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Summary
With the increased use of in-car navigation devices and mobile phone navigation applications, large
amounts of Floating Car Data are becoming available. This data source offers GPS traces and speed
information of vehicles, and allows for traffic analysis. The extensive use of such navigation applications
and systems also provides opportunities for (personalised) in-car advises and traffic management such
as lane change advises, through which traffic flow can be improved. An issue currently withholding
such advises however, is the inaccuracy of regular GPS, which can be offset up to several meters. It is
therefore not possible to say with certainty in which lane a vehicle is driving, making it difficult to offer
lane-level driving advises. By determining when a vehicle makes a lane change, a first step towards
lane-level knowledge is gained. Furthermore, knowing if, and where a vehicle makes a lane change
is also crucial to know whether a vehicle follows an advice given, and whether an advice would be
beneficial. Currently no method exists which can, from Floating Car Data alone, with certainty deduct
whether a vehicle makes a lane change, or whether the lateral movement seen in the data is caused
by GPS error or distortion.
The goal of this research is to apply a new method for lane change recognition, and explore to what
extent that method is able to deduct lane change manoeuvres from Floating Car Data, by looking into
the following main research question:

”To what extent can lane changes be recognised from Floating Car Data?”.

In order to answer this question, a combination of Floating Car Data from Flitsmeister, and loop detector
data, both from the Dutch highway A27 between Utrecht Noord and knp Eemnes, is used. First a data
analysis is executed to examine the level at which information can reliably be deducted from Floating
Car Data, after which a trajectory reconstruction algorithm by Arman and Tampere (2021) is applied in
order to identify lane changes. By matching Floating Car Data trajectories with loop detector passages,
vehicles are located on a specific lane at each loop detector location. From this lane changes being
made in the road sections in-between these loop detector locations are deduced and labels indicating
the type of lane change can be created. This is depicted in figure 1.

Figure 1: Schematic representation of data usage step 1

The lane change labels acquired through the trajectory reconstruction algorithm are then used for two
methods of lane change recognition; a rule-based method, and a machine learning algorithm.

vi
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The first method for lane change recognition applied is a rule-basedmethod by Van Ballegooijen (2019),
which considers a vehicle’s delta heading (Δℎ, in degrees, the difference in vehicle heading compared
to the direction of the infrastructure), during several consecutive time steps of 1 second. A lane change
is thereby defined according to the following definition, in which 𝑡𝑖 represents time-step i, and Δℎ𝑡𝑖 the
delta heading of the vehicle at time-step i:

(Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑎𝑛𝑑 𝑡2 < 0 𝑜𝑟 (Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑎𝑛𝑑 𝑡2 > 0

𝑎𝑛𝑑

𝑎𝑏𝑠(Δℎ𝑡0 + Δℎ𝑡1 + Δℎ𝑡2 + Δℎ𝑡3) >= 6

The resulting lane changes according to this definition are compared to those found through the tra-
jectory reconstruction algorithm of Arman and Tampere (2021), as well as to the number expected
according to literature. A schematic representation of this can be seen in figure 2.

Figure 2: Schematic representation of rule based method

The second lane change recognition method applied is a Random Forest algorithm, which uses several
different features for lane change recognition. Four different models are trained according to different
types of lane change categorisations, namely:

• Lane Change Yes/No

• Lane Change Left/No/Right

• Lane Change Left/Right+No

• Lane Change Right/Left+No

For each of these models Floating Car Data and lane change labels are used to train the model on lane
change classification. An illustration of how the different inputs are used, is depicted in figures 3 and 4.
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Figure 3: Schematic representation of model training

Figure 4: Schematic representation of model testing

For each of the types of lane changes, the features speed, heading, delta heading, heading difference
to the previous data point, timestamp, Y-distance, and X-distance, are investigated as lane change
indicators.

Lane changes were found to be recognised accurately between 51.98 % and 53.10 % through the
rule-based method compared to the trajectory reconstruction algorithm. However, this method found
only a total of 7 to 8% of lane changes compared to the trajectory reconstruction algorithm, and 14.3
to 26.9% compared to literature.

From the four models trained through a Random Forest algorithm, lane changes were found to be ac-
curately recognised between 48.84% and 64.50% depending on the lane change categorisation. The
most important indicators were found to be the heading of the vehicle, and the X-distance between the
vehicle and the centerline of the road, in which the X-distance weighs more heavily in lane changes to
the left, and heading more in lane changes to the right.

The most suitable lane change recognition model is dependent on the exact goal of the model. For
cases in which the precision of the recognition is most important, thereby putting more importance on a
found lane change to have actually been made as said, a model with a high precision score is required.
In cases where as many lane changes as possible need to be recognised, in which case it is not critical
if a few lane changes are wrongly labelled, a model with a high recall score is more suitable. In case
both are equally important, a model with high f1-score and accuracy should be used. Furthermore, the
most suitable model is dependent on the type of lane change aimed to be recognised i.e. whether the
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direction is required.

A number of limitations apply to this study which should be taken into account when considering the
results. Firstly, this study is the first study in which the trajectory reconstruction algorithm by Arman
and Tampere (2021) is applied outside of the original study, as well as in a different study area and
country. The loop detector- and road placement for this is also executed manually, which is sensitive
to errors and thereby potentially influenced the labelling.
Secondly, the hyperparameters for each model were tuned using a random search, which is a method
that considers only a limited number of values within a determined range for each hyperparameter. A
more thorough method would be a grid search, which considers every value. This method however is
very time- and computationally demanding and for that reason not applied in this study.

For future research, the implementation of a grid search is therefore recommended in order to deter-
mine whether this leads to increased accuracy of the models. Furthermore, it is recommended to apply
this research structure to a different road (section), as well as to several road sections combined, in
order to research the generalisation of the models. Lastly, adding a third data source such as a cam-
era to this research would increase the reliability of the lane change labelling, leading to more reliable
results, and is therefore recommended.

Combining the findings of this study with the results from Van Ballegooijen (2019), it seems that with
the current level of GPS inaccuracy, it is, at least with these methods, not possible to reach a lane
change recognition rate of more than 50-64% from Floating Car Data alone. By improvement of the
GPS receivers in mobile devices and navigation systems, a higher accuracy can probably be reached
in the future.



1
Introduction

Throughout the last decades, traffic congestion has become an increasingly severe problem in our
modern society, with especially in rush hour many drivers spending vast amounts of time stuck in traf-
fic. The amount of congestion in The Netherlands has been increasing over the past years, with an
increase of congestion intensity of 20% in 2018, and 17% in 2019 (ANWB, 2020). Not only does this
congestion lead to a loss of time and money, it also comes with a significant increase in fuel consump-
tion and levels of emissions (Treiber et al., 2008).

Multiple ways of tackling congestion are known, varying from the promotion of alternative modes of
transport, to the development of automated vehicles, and policy implementations such as taxes and
congestion- charge or pricing strategies. Although in the future connected and automated vehicles are
expected to aid in reducing congestion through their capabilities of cooperating at a higher level, it can
still take decades for the penetration rate of such vehicles to be high enough to aid traffic flow (Makridis
et al., 2018). Therefore it is interesting to look at solutions implementable in the short term in order to
increase traffic flow and make better use of the available road capacity.

Currently driver behaviour is a major cause of congestion, both through direct, and indirect effects,
such as lane flow distribution, and lane changing behaviour. Drivers naturally follow a specific lane
flow distribution, in which the capacity flow is not reached on all lanes simultaneously, causing the road
capacity to be impacted (Wu, 2006). Additionally, road users often perform sub-optimal lane changes
due to flawed perceptions, which can then trigger congestion (Roncoli et al., 2017). Therefore, an
optimal, more equal distribution of traffic over the lanes of a highway can aid in increasing traffic flow.
Especially upstream of bottlenecks, weaving sections, and on- and off-ramps, a beneficial distribution
of traffic over the lanes is desired (Knoop et al., 2010).

A way in which to affect traffic distribution would be to offer personalised advises to individual vehicles,
for example telling them when to switch lanes. Considering the extensive use of navigation apps and
in-vehicle navigation systems, in-car advises given by those systems can offer many traffic manage-
ment opportunities. This manner of advice-implementation is specifically effective as the in-car- and
navigation systems are easily adaptable, and already in use. Consequently, no infrastructure changes
are required for offering (personalised) advises, and this can therefor be considered a relatively cheap
and easy implementable way of increasing traffic flow.

One of the biggest current challenges withholding the implementation of such personalised, in-car ad-
vice, is the fact that it is at present not possible to determine, from GPS location, with certainty in
which lane a vehicle is located. Existing GPS signals, especially those used in mobile devices, have
an uncertainty margin of several meters. On a road with lanes of approximately 3.50 meters width,
this offset can therefore lead to a false perception of which lane the vehicle might be in. Furthermore,
a disturbance of the signal can thereby also lead to the false interpretation of a lane change, when in
reality the lateral change of location could be caused by GPS error or disturbance. Because of this, it
is of interest to identify a way in which to recognise lane changes from Floating-Car Data (FCD); a data

1
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source of GPS traces of vehicles equipped with a navigation device.

This research aims to do exactly this, namely exploring whether it is possible to recognise lane changes
from Floating Car Data.

1.1. Scope
This research focuses specifically on the recognition of lane changes from Floating Car Data on high-
ways in The Netherlands. The Floating Car Data considered is that collected by Flitsmeister within the
research area. No differentiation is made between types of road users, as all Flitsmeister users within
the research area are considered. Furthermore, no differentiation is made between discretionary- and
mandatory lane changes.

1.2. Research Question
The main research question of this research is defined as follows:

To what extent can lane changes be recognised from Floating Car Data?

In order to answer this question, the following subquestions need to be looked into:

• What (level of) information can be obtained from Floating Car Data?

• Which trajectory characteristics are significant in lane change recognition?

1.3. Research Approach
To be able to answer all research questions stated above, first an extensive literature study is executed
to have a good understanding of the current knowledge framework, as can be found in chapter 2. After
this the availability of data for this research is being looked into, which is followed by a data analysis
and filtering in chapter 4. Subsequently, the available data is used for trajectory reconstruction by
the matching of Floating Car Data with Loop Detector data. These reconstructed trajectories offer
information on the lane a vehicle is in at each loop detector location, through which lane changes can
be found for each trajectory.
This data, consisting of trajectory information and labels of whether a lane change is made, is then
used in order to recognise lane changes without the use of the loop detector data. This is done by
applying a rule-based lane change recognition in chapter 5, as well as by creating a machine learning
lane change recognition model in chapter 6. Finally, in chapter 7 the findings are discussed and a
conclusion is reached. A schematic overview of this research structure can be found in figure 1.1
below, in which the arrows indicate the order in which information/findings from previous steps are
used in the next steps.
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Figure 1.1: Research structure

The loop detector data in this research is used only as a means in order to find whether or not a vehicle
makes a lane change in a road section. The goal is to then be able to recognise lane changes without
the use of loop detector data. By not using loop detector data, but recognising lane changes from only
the Floating Car Data, it is possible to apply this recognition of lane changes on any road, regardless
of the infrastructure. Especially with the increased use of in-car navigation and navigation apps, this
offers many traffic management opportunities.



2
Literature review

To research the current knowledge on, and related to, lane change recognition from Floating Car Data,
a literature research is executed, looking into both lane change characteristics from a microscopic per-
spective, as well as GPS accuracy and the interrelated effect of these. Furthermore, past and current
research on trajectory tracking related to lane changes is investigated. Lastly, researches on lane
change recognition through machine learning are looked into. The combination of these different re-
searches aids in determining the research gap and the elements important to consider in this research.

2.1. Lane change definition and characteristics
In order to be able to recognise lane changes, and understand which characteristics indicate a lane
change, it is important to have a clear definition of what a lane change is. In literature previous studies
on lane changes and lane change characteristics have often used diverse definitions of the beginning-
and end- point of a lane change, ranging from the moment a vehicle’s wheel crosses the lane boundary,
to the moment the center of the vehicle has reached the destination lane. Some studies even consider
the moment the driver decides to make a lane change as the moment the lane change starts (Cao
et al., 2013). Due to these strongly varying definitions, characteristics of the lane change such as time
required to complete a lane change vary largely among studies.

Several studies have looked into the average duration of a lane change, and thereby found differing re-
sults. Although the average comes down to 5-6 seconds for a lane change, results were found ranging
from 1 to 16 seconds (Cao et al., 2013). Many factors influence this duration, such as, but not limited
to, traffic conditions, the relation of the vehicle to its surrounding vehicles, and the riskiness of the move
(Toledo and Zohar, 2007). Additionally, the type of vehicle also influences the lane change duration,
with a lane change made by a heavy vehicle being on average shorter than that of a passenger car
(Toledo and Zohar, 2007).

Lane changes occur in many different locations in the road network, but the intensity of such manoeu-
vres is a lot higher near network nodes and weaving sections - the places where traffic flows merge
and diverge from the main stream (Arman and Tampere, 2021). On average a vehicle has been found
to make 0.4 to 0.5 lane changes per kilometre, in which the number increases with density of both the
origin and destination lane (Knoop et al., 2012).

One way of defining a lane change, as adopted by Li et al. (2017), is by looking at the steering angle,
from which a lane change is defined between the moment of maximimum positive (negative) steering
angle and the moment at which the steering angle value falls below (rises above) 10% of this maximum
positive (negative) steering angle. This study looked into retrieving discretionary lane change charac-
teristics from trajectories. In order to do so the bicycle model of steering manoeuvres was used in order
to estimate driving manoeuvres from the available vehicle trajectories. Since the steering angle during
discretionary lane changes is usually quite small, the bicycle model is accurate enough in representing
the steering pattern.

4
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2.2. GPS inaccuracy
Nowadays many devices, including passenger cars, trucks and smartphones, have a GPS receiver
which can track the vehicle or device’s location (Skog and Handel, 2009). This offers many research
opportunities and the potential to track vehicle’s driving movements by recording their trajectories. The
GPS technology however has some drawbacks, one of the foremost being data drift and error. The
accuracy of the GPS signal can be affected by multiple causes, both within the vehicle such as the
receiver quality, internal filtering, or placement within the vehicle, but also by external factors such as
interference, atmospheric conditions etc (Arman and Tampere, 2021). Additionally, the location accu-
racy can differ widely between trajectories (Arman and Tampere, 2021). Furthermore, signal loss can
also be caused due to infrastructural influences such as overpasses and tunnels, since in order to get
an accurate (three dimensional) positioning, the GPS needs to have a clear line of sight to at least four
or more satellites. Although some receivers can also detect reflected signals, the accuracy of the GPS
location can be strongly reduced in such cases (Goodall et al., 2006). The combination of these factors
and reasons for errors, causes the GPS location to lack full reliability and lead to a potential offset of
up to several meters.

In order to evade this unreliability, many commercial in-car navigation systems use map matching to
compare trajectories and location from GPS receivers with roads as indicated on the digital maps. The
most likely position on the road is then estimated. This estimate will however be a lot less accurate in
cases when buildings block satellite signals in urban areas, or too little satellites are available in order to
offer proper GPS location (Skog and Handel, 2009). For navigation purposes, technologies have been
developed which use other sources of information such as accelerometers, gyroscopes, or odometers
to increase the accuracy of the positioning (Skog and Handel, 2009).

2.3. Lane change recognition through Floating Car Data
Multiple studies have been executed on lane change recognition by use of camera, steering wheel
angle, or probe vehicle data. However, to the best of our knowledge, to date, no scientific research has
been done on lane change recognition from only Floating Car Data.
An investigation executed by Van Ballegooijen (2019) however has looked into lane change recognition
from Floating Car Data, namely by looking at the moment at which vehicles make a lane change in a
weaving section, and whether the moment at which this is done changes when offering in-car advices.
For this investigation, a lane change definition is required, for which the delta heading (Δℎ) of a vehicle
is considered, which is defined as the difference in heading of the vehicle compared to the infrastructure.
The definition of a lane change is then formulated as follows, in which 𝑡0, 𝑡1 etc.. represent the time
steps, per second, of a Floating Car Data point, and Δℎ𝑡0 , Δℎ𝑡1 , 𝑒𝑡𝑐 represent the delta heading at each
time step.

(Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑎𝑛𝑑 𝑡2 < 0 𝑜𝑟 (Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑎𝑛𝑑 𝑡2 > 0

𝑎𝑛𝑑

𝑎𝑏𝑠(Δℎ𝑡0 + Δℎ𝑡1 + Δℎ𝑡2 + Δℎ𝑡3) >= 6
This definition was determined by looking at vehicle traces from Floating Car Data of vehicles which
were first detected on the main road and later on the off-ramp or other road, or which entered the main
highway from the on-ramp, ensuring these vehicles made at least one lane change by switching roads.
Of all vehicle traces which were found to have made at least one lane change, 67% where defined as
having made a lane change according to the used definition. This indicates that the definition does not
cover every lane change, but it does offer a good picture of lane change characteristics (Van Ballegooi-
jen, 2019).

When testing the same lane change definition on two road segments, the percentage of accurately
recognised lane changes was found to be between 50-60% for one segment, and around 70% for the
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other one, indicating a majority, but not all lane changes are covered by this definition.

This study by Van Ballegooijen, 2019 is thereby a unique case in using Floating Car Data (in this case
Flitsmeister data), for lane change recognition.

2.4. Machine Learning in Lane change recognition
Machine learning is of growing importance and increasingly used for all kinds of applications in many
different fields, including lane change recognition, thereby offering good opportunities for analysing
data further where standard methods reach their limits.

As Louppe (2014) mentions in his work ’Understanding Random Forests: From Theory to Practice’,
machine learning can be defined as ”the study of systems that can learn from data without being ex-
plicitly programmed” (Louppe, 2014, p.2). There are several types of machine learning models, of
which a clear split is made between supervised and unsupervised methods.
Several studies have been executed to recognise lane changes through machine learning. Many of
these however focus on autonomous vehicles, or look into lane changing of vehicles relative to the
positions of surrounding vehicles. Monot et al. (2018) for example looked into recognising the lane
changing of surrounding vehicles, thereby using the speed of the vehicles and the lateral- and lon-
gitudinal positions over the previous 25 seconds. The research compares rule-based lane change
recognition (using Kalman filter and probabilities) with machine learning lane change recognition (two
Neural networks). The rule-based method looks at how close a vehicle is to the lane markings, in com-
bination with its transverse speed to calculate the probability of lane changing. It was found that the
neural networks were more accurate in lane change recognition than the rule-based method.

