking Value Iteration method (TVI) is to observe any changes in capacity,
expressiveness and overall performance of the NN compared to learning the target function
directly (i.e. as shown in the SL Section 2-5). The chapter is the second stage of the conversion
from Supervised Learning to Reinforcement Learning.

3-1 Tracking Value lteration Dataset

The data used to train the NNs was generated by the BF method. The BF method converged
within 115 iterations, whose sampling data was used to train the NN. The first iteration of
the BF corresponds to the reward function while the last iteration (115) is the exact same
data used to train the NN in Section 2-5, using SL. The evolution of the function can be seen
in Figure 3-1. From the Figure it is possible to observe that the function transitions within
the first 30 iterations and converges around iteration 50. From iteration 50 till iteration 115
there are only very small adjustments to the function.

Master of Science Thesis V. Arnaoutis

22 Tracking Value lteration

30 o 304 o

20

[Sa|
w

Figure 3-1: Value function through iterations using BF method. The value function has almost
converged at iteration 50 while at iteration 30 the general shape of the function is distinguishable.

3-2 Analytical comparison between SL and TVI

The deep and shallow NN architectures, chosen in Section 2-5-5, were trained using the TVI
data. To compare the TVI method with the vanilla SL method, the NNs were trained on the
same amount of sampling data (i.e. 2601 samples randomly selected from a 151 x 151 grid
for each BF iteration).

3-2-1 Deep Neural Network

The DNN was trained for 30 epochs per iteration in order to achieve good function approx-
imation at each iteration. To compare the vanilla SL method with the TVI method, the
vanilla S NN was trained on the same target data 30 epochs per time, after which train-
ing was paused to evaluate the network. The test loss for both SL and TVI can be seen in
Figure 3-2, where the NNs were tested on the whole dataset of the last iteration. With the
TVI being trained on different target functions, the higher initial loss in the first iterations is
expected. With enough epochs for the DNN to learn effectively each function per iteration, is
able to track the changes of the function and achieve lower loss than the SL method. The TVI
method converges to the lower loss value than SL by iteration 50 which shows good tracking
of the function.

From the test loss, it is clear that SL method is faster as it directly learns on the required
function while the TVI is guided through a changing target function. In order to observe

V. Arnaoutis Master of Science Thesis

3-2 Analytical comparison between SL and TVI 23

— TVI
— SL

mae loss

T T T
40 60 80 100
iterations

=
]
o

Figure 3-2: Test MAE loss per iteration. TVI and SL DNNs are tested on the last iteration
of the V-function. The experiment was run 20 times and the loss for each was recorded. TVI
converges consistently at iteration 50-60 (1500-1800 epochs). This shows that the TVI was able
to follow the transitions of the V-function per iteration. SL converges around iteration 10 (300
epochs), as it is trained directly on the final function. By tracking the changes of the function,

the TVI NN is able to achieve lower loss value than the SL NN.

the learned differences of the two networks, the value difference between the expected and
predicted V-function is plotted on Figure 3-3. From the difference surface it is safe to conclude
that both NNs learn similar V-function and their critical failing point is on the steep surface
of the V-function. Therefore, the limitation of learning comes from the NN architecture and

not from the methodology.

o
[=Te]

Difference between BF and NN

o
o wn

|
m b oo
o wn D w

b b o oo
o n 2 w
Difference between BF and NN

—20 ¥ 4
angje 5 6 —30

angle

Figure 3-3: Left: TVI Right: SL. The difference of V-function approximated by the NNs and
target function (Vaifr = Vpredicted — Virue)- The error is oscillating at 0 with some high picks

around the area where the value function is very steep.

Master of Science Thesis V. Arnaoutis

24 Tracking Value lteration

An additional performance and comparison measure can be achieved from a swing up simula-
tion as described in Section 2-2-1. For a simple comparison the pendulum was initiated from
the lowest position without initial velocity. Figure 3-4 shows the states and the control input
(action) generated using the V-function of the BF method, SL-NN and TVI-NN. The NN
methods achieve swing up at similar time and are slighty slower than the BF method. The
pendulum is stabilized with minimum oscillations and small control inputs. The direction
of the swing up is based on the accuracy of approximation near the lower states while the
stabilization at the top is depended on the accuracy near the peak at [+, 0]. The difference
in performance between the BF and the NNs suggests that the NN does not learn the optimal
V-function but a slightly sub-optimal one.

2.5 1

0.0

—2.5

T T
.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

pendulum velocity Pendulum angle

|
N N
e o BSe

control input
[=]
1
&
=
L)
m
o
~ .

T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
time [s]

Figure 3-4: Time-response and control input of the IP using the target V-function, TVI and
vanilla SL methods. With state initialization at the lowest position both NN methods could
accomplish a successful swing up. Comparing the NNs to the BF response, it can be seen that
the actions followed from the pendulum were not the optimal.

3-2-2 Shallow Neural Network

To allow direct comparison with vanilla-SL, the SNN was chosen to train for a total of 30
epochs per iteration. This sums to a total of 3450 epochs equally distributed along the 115
iterations. The test loss for both SL and TVI can be seen in Figure 3-5, where the NNs were
tested on the whole data of the last iteration. With the TVI being trained on different target
functions, the higher initial loss in the first iterations is expected. With enough epochs for
the SNN to learn effectively each function per iteration the network converges to the same
loss value by iteration 50. As the target function for the SL was unchanged, the network
converged faster on the desired function with higher loss than the TVI.

Even with a slightly difference in the loss value between the vanilla-SL and TVI method,
both methods train the NN well enough to achieve a swing up from the lower position. The

V. Arnaoutis Master of Science Thesis

3-2 Analytical comparison between SL and TVI 25

mae loss

T T
0 20 40 60 80 100
iterations

Figure 3-5: Test MAE loss per iteration. TVI and vanilla-SL SNNs are tested on the last iteration
of the V-function. The experiment was run 20 times and the loss for each was recorded. TVI
converges consistently at iteration 50-60 (1500-1800 epochs). This shows that the TVI was able
to follow the transitions of the V-function per iteration. SL converges around iteration 10 (300

epochs), as it is trained directly on the final function. By tracking the changes of the function,
the TVI NN is able to achieve lower loss value than the SL NN.

simulation for both methods in comparison to the simulation of the target function from the

BF method can be seen in Figure 3-6.

T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

M
L
I

[t
(=]
L

|
™ o
(=] wn
1 1

:

|
]
I\JOO

pendulum velocity Pendulum angle

T
.00 0.25 0.50 0.75 1.00 125 1.5 .00

TR
5|

— target
- TVl
— SL

control input
[=]
1

|
]
1

T T T T T T T .
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
time [s]

Figure 3-6: Time-response and control input of the IP using the target V-function, TVI-SNN
and vanilla SL-SNN. With state initialization at the lowest position both NN methods could

accomplish a successful swing up. Comparing the NNs to the BF response, it can be seen that
the actions followed from the pendulum were not the optimal.

Master of Science Thesis V. Arnaoutis

26 Tracking Value lteration

3-2-3 Increasing the trainable parameters/width

As discussed in Section 2-5, the current NN architectures are designed to minimize the pa-
rameters while maintaining good approximation. In theory, increasing the parameters of the
NNs can increase the approximation accuracy even further. In the previous sections, the sim-
ulation comparison between BF and NNs concluded in the NNs being sub-optimal. The goal
is to increase the parameters of the NNs in an attempt to improve the swing up speed. The
new NN increases the width of the hidden layers to 64 neurons per layer (4353 parameters)
and 1024 neurons per layer (4097 parameters) for the deep and shallow network respectively.

Deep Neural Network

The TVI-DNN was trained for 30 epoch per iteration for a total of 115 iterations as in the
previous experiment .The test loss (MAE) towards the last iteration can be seen in Figure
3-7. The loss of the wider NNs is similar to the loss of the thinner NNs in Figure 3-2. By
looking into the time-response of a swing up simulation, in Figure 3-8, both NNs achieve
sub-optimal performance from the target method.

— TVI-wide
—— SL-wide

mae loss

T T T
0 20 40 60 80 100
iterations

Figure 3-7: Test loss per epoch/iteration. SL-DNN-wide and TVI-DNN-wide are tested on the
last iteration of the V-function. TVI converges at epoch 40-50 (one epoch per iteration). This
shows that the TVI was able to follow the transitions of the V-function per iteration. Vanilla SL
converges around epoch 30, as it only learns on the last iteration. The learning curves are similar
with those from the thinner NN in Figure 3-2.

