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Abstract
We present a structural topology optimization method to tailor the hardening/softening dynamic response of nonlinear 
mechanical systems. The coefficient that controls this behavior is computed analytically using the third-order normal-form 
parametrization of the Lyapunov subcenter manifold, which eliminates the need for expensive full-order simulations and 
numerical continuation to approximate the so-called backbone curve of the system. The method further leverages the adjoint 
method for efficiently computing sensitivities of the objective function and constraints, while the explicit formulation of 
nonlinear internal elastic forces through tensor notation simplifies these evaluations. Notably, this tensorial approach is 
computationally efficient, especially when applied to a regular grid of elements. Consequently, the proposed approach offers 
a robust and efficient framework for optimizing the dynamic performance of nonlinear mechanical structures modeled with 
high-dimensional finite element models. The findings are corroborated through examples of two geometrically nonlinear 
systems, a Messerschmitt-Bölkow-Blohm (MBB) beam and a microelectro-mechanical system (MEMS) inertial resonator.

Keywords  Topology optimization · Nonlinear structural dynamics · Lyapunov subcenter manifold · Reduced order 
modeling

1  Introduction

Nowadays, there is an ever-growing number of applications 
in which nonlinearities are exploited for functional purposes 
rather than avoided. These applications include frequency 
division (Qalandar et al. 2014), vibration mitigation (Bel-
let et al. 2010), nonlinear energy sinks, and targeted energy 
transfer (Vakakis et al. 2022). Other applications can be 
found in micromechanical sensors (Zhang et al. 2002; Mar-
coni et al. 2021a).

Therefore, this increased interest in nonlinear dynamics 
has favored the development of different numerical meth-
ods in the field of reduced order models (ROM, Tiso et al. 
2021; Touzé et al. 2021) to analyze and study the nonlinear 
dynamic behavior of mechanical systems. This behavior can 
be described through the nonlinear frequency–amplitude 
relation, which can be tracked by computing the backbone 
curves (see, e.g., Breunung and Haller 2018). Usually, these 
curves are obtained using numerical continuation techniques 
with the collocation method (Dankowicz and Schilder 2013), 
the Harmonic Balance Method (HBM, Krack and Gross 
2019), or the shooting method (Kerschen et al. 2008). Alter-
natively, the conservative backbone curves can be computed 
using the reduced dynamics on Lyapunov Subcenter Mani-
folds (LSM1), which has proven to be particularly effective 
for high-dimensional mechanical systems (Jain and Haller 
2022).

However, despite all these techniques, controlling the 
nonlinear dynamic behavior of a system still remains a 
complex challenge. The main difficulty is identifying the 
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ideal set of parameters that will produce the desired fre-
quency–amplitude relation. To address this issue, various 
optimization strategies have been proposed. For example, 
Schiwietz et al. (2024, 2025) used shape optimization to 
optimize the eigenfrequencies and the modal coupling coef-
ficients of a geometrically nonlinear MEMS gyroscope, 
whereas Detroux et al. (2021) focused on tailoring backbone 
curves using nonlinear synthesis. Dou et al. (2015); Dou and 
Jensen (2015, 2016) developed methods to optimize hard-
ening behaviors in resonators and plane frame structures 
via nonlinear normal modes (NNMs, Kerschen et al. 2009; 
Haller and Ponsioen 2016) and the HBM. Incidentally, we 
notice that in all these parametric optimization methods, the 
considered structures are of low dimension, usually featuring 
2D beam elements and frame-like structures. However, com-
putational times are usually omitted, making it challenging 
to assess their efficiency and scalability.

These optimization processes are highly sensitive to 
user-defined parameters, such as the number of harmonics 
in the harmonic balance method (HBM) or the arc-length 
parameter in numerical continuation, which may require 
adjustment during iterations due to changes in system 
behavior. Additionally, intrinsic limitations of the numerical 
method, particularly in HBM sensitivity analysis, may affect 
the optimization results (Saccani et al. 2022). One way to 
mitigate this issue is by employing alternative methods for 
computing the frequency–amplitude relation.

Recently, a parametric optimization approach was 
proposed to tailor the conservative backbone curve2 of 
nonlinear mechanical systems by exploiting the reduced 
dynamics on the LSM (Pozzi et al. 2024). In that work, 
we highlighted several advantages of the LSM ’s analyticity 
in optimization, such as eliminating the need for user-
defined parameters, simulations, or ROMs. However, the 
sensitivities are still computed via direct differentiation, 
which is computationally demanding as the number of 
optimization parameters increases.

Despite these advancements in nonlinear dynamics 
optimization, the available methods in the literature 
remain applicable only to small systems due to the high 
computational costs and limited scalability. As a result, 
topology optimization techniques (Bendsøe and Sigmund 
2004), which involve a large number of design variables, 
are predominantly applied in the realm of linear structural 
dynamics (Silva et al. 2019; Li et al. 2021; Pozzi et al. 
2023b), with applications extend to mechanical resonators 
(Yang and Li 2013, 2014; Pozzi et al. 2023a; Giannini et al. 
2024), MEMS gyroscopes (Giannini et al. 2020, 2022), and 
piezoelectric energy harvesters (Townsend et al. 2019).

