

Delft University of Technology

A CPU Contention Predictor for Business-Critical Workloads in Cloud Datacenters

Van Beek, Vincent; Oikonomou, Giorgos; Iosup, Alexandru

DOI
10.1109/FAS-W.2019.00027
Publication date
2019
Document Version
Final published version
Published in
2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)

Citation (APA)
Van Beek, V., Oikonomou, G., & Iosup, A. (2019). A CPU Contention Predictor for Business-Critical
Workloads in Cloud Datacenters. In 2019 IEEE 4th International Workshops on Foundations and
Applications of Self* Systems (FAS*W): Proceedings (pp. 56-61). Article 8791987 IEEE.
https://doi.org/10.1109/FAS-W.2019.00027
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1109/FAS-W.2019.00027
https://doi.org/10.1109/FAS-W.2019.00027

A CPU Contention Predictor for Business-Critical
Workloads in Cloud Datacenters

Vincent van Beek
Delft University of Technology
vincent.vanbeek@solvinity.com

Giorgos Oikonomou
Delft University of Technology

Alexandru Iosup
VU Amsterdam
a.iosup@vu.nl

Abstract—Resource contention is one of the major problems in
cloud datacenters. Many types of resource contention occur, with
important impact on the performance and sometimes even the
reliability of applications running in cloud datacenters. Cloud
applications run together on the same physical machines with
different workloads resulting in non-synchronized accesses to the
shared resources. This leads to cases where co-hosted applications
are contending for the common resources and not receiving
the demanded resource amounts. In this work, we investigate
the contention in CPU resources, as CPU is allowed to be
over-committed by typical SLAs. We propose a CPU-contention
predictor for the demanding business-critical workloads, which
require low resource contention to deliver the required per-
formance to customers. Our predictor is based on a set of
regression models and metrics which we evaluate extensively. We
tune the predictor with data collected from a real-world cloud
operation spanning multiple datacenters and servicing business-
critical workloads.

Index Terms—CPU contention, Resource contention, business-
critical workloads

I. INTRODUCTION

Attracted by the dual promise of infrastructure efficiency [1]

and widespread uptake [2], large organizations are increasingly

using public- and/or private-cloud resources to run their large-

scale business-critical workloads (BCWs) [3]. Although the

promises are enticing, hosting BCWs is relatively new, and

raises many resource management and scheduling challenges.

The efficient operation of cloud datacenters requires the de-

velopment of resource managers and scheduling policies that

can cope with BCWs. Real world experiments are risky, time

consuming, and expensive. Because datacenter operators are

averse to any of these properties and because emulation is

not possible at datacenter scale, simulation is often the only

remaining approach to conduct datacenter-scale research [4].

For simulators to be accurate, they need to be able to take

into account complex conditions that appear only at the scale

of datacenters, such as widespread resource contention. Ad-

dressing this need, in this work we propose a CPU contention

predictor that can be used in datacenter simulation.

The use of virtual machines (VMs) is the de facto standard

in modern datacenters for hosting BCWs. When multiple VMs

are co-hosted on the same physical machine, any of the VMs

may experience transient performance degradation, caused by

the contention for resources between multiple VMs.

To address this problem during scheduling, we must be able

to anticipate contention in datacenter simulators. We focus in

this work on CPU contention, which is likely to occur because

SLAs BCWs allow for CPU resources to be over-committed

(unlike, for example, memory resources, for which typical

SLAs require it to be guaranteed as non-shared).

In this work we design a CPU-contention predictor that can

use data available at runtime. Ours is the first predictor able to

address CPU-contention in VMs hosted in clouds, efficiently.

Our main contribution for using a CPU-contention predictor

in datacenter simulation is three fold:

1. Release of a workload trace with contention data
for BCWs (Section II): Cloud applications may suffer from

performance degradation when the consolidated VMs contend

constantly for the same resources. We release a one month

workload trace of 1800 VMs which contains detailed con-

tention data.

2. Design of a representative predictor for contention
in real environments running business-critical workloads
(Section III): To investigate the risks of SLA violations due

to the decrease of VM performance, we need to measure the

performance levels of VMs in simulation. We design a process

via which we develop and test a CPU contention predictor that

can predict performance degradation for VMs.

3. Experimental evaluation of a predictor for contention
in real environments running business-critical workloads
(Section IV): We evaluate and tune our predictor with real-

world workload traces collected in production datacenters.

We show that our predictor is accurate and can be used in

simulation.

