
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

MORA
Hunting Space Bugs in your Sleep

Vissarion Moutafis

MORA
Hunting Space Bugs in your Sleep

by

Vissarion Moutafis

Vissarion

Moutafis

Instructor: G. Smaragdakis
Daily Supervisor: A. Voulimeneas
ESA Supervisors: A. Atlasis, N. Finne
Project Duration: 10, 2024 - 04, 2025
Faculty: Faculty of Electrical Engineering, Mathematics and Computer Science , Delft

Cover: Generated by ChatGPT
Style: TU Delft Report Style, with modifications by Daan Zwaneveld

Preface

This work, for it is but a harmless thesis, was completed during one of the most peculiar and challenging
periods of my life. It became my constant companion through countless sleepless nights, a relentless
yet rewarding pursuit.

First of all, I would like to express my deepest gratitude to my supervisors; George, for his inspiration
and unwavering motivation to push me toward excellence; Alex, for being not only a brilliant mentor but
also a great friend; and Antonis, for his invaluable guidance and the trust he placed on me throughout
this work.

I also thank the advisors on the European Space Agency for guiding this effort and also for facilitating
and assisting our experimental work. I am very grateful. In addition, I would like to thank the
people from TEC-SEC and TEC-EDD, especially Nick Panagiotopoulos, for allowing us to use the
Cube-FlatSAT and have fun running our experiments on a realistic mission platform!

Above all, I want to thank my family and friends for their unwavering support. Their encouragement
gave me the strength to persevere and see this work through to the end.

Vissarion Moutafis
Delft, April 2025

I love sleep; is my favorite...

Kanye West

i

Abstract

This thesis explores the security of On-Board Software (OBSW) within mixed-criticality space applica-
tions, emphasizing post-exploitation threats and the need for a structured and standardized vulnerability
discovery and assessment framework.

To address these challenges, we develop a threat model tailored to RTOS-based space systems, iden-
tifying key attack surfaces and adversary capabilities. Our methodology leverages fuzzing methods
to systematically uncover vulnerabilities in FreeRTOS, a widely adopted RTOS in space applications,
and automates the false-positive/duplicates elimination procedure to minimize the manual work needed
during crash triage. The results highlight weaknesses in task isolation and privilege management,
demonstrating the feasibility of horizontal lateral movement within on-board software systems.

To evaluate the severity of identified vulnerabilities we integrate an adaptation of the Common Vul-
nerability Scoring System (CVSS) tailored to space software security with focus on the temporal and
environmental metrics. Additionally, we validate our findings through a Cube-FlatSAT experimental
setup, demonstrating real-world applicability and reinforcing the need for improved isolation mecha-
nisms in space-grade RTOS.

This research also contributes to the SPACE-SHIELD framework by refining post-exploitation analysis
techniques. Our work underscores the necessity of standardized security assessments for on-board space
systems, making the first step for robust development of space software against emerging cyber threats
in the space domain.

ii

Contents

Preface i

Abstract ii

Nomenclature v

1 Introduction 1

2 Background 3
2.1 Space Standards and Existing Security Frameworks . 3
2.2 Satellite Systems and Software . 4

2.2.1 Payload Data Handling System . 5
2.2.2 Command and Data Handling System . 5
2.2.3 On-Board Computer and Software . 6

2.3 Space Operating Systems . 7
2.3.1 Real-Time Operating Systems . 7
2.3.2 Suitability for Space Missions . 7

2.4 Fuzzing . 8

3 Threat Model and CVSS for SpaceOS 10
3.1 Motivation . 10
3.2 Assets & Security Requirements . 11
3.3 Actors . 12
3.4 Assumptions . 12
3.5 Threat Vectors & Attack Surface . 14
3.6 CVSS for SpaceOS . 15

3.6.1 Base Metrics . 15
3.6.2 Temporal Metrics . 16
3.6.3 Environmental Metrics . 16
3.6.4 Disclaimer for RTOS . 17

4 Space-OS Security Experiment Scenarios 18
4.1 OBSW Attacks . 18

4.1.1 Denial Of Service . 18
4.1.2 Privilege Escalation . 18
4.1.3 Dangerous System Call Monitoring/Prevention 18
4.1.4 Scheduler Exploitation . 19

4.2 OBSW Fuzzing . 19
4.2.1 RTOS Kernel Fuzzing . 19
4.2.2 Protocol Fuzzing . 20

4.3 On-Board Systems Isolation . 21
4.3.1 Task/Process Isolation . 21
4.3.2 Mitigation Enhancements Performance Measurement 21

4.4 Secure Firmware . 21
4.4.1 Secure Boot . 21
4.4.2 Boot-Time Memory Corruption . 21
4.4.3 Supply Chain Attack - Malicious Firmware Detection 21

5 Results and Evaluation 22
5.1 Set-Up . 22

5.1.1 Simulation . 23
5.1.2 FlatSAT Testbed . 23

iii

Contents iv

5.2 Methodology . 23
5.3 Evaluation . 29

5.3.1 False Positive and Duplicate Elimination . 29
5.3.2 Coverage Exploration . 30
5.3.3 Unique Crashes Exploration . 30
5.3.4 Total Crashes over Fuzzer Executions . 34

5.4 Vulnerability Reports . 34
5.4.1 ISSUE_00 - vTaskSuspendAll Attack . 34
5.4.2 ISSUE_01 - vTaskPrioritySet Attack . 35
5.4.3 ISSUE_02 - xTaskAbortDelay Attack . 36
5.4.4 ISSUE_03 - Isolation Issue in Thread Local Storage of FreeRTOS Tasks 37
5.4.5 ISSUE_04 - Static Task Stack Compromise . 38
5.4.6 ISSUE_05 - Data Overwrite via xTaskCreateStatic 38
5.4.7 ISSUE_06 - Data Overwrite via xStreamBufferCreateStatic 39
5.4.8 Setting the Environmental Scores . 41

5.5 Cube-FlatSAT Testing . 41
5.6 Limitations . 42

6 Discussion 44
6.1 Responsible Discloure . 44
6.2 SPACE-SHIELD Contributions . 44
6.3 Mitigation Suggestions . 45

7 Related Work 48
7.1 RTOS Testing . 48
7.2 Open Source Vulnerability Research . 49

7.2.1 Insights from Open-Source Vulnerabilities . 50
7.2.2 Implications for the Space Environment . 50
7.2.3 Standardized Testing Frameworks . 50

8 Conclusion 52

A Crash Triaging and Coverage Generation Automation 57

Nomenclature

Abbreviations
Abbreviation Definition
ESA European Space Agency
CIA Confidentiality, Integrity, Availability
LEO Low Earth Orbit
GEO Geostationary Orbit
GS Ground Segment
SS Space Segment
US User Segment
TC Telecommand
TM Telemetry
CDHS Command and Data Handling System
PHDS Payload Data Handling System
COM Communications Module
PLCOM Payload Communication Module
ADCS Attitude Determination and Control System
EPS Electrical Power System
COTS Common-off-the-shelf
MCS Mixed Criticality System
MCA Mixed Criticality Application
OBC On Board Computer
OBSW On Board Software
FDIR Fault Detection, Isolation and Recovery
OS Operating System
IPC Inter-Process Communication
RTOS Real-Time Operating System
PoC Proof Of Concept
ECSS European Cooperation for Space Standardization
CCSDS Consultative Committee for Space Data Systems
CVSS Common Vulnerability Scoring System
CVE Common Vulnerabilities and Exposures
IPC Inter-Process Communication
MPU Memory Protection Unit

v

1
Introduction

In recent decades, there has been a significant increase in the number of satellites orbiting the Earth,
driven by advancements in telecommunication networks, navigation, earth observation [53]. The New
Space era encourages the use of Commercial Off-The-Shelf (COTS) components, for both Low-Earth-
Orbit (LEO) and deep space missions [6, 54]. This approach improves availability and reduces develop-
ment costs, making it attractive for high-volume production, such as satellites used in 5G and upcoming
6G networks. In this work, we are particularly interested in the software technologies running on the
space segment, namely the On-Board Software (OBSW) which runs on the On-Board Computers of dif-
ferent satellite compartments such as the Command and Data Handling System (CDHS) and Attitude
Determination and Control System (ADCS).

The usage of Mixed Criticality systems is very appealing in the case of On-Board Computer (OBC)
and Software (OBSW) [54] development and is needed for performing crucial operations for the satellite
mission. Using hard real-time systems and hypervisors, satellite systems ensure the strict scheduling
needed by mission operations supported by multi-processor hardware that implements the different
levels of criticality into a single OBC component. Nevertheless, the security behind such software and
hardware, which was heavily relied on the fact that OBSW was not reachable by design and because
of the security enforced in the communication protocols, is now accessible more than never due to a
combination of third-party hosted dependencies and COTS used in extensively in space deployments.
Though developers are making adjustments on COTS to comply to space standards, this situation
has opened new possibilities for attacks on space systems such as supply chain attacks and malicious
payload propagation from the User Segment [14, 53, 54]. Although there is some preliminary research
work on attacking space systems, more work needs to be done on the general security of OBC and
OBSW components with respect to Confidentiality, Integrity and Availability triad (CIA) and isolation
capabilities of space OS.

Real-Time Operating Systems (RTOS) are foundational components of the OBSW stack, playing a
pivotal role in both satellite bus and payload subsystems. Their ability to provide hard real-time
scheduling ensures that time-critical mission operations are executed reliably and predictably. Widely
used RTOS, such as FreeRTOS [15], RTEMS [34], LynxOS [25], and VxWorks [51], support diverse
applications across LEO and GEO satellites. For instance, missions like ESTCube-1 [39], Galilleo and
Fermi Gamma-Ray Space Telescope have leveraged RTOS to facilitate efficient task scheduling and
resource management. These systems must ensure robust isolation of high-priority tasks, preventing
interference or data leakage between processes. Furthermore, they must guard against scenarios where
an onboard attacker, having compromised a single task, escalates privileges or disrupts the entire system.
Strengthening the resilience of RTOS against such threats is essential to maintaining the integrity and
safety of modern space missions.

In this work, the main focus is on analyzing the security challenges faced by space OS for mixed-
criticality applications. Though the work on OBSW security addresses some specific use cases [53],
there is a need for standardized space OS security testing which ensures the systems robustness with

1

2

respect to inter-task communication, task scheduling and RTOS/hypervisor isolation issues. Attackers
that successfully exploit such issues might compromise the CIA of different components and could
possibly seize the control of a satellite system, causing significant damage to the targeted organization.

This research focuses on onboard attackers and aims to address security challenges in RTOS systems used
in mixed-criticality space applications. The primary objectives are to identify and assess vulnerabilities
and propose mitigations that align with established space security and safety standards, such as ECSS.

More specifically, we pose the following question, RQ: "How can we standardize and automate vulner-
ability discovery and assessment in space OS for mixed criticality applications running on a satellite’s
OBC?". To better bind our research, we also pose the following sub-questions:

• RQ1: "How can a robust threat model be defined for on-board software security in mixed-
criticality space applications?". This involves identifying assets, actors and assumptions about
the attacker and platform.

• RQ2: "What security vulnerabilities exist in Real-Time Operating Systems used in space mis-
sions?" This question focuses on discovering and assessing the security weaknesses within these
critical software components.

• RQ3: "How can we effectively use dynamic analysis to automate the assessment?" The question
shift the focus to the effectiveness of the implementation of a general framework that also handles
scalable automation and elimination of false positives.

• RQ4: "How applicable are our results in a representative set-up?" This question is vital to
understanding the actual impact of any findings discovered in a simulated environment against a
real platform.

The research methodology begins with the development of a comprehensive threat model and risk as-
sessment framework. This framework forms the foundation for identifying critical attack vectors and
guiding the testing phase. To uncover vulnerabilities, we employ widely used techniques such as fuzzing.
The discovery process is conducted in a simulated environment, which simplifies the creation and re-
finement of proof-of-concept (PoC) exploits. Once developed, these PoCs are tested on representative
hardware to evaluate their reproducibility in environments that closely resemble real-world deployments,
ensuring practical relevance and applicability.

The main contributions of this work lie in advancing the security of SpaceOS by addressing key challenges
in Real-Time Operating Systems (RTOS) technologies, particularly in the context of mixed-criticality
space systems. This research defines a comprehensive threat model tailored for the SpaceOS domain,
capturing the unique needs of mixed-criticality environments and identifying attack surfaces specific to
RTOS. One focus is on refining lateral movement attack paths, detailing how an attacker with an initial
foothold could compromise additional system components, jeopardizing the satellite’s functionality and
security.

Security testing is conducted on SpaceOS, leveraging custom tools and methodologies to uncover vulner-
abilities. Findings are eventually mapped to techniques from the current versions of SPACE-SHIELD
[12] and SPARTA [43] frameworks and a new refined version of the former, ensuring alignment with
established security standards and facilitating consistent vulnerability management. To evaluate the
criticality of discovered vulnerabilities, we employ the CVSS [9] standard, quantifying their potential
impact on satellite operations. For a more comprehensive application of CVSS scoring, we also redefine
the different metrics so that they relate with the MSC/SpaceOS domains. Furthermore, the research
discusses mitigations for various attack scenarios, trying to initiate the conversation for integrating
terrestrial defense systems in the resource-constrained field of space systems.

This thesis is organized as follows, after this chapter, Chapter 2 provides the necessary background to
contextualize the study, covering mixed-criticality applications, satellite systems, and relevant security
concepts. Chapter 3 defines the threat model and the risk assessment framework, forming the foun-
dation for subsequent analysis. Chapter 4 outlines the methodology for testing each identified attack
vector, providing high-level guidance. Chapter 5 presents the experiments, evaluates vulnerabilities,
and maps the findings to the SPACE-SHIELD framework [12]. Finally, Chapter 6 discusses contribu-
tions to SPACE-SHIELD, addresses broader SpaceOS design issues, proposes mitigation strategies, and
highlights directions for future work.

2
Background

2.1. Space Standards and Existing Security Frameworks
European Cooperation for Space Standardization. The European Cooperation for Space Standard-
ization is a collaboration between ESA, the European Space Industry, and several space agencies. It
refers to companies that carry out space activities and establishes a coherent standard to govern the
management, engineering, product assurance, and sustainability of space projects [44]. It is adopted by
ESA and all the collaborators looking to procure a space project.

SPACE-SHIELD and SPARTA SPACE-SHIELD is a ATT&CK like framework providing users with
security threat knowledge for Space Systems [12]. It focuses on covering a broad range of attack
techniques and is inspired by the MITRE ATT&CK framework. It is created by ESA and is aimed
at cybersecurity experts that want to create threat models and perform a structured and guided test
of a space system. SPARTA is a similar framework addressing attack methodologies in the aerospace
sector aiming to standardize threat modeling and security testing of spacecrafts [43]. It is created by
The Aerospace Corporation and is part of their space security solutions.

Common Vulnerability Scoring System. The Common Vulnerability Scoring System [9] is a vulnera-
bility assessment framework which is used to evaluate the severity of a vulnerability. Three distinct
metric groups, namely Base, Temporal and Environmental, are used to conclude on a severity score.
Base metrics have a 0-10 scale and are applicable to all domains, while Temporal and Environmental
scores are domain specific and can modify the Base metric resulting into a final severity score and a
CVSS vector, which is a textual representation of the values used to derive the score. Base Metrics
consist of exploitability, privilege required, scope and CIA impact scorings, which are necessary to
evaluate any vulnerability in any domain. Temporal Metrics are concerned with the maturity of the
exploit technique, the mitigation status and the confidence of the applicability of such a vulnerability
in different use cases with respect to the target domain. Finally, Environmental scores are dependent
on the importance of the affected asset to the organization. They complement the importance of CIA
features, modify the base metrics for enhancing the validity of the severity score for the target domain
and organization while also considering existing mitigations for the discovered issues.

Though the existing standards and guides for security testing and threat modeling of space systems are
developing and improving gradually, they cover a broad range of attacking techniques and remain quite
high level with respect to mission specific attacks and spaceOS focused attacks. Comparing them to the
MITRE ATT&CK [28] and MITRE EMB3D, it would be beneficial to improve threat categorization
and even add a mapping to the components tested. Finally, CVSS scoring mechanism, though it is
perfect for our purpose, needs additional refinements so that space developers can apply it on security
findings in an educated manner, considering the MCS/SpaceOS domain.

3

2.2. Satellite Systems and Software 4

Figure 2.1: The different segments that collaborate in a mission. Space Segment consists of two main parts, the Bus and
Payload. The Bus contains the Command and Data Handling System (CDHS), Communication Module (COM),

Attitude Determination and Control System (ADCS) and Electrical Power System (EPS), while the satellite’s Payloads
contains mission specific components such as Payload’s Communication Module (PLCOM) and Payload Data Handling

System (PHDS). The computing components, e.g. CDHS contain an OBCs that contain hardware components and
software (OBSW) which consists of the hypervisor and applications or general purpose OS runing on top of the former.

2.2. Satellite Systems and Software
In this section, we first provide an overview of the segment level modules, then we focus on the in-scope
components of the space segment and their submodules. The design of the systems, their utility and
the inter-component interaction is extensively discussed in the state-of-the-art literature regarding space
security [14, 33, 53, 54, 55] and it is refined in great detail in the SAVOIR [35] and ECSS [44] standards.

Satellite systems are complex infrastructures, categorized into distinct segments to ensure effective oper-
ation and mission success: the Ground Segment, Space Segment, and User Segment. These components
work in unison, fulfilling mission requirements across various orbits, such as Low Earth Orbit (LEO),
Medium Earth Orbit (MEO) and Geostationary Orbit (GEO).

Low Earth Orbit (LEO), situated between 250 to 2,000 km above Earth, is predominantly utilized for
Earth observation and CubeSat deployments due to its proximity and reduced latency. Conversely,
Geostationary Orbit (GEO), at 35,786 km, is ideal for telecommunications as satellites maintain a fixed
position relative to Earths surface, enabling uninterrupted coverage over specific areas.

The Ground Segment (GS) serves as the operational hub, encompassing ground stations and control
centers. Operators manage satellite functions through Telecommand (TC) and receive Telemetry (TM)
data regarding the satellites status and health. Ground stations utilize established communication
protocols like those defined by the CCSDS to ensure robust data exchange.

The Space Segment (SS) consists of all space-based assets, including the satellite platform and payload.
The platform supports essential functions such as power supply, attitude control, and communication,
while the payload carries mission-specific instruments like cameras for Earth observation or radio sys-
tems for telecommunications.

The User Segment (US) represents the end-users who benefit from satellite services, ranging from GPS
receivers to Earth observation data consumers. These segments may overlap in advanced systems, such
as platforms operating with multi-tenant architectures, where satellite resources are shared among users
[14, 53].

Key subsystems within the space segment include the Command and Data Handling System (CDHS),

2.2. Satellite Systems and Software 5

which orchestrates all satellite operations via onboard software; the Communications Module (COM) for
TC/TM traffic management; the Attitude Determination and Control System (ADCS) for orientation
adjustments; the Electrical Power System (EPS) to manage power; and the payload, housing mission-
specific tools and data handling systems.

Figure 2.1 showcase the segments and components which form the backbone of satellite missions, en-
abling seamless operation across Earth and space. Additionally, we also provide a detailed illustration
of the Space Segment, consisted of the Bus and Payload, and distinguish on the different crucial com-
ponents, especially in the OBC.

2.2.1. Payload Data Handling System
The Payload Data Handling System (PDHS) is a subsystem dedicated to managing and processing data
generated by the satellite payload. As the primary interface between the payload and other satellite com-
ponents, the PDHS ensures that mission-critical data is collected, processed, and transmitted efficiently.
It is particularly significant in missions requiring high data throughput, such as Earth observation,
satellite communication systems or scientific experiments [54].

During a mission, the PDHS collects raw data from the payload, applies necessary processing or com-
pression algorithms, and prepares the data for transmission to the Ground Segment. It also supports
data storage and retrieval, ensuring mission continuity in scenarios where real-time transmission is not
feasible. For example, in deep-space earth observation missions, the PDHS stores data for later downlink
when the satellite is in range of a ground station [14, 53].

The PDHS consists of several high-level software components:

• Data Acquisition Software: Interfaces with the payload to collect raw data.
• Data Processing Software: Performs compression, encryption, or formatting as required by the

mission.
• Storage Management Software: Manages onboard data storage and retrieval systems.
• Transmission Control Software: Prepares data for downlink via communication subsystems.

2.2.2. Command and Data Handling System
The Command and Data Handling System (CDHS) is a critical subsystem in satellite architecture
responsible for the coordination and execution of mission tasks. It acts as the brain of the satellite,
managing the flow of data between various subsystems and the proper operation of the satellite through-
out different phases of the mission. The CDHS facilitates communication between the satellite’s payload
and its supporting bus/platform, ensuring seamless operation during the mission [2, 35].

On the hardware level, as showcased in Figure 2.2, the On-Board data handling platform consists of
various devices which define the computational domain of the CDHS [2], namely

• On-Board computers (OBC), which define the core computational power of the CDHS
• Remote Terminal Computers, performing discrete and analog data acquisition
• Platform Solid State Mass Memories, usually used in Earth observation, facilitating storage of

large data objects
• TC/TM Units, handling the Telemetry traffic and propagating commands to the OBC when

necessary
• Internal Command and Control Busses, such as the CAN Bus used for on-board communication

between CDHS components

As displayed in Figure 2.2, the CDHS software layer typically comprises several functionalities [2, 35]:

• System Management Software: Implementation of the basic functionalities of the core space OS,
handling memory management, I/O operations, etc.

• Sensor Drivers: Implementation of the interface layer with the on-board sensor hardware.
• Data Processing Software: Manages telemetry and payload data, ensuring proper formatting and

transmission.

2.2. Satellite Systems and Software 6

• Fault Detection, Isolation, and Recovery (FDIR): Identifies anomalies, isolates faults, and triggers
corrective actions.

• Communication Management Software: Handles telecommand (TC) and telemetry (TM) opera-
tions, adhering to CCSDS protocols.

Figure 2.2: Detailed analysis of the On-Board Data Handling System components from SAVOIR [2, 35]. We can see the
vast complexity of the hardware necessary to facilitate all of the CDHS mission requirements for keeping the satellite

running and operating over mission data.

2.2.3. On-Board Computer and Software
The Onboard Computer (OBC) and Onboard Software (OBSW) form the central processing unit and
operational software stack of a satellite. The OBC provides the computational power required to ex-
ecute mission tasks, while the OBSW consists of RTOS, Board Support Packages (BSPs) and other
components that orchestrate the resoure management, fault detection and management and execution
of mission critical operations. Together, they act as the operational backbone of the satellite, ensur-
ing compliance with space system engineering principles such as modularity, determinism, and failure
recovery as defined by ECSS-E-ST-40C (Software Engineering) and SAVOIR guidelines [10, 35].

The OBC and OBSW reside within the Space Segment, interfacing directly with satellite subsystems
via the onboard bus and indirectly with the Ground Segment through the Communication Module
(COM) using telecommands (TC) and telemetry (TM) links. The communication flow enforces integrity
verification and authentication mechanisms to prevent unauthorized command injection or spoofing
attacks [40, 41]. Despite these protections, vulnerabilities in onboard software could still be exploited
via privilege escalation, supply chain attacks or malicious updates, insufficient access control mechanisms
or memory corruption flaws [53, 54].

The integration of Commercial Off-The-Shelf (COTS) components in OBC hardware and OBSW li-
braries is driven by cost efficiency, reduced development time, and the need for industry-wide standard-
ization. However, ECSS-Q-ST-80C (Software Product Assurance) mandates rigorous validation and
adaptation of COTS software to ensure compliance with mission-critical security and safety require-
ments [11]. The reliance on third-party software increases the attack surface, especially if the software
lacks memory protection, is susceptible to privilege escalation, or fails to meet deterministic execu-
tion constraints required in real-time space applications. SAVOIR promotes a standardized avionics
architecture, reducing security risks from heterogeneous COTS components by enforcing strict interface
definitions and modular partitioning of software functions [35].