As previously discussed, nonlinear dynamic topology 
optimization is extremely resource-intensive. To address this 
challenge, studies such as those by Kim and Park (2010); 
Lee and Park (2015); Lu et al. (2021) have employed the 
Equivalent Static Load method (ESL, Choi and Park 2002). 
This approach converts the nonlinear dynamic problem 
into a linear static problem. Following a different approach, 
Dalklint et al. (2020) introduced a topology optimization 
method for finite-strain hyperelastic structures, incorporating 
lower bound constraints on the nonlinear eigenfrequencies. 
These eigenfrequencies are evaluated around the equilibrium 
configuration, which is determined by solving a nonlinear 
stationary problem. Similarly, Li et al. (2022) proposed an 
eigenvalue topology optimization problem with frequency-
dependent material properties.

However, despite these attempts, there are no topology 
optimization approaches that directly target the backbone 
curve of nonlinear mechanical systems.

Our contribution
As a first step to this end, we focus on the third-order 

backbone coefficient, which governs the hardening or 
softening behavior of mechanical systems. As shown in 
Pozzi et  al. (2024), the most resource-intensive part of 
this process is the sensitivity analysis. Recently, Li (2024) 
explicitly derived the sensitivities of third-order spectral 
submanifolds in mechanical systems using both the direct 
approach and the adjoint method. As pointed out by Li 
(2024), the computational performance of sensitivity 
via adjoint method highly depends on the efficiency of 
evaluating nonlinearities. Here, we follow the adjoint method 
as in Li (2024) but utilize the tensor notation (Marconi et al. 
2020) to handle nonlinear terms more efficiently. This leads 
to a more efficient sensitivity expression and enables us to 
apply standard topology optimization algorithms. We use a 
density-based approach with the solid isotropic material with 
penalization scheme (SIMP, Bendsøe and Sigmund 1999). 
Nonetheless, the sensitivity formulation is also valid for 
other topology optimization approaches, e.g., the level set 
method (Wang et al. 2003; Allaire et al. 2004), evolutionary 
structural optimization (ESO) method (Xie and Steven 
1993), and moving morphable components (MMC) method 
(Guo et al. 2014).

The remainder of the paper is organized as follows. 
In Sect.  2, we show how to compute the third-order 
backbone coefficient, denoted by � , using the normal-form 
parametrization of the Lyapunov subcenter manifold. The 
sensitivity expressions of � are derived in Sect. 3 using the 
adjoint method. In Sect. 4, we briefly discuss the topology 
optimization approach that is used to obtain the numerical 
examples in Sect. 5. Finally, we close with the conclusions 
in Sect. 6.

2  For practical applications, conservative backbone curves rigorously 
approximate the backbones for lightly damped systems.
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2 � Mechanical system

2.1 � General settings

Consider the following equation of motion for a generic 
autonomous, undamped, nonlinear mechanical system:

where x ∈ ℝ
n is the displacement vector, n is the number 

of degrees of freedom, M,K ∈ ℝ
n×n are the mass and 

linear stiffness matrices, respectively, and f (x) ∈ ℝ
n is a 

displacement-dependent nonlinear term. When considering 
geometric nonlinearities, in several cases (e.g., for 
continuum finite elements with linear elastic constitutive law 
and total Lagrangian formulation), this term can be exactly 
represented by

where f 2 and f 3 are the quadratic and cubic polynomial 
terms in the displacements, respectively, representing the 
internal nonlinear elastic forces.

The linear normal modes (LNM) of the system in Eq. (1) 
are obtained by solving the generalized eigenvalue problem

where � and � are the eigenfrequency and the eigenvector, 
respectively, associated with a given LNM, mass normalized 
as

In the absence of nonlinearities, the term f (x) vanishes, 
and the system in Eq. (1) becomes linear. In this case, it is 
well known that a subset of LNM can rigorously describe 
the dynamics of the system. Indeed, this LNM subset spans 

(1)Mẍ +Kx + f (x) = 0,

(2)f (x) = f 2(x, x) + f 3(x, x, x),

(3)
(
−�2

M +K
)
� = 0,

(4)�T
M� = 1.

an invariant subspace-a lower-dimensional space where 
any motion that starts within it remains confined to it at 
all times. Due to this invariance, LNMs provide a basis for 
modal truncation, a rigorous model order reduction method 
for linear systems. If we restrict the analysis to a single 
mode � , such a subspace takes the form of a (hyper-)plane, 
spanned by the two eigenvectors of the first-order system 
associated with that mode.