II. RESOURCE CONTENTION IN CLOUD DATACENTERS

There are many types of resource contention that occur in

cloud datacenters. Applications deployed in cloud datacenters

run together resulting in non-synchronized accesses to the

shared resources. This leads to cases where co-hosted appli-

cations are contending for the common resources and are not

receiving the demanded resource amounts.

Research in the field of identifying the reasons of resource

contention [5],[6] focus on CPU and memory unavailability.

In this work, we investigate the contention in CPU resources

as CPU is allowed to be over-committed by typical SLAs for

BCWs.

56

2019 IEEE 4th International Workshops on Foundations and Applications of Self* Systems (FAS*W)

978-1-7281-2406-3/19/$31.00 ©2019 IEEE
DOI 10.1109/FAS-W.2019.00027

A. CPU-Contention Metrics

There are a couple of contention metrics engineers use to

monitor contention in cloud datacenters [7]. All of these can be

directly retrieved by the Performance Monitor even for short

time durations. Such metrics are the CPU-Ready (ms and %),

the CPU Contention (%) and the CPU co-stop (ms) metrics.

There are also other metrics which can be used indirectly for

measuring contention in the system by exploiting the relations

between the metrics. One example of this is the relation of

CPU-run and CPU I/O wait indicating the time duration a

CPU core spends on running and on waiting for I/O calls

respectively.

B. CPU-Ready Metric

In this work, we use the CPU-Ready as our contention

indicator which measures the time a VM is ready to run but

waits to be scheduled to run on the physical CPU [7]. The

ready time increases when the scheduler is busy handling many

waiting VMs which in turn have different provisions of cpu-

cores and diverse resource demands. The CPU-Ready metric

has become the de facto standard for engineers to measure

contention problems. Thus we consider it as a good indicator

to the problem of resource contention.

In Figure 1 we depict the contention durations of VMs

in our workload trace (see Section II-C). To the best of our

knowledge, this is the first work presenting contention periods

of a production workload (we will release the trace via the

Grid Workload Archive [8] after acceptance of the article).

The contention durations are calculated by measuring the

consecutive timestamps of VMs for which the CPU Ready
metric is above 10%. We observe a heavy-tailed distribution

with few VMs having max contention durations of at least

1 hour (13%) while the mean duration of at least 1 hour is

attributed to even fewer VMs (4.2%). The outliers in the figure

depict a small number of VMs whose contention durations

reach up to more than 2 weeks.

C. VM Workload Trace from a Cloud Datacenter

We retrieve a trace of BCWs running in cloud datacenters.

The trace contains a month worth of time serires data for 1800

VMs from 12 production clusters in cloud datacenters owned

and operated by Solvinity (a Dutch cloud provider). In previ-

ous work we present a first characterization of business-critical

workloads which are significantly different from scientific

workloads and from the analytics workloads common at large

web-scale companies (e.g., Facebook, Google, Tabao) [3]. To

support the reproducibility of our work the trace will be made

public after acceptance of the article via the Grid Workload

Archive [8].

III. SELECTION METHOD FOR PREDICTORS

We follow the modeling process described in [9] which can

select a suitable model among various regressions models. The

process is split into three steps as shown in Figure 2.

Firstly, we find correlated metrics to the CPU-Ready metric

from a set of monitored metrics (raw metrics - Step 1). The

Fig. 1: Complementary cumulative distribution function

(CCDF) of contention durations (min) in business-critical

workloads.

correlated metrics are candidates for independent variables of

the predictor (regressors-predictor input) and the CPU Ready

is the dependent variable of the predictor (predictor’s output).

Secondly, we select the correlated metrics from the first step

and try out combinations of the selected metrics with different

regression models to evaluate their accuracy (Step 2). In the

end, we choose the regression model and the combination of

regressors that together give the best accuracy of predicted

values considering also the predictor runtime (Step 3). The

values which the model predicts are the CPU-Ready values of

VM v at time t since every VM experiences the contention

according to individual characteristics.

Fig. 2: Selection process. The Ellipses indicate sets of elements

while the rectangles indicate a process.

A. Correlation-based Selection (Step)

We collect multiple operational metrics and find their cor-

relation with the CPU-Ready metric (Step 1 in Figure 2). The

metrics that have the highest correlations according to some

boundaries are selected for the second step of the process.