A study by Das et al. (2020) compared the accuracy of four different models namely Random Forest,
Support Vector Machine, Artificial Neural Network, and eXtrem Gradient Boosting, using different ve-
hicle kinematics (speed, longitudinal acceleration/deceleration, lateral acceleration/deceleration, and
yaw rate (the angular velocity of the vehicle)), machine vision (lane position offset), roadway charac-
teristics, and driver demographics as features. The dataset consisted of 1200 lane changes, and 2400
no lane changes, and a differentiation was also made between weather conditions. It was found that
the highest detection accuracy was 95.9% when including all features in the eXtrem Gradient Booster
model. When however only using vehicle kinematics, the Random Forest model was found to have
the best performance. The authors thereby also advice using a Random Forest model for lane change
prediction when only vehicle kinematics are available.

Furthermore, in some studies simulation environments are used to obtain data about lane changing
behaviour. Dogan et al. (2011) used machine learning techniques to predict the time of an expected
lane change for both straight and curved roads, looking, among others, at lane offset, lateral accel-
eration, and steering angle through a simulation study with 10 participants. Three machine learning
methods were looked into, namely feed forward neural network, recurrent neural network, and support
vector machines. The best combination of features to be used was also explored. It has been found
that a lane change can be recognised up to 1.5 seconds before the centre of the vehicle crosses the
lane marking. The best results found using the support vector machines. The most important inputs
found are lane offset, steering angle, and time to contact with the vehicle in front.

Wang et al. (2019) used a combination of random forest with gini coefficient, and a long short termmem-
ory model to analyse and select the most important features which influence lane change behaviour,
and recognising lane changing respectively. The study used data from buses on Chinese roads, and
used video footage for classification. Seven features were found to be the most important, including
the standard deviation of longitudinal acceleration and speed.

Schlechtriemen et al. (2015) executed a research looking into the probability of vehicles either lane
following, making a lane change to the left, or making a lane change to the right. The probability was
decided by use of a Random Decision Forest. Considering the fact that in traffic a large majority of
all driving consists of lane-following, this research makes use of the Mixture of Experts approach in
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order to split the data set. The features used are the lateral state and velocity of the vehicle, and the
relations of the vehicle to the surrounding vehicles, such as the distance between the vehicle and its
surrounding vehicles.

2.5. Research Gap
Although numerous studies have been executed on lane changing behaviour and lane change recog-
nition, most of these either use the interaction between vehicles as an indicator, or use data in the form
of radar or video cameras. Often probe vehicles are used to learn lane change characteristics, but
research is lacking on the large scale, accurate lane change recognition through GPS and/or Floating
Car Data. This type of lane change recognition is of much interest since it offers the potential for real-
time lane change recognition on any road, without sensors or cameras required.
Considering successful results found in multiple studies on lane change recognition through machine
learning, this is considered a promising method to consider for this case.



3
Research Area

The research area considered for this research is the A27 between Utrecht Noord and knp Eemnes, as
indicated in figure 3.1. This area was decided on following the availability of individual vehicle passage
information from the loop detectors on this road. On a majority of Dutch highways, the loop detector
data is available only in aggregated format, rather than per passage as was required for this research.
This road section however offered this level of data, and following the fact that Floating Car Data could
also be acquired for this road section, the area was chosen.

Figure 3.1: Research Area

The road of concern is approximately 13.7 km long, including several on- and off- ramps, weaving sec-
tions, and a tank station. The road has differing numbers of lanes in different sections, varying from 3 to
5 lanes. Considering the large amount of data, both the infrastructure and the traffic is only considered
in Northern direction in this research.

The road was divided into homogeneous segments, dependent on the number of lanes. This led to
12 segments, as indicated in table 3.1 below. As can be seen the lengths of the segments is quite
differing, as are the number of loop detector locations within each segment. The numbering of the road
segments is according to driving direction, so in this case from South to North.
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Road Segment Length (in meters) Number of lanes Number of Loop detector locations
1 448 3 2
2 223 5 0
3 588 4 1
4 634 5 2
5 1086 3 3
6 323 4 0
7 6038 3 15
8 197 4 0
9 798 3 3
10 337 4 0
11 2466 3 5
12 495 4 2

Table 3.1: Overview of road segments



4
Data Preparation and Analysis

Large amounts of data are crucial for many researches, especially those using machine learning tech-
niques. A common problem with large data sets however is the lack of quality, or missing data. It is
therefore critical to analyse the available data prior to executing the research in order to be aware of the
condition of the available data. For this research both Floating Car Data and loop detector data were
made available. These data sets were collected for overlapping days and location. In the following
sections the data of both these sources will be described and the quality analysed. Furthermore, a tra-
jectory matching algorithm will be applied with the data in order to create a data set labelled according
to lane changes.

4.1. Floating Car Data
With the increased use of in-car navigation systems and mobile navigation apps such as Flitsmeister,
comes the advantage that large amounts of trajectory data is being collected. This data, collected from
individual vehicles is known as Floating Car Data (FCD), and can offer insights into the driving patterns
of drivers. The FCD offers GPS locations of the user with a 1 HZ frequency, as well as speed of the
vehicle for each timestep, and an (anonymous) unique session ID.

In the Netherlands Flitsmeister is one of the most known and used companies collecting Floating Car
Data, with 1.8 million people making use of their services (“Floating car data via flitsmeister”, n.d.). This
in turn means that the trajectory data of a substantial percentage of road traffic is gathered by them.
Flitsmeister offers the anonymous Floating Car Data to both companies and individuals in order for
them to utilise the data for all types of analysis. For this research such Flitsmeister data is used as the
source of Floating Car Data.

The Flitsmeister Floating Car Data for this research was collected of the highway A27 between Utrecht
Noord and Knooppunt Eemnes for a period of 17 days from 21/06/2021 to 07/07/2021. Per day, trajec-
tories of around 45000 vehicles were collected. The region for which data was collected can be seen
in figure 4.1.

10
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Figure 4.1: Area of Flitsmeister data

As mentioned before, GPS data comes with the problem of inaccuracy of up to several meters. There-
fore, trajectories directly originating from the Floating Car Data can not be considered completely re-
liable, and it cannot be said with certainty whether a vehicle is actually located at the precise location
the GPS indicates. Due to this uncertainty, lateral movements indicated by the GPS can not be simply
relied on as indicating a lane change.

In order to get a good feeling of the quality of the Floating Car Data, several analysis have been done
both before and after the filtering of the data.

4.1.1. Data Analysis
In order to be aware of the quality of the Floating Car Data offered by Flitsmeister, an initial analysis
has been executed. For this analysis the raw data has been used, excluding only data that falls outside
of the study area.

Considering the fact that GPS data is rather inaccurate and has quite a large error margin, an initial step
in the analysis was the visualisation of some randomly chosen vehicle trajectories. Figure 4.2 depicts
the trajectories of a number of vehicles driving in road segment 7. The separation of the three lanes in
the road segment are illustrated by the stippled lines, and the trajectories are plotted according to the
distance of each data point to the centerline of the road segment. On the Y-axis the longitudinal location
is indicated in meters (Rijksdriehoeks coordinates, the spatial reference system in The Netherlands).
In this plot vehicles of which the trajectory has an offset of more than 30 meters from the centerline are
excluded.
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Figure 4.2: Plot of vehicle trajectories

From the figure it can be seen that quite some parts of several of the trajectories are located outside of
the road, in many cases probably caused by the GPS error, especially since the vehicle several times
leaves and ’re-enters’ the road segment. A trajectory that stands out in this figure is the light blue one
(Session ID D40C8686-4C4A-4523-A22B-EF2A5517EEBF). A large offset from the road can be seen
near the end of the road segment. An initial thought for this error could be that the vehicle left the
highway and then passed perpendicularly over or underneath the road. However, considering the fact
that the road sections are homogeneous, and this segment therefore does not contain an off-ramp,
this does not seem to be a realistic option. It should however be taken into account that there might
also be other road users, for example on parallel roads, who use Flitsmeister, whose signals can be
received as if on the highway and thereby leading to noisy data. Many of these cases can be filtered
out when pre-processing the data, for example by excluding certain speed ranges, especially when
deviating strongly from the other traffic and so from the traffic state at that time. This situation does
however clearly indicate the difficulty associated with the GPS unreliability, making it difficult to know
whether such a trajectory spike is caused by GPS error or other causes.

A second analysis of the data is done by looking at the percentage of data that falls within each lane
in a segment. As can be seen in figure 4.3, most data points fall within the road. Segment 9 can be
seen to have a higher percentage of data points falling outside of the road, which can most likely be
explained by the fact that the segment is curved, which is known to cause GPS distortion. A table with
all the exact percentages can be found in appendix A.2.
Another notable fact is that a vast majority of the data points are located on the three left lanes, even
in road segments consisting of 4 or 5 lanes. This can be explained by the fact that the right lane or two
right lanes are in all segments off-ramps or weaving sections, which therefore do not contain through
traffic.
It must be noted that due to the length of segment 7 and thereby its corresponding processing time this
segment was excluded from this analysis.
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Figure 4.3: Percentage of data points per lane

4.1.2. Filtering of data
After collecting the data from its users, Flitsmeister provides all data from within the boundaries of the
required geofence. The geofence, which additionally to a part of the A27 used in this research, also
contains a small part of the A1, can be found in section 4.1.
The data within the geofence is unfiltered, and the data set consists of all data produced by the users
within the specified area. The remaining trajectories within this region therefore still contain trajectories
which are not desired in this research such as outliers and incomplete trajectories. To ensure high
quality data, the data set is filtered according to the following definitions:

• Only trajectories within the study area (the A27 between Utrecht Noord and knp Eemnes) are
considered, so parts of trajectories outside the X- and Y- coordinates of the area of interest are
excluded. Since the geofence lies rather broadly around the A27, and even includes parts of the
A1, the trajectory pieces lying outside of the study area are excluded by this manner of X- and Y-
coordinate limiting. This means that any trajectories starting in, but ending outside of the study
area are simply cut off at the edge of the section of interest, ensuring no information from within
the study area is lost. The study area in this case can for some analysis be solely a road segment.

• Trajectories containing a proportionally large number of data points. A large number of data points
was in this case defined as anything more than the number of data points corresponding with a
vehicle driving 70km/h on the specified segment. By following this selection, the trajectories of
both congestion, and vehicles which are present in the study area for an exceptional amount of
time, e.g. those stopping at a fuel station, are filtered out.

• Trajectories containing a very small number of data points. The threshold for this amount was
set as the number of data points that a vehicle driving 150km/h would have in the determined
segment. This filters out both incomplete trajectories, as well as vehicles driving exceptionally
fast.

• Furthermore, the Floating Car Data set is filtered to include only trajectories which are able to be
reconstructed according to a method created by Arman and Tampere (2021). This process and
requirements for such reconstruction will be explained in detail in section 4.4.

Additionally, to limit the scope of this research, only traffic driving in Northward direction is considered.
The trajectories are filtered on monotonically increasing Y-coordinates, which due to the straightness
and direction of the road placement, and the short road segments used, is considered an acceptable
method. For larger road segments, or roads placed differently directionally, this filtering method could
possibly remove crucial information and would not be recommended.
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4.2. Loop detector data
On many Dutch highways loop detectors are placed every few hundred meters in order to measure
and register the passing traffic. These inductive-loop traffic detectors make use of an electrical circuit
and measure the change in the magnetic field when a vehicle passes over it. For every passage on
every lane, the speed, vehicle size, and time of passage are recorded, offering a good overview of the
traffic state on the highway. The loops record every individual vehicle passage, after which it is often
aggregated to get the average speed/traffic state of the road.
For this research dissagregated loop detector data is collected from the same location as the Flitsmeis-
ter data is collected, namely the A27 between Utrecht Noord and Knooppunt Eemnes. This data was
obtained for a period of 19/06/2021/ to 06/07/2021, and offers information on individual vehicle pas-
sages over the loops. In total this study area contains 33 loop detector locations, an overview of which
is given in table 4.1 below. As can be seen, the detectors are not equally divided along the segments,
and several segments do not contain any loop detectors.

Segment Number of loop detector locations
1 2
2 0
3 1
4 2
5 3
6 0
7 15
8 0
9 3
10 0
11 5
12 2

Table 4.1: Number of loop detector locations per segment

4.2.1. Data analysis
In the graph below (figure 4.4) the number of passages per loop detector are indicated for one day
(27/06/2021). This offers an idea of the distribution of traffic over the lanes. An overview of all passage
counts per loop detectors for all days can be found in the appendix A.3. The lane numbering starts with
1 for the left lane, and increases numbers towards the right-most lane.

Figure 4.4: Number of passages 27/06/2021
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4.3. Centerline
In order to analyse the positioning of the trajectory data points in respect to the road, the location
of the road and the lanes have been identified. This has been done through manually acquiring the
centre of the road sections through QGIS according to the most recent aerial picture of PDOK. Through
this the coordinates of the centerline of each road segment were created, after which the lanes and
their corresponding separators could be determined according to the known width of the Dutch highway
lanes. For each road segment the number of lanes are known, and thereby the road can be positioned.

4.4. Trajectory reconstruction
As has been demonstrated, the vehicle trajectories deduced from the Floating Car Data do not ac-
curately represent the actual trajectory travelled by the vehicle. Arman and Tampere (2021) have
developed an algorithm which reconstructs the trajectories up to lane-level by data fusion of Floating
Car Data and loop detector data. The passages of the vehicles over the loop detectors are matched
with the trajectories from the Floating Car Data by looking at the passage time and passage speed of
each loop detector as well as that of the trajectory at the loop detector position. Through this method
the actual lane a vehicle is in can be deduced.

The first step in this reconstruction algorithm is the filtering of the trajectory data. Trajectories that have
a temporal interruption of more than 10 seconds, or a spatial interruption of more than the length the
vehicle travels in 10 seconds at its average trajectory speed, are excluded. After which the trajectories
for which a map-matching algorithm can not be applied are excluded, and finally any trajectory which
is not long enough to pass over at least two loop detectors is also excluded. From the left over trajec-
tories, a map-matched version is created through an algorithm by Quddus et al.

Secondly, these map-matched trajectories are slightly corrected to get rid of minor errors, by interpola-
tion using the heading and speed of the vehicle before and after the interruption. Furthermore, errors
due to sharp deceleration or zigzag movements due to GPS error are corrected.

Next, the data fusion is being executed combining trajectory data and loop detector data. The trajec-
tory data offers the information when the vehicle passes a loop detector location in its path, while the
loop detector can then determine the driving lane of the vehicle. By using the vehicle length as control
variable (this value stays the same the entire trajectory), the driving lane of the vehicle can be deter-
mined throughout its whole trajectory. This thereby also offers the information of sections in which a
lane change must have taken place, as it is known when a vehicle passes a loop detector on a different
lane compared to the lane of the loop detector it previously passed.

Since the passage time recorded for a vehicle over a loop can differ from -1 to +1 second, it is possible
that other vehicles also pass the loop detector in this time-frame. In order to still be able to identify a
vehicle and execute the matching, the speed and passage time of the vehicle is compared to the speed
and passage time of all loops in a loop detector location.

In the original research by Arman and Tampere (2021), in order to check the accuracy of the smart-
phone trajectory data with the loop detector data, a probe vehicle using d-GPS was used. Similarly
to the smartphone data, this data source offers time and speed of the moment the vehicle passes the
loop detector location. However, since the data from the d-GPS device is very accurate, it is assumed
to be the ground truth, and the passage time and speed can be compared to that of the smartphone
trajectories. It was found that the statistical distribution of passage time difference between the d-GPS
trajectories and the corresponding loop detectors, and the passage time difference between the smart-
phone trajectories and loop detector data are identical. This means that the passage time of every
vehicle is detectable with a good approximation based on the trajectory data (Arman and Tampere,
2021). Furthermore, it is also shown that the error of the speed information for both the loop detectors,
and the trajectory data are negligible, as are the error of the measurements of the length of the vehicle.

As a last step in the trajectory reconstruction algorithm, the trajectory is reconstructed in between the
loop detector locations. This is done by forward and backward modifications in-between two succes-
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sive loop detectors, assuming the speed and heading of the trajectory information are accurate. The
final trajectory path is then the weighted average of the forward and backward reconstructed path in
between two consecutive loop detectors.

This study was originally executed on the Antwerp ring in Belgium, and was validated by using videos
made by drones and road CCTVs at two sections of the test network. Furthermore, a vehicle with
differential-GPS (d-GPS) and nine smartphones using the Be-Mobile application was also used to cre-
ate trajectory data serving as ground truth.

The results of the study showed that this method is very reliable, with a success rate of 96.86% for the
data fusion part in which the trajectory data is matched with the loop detectors. The fully reconstructed
trajectories were found to be successfully located on the correct driving lane 93.22% of the time when
validating according to smartphones in the probe vehicle, and 90.68% of the time when validating with
the drone’s video recordings. This leads to an overall accuracy of over 90% in determining the driving
lane of vehicles (Arman and Tampere, 2021).

4.4.1. Application in this study
Considering the high success rate of this algorithm, and the availability of similar data in our research
area, it is possible to apply the same trajectory reconstruction to our study. By doing so, the lane in
which a vehicle drives becomes clear, and it is known whether or not a vehicle made a lane change in
a road section between two consecutive loop detector locations, and if yes from which origin to which
destination lane. Such information can be considered a ground truth, and a labelled data set can be
created, which can then be used in order to deduct lane change characteristics from the trajectories.
From now on, the ground truth considered in this study relates to the information of which lane the
vehicle is found to drive in according to the data-fusion of the Floating Car Data and the loop detector
data. For each road section between two consecutive loop detector locations it is then deduced whether
or not a lane change has beenmade. In order to do so, QGIS is used for manually indicating the location
of the road in the study area, as well as the loop detector locations within each section.
Figure 4.5 shows a schematic depiction of the use of the two data sources for the creation of the lane
change labels.