In nonlinear systems, and under certain conditions (see 
Kelley 1969), such a plane can be smoothly extended to an 
invariant manifold, which is a (hyper-)surface, filled with 
periodic orbits of the full system and tangent at the origin 
to the aforementioned plane. A schematic representation 
of these two constructs is provided in Fig. 1, where it is 
evident that the linear subspace and the manifold are almost 
indistinguishable for displacements small enough, but they 
considerably differ as we depart from the origin. In recent 
years, the theory of spectral submanifolds (SSMs) has 
emerged as a rigorous method to identify these manifolds 
for dissipative mechanical systems and utilize them for 
model order reduction of nonlinear oscillatory systems. 
In the conservative and autonomous limit, SSMs coincide 
with the so-called Lyapunov subcenter manifold (LSM ), a 
unique, analytic, two-dimensional nonlinear extension of the 
corresponding linear subspace.

As discussed in the following, the reduced dynamics on 
an LSM provides an analytic expression for the backbone 
curve of the corresponding mode. This analytic expression 
can then be used to derive explicit sensitivities for the opti-
mization problem (Pozzi et al. 2024).

2.2 � Model order reduction

We provide here a brief overview of the main steps 
in model order reduction using invariant manifolds, 
without discussing the underlying theory in detail. For a 

Fig. 1   Left: schematic represen-
tation of an invariant linear sub-
space E (yellow plane, spanned 
by the eigenvectors W

01
 and 

W
10

 ) and an invariant manifold 
tangent to it (blue surface). The 
conservative periodic orbits of 
the linear autonomous system 
lying on the linear subspace 
are drawn in red (dashed line), 
while the ones of the nonlinear 
system lying on the manifold 
are shown in green (solid line). 
Right: orbit amplitudes and 
frequencies construct the con-
servative backbone curve. The 
LNM is shown for completeness
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comprehensive explanation, refer for instance to Jain and 
Haller (2022); Thurnher et al. (2024).

Let us assume that the reduced dynamics of a particular 
mode � of the second-order system in Eq.  (1) can be 
described by M = 2 reduced coordinates, collected in 
a vector p = {p1, p2}

T  . In a linear system, this would 
correspond to the vector of modal coordinates associated 
with the same mode (in first-order form), and the linear 
reduced dynamics would write as

A similar approach can be sought for nonlinear 
systems using, among other methods, the normal-form 
parametrization. Letting R ∶ ℂ

2
→ ℂ

2 be a parametrization 
of the reduced dynamics, we can thus write:

In linear systems, one would retr ieve the full 
state of the system z = {x, ẋ}T  as z ≈ Wp , where 
W = [W01, W10] ∈ ℝ

2n×2 is a matrix collecting the two 
eigenvectors (see Fig. 1). Similarly, we can retrieve the 
full displacement of a conservative, autonomous nonlinear 
system by mapping the reduced coordinates to the LSM.

Let w ∶ ℂ
2
→ ℝ

n be a parametrization of the Lyapunov 
subcenter manifold around a (linear) master subspace E. We 
can write

being w(p) graphically represented as the blue surface in 
Fig. 1.

Finally, to numerically compute an approximation to w(p) 
and R(p) , and adopting the multi-index notation, we can 
Taylor-expand them as 

 where Rm ∈ ℂ
2 and wm ∈ ℂ

n are the reduced dynamics and 
the manifold coefficients, respectively.

Finally, substituting Eqs. () into Eq. (1), one can solve for 
the coefficients wm and Rm . The procedure to compute them 
up to the third order is detailed in Appendix A (in particular, 
see Table 6).

2.3 � Backbone curve

Transforming the reduced coordinates into polar notation 
as p = �{ei�, e−i�}T , and after some manipulation, it can be 

ṗ =

[
i𝜔 0

0 −i𝜔

]
p.

(5)ṗ = R(p).

(6)x = w(p),

(7a)R(p) ≈
∑

m∈ℕ2

Rmp
m,

(7b)w(p) ≈
∑

m∈ℕ2

wmp
m,

shown that the following nonlinear frequency–amplitude 
relation holds:

where Ω is the frequency of the response, � is the 
amplitude in the reduced space, and �m are the coefficients 
of the backbone curve that come from the normal-form 
parametrization of the Lyapunov subcenter manifold. In 
particular, if the maximum expansion order is mmax = 3 , the 
backbone curve becomes

where �3 is the third-order backbone coefficient obtained 
from the reduced coefficient Rm at order 3 (i.e., for |m|1 = 3).

In this case, the parameter �3 , hereafter renamed � 
to ease the notation, controls the hardening/softening 
behavior of the system (Fig. 2, de la Llave and Kogelbauer 
2019) and reads (Li 2024):

In the following, only the relevant steps involved in the 
adjoint sensitivity analysis are reported (refer to Appendix 
C for more details).

The third-order nonlinear force associated with the 
multi-index m = {2, 1} is

(8)Ω = � +

mmax∑

m=2

�m�
m−1,

(9)Ω = � + �3�
2,

(10)� =
1

2�
�T f 21.

Fig. 2   Examples of backbone curves (dashed lines) of the autono-
mous, conservative systems and of the corresponding frequency 
response curves (solid lines) for their non-autonomous, non-conserv-
ative counterparts, where light damping has been considered
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The vector f 21 depends on the LSM coefficients at lower 
orders w20 , w11 , w10 , and w01 . These can be computed using 
the set of equations listed below: 

 and 

 and

Remark (On generalization). The results recalled in this 
section hold for an autonomous, conservative second-order 
nonlinear system of ODEs. However, LSM (and SSM, de la 
Llave and Kogelbauer 2019) theory holds for generic first-
order nonlinear systems of ODEs, therefore extensions to 
other problems and physical domains are also possible.