Given their pivotal role in mission operations, the OBC and OBSW can constitute as prime targets
for cyber-attacks. A compromise in these systems could result in privilege escalation, unauthorized
command execution, or software-based denial-of-service (DoS) attacks. While the ECSS risk assessment
framework incorporates Fault Detection, Isolation, and Recovery (FDIR) mechanisms to mitigate some
failures, a sufficiently sophisticated attack could still disrupt key satellite functions. For instance,

2.3. Space Operating Systems 7

tampering with OBSW task scheduling could delay or disable payload operations, while a targeted attack
on the OBC could interfere with power distribution, navigation, or maneuver execution, potentially
jeopardizing satellite stability [14, 54].

A well-designed security framework must consider space system resilience by integrating hardware-
enforced privilege separation (e.g., MPU-based task isolation), runtime integrity verification, and real-
time intrusion detection systems. Without these safeguards, adversaries could exploit OBC and OBSW
vulnerabilities to gain unauthorized access, manipulate onboard processes, or degrade system avail-
ability. Therefore, a standardized security testing approach is necessary to evaluate onboard software
against both terrestrial and space-specific attack vectors, ensuring compliance with ECSS and SAVOIR
standards [10, 11, 35].

2.3. Space Operating Systems
In this section, we discuss the significance of Real Time OS in the OBSW and the criteria which are
used to determine the suitability of the underlying OS during the software design phase.

2.3.1. Real-Time Operating Systems
Real-Time Operating Systems (RTOS) are specialized operating systems designed to manage hardware
resources and execute tasks with precise timing constraints. Unlike general-purpose operating systems,
RTOS prioritize deterministic behavior, ensuring that critical tasks are executed within strict deadlines.
They achieve this by implementing scheduling algorithms, such as rate-monotonic or earliest-deadline-
first, which are tailored for real-time applications. This deterministic execution makes RTOS essential
for systems where timing, reliability, and predictability are paramount [53].

In space systems, RTOS are integral to both the satellite bus and payload, enabling real-time process-
ing of mission-critical tasks. They are widely used across various subsystems, such as the Command
and Data Handling System (CDHS), the Attitude Determination and Control System (ADCS), and
the Payload Data Handling System (PDHS). The unique requirements of space missions such as high
reliability, resource constraints, and the need for fault tolerance make RTOS the preferred choice for
managing satellite operations [14, 53].

RTOS are implemented in both custom and commercial off-the-shelf (COTS) configurations. Commonly
used RTOS in space applications include FreeRTOS [15], RTEMS [34], LynxOS [25], and VxWorks [51].
These systems are tailored to the specific needs of space missions:

• Task Scheduling: RTOS prioritize high-criticality tasks, ensuring timely execution while managing
lower-priority operations.

• Memory Management: RTOS allocate and protect memory to prevent interference between pro-
cesses, which is crucial in mixed-criticality applications.

• Inter-Process Communication (IPC): RTOS facilitate secure communication between subsystems,
ensuring data integrity and synchronization.

The adoption of COTS RTOS solutions reduces development costs and time [54] but increases the
potential of introducing vulnerabilities met in terrestrial systems. Despite these challenges, RTOS
remain indispensable for enabling the precision, reliability, and resilience demanded by modern space
missions.

2.3.2. Suitability for Space Missions
Although there are different space OS that could be used in space missions, the developer must consider
various aspects of the RTOS in use to make sure that the software used meets the needs of a specific
mission. The aforementioned systems offer distinct advantages and trade-offs, making them suitable for
different mission requirements.

Flexibility FreeRTOS and RTEMS both being open-source and highly customizable, allow develop-
ers to tailor them to specific applications. FreeRTOS provides minimal RTOS functionality, making
it lightweight and easier to adapt, while RTEMS offers a broader feature set, closer to proprietary
solutions like VxWorks. VxWorks, though closed-source, provides extensive customization options for

2.4. Fuzzing 8

secure multi-threaded applications, whereas LynxOS, with its deterministic and non-modular design,
emphasizes reliability over flexibility.

Performance FreeRTOS and RTEMS are both known for low overhead and fast execution [15, 34],
comparable to VxWorks in certain use cases. LynxOS is optimized for predictability, ensuring consis-
tent response times even under heavy I/O, leveraging its kernel’s threading model. FreeRTOS, with
its lightweight design, is particularly advantageous for resource-constrained systems, while RTEMS
provides similar performance metrics for more feature-intensive applications.

Security considerations vary significantly across these RTOS. FreeRTOS and RTEMS lack inherent
privilege separation unless paired with hardware features like an MPU or MMU [27], which can be a
limitation for high-assurance systems. However, their open-source nature fosters extensive testing and
collaborative security improvements. In contrast, LynxOS and VxWorks, both microkernel systems,
provide robust security with kernel-user mode separation and modular middleware. LynxOS further
isolates running applications into VM-like partitions for memory, time, and resource separation, making
it highly resilient to external threats.

When it comes to CPU Architecture Support, FreeRTOS leads with support for a wide array of ar-
chitectures, including ARM, RISC-V, x86, and many more, making it highly versatile [15]. RTEMS
supports an impressive range, including LEON and PowerPC [34], often utilized in aerospace applica-
tions. LynxOS and VxWorks offer robust architecture support, focusing on commonly used platforms
such as ARM, x86, and PowerPC, with LynxOS excelling in environments requiring deterministic be-
havior [25, 51].

FreeRTOS and RTEMS are excellent choices for projects prioritizing open-source flexibility and low
resource requirements, while VxWorks and LynxOS are more suitable for secure and deterministic
applications where modularity and resilience are critical, given that the version used is compliant with
space standards.

2.4. Fuzzing
Fuzzing is a dynamic software testing technique that involves providing a program with a wide range of
random, malformed, or unexpected inputs to identify vulnerabilities, crashes, or unexpected behavior.
Unlike static analysis, which inspects the code without execution, fuzzing executes the target software
in real-time, exposing flaws that may only manifest under specific runtime conditions. This approach
is particularly valuable for uncovering edge cases that are challenging to identify using conventional
testing methods.

The utility of fuzzing lies in its ability to:

• Expose Hidden Vulnerabilities: By generating a vast array of test cases, fuzzing uncovers mem-
ory corruption issues (e.g., buffer overflows, use-after-free errors), logic errors, and unhandled
exceptions.

• Automate Testing: Fuzzers can autonomously produce inputs and monitor program behavior,
reducing manual effort while increasing the scope of testing.

• Improve Software Robustness: Fuzzing identifies weak points in software, allowing developers to
patch vulnerabilities before deployment.

Coverage-guided fuzzing (CGF) is a specialized fuzzing technique that uses feedback from the execution
of the target program to guide the generation of inputs. Unlike traditional fuzzing, which generates
inputs randomly, CGF evaluates the program’s code coverage to maximize testing efficiency. By ana-
lyzing which parts of the code are executed by each input, the fuzzer prioritizes generating inputs that
explore untested paths. The key features of coverage-guided fuzzing are instrumentation, a feedback
loop and optimization. The first aims at instrumenting the program in compile time so that it can
dynamically trace the coverage and keep a record of other useful information. The feedback loop iter-
atively generates new inputs based on coverage data and uses a heuristic so that it increases coverage,
therefore explores more parts of the code and potentially discover new bugs. Finally, fuzzers use an
optimization method which targets on reducing redundancy in testing and increase the likelihood of

2.4. Fuzzing 9

discovering more complex execution paths. Some famous tools such as AFL++ [46] and libfuzzer are
using coverage based fuzzing algorithms.

In this work, we focus on using AFL++ [46] because of its flexibility due to the fact that it is a general
purpose fuzzer meaning that the user can adjust the fuzzing pipeline to inject input in almost any
software. It also supports dynamic hooking and support for different platforms and uses plugins on gcc
and clang compilers to instrument the code. AFL++ facilitates a variety of fuzzing techniques, as well
as multiple running fuzzers which increases the effectiveness of our experiments.

More specifically, AFL++ has support for multiple sanitizers with the most famous being Address san-
itizer (ASAN), Undefined Behavior Sanitizer (UBSAN) and Thread Sanitizer (TSAN) [46]. Sanitizers
are run-time tools that are used for extending the program’s capability of detecting illegal behavior,
e.g. invalid memory accesses, uninitialized pointers, etc, and dropping execution safely. ASAN finds
memory corruption vulnerabilities (i.e. use-after-free, NULL pointer dereference etc.). Following, UB-
SAN focuses on discovering undefined behavior in C or C++ binaries (i.e. integer overflows, use of
uninitialized values, etc.), while TSAN tries to investigate thread race conditions. They can be used
during the instrumentation phase by setting the appropriate framework defined environment variables.

The process of fuzzing a binary with AFL++ consists of the following phases

1. Instrumentation: Users, compile the source code using different sanitizer options or the default
ones. The default and proposed AFL++ sanitizer is afl-clang-fast [46], but the user can also add
their own clang/gcc compiler flags in case they want to ensure that some optimizations are not
applied by the compiler. This might be useful when trying to incrase coverage.

2. Input Gathering: Next step is running the program with some input and constructing a corpus,
the starting corpus at the beginning of the fuzzing campaign run. It is important that this does
not take too much to process and it does not crash the program in any particular way.

3. Setting up fuzzers: A user can decide to run a single fuzzer or use multiple cores to run a Main
and many secondary fuzzers that are cooperating with each other and share information with the
top level one once in a while. Good practices while using multiple fuzzers are to run with different
sanitizers and coverage approaches where the focus of each fuzzer is either different or diverges a
bit so that the coverage and number of execution paths is maximized.

4. Running: When everything is ready we use a dedicated core for every running fuzzer and run the
program with the starting input. AFL++ makes sure to mutate the input properly and records
coverage and crashes for later investigation. According to the state-of-art-standards the campaign
should last at least for 24-hours [36]

5. Crash Triage and Coverage Inspection: After the pass of 24-hours, we inspect the crashes for
duplicates and false positives using afl-provided tools and manual inspection. At the same time,
there is tools such as lcov [23] and gcov [16] that are might help to get a more detailed report of
the exact lines that were covered by the mutated inputs.

6. PoC Construction: Finally, when the user has a corpus of crashing inputs, they use ASAN [1],
gdb [17], valgrind [49] and other tools to further investigate the type of the bug and try to create
a Proof-Of-Concept input that displays how the discovered vulnerability can be discovered.

7. After finishing this process the discovered input can be filtered and re-fed to the program for a
more fine-grained fuzz campaign, so that the second step can be skipped and the fuzzer can start
with higher coverage nor spending time on rediscovering the same paths.

3
Threat Model and CVSS for SpaceOS

This section systematically defines the threat landscape of on-board software in mixed-criticality space
applications. We begin by outlining the security assets that must be protected, followed by a discussion
of the actors involved, the assumed capabilities of the attacker and the platform, and the key attack
vectors that threaten space systems. Examining these elements facilitates as a foundation for under-
standing the security challenges inherent in mixed-criticality applications. Furthermore, a robust threat
model acts like a standardized directive with respect to the suitability of an OS for space missions.

In addition, this section defines a robust risk assessment framework that evaluates the importance of
each asset within the mission’s operational context. The framework assesses potential vulnerabilities and
their impacts while proposing remediation strategies aligned with established space security and safety
standards. By integrating this standardized approach, the framework not only supports vulnerability
mitigation, but also establishes a consistent methodology for future testing and validation of SpaceOS.
This ensures that security practices remain adaptable and relevant to evolving threats in space system
deployments.

Although significant efforts have been made to standardize security testing for satellites, highlighting
use cases through attack trees [8, 14] and component-based security analysis [13, 21, 53], there remains
a critical gap in addressing the unique security challenges of SpaceOS components that are running
on-board from an attacker who has already established a foothold on the machine using external attack
vectors, such as vulnerabilities in communication protocol implementations or a supply chain attack
[54]. Existing security models often focus on initial foothold vectors (e.g., supply chain attacks, protocol
vulnerabilities) but fail to explore how an attacker escalates privileges or laterally moves through the
onboard software stack post-compromise. This attack model maintains focus on assisting the exploration
of the various post-exploitation paths which follow the foothold phase of an attack to a space system.

The motivation behind developing this framework is to bridge this gap by integrating public knowledge
on testing RTOS software [4, 20, 38, 41, 47], creating a holistic and structured guide to assess the security
of OBSW. Such a framework is essential not only to ensure consistent and robust testing practices but
also to underline the operational significance of SpaceOS within the broader mission context, thereby
enabling a more targeted and impactful security analysis for future space missions.

3.1. Motivation
Since we aim to create a standardized threat model as close as possible to state-of-the-art space soft-
ware development frameworks, we consult ECSS and SAVOIR directives regarding OBSW operations.
Furthermore, we consider the terrestrial use of general purpose OSes which enable multi-tenancy, given
that we aim to explore the behavior of the system where different tasks are interpreted as different
actors.

According to ECSS [11] and SAVOIR [35] guidelines, On-Board Software needs to exhibit high reliability
as it manages mission critical operations and employ fault containment mechanisms which are essential

10

3.2. Assets & Security Requirements 11

for system integrity in the event of a security breach or malfunction. In addition, SAVOIR compliance
indicates standardization and modularization of OBSW for facilitating both seamless integration in
different systems and isolation of mission-critical functions and data. ECSS compliance enforces policies
about resource utilization and satisfaction of real time restrictions according to task criticality for the
mission. It also defines least-know, least privilege as general security policies which should be followed
during development of space-targeted software [11]. The aforementioned directives are interpreted
accordingly for security in the following sections where asset and attacker assumptions are defined.

In order to create a more complete threat model we take inspiration from the threat models of multi-
tenant OSes where processes have different privilege levels. Though the operating systems we tested
are not what would typically assumed to be multi-tenant, we interpret the "tenant" term by directly
binding it to a "task" that is running and the Kernel API of the OS would serve as the centralized
"server"-like component. The assets of this system are consisted by memory and process isolation,
resource availability and control over privileged operations and functions. The threat actors are either
insiders of the system, which in our case would be a task that went rogue, or outsiders, e.g. network
attacker that exploits vulnerabilities in other modules to propagate payloads in the system level. The
usual attack techniques in this context include DoS attacks, memory or IPC attacks or attack vectors
that aim to bypass weak access control mechanisms and execute otherwise privileged functions. In space
systems, the multi-tenant system threats are exaggerated due to the highly dependable nature of the
system which is grounded in its reliability and resource availability constraints.

3.2. Assets & Security Requirements
Our research focuses on space software utilized in various use cases, including earth observation, satellite
navigation, satellite telecommunications, and deep space missions. The nature of the target software and
the specific mission requirements determine the critical assets and their associated security requirements.

• Confidentiality, Integrity and Availability: Ensuring the security of on-board software requires
strict enforcement of confidentiality, integrity, and availability (CIA) principles. Confidential-
ity protects sensitive information such as mission-specific algorithms and telemetry data from
unauthorized access, extending to inter-process communication and shared storage to prevent un-
intended data exposure. Integrity safeguards critical operations, including attitude control and
system communications, by protecting the kernel, configuration files, and task execution from
unauthorized tampering, ensuring mission stability and preventing cascading failures. Addition-
ally, data integrity ensures the accuracy of telemetry and control commands through mechanisms
like checksums, cryptographic signatures, and redundancy strategies. Availability guarantees con-
tinuous operation of real-time tasks and shared resources by protecting critical memory regions
and the scheduler from denial-of-service attacks or resource exhaustion, preventing mission disrup-
tions or irreversible damage. Implementing fault-tolerant scheduling, priority enforcement, and
resource management policies helps maintain real-time constraints and system resilience under
potential threats.

• Privileged Operations: Privileged instructions, such as those related to memory management or
system state changes, must be protected to prevent unauthorized access and exploitation. These in-
structions should only be executable by high-privilege tasks or routines, with strict access controls
in place to prohibit unauthorized user-space applications from executing privileged operations.

• Inter-Process Isolation: This involves ensuring that processes running within the RTOS are se-
curely isolated to prevent data leakage or interference between mixed-criticality applications. Ro-
bust isolation mechanisms are necessary to uphold both the integrity and confidentiality of critical
processes, especially in systems where high-criticality and low-criticality tasks coexist.

• Maintain Control: This involves guaranteeing that a compromise cannot result in permanent loss
of control over the system by the legitimate control station (e.g. the Ground Segment). Even in
the presence of partial system compromises, mechanisms must be in place to enable the ground
station to reassert authority and ensure mission continuity.

• Timing Guarantees: Adhering to strict task execution deadlines is essential in real-time operating
environments, particularly for high-criticality tasks such as attitude control, propulsion adjust-
ments, and payload operations. Mixed-criticality systems must ensure that high-priority tasks

3.3. Actors 12

are completed on time without being interrupted or delayed by lower-priority operations. Timing
guarantees also ensure synchronized operation with external systems, such as communication win-
dows with ground stations or data collection events during orbital passes. Real-time schedulers,
priority inversion prevention mechanisms, and deterministic execution models are key to achieving
these guarantees.

3.3. Actors
In the on-board software execution environment, we can define the following actors, sorted by privilege:

• Privileged Tasks, defined as tasks that perform critical operations and should have higher execu-
tion priority since their real time constraints are considered to be hard and mission-critical. Their
read/write access to the system memory could either be constrained according to policy and they
have rights to execute privileged system-calls.

• Un-privileged Tasks, which are defined as all of the tasks that should not be treated as mission-
critical by the system.

With respect to the system level on which we perform our security testing, we define different level of
trust for each one of those actors. When evaluating in the (RT)OS level, we consider that anything
hypervisor related in trusted, the kernel is also trusted, high privilege tasks are trusted since they
should only concern the mission critical operations and need not interact with other modules but could
interact with lower privilege tasks through some IPC mechanisms under well defined access control
policies. Finally, low privilege tasks are considered semi-trusted since they should operate under resource
restrictions and have limited capability of executing system-calls. Other parts of the system such as the
Scheduler, Interrupt Service Routines (ISR) or Peripheral drivers are considered trusted components.

Table 3.1 display some indicative task groups for the platform and payload of a satellite, the resources
they use, whether they are mission specific and indicate of whether they should be privileged or not.
We elaborate on the privilege based on three distinct characteristics. First, we consider the resources
that the task needs to access in order to operate, the more resources the higher the privilege needed
for a task. Following, we deem that mission specific tasks, such as science experiment scripts, or tasks
running on the payload and handle user input should be considered of low privilege and be sandboxed
properly using access control mechanisms and privileged API debloating techniques. Finally, we should
consider the impact of a task if it compromised and assess the risk accordingly given the resource access
level of the former. For example tasks on the OBC are usually more privileged since they have less
interaction with user controlled input compared to the Payload tasks. Nevertheless, consider the case
that an attacker manages to upload a software update and manipulate a bug in the Software Update
Management logic to gain code execution. In this case, if this OBC task is considered privileged and
trusted, thus has extensive access to resources and its enforced access control policy is quite permissive,
the attacker can temper with privileged behavior and perform a large impact attack since the OBC is
the "heart" of the satellite operations.

3.4. Assumptions
The primary assumption in this threat model is that the attacker has already gained access to a low-
privilege (restricted, or semi-privileged) task within the system, possibly through a supply chain attack
or by exploiting code execution vulnerabilities in another component that executes in the task envi-
ronment. Payload-handling tasks, due to their interactions with external data sources and frequent
updates, are considered semi-trusted by the system, meaning that their system resource exposure (e.g.,
memory, system calls, and IPC mechanisms) is restricted. However, due to the shared environment in
mixed-criticality systems, their compromise could serve as an entry point for lateral movement.

The attacker is not an external network adversary but operates within the satellite’s software ecosystem,
potentially possessing partial or extensive knowledge of the satellite system, including its software stack,
onboard hardware, and system architecture. It is assumed that direct tampering with satellite hardware
is not feasible, and the attacker relies solely on software-level exploitation.

The OS may implement an MPU or MMU to enforce memory protection and might incorporate hardware
or software based isolation techniques to differentiate privilege levels. However, these mechanisms may

3.4. Assumptions 13

Name Description Resources
Used Mission Specific Privileged

ADCS Tasks

Maintains satellite orientation
and performs attitude correc-
tions using sensors and actua-
tors.

IMU, reac-
tion wheels,
star trackers,
control buses

✓

Software Up-
date Handler

Handles firmware patching and
system updates from ground sta-
tion.

Bootloader
memory,
flash mem-
ory

✓

EPS Man-
agement

Manages power distribution, bat-
tery charging, and solar input
regulation.

Battery bus,
solar ar-
rays, power
switches

✓

TC/TM
Tasks

Command Decoder and Execu-
tor. Receives and authenticates
telecommands and performs crit-
ical onboard actions.

Memory
management,
command
queue, sys-
tem calls

✓

FDIR Tasks Detects faults in hardware/soft-
ware and initiates recovery.

System
health
monitor,
watchdogs,
reset control

✓

Payload
Data Pro-
cessing

Processes raw payload data such
as images or measurements from
sensors.

Payload
buffers,
temporary
memory, I/O
buses

✓

Housekeeping
Health and
Telemetry
Aggregator

Collects routine sensor data
(temperature, voltage, status)
for transmission.

Timers,
ADC chan-
nels, mem-
ory buffer

Data Com-
pression
Task

Compresses data before storage
or downlink to ground station.

RAM, CPU
time, com-
pression
buffer, Third
Party Li-
braries.

✓

Science Ex-
periment
Scripts

Custom software handling
mission-specific experiments
(e.g., CubeSat scientific pay-
loads).

Data logging,
file system,
custom APIs

✓

File Transfer
and Logging

Moves internal files, prepares
downlink packets, logs telemetry.

File system
access, stor-
age medium

Table 3.1: Example of privileged and unprivileged onboard software tasks in a mixed-criticality satellite system. The
existence and categorization of such tasks groups was infered from SAVOIR [35] and ECSS documentation [10, 11, 22,

42, 48]

not be fully configured or may contain implementation flaws that can be leveraged by the attacker.

3.5. Threat Vectors & Attack Surface 14

Once a foothold is established in a low-privilege task or application, the attacker’s primary objective is
privilege escalation. This may be achieved through inter-process communication (IPC) vulnerabilities,
system calls, weak access control policies, or memory corruption exploits. Additionally, attackers might
aim to manipulate the real-time scheduler, leading to task starvation, priority inversion, or denial-of-
service (DoS) conditions that disrupt critical satellite functions.

This threat model assumes that cryptographic protections are implemented and cannot be trivially
bypassed. Physical-level attacks such as fault injection or side-channel analysis are considered outside
the scope of this work.

3.5. Threat Vectors & Attack Surface
This section details the primary threat vectors and attack surfaces relevant to Real-Time Operating
Systems (RTOS) in mixed-criticality satellite systems. Given our assumption that the attacker has
already gained access to a process within the system, the focus is on vectors that could lead to privilege
escalation, compromise system integrity, or bypass critical isolation mechanisms.

RTOS-based systems in satellites are primarily responsible for managing real-time operations, including
high-priority tasks such as attitude control, communication handling, and other mission-critical func-
tions. The RTOS attack surface includes process memory, system calls, IPC channels, and scheduling
mechanisms, each of which could be exploited to compromise system integrity, availability, or control.

• Memory Management Exploits: Memory corruption attacks, such as buffer overflows, stack smash-
ing, and use-after-free vulnerabilities, are primary threats to RTOS security. These attacks can
allow an attacker to alter system memory, leading to arbitrary code execution, privilege escalation,
or data leakage. Since RTOS systems lack memory protection found in modern OS, this vector is
critical for compromising memory-sensitive assets like the kernel or scheduler.

• Inter-Process Communication Exploits: Given the mixed-criticality nature of satellite systems,
IPC is crucial for communication between high and low-criticality tasks. Attacks on IPC mech-
anisms, such as message tampering or unauthorized data interception, can lead to interference
with critical operations or bypassing of process isolation. Compromising IPC could impact both
Inter-Process Isolation and System Integrity by allowing an attacker to manipulate data or timing
between tasks.