There are hundreds of operational metrics that can be

monitored and be candidates of our selection. The monitored

57

Regression Model Description
Linear Regression (LR) Fit data points to a line by minimizing least squares distance

Lasso Least squares Model with regularization 1 using L1 norm

Ridge Least squares Model with regularization using L2 norm

Elastic Net Least squares Model with regularization using L1,L2 norm

Lars Stepwise regression using forward selection

Polynomial Regression n-th degree of polynomial regression

k-NN Prediction according to the properties of k nearest neighbors

Gradient Boosting (GB) Regression using decision trees with n estimators by applying loss function

TABLE I: Description of regression models.

metrics represent different levels of operations in VMs and in

clusters starting from hardware performance counters of CPU

cores up to cluster resource utilization. The research in [6]

and in [9] investigates many metrics for their purposes but we

focus only on metrics showing the resource utilization of VMs

and of clusters preserving the concept of opaque VMs. As a

result, we end up with a highly accurate predictor even if we

start with only a few raw metrics (25 metrics).

We monitor the set M (see Figure 2) of metrics which

consists of 25 performance metrics of VMs and of clusters.

The performance metrics monitor all the four resource types

we investigate in this work (CPU, memory, storage, network)

and include metrics showing the resource utilization (e.g.

read/write KBs in network, used MBs in memory) and latency

of VMs (e.g., read/write latency in storage, cpuWait in CPU).

reported in traces

a) Correlation in time-series: The VM traces (see II-C)

comprise of all the traces of the M metrics including the

time-series of CPU-Ready. For each VM, we evaluate the

correlations between the VM’s CPU-Ready and the VM’s

metrics in the set M . The VM correlations regarding metric

Mj and CPU-Ready are aggregated first by cluster (a VM is

hosted by one cluster) and then by all the clusters reported

in the traces. In the end, for each metric Mj ∈ M , we

have an aggregated correlation value depicting the correla-

tion of the metric with CPU-Ready as well as the p-value

of the correlation. The p-value presents the validity of the

correlation whether the correlation value is wrongly as high

as it is calculated. The mean correlation coefficient of the

correlation values of VMs and clusters is calculated using

z-transformation [10] since the correlation coefficients are

not additive quantities (ordinal scale type) to compute their

average directly. To allow aggregating of the p-values, we

double the mean of the individual p-values [11].

b) Different correlation coefficients: To calculate the cor-

relations, we use two correlation coefficients and we present

the result of both correlations. The two coefficients, Pearson
and Spearman, reflect different behaviors of data. Pearson’s

correlation (r) measures the linear relationship of data but

it is susceptible to outliers. On the other hand, Spearman’s

correlation (ρ) measures a monotonic relationship of the

variables because it applies ranks to values and is more robust

to outliers.

We use two different correlation types because, in Step 2,

we investigate multiple regression models some of whom work

better with linear data and other regress data accurately even

with non-linear relationships among regressors.

In the end of the correlation step, we choose the set

M ′ ⊆ M which includes the metrics with the high-

est correlation(r/ρ) with CPU-Ready and the lowest p-

values (p < 0.05).

B. Model Accuracy (Step 2)

We investigate multiple regression models to end up with

the best model for predicting the CPU-Contention in the

system. Step 2 in Figure 2 shows the process we follow to

measure the accuracy of regression models given a set of input

metrics (regressors).

As set of possible regressors for a regression model, we

use the output of step 1 (set M ′) and it contains the highly-

correlated metrics with CPU-Ready among the raw metrics

of set M . For each regression model in set G of regression

models, we try out every combination of metrics in M ′. The

combination of metrics may comprise of one up to the total

number of available metrics |M ′|, therefore we define the

power set P = P (M ′) containing all the possible subsets

of set M ′ as the input in Step 2.

Every regression model Gi(Pj), where Gi is a regression

model in G using as regressors the subset Pj ∈ P , is

tested with cross-validation to measure the accuracy of the

regression model. After calculating the accuracy of every

possible combination Gi(Pj), we select the best model for

the use in a datacenter simulator (Step 3).

a) Cross-validation: Cross-validation is a technique for

model validation and is used to estimate how accurate a

predictive model will perform in practice [12]. A predictor

may work well with specific input datasets but may not

generalize the same to an independent dataset. Therefore, by

changing the input multiple times cross-validation reduces this

uncertainty of a falsely good predictor. The technique splits

the input dataset of the predictor into k folds of which some

are used as the training dataset while the remaining folds are

used as the testing dataset. Because we work with time-series

predictions, we use a special version of cross-validation (time-
series cross-validation) in which the folds are ordered by time,

thus a fold used in training dataset must not include future data

58

compared to data in the testing dataset. The accuracy of the

predictor after cross-validating the model is the mean of k
accuracy’s calculated by the k rounds of cross-validation.