Shallow Neural Network

The TVI-SNN was trained for 30 epoch per iteration for a total of 115 iterations as in the
previous experiment .The test loss (MAE) towards the last iteration can be seen in Figure
3-9. The loss of the wider NNs is similar to the loss of the thinner NNs in Figure 3-5. By
looking into the time-response of a swing up simulation, in Figure 3-10, both NNs achieve
sub-optimal performance from the target method.

V. Arnaoutis Master of Science Thesis

3-2 Analytical comparison between SL and TVI

w

@ 2.5

m

E 00-

E

=}

T —2.5

a T T T T T T T

> 000 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

g 20

E

£ 0+ e

=

E

e

S —20 |

(=% T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

- [Ll

2 I Nkl

= — target

= i

2 — VI

c

S — sL
2 T T T T T T 'I - .
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

time [s]

Figure 3-8: Time-response and control input of the IP using the target V-function, TVI and
vanilla SL methods with wider NNs. With state initialization at the lowest position both NN

methods could accomplish a successful swing up. The performance of the NNs does not improve
with the increase of parameters.

— TVI-wide
—— SL-wide

mae loss

0 20 40 60 80 100
iterations

Figure 3-9: Test loss per epoch/iteration. SL-SNN and TVI- SNN are tested on the last iteration
of the V-function. TVI-NN converges at epoch 40-50 (one epoch per iteration). This shows that
the TVI-NN was able to follow the transitions of the V-function per iteration. SL-NN converges

around epoch 30, as it only learns on the last iteration. The learning curves are similar with those
from the thinner NN in Figure 3-5.

Master of Science Thesis V. Arnaoutis

28 Tracking Value lteration

w

@ 2.5

m

E 00-

E

=}

T —2.5

a T T T T T T T

> 000 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

g 20

E

£ 0+ e

=

E

e

S —20 |

(=% T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
- [Ll
2 I Nkl
= — target
= i

2 — VI
c

S — sL
_2— . - .

T T T T T T T
0.00 0.25 0.50 0.75 1.00 1.25 1.50 175 2.00
time [s]

Figure 3-10: Time-response and control input of the IP using the target V-function, TVI and
vanilla SL methods with wider SNNs. With state initialization at the lowest position both NN
methods could accomplish a successful swing up. The performance of the NNs does not improve
with the increase of parameters.

3-3 Visual comparison of parameters between SL and TVI

Identifying internal difference between NNs with similar approximation accuracy requires
visualization of the neurons. As shown in the previous chapter, comparing different training
methods on the same NN architecture can result in similar performance and approximation
accuracy. However the question remains what exactly does each NN learn, as different internal
structures (parameters) can result in the same output. Each neuron of a NN approximates a
different subsection of the final output. To identify the differences between NNs, this section
visualizes the weights and outputs per hidden unit. The goal of this section is to identify if
there is a visible difference between the SL and TVI methodology.

3-3-1 Visualizing the neurons

A method of understanding the sub-functions and weight selection done by the NN is by
visualizing the output of each neuron. The existing approach [34] suggests that visualizing
the sub-functions of a NN can provide further inside into what the NN actually learns. The
methodology is adopted and used on the 20 unit per layer TVI-DNN and SL-DNN. Figure
3-11 (b) shows the TVI-DNN neurons learned at the end of training. The first layer consists
of different linear functions with the ReLU activation constraining the function above O.
The second layer can represent functions in greater complexity and is able to generate some
characteristics of the final V-function. Out of the 20 neurons, the 5 neurons suffer from the
dying ReL.U problem. Figure 3-11 (a) shows the same neurons after only trained on the first
50 iterations. As shown previously, the V-function converges around that iteration and the

V. Arnaoutis Master of Science Thesis

3-3 Visual comparison of parameters between SL and TVI 29

TVI-DNN is able to iterate longer on the same function. Interestingly, only slight changes
can be seen from iteration 50 till iteration 115. While the NN is always learning and adopting
the weights and biases for every epoch it seems that is less prone to extreme changes even if
it trains longer. This would suggest that the TVI-DNN converges to its optimal value and
can learn meaningful subfunction characteristics.

(a) Convergence lteration (50) (b) Last Iteration (115)

Figure 3-11: Representation of the neurons output of the TVI-DNN. The horizontal axis is the
angle between [0, 2] and the vertical axis is the velocity from [—30,30]. First column presents
the 20 neurons of the first hidden layer while the second column represents the 20 neurons of the
second hidden layer. The depth is normalized for each neuron for visualization purposes. When
the TVI-DNN reaches the convergence iteration (a) the NN has indeed almost fully converge
when compared with the last iteration (b). After iteration 50 there exist 5 dead neurons on the
second layer of the NN.

Training the NN through iterations can assist the learning of specific characteristics. To
confirm this finding we look further into the vanilla SL-DNN. From Figure 3-12 (b) the
neurons of the SL-DNN can be seen. The second layer of the DNN shows less symmetry and
exact characteristics of the complete NN, however its performance is similar to the TVI-DNN.
By visualizing again the SL-DNN during training, on the corresponding iteration 50 of the
TVI method (epoch 1500), the neurons look very similar to those of the complete training. As
shown previously in Figure 3-2, the SL-DNN converges much earlier than epoch 1500, however
the epoch was selected for direct comparison with the TVI method. The visualizations verify
the resistance of the network to achieve dramatic changes which suggests the benefits by
learning through iterations. The SL-DNN completes the learning with 4 neurons being dead

~—

Master of Science Thesis V. Arnaoutis

w
o

Tracking Value Iteration

2]

=

=
&
=+
o

H
=
o
Z
Z

(a) 1500th Epoch (Relative TVI - iteration 50) (b) Last Epoch (Relative TVI - iteration 115)

Figure 3-12: Representation of the neurons output of the SL-DNN. The horizontal axis is the
angle between [0, 27] and the vertical axis is the velocity from [—30,30]. First column presents
the 20 neurons of the first hidden layer while the second column represents the 20 neurons of
the second hidden layer. The depth is normalized for each neuron for visualization purposes.
Comparing from iteration 50 (a) to iteration 115 (b) , there are only minor changes between the
output of the neurons. Note that the SL-DNN converges before iteration 50 as shown in Figure
3-2

3-4 Summary and Concluding Remarks

The chapter applies the tracking value iteration data algorithm in order to evaluate the
performance of the NNs in evolving target data. Shallow and Deep architectures succeed in
approximating effectively the value function. By simulating an episode in the IP benchmark,
it is possible to see that the learned function does not differ drastically between the two
networks but the performance is sub-optimal to the target function. Finally, by visualizing
the neurons of the NN, it was concluded that learning through iterations could be beneficial
for the NN as the sub-functions learned by each neuron were more descriptive of characteristics
of the final function. So far, shallow and deep neural networks have performed equally as
good.

V. Arnaoutis Master of Science Thesis

Chapter 4

Bootstrapping Value lteration

The chapter presents the results for the 3rd transition step of the thesis from SL to RL that is
self-learned Value Iteration. The goal of the method is for the NN to learn the Value function
using the Bellman Equation and converge to the optimal V-function. By removing the target
data used in the TVI, the Bootstrapping Value Iteration (BVI) method is expected to learn
from itself by predicting the target V-function. This method can amplify the approximation
errors of the NN as for each iteration the NN is trying to fit on its own predicted data. The
aim is to use the same NN architectures that have already succeed in vanilla SL and TVI and
examine their performance when introduced to bootstrapping.

4-1 BVI methodology

The goal of the BVI algorithm is to prove that the NN architecture can learn through boot-
strapping [44]. To maintain as many similarities with the TVI method, it was decided that
a grid structure will be used to construct the V-function at each iteration. The grid will
allow the BVI to learn in parallel on the whole observation space instead of learning through
episodes. The V-function was generated by a grid structure of 51 x 51 states. For each
state the next state was calculated from the dynamic model of the IP by choosing 7 uni-
formly distributed action from the action range. The tensor of 51 x 51 x 7 stores all the
possible next states from the grid. The reward for the IP was set using the pendulum angle,
R(s) = |s(1)| — m. The Bellman equation can be seen in Equation 4-1, where is a constant,
s’ is the next state after taking the action o = argmax(V (s)). The BVI algorithm is trying to
learn the Bellman equation by choosing the maximum cost-value of the next state predicted
by the NN. The complete algorithm of BVI can be seen in Algorithm 2.