3 � Adjoint sensitivity analysis

When dealing with optimization problems with a large 
number of design variables, e.g., topology optimization, the 
sensitivities are usually obtained using the adjoint method. 
For instance, provided that the mode shape � is mass 
normalized (Eq. (4), the sensitivity of the eigenfrequency � 
(Bendsøe and Sigmund 2004) is computed as

Using the same approach, the sensitivity of � is computed 
using the adjoint method. We follow the derivation in Li 
(2024) but restrict to the case of undamped system. The state 

(11)

f 21 = f 2(w20,w01) + f 2(w01,w20)

+ f 2(w11,w10) + f 2(w10,w11)

+ f 3(w10,w10,w01)

+ f 3(w10,w01,w10)

+ f 3(w01,w10,w10).

(12a)f 20 = f 2(w10,w10),

(12b)L20 = K + Λ2
20
M = K − 4�2

M,

(12c)L20w20 + f 20 = 0,

(13a)f 11 = f 2(w10,w01) + f 2(w01,w10),

(13b)L11 = K + Λ2
11
M = K,

(13c)L11w11 + f 11 = 0,

(14)w10 = w01 = �.

(15)d�

d�
=

�T
(

�K

��
− �2 �M

��

)
�

2�
.

variables of this problem are � , � , w20 , and w11 . Each of 
them is associated with a state function (Eqs. (3), (4), (12), 
and (13)) and with an adjoint variable ( �0 , �1 , �20 , and �11 ). 
Using this terms, the Lagrangian function L is defined as 
follows:

The adjoint variables are computed by solving the adjoint 
equations, which are obtained by differentiating L with 
respect to the state variables:

Equations (19) and (20) are solved together by creating the 
system

where the terms in the right-hand side are defined as 

 Finally, the sensitivity of � is equal to the partial derivative 
of L with respect to the design variables �:

(16)

L = � + �T
0
(K − �2

M)�

+ �1(�
T
M� − 1)

+ �T
20
(L20w20 + f 20)

+ �T
11
(L11w11 + f 11).

(17)
�L

�w20

=
��

�w20

+ �20L20 = 0
T

(18)
�L

�w11

=
��

�w11

+ �11L11 = 0
T

(19)

�L

��
=

��

��
+ �T

0
(K − �2

M)

+ 2�1�
T
M + �T

20

�f 20

��

+ �T
11

�f 11

��
= 0

T

(20)
�L

��
=

��

��
− 2��T

0
M�

− 8��T
20
Mw20 = 0.

(21)
[
K − �2M 2M�

2�TM 0

] [
�0

�1

]
=

[
b�
b�

]
,

(22a)bT
�
= −

��

��
− �T

20

�f 20

��
− �T

11

�f 11

��

(22b)b� =
1

�

(
��

��
− 8��T

20
Mw20

)
.
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where the partial derivatives of the matrices and vectors 
K , M , and f  depend on the formulation of the mechanical 
system under consideration. Notice that ��∕�� = 0 . This 
formula is consistent with equation (111) of Li (2024) when 
damping coefficients � and � in (111) are set to be zero.

All the details on the partial derivatives are given in 
Appendix C.

The sensitivity expression in Eq. (23) is validated against 
finite differences perturbing 50 randomly selected elements 
over the grid used in Sect. 5.1, with different steps ��:

The small magnitude of the relative error (Fig. 3) confirms 
the validity of the adjoint method implementation.

4 � Topology optimization algorithm

In this work, the density-based topology optimization approach 
is used with the solid isotropic material with penalization 
(SIMP, Bendsøe and Sigmund 1999) interpolation scheme. 
As mentioned in the introduction, any topology optimization 
method can be chosen, and the SIMP choice is dictated only 

(23)

d�

d�
=

�L

��

=
��

��
+ �T

0

(
�K

��
− �2 �M

��

)
�

+ �1�
T �M

��
�

+ �T
20

(
�L20

��
w20 +

�f 20

��

)

+ �T
11

(
�L11

��
w11 +

�f 11

��

)
,

(24)
d�(�)

d�
≈

�(�) − �(� − ��)

��
.

by the ease of implementation in YetAnotherFEcode (Jain 
et al. 2022). In any case, according to the numerical tests that 
will be discussed in Sect. 5, topology optimization routines 
account only for approximately the 4% of the whole iteration 
computational time. The design domain is discretized using a 
structured grid made of bilinear squared elements, each one is 
characterized by density � (Fig. 4).

To obtain a well-posed optimization problem, to avoid mesh 
dependent solutions, and to prevent gray transition regions, the 
regularization filter described in Wang et al. (2011) is used:

where 𝜇̃e is the filtered density of the element e, Ne is a set 
that contains the indices of the elements that lay within a 
circle of radius R around element e, and wj,e is a weight 
defined as

where xe and xj are the coordinates of the centroids of 
elements e and j. In this work, R = 4 is used.