• Insecure Syscalls: System calls are often a key point of attack in RTOS environments. Insecure
or improperly validated system calls can enable low-privilege tasks to escalate privileges or gain
unauthorized access to critical functions. Since syscalls provide direct access to kernel-level func-
tions, this vector could compromise Privileged Operations and potentially lead to system-wide
impact.

• Scheduler Attacks: The RTOS scheduler is responsible for ensuring that high-priority, time-critical
tasks execute as required. Scheduler attacks, such as priority inversion or denial-of-service attacks,
can prevent critical tasks from meeting real-time deadlines, which is particularly dangerous in
satellite systems where missed deadlines can have physical impacts. This vector is closely tied to
System Availability and Maintain Control requirements, as compromising the scheduler can lead
to severe mission failures.

• Boot Memory Compromise: Compromising the RTOS during its boot process, particularly by
targeting the memory where initial configurations or the kernel are loaded, can allow an attacker to
install persistent malicious code. This threat vector directly impacts System Integrity and Control
Maintenance, as it could prevent the ground station from regaining control over a compromised
system.

• Software Design Issues: Design flaws within the RTOS, such as inadequate memory segmentation
or weak access control policies, create security gaps that attackers can exploit to bypass isolation
mechanisms or escalate privileges. These issues are critical in mixed-criticality environments,
where the failure to isolate low- and high-criticality processes could compromise System Integrity
and Guest Application Isolation by allowing lower-priority processes to interfere with or access
sensitive functions.

3.6. CVSS for SpaceOS 15

3.6. CVSS for SpaceOS
CVSS [9] is a useful tool for a security expert to assess the severity of vulnerabilities and it is fitting
for findings coming from application security testing and red teaming operations. Nevertheless, to map
the metrics on the space system requirements based on mixed criticality systems we need some further
refinement. In this section, we adjust the interpretation of the existing metrics of CVSS v3 so that
space developers can use the comprehensive framework to assess severity of findings in OBC software.
The modifications are made with the space segment in mind to fit our research, while they can similarly
be used in Ground and User Segment testing operations.

3.6.1. Base Metrics
Attack Vector (AV) Attack Vector exploitability metric reflects the context of the exploitation in terms
on the character of the attackers’ operation in order to exploit the vulnerability. The default version
has 4 different scores, namely Network, Adjacent, Local and Physical. We provide a new interpretation
for each one of them. More specifically, Network attack vectors do not bound the attacker in a strict
way, meaning that they could execute the attack even from the Ground or User Segments and they
only require network access from the attacker. Adjacent attack vectors require that the attacker has
compromised a component in the Space Segment, such as another payload or platform, which can
communicate with the target system through some space communication protocol, e.g. CSP, or an
avionics bus, e.g. CAN-Bus. An example of an adjacent attack would be an attacker controlling some
application and trying to compromise a different payload that has established communication with the
compromised domain. Local attacks are more restricting since they require the attacker to be able
to perform arbitrary read/write/execute on the same application/component domain as the target. In
some cases, the attacker might utilize debugging shells or a file loading capability to achieve such context.
Finally, physical attacks require the attacker to has physical access to the device, which would be the
case for attacks that take place before deploying the satellite. This type of attack vectors are more rare
but could happend when the threat vector is a firmware or hardware attack that needs physical loading
of the exploit in the target component.

Attack Complexity For the Attack complexity metric we keep the default metrics, i.e. Low and High.
Low complexity attacks do not require specialized circumstances to take place, while High complexity
exploitation depends on execution environment and target-specific reconnaissance. Extensive prepara-
tion and attack path analysis is necessary on the attacker end for such an attack to succeed in a real
target environment. The latter should be the case in the mixed criticality systems domain and even
more often in the space OS context, since complex system-design and mission-specific platforms make
each sub-system and component of the OBC special.

Privileges Required For Privilege metric we are extending the interpretation of the generic triplet
in the default version of the framework (None, Low, High) to a fit our use case. No privilege would
mean that the exploitation of the threat vector is independent of the privilege level in the execution
environment this takes place. Low privilege could be fit in the example of a low-privileged, or restricted
task (e.g. no access to dangerous syscalls, or even forbiden to read/write/execute some parts of the
memory) that goes rogue and tries to compromise other peer or privileged tasks. A high privilege
could be interpreted as the case of task that performs dangerous syscalls and has access to sensitive
information, i.e. configuration files or OS-sensitive state objects in memory, which could critically
impact the system state.

User Interaction In the default version, the User Interaction metric captures the requirements of a
benign User participating for the attack to be successful. For space systems, though the interaction of a
GS operator might be needed for an issue to be exploited, we extend the meaning of a "user" interaction
to "component" interaction since IPC and periodic operations are common on satellite systems, enabling
a redefinition of "who" we are trying to attack. It would make sense in such a system to await for a
ping message or a specifically timed interruption to occur before initiating an attack. Later on we will
understand why timing might be an important factor to attack OBSW.

3.6. CVSS for SpaceOS 16

Scope The Scope metric has two possible scores, "Unchanged" and "Changed". Though we are sug-
gesting that the boundaries between different domains and scopes should be defined accordingly in the
beginning of a security test, we give an example mapping to our use case. Given an attack vector,
our scope is unchanged when the vulnerability does not compromise a different execution context or
memory domain that is separated by the current domain during the design phase. For instance, an
application running in a payload which is the target of an attacker that controls and abuse the capa-
bilities of another application that runs in a neighboring payload. Similarly to this scope notion, we
make our assumptions for memory domains and address spaces, e.g. threads are running in the same
address space, meaning that compromising a task from another different task under the same execution
context is not considered a scope-change. This details are specific to the system that is tested and to
the character of the assessment, aligning with the notion that vectors aiming at privilege escalation are
usually indicating a change of scope after successful exploitation.

Impact Metrics (CIA) The Impact Metrics, i.e. Confidentiality, Integrity and Availability, are global
and well defined in any context so there is no need to deviate from or redefine them in our testing scope,
therefore we continue with the default definition [9].

3.6.2. Temporal Metrics
Exploit Code Maturity We are keeping the same metrics as in the default CVSS v3 [9], i.e. Not Defined,
High, Functional, Proof-Of-Concept and Unproved, with some small changes on the definitions. While
the Not Defined and Unproven definitions stay the same, the other three must be adjusted to the MCS
and Space OS context that makes the testing more difficult due to the different stages of a mission in
which a vulnerability might be discovered. Proof Of Concept and Functional attack vectors refer to
exploit code that works on a simulation or a similar testbed but not on the real system. Highly mature
exploits are tested in the actual mission hardware and are for sure posing a threat to the mission. For
the later case to be meaningful, it is necessary to test the exploit code before the deployment stage of
the mission.

Remediation Level Remediation Level of a vulnerability refers to the state of a mitigation patch or a
workaround published by the vendor that provides the affected component. Since this is not a special
case in the space industry we are keeping the default definitions [9]

Report Confidence Report Confidence is also affected in the space context. Similarly to the exploit
code maturity metric, the different development and integration phases of a space mission affect the con-
fidence as to if a vulnerability will exist in the final product. Therefore we are mapping the "Reasonable"
and "Confirmed" scores [9] to "Simulation Tested" and "HW Tested" to represent the idiosyncrasies of
space OS security testing. A confidence scored as "Simulation Tested" means that our exploit works in
a simulation of the real system where parts or the totality of the hardware and firmware is emulated
for testing and affordability purposes. This could mean that the tests are performed in a ground-based
testbed with partially representative hardware. "HW Tested" confidence means that all of the hard-
ware and software parts are exactly the same as used in the deployment version of the space segment
component under attack. This means that the development cycle is done and we are one step before
the actual deployment. This distinction happens due to the nature of using COTS in space systems
where small tweaks might happen throughout the development which might cause the exploit tested in
a simulation of the environment to fail in any way.

3.6.3. Environmental Metrics
Environmental Metrics consist of Security Requirements with respect to the CIA features of the pro-
tected assets and the Modified Base Metrics. The security requirements are different for each distinct
use case and are difficult to standardize since they are mission and organization specific. We keep
the generalized version as shown in the CVSS v3 specification [9] defining 4 different scales, i.e. Not
Defined, High, Medium, Low. The Modifies Base Metrics are again remaining the same. This metric
captures the changes which the testing environment has to the Base Metric Scores. For example if we
are performing tests under a simulated environment with any authentication or authorization checks
turned off, the environmental scores for "Privilege Required" and "Attack Vector" should change. An-

3.6. CVSS for SpaceOS 17

other example would be attacks that exploit vulnerabilities in the TC/TM traffic parsers which require
authentication/authorization and maybe a firewall is set between the target and the system. If the
assessment requires to disable these defenses then the environmental scores should be adjusted properly
during vulnerability scoring.

3.6.4. Disclaimer for RTOS
At this point, let us make a note that typically Real-Time Systems are usually not created with security
in mind as a top priority. This research explores this aspect by performing an implementation and
design review of the vanilla FreeRTOS kernel. Therefore, the discovered issues elaborate on why these
types of OS’s are not suitable when considering the security of the OBSW in a real mission environment.
Nevertheless, more safe and secure options such as LynxOS or VxWorks are trading off performance to
achieve access control and better inter-task isolation. Since to our knowledge from open source projects,
systems such as FreeRTOS and RTEMS are widely used in space missions, we proceed to apply our
assessment on the former and evaluate the whole framework, from the automated vulnerability discovery
to the point of vulnerability assessment and impact scoring.

4
Space-OS Security Experiment

Scenarios

In this chapter, we discuss the requirements for setting up a successful security lab to perform security
tests on space OS. Our approach explores different use cases that a developer could test on a satellite
testbed. For each one, we go over the necessary components needed during the testing phase, touching
both the user-end and the testbed requirements. We suggest guidelines to test for the different threat
vectors discussed in Section 3.5 and give a general description of the given experiment and what its goal
would be. In Table 4.1 and Table 4.2, we display the technical requirements of the distinct experiments
for deployment in both a simulated and a representative environment (i.e. ground and space segment
are present and distinct), which we deduced during our experimental work. Though in most use-cases
the experiments could also take place in a single machine using simulators, it is important to consider
the technical components necessary to execute an experiment in space-representative conditions.

4.1. OBSW Attacks
These experiments are focused on compromising the on-board components, mainly focused on the
software assets of the platform.

4.1.1. Denial Of Service
This experiment simulates a rogue software piece or process that disrupts the availability of other
processes of the same or different criticality. The main objective of the attacker is to compromise the
availability of the systems resources and make critical tasks fail. The experiments goal is to test the
system’s ability to prevent, detect and recover from resource exhausting or task starvation attacks.
Looking for threat vectors such as "Scheduler Attacks" and "Software Design Issues" could be used to
guide the testing phase.

4.1.2. Privilege Escalation
A user could test different vectors such as memory management, system calls or inter-process communi-
cation API’s to find vulnerabilities and compromise higher-privilege assets without authorization. The
goal of this experiment evaluates the resilience of the underlying RTOS with respect to privilege escala-
tion attacks that could lead to a complete seizure of control of the undelying component. Discovering
threat vectors in the types of "Software Design Issues", "IPC Exploits", "Memory Mangement Exploits",
"Malicious Updates and 3rd-Party SW", or "Insecure Syscalls/Hypercalls" could result in a privilege
escalation vector.

4.1.3. Dangerous System Call Monitoring/Prevention
Attackers main way of meaningfully exploit a process is by having access to syscalls. Invoking dangerous
syscalls that could cause confidentiality compromise of sensitive data, to arbitrary code execution on

18

4.2. OBSW Fuzzing 19

Requirement Description

Computing Workstation

High-performance CPUs, robust memory,
enough RAM to execute multiple heavy-
{processing, memory} processes for log saving,
fuzzing, network operations, etc.

Virtualization SW Robust and tested virtualization software to
simulate different architectures.

Cross-Compiling Tool-Chains

In order to simulate and debug in different ar-
chitectures it is usually essential to compile
before running an app on a simulator or virtu-
alization software.

Exploit Development Tool-Chain For creating proof-of-concept exploits and au-
tomate the exploitation phase.

Remote Access Software To connect to different virtualized machines
and fast-track the debugging experience.

Firmware and System Level Debugging Tools For low-level debugging.

Command and Control Software To simulate on-the-fly update process.

Protocol Simulators
In some cases, for communicating with differ-
ent software components that use a specific
communication protocol.

Table 4.1: Technical requirements for the "Simulator" section, the experimental part of the lab which focuses in
automating the assessment pipeline and is usually low-budget, based on mainstream hardware and quite flexible in

terms of set-up.

the component. The goal of this experiment is to test the RTOS syscall monitoring capabilities and
discover if they give excessive syscall permissions to the different applications. Threat vectors such as
"Insecure Syscall" and "Software Design Issues" could be used to test the robustness of this feature.

4.1.4. Scheduler Exploitation
Schedulers in RTOS can be evaluated for vulnerabilities such as task priority inversion, resource star-
vation, and timing attacks. This experiment aims to assess the scheduler’s resilience and the impact of
these attacks on high-criticality, time-sensitive tasks. Additionally, it investigates RTOS policies regard-
ing access control for tasks with varying criticality and privilege levels, focusing on their interactions
with the scheduler. The identified "Scheduler Attacks" vectors and potential "Software Design" flaws
provide a foundation for developing proof-of-concept experiments to validate these findings during the
testing phase.

4.2. OBSW Fuzzing
These experiments focus on fuzzing techniques to uncover vulnerabilities in on-board software (OBSW),
including RTOS kernels and communication protocols’ libraries. The goal is to evaluate the robustness
of these components against malformed inputs and unexpected operational conditions.

4.2.1. RTOS Kernel Fuzzing
In this experiment, the user tests the RTOS kernel using state-aware fuzzing techniques to identify
vulnerabilities in critical components such as system calls, memory management, and task scheduling.
The goal is to assess the resilience of the RTOS kernel to malformed or malicious inputs and uncover
potential weaknesses that could compromise system confidentiality, integrity or availability. Targets
threat vectors such as "Memory Management Exploits" or "Insecure Syscalls".

4.2. OBSW Fuzzing 20

Ground Segment Requirements

Requirement Description

Workstation Base station for communicating with the space
segment.

Cross-Compiling Tool-Chains Compiles binaries for different architectures
before flashing them to the OBC.

Exploit Development Tool-Chain Used for creating and propagating exploits, au-
tomating the exploitation phase.

Remote Access Software
Enables connection to remote or local inter-
faces, improving the OBSW debugging experi-
ence.

Firmware and System-Level Debugging Tools Facilitates low-level debugging of onboard
firmware.

Command and Control Software Enables on-the-fly updates of the Space Seg-
ment.

Network Interfaces and Hardware

Equipment and software/firmware for commu-
nication between GS and the Space Segment,
e.g., CAN-Bus port or antenna for sending
TCs.

Space Segment Requirements

Requirement Description

On-Board Computer (OBC)

Configured hardware supporting the targeted
software platforms. Can include hardware se-
curity features, multiple architectures, and ad-
ditional modules for system reliability testing.

On-Board Software (OBSW)

Includes hypervisors, Linux Systems, RTOS,
and necessary drivers ported to hardware and
flashed onto the OBC. Software must be con-
figured for mission-specific requirements.

Electrical Power Supply (EPS)

Supports the power requirements of the space
segment, ensuring power generation and distri-
bution for both flat-sat and airborne satellite
setups.

Communications Module (COM) Parses and propagates TC/TM traffic to rele-
vant components.

CAN-Bus
Facilitates communication between onboard
components and provides connectivity to the
ground station in a flat-sat setup.

Table 4.2: Requirements for testing vulnerabilities in a representative environment. The Ground Segment and Space
Segment components reflect real-world platforms used in space missions and are configured as close as possible to their

final mission deployment.

4.2.2. Protocol Fuzzing
In this experiment, the users fuzz communication protocol libraries used in software development for
inter-process communication (IPC) or inter-component interactions, injecting malformed or invalid data

4.3. On-Board Systems Isolation 21

to evaluate the systems response. The goal is to test the robustness of communication protocols and their
implementation against exploitation, ensuring secure and reliable data transmission between processes
or components. The threat vectors that could be related to this experiment are "Software Design Issues",
"IPC Exploits" and "Memory Management Exploits".

4.3. On-Board Systems Isolation
These experiments assess the robustness of isolation mechanisms at various system levels.

4.3.1. Task/Process Isolation
Mainly concerning the RTOS level, a user can experiment with inter-process access rights mechanisms
and explore the memory and scheduler isolation policies, if any.

Memory Isolation
In this experiment, a user test for unauthorized access to memory areas assigned to other tasks or
processes. The goal is to validate the underlying segregation mechanisms for ensuring that critical
memory areas remain inaccessible to unauthorized entities.

Scheduler Isolation
A compromised task could try to tamper with the priority of other running tasks and according to
the criticality and urgency of the target task make the system fail and even permanently damage the
mission. The goal of the experiment is to test the Scheduler integrity policy, enforced by the RTOS.

4.3.2. Mitigation Enhancements Performance Measurement
As a defense focused experiment, users could apply known segregation techniques and other memory
corruption mitigations and run previously working Proof-Of-Concept test-suites to ensure the security
of the mitigation. At the same time, the user would run bench-mark programs and compare the results
with the original set-up to report the trade-off between security and performance, which is a crucial
element in the use case of space missions.

4.4. Secure Firmware
These experiments focus on testing the boot process to ensure the integrity of the system from startup.
The goal is to evaluate the robustness of the secure boot mechanism when malicious and unauthenticated
software/firmware changes happen.

4.4.1. Secure Boot
In this experiment, we test the secure bootloader by supplying insecure and modified images and try to
boot into them. The goal of the experiment is to verify that the untrusted images are forbidden while
the bootloader would raise an error in case of unsigned and unknown images. The experiment is tightly
related to "Software Design Issues" regarding the bootloader firmware used by the hypervisor.

4.4.2. Boot-Time Memory Corruption
The user could target the memory used during the boot process to test for vulnerabilities in kernel
initialization that could result in attacker persistence issues if attacked. The goal of this experiment is
to ensure the bootloader and kernel are resistant to persistent malicious code injection. Threat vectors
that could be applied in this experiment are classified as "Boot Memory Compromise" vectors.

4.4.3. Supply Chain Attack - Malicious Firmware Detection
Users test the secure boot and image signature checking mechanisms for covert supply-chain attacks,
trying to trick the bootloader into loading into maliciously updated firmware. The goal of this exper-
iment is to ensure that the bootload will reject such updates and raise an error. Vectors from the
"Malicious Updates and 3rd-Party SW" type could be used in this experiment.

5
Results and Evaluation

In this section, we present our experimental work on RTOS security and the dynamic testing toolchain
we create in order to fuzz and crash triage the vanilla version of the FreeRTOS Kernel. We tested 4
different versions of the kernel, as displayed in Table 5.1, and discovered 7 potential security issues.

First, we present the technical setup for the simulator in which we run the fuzz campaigns and the
representative hardware set-up which was used to confirm the applicability of the issues in a space-like
set-up. Then, we go over our methodology, explain the different components of the framework and
showcase it’s effectiveness for the different kernel versions we fuzzed.

5.1. Set-Up

Figure 5.1: The Cube-FlatSAT platform.

We implemented our main fuzzing actions using AFL++ and the vanilla FreeRTOS Kernel version. The
fuzzing campaigns were run in a Virtual Machine (VM) using the POSIX Simulation for the FreeRTOS
Kernel. We implemented a compatibility layer to invoke the syscalls and C scripts to generate the initial
input corpus and parse the crashing input to a human-readable version. We also implemented coverage
and crash triaging tools running in the x86_64 simulation. After discovering some potential issues,
we tested their applicability in a representative Cube-FlatSAT environment, as seen in Figure 5.2.
Following, we present a comprehensive set-up and dependency guide to use our tool in a x86_64
environment and an overview of the representative Cube-FlatSAT hardware which was used to confirm
the findings.

22

5.2. Methodology 23

5.1.1. Simulation
As shown in Table 5.1, we are using a VM running Ubuntu 22.04 as the Host OS of our experiments.
Therefore, we are using the POSIX simulation port for the FreeRTOS kernel. We are fixing the rest
of the dependencies to make sure that there is no variation in how the binaries are compiled and
that we are debugging and calculating coverage with the same software for every one of the different
RTOS version. Note that for the different RTOS versions we needed to patch some files to support the
gcc/clang versions, otherwise some unsigned long warnings turn to errors. Another important note is
that afl version should also be kept fixed since we faced some unexplained issues with updates after
the specified version. Nevertheless, the pipeline remains the same and by updating the compilers and
rest of dependencies appropriately the problems go away but, for sake of simplicity, we keep the AFL++
version fixed as well.

Table 5.1: List of dependencies and their versions for our experiments on the Simulator

Software Type Dependency Version

OS
Ubuntu 22.04

FreeRTOS kernel v11.1.0, v11.0.1, v11.0.0, v10.6.2

Misc SW

CMake v3.22.1
Make v4.3

afl-fuzz v4.22a
gcov v11.4.0
lcov v1.14

Compiler
gcc v4.11.2.0

clang v14.0.0

Debugging SW
gdb v12.1

valgrind v3.18.1

5.1.2. FlatSAT Testbed
The components of interest that consist the representative testbed on which we tested our findings are
the OBC HW and the OBSW RTOS versions. The OBC module of the flatsat is consisted of two
separate OBC modules based on the Microchip SAM-E70 microcontroller. The OBC units have ARM
Cortex M7 processors with floating-point and cryptography support which have their own SRAM and
are connected to the main bus as shown in Figure 5.2.

On the software end, on top of the HW porting firmware, there is a customizable version of the FreeRTOS
kernel, along with a number of plugin libraries, which we will not mention since they are out of scope
for this experiment. All applications are running in the User Space, as shown in Figure 5.3, along with
watchdog firmware and CSP related services. Since the flatsat OBC is running software on an ARM
CPU, we need an arm cross compilation tool-chain 1 and a medium to flash our applications on the
OBC.

5.2. Methodology
Given the complexity of RTOS and its monolithic design, static analysis alone is insufficient to uncover
security flaws. To address this, we employ fuzz testing, which provides a more dynamic and exploratory
approach to vulnerability discovery. In Figure 5.4, we see the basic steps followed in our framework
to discover valid crashes. Starting from input generation and harness function development, we try to
minimize the manual work needed by crossing out any false positives so that crash inspection is more
targeted.

1https://developer.arm.com/Tools%20and%20Software/GNU%20Toolchain

5.2. Methodology 24

Figure 5.2: Cube-FlatSAT OBC Design. The OBC consists, among other components, from a Cortex-M7 Core, an
SRAM, Flash memory and a Main and a Peripheral Bus. Through the main-bus it is capable of communicating over the
CAN-Bus with the rest of the OBC units on the platform. We are using the CAN-Bus to flash our images and receive

CSP traffic as we will see later.

Figure 5.3: The OBSW Design of the Cube-FlatSAT’s OBC. Our images will use the OS and library software stack to
first build a simulator of the OBC runing on x86 device using the POSIX simulation and after we test it, we cross

compile the image, ready to run on the OBC.