V(s) = R(s') + 7V (5) (4-1)

Master of Science Thesis V. Arnaoutis

32 Bootstrapping Value lteration

Algorithm 2: Bootstrapping Value iteration using a NN and a grid structure on the
whole observation space.

v — discount factor
actions — set of discrete actions
grid_ states — grid of pos, vel dimensions: {pos x vel}
next_ states — tensor of next states dimensions: {pos x vel x action}
R — tensor of rewards using s’ dimensions: {pos x vel x action}
Initiate Neural Network
for total iterations do
s’ = argmax(Neural _Network_predict(next_ states))
V = R(s') + v Neural _Network_ predict(s’)
Neural Network_learn(grid_ states, V)
end

4-2 Discount factor and Epochs

A new parameter that comes into play with the BVI algorithm is the discount factor. The
discount factor v can affect the performance of the IP as it can drastically change the value-
function. Bootstrapping a NN with a very high 7 (e.g. 0,999) can be harmful for the learning
as it can amplify the approximation errors of the network. Lowering the disount factor (e.g.
v = 0,9) can prevent the pendulum from swinging up as the immediate reward will be
priortized and the pendulum will not learn to "swing" in order to gain momentum and reach
the top.

With the goal to observe any harmful phenomena caused by too high or too low discount
factor introduced in the BVI method, the IP is trained on various values of v and for different
epochs at each iteration. Too many or too few epochs used for training the NN per iteration
can result in over-fitting or under-fitting of the data which in theory could counteract some
of the side-effects of the discount factor. By varying both the epochs and discount factor it
is expected that the learning will be worst near the extremely low and high values with the
NN being unable to learn the correct value function.

For initial experimentation the DNN with 501 parameters was trained on varied epochs and
discount factors. To evaluate the results, the return of one episode with respect to epochs and
~ is plotted in Figure 4-1. As the simulation of swing up from lowest position could sometimes
receive zero input and not initialize movement, the episode is repeated two more times. The
additional episode have initial state with slight offset of the pendulum, left and right. While
the return value for each initialization seems very consistent, some NNs randomly fail to
achieve swing up.

V. Arnaoutis Master of Science Thesis

4-2 Discount factor and Epochs 33

0.999 0.999

0.990 0.990

0.960 0.960
> >
0.930 0.930
0.900 0.900
2 20 50 100 2 20 50 100
epochs epochs
(a) Left initial position s = (Z5,0) (b) Right initial position s = (%, 0)

0.999

0.990

0.0
0.960 -12.5
~ -25.0
-37.5
0.930
-50.0
0.900
2 20 50 100
epochs

(c) Zero initial position s=(0,0)

Figure 4-1: VI for varied v and epochs using a NN with tanh activation function. The red
dots correspond to the values that the VI was trained on, while the black dots correspond to the
simulations where the pendulum achieved swing up.

To gain more insight to where the NN fails, we examine directly the learned V-fuction by
tracking its changes through the bootstrapping iterations. Two NNs are visualised one with
a successful swing up and the other one without. Figure 4-2 shows the learned V-functions
through various iterations of learning for the runs of epoch/v being 20,0.96 and 50,0.99. As
observed by the V-function, both approximations look very similar, thus it is expected that
very small errors affect the learning.

Master of Science Thesis V. Arnaoutis

34

Bootstrapping Value lteration

o0

oun

(a) v =10.96 , epochs = 20 (b) v =0.99 , epochs = 50

Figure 4-2: BVI of two NN with different epoch and discount factor. The plots consist of the
learned V-function throughout bootstrapping, at iterations 1, 20, 50 and 200 (final iteration). By
comparing side by side the two runs, they both seem to follow close path of learning, and the
general shape of the V-function is captured by both approximators.

4-3 Upgrade Reward Function

In the previous section it was shown that small errors and inaccuracies can result in the
pendulum to fail swing up. In an attempt to capture the whole domain and improve learning,
we change the reward function to include all the states of the model [45] [46]. The upgraded

reward function is

V. Arnaoutis Master of Science Thesis

4-4 State multi-initialization 35

R(s) =|s(1)| — ™ —0.01 (4-2)

and can be shown in Figure 4-3 (a) . The updated epoch/y diagram can be seen in Figure
4-3 (b) . The updated diagram seems to still show inconsistencies towards achieving swing
up. This suggests that the testing method used to verify the learning of NN could be easily
influenced by small errors in the V-function and the inclusion of both states in the reward
function did not solve the problem.

0.999

0.990

0.0

0.960 -125

-25.0

-37.5

0.930

-50.0

10
2 3 30720 0.900
2 20 50 100
epochs

(a) Updated Reward (b) Updated Epoch/~ Diagram

Figure 4-3: (a) Upgraded reward function that takes into account the position and velocity of
the pendulum. The updated reward has only one max point at [r,0]. (b) The return of one
episode with initial position [0,0]. The BVI-DNN is trained on various epochs and different ~y
values. The results seems to be random and unstable.

4-4 State multi-initialization

To overcome the uncertainty of one bad initial position, the pendulum is initialized from
multiple states and the return of all episodes is summed. Figure 4-4 (a) shows the various
states that the pendulum is initialized. Figure 4-4 (b) presents the updated epoch/~y diagram.
With multiple episodes the BVI- DNN continuous to fail to achieve consistent swing up
suggesting that the V-function learned is partially wrong. Given the multiple adaptations
done to accomodate the NN learning, it can be concluded that the current DNN architecture
fails to learn the proper V-function.

Master of Science Thesis V. Arnaoutis

36 Bootstrapping Value lteration

0.999
0.990
0
0.960 -25
~ -50
-75
0.930
-100
0.900

2 20 50 100 200
epochs

(a) All initial states (b) Updated Epoch/~+ Diagram

Figure 4-4: (a) Representation of all initial states before swing up. The 10 positions try to
describe different locations around the value function that usually would not be visited from the
lowest position (b) The sum of the return of multiple episodes with initial states as shown in (a).
The NN is trained on various epochs and different «y values. The learning seems to be fluctuating
and inconsistent with the epochs and parameters.

Small inaccuracies in the Value-function are shown to have large impact on the performance
of the DNN irrelevant to epochs or . This would suggest that a SNN could outperform
the DNN by learning a simpler and more correct V-function. To verify this, the BVI-SNN
with 128 neurons (513 parameters) is trained under the same conditions. The sum return of
multiple episodes with different initial states can be seen in Figure 4-5. As suggested, the
SNN is capable of approximating the V-function and achieve consistent swing up across all
values. Additionally, it consistenly fails to learn when it is trained for 2 epochs per iteration.
This is expected as the NN is not trained long enough at each iteration and possibly longer
maximum iterations would be needed for learning. With the SNN being capable of learning
the V-function through BVI, it is possible to investigate and identify why the DNN failed to
learn.

0.999

0.990

0.960

0.930

0.900
2 50 100 200

epochs

Figure 4-5: The sum of the return of multiple episodes with various initial states. The SNN
is trained on different epochs and ~ values. The sum return is consistent for the NNs trained
on more than 20 epochs for all 7. Small variations in the valley are cause from the lower initial
position where swing up is not always achieved, similar to the DNN.

V. Arnaoutis Master of Science Thesis

4-5 Difference between Shallow and Deep 37

4-5 Difference between Shallow and Deep

Training both SNN and DNN using BVI, results in the SNN to be able to learn and perform on
various episodes while the DNN performance is random and incosistent. The same NNs were
previously trained in a vanilla-SL and TVI environment where both performed equally good.
It is therefore important to understand why the performance of DNN drops dramatically
when it learns through BVI.

A direct comparison could be done by visualizing the output of the SNN and DNN or by
comparing the training loss of the networks on a specific epoch and ~ value. In addition, by
normalizing the V-function between [0, 1] it is possible to look at the difference in between the
learned functions from the SNN, DNN and BF. The above comparisons are captured in Figure
4-6 where the NNs were trained on 100 epochs and v = 0.96. By comparing the difference of
V-function between SNN and DNN or by observing the output of the DNN, a "twister" effect
can be noticed in the steep area around the origin. The twister effect cannot be observed on
either the SNN or BF which could be the reason behind the poor performance of the DNN.
On the other hand, the training loss of the DNN converges to a lower value than the loss of
the SNN which would suggest that the deep network should outperform the shallow one.

The poor performance of the DNN could be affected by the grid data used on the BVI method.
Even if the same grid format was used on the vanilla-SL and TVI without introducing the
effect, bootstrapping with the additional expressiveness of the second hidden layer could have
resulted in the DNN to learn a characteristic that was harmful for the pendulum performance.

4-5-1 Visualizing the expressiveness

Using the BVT algorithm with DNN and SNN, the SNN seem to generalize better on the V-
function. From previous experiments using vanilla SL and TVI, the DNN was able to perform
at least as good as the SNN. In order to identify why the SNN outperforms the DNN and
specifically why it is more consistent in learning to swing up from the lowest position, we
visualize the activation transitions (described in Section 2-4-2) of both networks for specific
epoch/~ combinations.