The filtered densities are then projected through the 
projection threshold presented in Wang et al. (2011):

where 𝜇̄e is the projected density of element e, and � and � 
are projection parameters. In this work, � = 10 and � = 0.5 
are selected.

Finally, the SIMP scheme is used to obtain the physical 
densities 𝜇̂ from the projected ones 𝜇̄:

where p is the penalization power, and 𝜇̂0 is an arbitrary small 
density of the void element, used to prevent singularities in 
the numerical method. To ensure a 0/1 design, 𝜇̂0 = 10−6 is 

(25)𝜇̃e =

∑
j∈Ne

wj,e𝜇j
∑

j∈Ne
wj,e

,

(26)wj,e = R − |xj − xe|,

(27)𝜇̄e =
tanh (𝛽𝜂) + tanh (𝛽(𝜇̃e − 𝜂))

tanh (𝛽𝜂) + tanh (𝛽(1 − 𝜂))
,

(28)𝜇̂e = 𝜇̂0 + (1 − 𝜇̂0)𝜇̄
p
e
,

Fig. 3   Validation of the sensitivity of � (Eq. (23)) using finite differ-
ences Fig. 4   Example of structure discretization using element densities
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used and p is gradually increased during the optimization 
starting from 1.

The physical densities 𝜇̂ are then used to interpolate the 
material properties: 

 where Nel is the total number of elements, F2 ∈ ℝ
n×n×n 

and F3 ∈ ℝ
n×n×n×n are the quadratic and cubic stiffness 

tensors, and where we use the subscript e to denote the same 
entities at element level. The operator 

⋃
 represents the finite 

element assembly across all the elements of the grid. Since 
a structured grid is used, the element matrices and tensors 
are the same for all the elements. Therefore, they can be 
computed only once and for all, considerably alleviating the 
total computational cost.

Remark (Nonintrusive implementation). The presented 
approach employs tensors that are not commonly available 
in standard FE codes. However, non-intrusive techniques can 
be used to evaluate nonlinear forces, as demonstrated by Li 
et al. (2025). While this circumvents the need for tensors, 
it comes at the cost of losing the previously mentioned 
advantages. Specifically, in this case, the regularity of the 
mesh cannot be exploited, as each term would depend on the 
displacement vector x , requiring evaluations to be carried 
out for every individual element over the entire mesh.

To compute adjoint sensitivities (Eqs. (15) and (23)), 
partial derivatives of M , K , F2 , and F3 are required with 
respect to � . This partial derivatives involve differentiating 
Eqs. (25), (27), and (28). The detailed expressions for these 
derivatives are provided in Appendix D.

5 � Numerical examples

In this section, numerical examples are presented to show 
the validity of the adjoint sensitivity formulation. In all the 
examples, the 2-dimensional design domain is discretized 
using a structured grid made of 4-node, square elements 
with bilinear shape functions. The material considered is 

(29a)M =

Nel⋃

e=1

𝜇̂eMe,

(29b)K =

Nel⋃

e=1

𝜇̂eKe,

(29c)F2 =

Nel⋃

e=1

𝜇̂eF2e,

(29d)F3 =

Nel⋃

e=1

𝜇̂eF3e,

polysilicon (Acar and Shkel 2009), which is characterized 
by density 2330 kg∕m3 , Young’s modulus 148GPa , and 
Poisson’s coefficient 0.23. The plane stress approximation 
is used, with a thickness of 24 μm.

During the optimization, the modal assurance criterion 
(MAC, Kim and Kim 2000) is used to track the targeted 
mode, thus allowing to deal with mode switching and to 
neglect artificial modes that may arise (Pozzi et al. 2023a).

In particular, the MAC value is a measure of the similarity 
of two mode shapes:

At each iteration, the MAC is used to compare a set of 
modes with the shape of the target one. This target shape is 
either known a priori or selected at the first iteration. The 
mode shape with the highest MAC value is the target one.

The optimization problem is implemented in MATLAB 
R2023b using YetAnotherFEcode (Jain et al. 2022) and 
solved with the Method of Moving Asymptotes (MMA, 
Svanberg 1987).

The most expensive part of the optimization loop is the 
evaluation of � and its sensitivity, accounting for around 
96% of the total iteration time. Table 1 summarizes these 
computational times, measured on a Windows laptop with an 
Intel Core i7-1255U CPU @ 1.70 GHz and 16 GB of RAM 
@ 3200 MT/s, using different number of elements.

For each example, the optimal layout, the third-order 
backbone curve in the reduced space (Eq. (8)), and the third-
order backbone curve in the physical space are shown. In 
particular, the latter is computed on the optimal layout using 
the SSMTool (Jain et al. 2023) at O(3) and O(7) expansion 
orders.