Input Generation The first step in fuzzing the kernel is generating the input corpus for AFL++. Since
AFL++ is performing mutations in a binary level the starting, we decided to represent a single AFL++
input as a binary dump of a struct the fields of which are the input parameters for the decided syscalls.
We include all of the parameters of the selected syscalls in this struct model and use the I/O methods
provided by the C programming language to create the binary dump. Importantly, these inputs should
result in a valid program execution that returns zero to AFL++ fork server since the latter requires a
valid program execution as its starting point. After that AFL++ will generate mutations of this bitstring
and on our side we parse it as a struct and invoke the selected syscalls with the altered input parameters.
Since it is troublesome to generate valid pointer-like arguments, we chose to include only number or
text-based parameters in the bitstring and fix any pointer arguments that the selected syscalls require.
Nevertheless, size attributes of this objects could be fuzzed, so we also include such parameters to
dynamically generate the required objects. The implementation of this step consists of a C and a bash
script that automatically creates a input directory with a single starting input inside it. This is enough

5.2. Methodology 25

Figure 5.4: The assessment pipeline for our framework. First the developer generates input files and the binary to be
fuzzed. Then the fuzzers are run for 24-hours and an output directory with every fuzzers output is generated. Then the
developer uses lcov and gcov to generate coverage information and adjust the harness function accordingly to achieve
better code coverage, thus potentially discover more crashes. Then use gdb, valgrind and ASan enhanced binaries in

order to generate crash reports for all discovered crashes. Finally, uniquify them and perform manual inspection of the
issues through manual code auditing.

for the fuzzers to start from and it ensures that the initial run of the program does not crash, a behavior
necessary for running AFL++ properly [46].

Kernel Instrumentation The second step in fuzzing the FreeRTOS kernel source code is instrumenting
with the afl-gcc-fast compiler. To solve inline function issues and generate a properly instrumented
binary we are removing optimizations and add the "-fno-inline" flags to the compilation scripts. More
specifically, we create a "CMakeLists.txt" file that uses the respective Kernel cmake file to compile our
harness code along with the kernel source code. Furthermore, AFL++ provides the user with a choice
of instrumenting specific files only. Taking advantage of this feature, we made sure to only instrument
the base code files of the kernel, namely "tasks.c", "queue.c", "list.c" and "stream_buffer.c". The
selection of these files is supported by three arguments. First, we wanted to focus on the logic of the
API calls we aim to fuzz, then, the main functionality of the kernel is consisted of these four files, so
they guide our fuzzing no matter the instrumentation noise of the other functions, and finally they
are remaining relatively stable across different versions, meaning that finding bugs in the logic of the
contained methods would potentially affect multiple versions. Additionally, we are also using different
sanitizers to run multiple fuzzers and discover different types of crashes. AFL++ instrumentation process
requires to recompile the program with the necessary environmental flags set so that it knows which
sanitizer to use for each run. We automate this process by using a bash script that compiles the program,
starts the campaign, and then recompiles with different sanitizer enabled, until we are done with all
of the cases we want to cover. The coverage displayed by the AFL++ statistics page is therefore not
completely reflective of the actual code coverage over the whole kernel codebase. For that we employ a
secondary coverage tool which enables a better view of the total coverage and also visualizes this on the
source code folders to better guide the manual code auditing necessary to confirm any potential bugs
discovered.

Syscall Selection For our experiments we decided to choose a representative subset of the FreeRTOS
kernel syscalls as shown in Table 5.2. The underlying motivation of this decision is coming from
extensively analyzing the FreeRTOS Kernel documentation [15] which resulting in the following three
selection criteria. First, the amount of numerical, size-like, and text-based parameters of a syscall,
which fits the input struct model and enables more effective mutations. Second the behavior of the

5.2. Methodology 26

syscalls towards memory objects. For example object creation functions that use a static buffer seem
to use a memset call based on user-controlled size parameters which is a good indicator of a possible
buffer overflow attack, even in a data-only fashion. Finally, we choose some syscalls for each different
object and try to cover the basic functionality that would take place in a normal RTOS application
with multiple tasks that communicate with each other. This means that, for instance, when testing
syscalls that concern communication objects we need to check both send and receive operations. For
creating a more representative syscall grouping based on the MCS environment of the Space Segment,
we would need a system-call log of a mission so that we can infer the importance and availability of
a syscall. Importantly, some syscalls are not provided in all of the versions (older version might miss
some as shown in Table 5.2), fact that should be taken under consideration when the overall coverage
seems to decline for earlier versions of the kernel.

Harness Functions One of the most important parts of fuzzing the FreeRTOS kernel is defining an
effective and flexible harness function that, first, covers the most important functionality of the kernel
and, second, fits the restrictions of the input struct. Our framework supports two different versions
of the same core. The first is a single-threaded version of the program which sequentially invokes the
syscalls and is focused on the overall performance and speed. The second one is a multi-threaded version
of the first that utilizes 2 tasks with the same executor function and tries to discover race conditions
and other bugs that might occur in an environment with multiple threads running. For this version to
work, we first start the two tasks and then execute a monitor task which sole job is to monitor the active
tasks, when the number of active non-system tasks is zero then it stops the program and exits execution.
The core execution of the harness function consists of parsing the mutated input bitstring, checking
the length, passing the parameters in the syscalls and returning zero to the system in case of successful
execution. The C code implementing the harness is generic enough to support different fuzzing methods
enabling the user to define any structure as the input and any handler function as the parameter passing
routine. This way we can glue our framework to any user defined fuzzing methodologies without the
latter implementing anything but the fuzzing behavior and defining the input struct.

Fine-Tuning AFL++: Coverage vs Performance Besides defining input corpus, syscall fuzzing group
and the harness function, it is important to fine tune AFL++ for performance and better coverage. Since
there are different mutation and selection algorithms for guiding the coverage-based algorithm along
with multiple choices for integrating sanitizers and discover new bugs, we chose to follow the suggested
practise from the AFL++ docs [46]. First change to our current model would be to adjust the harness
to support persistent mode, which enables a more flexible harness function and potentially enhances
performance up to x20 percent [46]. At the same time we use the shared memory buffer provided
by AFL++ in order to remove the continuous I/O operations between the input file and the feedback
loop of AFL++. Furthermore, we incorporate different sanitizers such as Address Sanitizer (ASAN) and
Unexpected Behavior Sanitizer (UBSAN) to increase the crashes found by the program. As displayed
in Table 5.3, we are also incorporating the CMPLOG [52] algorithm to improve the performance of
3 fuzzers. CMPLOG uses caching and shared memory to tackle the low entropy starting seed state
that usually causes AFL++ fuzzing campaigns to yield low performance in both total coverage and crash
discovery speed. In total, 9 AFL++ fuzzers are deployed for 24 hours [36] in the dedicated VM machine.
All of the secondary ones are synchronizing periodically with the main fuzzer and therefore the different
mutations of the input that promote larger coverage are shared among the different fuzzers.

Crash Triaging with gdb & valgrind After the fuzzing campaign is done, the next step in to triage
the crashes, filter out any false positives and manually inspect the resulting crashing corpus along with
the source code in order to discover vulnerabilities in the FreeRTOS kernel API. For this process we
created a script that compiles and runs the kernel and functional part of the harness that invokes the
syscalls against the user provided input. We are using gdb [17] with gef-plugin [7], valgrind [49] and
Address Sanitizer plug-in for gcc [1] to run the programs that were compiled with the -g3 flag in order
to provide a call stack trace and detailed debugging logs. This logs are saved in respective directories
and are named accordingly based on the input used. We are currently considering only the input corpus
provided by the "crash" and "hang" directories generated by afl. We are running each one of them with
the "timeout" command that sends a SIGKILL signal to the process after a timeout of 2-3 seconds. If
the program crashes before that it is considered a "crash", otherwise it is classified as a hang. Based on

5.2. Methodology 27

Name Description

xTaskCreate Creates a new task and adds it to the ready list. The
task will run when scheduled by the RTOS.

xTaskCreateStatic Creates a task in a statically allocated memory space,
removing the need for dynamic allocation.

vTaskDelete Deletes a task, removing it from the RTOS scheduler
and freeing its memory if dynamically allocated.

xQueueCreate Creates a new queue for inter-task communication,
specifying its length and item size.

xQueueCreateStatic Creates a queue with statically allocated memory,
preventing the use of dynamic memory.

xQueueSend Sends an item to a queue, blocking if necessary de-
pending on the specified timeout.

xQueueReceive Receives an item from a queue, with optional block-
ing behavior if the queue is empty.

vQueueAddToRegistry Adds a queue to the registry for debugging and visu-
alization purposes.

xStreamBufferCreate Creates a stream buffer, allowing data to be sent and
received as a continuous stream.

xStreamBufferCreateStatic Creates a statically allocated stream buffer, prevent-
ing the use of dynamic memory.

xStreamBatchingBufferCreate Creates a batching stream buffer, optimizing trans-
fers of data chunks.

xStreamBatchingBufferCreateStatic Creates a statically allocated batching stream buffer.

xStreamBufferSend Sends data to a stream buffer, blocking if necessary
based on space availability.

xStreamBufferReceive Reads data from a stream buffer, blocking if neces-
sary based on data availability.

xMessageBufferCreate Creates a message buffer for sending discrete mes-
sages between tasks.

xMessageBufferCreateStatic Creates a statically allocated message buffer, pre-
venting dynamic allocation.

xMessageBufferSend Sends a message to a message buffer, blocking if nec-
essary based on buffer availability.

xMessageBufferReceive Receives a message from a message buffer, blocking
if necessary if empty.

vTaskStartScheduler Starts the FreeRTOS Scheduler.

Table 5.2: FreeRTOS Kernel Syscalls selected for fuzzing in our experimentation. All system calls except
xStreamBatchingBufferCreate and xStreamBatchingBufferCreateStatic are available in all four tested FreeRTOS

versions. These two syscalls are only available in version 11.1.0.

the return code of the application we classify crashes and hangs. We noticed that executions returning
139 are resulting in core-dumps, while hangs are returning 124. The rest of the input is stored under
the "other" directory and their logs are not saved. Furthermore, we provide the user with a script to
uniquify the crashes based on the debugging output and give the option to perform the uniquification
based on a specific debugging tool’s logs. At this point, a developer must proceed with manual check
of the remaining unique true positives and perform targeted manual code auditing aided by this insight
in order to infer if the bug is a security issue. The scripts facilitating this procedures are available in

5.2. Methodology 28

Fuzzer Name Sanitizer CMPLOG Strategy Parameters

fuzzer-sanitizers-asan-1 ASan ✓
• -P explore: maximize code coverage
• -a binary: handle binary inputs
• -p exploit: prioritize triggering crashes

fuzzer-sanitizers-asan-2 ASan
• -P exploit: focus on triggering crashes
• -p explore: maximize coverage

fuzzer-sanitizers-asan-3 ASan • -P explore: maximize coverage
• -p fast: favor quick execution paths

fuzzer-sanitizers-ubsan-1 UBSan ✓ • -P explore: maximize coverage
• -a binary: handle binary inputs
• -p exploit: prioritize triggering crashes

fuzzer-sanitizers-ubsan-2 UBSan
• -P exploit: focus on triggering crashes
• -p explore: maximize coverage

fuzzer-sanitizers-ubsan-3 UBSan • -P explore: maximize coverage
• -p fast: favor quick execution paths

fuzzer-cmplog-1 Default ✓
• -a binary: handle binary inputs
• -p fast: favor quick execution paths
• -P explore: maximize coverage

fuzzer-cmplog-2 Default ✓
• -l1AT: enable CMPLOG with arithmetic

solving and transformational solving
• -P explore: maximize coverage
• -p explore: maximize code coverage

fuzzer-cmplog-3 Default ✓
• -Z: sequential queue selection
• -l1ATX: CMPLOG with arithmetic,

transformation, and extreme solving
• -P explore: maximize coverage
• -p quad: quadratic power scheduling
• -P exploit: prioritize crashes

Table 5.3: Tuning for each one of the 9 fuzzers. Three fuzzers used the Address-Sanitizer (ASan) which uses defensive
techniques such as redzones to monitor illegal memory accesses. Similarly, another three fuzzers used Udefined-Behavior

Sanitizer (UBSan) in order to detect undefined behavior, as defined in the context of a C program. Finally, in five
fuzzers, we enabled the CMPLOG plugin which uses caching and shared memory in order to increase the entropy of the

initial seed, thus yield better coverage from early on.

5.3. Evaluation 29

Appendix A.

Source Code Coverage with lcov. As a secondary process which is important for monitoring the effec-
tiveness of our fuzzing methodology, a coverage visualization tool is provided. This tools uses gcov [16]
and lcov [23] in order to create coverage details about the kernel codebase. First, we compile the kernel
and syscall invocation method normally, adding the –coverage compilation and linking flag. Then we
are using all of the stored input corpus generated in the AFL++ main directory and run the program
against it. At the end of this process, we acquire an lcov and a html folder with the lcov statistics
and the web-view of the coverage visualization over the source code. We are also suggest that whether
the preferred developer environment is vscode then the user could install the "Code Coverage LCOV"
plugin [5]. An example of what the web-view main-page looks like is showcased in Figure 5.5. The
relative scripts are provided in Appendix A.

Figure 5.5: LCOV generated web-view of coverage after running the whole AFL++ generated corpus against the syscall
routine.

5.3. Evaluation
In this section the effectiveness of the fuzzing methodology is inspected for both the single-thread and
multi-threaded approaches. The target of this analysis is to provide the user with some insight about
the experimentation process and elaborate on our design choices. Furthermore, the evaluation process
can be standardized, enabling a feedback loop that facilitates the better development of a dynamic
testing framework.

To ensure a rigorous evaluation of the fuzzing pipeline, this analysis focuses on the fuzzing campaigns
that yielded the maximum number of total crashes for both single-threaded and multi-threaded harness
approaches. By capturing the highest crash rates observed, we establish a comprehensive upper bound
on the systems exposure to vulnerabilities. This methodology provides a statistically grounded perspec-
tive on the kernel’s resilience while minimizing the influence of random variations when evaluating the
frameworks efficiency.

FreeRTOS Kernel Total crashes Total True Positives From Valgrind From gdb From ASAN
10.6.2 272 265 12 259 173
11.0.0 303 300 9 298 197
11.0.1 295 295 7 291 184
11.1.0 182 180 10 178 135

Table 5.4: Maximum values for total and unique crashes recovered from AFL++ runs for single-threaded harness. Unique
crashes were generated by using unique log output from specified triaging tools. Valgrind, after removing address

information, seems to generate the most accurate and precise unique error-log set, without any duplicates and not losing
any information.

5.3.1. False Positive and Duplicate Elimination
To eliminate false positives, we re-ran all crashes identified by AFL++ against our program using GDB,
Valgrind, and AddressSanitizer (ASan). The goal of this process was to reduce manual effort by au-
tomating crash classification while ensuring that only true, distinct vulnerabilities were considered for
further analysis. By extracting meaningful stack traces and memory violation patterns from these tools,
we aimed to filter out redundant or misleading crash cases.

For GDB and ASan, we parsed crash reports by analyzing stack traces. However, this process presented

5.3. Evaluation 30

FreeRTOS Kernel Total crashes Total True Positives From Valgrind From gdb From ASAN
10.6.2 264 260 12 253 200
11.0.0 238 238 14 236 169
11.0.1 255 255 16 252 189
11.1.0 215 215 15 214 143

Table 5.5: Maximum values for total and unique crashes recovered from AFL++ runs for multi-threaded harness. Unique
crashes were generated by using unique log output from specified triaging tools. Valgrind, after removing address

information, seems to generate the most accurate and precise unique error-log set, without any duplicates and not losing
any information.

significant challenges due to inconsistencies in reporting formats, particularly with ASan. A major issue
encountered was ASans additional memory instrumentation overhead, which, in some cases, caused
timeouts in our time-bound execution script, leading to false hang detections. On the other hand,
Valgrind proved to be highly effective, as it provided structured call stacks that allowed for precise
crash deduplication. By removing memory address-specific information, Valgrind was able to group
crashes with identical root causes, significantly reducing the number of unique reports.

Table 5.5 and Table 5.4 summarize the results of this false positive elimination process. The data clearly
show that Valgrind-based crash classification outperformed both GDB and ASan in reducing duplicate
crash reports, cutting the total count down to a manageable two-digit number. Additionally, ASan
demonstrated better performance than GDB in every configuration, likely due to its built-in memory
safety checks, which helped in filtering out irrelevant crashes more efficiently.

Notably, while the total number of total and unique crashes varied between multi-threaded and single-
threaded fuzzing harnesses, the trend of Valgrinds superior deduplication capabilities remained con-
sistent across both experiments. These results highlight the importance of choosing the right tool for
crash triage, as improper classification can lead to significant time wasted on analyzing redundant crash
reports.

5.3.2. Coverage Exploration
To assess code coverage, we utilized LCOV with GCCs gcov instrumentation to track executed lines
during fuzzing campaigns. Each execution session was configured to capture line-level and function-level
coverage, ensuring an accurate representation of how much of the FreeRTOS kernel was exercised by
different sanitizers. Coverage was measured using multiple kernel versions, ensuring that differences
across releases were accounted for. Categorizing based on versions and sanitizer or cmplog tuning,
we were able to gather insights for the effectiveness of our methodology. After the coverage-focused
running process was completed, the resulting ".info" files were aggregated and visualized to analyze the
percentage of the codebase reached by the fuzzer. This process in combination with the source-code
visualization of the coverage provides us with details about the effectiveness of the fuzzing methodology
and enables us to better explain the impact of our methodology changes in the overall process.

Table 5.6 presents a comparative analysis of the final coverage percentage obtained for each tested
FreeRTOS version across multiple sanitizers. The x-axis represents different kernel versions, while the y-
axis denotes the percentage of executed lines. The bars, categorized by different sanitizer configurations,
allow us to observe which configurations provide the highest code coverage. Generally, AddressSanitizer
(ASan) tends to produce higher coverage due to its ability to detect memory corruption early, allowing
fuzzing to continue beyond faults. Lower coverage values in certain configurations indicate early crashes
or stagnation in the fuzzing process, preventing deeper exploration of the codebase. Furthermore, the
single-threaded and more naive implementation of the harness function yielded lower coverage rates
compared to the multi-threaded one as expected. Interestingly, the different fuzzing strategies and the
cooperative fuzzing process ensured that all of the fuzzers discover the majority of the paths the rest
of the fuzzing executables discovered.

5.3.3. Unique Crashes Exploration
To evaluate unique crashes, we leveraged the aforementioned deduplication scripts. Each crashing input
was classified using backtrace analysis and unique fault signatures from gdb, valgrind and ASan-enabled

5.3. Evaluation 31

Final Coverage Reports for FreeRTOS Kernel Versions

Figure 1: Single-Threaded Coverage Results

Figure 2: Multi-Threaded Coverage Results

Table 5.6: Coverage reached per distinct fuzzing strategy for different versions of the FreeRTOS Kernel. The results are
presented separately for Multi-Threaded and Single-Threaded fuzzing approaches. The results were extracted from the

campaign that yielded the higher coverage/crash values.

executions. The goal was to eliminate redundant crashes that stemmed from the same underlying bug
while identifying truly distinct vulnerabilities. By filtering crashes based on memory violation types
and stack-traces, we ensured that the majority of false positives and duplicates was eliminated. We
again categorized based on kernel version and sanitizer that generated the specific crash. Importantly,
the effectiveness of different sanitizers does not only lie in the coverage reports but in their ability to
discover new crashes.

5.3. Evaluation 32

Final Crash Reports for FreeRTOS Kernel Versions

Figure 1: Single-Threaded Crash Reports

Figure 2: Multi-Threaded Crash Reports

Table 5.7: Unique crashes recorded per different fuzzing strategy for different versions of the FreeRTOS Kernel. The
results are presented separately for Multi-Threaded and Single-Threaded fuzzing approaches. The results were extracted

from the campaign that yielded the higher coverage/crash values.

Table 5.7 visualizes the number of distinct crash instances across FreeRTOS versions and sanitizer
configurations. The x-axis represents different FreeRTOS versions, while the y-axis denotes the number
of unique crashes recorded. Each bar is color-coded based on the sanitizer used, highlighting which
configurations resulted in the highest number of unique faults. High crash counts in certain sanitizers
(e.g., ASan) indicate structural weaknesses in memory safety, while lower values in others suggest
stronger protections or fuzzing limitations. Notably, newer FreeRTOS versions tend to have fewer
crashes, suggesting that security patches have mitigated some previously discovered issues. According

5.3. Evaluation 33

Crashes Over Executions for FreeRTOS Kernel Versions

Figure 1: Single-Threaded Crashes Over Executions

Figure 2: Multi-Threaded Crashes Over Executions

Table 5.8: Crashes recorded over execution cycles for different versions of the FreeRTOS Kernel. The comparison is
shown separately for Multi-Threaded and Single-Threaded fuzzing approaches. The results were extracted from the

campaign that yielded the higher coverage/crash values. Notably, the multi-threaded harness achieved greater scattering
of the crash-over-execution data points, indicating that it scales better than the single-threaded harness. Also,

CMPLOG based fuzzing seems to be more consistent in finding new paths, which is supported by the higher coverage
values, and therefore is the most scalable of the three distinctive fuzzing groups.

to this metric, CMPLOG enabled execution is the prevalent fuzzing strategy to yield more unique
crashes. The sum of unique crashes in Table 5.5 and Table 5.4 is smaller than the aggregation of the
unique crashes per sanitizer due to the fact this analysis focuses on the distinct crashes discovered
by each sanitizer specifically. Therefore not considering any duplicate crashes discovered by different
sanitizers.

5.4. Vulnerability Reports 34

5.3.4. Total Crashes over Fuzzer Executions
To evaluate the effectiveness and scaling capabilities of the fuzzing methodology, we tracked crash
occurrences over the continuous execution cycles. This metric helps identify whether crashes were
occurring consistently or sporadically throughout the fuzzing process. The approach involved exploiting
the AFL++’s crash-report naming convention which logs number of executions and enables us to correlate
them and analyze the rate at which failures emerged. This process also helped us identify whether
crashes persisted over time or were resolved as the fuzzer discovered deeper execution paths. It is an
important indication to as our harness function continuously discovers new paths and crashes.

Table 5.8 illustrates the distribution of crashes as fuzzing progressed. The x-axis represents the number
of executions, while the y-axis denotes cumulative crash count. An expected steep increase in crash
count early in the execution suggests shallow, easily triggerable vulnerabilities, whereas a gradual incline
indicates deep-state bugs that require extended exploration. If crash discovery plateaus, it may indicate
either that all major faults have been found or that the fuzzer is struggling to generate new, effective
test cases. This visualization helps determine whether a given configuration is prone to early failures or
exhibits progressive fault discovery, both of which are critical factors in assessing the robustness of the
FreeRTOS kernel under different conditions. Interestingly, older versions are less prone to deep state
bugs, and the fuzzer discovers low hanging vulnerabilities relatively fast, more specifically in the first
million executions. Furtermore, we can see that CMPLOG strategy is the one that yields new paths
that crash throughout the majority of the execution while ASAN discovers vulerabilities quite fast, since
it does not allow memory error to further propagate in the program, therefore failing earlier than the
rest of the sanitizers. Nevertheless, in all 4 versions of the kernel and for all three strategies around
85% of the crashing paths is discovered within the first 4 million executions. Again the sparsity of the
crashes and the obvious stagnation of the single-threaded harness indicates the lack of complexity and
adds to the fact that the more slow but more complex multi-threaded approach yields better results
and scales better.

5.4. Vulnerability Reports
Following, we provide vulnerability reports for our findings. Importantly, the last two vulnerabilities,
ISSUE_05 and ISSUE_06, where discovered during fuzzing, while the rest were results of software design
and static code analysis.

Before getting into details about the vulnerabilities is important to consider the task execution model
of the FreeRTOS and try to interpret the task definitions to the Threat Model in Chapter 3. Notably,
we discover that the vanilla version of the kernel has certain issues when comes to suitability of the
OS to space missions. More importantly our findings showcase the lack of an access control system
between tasks and mission-critical system resources, i.e. task priorities, system-calls, etc. Furthermore,
the kernel does not define any privilege level for tasks resulting into trusted and untrusted operations
to run under the same execution context. At the same time, we consider the MPU version of the kernel
which in most of the cases mitigates the issues by enforcing policies over memory regions and a privilege
scheme over the task objects. Our suggestions to mitigate relative issues are covered in greated detail
in Chapter 6.

5.4.1. ISSUE_00 - vTaskSuspendAll Attack
Executive Summary The vTaskSuspendAll vulnerability demonstrates the absence of proper sched-
uler access control in the vanilla FreeRTOS kernel for the POSIX Simulation. An attacker with access
to the vTaskSuspendAll API call can suspend all other running tasks, leading to significant integrity
and availability issues.