Figure 4.5: Schematic representation of data usage step 1

This study is the first study in which the algorithm by Arman and Tampere (2021) is applied in a differ-
ent setting. Although the setting of that study and this current study are quite similar, there are some
differences, which could potentially affect the success of the algorithm in this study. One of such dif-
ferences is the fact that the loop detector locations in the original study are placed on average every
400 meters, while in this current study they are placed at a much more varying distance from each
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other. Furthermore, this study area is located in The Netherlands, while the original study was set in
Belgium. Although the differences should not be significant, there might be variations, for example in
the quality of the loop detector data, or the amount of objects disturbing the GPS signal around the
highway. It is also possible that driving style differs slightly between the countries which can impact
the type, location, and number of lane changes executed.

On top of this, it must be considered that the location of the road and the loop detectors are manually
placed, which is a delicate process in which a wrong placement can have quite an impact on the results.
Especially in high traffic densities, many vehicles pass each loop detector, and even a slight misplace-
ment could potentially lead to wrong matching. The loop detector placement is therefore executed very
carefully, according to information on their location received from Rijkswaterstaat together with the loop
detector data.

During the matching process not all loop detectors available in the road section were used for the
matching with the trajectories. This was caused by human error due to which a few detectors were
missed, and although in a few cases it increases the distance between consecutive loops, as well as
reduces the number of labelled road sections, it is not expected to have a big negative impact on the
trajectory reconstruction. Especially taking into account the relatively large study area considered, as
well as the large amount of data available, the missing matching points are not expected to significantly
impact the ground truth found.
In the figures below some examples of reconstructed paths in this study can be seen for a small part of
the study area. The first picture shows the road configuration, and the placement of the loop detectors
(the coloured circles). The next four images indicate the original trajectory according to the Floating
Car Data depicted in green, and the reconstructed trajectories depicted in red. In the first two images
a lane change is being made between the first two loop detector locations, while in the last two images
no lane change is being made. In all figures the road edges are shown as pink lines.

Figure 4.6: Road example including loop detectors

Figure 4.7: Reconstructed trajectories Yes Lane Change

Figure 4.8: Reconstructed trajectories Yes Lane Change

Figure 4.9: Reconstructed trajectories No Lane Change



4.4. Trajectory reconstruction 18

Figure 4.10: Reconstructed trajectories No Lane Change

The reconstructed trajectory in the first figure (figure 4.7) clearly shows that the original trajectory was
located outside of the road. The reconstructed trajectory however is placed neatly within the road
boundaries. From the reconstructed trajectory, it can also be seen that according to the coupling with
the loop detectors, the vehicle was driving in the second (middle) lane at the first loop detector location,
but moved to the left-most lane at the second and third loop detector locations. This indicates a lane
change has been made in the road section between the first and second loop detector locations.

In figure 4.8 another example is depicted of a reconstructed trajectory in which a lane change is being
made. This trajectory clearly did not need to be corrected as much as the previous one, but is still
adjusted slightly. These examples, and their different levels of adjustment needed, demonstrate the
difference in GPS accuracy between trajectories.
Figure 4.9 and 4.10 show similar adjustments, this time for trajectories in which no lane change is
made. It can be seen that the reconstructed trajectory is matched to loop detectors on the same lane
throughout the three loop detector locations, and so no lane change is being made.

In the figures below two more examples are shown of trajectories that have been reconstructed. The
first figure represents four trajectories of Floating Car Data which have, by the trajectory reconstruction,
been found to not make a lane change. Figure 4.11 depicts the trajectories on the road as found by
the Floating Car Data. Figure 4.12 depicts the reconstructed trajectories on the road of these same
vehicles. Here again it can be seen that some trajectories are corrected quite rigorously, while others
are only slightly altered.

Figure 4.11: Original trajectories making no lane change
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Figure 4.12: Reconstructed trajectories making no lane change

Next, the same is represented for a few trajectories which are found to have made a lane change in
this road segment. Figure 4.13 depicts the original Flitsmeister trajectories, while figure 4.14 shows
the reconstructed version of the same trajectories.

Figure 4.13: Original trajectories making a lane change
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Figure 4.14: Reconstructed trajectories making a lane change

Due to the large number of trajectories, and the processing time of the algorithm, the trajectory recon-
struction has only been applied to the trajectories of 26/06/2021 until 04/07/2021. Furthermore, the
data of the 30th June 2021 is excluded in the reconstruction due to the fact that this data contained
abnormalities compared to the other days.

4.5. Final Overview of Data
After filtering the original data, and applying the trajectory reconstruction algorithm by Arman and Tam-
pere (2021), a reduced number of trajectories remain available for the research. The filtering criteria
reduce the number of trajectories by around 60%. Although this might seem like a very large amount,
it must be taken into account that only traffic driving in Northward direction is considered, meaning
already around 50% of the filtered data consists of traffic driving towards the south.
An overview of the number of trajectories per day, per segment, both before and after filtering can be
found in appendix A.4.

4.6. Data set creation
For each road section between two consecutive loop detector locations, a data set can be created
with labels for each trajectory according to whether or not a lane change is made by this vehicle in the
specific road section. It is also possible to specify whether the lane change is made towards the left or
right, and how many lanes are changed.

Since each road segment consists of a large number of data, two locations are first decided upon for
which to create these data sets. The first location decided on is the road section between the two loop
detector locations in segment 4, which has a distance between them of approximately 400 meters.
The road section consists of 5 lanes, of which 2 are exit lanes in the second half of the section. Fur-
thermore the most right-hand lane comes from a gas station. This ensures that lane changes will be
made by vehicles that either enter the section from the gas station, or exit the road through the exit
lanes. Lastly, the section is rather straight, which would reduce extreme GPS error due to road curva-
ture. These circumstances assure this section is a suitable road section on which to execute this study.

The second road segment used for analysis is the road section between the first two loop detector
locations of segment 5. This road segment has 3 lanes, all of which are through-lanes. The road sec-
tion is approximately 500 meters long, and also quite straight. By choosing this second road section
which does not contain entry- or exit lanes, a representative combination of types of road sections and
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accordingly, types of lane changes made is reached in combination with the first chosen road segment.

For both of these sections, a labelled data set is created, indicating whether or not a lane change is
made for each vehicle in each road section.
In addition to the original data collected by Flitsmeister, the heading, heading difference between the
previous and current data point, and heading difference to the centerline are added for each trajectory.
The formulas used to calculate these headings are based on Bullock, 2007, and can be found in the
appendix A.5

Furthermore, the (horizontal) distance to the centerline of the segment is added as x-distance, and the
longitudinal distance from the beginning of the road section in consideration to the data point is added
as y-distance. All of these additional features can be used for analysis and lane change recognition.



5
Rule-based Lane Change Recognition

In this chapter the rule-based lane change definition by Van Ballegooijen (2019) will be investigated for
the data from the A27. The found lane changes will be compared to those found through the trajectory
reconstruction algorithm, as well as to the number of lane changes as expected according to literature.
A schematic overview of this is shown in figure 5.1.

Figure 5.1: Schematic representation of rule based method

5.1. Original definition
As mentioned in section 2, a research conducted by Van Ballegooijen (2019) has found that a large
number of lane changes can be identified by looking at the delta heading of vehicles over several con-
secutive time steps using the following definition, in which the delta heading represents the difference
in heading between the vehicle and the infrastructure, measured in degrees. 𝑡0, 𝑡1 etc.. represent the
time steps, per second, of a Floating Car Data point, and Δℎ𝑡0 , Δℎ𝑡1 , 𝑒𝑡𝑐 represent the delta heading at
each time step.
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(Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑎𝑛𝑑 𝑡2 < 0 𝑜𝑟 (Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑎𝑛𝑑 𝑡2 > 0

𝑎𝑛𝑑

𝑎𝑏𝑠(Δℎ𝑡0 + Δℎ𝑡1 + Δℎ𝑡2 + Δℎ𝑡3) >= 6

In the original study, this rule was found to be successful in recognising lane changes around 50-70%
of the time, depending on the road section it was applied to.

In order to examine the replicability of the research, as well as the comparison to the lane change labels
found through the trajectory reconstruction algorithm by Arman and Tampere (2021), it is interesting to
look at how lane changes are recognised in this research according to the above mentioned definition,
and whether or not the lane changes recognised correspond with the lane changes labels found ac-
cording to the matching with the loop detectors.

In order to compare the two lane change definitions, the filtered data set is used, for which the labels
of lane change / no lane change according to the ground truth found by matching the trajectories with
the loop detector passages are known. Two road sections are chosen for which the data is looked
at, namely ’location 1’ - the road section between the two loop detector locations in segment 4, and
’location 2’ - the road section between the first two loop detector locations of segment 5. The choice
for these case study locations has been previously explained in section 4.6.

When applying this definition of a lane change to the data of our research, and comparing it with those
found using the matching method with loop detectors, the following results are found for location 1:

YES lane change Loop detector method 792 15597
NO lane change Loop detector method 648 16367

YES lane change Delta heading method NO lane change Delta heading method

Table 5.1: Overview recognized lane changes according to different methods for location 1

From this distribution of determined lane changes, a total percentage of agreed lane changes accord-
ing to both methods of 2.37 %, and a total percentage of agreed No lane changes of 48.99 % are found.

When considering the loop detector method as the ground truth, the accuracy of the rule based method
can be calculated as explained in appendix A.6. Taking into account the unbalanced size of the group,
a balanced accuracy of 53.10% is found.

When applying the same lane change detection rule for location 2, and comparing the results with the
lane changes found by the loop detector matching method, the following results are found:

YES lane change Loop detector method 625 15495
NO lane change Loop detector method 624 18127

YES lane change Delta heading method NO lane change Delta heading method

Table 5.2: Overview recognized lane changes according to different methods for location 2

From which it can be found that a total percentage of agreed lane changes according to both methods
of 1.79 %, and a total percentage of agreed No lane changes of 51.98 % are discovered.

Looking at the balanced accuracy score for this location, a value of 51.98% is found.
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5.1.1. Analysis
From the results for both of the locations it can be seen that the rule-based lane change method by
which lane changes are recognised by looking at vehicles heading difference compared to the infras-
tructure heading, not a lot of lane changes are found. Out of a total of 33404 trajectories considered in
location 1, only 1440 are found to have made a lane change according to this rule (4.31 % of traffic).
The method finding lane changes according to the matching with the loop detector data however finds
16389 lane changes (49% of traffic). For location 2 a similar distribution is found with 1249 out of 34871
(3.58%) trajectories found to have made a lane change according to the delta heading rule, and 16120
(46.2%) lane changes found making a lane change by matching with the loop detectors. This is a large
difference in number of lane changes found.

Considering that on average vehicles are found to make 0.4 to 0.5 lane changes per kilometre (Knoop
et al., 2012), around 0.16 to 0.2 lane changes are expected per vehicle at location 1 (400 meters), and
0.2 to 0.25 lane changes per vehicle at location 2 (500 meters). Since the road section of location 1
has a total of 33404 vehicles considered, 5344 to 6680 lane changes are expected. In the road section
of location 2, 34871 vehicles are evaluated, leading to the expectation of 6974 to 8717 lane changes.
An overview of this comparison can be found in table 5.3.

Location 1 Location 2
Expected nr of lane changes 5344 - 6680 6974 - 8717
Rule Heading difference to road infrastructure:
Found nr of lane changes Rule based method 1440 1249
Percentage of lane changes found 21.6 - 26.9 % 14.3 - 17.9 %
Matching method to loop detectors:
Found nr of lane changes matching to loop detectors 16389 16120
Percentage of lane changes found 245.3 - 307.7 % 184.9 - 231.1%

Table 5.3: Number of expected and found lane changes per road section

From this analysis, it is found that the rule looking at lane changes according to the consecutive heading
differences recognises around 14-27% of the expected lane changes, depending on the road section.
The method matching trajectories to loop detector data on the other hand finds approximately 1.85-3
times the number of lane changes expected.

When considering the lane changes found according to the loop detector data as the ground truth, as
is intended in this study, the rule-based method is found to accurately recognise between 51.98% and
53.10% of the lane changes, depending on the location.

In order to more deeply analyse the possible cause of the discrepancy in number of lane changes
found, the direction of lane change is looked into for the original definition. It is found at location 1, that
57.75% of all lane changes made to either direction (so excluding No lane change) are made to the
left. Out of these, only 4.1% is recognised by the rule-based method. For lane changes to the right,
this value lies at 5.83%.

For location 2, similar results are found, where out of all lane changes according to the loop detector
method (Yes lane change), 65.39% of the lane changes were made to the left. Out of these, only 3.4%
were recognised by the rule-based method. From the lane changes to the right (34.61% of Yes lane
changes) 4.79% are labelled as a lane change by rule-based method.

It therefore seems that the rule-based method does not recognise lane changes to a specific direction
more accurately than to the other direction.
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5.2. Adapted definition
Since in literature it has been found that the duration of a lane change can vary strongly depending on
the definition, it is interesting to look into the effect of lane change recognition when considering the
heading at an additional time step. This is done by adjusting the lane change definition to the following,
in which both parts of the definition consider an additional time step:

(Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑡2, 𝑎𝑛𝑑 𝑡3 < 0 𝑜𝑟 (Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑡2, 𝑎𝑛𝑑 𝑡3 > 0

𝑎𝑛𝑑

𝑎𝑏𝑠(Δℎ𝑡0 + Δℎ𝑡1 + Δℎ𝑡2 + Δℎ𝑡3 + Δℎ𝑡4) >= 6

Which leads to the following results for location 1, with a a total percentage of agreed lane changes
according to both methods of 3.07 %, and a total percentage of 48.75 % of agreed No lane changes:

YES lane change Loop detector method 1024 15365
NO lane change Loop detector method 732 16283

YES lane change Delta heading method NO lane change Delta heading method

Table 5.4: Overview recognized lane changes according to different methods

For location 2 the following results were found with a total percentage of agreed lane changes accord-
ing to both methods of 1.85 %, and a total percentage of 52.02 % of agreed No lane changes:

YES lane change Loop detector method 644 15476
NO lane change Loop detector method 610 18141

YES lane change Delta heading method NO lane change Delta heading method

Table 5.5: Overview recognized lane changes according to different methods

5.2.1. Analysis
Compared to the original definition, slightly more trajectories are labelled as making a lane change with
the adapted definition for both location 1 and 2. Overall, the total percentage of lane changes also
increased, although very slightly, from 51.36% to 51.82% for location 1, and from 53.77% to 53.87%
for location 2.

When again comparing the number of lane changes found with the lane changes expected according
to literature, similar results are found as in the original definition, namely a large difference between
the two methods. The percentage of lane changes found according to the rule of heading difference
compared to the road infrastructure covers around a quarter of expected lane changes at location 1,
while only around 14-18% in location 2. The method of matching the trajectories with the loop detec-
tors obviously remains unchanged and still finds two to three times the expected lane changes. An
overview of the findings is shown in table 5.6.
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Location 1 Location 2
Expected nr of lane changes 5344 - 6680 6974 - 8717
Adapted rule heading difference to road infrastructure:
Found nr of lane changes Rule based method 1756 1254
Percentage of lane changes found 26.3 - 32.9 % 14.4 - 18 %
Matching method to loop detectors:
Found nr of lane changes matching to loop detectors 16389 16120
Percentage of lane changes found 245.3 - 307.7 % 184.9 - 231.1%

Table 5.6: Number of expected and found lane changes per road section

5.3. Conclusions on rule-based lane change method
The lane change definition as defined by De Verkeersonderneming (2019) was found to accurately
recognise lane changes in 50-70% of the time in its own study area. When applying the same def-
inition to our study area, a correct lane change recognition rate of around 52% was reached when
comparing with the ground truth found by matching trajectories with loop detector passages. This re-
sult falls within the same range as the original study, albeit on the lower end. It must be taken into
account however, that the majority of the agreed-on lane changes were lane changes not made (’no
lane change’), which also consist of 96.4% of all lane changes, and therefore naturally have a higher
probability of being agreed on. Furthermore, in the original study, the 50-70% of lane changes found,
were lane changes found out of all lane changes made (’yes lane change’), so excluding all ’no lane
change’.
Considering also that when compared to the number of lane changes expected in these section, only
14-33% of lane changes are found by this method, this method does not reach the same level of ac-
curacy as in its original study.

Since there is room for improvement of the lane change recognition, it is of interest to look into other
possible indicators of lane changes. In the next chapter this will be done through the use of machine
learning.



6
Automated Lane Change recognition

6.1. Goal of Method
The ultimate goal of this research is to find out whether it is possible to recognise lane changes from
Floating Car Data as only source. In this chapter that is done by the use of machine learning, through
which a model is created for lane change recognition.
In the previous chapter it was found that using a rule-based method looking into delta headings at
subsequent time steps has a recognition rate of around 52%. By looking into additional features de-
ducted from Floating Car Data (such as X-distance, speed, etc..), other indicators of lane changing may
be recognised, which may result in higher lane changing recognition rates. In order to determine the
most important indicators, as well as to create a model for lane change recognition, a random forest
classification algorithm is used. Through this algorithm a model is trained on (data deduced from) the
Floating Car Data of each vehicle, and together with a label indicating lane changes per road segment,
the model is trained to recognise lane changes and the presence of indicators for lane changes.
A schematic overview of the training and testing of the models, as well as the data used for this is
shown in figures 6.1 and 6.2.

Figure 6.1: Schematic representation of model training
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Figure 6.2: Schematic representation of model testing

6.2. Methodology and Data Preparation
After the matching- and reconstruction process of the trajectories as mentioned in section 4.4, it is
known for each trajectory whether or not a lane change has been made in each road section in-between
two loop detector locations. Since it is known from which to which lane a vehicle switches when making
a lane change, several levels of detail can be deduced, from whether or not a lane change is made, to
from which to which lane a vehicle moves. Each of these levels of detail at which a lane change can
be labelled, can affect the level of recognition by the algorithm. The different lane changes have been
labelled in each of the following ways:

• Lane change yes/no. In this case the number of lanes changed, nor direction of the lane change
are considered relevant. It is solely looked at whether or not a lane change is made. Labels: [1/0]

• Lane change to the left, no lane change, lane change to the right. In this case all lane changes
are labelled as a change in their corresponding direction regardless of the number of lanes that
are changed in one go. Labels: [2/0/1]

• Lane change to the left vs no lane change and lane change to the right. In this case a lane change
towards the left, regardless of number of lanes changed, is labelled as a category, and no lane
change and lane(s) change(d) to the right is labelled together as another category. Labels: [2/0]

• Lane change to the right vs no lane change and lane change to the left. In this case a lane change
towards the right, regardless of number of lanes changed, is labelled as a category, and no lane
change and lane(s) change(d) to the left is labelled together as another category. Labels:[1/0]

Using different labels is relevant considering the fact that in previous research it was found that for
example a lane change to the left has slightly different characteristics than a lane change to the right.
(Toledo and Zohar, 2007). Therefore, by using these different categories of labelling, it is explored
whether different types of lane changes are recognised differently, or more accurately than others, and
whether different lane changes are represented by different features.