Remark (ROM accuracy). The presented optimization 
scheme focuses on � , the lowest order nonlinearity coefficient 
appearing in the backbone curve expression of Eq. (8). As 
such, we can only guarantee that for a small enough displace-
ment amplitude the dynamic behavior of the system will be 
of the hardening or softening type, quantitatively determined 
by the target value of � . For high enough amplitudes, the 

(30)MACij =
|�T

i
�j|2

(�T
i
�i)(�

T
j
�j)

.

Table 1   Computational times 
for the evaluation of � and 
its sensitivity, measured on 
a Windows laptop with an 
Intel Core i7-1255U CPU @ 
1.70 GHz and 16 GB of RAM 
@ 3200 MT/s. These times 
also include the assembly 
of matrices and tensors, 
accounting for approximately 
half of the reported 
computational time

Grid Elements Time

100 × 20 2000 4.05
100 × 50 5000 10.29
100 × 100 10,000 20.29
200 × 100 20,000 41.51
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third-order approximation is expected to become less accurate, 
as higher order terms in Eq. (8) may be required to describe 
the dynamics of the system.

5.1 � MBB beam

The first example is the Messerschmitt-Bölkow-Blohm (MBB) 
beam with a fixed region ( 20% of the total beam length) in 
the middle that acts like a proof mass. Thanks to design 
symmetries, only the left half of the beam is modeled (Fig. 5). 
The design domain ( 500 μm × 100 μm ) is discretized using 
a 100 × 20 grid. A constraint on the maximum area fraction 
Amax = 50% is used to limit the material usage.

Using these same settings and initial conditions, we set up 
3 frequency maximization problems applying different con-
straints. In all cases, the target frequency � corresponds to the 
mode shape featuring a vertical oscillation of the proof mass.

The total number of iterations, along with the computational 
times, for the three examples are reported in Table 3.

MBB—Linear Optimization
First, the following classic frequency maximization problem 
is solved, with no constraints on �:

The optimal layout (left column of Fig. 6) is characterized 
by a positive � , as indicated in Table 2. A positive � cor-
responds to a material configuration that exhibits hardening 
behavior, where the structure’s dynamic stiffness increases 
with increasing deformation.

MBB—softening optimization
A softening behavior can be obtained including a negative 
upper bound on the value of � . To this end, the optimization 
problem is recast as

(31)
max
�

�

s.t. A ≤ Amax.

(32)

max
�

�

s.t. � ≤ �max

A ≤ Amax,

where a �max = −10−3 is used, reasonably selected by com-
parison with the outcome value of � from the previous linear 
optimization.

The result (middle column of Fig. 6) is characterized by 
a negative value of � , as indicated in Table 2, leading to the 
desired softening behavior. A negative � implies that the 
structure undergoes a reduction in stiffness for increasing 
oscillation amplitudes. Interestingly, in this case, the 
optimization process converged to an asymmetric layout 
about the horizontal axis, exhibiting behavior similar to 
that of curved beams or arches (Marconi et al. 2021b).

MBB—hardening optimization
We now add a positive lower bound to the coefficient � . 
The aim here is to control the hardening behavior of the 
structure. The optimization problem becomes

where �min = 10−3 is selected.
The optimal solution is presented in the right column of 

Fig. 6. This structure exhibits a positive � , indicating the 
desired hardening behavior. In particular, the value of � is 
an order of magnitude larger compared to the solution of 
Problem (31), showing a significantly enhanced stiffness 
response under deformation (Table 3).

5.2 � Single mass MEMS resonator

The second example is a single mass MEMS resona-
tor for high-frequency applications. The design domain 
( 1000 μm × 500 μm ) is discretized using a 200 × 100 grid. 
Problem settings and boundary conditions are described 
in Fig. 7. The black region represents the proof mass that 
remains constant for the entire optimization. Fixed bound-
ary conditions are applied to both the left and right sides 
of the domain.

The first optimization problem aims at imposing the 
frequency �Y , which corresponds to the mode shape with 
the maximum displacement of the proof mass along the Y 
direction. To avoid material detachment and connectivity 
issues, a constraint (or the objective function) is chosen 
to maximize the frequency �X , which corresponds to the 
mode shape with the oscillations of the proof mass along 
the X direction. A constraint on the maximum allowable 
area is also applied. Again, using these common settings, 
the optimization is carried out for 3 different cases.

The total number of iterations, along with the 
computational times, for the three examples are reported 
in Table 5.

(33)

max
�

�

s.t. � ≥ �min

A ≤ Amax,

Fig. 5   Problem settings and initial conditions for the MBB beam. 
Only the left half of the structure is optimized. The left side is fixed, 
while the right side can move vertically but not horizontally. A black 
region ( 20% of the total beam length) is used as a proof mass
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MEMS—linear optimization
The optimization problem is initially formulated without 
any particular constraint on � and maximizing the objec-
tive function �X:

Fig. 6   Optimal results of the beam examples (Sect. 5.1). Left column: 
linear optimization (Problem (31)). Middle column: softening optimi-
zation (Problem (32)). Right column: hardening optimization (Prob-

lem (33)). The second row shows the third-order backbone curves in 
the reduced space (Eq.(8)), while the last row shows the backbone 
curves in the physical space using two different expansion orders