Vulnerability Description The lack of access control in the vTaskSuspendAll syscall API suspends
the scheduler and prevents a context switch from occurring while it allows interrupts during this time.
Nevertheless, without manually resuming the scheduler using the vTaskResumeAll syscall, the requests
are held pending, waiting for the scheduler to resume first. This vulnerability allows an attacker who has
access to a task to invoke the vTaskSuspendAll API call without any authorization or authentication
since the kernel supports no distinction or privilege checks for a task that invokes a scheduler API call.
This causes the system’s scheduler to suspend all running tasks, with no mechanism to automatically

5.4. Vulnerability Reports 35

resume operations, unless the relative syscall is invoked. The lack of access control to the scheduler
makes the system susceptible to malicious activity. The affected versions consist of all FreeRTOS Kernel
versions displayed in Table 5.1, in which the call is available.

PoC Details The vTaskSuspendAll API call halts the execution of all tasks and delays pending in-
terrupts until the scheduler resumes. A malicious task invoking this API call can effectively stop all
benign tasks, resulting in complete operational freeze. In our PoC, the benign task was unable to
proceed execution beyond the second tick of a ten-second runtime after the malicious task executed the
call, as shown by the system-log in Listing 5.1. Additionally, interrupts directed to suspended tasks
remain pending, further impacting critical operations.

Listing 5.1: System Log where a malicious task tries to suspend scheduler and a benign task is printing logs periodically.
1 benign_task : performing an important operation ...
2 benign_task : performing an important operation ...
3 benign_task : performing an important operation ...
4 benign_task : performing an important operation ...
5 malicious_task : suspending all other tasks ...
6 malicious_task : all other tasks suspended . If this worked then you should not see any

more messages after this.

Impact Analysis and CVSS Scoring In a mission context, suspending the scheduler causes availability
problems. Important periodic tasks are suspended and system interrupts are held pending until the
scheduler is resumed, thus vital operations are also interrupted and may cause in abnormalities in the
normal mission execution. Besides availability problems, the scheduler’s availability and integrity are
also compromised and result in failing to keep the hard real-time scheduling promises of the system.
This vulnerability requires at least an Local attack vector to be deployed in the same execution context
as the rest of the tasks. It is a Low complexity attack and requires Low privileges in order for the
vulnerability to be triggered, since the task already runs in the system and all the tasks have the
same privilege. It also does not require any interaction from other tasks since it only needs for the
malicious task to execute its code to succeed. The scope is not changed. We currently have a PoC for
demonstration purposes and have tested the vulnerability in a Simulation Environment, meaning there
is Reasonable confidence in the report. There is an available mitigation as described in the following
paragraph. The final attack vector for this vulnerability is displayed in Table 5.9 and its base score is
6.1.

Possible Mitigation The FreeRTOS MPU kernel extension includes access control that restricts unau-
thorized tasks from invoking the vulnerable API call [27]. It is recommended to migrate to this secure
kernel mode for enhanced protection.

5.4.2. ISSUE_01 - vTaskPrioritySet Attack
Executive Summary The vTaskPrioritySet vulnerability demonstrates the potential for a malicious
task to alter another task’s priority, compromising the system’s scheduling integrity and availability. By
manipulating task priority, the attacker can reduce resource allocation for critical tasks or even render
them idle.

Vulnerability Description The lack of access control in vTaskPrioritySet syscall sets the priority of
any task, given a task handle and a priority number in the range of allowed priorities as defined in
the system configuration file. If the kernel is compiled with INCLUDE_vTaskPrioritySet set to 1, and
a task handle for another task is accessible (via shared variables or leaked information), an attacker
in the same execution environment as the target task can alter the latter’s priority. This enables the
attacker to manipulate system resources allocated to critical tasks by possibly increasing the malicious
task priority or even rendering the running tasks idle by setting their priorities to the idle-priority
special number (which is 0 in the FreeRTOS case). The affected versions consist of all FreeRTOS
Kernel versions displayed in Table 5.1, in which the call is available.

5.4. Vulnerability Reports 36

PoC Details A malicious task can invoke the vTaskPrioritySet API to change the priority of a
benign task. Tasks with priority set to 0 become idle and are excluded from resource scheduling. In our
experiment, a benign task performing a critical operation was rendered idle by a malicious task altering
its priority as shown by system logs in Listing 5.2. This attack also disrupts the scheduling integrity,
significantly impacting operational timelines.

Impact Analysis and CVSS Scoring In a mission context, altering the priorities of other tasks might
cause availability problems. Important periodic tasks are missing system resources and their state might
change to idle, causing in abnormalities in the normal mission execution. Besides availability problems,
the scheduler’s integrity is also compromised, which results in possible failure to keep the hard real-time
scheduling promises of the original system design. This vulnerability requires at least an Local attack
vector to be deployed in the same execution context as the rest of the tasks. Due to the fact that a task
object handle must be acquired beforehand, which could be done by exploiting another vulnerability or
brute force the memory objects in the single address space, this is a High complexity attack. It also
requires Low privilege in order for the vulnerability to be triggered, since all the tasks are running under
the same privilege. It also does not require any interaction from other tasks since only the execution
of the malicious task is needed for successful exploitation. The scope is not changed. We currently
have a PoC for demonstration purposes and have tested the vulnerability in a Simulation Environment,
meaning there is Reasonable confidence in the report. There is an available mitigation as described in
the following paragraph. The final attack vector for this vulnerability is displayed in Table 5.9 and its
base score is 5.3.

Possible Mitigation The FreeRTOS MPU kernel extension includes access control that restricts unau-
thorized tasks from invoking the vulnerable API call [27]. It is recommended to migrate to this se-
cure kernel mode for enhanced protection. When this is not a choice it is suggested to disable the
INCLUDE_vTaskPrioritySet in the configuration file.

Listing 5.2: System Logs when a malicious task tries to change the priority of the target task. The task handle is leaked
through a global variable for simplicity purposes.

1 benign_task : priority = 4
2 malicious_task : changing priority of target task
3 malicious_task : changed priority of task ’benign_task ’ to ’2’
4 malicious_task : priority of target task changed . Own priority is ’3’
5 benign_task : priority = 2

5.4.3. ISSUE_02 - xTaskAbortDelay Attack
Executive Summary The discovered vulnerability targets tasks using vTaskDelayUntil, allowing an
attacker to disrupt the periodic scheduling of critical operations by invoking a xTaskAbortDelay on
them. By forcing a delay abort, the attacker compromises task integrity and availability.

Vulnerability Description The xTaskAbortDelay API forces a task to leave the blocked state and enter
the ready state, even if the task is waiting endlessly on purpose. The syscall is available if the user turns
the INCLUDE_xTaskAbortDelay option on in the configuration file. The vTaskDelayUntil syscall is used
by periodic tasks to ensure constant execution frequency. It is enabled if the INCLUDE_vTaskDelayUntil
option is turned on in the configuration header file. If an attacker can access the handle of a task
blocked on vTaskDelayUntil, they can invoke the xTaskAbortDelay API to prematurely terminate
the delay period. This disrupts the task’s timing consistency, causing operational inconsistencies and
compromises the execution frequency. The affected versions consist of all FreeRTOS Kernel versions
displayed in Table 5.1, in which the call is available.

PoC Details The xTaskAbortDelay API, when invoked, removes the delay block on a target task. In
our experiment, a malicious task prematurely aborted the delay of a benign task, resulting in erratic
scheduling behavior of the target task without a potential way of restoring the scheduling setting
besides a system reset. The target task’s periodic operation could no longer maintain a consistent delay
frequency, leading to potential system instability.

5.4. Vulnerability Reports 37

Impact Analysis and CVSS Scoring This attack compromises both the scheduling integrity of the task
and possibly the availability of the system, since critical mission operations, such as data acquisition
and vitals monitoring tasks, are usually implemented as periodic tasks. The attack vectors that could
trigger the vulnerability are considered Local, because we need the attacker process to run in the same
execution context as the target task. The attack requires some proper timing in order to invoke the
xTaskAbortDelay syscall when the target awaits in the blocked state, thus the complexity could be set
to High. The attack vector requires Low privilege in order for the vulnerability to be triggered, since all
the tasks are running under the same privilege, and no interaction to succeed. We currently have a PoC
for demonstration purposes and have tested the vulnerability in a Simulation Environment, meaning
there is Reasonable confidence in the report, while there are official mitigation guidelines. The final
attack vector for the vulnerability is displayed in Table 5.9 and its base score is 5.3.

Possible Mitigation It is suggested to avoid using vTaskDelayUntil in systems requiring high scheduling
integrity, while both vTaskDelayUntil and xTaskAbortDelay can be disabled by turning off the relative
options in the configuration file.

5.4.4. ISSUE_03 - Isolation Issue in Thread Local Storage of FreeRTOS Tasks
Executive Summary An adversary who can use the vTaskSetThreadLocalStoragePointer syscall
could expose the weak memory isolation in the FreeRTOS kernel. A compromised task can access the
thread-local storage of other tasks, compromising memory confidentiality, integrity, and availability.

Vulnerability Description The FreeRTOS kernel configuration enables thread-local storage by defining
configNUM_THREAD_LOCAL_STORAGE_POINTERS. An attacker who has compromised a task can read and
write data in another task’s local storage array, bypassing thread local storage access restrictions. In the
vanilla kernel version there is no memory isolation between local storage of different tasks. The latter
are designed to run as threads and provide an API to read and write values to a system specified memory
area. The developer can define the number of different local storage areas in the kernel configuration file.
It is discovered that a compromised task can use the vTaskSetThreadLocalStoragePointer syscall to
set the values of a different task’s local storage given that the memory handle is leaked. This is possible
due to weak inter-task memory isolation of the thread-like approach to task interpretation by the kernel
and the lack of any other access control when it comes to accessing task memory. The affected versions
consist of all FreeRTOS Kernel versions displayed in Table 5.1, in which the Thread Local Storage API
is implemented.

PoC Details The experiment involved two tasks where the attacker exploited a leaked pointer to access
the local storage of a benign task. The attacker was able to read sensitive data and overwrite variables
which were crucial to the benign task’s execution flow, as displayed in Listing 5.3. For an attacker to
perform this attack it should first leak the target address and since FreeRTOS has a single address space
model it is easy for accessing another task’s private memory because of zero memory-isolation policies
applied when the application is running. Importantly this is a data-only attack since the Thread Local
Storage is not used to save control-flow related data, but thread-specific sensitive data might contain
objects that do change the execution flow of the target task.

Impact Analysis and CVSS Scoring The vulnerability compromises all three aspects of the local storage
CIA, since the attacker can read and write data but in may also cause availability issues. The attack
vectors should be Local, since we need the two tasks, attacker and target, to run in the same execution
context and it is considered a High complexity attack which needs Low privilege in order for the
vulnerability to be triggered, since all the tasks are running under the same privilege and the threat.
The attack does not require any kind of interaction to execute and the scope remains unchanged.
We currently have a PoC demonstrating the attack in a Simulation Environment, meaning there is
Reasonable confidence in the report. Finally, there are official mitigation guidelines to mitigate the
vulnerability. The derived attack vector is displayed in Table 5.9 and its base score is 7.0.

Possible Mitigation It is suggested to migrate the kernel to the MPU version which feature a memory
management unit and allows to create process-wide memory access policies [27]. Again this does not

5.4. Vulnerability Reports 38

solve the issue for tasks under the same memory-access policy. As a further suggestion, sensitive data
should not be stored in the task local storage, or if it necessary, an data integrity mechanism should be
employed.

Listing 5.3: Output demonstrating unauthorized access and modification of another task’s local storage
1 benign_task : saving secret value in local storage ...
2 benign_task : secret value is deadbeef
3 malicious_task : leaked secret value deadbeef
4 malicious_task : Changing secret of another thread to 0 x80085
5 benign_task : secret value is 80085

5.4.5. ISSUE_04 - Static Task Stack Compromise
Executive Summary The static task stack compromise demonstrates that FreeRTOS lacks robust
access controls for task stacks. An attacker can access and modify another task’s stack variables,
compromising memory CIA and possibly the target’s control flow.

Vulnerability Description The FreeRTOS Kernel provides static task resource allocation and creation
through the xTaskCreateStatic syscall. The user can define the task’s stack and supply it with the
only restriction that this memory space is defined as a static variable, meaning it is persistent among
calls. This stack is operating as a normall stack allowing the task to store local variables and control
flow metadata to facilitate its execution. A malicious task can exploit a leaked pointer to a benign task’s
stack to read or modify its variables. This can lead to the leakage of sensitive data or the alteration of
control-flow variables, allowing unauthorized behavior. The affected versions consist of all the versions
of FreeRTOS kernel displayed in Table 5.1.

PoC Details During the experiment, an attacker used a leaked stack variable pointer to overwrite the
benign task’s local variables. The leaked object handle could be acquired by exploiting a memory leak
vulnerability or by bruteforcing static objects in the single address space. This not only compromised
sensitive data but also altered execution flow, enabling unauthorized task operations. Further exploita-
tion could completely compromise the CIA of the target task stack, leading to possible Control-Flow
Integrity issues. The single address space memory model of FreeRTOS dictates zero memory isolation
boundaries on inter-task memory accesses, thus enabling this attack.

Impact Analysis and CVSS Scoring The vulnerability compromises all three aspects of CIA for the
task static memory. The attack vector that triggers this vulnerability is Local, since we need the two
tasks, attacker and target, to run in the same execution context and memory address space and it is
considered a High Complexity attack, since it requires to leak the stack’s handle in order to exploit
the vulnerability. The attack vector needs Low privilege to execute and does not require any kind of
interaction to execute, while the scope remains unchanged. We currently have a PoC demonstrating the
attack in a Simulation Environment, meaning there is Reasonable confidence in the report. Finally, there
are official mitigation guidelines to mitigate the vulnerability. The derived attack vector is displayed in
Table 5.9 and its base score is 7.0.

Possible Mitigation The FreeRTOS MPU version supports privilege-based memory isolation between
tasks through its memory management unit and is therefore the officially suggested mitigation due to its
capability of creating process-wide memory access policies that could mitigate this issue if implemented
properly [27]. Again this does not solve the tasks for tasks under the same memory-access policy. It is
also considered a good practice to never store sensitive data in the stack without some integrity checking
mechanism employed.

5.4.6. ISSUE_05 - Data Overwrite via xTaskCreateStatic
Executive Summary Through our manual exploration of the crash-logs from fuzzing the FreeRTOS
kernel, we discovered that the xTaskCreateStatic API is vulnerable to buffer overflow data-only at-
tacks, allowing attackers to overwrite adjacent memory regions and potentially sensitive variables of
their choice. This compromises the kernel-user-space separation and the memory integrity of sensitive
data.

5.4. Vulnerability Reports 39

Vulnerability Description The xTaskCreateStatic API allows attackers to specify a stack buffer and,
most importantly, size during task creation. By providing an size value larger than the actual size of the
provided buffer, attackers can write beyond the buffer boundary, potentially altering control variables or
sensitive data. More specifically, the API’s implementation uses a memset call to initialize the buffer for
which the size parameter is the same as the user defined one. If the size is larger then the initialization
byte is written beyond the bounds of the buffer, overwriting adjacent memory locations. The affected
versions consist of all the FreeRTOS Kernel versions mentioned in Table 5.1.

PoC Details In the experiment, an attacker used the xTaskCreateStatic API to overwrite adjacent
memory regions with the byte value 0xA5, which is the byte that memset uses to initialize the static
stack parameter. For the attack to be successful the target variable should be adjacent to the attacker
controlled variable and stored after the latter in the relative memory layout. In our example, we used
the problematic syscall to alter the value of a global target variable when the attacker controlled an
adjacent global variable, both of which were saved in the uninitialized segment (.bss) of the program.

Impact Analysis and CVSS Scoring Although the written value is not attacker-controlled, this overflow
has significant security implications to the memory integrity and possibly to the execution’s integrity
if the variable is used to control the operations of the running task. Nevertheless the attacker cannot
control the data that are overwritten, therefore its impact is deemed as Low. Again the attack vector
is Local, since the compromised task must be run in the same context with the target task and perform
the ill-formed syscall to overwrite the target memory object. The complexity is therefore High and the
attacker process could be of Low privilege, while no interaction is needed from the target task to trigger
the vulnerability and the scope does not change. We currently have a PoC program that demonstrates
an attack scenario in a Simulation Environment, meaning there is Reasonable confidence in the report,
while there is an official partial mitigation for this vulnerability. The final attack vector is displayed in
Table 5.9 and its base score is 3.6.

Possible Mitigation The FreeRTOS MPU version supports privilege-based memory isolation between
tasks through its memory management unit and is therefore the officially suggested mitigation when
high privileged task isolation is required. This can be achieved through its MPU capability that allows
the creation of process-wide memory access policies [27]. Again this does not solve the problem for
tasks that run under the same memory policy. Another possible mitigation, whether the user decides
to use the vanilla kernel version, is to restrict the use of this call to the unprivileged tasks that are not
supposed to create tasks.

5.4.7. ISSUE_06 - Data Overwrite via xStreamBufferCreateStatic
Executive Summary Through our manual exploration of the crash-logs from fuzzing the FreeRTOS
kernel, we discovered that the xStreamBufferCreateStatic API is vulnerable to buffer overflow data-
only attacks, allowing attackers to overwrite adjacent memory regions and potentially sensitive variables
of their choice. This compromises the kernel-userspace separation and the memory integrity of sensitive
data.

Vulnerability Description The xStreamBufferCreateStatic API is used to create static stream buffer
data structures for Inter-Process Communication (IPC). It allows users to specify a buffer that acts
like a buffering stream, from which tasks can read from and write to, and the size of the buffer during
stream-buffer creation. By providing an size value larger than the actual size of the provided buffer,
attackers can write beyond the buffer boundary, potentially altering sensitive data. More specifically,
the API’s implementation uses a memset call to initialize the buffer for which the size parameter is the
same as the user defined one. If the size is larger then the initialization byte is written beyond the
bounds of the buffer, overwriting adjacent memory locations. The affected versions consist of all the
FreeRTOS Kernel versions mentioned in Table 5.1.

PoC Details In the experiment, an attacker used the xStreamBufferCreateStatic API to overwrite
adjacent memory regions with the byte value 0x55, which is the byte that memset uses to initialize the
static stream buffer object, provided as a parameter to the call. For the attack to be successful the

5.4. Vulnerability Reports 40

Vulnerability Vector Base
Score

Temporal
Score

Environmental
Score

ISSUE_00 CVSS:3.0/AV:L/AC:L/PR:L/UI:N/
S:U/C:N/I:L/A:H/E:P/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

6.1 5.3 5.4

ISSUE_01 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:N/I:L/A:H/E:P/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

5.3 4.6 5.4

ISSUE_02 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:N/I:L/A:H/E:P/RL:T/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

5.3 4.6 5.4

ISSUE_03 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:H/I:H/A:H/E:P/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

7.0 6.1 5.5

ISSUE_04 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:H/I:H/A:H/E:P/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

7.0 6.1 5.5

ISSUE_05 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:N/I:L/A:L/E:P/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

3.6 3.1 3.5

ISSUE_06 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:N/I:L/A:L/E:P/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

3.6 3.1 3.5

Table 5.9: CVSS Vectors for FreeRTOS findings. For the environmental Scores we set the CIA Requirements to High for
all of the vulnerabilities, while for ISSUE_01 and ISSUE_02, we set the Modified Privileges required to High to indicate

that the configurations needed to make the vulnerable methods available are not the default ones supported by the
FreeRTOS Kernel.

target variable should be adjacent to the attacker controlled variable and stored after the latter in the
relative memory layout. In our example, we used the problematic syscall to alter the value of a global
target variable when the attacker controlled an adjacent global variable, both of which were saved in
the uninitialized segment (.bss) of the program.

Impact Analysis and CVSS Scoring Although the written value is not attacker-controlled, this overflow
has significant security implications to the memory integrity and possibly to the execution’s integrity
if the variable is used to control the operations of the running task. Nevertheless the attacker cannot
control the data that are overwritten, therefore its impact is deemed as Low. Again the attack vector
is Local, since the compromised task must be run in the same context with the target task and perform
the ill-formed syscall to overwrite the target memory object. The complexity is therefore High and the
attacker process could be of Low privilege, while no interaction is needed from the target task to trigger
the vulnerability and the scope does not change. We currently have a PoC program that demonstrates
an attack scenario in a Simulation Environment, meaning there is Reasonable confidence in the report,
while there is an official partial mitigation for this vulnerability. The final attack vector is displayed in
Table 5.9 and its base score is 3.6.

Possible Mitigation The FreeRTOS MPU version supports privilege-based memory isolation between
tasks through its memory management unit and is therefore the officially suggested mitigation when
high privileged task isolation is required. This can be achieved through its MPU capability that allows
the creation of process-wide memory access policies [27]. Again this does not solve the problem for
tasks that run under the same memory policy. Another possible mitigation is to restrict the use of this
call to the unprivileged tasks that are not supposed to create IPC objects.

5.5. Cube-FlatSAT Testing 41

5.4.8. Setting the Environmental Scores
In Table 5.9, we define the environmental scores for the identified vulnerabilities, consistently setting
both "Modified Attack Complexity" (MAC) and "Modified Privilege Required" (MPR) to "High." The
rationale behind this approach stems from the highly specific execution environment of space systems.
Both hardware and software configurations are fine-tuned to meet mission-specific requirements, making
it significantly more challenging for an attacker to understand the exact conditions necessary for a
successful exploit. For instance, in ISSUE_05 and ISSUE_06, the vulnerabilities depend on the way
variables are stored in memory. Proof-of-concept (PoC) exploits that work in a simulated environment
may fail on an actual satellite platform due to incorrect assumptions about how memory is managed in
the deployed system.

Additionally, our threat model assumes that the attacker already has control over a compromised
task. In the vanilla FreeRTOS kernel, all tasks share the same privilege level due to its thread-based
design, meaning that an accurate privilege assessment must consider the actual level of access required
to execute the attack and its real impact. Unlike traditional OSes, FreeRTOS does not distinguish
between user-space and kernel-space execution, effectively granting every task "High" privilege by default.
Furthermore, since tasks inherit the same privilege level assigned to the system by the hypervisor, they
have unrestricted access to system resources. As a result, we set "Modified Privilege Required" to "High"
to reflect this unrestricted execution model.

By adjusting these environmental score metrics, we aim to accurately represent the likelihood and
feasibility of an attack, ensuring that the overall CVSS score remains appropriately balanced. Our
research specifically focuses on post-exploitation and onboard exploitation scenarios, which inherently
occur later in the attack chain and demand a deeper understanding of the target platform and software
to be carried out successfully.

5.5. Cube-FlatSAT Testing
In order to evaluate the aforementioned issues, we compile and run an image of the PoCs on a Cube-
FlatSAT created for testing and experimentation. The process consists of running the PoCs to an OBC
simulator and then cross compiling the images and flashing them into the flatsat OBC. For retrieving
result evidence we create a logging server that gathers logs sent over a CAN-Bus which is connected to
the ground section. Afterwards, we determine how many of the PoCs actually work on the platform
and re-evaluate the CVSS scoring by changing the "Exploit Code Maturity" scoring.

The Cube-FlatSAT runs FreeRTOS 10.2.6, which is older than the tested versions of the software but
contains the dependencies needed to run the majority of our PoCs. We utilize the OBC source code
created for the 2024 3S Security Challenge [45] which uses CubeSat Space Protocol (CSP) [24] for
communication between the 4 computing modules using a CAN-Bus. This CAN-Bus is also available
to the Ground Segment through a CAN-to-USB adaptor which enables us to tap into the interface and
simulate a CSP node which participate in the protocol.