The following data was deduced from the Floating Car Data and used as input features for the Random
Forest algorithm. Each of these data categories is thereby investigated as indicator for lane change
recognition:

• X-distance. This is the lateral distance between the trajectory point and the centerline of the
corresponding road segment.

• Y-distance. This is the distance between the trajectory point and the beginning of the road section.
This corresponds to the distance since the last passed loop detector.

• Speed. This is the speed of the vehicle at every point.
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• Timestamp. This is the timestamp corresponding to each data point, expressed in Unix time
(indicated as epoch time: the number of seconds that have passed since midnight January 1,
1970).

• Heading. The direction in which the vehicle is driving at every time step, expresses in degrees.
This is deducted from the difference in location between every consecutive data point. The exact
calculation can be found in appendix A.5.

• Heading difference to previous point. This is the difference in heading of the vehicle compared
to its heading at the previous data point. This heading difference is expressed in degrees.

• Heading difference to the centerline. This is the difference in heading of the vehicle, for each data
point, compared to the direction of the centerline of the road segment at that point. By using the
difference in heading, the direction of the infrastructure is taken into account, thereby correcting
for any angles in the road. This measure therefore indicates more clearly the individual driving
direction of the vehicle, rather than showing the direction of the road that is followed.

By transforming the X- and Y- coordinates of the vehicles to the X- and Y- distance between the vehicle
and the road centerline (as X-distance) or the start of the segment (Y-distance), it is ensured that the
model is not trained for a specific location, but rather can be used for any road section.

Using all above mentioned data, the different data sets for the random forest algorithm are prepared by
firstly merging all the separate days of Floating Car Data into one set, which is limited to each homoge-
neous piece of road between two consecutive loop detector locations. For these road sections between
the loop locations, a label is created indicating the type of lane change for each vehicle trajectory that
has been reconstructed.
A visual overview is given in figure 6.3. This image shows an example of how road sections and lane
changes are labelled. The vehicle is depicted on the loop in the lane at which it is detected at each
loop detector location. A road section is the area between two consecutive loop detector locations.
The label a vehicle gets is dependent on the level of detail of labelling, as well as the direction of the
lane change. In the example image below, the vehicle trajectory is labelled as lane change YES for
both road sections 2 and 3 in case of labelling lane changes as Yes/No. Or in case of indicating the
direction of the lane change, the trajectory is labelled as lane change to left in road section 2, and lane
change to the right in road section 3.

Figure 6.3: Example of road sections and labels

6.2.1. Equal number of data points
The Flitsmeister Floating Car Data consists of a data point per second, meaning that not all trajecto-
ries in a selected road section contain the same number of data points (as speed varies per vehicle).
Furthermore, not all data points are spaced out equally due to changes in vehicle speed throughout a
section. Since the input for a random forest algorithm requires a data set with equal number of fea-
tures, it needs to be ensured that each vehicle trajectory consists of the same number of data points.
In order to attain this, the vehicle with the highest number of data points (after filtering) within a section
is determined. Each vehicle with a lower number of points within the same section is then augmented
to reach the same number of points as that vehicle’s trajectory. This is achieved by adding as many
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points as needed to the trajectory.
Each of the newly added points receives a value per feature which is the average of the value of the
point before and after it of the same feature. These extra points are placed in such a way that they are
spread out as equally as possible throughout the trajectory.
In figure 6.4 an illustrative example of the process of adding data points to the Floating Car Data is
depicted. In the first image two trajectories with different numbers of data points are depicted. In the
second image the trajectory of vehicle 2 is augmented with extra data points in order for it to match the
number of data points of the first vehicle. These extra points are inserted at equally spaced locations,
indicated by a light green point and an asterisk. Finally, in the last image the final trajectories of both
vehicles consisting of equal number of data points are indicated.

Figure 6.4: Example of adding extra data points

6.2.2. Data set balancing
As mentioned before, previous studies found that vehicles make on average 0.4 to 0.5 lane changes
per kilometre, meaning that on road sections shorter than 1 kilometre a majority of vehicles do not make
a lane change. Therefore, the data set of a road section contains more trajectories not making a lane
change than those making a lane change within the section.
To ensure the model is trained on recognising patterns seen in the features, rather than attributing a
higher chance of occurrence to the type of lane change appearing more often within the road section,
the data set is balanced in such a way to consist of an equal number of trajectories for each lane change
type (no lane change being considered a type of lane change).
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This means that depending on the labelling of the data set (e.g. yes/no or left/ no / right, etc.), the data
set will be filtered differently.
This filtering is done by splitting the data sets according to type of lane change (e.g. splitting the data
set in a set with all the trajectories that make a lane change, and a set of all the trajectories not making
a lane change). These split data sets are then resized in order for the sets to be the same size, by
randomly removing trajectories from the data sets containing more trajectories. The now equally sized
data sets of each lane change type are then merged together again leading to a data set with equal
number of trajectories for each lane change type. Since the indexes of the original dataframe are kept,
the order of the vehicles in the final data set is not dependent on the lane change type.

6.3. Normalisation and Analysis
As several features of the data have different units, with a different scale of values (e.g. speed in
the hundreds versus heading mostly between -20 and 20), analysis comparing the different features
can be offset due to these differences in units and size ranges. In order to be able to compare the
different features, all data is normalised in such a way to have values between 0 and 1. Each driving
characteristic (eg. speed, heading, etc..) is normalised individually. Firstly, the absolute value of all
data is taken, after which the highest value of that specific driving characteristic is assigned 1 and the
lowest 0, with all in-between values scaled according to the following formula:

𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑_𝑣𝑎𝑙𝑢𝑒 = 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙_𝑣𝑎𝑙𝑢𝑒 − 𝑠𝑚𝑎𝑙𝑙𝑒𝑠𝑡_𝑣𝑎𝑙𝑢𝑒
𝑚𝑎𝑥𝑖𝑚𝑢𝑚_𝑣𝑎𝑙𝑢𝑒 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚_𝑣𝑎𝑙𝑢𝑒

By looking more closely at the data and features of vehicles, it can be looked at whether differences are
found between characteristics of vehicles making a lane change and those not making a lane change.
In order to do so, all features (speed, heading, heading difference to the centerline, heading difference
compared to the previous data point, timestamp, y-distance, and x-distance) are looked into separately,
analysing statistics for each of them. For each of these features the normalised data set is split into
yes lane change, and no lane change. Then, for each vehicle the sum of the normalised values per
feature are taken, after which both the mean and the standard deviation over all vehicles are analysed.
The results can be found in table 6.1 below.

Speed Heading Heading difference to CL Heading difference from
previous data point Timestamp Y-distance X-distance

Mean of sum - Yes LC 12.00 7.671 0.684 0.284 11.542 10.847 3.159
Mean of sum - No LC 12.00 7.660 0.681 0.278 11.517 10.823 3.150
Std of sum - Yes LC 1.6957 0.1936 0.3161 0.3628 6.7348 2.467 1.977
Std of sum - No LC 1.6671 0.1823 0.3163 0.3531 6.7122 2.464 1.985

Table 6.1: Mean and standard deviation of the sum of the absolute values of the data, for lane changes and no lane changes.

Since studies have found that the steering angle of lane change manoeuvres resembles a sine wave
(Yoshida et al., 2008), and looking at the findings from Van Ballegooijen (2019), an example of a differ-
ence that might be expected in this analysis is that the sum of the absolute heading compared to the
centerline of the road of a vehicle making a lane change would be larger than a vehicle not making a
lane change.

From the results in table 6.1, it can however be seen that there are only very slight differences in values
between cases in which lane changes are made and those in which no lane change is made. For all
features except for speed, the values of vehicles not making a lane change are slightly lower than those
that do make a lane change, but the difference is very small.
In order to analyse whether or not the difference in mean between the vehicles making a lane change
and those not making a lane change is significant, a t-test is executed. The results can be found in
table 6.2 below.
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Speed Heading Heading difference to CL Heading difference from
previous data point Timestamp Y-distance X-distance

t-value -0.033 0.428 0.753 1.139 0.281 0.748 0.346
p-value 0.974 0.668 0.451 0.255 0.779 0.455 0.730

Table 6.2: Results of t-test

As can be seen the p-values for all features are (far) above 0.05, indicating that there is no significant
difference between (the mean of) the data of vehicles making a lane change and those that do not
make a lane change.

6.4. Model
Random forest models are models used for regression and classification, which make use of multiple
decision trees, of which each uses a subset of features selected by bagging (bootstrap aggregation).
The model decides the final prediction by taking either the average of all decision tree results for re-
gression, or the majority of votes in case of classification. Furthermore, an advantage of random forest
models is that they offer insights in variable importance, which indicates the features that play the most
important parts in the prediction.
Considering the strong pattern recognition characteristics of a random forest model, as well as the fact
that the possibility of over-fitting is extremely low, this type of machine learning model is very suitable
for the purpose of lane change recognition with the data available in this study. Additionally, the choice
of a random forest model is further strengthened by Das et al. (2020), who suggest using a random
forest model in cases where only vehicle kinematics are available, as is the case in this study. In this
case since lane change labels are considered as categories, classification is used.

6.4.1. Evaluation method
There are several measures through which to evaluate the results and performance of a random for-
est model, of which the accuracy score and confusion matrix are commonly used and insightful, and
together with the precision, recall, and F1-score offer a good overview of the model performance.

In order to measure how well the model is able to predict lane changes from the data, the first indicator
to look at is the accuracy score of the test-data, which measures how many labels were predicted
correctly by the model, compared to the total number of predictions made.

accuracy = correct predictions
total predictions

The confusion matrix then offers additional information by indicating the distribution of the predictions
made compared to the true labels of the data. This thereby demonstrates how many labels were pre-
dicted correctly and wrongly, as well as what kind of mistakes were made.

Finally, the precision, recall, and F1-score offer additional insight into the model performance by show-
ing what type of errors the model made. The precision score indicates the level at which the model
avoids false labelling (so false positives or false negatives) for each label. This is calculated as

precision = true positives
true positives + false positives

and can also be seen as the percentage of predictions which were correct for each label.
The recall value indicates the level of how accurately positive labels are found in each category, cal-
culated as

recall = true positives
true positives + false negatives

Finally, the f1-score looks at the combination of the precision and recall matrices, indicating which
percentage of positive predictions were correct. It is calculated as follows:

F1 score = 2 ∗ recall ∗ precision
recall+ precision
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.
By looking at the combination of these five evaluation metrics, the performance of the model can be
evaluated.

6.4.2. Hyperparameter Tuning
When running a random forest model, there are several parameters which need to be set by the re-
searcher, namely the hyperparameters. In order to find the most suitable hyperparameter values for
the model, a randomsearch is executed, which aids in searching for the best values for each hyper-
parameter in the model. When using a randomsearch, multiple combinations of hyperparameters are
tried and it is looked at how each combination impacts the accuracy of the model. In order to decide
which values of hyperparameters are tested, a grid of ranges for the hyperparameters is decided on,
after which a specified number of samples are randomly taken from this grid.
The following hyperparameters were evaluated in this research:

• n_estimators: This is the number of trees considered in the model. In general, more trees in-
crease the performance of the model. However, more trees also increase the computational time
of the model. Usually the model performance increases with an increasing number of trees, until
a point where the additional trees do not increase accuracy significantly more, while the process-
ing time of additional trees does increase. This is then considered a suitable number of trees.
For the random search, the values of this hyperparameter to be considered were decided as 10
values between 10 and 1000, leading to the following: n_estimators = [10, 120, 230, 340, 450,
560, 670, 780, 890, 1000]

• min_sample_split: This hyperparameter indicates the minimum required observation in a node in
order for it to split. The values considered for this hyperparamter are the following: min_sample_split
= [2, 5, 10, 20]

• min_sample_leaf: Similarly to min_sample_split, this parameter controls the minimum samples
in a node, however in this case it looks at the minimum number of samples required in a leaf node
after splitting a node. In this study the values considered for this are: min_sample_leaf = [1, 2, 4,
8]

• max_features: This hyperparameter considers the maximum number of features which can be
used per tree. The two options for this hyperparameter considered are ”Auto”, and ’sqrt”. ”Auto”
indicates there is no restriction on the maximum number of features considered for a tree, while
”sqrt” takes the square root of the total number of features in an individual tree. max_features =
’auto’, ’sqrt’

• max_depth: With this hyperparameter the maximum depth a decision tree can grow is defined,
which basically indicates the maximum number of splits to be made per branch. Often increasing
the depth of a tree will increase the training result of the model, but not the testing result, since
the model starts overfitting the training set. The random search considers 10 values between 5
and 110, leading to the following values for the maximum depth: max_depth = [5, 16, 28, 40, 51,
63, 75, 86, 98, 110]

• Bootstrap: Finally, the last hyperparameter which is tuned is whether or not to use bootstrapping
in the model. When bootstrapping is used in a random forest, for each tree, the features used
are randomly selected with replacement, meaning some features can be selected multiple times
for the same tree. Bootstrapping is a method which helps to avoid over-fitting of a model. The
random search therefore considers bootstrap = ’True’, ’False’

Considering the processing time of the random search, the number of iterations is set to 10, with 3
cross validations.

6.4.3. Results
From the data sets available, four different models will be fitted, one for each type of lane change la-
belling. For each of these models, first a base model is run, after which the hyperparameter tuning is
executed in order to improve the initial model. For each model the most suitable hyperparameters will
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be indicated, as well as the level of improvement achieved by the hyperparameter tuning compared to
the base model.

For each model both the training- and testing accuracy are indicated, as well as the confusion matrix
and evaluation metrics in order to further analyse the model performance.

All models are run on data sets consisting of the following features: speed, x-distance, y-distance,
heading, heading difference to previous data point, and heading difference to the centerline. The data
sets used to fit the models are from location 1, for data from the 26th of June until the 2nd of July.
In order to test the accuracy of the models after fitting, they are all run on a data set with trajectories
from the same road section from the 3rd and 4th of July. By testing the model on this unbalanced data
set, it is found how the model would perform on data in proportions as found in traffic.

Model 1 (Lane change Yes/No):
The first model is fit using a data set labelled with lane change yes or no. An initial model is fit, leading
to a training accuracy of 100%, but a testing accuracy of only 59.08%. Considering this high training
accuracy, but much lower testing accuracy, the model is most likely overfit.

It is therefore important to tune the hyperparameters of the model through a random search. The most
suitable hyperparameters for this model according to this random search were found to be:

• n_estimators: 670

• min_samples_split: 10

• min_samples_leaf: 8

• max_features: ’auto’

• max_depth: 16

• bootstrap: ’True’

The model was then run with these hyperparameters, which led to the following results:

Training accuracy = 89.80%
Testing accuracy = 60.61%

Clearly the training accuracy has reduced while the testing accuracy has increased, indicating the
model is no longer overfit, and more accurately predicts the different types of lane changes. The tuning
of the hyperparameters has for this model resulted in an improvement of the model accuracy of 2.59%.

From this tuned model, the following distribution of the labels was found, as shown in the confusion
matrix below:

True label No LC 1797 1078
True label Yes LC 1187 1688

Predicted label No LC Predicted label Yes LC

Table 6.3: Confusion matrix tuned model

The wrongly predicted labels are found to be quite equally distributed between yes and no lane change,
with no specific type of lane change being strongly over- or under-predicted. This indicates that the
model is not biased to either of the two categories.
For further evaluation of the model, the following metrics as shown in Table 6.4 are assessed, of which
the significance of each score has been presented in 6.4.1.
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Precision Recall f1-score support
0 0.60 0.63 0.61 2875
1 0.61 0.59 0.60 2875
accuracy 0.61 5750
macro avg 0.61 0.61 0.61 5750
weighted avg 0.61 0.61 0.61 5750

Table 6.4: Evaluation model 1

The fact that the values for precision and recall are close together, indicates as well that the prediction
for either label yes and no lane change is balanced quite equally.

In order to find out which features the model gave most value to in order to reach the predictions, the
10 most important features in the tuned model are extracted. For this first model these features are
found to be:

• X-distance 22

• X-distance 21

• Heading 7

• X-distance 2

• Heading 14

• X-distance 20

• Heading 13

• Heading 8

• Heading 10

• Heading 9

The numbers here indicate the data point within the road section, in which 1 is the first data point in the
driving direction, and 22 the last point within the road segment of location 1. For this model it can be
seen that both the x-distance, representing the lateral distance between the vehicle and the centerline
of the road section, as well as the heading of the vehicle are important predictors.

The model is then run on a different data set for validation. This data set contains trajectories of the
3rd and 4th of July from the same road section. The data set is not equally balanced, but contains the
proportion of lane changes or no lane changes as found in traffic. A balanced accuracy of 62.02% is
found from applying model 1 to this data set.

The following confusion- and evaluation metrics are :

True label No LC 2102 1016
True label Yes LC 1216 1568

Predicted label No LC Predicted label Yes LC

Table 6.5: Confusion matrix validation



6.4. Model 36

Precision Recall f1-score support
0 0.63 0.67 0.65 3118
1 0.61 0.56 0.58 2784
accuracy 0.62 5902
macro avg 0.62 0.62 0.62 5902
weighted avg 0.62 0.62 0.62 5902

Table 6.6: Evaluation validation model 1

The accuracy found for this validation set is higher than the accuracy found for the test set of model 1.
This can be explained by the fact that the data set of the validation data is not balanced, and so the
label consisting of the larger group is found more often. This can also be seen from the precision and
recall score, as well as from the f1-score which are all higher for category label 0 than 1, since category
0 is larger than 1.

Model 2 (Lane change Left/No/Right):
Next, a second model is fit for data of the same location and same days, but with labels for lane change
to the left, no lane change, and lane change to the right. The same procedure is executed, in which
first the base model is evaluated, after which the hyperparameters are tuned and the model is then run
again.