b) Regression Models: We investigate multiple regres-

sion models from both supervised and the unsupervised learn-

ing methods. In supervised learning, we feed the predictor with

desired output values to adjust the model’s internal states while

in the unsupervised method, the model tries to identify the

desired output without any exterior information. Additionally,

we try to investigate regression models working well either

with linearly or with non-linearly correlated data as mentioned

in Section III-A. We use the following models: Linear Re-
gression (LR), Curvlinear Regression, k-Nearest Neighbors
regression (k-NN) and Gradient Boosting regression (GB).

The regression models along with some descriptions about

the regression approach of the models are presented in Table I.

Linear Regression is the typical approach to model relation-

ships on data by minimizing the error between the training

data and the produced line. Lasso ,Ridge and Elastic Net
work in a similar as Linear Regression but they penalize the

errors with cost functions derived from the norms of L1,L2
and both norms respectively. To differentiate the models, we

use multiple solvers for Ridge for finding the best fitting line

in the shortest run-time. Lars is an approach which adds

available regressors to the model only if there is a signifi-

cant improvement in the accuracy, thus resulting in a model

with a few meaningful regressors. Polynomial Regression, or

curvlinear regression, fits the data using polynomial functions

which can explain nonlinear relations of data while k-NN
clusters the training data according to the regressors values and

reveals trends of the values of the independent variable (CPU

Ready in our case). Finally, Gradient Boosting regression uses

cost functions l such as least-squares or quantiles (Q) and

builds (iteratively) decision trees sized n that indicate which

output values reduce the costs.

c) R2 - Coefficient of determination: The coefficient

of determination (R2) [13] is a metric used to assess the

accuracy of a predictor model. It evaluates the proportion of

the variance in the predictor output (independent variable) that

is predictable from the input (regressors). For usable models

have the range of the metric is [0, 1], the higher the better,

although it can have negative values if the selected regressors

are meaningless (our interest is in the non-negative range). We

can use this metric to measure each predictor’s accuracy (see

Gi(Pj) before) in Step 2. The metric limitation is that R2 is

monotone increasing, meaning that always increases when we

add extra regressors to the model. We address this issue in

Section III-C.

At the end of Step 2, we have a list of all models

Gi(Pj) (see Figure 2) with their respective R2 scores. This

list is the input of Step 3 of our selection process.

C. Predictor Selection (Step 3)

In the final step, Step 3 in Figure 2, we select the most

promising predictor for estimating CPU contention. We make

our selection among the list of models Gi(Pj) considering

Term Description

dtv Demanded CPU of VM v at time t

dtc Demanded CPU of cluster c hosting VM v at time t

nt
v Number of virtual CPU cores of VM v at time t

rtv CPU Ready of VM v at time t

rt−1
v CPU Ready of VM v at time t− 1

rt−2
v CPU Ready of VM v at time t− 2

rt−1
c

Mean CPU Ready of VMs in cluster c hosting

VM v at time t− 1

TABLE II: Terminology in the selection method for CPU-

contention predictor.

three factors: a) The accuracy of the model depicted by the

R2 score, b) the runtime of the regression model and c) the

number of regressors in the model.

The first two factors (a) and (b) are easily addressed by

sorting the results in an increasing order for the R2 scores of

the models and in a decreasing order for the runtime of the

models. As for the third factor, we leverage the method in [9]

where we add a new regressor in the model only if it improves

the R2 score more than a given threshold (R2
impr). A metric

contributing to the predictor’s accuracy less than R2
impr will

not be considered as an additional regressor.

The results of our selection method are presented in Sec-

tion IV where we show the best accuracy for every type of

regression model we use.

IV. RESULTS FOR SELECTING A CPU-CONTENTION

PREDICTOR FOR BCWS

In this section, we present the results for the selection

of a CPU-contention predictor described in Section III. The

selected predictor will be used to estimate performance degra-

dation of BCWs in datacenter simulation in future work. The

predictor estimates the CPU Ready levels of every running

VM in the system at time t (rtv).