Firstly, we integrate our benign and malicious tasks in the simulator, compile the OBC and run it using
the POSIX Simulation for FreeRTOS. Once this step is completed, we adjust the OBC simulator to send
logs over the CAN-Bus to a special node and port numbers, the ones used to deploy our logging server.
This way every time a progress message is communicated the Ground Segment takes note and enables
us to retrieve evidence of what is happening on-board. Afterwards, we compile the OBC source-code
with the arm cross-compiler and use C-Shell to communicate with the on-board nodes and flash our
software in one of them. With the logging server listening for connections, we store logs of the messages
receive and inspect them later in order to evaluate the success of our experiments.

The logging server consists of a C script that sets up the CSP interface, initializes the CSP protocol
and routing services and then listens indefinitely to new connections. If the connection is targeting the
agreed-upon port, the server logs the message, otherwise it default to the predefined behavior so that
it does not lose any default functionality. The logs are stored locally on the running machine. The
service should be run with administrator privileges so that it can re-initialize the CAN interface before
starting the server.

From the starting POCs only ISSUE_05 and ISSUE_06 failed to successfully execute on the representative

5.6. Limitations 42

Vulnerability Vector Base
Score

Temporal
Score

Environmental
Score

ISSUE_00 CVSS:3.0/AV:L/AC:L/PR:L/UI:N/
S:U/C:N/I:L/A:H/E:H/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

6.1 5.6 5.7

ISSUE_01 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:N/I:L/A:H/E:H/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

5.3 4.9 5.7

ISSUE_02 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:N/I:L/A:H/E:H/RL:T/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

5.3 4.9 5.7

ISSUE_03 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:H/I:H/A:H/E:H/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

7.0 6.4 5.9

ISSUE_04 CVSS:3.0/AV:L/AC:H/PR:L/UI:N/
S:U/C:H/I:H/A:H/E:H/RL:O/RC:R/
CR:H/IR:H/AR:H/MAC:H/MPR:H

7.0 6.4 5.9

Table 5.10: Updated CVSS Vectors for FreeRTOS findings. The last two findings were dismissed since there is no change.
The "Exploit Code Maturity" metric is properly adjusted for the rest.

hardware. For the first one, the reasons are architecture specific, since it dependes on the order of the
affected variables-assets in the different data sections (.bss, stack, etc.), while the second one was not
able to compile in the first place since the version was not supporting the syscall-api we were trying to
exploit. In Table 5.10 we see the new CVSS scores for the issues which were effectively demonstrated
on the Cube-FlatSAT. The "Exploit Code Maturity" scores change from "Proof-Of-Concept" to "High"
since the PoCs are also working in the specialized testing platform, while the "Report Confidence"
remains "Reasonable" because we did not test against a real OBSW of a space mission.

More interestingly ISSUE_00 caused the Watchdog task to suspend its execution. The user-level com-
ponent "SW Watchdog", as displayed in Figure 5.3, consists of a task that handles communication with
the supervisor technology of the flatsat, making sure that it responds to commands and/or health-pings
from the former. By suspending this task, the health ping fails and we trick the supervisor to perform
a soft reboot on the node while it also changes the selected FLASH image that is loaded to run on the
node. In our case, if we flash this image to all 4 available flashes we cause the satellite to enter a state
that it will always reboot and try to find a "healthy" image to boot. More specifically, if we want to
force the node to run a specific image that we have loaded in a fixed FLASH module, we could use this
issue to block the rest of the images from running.

5.6. Limitations
Fuzzing Fuzzing the FreeRTOS Kernel using the POSIX Simulator resulted in constructing a series
of tools and scripts to automate the process and enhance the static analysis and code auditing phases.
Nevertheless, our fuzzing methodology was based on AFL++ a generic method coverage guided framework
which does not facilitate state and context awareness and does not support grammar-based fuzzing of
any kind out of the box. Therefore, we had to tune the framework and create middle-ware that enabled
us to simulate different tasks running concurrently. The adjustments made, although they enhanced
the achieved coverage and comprehensiveness of our testing, they slowed down the fuzzing significantly.
Furthermore, fuzzing the system-level state is a challenging and complex task, especially when using a
generic use fuzzer such as AFL++. Although out of the scope of the current work, focusing in fuzzing
system state would improve the efficiency of our fuzzing and enable us to explore different kinds of
bugs, e.g. race conditions. Finally, both the syscall and parameter selection for fuzzing is based on the
simplicity of the fuzzed parameters, an action which, on its own, discarded a fair amount of API calls
from our checks because of the complexity of meaningfully fuzz parameters such as memory objects and
pointers, which resulted in generating a large amount of early-crashing inputs, thus were fixed in order

5.6. Limitations 43

to enable deeper exploration of the instrumentation trees for the selected syscalls. The integration of
state-of-art real-time-system-state supporting fuzzers [38] could tackle this challenge and enable our
harness function to fuzz more sophisticated syscalls on which object handles and their internal state
are an important factor which guides the syscall execution path.

Cube-FlatSAT Testing The Cube-FlatSAT setup introduced several limitations that affected the test-
ing and validation process. One major challenge was the lack of a robust debugging toolset, making it
difficult to retrieve meaningful results when FreeRTOS-based experiments caused system crashes or un-
expected behavior. Additionally, the FreeRTOS version running on the platform was outdated (10.2.6),
which limited compatibility with some of the proof-of-concept (PoC) exploits. Specifically, one PoC
could not be tested due to missing API support in this older version. Another significant issue was the
impact of soft reboots on debugging consistency each time the OBC crashed, it flushed to a different
image, making it difficult to maintain a persistent state for analysis. This constant switching between
images disrupted the ability to track failures systematically and slowed down the iterative testing pro-
cess. These factors collectively hindered a more comprehensive evaluation of the vulnerabilities in a
real-world onboard system.

6
Discussion

6.1. Responsible Discloure
Responsible disclosure is a key practice in vulnerability research, ensuring that security flaws are com-
municated to relevant stakeholders in a structured and ethical manner before they can be exploited
maliciously. The common process for disclosing vulnerabilities involves privately reporting findings to
the affected vendor or governing body, allowing them adequate time to investigate, patch, and mitigate
risks before public disclosure. This is typically done through a Coordinated Vulnerability Disclosure
(CVD) process, where researchers provide a detailed technical report, including proof-of-concept ex-
ploits, impact assessments, and potential mitigations. Depending on the severity and scope of the issue,
the organization receiving the report may work with national cybersecurity agencies, standardization
bodies, or sector-specific security groups to address the vulnerabilities comprehensively.

Given the mission-specific nature of vulnerabilities in space systems, where software security risks are
tightly coupled with onboard hardware configurations, operational constraints, and mission objectives,
a traditional vulnerability disclosure approach is not always feasible.

To ensure our research findings were responsibly handled, we engaged in direct communication with the
European Space Agency (ESA) and submitted our vulnerability reports to their security teams. ESA,
as a key actor in European space security, provided valuable feedback on our findings, particularly
in evaluating CVSS scoring and setting Environmental Scores to better reflect real-world risk in the
context of space missions. This collaborative process helped refine the severity ratings of our findings
by incorporating domain-specific considerations such as mission duration, onboard software update
feasibility, and isolation guarantees provided by spacecraft architectures.

By following this disclosure process, we aimed to contribute constructively to the security of space-
borne Real-Time Operating Systems and hypervisors, ensuring that potential threats are mitigated
before they can be leveraged in an operational environment.

6.2. SPACE-SHIELD Contributions
In this work we also aim to extend the existing SPACE-SHIELD framework [41] with new techniques
and impact scenarios that would also reflect to our experiments. Our contribution is partially inspired
by the SPARTA [43] and the MITRE EMB3D [28] frameworks.

Lateral Movement
We propose two new sub-techniques under the "Compromise the satellite platform starting from a
compromised payload" category:

• Inter-Task Compromise: This attack path involves compromising a single task within an RTOS
and leveraging inadequate memory isolation to influence or control other tasks. In our exper-
iments, this was demonstrated through the attack that exploited the lack of access control in

44

6.3. Mitigation Suggestions 45

vTaskPrioritySet system call, enabling a compromised task could manipulate the scheduling
and execution of others.

• Inter-Application Compromise: In hypervisor environments, compromising one guest application
could lead to unauthorized interactions with other applications, exploiting weaknesses in spatial or
temporal isolation. This was evidenced by attacks exploiting the hypervisor’s scheduling policies.

Impact
We introduce two new impact scenarios under the "Saturation/Exhaustion of Spacecraft Resources"
technique:

• RTOS Scheduler Compromise: This involves manipulating the RTOS scheduler to delay or deny
the execution of critical tasks, potentially impacting satellite operations like Attitude Determina-
tion and Control System (ADCS) or Electrical Power System (EPS) management.

• Hypervisor Scheduling Compromise: Similar to the RTOS scenario but within hypervisor en-
vironments, where malicious manipulation of partition schedules can disrupt mixed-criticality
operations.

Execution
A new technique, "Exploit Code Flaws", is introduced, with further refinements tailored to Space OS and
is inspired by the similar category described in the SPARTA framework. The following sub-techniques
are the first suggested candidates that could fit this classification of attack scenarios:

• (RT)OS Exploits, which focus on compromise of assets of the (Real Time) Operating System
running on the OBC modules. They could range from memory corruption exploits up to access
control abuse. Based on our experiments and use case we can also make more concrete techniques
such as Lack of Access Control in Task Memory and Overwriting Memory Areas through Buffer
Overflows.

• Hypervisor Software Exploits, which focus on exploiting bugs in the hypervisor software and gain
access to this process. Although escaping techniques are considered part of lateral movement,
there is a change of domain in this case, thus we include this group of techniques in the arbitrary
execution class.

• Known Vulnerability Exploits: Systematic exploitation of publicly disclosed CVEs relevant to
Space OS.

These extensions enhance the SPACE-SHIELD frameworks capability to map complex attack vectors
specific to RTOS and hypervisor systems, reflecting realistic threats in space missions. Furthermore,
by integrating these attack paths, SPACE-SHIELD aligns more closely with the detailed classifications
found in SPARTA.

Table 6.1 demonstrates the extensions needed in the SPACE-SHIELD framework to effectively cover
the vulnerabilities identified in our research. Notably, many of the RTOS-related attacks could not ex-
plicitly be mapped in the current version of SPACE-SHIELD and SPARTA frameworks. Our proposed
extensions, such as the "RTOS Scheduler Compromise" and "Exploit Code Flaws" categories, provide a
more granular classification for these vulnerabilities. These additions are essential for accurately mod-
eling threat vectors in Space OS environments, enhancing the comprehensiveness of SPACE-SHIELD
and aligning it more closely with real-world attack scenarios.

6.3. Mitigation Suggestions
To effectively secure Space OS platforms, particularly RTOS and Hypervisors in mixed-criticality satel-
lite systems, a comprehensive set of mitigation strategies is required. This section presents general
design guidelines as well as specific countermeasures aimed at neutralizing identified attack vectors.
These recommendations are grounded in both industry standards and recent research findings, includ-
ing sandboxing, access control mechanisms, and secure communication protocols.

Ensuring strict memory isolation between tasks and partitions is essential to prevent unauthorized ac-
cess and mitigate data leakage. In RTOS environments, this can be achieved using Memory Protection
Units (MPUs) to segregate task memory spaces. For hypervisors, spatial isolation mechanisms must

6.3. Mitigation Suggestions 46

Vulnerability ID SPACE-SHIELD Mapping SPARTA Mapping Adjusted SPACE-SHIELD Mapping

ISSUE_00 N/A
Modify On Board
Values: Scheduling
Algorithm

Impact: RTOS Scheduler Compromise

ISSUE_01 N/A N/A Lateral Movement: Inter-Task Compro-
mise

ISSUE_02 N/A
Modify On Board
Values: Scheduling
Algorithm

Impact: RTOS Scheduler Compromise

ISSUE_03 Software Vulnerabilities
Exploit Code
Flaws: Operating
System

Execution: (RT)OS Exploits: Lack of
Access Control in Task Memory

ISSUE_04 Software Vulnerabilities
Exploit Code
Flaws: Operating
System

Execution: (RT)OS Exploits: Lack of
Access Control in Task Memory

ISSUE_05 Software Vulnerabilities
Exploit Code
Flaws: Operating
System

Execution: (RT)OS Exploits: Over-
writing Memory Areas through Buffer
Overflows

ISSUE_06 Software Vulnerabilities
Exploit Code
Flaws: Operating
System

Execution: (RT)OS Exploits: Over-
writing Memory Areas through Buffer
Overflows

Table 6.1: Mapping of Vulnerabilities to SPACE-SHIELD and SPARTA Frameworks, including Proposed Extensions

be enforced, particularly between partitions of different criticality levels, to safeguard sensitive data
and prevent lateral movement attacks. Moreover, temporal isolation through time-partitioned schedul-
ing models can ensure high-priority tasks receive the necessary CPU time without interference from
compromised low-priority tasks.

Sandboxing To mitigate risks from compromised applications, especially in multi-tenant platforms,
sandboxing and access control mechanisms can be employed to restrict privileges and system access at
both the application and system levels. These approaches isolate malicious code within a controlled
environment, preventing lateral movement, unauthorized system modifications, and privilege escalation.
In Linux-based environments, tools such as seccomp-bpf, cgroups, and namespaces effectively limit
process privileges and access to system resources, confining execution within restricted environments
and preventing unauthorized interactions with critical system components [26]. For CubeSat missions,
seccomp-bpf filters are particularly useful for restricting dangerous system calls, while cgroups enforce
resource constraints, mitigating the risk of denial-of-service (DoS) attacks from malicious processes.
To further enforce the principle of least privilege, Mandatory Access Control (MAC) systems such as
AppArmor and SELinux regulate file and resource access permissions, minimizing the attack surface.
These systems enforce capability-based privilege separation, restricting the actions each application can
perform. Their effectiveness is enhanced when combined with containerization tools like nsjail and
firejail, which provide additional namespace segregation and syscall filtering.

Memory Protection and Error Correction Memory corruption, including Single-Event Upsets (SEUs)
induced by cosmic radiation, poses a critical threat to satellite systems. To mitigate this, a combina-
tion of hardware and software countermeasures is necessary. Utilizing Error Correction Codes (ECC)
provides error detection and automatic correction of single-bit errors, maintaining data integrity. Ad-
ditionally, deploying radiation-hardened processors and memory modules enhances resilience against
cosmic radiation-induced faults, ensuring system stability and reliability [26, 54]. Furthermore, im-
plementing protected memory regions in RTOS and hypervisors prevents attackers from accessing or
modifying critical data structures, safeguarding system integrity and confidentiality.

6.3. Mitigation Suggestions 47

Privilege Escalation Mitigation To safeguard against privilege escalation and resource abuse, control
mechanisms are necessary to limit process resource consumption and access levels. In Linux-based
environments, cgroups can enforce resource usage limits, preventing a compromised process from mo-
nopolizing CPU, memory, or I/O resources. This mitigates the risk of denial-of-service (DoS) attacks
by containing resource abuse within isolated groups [26].

Secure-by-Design Adopting a Secure-by-Component design paradigm ensures that each system module
is isolated and protected, minimizing the risk of cascading failures or privilege escalation attacks. By
designing space systems as a collection of isolated subsystems, such as command and control, payload
operations, and communication modules, the blast radius of a potential attack is minimized [50, 54].
Implementing layered security controls, including access control policies, encryption, and hardware-level
isolation, ensures that an attack on one component cannot propagate to other critical modules.

FreeRTOS MPU Case Since the focus of the experiments was on FreeRTOS Kernel, we explored in
detail the capabilities of the MPU-enhanced kernel [27] as a potential mitigation for the issues we
identified in our experiments. The MPU-enhanced FreeRTOS kernel enforces memory access policies
between tasks by restricting direct memory access outside predefined regions. This mechanism mitigates
memory corruption risks by isolating task stacks, preventing buffer overflows from propagating between
tasks. It managed to mitigate all of the discovered issues in a simulated environment. Furthermore, it
introduces a distinction between privileged and unprivileged tasks, allowing fine-grained control over
system resources. Additionally, "restricted" tasks enforce permissions over shared memory regions, lim-
iting their ability to interfere with critical system components. Restricted tasks are also prohibited from
executing dangerous system calls, ensuring that a compromised low-privilege task cannot manipulate
the scheduler or escalate its privileges. This effectively mitigates some of the vulnerabilities we reported
in the vanilla kernel, such as scheduler manipulation through vTaskSuspendAll or unauthorized pri-
ority modifications via vTaskPrioritySet. However, it is important to note that MPU enforcement
is hardware-dependent and requires a processor with an MPU unit, which might not be available on
all space-qualified microcontrollers. Additionally, MPU-based enforcement applies only to tasks and
does not extend to kernel-level components, meaning that a vulnerability in a privileged task could still
compromise the system. Moreover, actors such as Interrupt Service Routines (ISRs) and peripheral
device drivers remain fully trusted and are not within the scope of the MPU security model, potentially
leaving them as an attack surface for privileged escalation through driver exploits.

7
Related Work

Security assessment of on-board software, and specifically Real-Time Operating Systems (RTOS), has
gained increasing attention in recent years due to the critical role these components play in different
kinds of embedded applications, one of which would be space missions. While extensive research has
been conducted on security testing methodologies for general-purpose operating systems in terrestrial
environments, significantly less work has been done to address the unique constraints of space systems
[13, 18, 53, 54]. This chapter explores the state-of-the-art work in RTOS security testing, highlighting
the methodologies employed, key vulnerabilities discovered, and the gaps that remain in the field. Fur-
thermore, we examine open-source vulnerability research, which provides valuable insights into existing
security weaknesses in widely used space software, emphasizing the urgent need for a standardized
security testing framework.

7.1. RTOS Testing
Similarly to hypervisors, dynamic analysis of Real-Time Operating Systems is a rather interesting and
again challenging field. RTOS are more common when hard time constrains are required, therefore
availability and scheduling integrity are important assets and usual targets for attackers. Tools such as
SFuzz and RTKaller perform dynamic analysis utilizing advanced fuzzing techniques that are adjusted
to the multi-tasking environment of the RTOS landscape.

SFuzz, a slice-based fuzzing framework, has demonstrated significant success in identifying vulnera-
bilities in RTOS binaries by isolating functionality-specific code slices. Using forward and backward
slicing, SFuzz achieves precise targeting of potential weaknesses, identifying 77 previously unknown vul-
nerabilities, with 67 assigned CVEs, showcasing arbitrary code execution and Denial of Service attack
vectors on the tested RTOS [4]. Similarly, Rtkaller employs a state-aware fuzzing methodology to test
real-time-specific code, which traditional kernel fuzzers often fail to explore. By generating task-based
test cases, Rtkaller uncovered 28 new vulnerabilities including memory corruption and race condition
attack vectors, emphasizing the importance of state-sensitive testing [38].

Both tools start by highlighting the challenges which are inherent in RTOS testing due to their mono-
lithic architecture and lack of strict separation between kernel and user space. Futhermore, they try to
explore alterations on the fuzzing methodology, instrumentation and symbolic execution phases to in-
crease the general performance. These design characteristics necessitate dynamic and context-sensitive
testing strategies that account for inter-task dependencies and real-time constraints. Nevertheless, in
our research we prioritize the experimentation with standard industry tools and assume that advanced
and non-industry tested solutions are out of scope. The motivation behind that is to reduce the complex-
ity of our starting implementation and also make a more comprehensive and portable toolset that focus
on the standardization of space OS Testing. Of course our future work mentions how this framework
could be adjusted in order for specific use cases and improvements can be integrated in the starting
framework.

48

7.2. Open Source Vulnerability Research 49

7.2. Open Source Vulnerability Research
Short Title Description Product Affected

Versions

Dynamic
Loading
Risks [8]

RTEMS enables dynamic loading of executables
without proper security checks. An attacker could
install high-priority dummy tasks, compromise avail-
ability, execute malicious code, and install back-
doors.

RTEMS ≤ 5.3

Memory
Protection
Absence [8]

In RTEMS, the absence of memory protections could
allow attackers to execute arbitrary commands and
persist on the target.

RTEMS ≤ 5.3

Shell Privi-
lege Escala-
tion [8]

The RTEMS Shell provides development and debug-
ging features but can be exploited for privilege esca-
lation. Users can access it via serial ports or network
sockets, potentially obtaining root access.

RTEMS ≤ 5.3

In-Memory
File System
Exploit [8]

RTEMS default configurations allow users to exploit
in-memory file systems (ImFS), enabling data manip-
ulation under an acting task.

RTEMS ≤ 5.3

Table 7.1: Open Source Vulnerabilities for RTEMS real time operating system. When version of the software is not
explicitly notated we look at publication date and relative versions available at this point in time, as a means to

approximate the possible version of the software used for the evaluation of the findings.

Short Title Description Product Affected
Versions

Heap Mem-
ory Bounds
Issue [32]

Insufficient bounds checking in heap memory man-
agement in FreeRTOS before 10.4.3 could lead to un-
defined behavior.

FreeRTOS <10.4.3

Stream
Buffer Over-
flow [31]

Integer overflow in stream_buffer.c in FreeRTOS
before 10.4.3 could lead to buffer overflow vulnerabil-
ities.

FreeRTOS <10.4.3

Queue
Creation
Overflow
[30]

Integer overflow in queue.c for queue creation in
FreeRTOS before 10.4.3 could lead to undefined be-
havior.

FreeRTOS <10.4.3

Control Data
Leak Attack
[53]

An external attacker with that can send messages us-
ing the Internal Communication Protocol could ex-
ploit a heap memory overead vulnerability to achieve
a "Control Data Leak" attack. This happens be-
cause the function of the command scheduler, the
FreeRTOS component which executes the associated
command using the included parameters, does not
validate the length of the arguments.The researchers
mention that the attack was tested in their own ETS-
CUBE-1 lab set up.

FreeRTOS N/A

Table 7.2: Open Source Vulnerabilities for FreeRTOS. When version of the software is not explicitly notated we look at
publication date and relative versions available at this point in time, as a means to approximate the possible version of

the software used for the evaluation of the findings.

Security vulnerabilities in open-source software have been a major focus of research, as these systems
often form the backbone of modern applications, including those in space environments. In this section,

7.2. Open Source Vulnerability Research 50

we examine notable vulnerabilities reported in Real-Time Operating Systems (RTOS), hypervisors,
and other critical onboard software. Table 7.1 and Table 7.2 summarizes vulnerabilities identified in
RTEMS and FreeRTOS, all of which have been studied in various open-source research initiatives.
These vulnerabilities provide a lens through which we can assess the risks to onboard space systems
and highlight the urgent need for standardized testing frameworks.

7.2.1. Insights from Open-Source Vulnerabilities
Open-source RTOS such as RTEMS and FreeRTOS have been widely deployed in embedded systems,
including CubeSats and larger spacecraft [15, 34]. Research into these systems has uncovered a range
of vulnerabilities that could be exploited in space environments.

The main consideration for RTEMS are covered in Table 7.1 Dynamic loading risks and lack of mem-
ory protection in RTEMS pose a significant threat to system availability and integrity. An attacker
with physical or remote access could inject high-priority tasks or execute malicious code, potentially
compromising critical mission operations. The RTEMS shell and in-memory file systems (ImFS) could
also be leveraged by adversaries to escalate privileges or manipulate onboard data, threatening the
confidentiality and availability of mission-critical information.

As displayed in Table 7.2, FreeRTOS presents issues such as heap memory bounds violations, stream
buffer overflows, and queue creation vulnerabilities could be exploited to trigger undefined behavior,
leading to potential denial-of-service (DoS) attacks or privilege escalation. Notably, the "Control Data
Leak" attack in FreeRTOS highlights how an attacker could manipulate inter-process communication,
exposing sensitive information or disrupting operations.

7.2.2. Implications for the Space Environment
While many of these vulnerabilities originate in terrestrial applications, their consequences are mag-
nified in space systems due to the unique constraints of the environment. Spacecraft rely heavily on
onboard software to manage critical functions such as attitude control, power distribution, and com-
munication. Exploitation of these vulnerabilities could have catastrophic outcomes, including mission
failure, interference with multi-tenant systems, or loss of control.