In this case, the base model again reached a training accuracy of 100%, and reached a test accuracy
of 47.90%. This 100% training accuracy together with a significantly lower testing accuracy indicates
the model is overfit and needs tuning.
The random search executed for this model found the most suitable hyperparameters for this model to
be:

• n_estimators: 670

• min_samples_split: 10

• min_samples_leaf: 8

• max_features: ’auto’

• max_depth: 16

• bootstrap: ’True’

These hyperparameters were then implemented for the model, which led to the following results for
model 2 after tuning:

Training accuracy = 82.78%
Testing accuracy = 48.84%

Similarly as in model 1, the training accuracy reduced, while the testing accuracy increased. Overall,
the hyperparameter tuning for this model resulted in an improvement of the model accuracy of 1.97%.

It is evident that the accuracy of this model is lower than that of model 1, which can be explained by
the fact that this model categorises three types of lane changes, whereas the first model only had to
distinguish between two categories.

Table 6.7 illustrates the distribution of the predicted and true labels of the tuned version of model 2:
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True label LC Left 632 336 270
True label No LC 359 520 359
True label LC Right 294 282 662

Predicted label LC Left Predicted label No LC Predicted label LC Right

Table 6.7: Confusion matrix base model 2

Similarly as in model 1, it can be seen that the distribution of the wrongly labelled lane changes is quite
equal, indicating that none of the labels is specifically over- or under-predicted. Again this is confirmed
by the precision, and recall score being close together, as can be seen in Table 6.8.

Precision Recall f1-score support
0 0.46 0.42 0.44 1238
1 0.51 0.53 0.52 1238
2 0.49 0.51 0.50 1238
accuracy 0.49 3714
macro avg 0.49 0.49 0.49 3714
weighted avg 0.49 0.49 0.49 3714

Table 6.8: Evaluation tuned model 2

Lastly, the 10 most important features indicating lane changes are found to again be X-distance and
heading, as can be seen in the list below:

• X-distance 22

• X-distance 21

• X-distance 20

• X-distance 19

• Heading 10

• Heading 11

• Heading 18

• Heading 12

• X-distance 18

• Heading 8

For this second model as well, the model accuracy was tested on a validation data set from the same
location for the 3rd and 4th of July. This led to a balanced accuracy of 50.89%, which is slightly higher
than the accuracy found from the test set.

The following confusion matrix and evaluation scores indicate the distribution of false positives, nega-
tives etc of the validation set:

True label LC Left 777 473 356
True label No LC 748 1502 868
True label LC Right 204 313 661

Predicted label LC Left Predicted label No LC Predicted label LC Right

Table 6.9: Confusion matrix validation model 2
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Precision Recall f1-score support
0 0.66 0.48 0.56 3118
1 0.35 0.56 0.43 1178
2 0.45 0.48 0.47 1606
accuracy 0.50 5902
macro avg 0.49 0.51 0.48 5902
weighted avg 0.54 0.50 0.51 5902

Table 6.10: Evaluation validation model 2

Model 3 (Lane changes Left):
The third model to be fitted, looks at recognising lane changes to the left. The data set used there-
fore contains only two labels, namely lane changes towards the left labelled as one category, and lane
changes towards the right and no lane changes merged together into another category. Similarly to
the previous two models, the data set on which this model is trained contains all features for location 1
for the 26th of June until the 2nd of July.

The base model for this case is once again found to overfit, with a training accuracy of 100%, but a
testing accuracy of 62.63%.

A random search is therefore again executed, which found the following hyperparameters as being the
most suitable for this specific model:

• n_estimators: 670

• min_samples_split: 10

• min_samples_leaf: 8

• max_features: ’auto’

• max_depth: 16

• bootstrap: ’True’

With the implementation of these hyperparameters, the following results were found from the tuned
model:

Training accuracy = 91.58%
Testing accuracy = 63.98%

This indicates the hyperparameter tuning got rid of the overfitting, and led to an improvement of 1.07%.

The following confusion matrix (table 6.11) is related to this model, and once again shows the distribu-
tion of the predicted labels. Furthermore, the evaluation metrics are indicated in table 6.12, supporting
findings in the confusion matrix:

True label LC Left 1038 599
True label LC Right + No LC 603 1035

Predicted label LC Left Predicted label LC Right + No LC

Table 6.11: Confusion matrix tuned model 3
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Precision Recall f1-score support
0 0.63 0.63 0.63 1638
2 0.63 0.63 0.63 1637
accuracy 0.63 3275
macro avg 0.63 0.63 0.63 3275
weighted avg 0.63 0.63 0.63 3275

Table 6.12: Evaluation tuned model 3

From these evaluation scores of model 3, it is found that for both labels, as well as for all scores, a
value of 0.63 is found. The fact that all values are found to be the same, can be explained firstly by the
fact that the precision and recall rate are both the same. Considering the definition of the f1-score, this
score automatically becomes the same as the precision and recall scores when those are equal.
The precision and recall score being equal, can be explained by the fact that an equal amount of false
positives, and false negatives are predicted by the model.

The following 10 features are in this model found to be the most important indicators of the type of lane
change:

• X-distance 22

• X-distance 21

• X-distance 20

• X-distance 19

• X-distance 18

• X-distance 17

• Heading_diff_CL 22

• X-distance 15

• Heading 19

• Heading 18

As in the previous two models, X-distance and heading are found to be indicators for lane changing.
It should be noted however, that in this model, considering the fact that the X-distance is found more
often than the heading, the X-distance is found to be more influential than the heading of the vehicle in
lane change recognition, as compared to the first two models.

Similar as in the previous models, the model was then validated by implementing it on the data set of
the 3rd and 4th of July, from which a balanced accuracy of 61.10% was found, along with the following
distribution of true and predicted labels, and evaluation metrics:

True label LC Left 972 634
True label LC Right + No LC 1437 2859

Predicted label LC Left Predicted label LC Right + No LC

Table 6.13: Confusion matrix validation model 3
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Precision Recall f1-score support
0 0.82 0.67 0.73 4296
2 0.40 0.61 0.48 1606
accuracy 0.65 5902
macro avg 0.61 0.64 0.61 5902
weighted avg 0.71 0.65 0.67 5902

Table 6.14: Evaluation validation model 3

From these evaluation metrics in Table 6.14, it can be seen that the amount of trajectories categorised
as No LC or lane change to the right (label 0), is much higher than the number of trajectories changing
lanes to the left. The precision of the lane changes to the left is also much lower than that of category 0.

Model 4 (Lane changes Right):
The last model which is trained is one looking at recognising lane changes to the right. Therefore, the
data set, in a similar manner to the previous one, is labelled in two categories: lane change to the right
as one category, and lane change to the left and no lane change together as another category. The
results found for the overfitted base model is found to have a training accuracy of 100%, and a testing
accuracy of 63.49%.

The random search is executed in order to tune the hyperparameters and resolve the overfitting. From
this search, the following hyperparameters are found to be the most suitable for this model:

• n_estimators: 230

• min_samples_split: 5

• min_samples_leaf: 4

• max_features: ’sqrt’

• max_depth: 5

• bootstrap: ’False’

Implementation of these in the model lead to the following results for the tuned model:

Training accuracy = 70.05%
Testing accuracy = 64.50%

An improvement of 1.59% is thereby found as a result of the hyperparameter tuning.

The following confusion matrix goes along with this, as well as the evaluation metrics:

True label LC Right 749 489
True label LC Left + No LC 390 848

Predicted label LC Right Predicted label LC Left + No LC

Table 6.15: Confusion matrix tuned model 4
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Precision Recall f1-score support
0 0.63 0.68 0.66 1238
1 0.66 0.61 0.63 1238
accuracy 0.64 2476
macro avg 0.65 0.64 0.64 2476
weighted avg 0.65 0.64 0.64 2476

Table 6.16: Evaluation tuned model 4

For this model again, the labels are found to be rather balanced, and the precision and recall scores
are not too far apart, thereby indicating that the prediction of the labels is equivalent.

For this fourth model, the following features were found to be the 10 most important indicators of lane
changes:

• Heading 10

• Heading 12

• Heading 9

• X-distance 22

• Heading 11

• Heading 17

• Heading 18

• Heading 14

• Heading 7

• X-distance 20

Again, both X-distance and heading of the vehicle were found to be predictors, however unlike model
3, in this case heading is found to be more significant than X-distance.

In order to have a comparison with the other three models, and to see the accuracy on an unbalanced
data set, this model is also implemented on the validation data set of the 3rd and 4th of July. The
following balanced accuracy score, and confusion matrix are found for this :

Balanced accuracy score = 60.26%

True label LC Right 730 448
True label LC Left + No LC 1501 3223

Predicted label LC Right Predicted label LC Left + No LC

Table 6.17: Confusion matrix validation model 4

Accompanied by the following evaluation metrics:

Precision Recall f1-score support
0 0.88 0.68 0.77 4724
1 0.33 0.62 0.43 1178
accuracy 0.67 5902
macro avg 0.60 0.65 0.60 5902
weighted avg 0.77 0.67 0.70 5902

Table 6.18: Evaluation validation model 4
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The precision score of category 1 (lane change to the right) is here found to be rather low. Indicating
that a lot of false positives (i.e. predicted labels of lane changes to the right, but true label is LC left or
No LC) are returned.

Summary of model results:

An overview of the models and their accompanying testing and validation accuracies can be found in
Table 6.19 below.

Model Labels Testing Accuracy Validation Accuracy
1 Yes / No 60.61 % 62.02 %
2 Left / No / Right 48.84 % 50.89 %
3 Left / No + Right 63.98 % 61.10 %
4 Right / No + Left 64.50 % 60.26 %

Table 6.19: Summary of model performance

In order to take into account the imbalance in size of the lane change categories in the validation set,
the balanced accuracy is taken for the validation sets for all the models. This is calculated as indicated
in Appendix A.6. These results indicate that the models recognising lane changes in only one direction
perform better on the test data than the models considering both directions.
A smaller difference is however found when looking at the performance on the validation data set,
which was the exact same data set for all four models. The accuracy scores of all binary classification
models lie much closer together, with the first model actually scoring the best accuracy-wise.

In order to analyse the models further, and consider which model is most suitable depending on the
exact goal of the model it is interesting to look into the precision, recall, and f1-scores, which are
summarised for the four models in tables 6.20 and 6.21.

Macro and Weighted average
Precision Recall f1-score

Model 1 - Testing model 0.61 0.61 0.61
Model 2 - Testing model 0.49 0.49 0.49
Model 3 - Testing model 0.63 0.63 0.63
Model 4 - Testing model 0.65 0.64 0.64

Table 6.20: Averages Precision, Recall, and F1-score of testing models

Macro average
Precision Recall f1-score

Model 1 - Validation model 0.62 0.62 0.62
Model 2 - Validation model 0.49 0.51 0.48
Model 3 - Validation model 0.61 0.64 0.61
Model 4 - Validation model 0.6 0.65 0.6

Weighted average
Precision Recall f1-score

Model 1 - Validation model 0.62 0.62 0.62
Model 2 - Validation model 0.54 0.5 0.51
Model 3 - Validation model 0.71 0.65 0.67
Model 4 - Validation model 0.77 0.67 0.7

Table 6.21: Averages Precision, Recall, and F1-score of Validation models
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6.4.4. Analysis of Results
The results from the four models presented above show that lane changes can be recognised from
Floating Car Data on this road section with an accuracy between 48.84% and 64.50%. The recogni-
tion of lane changes to one specific side (either to the left or to the right) is found to offer the highest
recognition rate on the test data, higher than considering both sides in one model.
A possible explanation for this is that, as further explained later, different characteristics are considered
in lane changes to the right compared to those to the left (i.e. heading vs. x-distance).

By looking into the confusion matrices of all models, it can be seen that the wrongly predicted labels
are rather balanced in all four models. Since the models use a balanced data set with equal numbers
of labels per category for training and testing, the fact that the same order of magnitude of wrongly
predicted labels are found in each category, indicates that the model does not over- or under-predict a
certain label. This is also confirmed when looking at the precision and recall scores, which are similar
for the different labels within the test data sets of a model. In a balanced data set, in case the values
of precision and recall are completely equal, this indicates that the same number of false positives and
false negatives are labelled by the model. This in turn means that the model is able to classify each
type of lane change within a model equally well.

This is only the case for the third model, in which precision and recall have the exact same values for
both labels. For the other models the precision and recall scores are similar, but not exactly the same,
meaning that the labels are relative equally predicted, but not exactly equally.

When comparing the results of the four models, there are some differences between them which should
be taken into account.
First of all, the fact that the first, third and fourth model all deal with binary classification, while the
second model involves multi-class classification, means the comparison of the second model with the
rest should be done with caution.
The second model for example reaches a lower accuracy score compared to the other three models,
which can be explained by the fact that this model needs to identify patterns for three different types of
lane changes, whereas in the other models a differentiation only needs to be found between two types
of manoeuvres.

Secondly, although all four models are trained on the same overall data set, the exact (number of)
trajectories used for the different models is slightly different considering the data sets are balanced
per label, and thereby different (numbers of) trajectories are removed in the different models. The first
model is for example trained on almost double the number of trajectories compared to the fourth model.

For this reason, the validation data set of the 3rd and 4th of July is used to compare the different
models, as it uses the exact same data set for all models. Furthermore, since this data is not balanced
according to lane change type, it represents a more realistic image of the actual traffic situation, namely
with a majority of the trajectories not making a lane change.

Since the data set is not balanced, meaning certain types of lane changes occur more often than oth-
ers, it is more important to not only look at the accuracy score, but also at the precision and recall
values. In the first model it is seen that the values of these two metrics lie close to each other, with
a difference of maximum 0.05 between them. In the second model however, the difference between
the precision and recall values is much larger, which thereby also leads to lower f1-scores. In both
the third and the fourth model a large difference is found between both the precision- and f1-scores
for each label. This is caused by the fact that the category containing two types of lane changes (LC
Right + No LC in model 3, and LC Left + No LC in model 4) is much larger than the category containing
one type of lane change. For the validation of both these models, the precision score for the label of
the smaller category is much lower than the recall score of this category. For the bigger category, the
exact opposite is the case, where the precision score is much higher than the recall rate.

It is also found that the accuracy for the validation is higher for the first two models (lane change Yes/No,
and lane change Left/No/Right), but lower for the last two models (lane change to the Left/No+Right,
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and lane change to the Right/No+Left).

In order to define which model is most suitable for lane change recognition, the question needs to be
posed what the immediate goal of the lane change recognition is. For models with a higher precision
score, the false positive rate will be lower, which is useful when wanting to know specifically the vehicles
which made a lane change. A higher precision score thereby indicates the model is more certain the
vehicle made the lane change if it is indicated to have done so. It however does not give information
on the vehicles missed, which are not labelled as making the lane change when they actually did (the
false negatives).
By looking at the recall rate, it is found how well the model recognised a type of lane change from all
these type of lane changes made. The higher the recall rate, the less of the lane change types are
missed by the model. When looking for a model which is able to recognise as many of a certain lane
change type as possible, but is less sensitive to false positives, a model with a high recall rate would
be suitable.
When looking for a model which takes both into account, not placing more value on one or the other,
the model with the highest f1-score should be chosen.

Considering the fact that a random forest is a black box model, it is rather difficult to understand what
the model has learnt as a rule to define a lane change. However, the model does offer insight into
feature importance, which indicates how important each feature is in the classification. When looking
at the feature importance of the different models, it can be seen that for all of them the x-distance
(lateral distance of the vehicle) and the heading of the vehicle are important indicators. Considering
the foundation of a lane change consists of a sinus-shaped movement involving a change in heading
as well as a change in lateral position, this is a logical outcome.
An interesting finding is that in model 1 and 2 the importance of the X-distance and Heading are similar
with both being represented almost equally in the top 10 most important features (40/60 in model 1,
and 50/50 in model 2 for X-distance/Heading respectively). In model 3 on the other hand, X-distance
is found to be more representative (70% X-distance/30% Heading), and in model 4 Heading is found
more often in the top 10 features (20% X-distance/80% Heading).
Since model 3 looks at distinguishing lane changes to the left, and model 4 looks into lane changes
towards the right, this finding indicates a difference in lane change recognition to the left and the right.
In which lane changes to the left are recognised by looking at the X-distance of the vehicle to the
centerline of the road, while lane changes to the right are distinguished by looking at the heading of
the vehicles. Considering model 1 and 2 look at lane changes in both directions, the finding of both
X-distance, and heading being important in those models thereby also matches.

A possible explanation for this finding could be that when making a lane change to the left, the vehicle
proceeds towards a faster lane, while with a lane change towards the right the vehicle changes to a
slower driving lane. Generally speaking, vehicles are not able to accelerate at the same pace as they
are able to reduce speed through braking. Lane changes towards the left requiring acceleration, and
therefore involve more time and a smoother movement compared to lane changes to the right, which
can involve more sudden steering movement (i.e. to merge in-between two vehicles). This can explain
why the lane changes to the left are characterised by x-distance, while lane changes to the right are
recognised through heading.



7
Discussion and Conclusion

This study has looked into the recognition of lane changes from Floating Car Data by looking at a rule-
basedmethod as well as by the implementation of random forest models. In this section the findings and
their implications will be discussed. The research questions will then be answered, and a conclusion
is drawn. Lastly, recommendations for future research are provided.

7.1. Discussion
7.1.1. Trajectory reconstruction
In order to label the trajectories in this study by the type of lane change, the trajectory reconstruction
algorithm by Arman and Tampere (2021) was applied, which reconstructs the Floating Car trajectories
according to loop detector matching. Through this implementation, the labels and thereby the ground
truth were created.
From this reconstruction it became clear that some trajectories require more severe corrections than
others, which indicates the GPS error is not the same in all road sections and devices.

It must be considered that, although in this study the labels found by the reconstruction algorithm are
regarded as ground truth, this method is sensitive to errors and a 100% accurate labelling can not be
guaranteed. Especially considering the fact that this is the first time the method is applied outside of
the original study environment, on a different road section, and even a different country.
Furthermore, when applying the method, manual placement of the loop detectors and road placement
was required. Although this was done with caution, an error is easily made in such a process, which
could have influenced the matching. Especially for the placement of the loop detectors, the passing
time of the vehicle over the loop is second specific, meaning a slightly wrong placement of the detector
can influence the matching.

The original study in which this algorithm is presented and tested uses multiple methods for valida-
tion, such as drone images and d-GPS. Since this study does not use any of those methods to check
the accuracy of the lane changes found, it is unknown whether the matching has been done equally
successfully. This is a limitation of the study, which needs to be taken into account when drawing con-
clusions.