Table 2   Optimal results of the beam examples (Sect. 5.1)

Optimization � [kHz] �

Linear (31) 570.0 1.3 ⋅ 10
−4

Softening (32) 639.6 −1.0 ⋅ 10−3

Hardening (33) 609.2 1.0 ⋅ 10
−3

Table 3   Total iterations and computational times of the beam exam-
ples (Sect.  5.1), measured on a Windows laptop with an Intel Core 
i7-1255U CPU @ 1.70 GHz and 16 GB of RAM @ 3200 MT/s

Optimization Iterations Time

Linear (31) 180 21 s
Softening (32) 197 13 min 35 s
Hardening (33) 149 9 min 53 s

Fig. 7   Problem settings and initial conditions for the MEMS resona-
tor
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where Amax = 60% and �Y ,target = 1000 kHz is the target 
frequency value. The value of � represents the relative error 
of �Y with respect to �Y ,target . For this problem, � = 10−2 is 
used, meaning that the constraints is satisfied if the value of 
�Y is within 10% of the target value (between 990 kHz and 
1010 kHz).

The optimal layout (left column of Fig. 8) is character-
ized by a small positive nonlinear coefficient associated 

(34)

max
�

�X

s.t. (�Y∕�Y ,target − 1)2 ≤ �2

A ≤ Amax,

with �Y  . This results in an almost linear behavior in the 
considered oscillation amplitude range.

MEMS—softening optimization
Problem (34) is now modified to minimize the coefficient 
� while imposing the same constraints on the target fre-
quency �Y and the maximum allowed area. The maximi-
zation of �X (required to avoid material detachment and 
connectivity issues) is recast as an additional inequality 
constraint. The softening optimization problem reads:

Fig. 8   Optimal results of the MEMS resonator examples (Sect. 5.2). 
Left column: results obtained solving Problem (34). Middle column: 
results obtained solving Problem (35). Right column: results obtained 
solving Problem  (36). The second row shows the third-order back-

bone curves in the reduced space (Eq.(8)), while the last row shows 
the backbone curves in the physical space using two different expan-
sion orders



Topology optimization of nonlinear structural dynamics with invariant manifold‑based reduced… Page 11 of 15     72 

where �X,min = 2000 kHz.
The result of the optimization (middle column of Fig. 8) 

is characterized by a negative value of � , as indicated in 
Table 4, leading to the desired softening behavior.

MEMS—hardening optimization
Finally, Problem (35) is modified to maximize the coeffi-
cient �:

where all the constraints are the same as in Problem (35).
The optimal solution is presented in the right column of 

Fig. 8. This structure exhibits a positive � (Table 4), indicat-
ing the desired hardening behavior. In particular, the value 
of � is an order of magnitude larger compared to the solution 
of Problem (34) (Table 5).

6 � Conclusions

In this paper, we proposed a structural topology optimization 
method designed to tailor the hardening and softening 
dynamic behavior of nonlinear mechanical systems. The 
main advantage of the proposed approach is that it eliminates 
the need for costly full-order simulations or numerical 
continuation and significantly reduces the computational 
effort in optimizing the backbone curve. This reduction is 
achieved rigorously via analytical expressions for computing 
the conservative backbone from the reduced dynamics on 
the corresponding Lyapunov subcenter manifold.

We demonstrated how the integration of the adjoint method 
for the sensitivity analysis, combined with the tensor notation 

(35)

min
�

�

s.t. (�Y∕�Y ,target − 1)2 ≤ �2

�X ≥ �X,min

A ≤ Amax,

(36)

max
�

�

s.t. (�Y∕�Y ,target − 1)2 ≤ �2

�X ≥ �X,min

A ≤ Amax,

for expressing nonlinear internal forces, further enhances the 
computational efficiency of the proposed optimization process, 
especially for high-dimensional finite element models. The 
tensorial formulation not only simplifies sensitivity evalua-
tions but, when applied to regular grids of elements, proves 
highly efficient in terms of computation. Numerical exam-
ples have been provided to show the validity of the proposed 
optimization.

While the current work focuses on third-order expansions 
and on the coefficient � , future extensions could adapt the 
approach to higher orders and to different optimization targets. 
Arbitrary order expansions would open up the possibility 
of adaptive algorithms to control the accuracy of the ROM 
during optimization, as done in Pozzi et al. (2024). Moreover, 
the adjoint formulation could be recast in order to optimize 
directly the backbone or the frequency response curves in the 
physical space. All these developments are currently underway 
(Pozzi et al. 2025).

Appendix A

Multi‑index notation andO(3) –LSM

A multi-index m ∈ ℕ
M of order m = |m|1 is an M-dimensional 

vector for which addition, subtraction, and other operations are 
defined element-wise. For instance, the multi-indices can be 
used to define multivariate monomials of order m as

To denote quantities related to a specific multi-index 
m = {x, y} , we use the subscript ∙xy . For instance, the 
parametrization coefficient related to m = {2, 1} is R21.