Manipulating onboard software to disrupt operations could render a spacecraft unable to complete its
mission or communicate with ground control. Privilege escalation attacks or unauthorized access to
debugging tools could allow attackers to seize control of the current execution environment and even
try to propagate effect on the rest of the spacecraft, potentially resulting in high-impact actions such
as jamming communications or redirecting orbital paths.

The constrained nature of space systems further exacerbates the impact of these vulnerabilities. Limited
computational resources, the difficulty of patching or updating software in orbit, and the inability to per-
form physical interventions make it imperative to identify and mitigate vulnerabilities pre-deployment.

7.2.3. Standardized Testing Frameworks
The vulnerabilities discussed above underscore the pressing need for a standardized approach to testing
onboard software and space operating systems. Unlike traditional IT systems, space systems operate
in highly adversarial environments, both in terms of physical constraints and potential threats.

A unified framework would ensure comprehensive testing of onboard software against known vulnerabil-
ities and attack vectors. It would facilitate the sharing of security best practices across the aerospace
community, enabling collaborative improvement. Moreover, it would streamline the certification pro-
cess for space software, providing confidence in its robustness before launch. Such a framework could
also address specific challenges unique to the space domain, such as radiation-induced faults and real-
time performance constraints. In our work, we propose a version of such a framework by providing an
example of defining the Threat Model and Risk Assessment Framework of OBSW testing, then imple-
menting a standardized tool-chain that uses dynamic analysis to discover issues in the space OS and
finally trying to automate the manual work necessary for triaging and evaluating the discovered issues.
At the same time, we extend and integrate SPACE-SHIELD [12] framework in our pipeline to increase
the explainability of our discoveries.

Open-source research provides a strong foundation for this initiative, offering a wealth of insights

7.2. Open Source Vulnerability Research 51

into how vulnerabilities manifest and how they might be exploited. By leveraging these findings, the
aerospace community can take a proactive stance in securing the next generation of space systems.

8
Conclusion

Summary of this work
The security of on-board space systems is becoming an increasingly critical concern as RTOS are
integrated into mission-critical functions. This thesis provides a structured approach to evaluating
the security of mixed-criticality space applications, focusing on post-exploitation analysis and lateral
movement risks in FreeRTOS-based environments. By leveraging a framework based on fuzzing and
automated false-positive/duplicate elimination we have identified potential issues which, after validating
in a representative testbed, highlight the lack of task isolation and improper privilege separation in
RTOS systems commonly used in space missions.

The central contribution of this work is the definition of a standardized and well-motivated Threat
Model and Risk Assessment framework and the example implementation of a framework that automates
the vulnerability discovery procedure and sets the foundation for a generalized testing process for
SpaceOS using state-of-the-art industry-preferred tools. The risk assessment framework also integrates
vulnerability assessment standards such as the CVSS vulnerability scoring framework to contextualize
security risks within the space domain. This allows for a more accurate assessment of threats based on
operational constraints, mission impact, and attacker capabilities. Our collaboration with ESA during
responsible disclosure further ensured that our findings were aligned with real-world space security
needs.

Moreover, our research contributes to the SPACE-SHIELD framework by expanding on post-exploitation,
execution and impact related techniques which could be used by attackers to further compromise the
OBSW.

Despite our contributions, several challenges remain. The limitations of fuzzing RTOS due to lack of
debugging support in space testbeds, the difficulty of obtaining high-fidelity crash analysis, and the
unique constraints of real-time execution environments highlight the need for more adaptable security
testing methodologies.

Future Work
This work represents an initial attempt to standardize the kernel fuzzing process for RTOS platforms
employed in satellite missions. It establishes a foundational framework that future research can build
upon to enhance the robustness and security of space OS components. One of the primary areas for
improvement is the refinement of the harness function to enable more sophisticated fuzzing campaigns.
Currently, the syscall selection methodology is based on parameter simplicity and AFL++s capability to
perform effective mutations. However, this approach could be expanded by developing a more strategic
selection process, emphasizing syscalls with complex state dependencies. Furthermore, enhancing the
state mutation logic for objects utilized by these syscalls could uncover additional execution paths in
the kernel, thereby increasing both code coverage and the discovery of unique crashes.

An important direction for future work involves integrating state-of-the-art kernel-specific fuzzers such
as Syzkaller [19], as well as tools designed to detect race-condition vulnerabilities like Rtkaller [38] and

52

53

SFuzz [4], which have demonstrated efficacy in testing RTOS systems analogous to our targets. Addi-
tionally, the inclusion of custom grammar-based mutators could guide the mutation of memory objects
more effectively, reducing the likelihood of meaningless inputs that lead to early program termination.

A more flexible and generalized porting mechanism for the fuzzing framework would enhance its adapt-
ability across different kernel architectures and possibly different architectures. By streamlining the
porting process, the framework could support a broader range of RTOS platforms, thus expanding
its applicability to a wider variety of space missions and mixed-criticality environments. Additionally,
creating a generic API on the software level that abstracts the details of the underlying architecture
could enhance the usability and flexibility of the framework , making it possible to perform standard-
ized fuzzing campaigns in different architectures. Such improvements would not only increase the
framework’s usability but also enable the user to perform consistent security testing across multiple
operational contexts.

Building upon the foundation laid for RTOS fuzzing, we aim to extend the scope of our fuzzing frame-
work to include hypervisors, which play a pivotal role in the security of software running on Onboard
Computer (OBC) modules in satellite systems. Hypervisors are integral to ensuring temporal and
spatial isolation between mixed-criticality applications, making them a high-value target for attackers
seeking to escalate privileges or compromise isolated partitions. Consequently, their robustness must
be thoroughly evaluated to guarantee the security of space systems.

In this context, integrating AFL++ or other state-of-the-art fuzzers specifically designed for hypervisor
technologies such as Hyper-Cube [37], MundoFuzz [29], and Hyperpill [3], into our existing pipeline
would be a logical next step. This approach would facilitate comprehensive testing of space hypervisors
for vulnerabilities related to temporal and spatial isolation, as well as software flaws that could enable
rogue applications to bypass isolation mechanisms. By doing so, our framework could effectively identify
software implementation and design bugs that could be used as attack vectors that lead to privilege
escalation and potential compromise of critical satellite components.

Finally, it would be interesting to implement some proposed mitigations discussed in section 6.3 and
evaluate their impact on space-systems performance. This effort is crucial for assessing the suitability
of each mechanism within the space context, where strict availability, reliability, and hard real-time
constraints must be maintained to ensure mission success. A possible approach would involve deploying
a series of mitigations, e.g sandboxing, memory isolation techniques and Mandatory Access Control
(MAC) mechanisms, to measure their effectiveness against the attack vectors identified in our threat
model. Following, we would analyze the performance implications of these security enhancements under
real-time workloads typical of satellite missions, aiming to balance robust security with minimal perfor-
mance degradation. To achieve this, we will perform comprehensive benchmarking using representative
hardware and software configurations that mimic real-world satellite environments, measuring metrics
such as latency, throughput, and resource utilization. Furthermore, we intend to compare our designs
and analysis findings with industry standards like ECSS and SAVOIR to ensure compliance with space
mission requirements, ultimately guiding the selection of suitable mitigations that maintain operational
efficiency while enhancing system security. In addition extending the capabilities of existing mitigations
such as the FreeRTOS-MPU enhancements for supporting missing attack surface points, such as inte-
grating protections for Interrupt Service Routines and peripheral device drivers, is rather important for
the completeness of the mitigation. Typically this should be paired with the necessary evaluation of
the performance fall when the defenses are enabled.

References

[1] AddressSanitizer Clang 20.0.0git documentation. url: https://clang.llvm.org/docs/Addres
sSanitizer.html (visited on 12/31/2024).

[2] Architectures of Onboard Data Systems. en. url: https://www.esa.int/Enabling_Support/
Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_
of_Onboard_Data_Systems (visited on 03/29/2025).

[3] Alexander Bulekov. “Hyperpill: Fuzzing for Hypervisor-bugs by Leveraging the Hardware Virtu-
alization Interface”. en. In: ().

[4] Libo Chen et al. “SFuzz: Slice-based Fuzzing for Real-Time Operating Systems”. en. In: Pro-
ceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security. Los
Angeles CA USA: ACM, Nov. 2022, pp. 485–498. isbn: 978-1-4503-9450-5. doi: 10.1145/3548606.
3559367. url: https://dl.acm.org/doi/10.1145/3548606.3559367 (visited on 10/05/2024).

[5] Code Coverage LCOV - Visual Studio Marketplace. en-us. url: https://marketplace.visuals
tudio.com/items?itemName=rherrmannr.code-coverage-lcov (visited on 01/18/2025).

[6] COTS | Activities Portal. url: https : / / activities . esa . int / cluster / 920 (visited on
12/23/2024).

[7] crazy hugsy crazy. hugsy/gef. original-date: 2015-03-26T22:25:45Z. Jan. 2025. url: https://
github.com/hugsy/gef (visited on 01/18/2025).

[8] James Curbo and Gregory Falco. “Attack Surface Analysis for Spacecraft Flight Software”. en.
In: ().

[9] CVSS v3.0 Specification Document. en. url: https://www.first.org/cvss/v3.0/specificati
on-document (visited on 01/15/2025).

[10] ECSS-E-ST-40C Software (6 March 2009) | European Cooperation for Space Standardization.
url: https : / / ecss . nl / standard / ecss - e - st - 40c - software - general - requirements/
(visited on 02/07/2025).

[11] ECSS-Q-ST-80C Rev.1 Software product assurance (15 February 2017) | European Cooperation
for Space Standardization. url: https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-
product-assurance-15-february-2017/ (visited on 02/07/2025).

[12] ESA SPACE-SHIELD. url: https://spaceshield.esa.int/ (visited on 09/24/2024).
[13] Gregory Falco. “Cybersecurity Principles for Space Systems”. In: Journal of Aerospace Informa-

tion Systems 16.2 (2019). Publisher: American Institute of Aeronautics and Astronautics _eprint:
https://doi.org/10.2514/1.I010693, pp. 61–70. issn: 1940-3151. doi: 10.2514/1.I010693. url:
https://doi.org/10.2514/1.I010693 (visited on 06/08/2024).

[14] Gregory Falco, Arun Viswanathan, and Andrew Santangelo. “CubeSat Security Attack Tree Anal-
ysis”. In: 2021 IEEE 8th International Conference on Space Mission Challenges for Informa-
tion Technology (SMC-IT). July 2021, pp. 68–76. doi: 10.1109/SMC- IT51442.2021.00016.
url: https://ieeexplore.ieee.org/document/9697673/?arnumber=9697673 (visited on
10/07/2024).

[15] FreeRTOS documentation - FreeRTOS. url: https://freertos.org/Documentation/00-Over
view (visited on 09/20/2024).

[16] Gcov (Using the GNU Compiler Collection (GCC)). url: https://gcc.gnu.org/onlinedocs/
gcc/Gcov.html (visited on 12/31/2024).

[17] GDB: The GNU Project Debugger. url: https://sourceware.org/gdb/ (visited on 12/31/2024).
[18] Florian Göhler. “Hacking the Stars: A Fuzzing Based Security Assessment of CubeSat Firmware”.

en. In: ().

54

https://clang.llvm.org/docs/AddressSanitizer.html
https://clang.llvm.org/docs/AddressSanitizer.html
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Onboard_Computers_and_Data_Handling/Architectures_of_Onboard_Data_Systems
https://doi.org/10.1145/3548606.3559367
https://doi.org/10.1145/3548606.3559367
https://dl.acm.org/doi/10.1145/3548606.3559367
https://marketplace.visualstudio.com/items?itemName=rherrmannr.code-coverage-lcov
https://marketplace.visualstudio.com/items?itemName=rherrmannr.code-coverage-lcov
https://activities.esa.int/cluster/920
https://github.com/hugsy/gef
https://github.com/hugsy/gef
https://www.first.org/cvss/v3.0/specification-document
https://www.first.org/cvss/v3.0/specification-document
https://ecss.nl/standard/ecss-e-st-40c-software-general-requirements/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://ecss.nl/standard/ecss-q-st-80c-rev-1-software-product-assurance-15-february-2017/
https://spaceshield.esa.int/
https://doi.org/10.2514/1.I010693
https://doi.org/10.2514/1.I010693
https://doi.org/10.1109/SMC-IT51442.2021.00016
https://ieeexplore.ieee.org/document/9697673/?arnumber=9697673
https://freertos.org/Documentation/00-Overview
https://freertos.org/Documentation/00-Overview
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://sourceware.org/gdb/

References 55

[19] google/syzkaller. original-date: 2015-10-12T06:05:05Z. Feb. 2025. url: https://github.com/
google/syzkaller (visited on 02/15/2025).

[20] Monowar Hasan et al. “SoK: Security in Real-Time Systems”. en. In: ACM Computing Surveys
56.9 (Oct. 2024), pp. 1–31. issn: 0360-0300, 1557-7341. doi: 10.1145/3649499. url: https:
//dl.acm.org/doi/10.1145/3649499 (visited on 09/24/2024).

[21] Ragib Hasan and Raiful Hasan. “Towards a Threat Model and Security Analysis of Spacecraft
Computing Systems”. In: 2022 IEEE International Conference on Wireless for Space and Extreme
Environments (WiSEE). ISSN: 2380-7636. Oct. 2022, pp. 87–92. doi: 10 . 1109 / WiSEE49342 .
2022.9926912. url: https://ieeexplore.ieee.org/document/9926912/?arnumber=9926912
(visited on 12/31/2024).

[22] https://ecss.nl/wp-content/uploads/2022/04/ECSS-Q-ST-70-40C(8April2022).pdf. url: https://
ecss.nl/wp-content/uploads/2022/04/ECSS-Q-ST-70-40C(8April2022).pdf (visited on
04/09/2025).

[23] LCOV Code Coverage - The Document Foundation Wiki. url: https://wiki.documentfounda
tion.org/Development/Lcov (visited on 12/31/2024).

[24] libcsp/libcsp. original-date: 2011-10-07T10:35:34Z. Mar. 2025. url: https://github.com/libcs
p/libcsp (visited on 03/12/2025).

[25] LynxOS | POSIX Real Time Operating System. en. url: https://www.lynx.com/products/
lynxos-178-do-178c-certified-posix-rtos (visited on 10/07/2024).

[26] Gabriele Marra et al. “On the Feasibility of CubeSats Application Sandboxing for Space Missions”.
en. In: Proceedings 2024 Workshop on Security of Space and Satellite Systems. arXiv:2404.04127
[cs]. 2024. doi: 10.14722/spacesec.2024.23033. url: http://arxiv.org/abs/2404.04127
(visited on 09/04/2024).

[27] Memory Protection Unit (MPU) Support - FreeRTOS. url: https://freertos.org/Security/
04-FreeRTOS-MPU-memory-protection-unit (visited on 02/05/2025).

[28] MITRE EMB3D. en. url: https://emb3d.mitre.org/ (visited on 02/13/2025).
[29] Cheolwoo Myung, Gwangmu Lee, and Byoungyoung Lee. “MundoFuzz: Hypervisor Fuzzing with

Statistical Coverage Testing and Grammar Inference”. en. In: ().
[30] NVD - CVE-2021-31571. url: https://nvd.nist.gov/vuln/detail/CVE-2021-31571 (visited

on 01/18/2025).
[31] NVD - CVE-2021-31572. url: https://nvd.nist.gov/vuln/detail/CVE-2021-31572 (visited

on 01/18/2025).
[32] NVD - CVE-2021-32020. url: https://nvd.nist.gov/vuln/detail/CVE-2021-32020 (visited

on 01/18/2025).
[33] Jacob G. Oakley. Cybersecurity for Space: Protecting the Final Frontier. en. Berkeley, CA: Apress,

2020. isbn: 978-1-4842-5731-9 978-1-4842-5732-6. doi: 10.1007/978-1-4842-5732-6. url: http:
//link.springer.com/10.1007/978-1-4842-5732-6 (visited on 09/04/2024).

[34] RTEMS EDISOFT. en. url: https://www.esa.int/Enabling_Support/Space_Engineering_
Technology/Software_Systems_Engineering/RTEMS_EDISOFT (visited on 12/22/2024).

[35] SAVOIR. url: https://savoir.estec.esa.int/SAVOIRDocuments.htm (visited on 02/07/2025).
[36] Moritz Schloegel et al. “SoK: Prudent Evaluation Practices for Fuzzing”. en. In: 2024 IEEE

Symposium on Security and Privacy (SP). arXiv:2405.10220 [cs]. May 2024, pp. 1974–1993. doi: 10
.1109/SP54263.2024.00137. url: http://arxiv.org/abs/2405.10220 (visited on 12/31/2024).

[37] Sergej Schumilo et al. “HYPER-CUBE: High-Dimensional Hypervisor Fuzzing”. en. In: Proceed-
ings 2020 Network and Distributed System Security Symposium. San Diego, CA: Internet Society,
2020. isbn: 978-1-891562-61-7. doi: 10.14722/ndss.2020.23096. url: https://www.ndss-
symposium.org/wp-content/uploads/2020/02/23096.pdf (visited on 01/01/2025).

[38] Yuheng Shen et al. “Rtkaller: State-aware Task Generation for RTOS Fuzzing”. en. In: ACM
Transactions on Embedded Computing Systems 20.5s (Oct. 2021), pp. 1–22. issn: 1539-9087, 1558-
3465. doi: 10.1145/3477014. url: https://dl.acm.org/doi/10.1145/3477014 (visited on
10/09/2024).

https://github.com/google/syzkaller
https://github.com/google/syzkaller
https://doi.org/10.1145/3649499
https://dl.acm.org/doi/10.1145/3649499
https://dl.acm.org/doi/10.1145/3649499
https://doi.org/10.1109/WiSEE49342.2022.9926912
https://doi.org/10.1109/WiSEE49342.2022.9926912
https://ieeexplore.ieee.org/document/9926912/?arnumber=9926912
https://ecss.nl/wp-content/uploads/2022/04/ECSS-Q-ST-70-40C(8April2022).pdf
https://ecss.nl/wp-content/uploads/2022/04/ECSS-Q-ST-70-40C(8April2022).pdf
https://wiki.documentfoundation.org/Development/Lcov
https://wiki.documentfoundation.org/Development/Lcov
https://github.com/libcsp/libcsp
https://github.com/libcsp/libcsp
https://www.lynx.com/products/lynxos-178-do-178c-certified-posix-rtos
https://www.lynx.com/products/lynxos-178-do-178c-certified-posix-rtos
https://doi.org/10.14722/spacesec.2024.23033
http://arxiv.org/abs/2404.04127
https://freertos.org/Security/04-FreeRTOS-MPU-memory-protection-unit
https://freertos.org/Security/04-FreeRTOS-MPU-memory-protection-unit
https://emb3d.mitre.org/
https://nvd.nist.gov/vuln/detail/CVE-2021-31571
https://nvd.nist.gov/vuln/detail/CVE-2021-31572
https://nvd.nist.gov/vuln/detail/CVE-2021-32020
https://doi.org/10.1007/978-1-4842-5732-6
http://link.springer.com/10.1007/978-1-4842-5732-6
http://link.springer.com/10.1007/978-1-4842-5732-6
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/RTEMS_EDISOFT
https://www.esa.int/Enabling_Support/Space_Engineering_Technology/Software_Systems_Engineering/RTEMS_EDISOFT
https://savoir.estec.esa.int/SAVOIRDocuments.htm
https://doi.org/10.1109/SP54263.2024.00137
https://doi.org/10.1109/SP54263.2024.00137
http://arxiv.org/abs/2405.10220
https://doi.org/10.14722/ndss.2020.23096
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23096.pdf
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23096.pdf
https://doi.org/10.1145/3477014
https://dl.acm.org/doi/10.1145/3477014

References 56

[39] Andris Slavinskis et al. “ESTCube-1 in-orbit experience and lessons learned”. In: IEEE Aerospace
and Electronic Systems Magazine 30.8 (Aug. 2015). Conference Name: IEEE Aerospace and
Electronic Systems Magazine, pp. 12–22. issn: 1557-959X. doi: 10.1109/MAES.2015.150034.
url: https://ieeexplore.ieee.org/document/7286959/?arnumber=7286959 (visited on
12/22/2024).

[40] “Space Data Link Security Protocol”. en. In: (2022).
[41] “Space Data Link Security ProtocolExtended Procedures”. en. In: (2020).
[42] “Space engineering”. en. In: (2008).
[43] SPARTA. url: https://sparta.aerospace.org/ (visited on 12/23/2024).
[44] Standards | European Cooperation for Space Standardization. url: https://ecss.nl/standards/

(visited on 12/23/2024).
[45] 24A06-Security for Space Systems (3S) 2024. Space Systems Security Challenge - 24A06 - Security

for Space Systems (3S) 2024 - ESTEC. url: https://atpi.eventsair.com/24a06---3s2024/
atpi.eventsair.com/space-systems-security-challenge (visited on 03/12/2025).

[46] The AFL++ fuzzing framework. en. url: https://aflplus.plus/ (visited on 09/24/2024).
[47] Shahid Ul Haq et al. “A survey on IoT & embedded device firmware security: architecture, ex-

traction techniques, and vulnerability analysis frameworks”. en. In: Discover Internet of Things
3.1 (Oct. 2023), p. 17. issn: 2730-7239. doi: 10 . 1007 / s43926 - 023 - 00045 - 2. url: https :
//link.springer.com/10.1007/s43926-023-00045-2 (visited on 09/24/2024).

[48] Serge Valera. “October 2013 ECSS WG Draft”. en. In: ().
[49] Valgrind Home. url: https://valgrind.org/ (visited on 12/31/2024).
[50] Arun Viswanathan et al. “Secure-by-component: A System-of-systems Design Paradigm for Se-

curing Space Missions”. en. In: 2024 Security for Space Systems (3S). Noordwijk, Netherlands:
IEEE, May 2024, pp. 1–9. isbn: 978-90-90-38704-8. doi: 10.23919/3S60530.2024.10592289.
url: https://ieeexplore.ieee.org/document/10592289/ (visited on 09/18/2024).

[51] VxWorks | Industry Leading RTOS for Embedded Systems. en. url: https://www.windriver.
com/products/vxworks (visited on 10/07/2024).

[52] Sander Wiebing, Thomas Rooijakkers, and Sebastiaan Tesink. Improving AFL++ CmpLog: Tack-
ling the bottlenecks. en. arXiv:2211.08357 [cs]. Nov. 2022. doi: 10.48550/arXiv.2211.08357.
url: http://arxiv.org/abs/2211.08357 (visited on 01/18/2025).

[53] Johannes Willbold et al. “Space Odyssey: An Experimental Software Security Analysis of Satel-
lites”. en. In: 2023 IEEE Symposium on Security and Privacy (SP). San Francisco, CA, USA:
IEEE, May 2023, pp. 1–19. isbn: 978-1-66549-336-9. doi: 10.1109/SP46215.2023.10351029.
url: https://ieeexplore.ieee.org/document/10351029/ (visited on 08/15/2024).

[54] Nikita Yadav et al. “Orbital Shield: Rethinking Satellite Security in the Commercial Off-the-
Shelf Era”. en. In: 2024 Security for Space Systems (3S). Noordwijk, Netherlands: IEEE, May
2024, pp. 1–11. isbn: 978-90-90-38704-8. doi: 10.23919/3S60530.2024.10592292. url: https:
//ieeexplore.ieee.org/document/10592292/ (visited on 08/15/2024).