Another reason to critically assess the ground truth used, is the fact that 1.8 to 3 times more lane
changes are found in the case study area compared to what would be expected according to literature.
This might seem to be a large number, but might be explained by the fact that the road sections on
which the analysis is done is located at, and around, a weaving section, leading to more lane changes.
Furthermore, the study from which the average number of lane changes was deduced mentions that
its results might be site-specific.

A final reason to consider the ground truth with caution, is that due to human error a number of loop
detectors present in the research area were not considered for the matching. This does not necessarily
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lead to wrong results seeing that no false information is used, but it can influence the accuracy of the
matching process. The more loop detectors considered in the matching process, the more information,
and therefore a reduced probability of incorrect matching.

7.1.2. Rule-based method
After the process of trajectory reconstruction, a rule-based method of lane change recognition using the
heading difference of a vehicle with the road infrastructure, as developed by Van Ballegooijen (2019),
was assessed. When applied to this study’s research area on the A27 with the associated available
data, a rather low number of lane changes was found. Especially when comparing to the number of
lane changes expected according to literature, and the reconstructed trajectories.

Combining this result with the findings in Chapter 6, it could be reasoned that since the rule-based
method looks at delta heading, and heading is found to be an important indicator for lane changes
to the right, perhaps the rule-based method has a low recognition rate due to only recognising lane
changes to the right.
In order to verify whether this was indeed the case, the percentage of lane changes recognised per
direction by the rule-based method was investigated. No significant difference was however found
between the recognition rates of lane changes to the left compared to those to the right. The reason
for the low recognition rate by the rule-based method is therefore not caused by this factor.

7.1.3. Random Forest algorithm
The next part of this research looked into the use of machine learning, and more specifically random
forests for lane change recognition. The labels used in this model originate from the ground truth found
through the loop detector matching.
The four models indicate the level at which lane changes can be recognised according to different types
of labelling. The three binary-classification models (models 1, 3 and 4) result in higher recognition rates
compared to the multi-class classification model (model 2). As mentioned before, from a statistical
point of view, this is an expected finding, considering the fact that more categories also come with
more possibilities of false positives and negatives.
From a model point of view, this finding is however remarkable. The fact that models 3 and 4, which
look into lane changes in a single direction, score remarkably higher than model 2, raises questions
about the difference in lane changing patterns per direction. If a clear difference can be found between
lane changes in a specific direction as seen in models 3 and 4, it would be expected that this difference
can also be recognised when differentiating between the three directions in one go. Especially taking
into account that the size of each category in model 2 is larger than those in model 3, and equal to
those in model 4, indicating that reduced training size is not the cause of the lower accuracy.

This issue indicates clearly one of the downsides of a black-box model, namely that it is nearly impos-
sible to fully discover which rules a model has learnt in order to classify the data, apart from looking
into the feature importance.
In order to find out the extent to which a rule can be deduced from a random forest algorithm, an
experiment was done in which a model was fit on the data set labelled according to the rule-based
method from chapter 5. By doing this, the exact rule by which the data set was labelled was known by
the researchers. After fitting the random forest model on this data, it was aimed to extract whether the
model had learnt the same rules in order to achieve the labelling. This was found not to be the case,
which proves the difficulty of a black box model such as random forests.
The analysis of the random forest fit on the rule-based method can be found in appendix A.7

For all of the four models trained, the base model overfit on the data set, which indicates the importance
of hyperparameter tuning. By tuning the hyperparameters of the models, the testing accuracy was
improved in all cases. The random search which was executed to achieve this made use of 10 iterations
with 3 cross validations. Furthermore, a set number of values for each hyperparameter were picked, as
indicated in section 6.4.2. All of these decisions impact the tuning of the models, and it is possible that
with a wider choice in values, and a higher number of iterations, hyperparameters would have been
tuned slightly differently, possibly leading to further increased accuracy. Ideally, in order to achieve the
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most ideal hyperparameter tuning, a grid search can be executed, which looks into every combination of
hyperparameter options, rather than a random sample of combinations as done with a random search.
A grid search however is extremely demanding in both time and computational power, which were not
available during this research.
In case future research will progress with this study, it could be interesting to look into further tweaking
of the hyperparameters, and how much the accuracy of the models would thereby improve.

All four models presented offer their own value in lane change recognition, depending on the level of
detail of a lane change that needs to be found. Although, as mentioned before, the four models cannot
be compared one-on-one due to different types of classifications and different data set sizes used for
training, a certain level of comparison can be reached by looking at the validation of the models. Since
the validation is performed on the exact same data set for all four models, the difference between their
findings can be used to decide the model that is the most suitable for the goal it is chosen for.

The goal of recognising lane changes from Floating Car Data is ultimately to be able to offer person-
alised, in-car driving advice to drivers. The most suitable model for this case therefore depends on the
exact application of this advice.
For purposes in which it is crucial that a lane change is accurately indicated (for example for safety
reasons), a model with high precision score is needed. On the other hand, in cases where as many
drivers as possible making a certain lane change need to be reached, in which case it is not critical if a
few drivers are wrongly contacted, a model with a high recall score is more suitable. In case both are
equally important, a model with high f1-score and accuracy should be used.
Of course also depending on whether information on the direction of a lane change is required, or
whether it is sufficient to know whether or not a lane change is made, some models can be more suit-
able than others.

Considering the fact that both the study by Van Ballegooijen (2019) and this study find a maximum
recognition of lane changes of around 50% to 64%, it seems that with the current level of GPS accu-
racy, and the corresponding precision of Floating Car Data, a higher level of lane change recognition
might not be achievable from only Floating Car Data, at least by means of this method. By improve-
ment of the GPS receivers in mobile devices and navigation systems, a higher accuracy can probably
be reached in the future.

Das et al. (2020) in their study did however find a higher lane change recognition rate, which creates
a suitable comparison in order to distinguish the differences between the studies, and thereby focus
points for future research. A major finding by Das et al. (2020), which could explain the difference in
results is the weather conditions, which were found to have a considerable effect on both the qual-
ity of the data, and the lane change behaviour. All vehicle kinematics were found to differ between
weather conditions, and data collected during extreme harsh weather conditions were excluded for
some models in the study. This is a parameter which is not taken into account in our study, and could
impact the results. In case the weather during our study period was differing, it is possible that differ-
ent lane change manoeuvres were made, or data quality differed per day. A second difference is the
vehicle kinematics features used, namely the speed, longitudinal acceleration/deceleration, lateral ac-
celeration/deceleration, and yaw rate, of which for each the mean, maximum, minimum, and standard
deviation were used. This demonstrates a difference with the features used in our study, and thereby
potentially leading to different results. Finally, another reason for the higher accuracy reached in the
models by Das et al. (2020) could be the fact that a grid search was used for hyperparameter tuning.
As mentioned earlier, such a method of tuning is more exhaustive and thereby leads to better tuning
and results.

7.2. Conclusion
The main research question of this research was ’To what extent can lane changes be recognised from
Floating Car Data?’. In order to answer this question two sub-questions were looked into, namely ’What
(level of) information can be obtained from Floating Car Data?’, and ’Which trajectory characteristics
are significant in lane change recognition?’. By looking into these questions the main research question
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can then be answered.

The first sub-question, ’What (level of) information can be obtained from Floating Car Data?’, has been
looked into mainly in chapter 4.
Raw Floating Car Data retrieved from in-car navigation systems and mobile navigation apps offer ve-
hicle trajectory information at a 1 HZ frequency. The data consists of a timestamp, GPS location, and
speed of the vehicle for every second.
In The Netherlands an often used navigation app collecting Floating Car Data is Flitsmeister. This
service is used by approximately 1.8 million users in The Netherlands, thereby covering a substantial
amount of road users. The Floating Car Data used in this research consists of Flitsmeister data.

From the analysis of the raw Floating Car Data, it was found that the GPS location indicating the vehicle
position at a 1 HZ frequency is often inaccurate. Not only is a large number of the data found to lie
outside of the driving lanes, trajectories are also found to make strong zig-zagging movements which
are often unrealistic for vehicles to make. From this it was concluded that GPS errors are present in
the data, and lateral movements found in the GPS positions of the vehicle can therefore not simply be
regarded as a lane change.

The second sub-question, ’Which trajectory characteristics are significant in lane change recognition?’,
is mainly answered in chapters 5 and 6.
Using a rule-based method looking at the delta heading of vehicles at consecutive time steps has, in
this study, been found to recognise only a very limited amount of lane changes.
However, when using a random forest model, lane changes can bemore accurately recognised through
the heading of the vehicle, and the lateral distance between the vehicle and the centerline of the road
(X-distance).
More specifically, lane changes to the right are signified by the heading of the vehicle, and lane changes
to the left are identified by the x-distance between the vehicle and the centerline. When looking into
lane changes independent of the direction, a combination of the heading and x-distance of the vehicle
are found to be indicators.

From these lane change recognition models created through a random forest algorithm, it is found that
lane changes can be recognised with an accuracy of more than 60%, with higher recognition rates
reached using binary classifications than multi-class classification.

The overall research question of this research ’To what extent can lane changes be recognised from
Floating Car Data?’ is thereby answered, and a model has been created with which it has become
possible to recognise lane changes from Floating Car Data with an accuracy of up to 64%. This accu-
racy level lies in the same range as the results found by Van Ballegooijen (2019), and indicates that at
present, and with the current GPS sensitivity, a higher accuracy of lane change recognition can not be
reached from Floating Car Data, at least through these methods.

The most suitable model out of the four models created is dependent on the exact requirements and
type of lane change aimed at being recognised.

7.3. Recommendations for future research
Considering the findings from this research, a number of interesting future research directions have
established.

First of all, it would be valuable to implement the same research on a different road section. This would
help determine whether the results found in this research are specific to this road section, or whether
they are indeed generalizable for all lane changes on (Dutch) highways. Considering the completeness
and unique composition of the data set used in this research, it is valuable to use this same set for fur-
ther analysis. Within this data set there are numerous road sections for which lane change recognition
models have not yet been created. It would also be valuable to merge the data of several road sections
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in order for a model to be trained on different road sections together.

On top of this, it would be valuable to look into a completely different road section of a different highway,
with a different road orientation (e.g. East to West) to find out whether the findings are similar. Also
taking into consideration the weather conditions can lead to higher recognition rates and is interesting
to take into account in future research.

Another adaptation of the current research which would be valuable, is to reduce the filtering of the
trajectories in the pre-processing of the data. This would offer a data set closer to the raw Floating Car
Data, and thereby lead to easier implementation and wider use.

Finally, it would be interesting for future research to add a third data source such as a camera to a same
type of research. This third source would offer an additional manner in which to deduct the ground truth,
thereby increasing the reliability of the lane change labelling, and thereby lead to more reliable results.

7.4. Recommendations for practice
Practical recommendations found by this research are the improvement of GPS receivers in mobile
devices and navigation devices. This would lead to reduced GPS error, and thereby more reliable
trajectory data, which would likely improve the model’s accuracy.
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Abstract – One of the current challenges withholding
personalised lane-level driving advice is the inaccuracy
and error of GPS signal from commonly used navigation
devices and mobile phones. These GPS signals have
an uncertainty margin up to several meters, therefore
potentially indicating the vehicle location on a different
lane than the actual lane it would be in. This unreliability
therefore currently makes it impossible to accurately
recognise lane changes from solely this data.
This study looks into the recognition of lane changes from
only Floating Car Data by the use of a Random Forest
algorithm. In order to find the ground truth, a trajectory
reconstruction algorithm is implemented, which uses the
matching of trajectories with loop detector passages in
order to find the lane a vehicle is in at each loop detector
location. This information is then used to know whether,
for each vehicle, a lane change is made on the road
section in-between two consecutive loop detector locations.
By training the model on this data, it was found that
when using solely Floating Car Data, lane changes can
be recognised with an accuracy of up to 64%. Indicators
for lane change were found to be the lateral distance of a
vehicle to the middle of the road, as well as the heading of
the vehicle.
The study additionally looks into a rule based method
of lane change recognition, which is compared with the
Random Forest model.

Keywords – Floating Car Data, GPS, Lane Change
Recognition, Random Forest Model

I. INTRODUCTION

The ability to recognise lane changes, or accurate lane-level
location, from Floating Car Data, a data source of GPS traces
from vehicles equipped with a navigation device or mobile
phone navigation application, is an issue currently withholding
personalised in-vehicle driving advice. Due to the inaccuracy
of regular GPS, which can be offset up to several meters, it
is not possible to say with certainty in which lane a vehicle is
driving. For this reason, it is also not possible to deduct from
the Floating Car Data alone, whether a vehicle makes a lane
change, or whether the lateral movement seen in the data is
cause by GPS error or distortion.
This study aims to fill this gap, and researches the possibility
of recognising lane changes from Floating Car Data of free-
flowing traffic on a Dutch Highway, by looking at both a rule-
based method, and by training a Random Forest Model.
Dependent on the exact purpose of the lane change recognition
models, and the desire of whether to recognise specific
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manoeuvres with high certainty, or whether the priority is to
cover the highest number of lane changes as possible, certain
models might be more suitable than others.

II. Literature Review on Lane Changes

Lane changes belong to some of the most frequent driving
manoeuvres executed in free-flow traffic, with a vehicle
making on average 0.4 to 0.5 lane changes per kilometre
[1]. Both mandatory and discretionary lane changes are
required for smooth driving experiences. The intensity of
these manoeuvres is higher near network nodes and weaving
sections, as well as in high density traffic situations [1] [2].
Definitions of lane changes and their associated beginning-
and end-point vary among studies, ranging from the moment
a vehicle’s wheel crosses the lane boundary, to the moment
the centre of the vehicle has reached the destination lane.
Consequently, lane change duration is found to vary between
1 and 16 seconds, with an average of 5 to 6 seconds [3] [4].
GPS receivers tracking vehicle’s location are present in
numerous devices such as smartphones and in-car navigation.
This offers the opportunity to track vehicle location and
thereby certain aspects of driving behaviour. The location
accuracy can however differ largely between trajectories due
to in-vehicles causes such as receiver quality, internal filtering,
or placement in the vehicle, as well as by external factors such
as interference, atmospheric conditions, tunnels etc. [2]. This
inaccuracy of GPS location due to data drift and errors can
lead to an offset of several meters. In order to use Floating Car
Data for lane change recognition, the exact GPS positions of a
trajectory up to lane level can therefore not be relied on.
Multiple studies have been executed using additional data
sources such as camera or steering wheel angle for lane change
recognition. However, to the best of our knowledge, no
scientific research has, to date, been done on lane change
recognition from only Floating Car Data. An investigation
has been carried out on lane change recognition from vehicle’s
delta heading (∆h), in degrees, deducted from Floating Car
Data traces [5]. The delta heading represents the difference
in heading between the vehicle and the road infrastructure,
from which the following definition was found to recognise
lane changes 67% of the time [5]. t0, t1 etc.. represent the time
steps, per second, of a FCD point, and ∆ht0 ,∆ht1 ,etc represent
the delta heading at each time step.

(∆h) at t0, t1, and t2 < 0 or (∆h) at t0, t1, and t2 > 0

and

abs(∆ht0 +∆ht1 +∆ht2 +∆ht3)>= 6

The rule was deduced by investigating trajectories which



were, according to the origin and destination road they were
located on, known to have made at least one lane change.
During validation on a different road section, the percentage
of lane changes recognised was found to be between 50 and
70% depending on the road segment [5].

The increasingly growing field of research and application
of machine learning in road traffic analysis offers new
insights, including on lane change recognition. Numerous
studies using this method focused on lane change recognition
for autonomous vehicles, or looked into lane changing of
vehicles relative to the positions of surrounding vehicles,
which is not applicable for Floating Car Data. One study
compared different machine learning algorithms such as
Support Vector Machine, Artificial Neural Network, Random
Forests, and eXtrem Gradient Boosting for lane change
recognition using data of vehicle kinematics, machine vision,
road characteristics, and driver demographics. It was found
that eXtrem Gradient Booster led to the highest lane change
detection accuracy of 95.9% [6]. When using only vehicle
kinematics, the Random Forest model was found to score best,
and the authors of the study thereby advice a Random Forest
model for lane change recognition when using only vehicle
kinematics (as is the case in Floating Car Data) [6].
Following this finding, along with the fact that research is
lacking on lane change recognition from Floating Car Data
as only source, this study aims to fill that research gap.

III. Method

In this study two data sources are used, namely Floating
Car Data, and individual passage loop detector data. As a first
step the trajectories from the Floating Car Data are filtered as
described in section A.. Both the data sources are then combined
for trajectory reconstruction, as explained in section B.. From
this, lane changes can be deducted, from which labels are
created which classify the trajectories accordingly. With the
labelled data sets two methods of lane change recognition
are applied, namely a rule-based method, and a machine
learning algorithm. The rule-based method looks into the
definition of a lane change as described in section II., and is
described in section C.. Finally, a random forest algorithm is
implemented in order to train classification models for lane
change recognition, as explained in section D.. In section E., the
case-study locations on which the research is implemented are
described.

A. Filtering of data
For use in this study, the Floating Car Data is filtered

according to the following definitions:
• Only trajectories within the study area (the A27 between

Utrecht Noord and knp Eemnes) are considered, all parts
of the trajectories outside the X- and Y- coordinates of
the area of interest are excluded by manner of X- and
Y-coordinate limiting. This implies removing all data
points outside the study area by cutting of the trajectories
at the edge of the section of interest. This ensures no
information from within the study area is lost.

• Trajectories containing an unproportionally large number
of data points, in which a large number of data points

is defined as anything more than the number of data
points corresponding with a vehicle driving 70km/h on
the specified segment. By following this selection, both
congestion, and the trajectories of vehicles which are
present in the study area for an abnormal amount of time,
e.g. those stopping at a fuel station, are filtered out.

• Trajectories containing a very small number of data
points. The threshold for this amount is set as the
number of data points that a vehicle driving 150km/h
would have in the determined segment. By removing
these trajectories, both incomplete trajectories, as well
as trajectories of vehicles driving abnormally fast are
filtered out.

• Only trajectories which are able to be reconstructed
according to the trajectory reconstruction method are
included. This process and requirements for such
reconstruction is explained in further detail below.