Shallow NN

With the SNN outperforming the DNN architecture it is important to understand where the
one fails and the other one prevails. For more insight to the learning of the SNN we compare
the learned parameters of the network after trained with TVI and BVI. From the figure 4-
7, the activation lines are more symmetrical and well distributed in the TVI network than
the BVI network. Introducing the self learning component into the BVI algorithm the SNN
performance also drops. Nevertheless, it is still capable of achieving swing up from multiple
initialized states which suggests that the reduced complexity of the SNN results in a more
robust learning through BVI.

Master of Science Thesis V. Arnaoutis

38 Bootstrapping Value lteration

(d) Deep - Shallow (e) BF - Deep (f) BF - Shallow

0.40 A B B
—— train loss —— train loss

—— val loss —— val loss

0.35 A

0.30 1

0.25 1

0.20 A

0.154

0.10 -

(g) DNN Training Loss (h) SNN Training Loss

Figure 4-6: A visualization of the learned V-function of the DNN (a) and SNN (b). By nor-
malizing the learned functions we can directly subtract them. The difference between DNN and
SNN (c) and BF and DNN (d) creates the twister effect. The effect is not visible between BF
and SNN (e). In contrast, the training loss of the DNN (f) is lower than the loss of the SNN (g)
which would suggest better learning.

Deep NN

The DNN failed to properly learn the V-function through BVI when trained under the same
conditions with TVI. By visualizing the learned V-function and the activations for both first
and second hidden layer, as shown in Figure 4-8, the activation lines from the first hidden
layer seem to be unevenly distirbuted. Similar observation was made for the SNN however
with the addition of a second hidden layer the performance drop seems to be more drastical.

V. Arnaoutis Master of Science Thesis

4-5 Difference between Shallow and Deep 39

30 30
20 20
10 10
z =
3 o 3 0
E g
-10 =10
-20 -20
-30 -30
angle angle
(a) Tracking Value Iteration (b) Bootstrapping Value lteration

Figure 4-7: V-function learned from a SNN by (a) TVI and (b) BVI. The TVI-SNN has a more
symmetric structure as shown by the activation transitions of the hidden layer (black lines). The
BVI-SNN is still capable to achieve swing up and perform well from multiple initial states however
the activation lines seem more usymmetrical which can be expected due to bootstrapping.

30 30

20 20
10 10
= >
8 0 g o
¢ g
-10 -10
-20 -20
-30 -30
angle angle
(@) Tracking lteration Learning (b) Bootstrapping Value lteration

Figure 4-8: V-function learned from a DNN by (a) TVI and (b) BVI. The TVI-DNN has a more
symmetric structure comparing the activations of the first hidden layer (black lines), which results
in better approximations for the second hidden layer piece-wise linear activations (coloured lines).
In this case, the increase of expressiveness by depth, is shown to be harmful for the learning.

Master of Science Thesis V. Arnaoutis

40 Bootstrapping Value lteration

4-6 Summary and Concluding Remarks

The chapter is presenting the concept of bootstrapping on value iteration, using the NN itself.
Bootstrapping has been proven challenging for the Neural Network, especially for the deeper
architecture. When comparing the results with the TVI algorithm, from the previous section,
the learned sub-functions of the NN, learned by each neuron were more chaotic using the
bootstrapping algorithm. Where the shallow NN managed to overcome the extra complexity,
the deep network struggled as its additional expressiveness introduced unwanted patterns to
the learned function. Possible bottlenecks and failure points for the deep network could have
been the grid structure used to generate the value function, in addition to over-fitting in each
iteration. Shallow NNs outperformed the Deep NNs as their simpler architecture proven more
robust to the pitfalls of the algorithm used.

V. Arnaoutis Master of Science Thesis

Chapter 5

Reinforcement Learning

The chapter introduces the final convergence step from supervised to reinforcement learning.
The NN is expected to learn the value function and the policy function, without pretrained
data, by following the reward function provided [25] [47]. The chapter will implement a
state-of-the-art Reinforcement Learning algorithm on three continuous control tasks, the IP,
Magman and OpenAl Gym Hopper-v3. An additional investigation will be done on the input
type of the NNs by comparing global and local inputs for the IP and Magman tasks.

5-1 Deep Deterministic Policy Gradient

This section will introduce the state-of-the-art RL algorithm called Deep Deterministic Policy
Gradient (DDPG) [19]. The algorithm will be used as a testing algorithms for the shallow
and deep networks architectures on various low-dimensional continuous control tasks.

5-1-1 Action Noise

A very popular method to introduce exploration in a continuous space is by Ornstein Uh-
lenbeck action noise (OUnoise) [48]. The stochastic process has a temporalily correlated
noise which can improve the exploration in systems that require momentum. The equa-
tion of OUnoise designed to approximate the brownian motion with friction, by generating
temporarily correlated actions around 0 can be discretely written as

Xp+1 = Xpn +0(p — Xp) At + c AW, (5-1)

where the mean p is zero, standard deviation o is 0.5, 6 is 0.15 and time step is 0.01. The
parameter X,, presents the noise at the current discrete step with Xy being the initial noise
which is equal to 0. The AW, is the Wiener process (a.k.a. Brownie motion process) that
presents normal variance with mean equal to 0 and variance At. By modifying the Brownie

Master of Science Thesis V. Arnaoutis

42 Reinforcement Learning

motion process the mathematical solution can be seen in Equation 5-2, where RN is a normally
distributed random number.

Xpi1 = Xp + 0(— X)) At + oV AtRN (5-2)

5-1-2 The Algorithm

DDPG is an off-policy RL algorithm, used in continuous applications [19]. DDPG is an
actor-critic method that uses target actor and critic networks (Q’ and p'), in addition to the
actor and critic networks (@ and p) to achieve deterministic learning. The actions during
training are predicted from the actor network with the addition of OUnoise (Equation 5-3).
The state transitions with the reward are stored in a memory buffer as shown in Section
2-1-3. The Bellman equation is updated using the reward of critic network and the Q value
from the target critic and actor (Equation 5-4). The critic network is trained on mini-batches
using a Mean-Squared-Error loss function as shown in Equation 5-5 where i is the index of
each sample in the batch. After the actor and critic networks are trained their counterparts
target networks are updated by interpolating the weights between the previous target network
iteration and the new train network. The interpolation is done with the constant 7 which
is usually set very small. The target network parameter update equation can be seen in
Equation 5-6.

a = u(sy) + OUnoise (5-3)
y(st) = r(ser1,a) +7Q (s, 1/ (541)) (5-4)
£= 5 Dlwlen - Qlosan)y? (55)
09 79 + (1 - 7)89 (5-6)

5-1-3 Hyper-parameters

The training was run for 5M timesteps (later referred to as steps) with the DDPG algorithm
being updated in every step from an experience memory buffer. Each step reflected an actual
step of the simulation that was found as a more appropriate measure for all the environments,
including those with premature episode termination such as Hopper-v3. The buffer stored
50,000 samples in total out of which a batch of 128 was selected for one update. The discount
factor v was set at 0.99.

5-1-4 Neural Network

Two identical Neural Networks were used for DDPG, one to be used as an actor and one for
critic. The hidden layer activations of both networks were ReLU while for the output layer
were linear and tanh for the critic and actor networks respectively. For the actor and critic

V. Arnaoutis Master of Science Thesis

5-2 Inverted Pendulum 43

networks the Adam optimizer was used with le — 4 and le — 3 learning rates respectively.
The target networks were updated with the parameter 7 set at 0.001.

5-1-5 Action Scaling - Normalization

In order to maintain the same neural network architecture for all continuous tasks the actor
output had to be scaled [20] [49]. The actor output activation function was set to tanh that
would output values between [—1,1]. After predicting the action, the algorithm would scale
the action to the action space of the environment (i.e. for the pendulum it will scale it by 2
to range between [—2,2] and for magman it would normalize it between [0, 0.6]).

5-2 Inverted Pendulum

The IP was trained on DDPG for both shallow and deep network architectures. The observa-
tions were normalized between [—1,1] [49]. The output activation function of the actor was
set to tanh and was scaled before being applied to the IP.

5-2-1 Global Inputs

The task was trained on the same NN architecture on 10 different runs where the mean return
per step for all runs can be seen in Figure 5-1 (Left). For each network and each run, the
return of 10 episodes from predefined initial states can be seen in Figure 5-1 (Right). The
initial states were the exact same ones used in the BVI Chapter 4 when the multi-initialization
was introduced (Figure 4-4).