In this work, the two parametrizations (Eqs. (5) and (6)) are 
expanded up to the third order. As summarized in Table 6, wm 
and Rm are computed sequentially, starting from the first order 
( |m|1 = 1 ). More details can be found in Li (2024).

(A1)pm = p
m1

1
⋯ p

mM

M
.

Table 4   Optimal results of the MEMS resonator examples (Sect. 5.2)

Optimization �
Y
 [kHz] �

X
 [kHz] �

Linear (34) 990.0 2256 1.4 ⋅ 10
−5

Softening (35) 990.0 2000 −2.1 ⋅ 10−4

Hardening (36) 990.0 2000 3.1 ⋅ 10
−4

Table 5   Total iterations and computational times of the MEMS reso-
nator examples (Sect.  5.2), measured on a Windows laptop with an 
Intel Core i7-1255U CPU @ 1.70 GHz and 16 GB of RAM @ 3200 
MT/s

Optimization Iterations Time

Linear (34) 141 4 min 16 s
Softening (35) 423 5 h 14 min 50 s
Hardening (36) 269 3 h 13 min 51 s
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Appendix B

Tensor notation

Using Einstein notation, the quadratic and cubic components 
of the nonlinear force are written as

where F2 ∈ ℝ
n×n×n and F3 ∈ ℝ

n×n×n×n are the tensors that 
describe, respectively, the quadratic and cubic nonlinearities. 
The vectors a , b , and c are the inputs of the nonlinear force. 
To avoid confusion with the subscripts denoting names, we 
used superscripts to identify entries of the corresponding 
entity (e.g., wj

10
 denotes the j-th component of vector w10).

We use the tensor notation to rewrite the expressions for 
f 20 , f 11 , and f 21:

(B2)f i
2
(a, b) = F

ijk

2
ajbk

(B3)f i
3
(a, b, c) = F

ijkl

3
ajbkcl,

(B4)f i
20

= F
ijk

2
w
j

10
wk
10

(B5)f i
11

=
(
F
ijk

2
+ F

ikj

2

)
w
j

10
wk
01

In this way, � becomes

Tensor derivative

The partial derivatives of f2,i with respect to its input vectors 
are computed as 

In the same way, the partial derivatives of f3,i are written 
as 

(B6)

f i
21

=
(
F
ijk

2
+ F

ikj

2

)
w
j

10
wk
20

+
(
F
ijk

2
+ F

ikj

2

)
w
j

01
wk
11

+
(
F
ijkl

3
+ F

iljk

3
+ F

iklj

3

)
w
j

10
wk
10
wl
01
.

(B7)� =
1

2�
�if i

21
.

(B8a)
�f i

2
(a, b)

�aj
= F

ijk

2
bk

(B8b)
�f i

2
(a, b)

�bk
= F

ijk

2
aj.

(B9a)
�f i

3
(a, b, c)

�aj
= F

ijkl

3
bkcl

Table 6   Lyapunov subcenter 
manifold computations at 
leading, second, and third order
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Appendix C

Partial derivatives for sensitivities

To compute the adjoint Eqs. (17)–  (20), the partial 
derivatives of � with respect to the state variables w20 , w11 , 
� , and � are required.

Using the tensor notation and substituting w10 = w01 = � , 
the partial derivatives of � are written as

In the same way, the partial derivatives of f 20 and f 11 with 
respect to � are

These expressions (and in Eq. (23)) were finally validated 
using finite differences, passing the check with a tolerance of 
10−5 . Notice that the adjoint sensitivity accuracy, along with 
the LSM accuracy, have already been extensively verified 
by Li (2024) and Li et al. (2023), respectively.

(B9b)
�f i

3
(a, b, c)

�bk
= F

ijkl

3
ajcl

(B9c)
�f i

3
(a, b, c)

�cl
= F

ijkl

3
ajbk.

(C10)
��

��
= −

1

2�2
�if i

21
= −

1

�
�

(C11)
��

�w
j

20

=
1

2�
�i
(
F
ijk

2
+ F

ikj

2

)
�k

(C12)
��

�w
j

11

=
1

2�
�i
(
F
ijk

2
+ F

ikj

2

)
�k

(C13)

��

��j
=

1

2�

[
f
j

21
+ �j

(
F
ijk

2
+ F

ikj

2

)
wk
20

+ �j
(
F
ijk

2
+ F

ikj

2

)
wk
11

+3�j
(
F
ijkl

3
+ F

iljk

3
+ F

iklj

3

)
�k�l

]
.

(C14)
�f i

20

��j
=
(
F
ijk

2
+ F

ikj

2

)
wk
20

(C15)
�f i

11

��j
= 2

(
F
ijk

2
+ F

ikj

2

)
wk
11
.

Appendix D

Topology optimization sensitivity analysis

The partial derivative of the mass matrix M is computed 
using the chain rule:

The partial derivatives in Eq.  (D16) are obtained by 
differentiating Eqs. (25), (27)–(29):

where Mj is the element mass matrix of element j. The same 
expressions are used to obtain the derivatives of K , F2 , and 
F3.
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