[55] Pingyue Yue et al. Low Earth Orbit Satellite Security and Reliability: Issues, Solutions, and the
Road Ahead. en. arXiv:2201.03063 [eess]. July 2023. url: http://arxiv.org/abs/2201.03063
(visited on 09/04/2024).

https://doi.org/10.1109/MAES.2015.150034
https://ieeexplore.ieee.org/document/7286959/?arnumber=7286959
https://sparta.aerospace.org/
https://ecss.nl/standards/
https://atpi.eventsair.com/24a06---3s2024/atpi.eventsair.com/space-systems-security-challenge
https://atpi.eventsair.com/24a06---3s2024/atpi.eventsair.com/space-systems-security-challenge
https://aflplus.plus/
https://doi.org/10.1007/s43926-023-00045-2
https://link.springer.com/10.1007/s43926-023-00045-2
https://link.springer.com/10.1007/s43926-023-00045-2
https://valgrind.org/
https://doi.org/10.23919/3S60530.2024.10592289
https://ieeexplore.ieee.org/document/10592289/
https://www.windriver.com/products/vxworks
https://www.windriver.com/products/vxworks
https://doi.org/10.48550/arXiv.2211.08357
http://arxiv.org/abs/2211.08357
https://doi.org/10.1109/SP46215.2023.10351029
https://ieeexplore.ieee.org/document/10351029/
https://doi.org/10.23919/3S60530.2024.10592292
https://ieeexplore.ieee.org/document/10592292/
https://ieeexplore.ieee.org/document/10592292/
http://arxiv.org/abs/2201.03063

A
Crash Triaging and Coverage

Generation Automation

Here we present our scripts used to automate the fuzzing and output-crash parsing and de-duplication,
as well as the script used for yielding coverage information.

Listing A.1: run.sh
1 #!/ bin/bash
2

3 fuzz_group ="all"
4 TIME_TO_FUZZ =60 # 86400 # 24 hours in seconds
5

6 # make sure the first argument is one of tasks , queue , semaphore , stream_buffer ,
message_buffer

7 if ["$1" != " tasks "] && ["$1" != " queue "] && ["$1" != " semaphore "] && ["$1" != "
stream_buffer "] && ["$1" != " message_buffer "]; then

8 echo "Did␣not␣specified␣[tasks | queue | stream_buffer | message_buffer],␣will␣fuzz␣all"
9 sleep 1

10 else
11 fuzz_group =$1
12 echo " Fuzzing␣Group :␣$1"
13 fi
14

15 multi_thread =0
16 # if second argument is multi_thread , then run with multi_thread label for the fuzz

group
17 if ["$1" == " multi_thread "] || ["$2" == " multi_thread "]; then
18 multi_thread =1
19 prefix =multi -thread -
20 echo "Multi - threading␣enabled "
21 export AFL_LLVM_THREADSAFE_INST =1
22 sleep 1
23 fi
24

25 export AFL_DISABLE_TRIM =1
26 export CC=$(realpath ./ AFLplusplus /afl -clang -fast)
27 export AFL_LLVM_ALLOWLIST =$(realpath allow - instr .list.afl)
28

29 function run_main_afl () {
30 # run the fuzzer with no hup
31 # then get the PID and check if it failed
32 # if failed wait a second and retry .
33 # Maximum of 5 retries
34 nohup ./afl -fuzz -i inputs /$1 -o report -afl -${ prefix }$1 -V $TIME_TO_FUZZ -M $2 $3

-- ./ build -$1/kernel - fuzzer > nohup -$1 -$2.out 2 >&1 &
35

36 PID=$!
37

57

58

38 for i in {1..5}; do
39 if ! kill -0 $PID; then
40 echo " Fuzzer␣failed␣to␣start ,␣retrying ..."
41 sleep 1
42 nohup ./afl -fuzz -i inputs /$1 -o report -afl -${ prefix }$1 -V $TIME_TO_FUZZ -M

$2 $3 -- ./ build -$1/kernel - fuzzer > nohup -$1 -$2.out 2 >&1 &
43 PID=$!
44 else
45 break
46 fi
47 done
48

49 }
50

51 function run_sec_afl () {
52 nohup ./afl -fuzz -i inputs /$1 -o report -afl -${ prefix }$1 -V $TIME_TO_FUZZ -S $2 $3

-- ./ build -$1/kernel - fuzzer > nohup -$1 -$2.out 2 >&1 &
53

54 PID=$!
55

56 for i in {1..5}; do
57 if ! kill -0 $PID; then
58 echo " Fuzzer␣failed␣to␣start ,␣retrying ..."
59 sleep 1
60 nohup ./afl -fuzz -i inputs /$1 -o report -afl -${ prefix }$1 -V $TIME_TO_FUZZ -S

$2 $3 -- ./ build -$1/kernel - fuzzer > nohup -$1 -$2.out 2 >&1 &
61 PID=$!
62 else
63 break
64 fi
65 done
66 }
67

68 function afl_w_san () {
69 export AFL_USE_ASAN =1 \
70 && compile_trg \
71 && run_sec_afl $fuzz_group fuzzer - sanitizers -asan -1 "␣-P␣explore␣-a␣binary␣-p␣

exploit " \
72 && run_sec_afl $fuzz_group fuzzer - sanitizers -asan -2 "␣-P␣exploit␣-p␣explore " \
73 && run_sec_afl $fuzz_group fuzzer - sanitizers -asan -3 "␣-P␣explore␣-p␣fast"
74 unset AFL_USE_ASAN
75

76 export AFL_USE_UBSAN =1 \
77 && compile_trg \
78 && run_sec_afl $fuzz_group fuzzer - sanitizers -ubsan -1 "␣-P␣explore␣-a␣binary␣-p␣

exploit " \
79 && run_sec_afl $fuzz_group fuzzer - sanitizers -ubsan -2 "␣-P␣exploit␣-p␣explore " \
80 && run_sec_afl $fuzz_group fuzzer - sanitizers -ubsan -3 "␣-P␣explore␣-p␣fast"
81 unset AFL_USE_UBSAN
82

83 # this does not work
84 # export AFL_USE_TSAN =1
85 # compile_trg
86 # run_sec_afl $fuzz_group fuzzer - sanitizers -tsan -1 " -P explore -a binary -p

exploit "
87 # run_sec_afl $fuzz_group fuzzer - sanitizers -tsan -2 " -P exploit -p explore "
88 # unset AFL_USE_TSAN
89

90 }
91

92 function afl_cmplog () {
93 export AFL_LLVM_CMPLOG =1
94

95 compile_trg \
96 && run_main_afl $fuzz_group fuzzer -cmplog -1 "-a␣binary␣-p␣fast␣-P␣explore " \
97 && run_sec_afl $fuzz_group fuzzer -cmplog -2 "-l1AT␣-P␣explore␣-p␣explore " \
98 && run_sec_afl $fuzz_group fuzzer -cmplog -3 "-Z␣-l1ATX␣-P␣explore␣-p␣quad␣-P␣exploit

"
99

100 unset AFL_LLVM_CMPLOG
101 }

59

102

103 function compile_trg {
104 mkdir -p build -${ fuzz_group } && \
105 cd build - $fuzz_group && \
106 cmake -DFUZZ_GROUP = $fuzz_group -DMULTI_THREAD = $multi_thread .. && \
107 make clean all && \
108

109 cd ..
110 }
111

112

113 afl_cmplog \
114 && afl_w_san
115

116 # if IS_DOCKER =1, then this command
117 if [" $IS_DOCKER " == "1"]; then
118 tail -f nohup - $fuzz_group -*. out
119 fi
120

121

122 # run the fuzzer for the testcase of choice and redirect to nohup - $fuzz_group .out
123

124 # ./afl -fuzz -i inputs / $fuzz_group -o report -afl - $fuzz_group -V $TIME_TO_FUZZ -S
fuzzer01 -- ./ build - $fuzz_group /kernel - fuzzer &

125 # ./afl -fuzz -i inputs / $fuzz_group -o report -afl - $fuzz_group -V $TIME_TO_FUZZ -S
fuzzer02 -- ./ build - $fuzz_group /kernel - fuzzer ;

126 # nohup ./afl -fuzz -i inputs /$1 -o report -afl -$1 -V $TIME_TO_FUZZ -- ./ build -$1/kernel -
fuzzer > nohup -$1.out 2 >&1 & echo " Running $1 fuzzing ...";

Listing A.2: run-crashes.sh
1 #!/ bin/bash
2

3 # check arguments
4 if ["$1" != " tasks "] && ["$1" != " queue "] && ["$1" != " semaphore "] && ["$1" != "

stream_buffer "] && ["$1" != " message_buffer "] && ["$1" != "all"]; then
5 echo "Did␣not␣specified␣[tasks | queue | stream_buffer | message_buffer]"
6 exit 1
7 else
8 fuzz_group =$1
9 echo " Syscall␣Group :␣$1"

10 fi
11

12 multi_thread =0
13 # if second argument is multi_thread , then run with multi_thread label for the fuzz

group
14 if ["$2" == " multi_thread "]; then
15 multi_thread =1
16 echo "Multi - threading␣enabled "
17 fi
18

19 # check if the third argument is a directory
20 if [-d "$3"]; then
21 echo " Using␣AFL␣report␣directory :␣$3"
22 afl_report_dir =$3
23 else
24 echo " Invalid␣AFL␣report␣directory "
25 exit 1
26 fi
27

28 function compile_trg () {
29 debug =$1
30 asan_sup =$2
31 # compile the program with coverage flags
32 rm -rf build - $fuzz_group
33 mkdir -p build - $fuzz_group && \
34 cd build - $fuzz_group && \
35 cmake -DFUZZ_GROUP = $fuzz_group -DMULTI_THREAD = $multi_thread -DDEBUG = $debug -DASAN =

$asan_sup .. && \
36 make clean all && \
37 cd ..

60

38 }
39

40 echo " Retrieving␣crashes␣and␣hangs␣from␣$afl_report_dir "
41

42 # Get all the input files in the ’hang ’ and ’crashes ’ directory
43 # hangfiles =$(find $afl_report_dir /*/ hangs -iname "id *")
44 crashes_tc =$(find $afl_report_dir /*/ crashes -iname "id*")
45

46 # print the number of crashes and hangs
47 echo " Number␣of␣crashes␣retrieved :␣$(echo␣$crashes_tc␣|␣wc␣-w)"
48

49 # create a temporary directory to store the output
50 tmp_dir =$(mktemp -d -p ./)
51

52 mkdir -p $tmp_dir / hangs
53 mkdir -p $tmp_dir / crashes
54 mkdir -p $tmp_dir / other
55

56 # just compile the program
57 compile_trg 0 0
58

59 # run the program for all the crashes and according to the return code determine if the
crashes cause a seg fault or a hang

60 for f in $crashes_tc ; do
61 # run the program with timeout of 10 milliseconds
62 (timeout --signal = SIGINT 1 ./ build - $fuzz_group /kernel - fuzzer < $f) &> /dev/null
63 if [$? -eq 139]; then
64 cp $f $tmp_dir / crashes /
65 elif [$? -eq 124]; then
66 cp $f $tmp_dir / hangs /
67 else
68 cp $f $tmp_dir / other /
69 fi
70 done
71

72 echo "$(ls␣$tmp_dir / crashes /␣|␣wc␣-w)␣crashes␣are␣stored␣in␣$tmp_dir / crashes "
73 echo "$(ls␣$tmp_dir / hangs /␣|␣wc␣-w)␣hangs␣are␣stored␣in␣$tmp_dir / hangs "
74 echo "$(ls␣$tmp_dir / other /␣|␣wc␣-w)␣others␣are␣stored␣in␣$tmp_dir / hangs "
75

76 mkdir -p $tmp_dir / crashes /out
77 mkdir -p $tmp_dir / crashes /out/gdb
78 mkdir -p $tmp_dir / crashes /out/ valgrind
79 mkdir -p $tmp_dir / crashes /out/asan
80

81 # compile for debug first
82 compile_trg 1 0
83

84 crashes =$(find $tmp_dir / crashes -iname "id*")
85

86 # run the program for all the crashes and store the output in a file
87 for f in $crashes ; do
88 # run the program with timeout of 2s
89 echo " Running␣$f"
90 out_file_gdb = $tmp_dir / crashes /out/gdb/$(basename $f)
91 out_file_valgrind = $tmp_dir / crashes /out/ valgrind /$(basename $f)
92 echo "r␣<␣$f" | timeout --signal = SIGINT 2 gdb ./ build - $fuzz_group /kernel - fuzzer >

$out_file_gdb 2 >&1
93 timeout --signal = SIGINT 2 valgrind --log -file= $out_file_valgrind ./ build -

$fuzz_group /kernel - fuzzer < $f
94 done
95

96 # Now compiling with ASAN support
97 compile_trg 1 1
98 # run the program for all the crashes and store the output in a file
99 for f in $crashes ; do

100 # run the program with timeout of 2s
101 echo " Running␣$f"
102 out_file_asan = $tmp_dir / crashes /out/asan/$(basename $f)
103 timeout --signal = SIGINT 2 ./ build - $fuzz_group /kernel - fuzzer < $f > $out_file_asan ‘‘

2 >&1
104 done

61

105

106 [[-d crash -runs -prev]] && rm -rf crash -runs -prev
107 [[-d crash -runs]] && mv crash -runs{,-prev}
108 mv $tmp_dir crash -runs

Listing A.3: unique-crashes.sh
1 #!/ bin/bash
2

3 # This script will take a directory of crash files , and output a list of unique crashes
4

5 USAGE =" Usage :␣$0␣<crash_dir >␣[asan|gdb| valgrind]"
6

7 # First argument is the crash directory , check and set
8 if [-z "$1"] || ! [-d "$1"]; then
9 echo $USAGE

10 exit 1
11 fi
12

13 # check if the word " valgrind " is in cmd args
14 if [["$@" == * valgrind *]]; then
15 echo " Valgrind␣detected "
16 CHECK_VALGRIND =1
17 else
18 CHECK_VALGRIND =0
19 fi
20

21 if [["$@" == *asan*]]; then
22 echo "asan␣detected "
23 CHECK_ASAN =1
24 else
25 CHECK_ASAN =0
26 fi
27

28 if [["$@" == *gdb*]]; then
29 echo "gdb␣detected "
30 CHECK_GDB =1
31 else
32 CHECK_GDB =0
33 fi
34

35 if [$CHECK_VALGRIND -eq 0] && [$CHECK_ASAN -eq 0] && [$CHECK_GDB -eq 0]; then
36 echo "No␣tool␣specified␣to␣check␣for␣unique␣crashes ,␣will␣use␣all"
37 CHECK_VALGRIND =1
38 CHECK_ASAN =1
39 CHECK_GDB =1
40 fi
41

42 CRASH_DIR =$1
43

44 crash_files =$(find $CRASH_DIR -maxdepth 1 -type f -iname "id*")
45 asan_files =$(find $CRASH_DIR /out/asan -type f -iname "id*")
46 gdb_files =$(find $CRASH_DIR /out/gdb -type f -iname "id*")
47 valgrind_files =$(find $CRASH_DIR /out/ valgrind -type f -iname "id*")
48

49 # get the hashes of each crash file for each tool
50 crash_hashes =$(for file in $crash_files ; do md5sum $file ; done | awk ’{ print␣$1}’)
51 asan_hashes =$(for file in $asan_files ; do md5sum $file ; done | awk ’{ print␣$1}’)
52 gdb_hashes =$(for file in $gdb_files ; do md5sum $file ; done | awk ’{ print␣$1}’)
53 valgrind_hashes =$(for file in $valgrind_files ; do cat $file | grep ’by␣’ | awk -F ’␣’ ’

{ print␣$4}’ | md5sum ; done | awk ’{ print␣$1}’)
54

55 # create a list of tuples of the file name and all of its hashes
56 crash_files_hashed =$(paste -d "~" <(echo " $crash_files ") <(echo " $crash_hashes ") <(echo

" $asan_hashes ") <(echo " $gdb_hashes ") <(echo " $valgrind_hashes ") | awk ’{ print␣$1 ,
$2 ,$3 ,$4 ,$5}’)

57

58 unique_files =""
59

60 for tuple in $crash_files_hashed ; do
61 hash=$(echo $tuple | cut -d "~" -f 2)

62

62 asan_hash =$(echo $tuple | cut -d "~" -f 3)
63 gdb_hash =$(echo $tuple | cut -d "~" -f 4)
64 valgrind_hash =$(echo $tuple | cut -d "~" -f 5)
65

66 # print all the unique files and grep for each one of the hashes . If none is found
then include the file in the unique list

67 if ! echo $unique_files | grep -q $hash ; then
68 if [$CHECK_ASAN -eq 0] || ! echo $unique_files | grep -q $asan_hash ; then
69 if [$CHECK_GDB -eq 0] || ! echo $unique_files | grep -q $gdb_hash ; then
70 if [$CHECK_VALGRIND -eq 0] || ! echo $unique_files | grep -q

$valgrind_hash ; then
71 unique_files =" $unique_files␣$tuple "
72 fi
73 fi
74 fi
75 fi
76 done
77 tmp1 =($(echo $unique_files))
78 tmp2 =($(echo $crash_files))
79 # print how many unique files were found out of the total
80 echo " Found␣${# tmp1[@]}␣unique␣crashes␣out␣of␣${# tmp2[@]}␣total␣crashes "
81

82 mkdir -p $CRASH_DIR / unique
83 mkdir -p $CRASH_DIR / unique /out
84 mkdir -p $CRASH_DIR / unique /out/asan
85 mkdir -p $CRASH_DIR / unique /out/gdb
86 mkdir -p $CRASH_DIR / unique /out/ valgrind
87

88 # populate the unique directory with the unique files
89 for file in $unique_files ; do
90 filename =$(echo $file | cut -d "~" -f 1 | xargs basename)
91 # make sure that the file name exists in all source dirs
92 if [! -f $CRASH_DIR / $filename] || [! -f $CRASH_DIR /out/asan/ $filename] || [! -

f $CRASH_DIR /out/gdb/ $filename] || [! -f $CRASH_DIR /out/ valgrind / $filename];
then

93 echo "File␣$filename␣not␣found␣in␣all␣source␣directories "
94 continue
95 fi
96

97 cp $CRASH_DIR / $filename $CRASH_DIR / unique / $filename
98 cp $CRASH_DIR /out/asan/ $filename $CRASH_DIR / unique /out/asan/ $filename
99 cp $CRASH_DIR /out/gdb/ $filename $CRASH_DIR / unique /out/gdb/ $filename

100 cp $CRASH_DIR /out/ valgrind / $filename $CRASH_DIR / unique /out/ valgrind / $filename
101

102 # check that the copies where successful
103 if [! -f $CRASH_DIR / unique / $filename] || [! -f $CRASH_DIR / unique /out/asan/

$filename] || [! -f $CRASH_DIR / unique /out/gdb/ $filename] || [! -f
$CRASH_DIR / unique /out/ valgrind / $filename]; then

104 echo " Failed␣to␣copy␣$filename␣to␣unique␣directory "
105 fi
106 done
107

108 # print how many files in each directory
109 echo " Unique␣crashes :"
110 echo "ASAN:␣$(ls␣$CRASH_DIR / unique /out/asan␣|␣wc␣-l)"
111 echo "GDB:␣$(ls␣$CRASH_DIR / unique /out/gdb␣|␣wc␣-l)"
112 echo " Valgrind :␣$(ls␣$CRASH_DIR / unique /out/ valgrind␣|␣wc␣-l)"

Listing A.4: run-coverage.sh
1

2 #!/ bin/bash
3

4 # Usage : ./ run_coverage .sh [tasks | queue | semaphore | stream_buffer | message_buffer |all] [
multi_thread] <afl -report -dir >

5

6 # check arguments
7 if ["$1" != " tasks "] && ["$1" != " queue "] && ["$1" != " semaphore "] && ["$1" != "

stream_buffer "] && ["$1" != " message_buffer "] && ["$1" != "all"]; then
8 echo "Did␣not␣specified␣[tasks | queue | stream_buffer | message_buffer]"
9 exit 1

63

10 else
11 fuzz_group =$1
12 echo " Syscall␣Group :␣$1"
13 fi
14

15 multi_thread =0
16 # if second argument is multi_thread , then run with multi_thread label for the fuzz

group
17 if ["$2" == " multi_thread "]; then
18 multi_thread =1
19 echo "Multi - threading␣enabled "
20 fi
21

22 # check if the third argument is a directory
23 if [-d "$3"]; then
24 echo " Using␣AFL␣report␣directory :␣$3"
25 afl_report_dir =$3
26 else
27 echo " Invalid␣AFL␣report␣directory "
28 exit 1
29 fi
30

31 # the input files are in the input directory
32 input_corpus =$(find $afl_report_dir -iname "id*")
33

34

35 # make sure
36 # export CC=$(which clang -14)
37

38 # compile the program with coverage flags
39 mkdir -p build - $fuzz_group && \
40 cd build - $fuzz_group && \
41 cmake -DFUZZ_GROUP = $fuzz_group -DMULTI_THREAD = $multi_thread -DCOVERAGE =1 .. && \
42 make clean all && \
43

44 cd ..
45

46 for f in $input_corpus ; do
47 # run the program with timeout of 10 milliseconds
48 echo " Running␣$f"
49 (timeout --signal = SIGINT 1 ./ build - $fuzz_group /kernel - fuzzer < $f) &> /dev/null
50 done
51

52

53 tmp_dir =$(mktemp -d -p ./)
54 # run lcov to generate coverage report
55 lcov -d ./ build - $fuzz_group --capture -o $tmp_dir / coverage .info
56 lcov -r $tmp_dir / coverage .info ’/usr/ include /* ’ -o $tmp_dir / filtered .info.lcov --ignore

- errors unused
57 genhtml -o coverage -html $tmp_dir / filtered .info.lcov --legend
58

59 mv $tmp_dir coverage -lcov
60

61 echo " Coverage␣report␣is␣generated␣in␣coverage -html/ index .html"
62

63 # open up the coverage report in the browser
64 # xdg -open coverage -html/ index .html

	Preface
	Abstract
	Nomenclature
	Introduction
	Background
	Space Standards and Existing Security Frameworks
	Satellite Systems and Software
	Payload Data Handling System
	Command and Data Handling System
	On-Board Computer and Software

	Space Operating Systems
	Real-Time Operating Systems
	Suitability for Space Missions

	Fuzzing

	Threat Model and CVSS for SpaceOS
	Motivation
	Assets & Security Requirements
	Actors
	Assumptions
	Threat Vectors & Attack Surface
	CVSS for SpaceOS
	Base Metrics
	Temporal Metrics
	Environmental Metrics
	Disclaimer for RTOS

	Space-OS Security Experiment Scenarios
	OBSW Attacks
	Denial Of Service
	Privilege Escalation
	Dangerous System Call Monitoring/Prevention
	Scheduler Exploitation

	OBSW Fuzzing
	RTOS Kernel Fuzzing
	Protocol Fuzzing

	On-Board Systems Isolation
	Task/Process Isolation
	Mitigation Enhancements Performance Measurement

	Secure Firmware
	Secure Boot
	Boot-Time Memory Corruption
	Supply Chain Attack - Malicious Firmware Detection

	Results and Evaluation
	Set-Up
	Simulation
	FlatSAT Testbed

	Methodology
	Evaluation
	False Positive and Duplicate Elimination
	Coverage Exploration
	Unique Crashes Exploration
	Total Crashes over Fuzzer Executions

	Vulnerability Reports
	ISSUE_00 - vTaskSuspendAll Attack
	ISSUE_01 - vTaskPrioritySet Attack
	ISSUE_02 - xTaskAbortDelay Attack
	ISSUE_03 - Isolation Issue in Thread Local Storage of FreeRTOS Tasks
	ISSUE_04 - Static Task Stack Compromise
	ISSUE_05 - Data Overwrite via xTaskCreateStatic
	ISSUE_06 - Data Overwrite via xStreamBufferCreateStatic
	Setting the Environmental Scores

	Cube-FlatSAT Testing
	Limitations

	Discussion
	Responsible Discloure
	SPACE-SHIELD Contributions
	Mitigation Suggestions

	Related Work
	RTOS Testing
	Open Source Vulnerability Research
	Insights from Open-Source Vulnerabilities
	Implications for the Space Environment
	Standardized Testing Frameworks

	Conclusion
	Crash Triaging and Coverage Generation Automation