—100
) \
—1000 A
LY o
o
—~200 4 —-1250 A °
—-1500 -
—-300 1 e . L]
- 3 -1750
2 e .
£ 4001 E 2000
2
—2250
—500 4
—2500
—— Deep global
—600 | —— shallow global —2750 1 ° oo °
0 1000000 2000000 3000000 4000000 5000000 Deep global Shallow global

steps

Figure 5-1: (Left) The mean return of 10 runs per NN architecture. The bold line is the smoothed
return of the mean. (Right) The sum return after simulating each NN from multiple initial states.

Both Shallow and Deep networks achieve sufficient performance with similar results. The
DNN was less consistent in learning than the SNN which can be shown by the difference of
the mean return. Out of the 10 runs, only 1 SNN fails to learn anything in comparison to the

Master of Science Thesis V. Arnaoutis

44 Reinforcement Learning

3 DNN. This cannot conclude anything as the runs were limited, however it seems that SNN
have been slightly more consistent. Figure 5-2 shows the separate runs individually for SNN
(Left) and DNN (Right). The DNN is shown to have slightly varied learning point, while
shallow is more consistent in learning at around the same step. Learning for SNN is more
robust compared to the DNN random unlearning characteristics.

-100

—200

—300

—400 -

return

—500 A

—600

—— Shallow global

—700 T T T T T T
0 1000000 2000000 3000000 4000000 5000000

steps

-100

—200

—300

—400

return

—500 A

—600

—— Deep global

=700 T T T T T T
0 1000000 2000000 3000000 4000000 5000000

steps

Figure 5-2: Representation of individual runs for shallow and deep NN on the IP using DDPG
and global inputs. SNN has more constistent performance with better learning and convergence
than the DNN.

5-2-2 Local Inputs

In addition to the experiments done using the standard inputs for the pendulum, a new
set of experiments were conducted with pre-processing of the input data. The position and
velocity inputs were converted to 441 basis functions. As the NN architecture used for the

IP was already minimized to challenge the capacity of the network, trying to match the

V. Arnaoutis Master of Science Thesis

5-2 Inverted Pendulum 45

parameters with such an increase of input size would bottleneck the networks. Instead the
network architecture remained the same (i.e. 20 neuros per layer for DNN and 128 neuros
for SNN) which caused the total trainable parameters of each network to vary. The goal
of these experiments is to investigate if a more expressive input formatting can improve the
learning using the same number of neurons for each NN. The set-backs of this method were
the computational time that was much higher for the SNN, due to increase of parameters.
Similar to global inputs, 10 NNs were trained for each architecture. The mean return per
architecture can be seen in Figure 5-3 in addition to the sum return from multiple initial
states for each individual NN.

=500
-100 | o9 &
[] []
%
°
—-200 1 ~1000 4 LY
S ® L
[}
—300 c
- 300 5 —1500
2
2 2 (] °
z E
—400 a L]
—2000
—5001 —— Deep global
—— Shallow global —2500
—— Deep local
—600 1 —— shallow local o® . haaad
T T T T T T T T T T
4] 1000000 2000000 3000000 4000000 5000000 Deep global Shallow global Deep local Shallow loca

steps

Figure 5-3: (Left) The mean return of 10 runs per NN architecture. The bold line is the smoothed
return of the mean. (Right) The sum return after simulating each NN from multiple initial states.

By comparing the results of the global and local inputs, it is possible to see that the local
inputs improve the performance of both NN architectures. This could have been expected
due to the increase of trainable parameters, nevertheless, by breaking down the inputs the
complexity of the problem increases. For the DNN, the local inputs improve the performance
of the networks that learn, while those that do not learn still exist. Comparing the SNN-
global and SNN-local, there is a similar distinction between learning and unlearning, however
for SNN-local all 10 runs have successfully learned. SNN maintains better performance to the
DNN, for both global and local inputs.

5-2-3 Computational Time

A final observation on the setup is done by comparing the computational time between ar-
chitectures. The goal is to identify if the increase of depth or width, dramatically affects the
training time of the network. The total computational time for all runs using DNNs and SNNs
can be seen in Figure 5-4. The global input NNs consist of approximately the same training
parameters and have very fimilar computational time. The local input NNs are constructed
with more parameters than the global however the computational time does not dramatically
increase. The choice of SNN or DNN with the same trainable parameters does not affect the
total training duration using DDPG.

Master of Science Thesis V. Arnaoutis

46 Reinforcement Learning

7.8 1

7.6 A

L]
O
7.4 ®
]

7.2 1

7.0

6.8

train time (hours)

6.6 ’ %f

6.4

6.2 ¢

T T T T
Deep global Shallow global Deep local Shallow local

Figure 5-4: A representation of the computational time for all the trained NNs. The NNs were
trained in sets of four, due to the computer capacity, something that can reflect in the plot.
Comparing the deep with the shallow architectures, it can be seen that the computational time
is approximately the same.

5-3 Magman

The Magman environment was also train the using DDPG algorithm. Unlike the IP, the
Magman was always reset at the same initial position (0,0) and had the same target position
(0.035,0) in between the two coils. The observations were normalized between [—1, 1] and the
output of the actor (tanh activation) was scaled to [0,0.6] [49].

5-3-1 Global Inputs

As there was no previous experimentation with the Magman setup, using the same NN archi-
tecture with the IP could result in poor learning for one or both NNs. Therefore, the width
for the SNN and DNN was increased to guarantee that there are enough parameters for the
NN to learn. The return per step, collected from 10 runs per NN architecture, can be seen
in Figure 5-5-Left. From the graph, it is possible to see that the SNN had more failures in
learning that the DNN, while some extreme unlearning (steep dives of the return throughout
learning) can be seen in both architectures. To observe the final performance of each network,
Figure 5-5-Right shows the return of a single episode in the magman environment for each
individual NN. More failures in learning can be observed by the SNN, which has 4 runs out
of 10 getting stuck in some local minima (above one coil), while only 1 run of the DNN fails
without learning anything.

V. Arnaoutis Master of Science Thesis

5-3 Magman 47
—0.5
L J
o4 N .
e ® °
~1.0
—0.6 ®
‘e
-15 —0.8 °
3
e —2.0 3 ~L0+
2 g
2 E 12
2.5 2
i [}
14 LI
—3.04
~16
3.5 —— Deep global 184
—— Shallow global)
T T T T T T T T
[} 1000000 2000000 3000000 4000000 5000000 Deep global Shallow global

steps

Figure 5-5: (Left) Mean return per step on the magman setup using SNN and DNN. The
mean was collected from 10 randomly initialized runs using the same NN architecture and hyper-
parameters. (Right) Return of a single run using the trained networks on the magman simulation.
By comparing the two graphs it is easy to see that the mean and convergence value per step is
affected by the NNs that failed to learn.

To gain more insight to the return per step of each run, the individual runs are shown in the
Figure 5-6. From the plot, it can be seen that the 1 run of DNN that failed to learn can be
easily spotted while for the SNN the learning is very noisy. DNNs achieve the top reward and
converge on it without too much noise, a phenomenon not observable in the SNN.

return

—— Deep global

T T
2000000 3000000
steps

T T
1] 1000000

T T
4000000 5000000

return

Pl
VA o 'l'." "n

¥ b 0
AV
,l“ ilal Iy l"lﬂ'l'

e

—— Shallow global

T T
1] 1000000

T
2000000

T T T
3000000 4000000 5000000

steps

Figure 5-6: Representation of individual runs for shallow and deep NN on the magman using
DDPG and global inputs. DNN has more constistent performance with better convergence than

the SNN.

5-3-2 Local Inputs

Similar to the IP benchmark task, the observable states (position and velocity) were pre-
processed to a basis function grid of 21 x 21 resulting to a total of 441 parameters from [0, 1].
To purely compare the effect of the change of input format, the NN architecture remained

Master of Science Thesis

V. Arnaoutis

48 Reinforcement Learning

unchanged with 64 neurons per layer for the DNN and 512 neurons for the SNN. The results of
10 runs per architecture can be seen in Figure 5-7 in addition to the return of one episode for
each trained NN. For the magman benchmark, pre-processing the input did not improve the
performance of the simulation. As the initial state and target state are the same, the DNN-
global and SNN-global already achieve near perfect simulation. Nevertheless, it can be noted
that the DNNs, both global and local, are more consistent in reaching the optimal return. As
the magman simulation task is deterministic and the initial states are always the same, it is
believed that the better performance of the DNN can be explained from over-fitting.

o~ 3 P -,
0.4 o . o
1.0 []
—0.5 A Y
=15
—0.6
2.0 ;
g E 0.7 *
o [] °
I3 E
-2.5 2 -08
—-0.9
~3.04
—— Deep global 1o *
—— Shallow global -
=35 —— Deep local 11 L]
—— Shallow local o .
T T T T T T T T T T
0 1000000 2000000 3000000 4000000 5000000 Deep global Shallow global Deep local Shallow local

steps

Figure 5-7: (Left) The mean return of 10 runs per NN architecture. The bold line is the smoothed
return of the mean. (Right) The sum return after simulating each NN from multiple initial states.