B. Trajectory reconstruction
In order to achieve lane-level reliable trajectories from the

imprecise Floating Car Data points, an algorithm is used
through which the precise driving lane of a vehicle can
be acquired at loop detector locations [2]. This trajectory
reconstruction algorithm makes use of lane-level data fusion
of Floating Car Data and individual passage loop detector
data. The matching is executed by linking the passage time
of a vehicle at the loop detector location according to the
Floating Car Data, with the passage time registered by the loop
detectors at the corresponding loop detector location. By this
data-fusion it is known which loop the vehicle passes at every
location, and thereby in which lane the vehicle is situated at
those loop detector locations. A schematic overview can be
found in figure 1.
The algorithm then reconstructs the trajectories between the
loop detector locations, in order to create the more realistic
vehicle trajectory. In order to execute this process, the original
Floating Car Data trajectories are first filtered according to
several requirements, as stated in [2].

In this current study, for which Floating Car Data and loop
detector data of the A27 is available, the above mentioned
algorithm is applied, thereby offering information on whether
a lane change is made in each road section between two
consecutive loop detector locations. Labels can be created
accordingly, indicating the lane change, as well as direction, in
a road section, for each trajectory in-between two consecutive
loop detector locations.

Fig. 1. Schematic overview loop detectors and road sections

C. Rule-based method
The lane change recognition rule as presented in section

II., is applied to the data of this study, with the purpose of
analysing the recognition of lane changes, as well as for
comparison with the lane changes found by the trajectory



reconstruction algorithm [5] [2]. The lane changes found
by the rule-based method are compared with those found
from the trajectory reconstruction algorithm, both in quantity
and direction. Furthermore, the number of lane changes
found is compared to the number of lane changes expected
in the particular road section according to literature. Next,
the rule-based lane change recognition method was slightly
adapted to include an additional delta heading at an additional
time step, thereby considering the delta heading at 4 time
steps in the first part of the definition, and 5 time steps in
the second part of the definition. The difference with the
original definition, as well as the reconstructed trajectories
and literature findings is then analysed.

D. Random Forest Model
A second method for lane change recognition is applied,

with the use of machine learning, with which a model is
trained by means of a random forest algorithm. The features
are deducted from the Floating Car Data, and the labels from
the lane changes are deduced from the vehicle location found
through the trajectory reconstruction algorithm. Lane changes
are labelled in four different ways, namely lane change yes/no,
lane change to the left/no lane change/ lane change to the right,
lane change to the left/ no lane change and lane change to the
right, and lane change to the right/no lane change and lane
change to the left.
Four different models are trained according to these different
types of labelling. Each of these models is trained and tested
on a balanced data set, in which the training and testing
data is split with a 0.75/0.25 proportion. For each model a
random search is executed in order to find the most suitable
hyperparameters. After training, the models are also evaluated
on a validation set, which consists of trajectory data of the
3rd and 4th of July from the same road segment. Since this
data set is identical for all models, it is a good way in which
to accurately compare the model performances. Furthermore,
since this validation data set is not balanced, it consists of
proportions of lane change types as found in traffic.
The models are evaluated according to their accuracy-,
precision-, recall-, and f1-score, which are defined as follows:

accuracy =
correct predictions
total predictions

precision =
true positives

true positives + false positives

recall =
true positives

true positives + false negatives

F1 score = 2∗ recall∗precision
recall+precision

A high precision score indicates a low false positive rate,
and a high recall score indicates a low false negative score.
The f1-score is a balance between the two scores. Depending
on the precise goal of the model a different indicator can be
considered important.

E. Case-study locations
Two locations are decided on for which both the rule-based

method and the random forest algorithm are applied. The first
location, named location 1, is the road section between the
two loop detector locations in segment 4, which has a distance
between them of approximately 400 meters. The road section
consists of 5 lanes, of which 2 are exit lanes in the second half
of the section. Furthermore the most right-hand lane comes
from a gas station. This ensures that lane changes will be made
by vehicles that either enter the section from the gas station,
or exit the road through the exit lanes. Lastly, the section is
rather straight, which would reduce extreme GPS error due to
road curvature and assure this section is a suitable road section
on which to execute this study.
The second road segment, named location 2, is the road section
between the first two loop detector locations of segment 5.
This road segment has 3 lanes, all of which are through-
lanes. The road section is approximately 500 meters long,
and also quite straight. By choosing this second road section
which does not contain entry- or exit lanes, a representative
combination of types of road sections and accordingly, types
of lane changes made is reached in combination with the first
chosen road segment

IV. Data

This study is executed on data deduced from the Dutch
highway A27, between Utrecht Noord and knp Eemnes,
for which both Floating Car Data from Flitsmeister, and
individual passage loop detector data are available. Within
the research area trajectories of vehicles driving in Northward
direction in the period between 26/06/2021 and 04/07/2021
are considered, with the exception of 30/06/2021, which was
excluded due to abnormalities in that day’s data set. The data
is first analysed as indicated in sections A.and B., after which
data sets are prepared for the different lane change recognition
methods as explained in sections C.and D.. Lastly, an analysis is
done on the comparison of data from vehicles making a lane
change, and those not making a lane change in section E..

A. Floating Car Data
The Floating Car Data comprises of trajectories of vehicles

using the Flitsmeister navigation application. GPS location of
the users is registered at a 1HZ frequency, as is the speed of the
vehicle at each time step. All data is linked to an anonymous
unique session ID per vehicle, of which around 45000 are
registered per day.
Figure 2 depicts a 3-lane road from which the distribution of
trajectories over the road can be seen. The horizontal axis
represents the distance in meters from the centerline of the
road, and the vertical axis indicates the position in meters in
the spatial reference system. It can be seen that trajectories
sway over and outside of the road as well as having oscillations
between the lanes which are not realistic in human driving
behaviour, thereby illustrating examples of GPS error found
in Floating Car Data.



Fig. 2. Random trajectories on road section

In figure 3 additional analyses of the distribution of data
points throughout the study area is demonstrated, from which
it is concluded that a considerable number of data points are
located outside of the driving lanes. The high number of
data points located outside of the road in segment 9 is likely
caused by the curvation of this road section, which is a known
reason for increased GPS error. Segment 7 is excluded in this
analysis due to high processing time caused by the length of
said segment.

Fig. 3. Percentage of data points per lane

From the Floating Car Data it is possible to deduce
additional trajectory features not directly found in the raw
data. The following features are, for each data point, deduced
from the FCD:

• X-distance: The lateral distance between the trajectory
point and the centerline of the corresponding road
segment.

• Y-distance: The distance between the trajectory point and
the beginning of the road section. This corresponds to the
distance since the last passed loop detector.

• Speed. This is the speed of the vehicle at every point.
• Heading: The direction in which the vehicle is driving

at every time step, expresses in degrees. This is
deducted from the difference in location between every
consecutive data point.

• Heading difference to previous point: The difference in
heading of the vehicle compared to its heading at the
previous data point, expressed in degrees.

• Heading difference to the centerline: The difference in

heading of the vehicle, for each data point, compared to
the direction of infrastructure.

B. Loop detector data
Loop detectors are placed on a large number of highways

throughout The Netherlands in order to measure traffic and
traffic flow characteristics. With a passage over a loop, it is
known what the speed, vehicle size, and time of passage over
the specific loop is. The study area of this research consists of
33 loop detector locations, an overview of which is given in
table I below.

Segment 1 2 3 4 5 6 7 8 9 10 11 12
Nr of loop detector locations 2 0 1 2 3 0 15 0 3 0 5 2

TABLE I
Number of loop detector locations per segment

Due to human error a number of loop detector locations are
not considered in the study. The impact of this is however not
considered significant.

C. Data set Rule-based method
The data used to analyse lane changes through the rule-

based method as described in section III.-C., consists of the
heading difference between the vehicles and the centerline for
all data points of trajectories remaining after filtering within
locations 1 and 2.

D. Data set Random Forest Model
The implementation of a Random Forest Algorithm

requires a data set with equal numbers of features for each
trajectory. Considering vehicles drive at different speeds,
while all generating data with a 1HZ frequency, each trajectory
produces a different number of data points within a same road
section.
To create the same number of data points for all trajectories
within a segment, data points are added to the trajectories
with lower numbers of data points than the trajectory with the
highest number of points. Each of these added points has a
value which is the average of the value of the point before and
after it for that feature. The additional points are spaced out as
equally as possible throughout the trajectory.
A second preparation required is the balancing of the lane
change types in the data. This is necessary to ensure the model
is trained according to patterns found in the data, rather than
learning a higher chance of occurrence for a lane change type
present more often within the data. The balancing is done by
randomly removing a number of trajectories from the majority
of the lane change type(s), ensuring all lane change types
are represented an equal number of times within the data set.
Through the balancing of the data four different data sets are
created, one for each labelling type (Yes/No, Left/No/Right,
Left/No and Right, Right/No and Left).

E. Analysis Lane Changes vs. No Lane Changes
Features of vehicles making lane changes can be compared

to those not making lane changes to get a picture of any
average differences in values between the manoeuvres. In
order to analyse whether on average, differences can be seen
between trajectories of vehicles making a lane change, and
those not doing so, the normalised values of the absolute



values of all features are compared. This ensures the direction
of the movement is not considered, but only the fact that a
difference occurs. In a road segment, for every feature, the
sum of the normalised values of each trajectory are taken,
after which the mean and standard deviation of these values is
calculated for the trajectories making a lane change and those
not doing so. The results of this comparison can be found in
table II.

Mean of sum
Yes LC

Mean of sum
No LC

Std of sum
Yes LC

Std of sum
No LC

Speed 12.00 12.00 1.6957 1.6671
Heading 7.671 7.660 0.1936 0.1823
Heading difference
to Centerline 0.684 0.681 0.3161 0.3163

Heading difference from
previous data point 0.284 0.278 0.3628 0.3531

Timestamp 11.542 11.517 6.7348 6.7122
Y-distance 10.847 10.823 2.467 2.464
X-distance 3.159 3.150 1.977 1.985

TABLE II
Mean and standard deviation of the sum of the absolute
values of the data, for lane changes and no lane changes

To see whether the small differences in values found
between the trajectories making a lane change and those not
doing so are significant, a t-test is executed, of which the
results can be found in table III. Considering the p-values are
(far) above 0.05, no significant difference is found in values
between vehicles making a lane change and those not making
such manoeuvres for any feature.

!

t-value p-value
Speed -0.033 0.974
Heading 0.428 0.668
Heading difference
to Centerline 0.753 0.451

Heading difference from
previous data point 1.139 0.255

Timestamp 0.281 0.779
Y-distance 0.748 0.455
X-distance 0.346 0.730

TABLE III
Results of t-test

V. Results

A. Rule-based method
Lane changes are recognised from vehicle’s delta headings

according to the definition indicated before. In its original
study a recognition rate of 50-70% was reached, depending on
the road section [5]. When applied to our study, a recognition
rate of 53.10% and 51.98% was reached for location 1, and 2
respectively. However, as can be seen from the distributions
in tables IV and V below, this method detects only around 7
to 8% of lane changes found by the trajectory reconstruction
method using the loop detector matching.

Yes lane change
Loop detector method 792 15597

No lane change
Loop detector method 648 16367

Yes lane change
Delta heading method

No lane change
Delta heading method

TABLE IV
Overview recognized lane changes according to different

methods for location 1

Yes lane change
Loop detector method 625 15495

No lane change
Loop detector method 624 18127

Yes lane change
Delta heading method

No lane change
Delta heading method

TABLE V
Overview recognized lane changes according to different

methods for location 2

By comparison to the number of lane changes expected
in these two road sections according to literature [1], it is
found that only a small percentage of the lane changes is
found by the rule-based method. The loop detector matching
method however finds many more lane changes than expected,
as can be seen in table VI. Comparing the number of lane
changes recognised to the left and the right, it is found that
approximately the same percentage is found by the rule-based
method (4.1% to the left, 5.83 % to the right, and 3.4 % to
the left, 4.79 % to the right for location 1 and 2 respectively),
thereby indicating the cause of the lower recognition rate is
not related to the direction of the lane change.

Location 1 Location 2
Expected nr of Lane Changes
from Literature 5344 - 6680 6974 - 8717

Percentage Lane Changes
found by Rule-based method 21.6 - 26.9 % 14.3 - 17.9 %

Percentage Lane Changes
found by Loop detector matching 245.3 - 307.7 % 184.9 - 231.1 %

TABLE VI
Number of expected and found lane changes

When applying the same analysis to the adapted definition,
which considers the delta headings at an extra time step,
similar results are found, indicating it is not a more suitable
method than the original rule-based method.

B. Random Forest
Four models are trained for lane change recognition by use

of the Random Forest algorithm, each of which uses different
lane change labels.

Model 1 (Lane change Yes/No):
The first model is trained on the labelling of lane changes
Yes/No, for which the following hyperparameter values were
found to be most suitable:

• n_estimators: 670
• min_samples_split: 10
• min_samples_leaf: 8
• max_features: ’auto’
• max_depth: 16
• bootstrap: ’True’



The resulting confusion matrix of the model is seen in table
VII.

Predicted label No LC Predicted label Yes LC
True label No LC 1797 1078
True label Yes LC 1187 1688

TABLE VII
Confusion matrix model 1

The trained model was additionally run on the validation
data set, which led to the following result as shown in table
VIII.

Predicted label No LC Predicted label Yes LC
True label No LC 2102 1016
True label Yes LC 1216 1568

TABLE VIII
Confusion matrix validation model 1

Model 2 (Lane change Left/No/Right):
From the random search executed for model 2, the same best
hyperparameters were found as for model 1. The following
results were found from the testing and validation model as
found in tables IX and X respectively.

Predicted label
LC Left

Predicted label
No LC

Predicted label
LC Right

True label LC Left 632 336 270
True label No LC 359 520 359
True label LC Right 294 282 662

TABLE IX
Confusion matrix model 2

Predicted label
LC Left

Predicted label
No LC

Predicted label
LC Right

True label LC Left 777 473 356
True label No LC 748 1502 868
True label LC Right 204 313 661

TABLE X
Confusion matrix validation model 2

Model 3 (Lane changes Left):
For the third model again the same most suitable
hyperparameter values were found as in models 1 and
2. The testing and validation results are found to be the
following as seen in XI and XII:

Predicted label
LC Left

Predicted label
LC Right + No LC

True label LC Left 1038 599
True label LC Right + No LC 603 1053

TABLE XI
Confusion matrix model 3

Predicted label
LC Left

Predicted label
LC Right + No LC

True label LC Left 972 634
True label LC Right + No LC 1437 2859

TABLE XII
Confusion matrix validation model 3

Model 4 (Lane changes Right):
The last model was trained with different hyperparameters as
found to be most suitable for the Random Forest algorithm,

namely:
• n_estimators: 230
• min_samples_split: 5
• min_samples_leaf: 4
• max_features: ’sqrt’
• max_depth: 5
• bootstrap: ’False’

From which the distribution of predicted to true labels as
indicated in XIII and XIV is found.

Predicted label
LC Right

Predicted label
LC Left + No LC

True label LC Right 749 489
True label LC Left + No LC 390 848

TABLE XIII
Confusion matrix model 4

Predicted label
LC Right

Predicted label
LC Left + No LC

True label LC Right 730 448
True label LC Left + No LC 1501 3223

TABLE XIV
Confusion matrix validation model 4

Summary of model results:
An overview of the models and their accompanying testing
and validation accuracies can be found in Table XV below.

Model Labels Testing Accuracy Validation Accuracy
1 Yes / No 60.61 % 62.02 %
2 Left / No / Right 48.84 % 50.89 %
3 Left / No + Right 63.98 % 61.10 %
4 Right / No + Left 64.50 % 60.26 %

TABLE XV
Summary of model performance

In order to take into account the imbalance in size of the
lane change categories in the validation set, the balanced
accuracy is taken for the validation sets for all the models.
From the results it can be seen that the confusion matrices are
rather balanced in all four models, indicating no category is
strongly over- or under- predicted. When comparing the model
results, it should be considered that models 1, 3, and 4 are
binary classification models, whereas model 2 is a multi-class
classification model.
Random Forest models offer insight in which features are
found to be most important in the classification process. In this
study the most important features were found to be X-distance,
and Heading, in which X-distance weighed more heavily in
lane changes to the left, and Heading in lane changes to the
right.

VI. Discussion & Conclusion

Considering the recognition rate of 50-70% for the rule
based lane-change method in the original study, the findings
in our study are unexpectedly lower. From the finding that
heading is an important feature for lane changes to the right,
and the rule-based method considers only delta heading, a
potential explanation would be that lane changes to the left are
not covered by this method. This has however been proven
untrue since an almost equal percentage of lane changes to



either side was found in the rule-based method.

The four models indicate the level at which lane changes
can be recognised according to different types of labelling.
The three binary-classification models (models 1, 3 and 4)
result in higher recognition rates compared to the multi-class
classification model (model 2). From a statistical point of
view, this is an expected finding, considering the fact that
more categories also come with more possibilities of false
positives and negatives. From a model point of view, this
finding is however remarkable. The fact that models 3 and
4, which look into lane changes in a single direction, score
remarkably higher than model 2, raises questions about the
difference in lane changing patterns per direction. If a clear
difference can be found between lane changes in a specific
direction as seen in models 3 and 4, it would be expected that
this difference can also be recognised when differentiating
between the three directions in one go. Especially taking into
account that the size of each category in model 2 is larger than
those in model 3, and equal to those in model 4, indicating that
reduced training size is not the cause of the lower accuracy.

Deciding the most suitable lane change recognition model
is dependent on the exact application of the lane change
recognition. For purposes in which it is crucial that a
lane change is accurately indicated (for example for safety
reasons), a model with high precision score is needed. On the
other hand, in cases where as many drivers as possible making
a certain lane change need to be reached, in which case it is not
critical if a few drivers are wrongly contacted, a model with a
high recall score is more suitable. In case both are equally
important, a model with high f1-score and accuracy should be
used. Furthermore, depending on whether information on the
direction of a lane change is required, or whether it is sufficient
to know whether or not a lane change is made, some models
can be more suitable than others.

Considering the fact that both the rule-based method and
this study find a maximum recognition of lane changes of
around 50% to 70%, it seems that with the current level of
GPS accuracy, and the corresponding precision of Floating Car
Data, a higher level of lane change recognition might not be
achievable from only Floating Car Data, at least by means of
this method. By improvement of the GPS receivers in mobile
devices and navigation systems, a higher accuracy might be
attainable in the future.