5-3-3 Random Initialization

From the experiments done in using DDPG on both pendulum and magman, it was observed
that shallow network outperformed the deep network when there was more randomness in the
environment. For example, the pendulum was randomly initialized in the whole domain while
the magman was always initialized from the same state. Repeating the same sequence every
time could be beneficial for the DNN, that is why we have observed an increase in performance
for the magman setup. To confirm or discard this disclaimer, the NNs are retrained on the
magman setup however the states are now randomly initialized in every episode. The attempt
to increase the complexity and spread the sampled points to a broader domain was expected
to increase the performance of the SNN. As shown in Figure 5-8, the DNN consistently
outperforms the SNN with the new setup parameters. In contrast, the SNN barely learns to
compensate for the random state initialization which can conclude that the difference between
the architectures does not necessarily lie in the state initialization condition. Figure 5-8 also
presents the return of one episode from the same initial state for each NN. The distinction
between the learning of DNN and SNN can be clearly seen from the return gap of the two
architectures.

V. Arnaoutis Master of Science Thesis

5-4 Hopper 49

-0.5
° L]
1]
“104 %
2 L
-1.5
E 3
£ 2
E] v
B 2.0 E 4]
@
—2.54 =5
-6
—3.04 Deep random
—— Shallow random *
T T T T T T -7 T
[4] 1000000 2000000 3000000 4000000 5000000 Deep random Shallow random

steps

Figure 5-8: (Left) The mean return of 10 runs per NN architecture. The bold line is the smoothed
return of the mean. (Right) The return after simulating each NN from the same initial state.
Where from the return it can be expected that both NN architectures learn, by observing the
simulation it is clear that the SNN does not perform as good as the DNN.

5-4 Hopper

The Hopper-v3, described in Section 2-2 was trained using the DDPG algorithm. As there
was an important increase in observation states and actions, compared to the IP task, the
NN architectures were increased in width. For the SNN, the hidden layer was increased to
512 units, 6657 parameters. For the DNN, each hidden layer was increased to 64 units for a
total of 4929 parameters [20].

5-4-1 Training

Both DNN and SNN were trained using DDPG on the Hopper-v3 environment. For each
network architecture there were a total of 10 runs from which the mean return per step
can be seen in Figure 5-9 - Left (For the SNN only 5 runs were captured as the MuJoCo
licence had expired before the end of the experiments. The mean was taken over those 5
runs). Comparing the smoothened return of the SNN and DNN; both neural networks have
very similar performance on the specific setup. An additional Figure 5-9-Right, presents the
maximum return recorded in each run. From the maximum return of the SNN, it can be seen
that throughout the learning, it achieved significantly higher return over the DNN. Such high
return could result by either learning a faulty movement that would exploit a loopwhole in
the environment dynamics or by learning to Hop for very long time.

DNN and SNN have very similar performance in learning the continuous control task. While
from simulation it can be observed that even the best rewarded runs could have inconvenient
methods to collect the reward, the issue of the task not learning perfect forward hopping is
not in the interest of the thesis. An additional set-back was the unlearning as providing a
total number of steps for the algorithm without any condition for earlier stopping resulted in
some of the runs to learn early and unlearn the good policy before the end of training.

Master of Science Thesis V. Arnaoutis

50 Reinforcement Learning

®
3000
1200 4 ° °
[}
L)
1000 | 2500 4 . o O
o]
800
e 2000
- g
£ 6001 c
5 1500
@
400 1
1000 A [
200 A
—— Deep global 500 4
04 —— Shallow global *
T T T T T T T T
[} 1000000 2000000 3000000 4000000 5000000 Deep global Shallow global

steps

Figure 5-9: (Left) Mean return of SNN and DNN runs on the Hopper-v3 environment. (Right)
Maximum return recorded per episode for individual runs of the SNN and DNN. Learning seems
consistent for SNN and DNN with the SNN having less total runs to compare from. Some of the
learned policy functions of both SNN and DNN when simulated were not the "hopping" expected
from the task but rather a weird movement that managed to collect equally as much or higher
reward.

5-5 Summary and Concluding Remarks

In this chapter the state-of-the-art DRL algorithm, DDPG, is applied in all three benchmarks.
The evaluation consists of comparison of the return during training and the performance of the
NN during simulation after training. The performance of shallow and deep NNs vary between
benchmarks, which suggests that a critical difference exists between them. By observing the
performance of the NN in two input structures (i.e. global and local), and multiple low-
dimensional environments it was concluded that the deep network performed better in the
magman setup, the shallow network performed better in the pendulum and equal performance
was observed in the Hopper-v3 environment. As the Hopper-v3 being the highest dimension
system of all three, it can be noted that the difference between IP and MagMan was not in
the dimensions. Both control setups have similar characteristics, which makes the different
performance of the networks interesting. The performance gap can be either due to the
function, that is to be approximated or from the selection of hyper-parameters that can vary
between setups (e.g. a batch size of 128 samples can improve learning of a SNN for the
pendulum, while it can harm the learning for the magman task).

V. Arnaoutis Master of Science Thesis

Chapter 6

Conclusion

The chapter will summarise the general conclusions derived from the experimental research
presented in the project. By aiming to answer the research question between which net-
work architecture can be best applied in continuous control applications, the conclusions
will concentrate on an experimental decision between the two architectures with respect to
performance, current benchmarks, state-of-the-art algorithms and computational power.

6-1 Performance

The accuracy of function approximation in both SNN and DNN has been recorded from
vanilla-SL to state-of-the-art RL. The generalization error and general learning characteristics
of the NN were more profound in the SL methods, as the hyper-parameters to be tuned were
less than the RL methods. Implementing the state-of-the-art RL methods required setting up
multiple hyper-parameters, which could either directly or indirectly affect the NN performance
which made a confident experimental conclusion impossible. In general it was observed that
the SNN was under-fitting the function (i.e. as seen in the initial SL methodology) while
the DNN could badly over-fit the data (i.e. as seen in the VI methodology). The poor-
fitting was based on either the number of sampling data, the NN width or the optimization
parameters. From the literature it has already been shown many times that with proper
conditions both NN architectures can achieve similar results [12] [11] [16] [17]. From our
experiments we confirm that both NNs if trained under the correct conditions could partially
learn given multiple runs. For the tasks that had very strict domain conditions or were
initialized from the same position (i.e. Hopper-v3 and MagMan) the DNN seemed to perform
better, as the data was clustered in a smaller space. However, due to the multiple hyper-
parameters, it is impossible to know if a slight change in those values would affect the outcome.
Thus the conclusion can be made that in low-dimensional continuous control applications,
successful learning is not guaranteed from either SNNs or DNNs, whereas the choice lies on
the formulation of the task including environment, observation space, termination criteria
and algorithm.

Master of Science Thesis V. Arnaoutis

52 Conclusion

6-2 State-of-the-art algorithms

As stated in the previous section, the NN architecture selection can be heavily influenced by
the choice of RL algorithm. In current practices, most if not all state-of-the-art RL algorithms
are focusing on over-fitting the NN by high sampling data either online or offline. The algo-
rithms are usually associated with a procedure that will directly or indirectly regularize the
NN, a characteristic that benefits the performance of the DNNs. A slight modification of the
RL algorithm hyper-parameters or simple randomization can cause the same NN architecture
to produce different results [23]. In tasks such as the IP, where the initialization of the episode
was random, DNNs were more prone to forgetting than the SNNs. Thus the selection of the
NN architecture can potentially come down to the algorithm implementation including batch
size, memory buffer, learning rate and other hyper-parameters.

6-3 Environment complexity

Nevertheless, the state-of-the-art algorithms are designed based on the current benchmarks
that have already been proven to lack the criteria of a well rounded test-bed [9]. Looking into
OpenAl gym and similar upgraded versions of those environments (i.e. DeepMind Control
Suite [50]), most high dimensional continuous control tasks consist of episode termination
criteria or reward penalties that prevent observation of the whole continuous space. In reality,
the environments have been set so strictly that force the algorithm to either learn the proper
function or not at all. By forcing the control space within tight limits, the environment
guarantees that most of the observed data will be clustered around the points of interest.
The high increase of data can benefit DNN architectures that tend to over-fit by indirectly
being regularized. For example, looking into the simpler pendulum environment learning the
whole value function using DRL method has been proven more challenging for the DNN,
compared to learning a higher dimensional problem such as the Hopper-v3, where the task is
constrained from visiting the whole observation space. Understanding the conditions in which
the task is required to be trained in, could influence the choice between SNNs and DNNs.

6-4 Computational consideration

While performance requirements are the main factor into the comparison of the architectures,
practical implementation in terms of computational power should also be taken into account
when deciding on the ideal NN architecture. It could be a common misconception that DNNs
require more computational time than SNNs. The computational time of a SNN and DNN
on a single epoch, using Tensorflow, are very similar (Figure 6-1). This can be expressed
by the improvements done in both computer software and hardware in terms of tensors
computation. Even if the network complexity does increase by the addition of extra hidden
layers, the computational time does not.

V. Arnaoutis Master of Science Thesis

6-5 Shallow vs. Deep 53

—— Shallow
—— Deep

1.24

1.01

o
©
s

seconds
o
[e)]

0.4

0.2 A

0.0 A

0 20 40 60 80 100
index of epochs

Figure 6-1: A comparison between the computational time of a shallow and deep NN with the
same number of parameters on the same data. The x-axis is the number of epochs for which
the network was trained on. The DNN training algorithm of Keras with Tensorflow as Backend
is slightly faster than the SNN. The results are run on a GPU, however the results are consistent
for CPU too.

As the computational time is not affected by the complexity of the network architecture,
and both architectures perform very similarly, it is possible to also look at the overall com-
putational cost of learning. By comparing the training steps required to achieve sufficient
performance for both NNs, the SNN was always slower in convergence than the DNN for the
vanilla-SL and TVI algorithms while it was very similar for BVI and RL algorithms. This is
due to the additional expressiveness of the DNN which allows the network to fit faster on the
same data.

In general, taking into account that the number of trainable parameters does not exponen-
tially increase from shallow to deep NNs, as SNNs tend to also be wider, there is not a real
computational setback for using a two hidden layer neural network over a shallow one. Given
that the number of parameters does not pose a physical limitation in DRL control applica-
tions, equal learning time can be a pro-factor for the DNNs. In additon, when considering a
pre-processing of the input data that would exponentially increase the number of inputs (e.g.
converting position and velocity to a basis function grid) then using a DNN could reduce the
total trainable parameters and speed up training.

6-5 Shallow vs. Deep

To conclude, Deep NNs come with many complexities and uncertainties during learning [40],
compared to the limitations of SNNs. The implementation of many DRL algorithms intro-
duces regularization and data collection methods that benefit over-fitting. In addition, some
low-dimensional continuous control benchmarks favor clustered data and repeatability over
complete randomization. While it has been shown that in a Supervised Learning environment,
a SNN can approximate equally as good the target function, the additional expressiveness

Master of Science Thesis V. Arnaoutis

54 Conclusion

of DNN can be used as a catalyst for overfitting and learning on poor data. Nevertheless,
DNNSs have been proven more inconsistent during learning, where the SNNs were sometimes
unable to fully express the functions. Thus, it is suggested that before attempting training
with a DNN, a SNN could be used as a benchmark network for comparison of multiple runs
of the DNN. In theory, any DNN with equally as many trainable parameters with a SNN, can
achieve as good of a performance as the SNN. In practice, it is wise to investigate if the SNN
could suffice in learning the target function rather than applying a DNN directly.

The conclusion is heavily focused on the current benchmarks and DRL algorithms that are
considered state-of-the-art and are only directed towards low-dimensional continuous control
tasks. In the future, developments and implementation of new algorithms could exist that
motivate the use of shallower and thinner NNs. For the present, a common rule of thumb
that is used for constructing a DNN is the use of two hidden layers with hidden neurons
per layer 10x the observation states (i.e. hidden neurons = 10x network inputs). From
that rule of thumb, a SNN can be also constructed with the aim of maintaining equal total
trainable parameters. The expressiveness and capacity of such a shallow and deep NN, shall
be sufficient for learning using the standard DRL algorithms.

6-6 Future Work and Recommendations

The thesis provided an answer and an empirical conclusion on the learning of two different
network architectures for Reinforcement Learning in low dimensional continuous control ap-
plication. While it was shown that bootstrapping was harmful for the DNN on the IP setup
which was the reason that the SNN performed better on the final stage of RL, the results
did not hold the same for the magman setup. A continuation of the research could repeat
similar research on the magman setup, as it was done on the pendulum and investigate the
differences. An early assumption can be done that the SNN will also fail in the bootstrapping
step, which will assist in pinpointing the critical difference of learning between Supervised
and Reinforcement Learning. Additional research can be done on purely the Reinforcement
Learning stage, as it was the one with the most varied and unexpected results. As it was
stated in Chapter 5, the NN learning can be affected by various hyper-parameters. In an
attempt to identify the bottleneck of learning, experiments could be done on the pendulum
and magman setups by modifying the hyper-parameters of the current algorithm so that the
network that previously failed can consistently learn. Furthermore, it has been shown that
both architectures can perform well in different environments. In order to bridge the gap
between the two architectures, a hybrid network could be designed that will include both
shallow and deep connections. With the use of skipping connections a DNN can have the
shallow layer linked directly to the output, which may benefit and improve the robustness of
learning [51] [52] [53] [54]. For such a hybrid network, it would be interesting to see which
of the two elements of the architecture is more dominant in terms of conservation of learning
(e.g. using the hybrid-NN the performance can be matched with that of the SNN for the
pendulum setup, but it will be also as poor on the magman setup showing that the shal-
low connections were more dominant or vice versa). The hybrid network could combine the
benefits of both basic architectures and outperform them in all the environments.

V. Arnaoutis Master of Science Thesis

Appendix A

Selection of NN architectures

A-1 Optimizers and Activation functions

—— relu train loss
elu train loss
—— tanh train loss

101 4

Loss Value

T T T T T T T T
0 10000 20000 30000 40000 50000 0000 70000 80000
Epoch

Figure A-1: Example of the same NN, with 2 hidden layers and 20 hidden units per layer, trained
on different activation functions. Tanh seems to perform better than the other methods. RelLU
converges faster than ELU however ELU has lower final loss value. For initial testing the RelLU
activation function was selected as it is commonly favoured by the community for DRL problems.
The tanh activation function was also tested later in the report to compare results with ReLU.

Master of Science Thesis V. Arnaoutis

56 Selection of NN architectures

10! 1 —— SGD train loss
—— ADAM train loss
—— RMSprop train loss

Loss Value

10" 1

T T T T T T T T
0 10000 20000 30000 40000 50000 0000 70000 80000
Epoch

Figure A-2: Example of the same NN, with 2 hidden layers and 20 hidden units per layer,
trained on different optimization algorithms. Adam is comparably the best algorithm in terms of
stability and lower loss. The insensitivity of Adam to its learning parameters provides a robust
optimizer for different NN architectures. Vanilla SGD is highly fluctuating which shows the effect
that learning rate and the use of momentum can have on the optimizer. Due to the need of
comparison between different architectures and parameters, SGD was found very sensitive an
optimizer. RMSprop provides better results that SGD however it achieves higher loss than Adam
and is commonly considered inferior to Adam by the community.

V. Arnaoutis Master of Science Thesis

1]

2]

[10]

References

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-
level control through deep reinforcement learning,” 2015.

Y. Lecun and Y. Bengio, “Convolutional networks for images, speech, and time-series,”
01 1995.

D. C. Ciresan, U. Meier, and J. Schmidhuber, “Multi-column deep neural networks for
image classification,” CoRR, vol. abs/1202.2745, 2012.

A. Dosovitskiy, J. Tobias Springenberg, and T. Brox, “Learning to generate chairs with
convolutional neural networks,” in The IEEFE Conference on Computer Vision and Pat-
tern Recognition (CVPR), June 2015.

M. Hessel, W. Dabney, J. Modayil, D. Horgan, H. van Hasselt, B. Piot, T. Schaul,
M. Azar, G. Ostrovski, and D. Silver, “Rainbow: Combining improvements in deep
reinforcement learning,” 2017.

K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” arXiw:1502.01852, 2015.

X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning for real-time atari
game play using offline monte-carlo tree search planning,” in Advances in Neural Infor-
mation Processing Systems 27 (Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, eds.), pp. 3338-3346, Curran Associates, Inc., 2014.

C. Clark and A. Storkey, “Training deep convolutional neural networks to play go,” 2015.

A. Rajeswaran, K. Lowrey, E. Todorov, and S. Kakade, “Towards generalization and
simplicity in continuous control,” 2018.