In our study, due to limited resources, a random search was
executed for hyperparameter tuning. This however strongly
limits the number of hyperparameters considered as compared
to a grid search. In future research it would be interesting to
implement a grid search for this study, which could increase
the accuracy of the models.

Another addition which would strengthen the models is by
applying this research to a different road section, and merging
the data of several road sections together. This ensures
the models are trained for more types of road sections, and
therefore are more widely implementable.

Finally, it would be valuable to add a third data source such
as a camera to a same type of research. This third source would
offer an additional manner in which to deduct the ground truth,

thereby increasing the reliability of the lane change labelling,
and thereby leading to more reliable results.
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A.2. Percentage of data points per lane

Road Segment Outside road on left 1 (left lane) 2 3 4 5 Outside road on right
1 6.6 % 23.5% 40.3 % 25.3% 4.3%
2 5.4% 21.8% 38% 26% 6.7% 1.8% 0.3%
3 4.9% 15.6% 34.6% 28.9% 11.8% 3.9%
4 7% 21.9% 35.2% 23.4% 6.8% 4.7% 0.9%
5 7.4% 22.4% 37.2% 23.9% 9.1%
6 3.7% 21.7% 40.9% 27.6% 4.9% 1.1%
8 5% 20.7% 33.9% 24% 13.8% 2.5%
9 14.8% 20.8% 32.4% 18.2% 13.8%
10 9.8% 25.1% 32.9% 22.7% 7.2% 2%
11 5.8% 24% 36.1% 26% 8.1%
12 12.2% 22.6% 26.6% 22.6% 13.4% 2.6%

Table A.1: Percentage of data points per lane
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A.3. Data Analysis Loop Detectors

Number of passages registered
26/06/2021 Lane

Loop detector location 1 2 3 4 5
1 3755 15300 22601 34
2 4212 15903 22159 5
3 4079 15645 21950 2
4 3659 13961 17467 4338 3249
5 3447 13301 18286 1511 5982
6 3684 13679 18299
7 3743 13727 18150
8 3601 13366 17739
9 3914 14529 19556
10 3950 14302 19015
11 4003 14735 19266
12 4213 14792 19018
13 4383 14872 18720
14 4410 14887 18485
15 4371 14830 18800
16 4316 14598 18346
17 4491 15278 18199
18 5041 15717 17344
19 5275 16372 16279
20 5308 15584 16245
21 4800 15668 17479
22 4882 15192 17861
23 5099 14722 18166
24 3195 11779 15697
25 2917 11634 16579
26 2928 12190 16072
27 4585 16185 21227
28 4987 16632 20391
29 4776 16566 19615
30 4989 18628 18631
31 5455 19339 17152
32 5289 16441 9198 10937
33 5134 16078 8815 11596

Table A.2: Number of passages registered per loop detector 26/06/2021
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Number of passages registered
27/06/2021 Lane

Loop detector location 1 2 3 4 5
1 2683 12167 19393 32
2 3082 12509 19111 3
3 2969 12267 19021 1
4 2600 11130 15214 3613 2492
5 2505 10581 15900 1080 4907
6 2689 10906 15969
7 2761 10902 15823
8 2580 10644 15483
9 2831 11402 16995
10 2764 11279 16552
11 2807 11573 16862
12 3021 11721 16503
13 3058 11719 16392
14 3165 11749 16102
15 3027 11797 16393
16 2918 11396 16314
17 2826 11772 16571
18 3129 11843 16255
19 2890 11522 16752
20 2845 11007 16683
21 2393 10849 18003
22 2200 10611 18418
23 2120 10412 18689
24 1719 8855 14285
25 1720 8691 14884
26 1724 9067 14499
27 3014 12286 18266
28 3150 12592 17829
29 3078 12818 16798
30 3379 14840 15578
31 3894 15501 14109
32 3781 13482 7367 8836
33 3835 13086 7137 9218

Table A.3: Number of passages registered per loop detector 27/06/2021
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Number of passages registered
28/06/2021 Lane

Loop detector location 1 2 3 4 5
1 5952 18982 22810 41
2 6606 19613 22378 6
3 6415 19026 22429 3
4 5708 16803 17322 4860 4585
5 5317 16136 18265 1793 7441
6 5561 16864 17935
7 5723 16787 17823
8 5546 16375 17450
9 6039 17757 19224
10 6090 17537 18649
11 6313 17768 18936
12 6457 17922 18656
13 6536 18144 18326
14 6672 18091 18078
15 6683 18047 18239
16 6550 17629 18085
17 6477 17947 18559
18 6685 17954 18374
19 6286 17733 18933
20 5932 17102 19036
21 5290 16866 20791
22 4928 16475 21605
23 4557 16009 22446
24 3914 13779 16200
25 3930 13587 16866
26 4012 14397 16048
27 6500 19544 21985
28 7106 20283 20628
29 7004 20083 19849
30 7350 21087 19922
31 7871 20241 19878
32 7015 16755 12071 12028
33 6893 16155 11826 12758

Table A.4: Number of passages registered per loop detector 28/06/2021
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Number of passages registered
29/06/2021 Lane

Loop detector location 1 2 3 4 5
1 6587 19790 23038 46
2 7367 20403 22577 2
3 7030 19781 22645 5
4 6169 17600 17243 5002 4890
5 5804 16846 18180 1892 7920
6 6162 17391 17991
7 6146 17415 17915
8 6028 17167 17371
9 6582 18449 19303
10 6634 18181 18792
11 6937 18481 19004
12 7038 18650 18721
13 7175 18685 18547
14 7199 18775 18269
15 7175 18789 18388
16 7103 18301 18216
17 7047 18712 18565
18 7361 18555 18454
19 6697 18431 19176
20 6333 17685 19428
21 5555 17592 21147
22 5291 17281 21818
23 4953 16775 22692
24 4222 14381 16062
25 4187 14006 16923
26 4268 14920 16052
27 6950 20191 22458
28 7547 20976 21057
29 7444 20640 20342
30 7873 21660 20429
31 8230 20484 20843
32 7319 16844 12634 12629
33 7046 16233 12456 13438

Table A.5: Number of passages registered per loop detector 29/06/2021
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Number of passages registered
30/06/2021 Lane

Loop detector location 1 2 3 4 5
1 6947 20895 23617 50
2 7831 21606 23026 6
3 7602 20864 23066 7
4 6599 18582 17644 5237 4962
5 6277 17801 18489 2040 8055
6 6571 18340 18280
7 6444 18463 18331
8 6342 18037 17919
9 7140 19455 19471
10 7189 19123 18950
11 7483 19429 19187
12 7519 19534 19040
13 7562 19691 18831
14 7734 19694 18492
15 7748 19683 18629
16 7665 19245 18423
17 7608 19683 18773
18 7867 19752 18498
19 7302 19416 19275
20 6777 18780 19535
21 6103 18392 21539
22 5676 17985 22423
23 5315 17584 23254
24 4586 15093 16583
25 4530 14835 17360
26 4658 15604 16604
27 7916 21646 21426
28 8744 21921 20335
29 8781 21315 19817
30 8994 22174 20122
31 9181 21263 20627
32 7886 17040 12687 13218
33 8018 16147 12329 14015

Table A.6: Number of passages registered per loop detector 30/06/2021
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Number of passages registered
01/07/2021 Lane

Loop detector location 1 2 3 4 5
1 7789 21780 24494 50
2 8678 22507 23808 5
3 8368 21964 23832 3
4 7306 19453 18311 5407 5241
5 6995 18743 19136 2143 8308
6 7294 19258 19042
7 7267 19281 19057
8 7073 18812 18680
9 7652 20464 20545
10 7908 20180 19740
11 8009 20591 20146
12 8081 20617 19964
13 8220 20694 19750
14 8399 20740 19358
15 8513 20609 19527
16 8382 20134 19334
17 8286 20638 19708
18 8545 20698 19462
19 7926 20432 20215
20 7499 19602 20520
21 6729 19525 22383
22 6228 19151 23268
23 5733 18606 24396
24 4949 15960 17105
25 4893 15650 17982
26 5052 16499 17040
27 8156 21992 23686
28 8710 22844 22327
29 8546 22437 21609
30 8855 23473 21836
31 9360 22061 22292
32 8125 18178 13703 13660
33 7975 17358 13480 14497

Table A.7: Number of passages registered per loop detector 01/07/2021
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Number of passages registered
02/07/2021 Lane

Loop detector location 1 2 3 4 5
1 9036 23132 25405 46
2 10067 23837 24707 4
3 9739 23408 24583 9
4 8759 21150 18814 5471 5073
5 8481 20339 19805 2154 8126
6 9079 20927 19436
7 9131 21079 19191
8 8969 20397 18840
9 9650 21974 20901
10 9706 21750 20128
11 9982 22217 20408
12 10248 22101 20217
13 10158 22169 20202
14 10453 22201 19682
15 10399 22232 19879
16 10283 21738 19598
17 10251 22125 20124
18 10479 22103 19936
19 9914 21881 20649
20 9398 21191 20851
21 8522 21158 22807
22 7964 20850 23752
23 7514 20497 24554
24 6755 17987 17841
25 6816 17768 18618
26 7002 18622 17622
27 10033 24165 23847
28 10748 24670 22663
29 10611 24121 21945
30 11124 25281 21934
31 11570 23899 22552
32 10481 19636 13604 14169
33 10214 18963 13301 15034

Table A.8: Number of passages registered per loop detector 02/07/2021
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Number of passages registered
03/07/2021 Lane

Loop detector location 1 2 3 4 5
1 3570 14803 21927 34
2 4111 15443 21457 1
3 4048 14938 21439 2
4 3503 13478 17020 4360 3065
5 3298 12795 17816 1491 5882
6 3546 13068 17812
7 3457 13234 17746
8 3284 12949 17327
9 3567 13895 19056
10 3615 13582 18613
11 3738 13929 18897
12 3844 14151 18560
13 3858 14296 18365
14 3978 14341 18022
15 4025 14288 18194
16 3874 13913 18016
17 3825 14212 18436
18 4130 14454 17962
19 3894 14091 18470
20 3617 13492 18590
21 3108 13245 20112
22 2899 13106 20496
23 2766 12794 20964
24 2266 10920 16086
25 2337 10752 16626
26 2391 11240 16135
27 4017 15232 20986
28 4314 15832 20116
29 4202 15909 19153
30 4587 17870 18018
31 5233 18398 16560
32 4841 15907 8542 10814
33 4883 15370 8305 11334

Table A.9: Number of passages registered per loop detector 03/07/2021
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Number of passages registered
04/07/2021 Lane

Loop detector location 1 2 3 4 5
1 2808 12429 19601 29
2 3163 12834 19272 1
3 3044 12622 19162 3
4 2713 11441 15084 3491 2849
5 2580 10885 15728 1124 5148
6 2851 11068 15747
7 3286 12067 14255
8 3266 11691 13972
9 3695 12198 15316
10 3899 11816 14983
11 3974 12151 15112
12 3807 11804 15649
13 3527 11666 16008
14 3267 11811 15991
15 3209 11723 16274
16 3078 11451 16155
17 3006 11799 16398
18 3258 11907 16069
19 3001 11637 16503
20 2750 11161 16682
21 2377 10971 17859
22 2186 10730 18270
23 2072 10531 18631
24 1728 8916 14197
25 1740 8636 14778
26 1730 9124 14390
27 2987 12207 18636
28 3200 12729 17933
29 3016 12919 17043
30 3372 15029 15718
31 4013 15854 13912
32 3816 13965 7290 8661
33 3918 13519 7009 9129

Table A.10: Number of passages registered per loop detector 04/07/2021
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A.4. Final overview data before and after filtering
Before Filtering
Segment
1 2 3 4 5 6 7 8 9 10 11 12

Nr of
trajectories

26/06/2021 12587 12500 12723 12606 13236 11797 12799 11672 13970 12355 13223 12276
27/06/2021 10492 10438 10603 10527 10985 9862 10546 9705 11457 10081 10741 10021
28/06/2021 14795 14750 15000 14836 15537 13844 14800 13599 16392 14264 15154 14191
29/06/2021 15487 15408 15667 15512 16234 14281 15395 14066 17024 14804 15705 14781
01/07/2021 16712 16620 16916 16730 17494 15404 16544 15211 18233 15697 16671 15636
02/07/2021 17159 17075 17376 17214 17957 16001 17103 15734 18599 16224 17238 16178
03/07/2021 12641 12549 12769 12659 13206 11739 12575 11555 13857 12196 12994 12129
04/07/2021 10815 10753 10917 10822 11297 10100 10777 9892 11789 10455 11149 10392

Table A.11: Number of Flitsmeister trajectories per day, per segment before filtering

After Filtering
Segment
1 2 3 4 5 6 7 8 9 10 11 12

Nr of
trajectories

26/06/2021 4181 4082 4127 4172 4164 4148 4116 4063 4036 888 4111 1549
27/06/2021 3509 3410 3489 3523 3518 3489 3472 3499 3489 825 3498 1402
28/06/2021 4793 4730 4760 4797 4792 4799 4659 4735 4660 805 4683 1368
29/06/2021 4817 4739 4765 4797 4783 4810 4643 4766 4660 796 4658 1318
01/07/2021 4901 4899 4887 4905 4837 4963 4339 4923 4740 898 4589 1439
02/07/2021 5936 5828 5844 5927 5902 5943 5570 5855 5733 1070 5701 1697
03/07/2021 3985 3916 3963 3994 3973 3970 3864 3948 3938 915 3945 1532
04/07/2021 3350 3276 3335 3359 3359 3336 3293 3312 3331 802 3345 1324

Table A.12: Number of Flitsmeister trajectories per day per segment after filtering
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A.5. Formulas for creating bearing of the vehicle
The formula used to calculate the heading (bearing) of the vehicles at each data point is the following,
as suggested by Bullock, 2007, in which A and B represent two consecutive data points of the vehicle.

Δ𝐿 = 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐵 − 𝑙𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒𝐴

𝑋 = 𝑐𝑜𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐵) ∗ 𝑠𝑖𝑛(Δ𝐿)

𝑌 = 𝑐𝑜𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐴) ∗ 𝑠𝑖𝑛(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐵) − 𝑠𝑖𝑛(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐴) ∗ 𝑐𝑜𝑠(𝑙𝑎𝑡𝑖𝑡𝑢𝑑𝑒𝐵) ∗ 𝑐𝑜𝑠(Δ𝐿)

𝑏𝑒𝑎𝑟𝑖𝑛𝑔 = 𝑎𝑟𝑐𝑡𝑎𝑛2(𝑋, 𝑌)
After this, the resulting bearing is transformed from radians to degrees. Lastly, since the heading of
the last data point of each vehicle in the section is not able to be calculated according to the above
mentioned rule since there is no next data point to use in order to calculate the heading, the heading
of the final data point is set equal to the average of the headings of the previous two data points.

Next, the heading difference between two consecutive data points is computed according to the head-
ings previously calculated. This is done according to the following formula:

Δℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖 = ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖+1 − ℎ𝑒𝑎𝑑𝑖𝑛𝑔𝑖
Here again, for the last data point of each trajectory in the road section, the heading difference is taken
as the average of the previous two heading differences.

Lastly, the heading difference between the vehicle and the centerline is calculated for every data point
of the vehicle. This is done by first calculating the bearing of the centerline in a similar manner as
the heading of the vehicles was calculated, namely through the formula by Bullock, 2007. Then the
difference in heading between the vehicle and the centerline at the nearest point is calculated for every
data point of each vehicle.

A.6. Formula for Balanced Accuracy:
A.6.1. Binary Classification
Balanced accuracy is a way to calculate the accuracy from a confusion matrix in binary classification,
when the size of the two categories is largely different. It is calculated in the following way:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)/2
In which:

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠/(𝑇𝑟𝑢𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠)
and

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝑇𝑟𝑢𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠/(𝑇𝑟𝑢𝑒_𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒_𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

A.6.2. Multiclass Classification
In multiclass classification the balanced accuracy is calculated as follows for a case with four classes:

𝐵𝑎𝑙𝑎𝑛𝑐𝑒𝑑𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = (𝑅𝑒𝑐𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠_1 + 𝑅𝑒𝑐𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠_2 + 𝑅𝑒𝑐𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠_3 + 𝑅𝑒𝑐𝑎𝑙𝑙_𝑐𝑙𝑎𝑠𝑠_4)/4

In which recall is calculated the same as sensitivity for each class.
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A.7. Extraction of rule-based method from Random Forest Model
In order to evaluate the extent to which a rule can be deduced from a random forest model, an ex-
periment is conducted using the definition for lane change recognition as created by Van Ballegooijen
(2019). This rule, using the delta heading of a vehicle for a number of consecutive time steps is the
following:

(Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑎𝑛𝑑 𝑡2 < 0 𝑜𝑟 (Δℎ) 𝑎𝑡 𝑡0, 𝑡1, 𝑎𝑛𝑑 𝑡2 > 0

𝑎𝑛𝑑

𝑎𝑏𝑠(Δℎ𝑡0 + Δℎ𝑡1 + Δℎ𝑡2 + Δℎ𝑡3) >= 6

By labelling a data set of Floating Car Data according to this rule, it is then possible to train the random
forest classification model on this labelled data. Due to the researchers knowledge of the rule used in
order to label the data, it can be examined whether this rule has been found by the random forest model.

In order to do so, a set of 11 values, of which two are variables (a and d), which are altered, is manually
input (e.g. [0,0,0,a,0,d,0,0,0,0,0]). The values of the fixed numbers is either 0 or 1, and the location of
the variables within the range can alter. By changing the value of the two variables, ranges of values
are created, which sometimes do and sometimes do not fulfill the above shown lane change recognition
rule. For each range it is then found whether or not the model indicates a lane change. Figures A.1,
A.2, A.3 below depict a few examples of some ranges tested, in which a blue dot indicates the model
recognises a lane change, and a red dot indicates no lane change is recognised.

Figure A.1: Random Forest rule recognition 1
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Figure A.2: Random Forest rule recognition 2

Figure A.3: Random Forest rule recognition 3

From the analysis of when the model recognises lane changes or not, it is found that the rule as imple-
mented for the labels, is not recognised by the random forest.
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