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Harley, T. P. Lillicrap, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” 2016.

Master of Science Thesis V. Arnaoutis

58 References

[11] J. Schulman, P. Moritz, S. Levine, M. I. Jordan, and P. Abbeel, “High-dimensional
continuous control using generalized advantage estimation,” 2018.

[12] L. Busoniu, T. de Bruin, D. Tolic, J. Kober, and I. Palunko, “Reinforcement learning for
control: Performance, stability, and deep approximators,” 2018.

[13] S. Levine, “Exploring deep and recurrent architectures for optimal control,” 2013.

[14] A. Irpan, “Deep reinforcement learning doesn’t work yet.” https://www.alexirpan.
com/2018/02/14/r1-hard.html, 2018.

[15] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Benchmarking deep
reinforcement learning for continuous control,” 2016.

[16] H. Mhaskar, Q. Liao, and T. A. Poggio, “When and why are deep networks better than
shallow ones?,” in AAAI 2017.

[17] C.-H. Chang, “Deep and shallow architecture of multilayer neural networks,” 2015.

[18] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas,
“Sample efficient actor-critic with experience replay,” 2017.

[19] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” 2016.

[20] R.Islam, P. Henderson, M. Gomrokchi, and D. Precup, “Reproducibility of benchmarked
deep reinforcement learning tasks for continuous control,” 2017.

[21] K. Pasupa and W. Sunhem, “A comparison between shallow and deep architecture clas-
sifiers on small dataset,” 2016.

[22] J. Brownlee, “Difference between classification and regression in machine learning,” 2017.

[23] P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup, and D. Meger, “Deep rein-
forcement learning that matters,” 2019.

[24] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics: A survey,”
The International Journal of Robotics Research, vol. 32, no. 11, pp. 1238-1274, 2013.

[25] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning. The MIT Press
Cambridge, Massachusetts, London, England, 1998.

[26] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85-117, 2015. Published online 2014; based on TR arXiv:1404.7828 [cs.NE].

[27] F. Chollet et al., “Keras.” https://keras.io, 2015.

[28] S. Zhang and R. S. Sutton, “A deeper look at experience replay,” 2018.

[29] L. ji Lin, “Self-improving reactive agents based on reinforcement learning, planning and
teaching,” in Machine Learning, pp. 293-321, 1992.

[30] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience replay,” 2016.

[31] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and

W. Zaremba, “Openai gym,” 2016.

V. Arnaoutis Master of Science Thesis

https://www.alexirpan.com/2018/02/14/rl-hard.html
https://www.alexirpan.com/2018/02/14/rl-hard.html
https://keras.io

59

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

F. Pardo, A. Tavakoli, V. Levdik, and P. Kormushev, “Time limits in reinforcement
learning,” Proceedings of Machine Learning Research, PMLR, 2018.

L. Bugoniu, D. Ernst, B. D. Schutter, and R. Babuska, “Approximate dynamic program-
ming with a fuzzy parameterization,” ., 2010.

D. Smilkov and S. Carter, “A Neural Network Playground kernel description.”
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=
circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&
noise=0&networkShape=4, 2&seed=0.08158&showTestData=false&discretize=
false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&
ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=
false&problem=classification&initZero=false&hideText=false, 2015

G. Montufar, R. Pascanu, K. Cho, and Y. Bengio, “On the number of linear regions of
deep neural networks,” 2014.

M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. S. Dickstein, “On the expressive
power of deep neural networks,” ., 2017.

S. Ruder, “An overview of gradient descent optimization algorithms,” 2016.
D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” 2017.

T. Chai and R. R. Draxler, “Root mean square error (rmse) or mean absolute error
(mae)? — arguments against avoiding rmse in the literature,” Geosci. Model Dev, 2014.

X. Glorot and Y. Bengio, “Understanding the difficulty of training deep feedforward
neural networks,” ., 2010.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton, “On the importance of initialization
and momentum in deep learning,” 2013.

I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. http:
//www.deeplearningbook.org.

T. Poggio, K. Kawaguchi, Q. Liao, B. Miranda, L. Rosasco, X. Boix, J. Hidary, and
H. Mhaskar, “Theory of Deep Learning I1I: explaining the non-overfitting puzzle,” Center
for Brains, Minds and Machines, 2018.

Y. Li, “Deep reinforcement learning: An overview.,” CoRR, vol. abs/1701.07274, 2017.

J. Fu, K. Luo, and S. Levine, “Learning robust rewards with adverserial inverse rein-
forcement learning,” CoRR, vol. abs/1710.11248, 2018.

L. Matignon, G. J. Laurent, and N. L. Fort-Piat, “Reward function and initial values:
Better choices for accelerated goal-directed reinforcement learning,” in ICANN, 2006.

A. J. Champandard, “Reinforcement learning,” 2001.

G. E. Uhlenbeck and L. S. Ornstein, “On the theory of the brownian motion,” Phys.
Rev., vol. 36, pp. 823-841, Sep 1930.

Master of Science Thesis V. Arnaoutis

https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.08158&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.08158&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.08158&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.08158&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.08158&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
https://playground.tensorflow.org/#activation=tanh&batchSize=10&dataset=circle®Dataset=reg-plane&learningRate=0.03®ularizationRate=0&noise=0&networkShape=4,2&seed=0.08158&showTestData=false&discretize=false&percTrainData=50&x=true&y=true&xTimesY=false&xSquared=false&ySquared=false&cosX=false&sinX=false&cosY=false&sinY=false&collectStats=false&problem=classification&initZero=false&hideText=false
http://www.deeplearningbook.org
http://www.deeplearningbook.org

60 References

[49] H. Anysz, A. Zbiciak, and N. Ibadov, “The influence of input data standardization
method on prediction accuracy of artificial neural networks,” Theoretical Foundation
of Civil Engineering, 2016.

[50] Y. Tassa, Y. Doron, A. M. T. Erez, Y. Li, D. de Las Casas, D. Budden, A. Abdolmaleki,
J. Merel, A. Lefrancq, T. Lillicrap, and M. Riedmiller, “Deepmind control suite,” 2018.

[51] A. E. Orhan and X. Pitkow, “Skip connections eliminate singularities,” 2018.

[52] S. Zagoruyko and N. Komodakis, “Diracnets: Training very deep neural net- works
without skip-connections,” 2018.

[53] G. Huang, Z. Liu, K. Q. Weinberger, and L. van der Maaten, “Densely connected con-
volutional networks,” 2016.

[54] F. Lagzi, T. Ball, and J. Boedecker, “Compact representations and pruning in residual
networks,” 2018.

V. Arnaoutis Master of Science Thesis

	Front Matter
	Cover Page
	Title Page
	Table of Contents
	Acknowledgements

	Main Matter
	Introduction
	Preliminaries
	Introduction to Neural Networks
	Definition of Shallow and Deep Neural Networks
	Epoch and batch size
	Experience Replay

	Continuous Control Benchmarks
	Inverted Pendulum
	Magnetic Manipulator
	Hopper - v3

	Pre-Generated Data for Inverted Pendulum
	Visualization Techniques for Neural Networks
	Neuron Visualisation
	Activation Visualisation

	Shallow and Deep Architecture Selection
	Training the Neural Network
	Stopping criteria
	Overfit
	Computational Time Comparison
	Architecture Selection

	Summary and Concluding Remarks

	Tracking Value Iteration
	Tracking Value Iteration Dataset
	Analytical comparison between SL and TVI
	Deep Neural Network
	Shallow Neural Network
	Increasing the trainable parameters/width

	Visual comparison of parameters between SL and TVI
	Visualizing the neurons

	Summary and Concluding Remarks

	Bootstrapping Value Iteration
	BVI methodology
	Discount factor and Epochs
	Upgrade Reward Function
	State multi-initialization
	Difference between Shallow and Deep
	Visualizing the expressiveness

	Summary and Concluding Remarks

	Reinforcement Learning
	Deep Deterministic Policy Gradient
	Action Noise
	The Algorithm
	Hyper-parameters
	Neural Network
	Action Scaling - Normalization

	Inverted Pendulum
	Global Inputs
	Local Inputs
	Computational Time

	Magman
	Global Inputs
	Local Inputs
	Random Initialization

	Hopper
	Training

	Summary and Concluding Remarks

	Conclusion
	Performance
	State-of-the-art algorithms
	Environment complexity
	Computational consideration
	Shallow vs. Deep
	Future Work and Recommendations

	Appendices
	Selection of NN architectures
	Optimizers and Activation functions

	Back Matter