A. Results of Step 1

As a result of this step, we have a set of 6 selected

metrics (set M ′ in Figure 2) having correlation with the

CPU Ready metric. We set the correlation value between a

raw metric and the CPU Ready metric to be higher than

r/ρ >= 0.4 and the p-value less than p < 0.05 to select

a raw metric as a candidate regressor of the predictor. Table II

summarizes the terminology used for the metrics of set M ′.
The six selected metrics are: a) the demanded CPU of a VM

at time t (dtv), b) the demanded CPU of the cluster hosting a

VM at time t (dtc), c) the number of provisioned virtual cores

of a VM at time t (nt
v), d) the CPU Ready of a VM at time

t− 1 (rt−1
v), e) the CPU Ready of a VM at time t− 2 (rt−2

v)

1Penalizing bad fitting of data, mitigating data overfitting

59

and f) the mean CPU Ready of VMs in the cluster hosting a

VM at time t− 1 (rt−1
c).

In Figure 3, we present the results for the selected metrics.

We show the correlation coefficients between each selected

metric and the CPU Ready rtv . Next to the correlation values

for every cluster, we show the mean correlation coefficient

combining the results of all clusters, this is used to select a

metric for step 2. In Figure 3a we present the auto-correlation

of CPU Ready having been calculated by aggregating the

autocorrelations of all the VMs in the trace. The trace has

a monitoring period of 5 minutes and we present the lags

in hour units. We see that for a very short time period,

there is a significant auto-correlation for CPU Ready. For this

reason, we select the last two entries, rt−1
v (corr = 0.85) and

rt−2
v (corr = 0.79), as our candidate regressors in step 2.

In Figures 3b-3e we show the correlations of the other

selected metrics which will be the input of the process in

step 2. We present the Pearson and the Spearman correlation

coefficients for every cluster as well as the mean correlation

values. The differences of the correlation values among the

values of the same correlation type are small implying stable

correlation levels between the metrics. The only metric that

shows irregular correlation behavior between clusters is the

number of provisioned virtual cores of a VM and its CPU

Ready values (Figure 3d). However, we observe that even

though the correlations of clusters differentiate a lot, the mean

correlation is high enough to select the number of vCPUs nt
v

as a possible regressor for step 2.

B. Results of Steps 2

At step 2, we try every combination of the six selected

metrics described in Section IV-A with each regression model

in Table I. We test every pair of regression model and set of

metrics with every (sliding) time window of 5 hours in the

trace and we calculate the accuracy of the pair by aggregating

the accuracy’s of the time windows. The reason we split the

trace into time windows is that the CPU contention levels for

VMs is a temporary effect (we also see it in Figure 3a where

the values are related to values of the recent past-5h data) and

a predictor should be trained only by recent contention levels.

In Figure 4 we present the best (highest) accuracy’s that

every regression model achieved in step 2. With the additional

requirement that 3 or more metrics are used as regressors.

Figure 4 depicts for each regression model the average

of R2 accuracy’s of the time windows along with the stan-

dard deviation of those accuracy’s. We see that Gradient
Boosting (GB) achieves the best accuracy (0.89) from all

the other regression models while we have three models in

the second place (LR =Lars =Ridge =0.86). The Polynomial
model achieves impractical accuracy (negative R2) with high

standard deviation thus we exclude it from the selection

process of Step 2.

C. Results of Step 3

In step 3, we take the results shown in Figure 4 and we

select the most suitable pair of model and set of metrics for

(a) CPU Ready auto-correlation.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Mean
Clusters

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr
e
la
ti
o
n

Pearson, p_value =1.01e-04

Spearman, p_value =5.14e-04

(b) dtv - rtv correlation.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Mean
Clusters

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr
e
la
ti
o
n

Pearson, p_value =2.29e-03

Spearman, p_value =1.21e-03

(c) dtc - rtv correlation.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Mean
Clusters

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr
e
la
ti
o
n

Pearson, p_value =0.42

Spearman, p_value =1.44e-14

(d) nt
v - rtv correlation.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 Mean
Clusters

0.0

0.2

0.4

0.6

0.8

1.0

C
o
rr
e
la
ti
o
n

Pearson, p_value =3.88e-04

Spearman, p_value =1.20e-03

(e) rt−1
c - rtv correlation.

Fig. 3: Correlations of the selected metrics in Step 1.

60

Lasso ElasticNet k-NN Ridge LARS LR GB
0.0

0.2

0.4

0.6

0.8

1.0

R
2

0.79 0.80 0.82 0.86 0.86 0.86 0.89

Fig. 4: Accuracy of seven regression models.

Fig. 5: Runtimes of the seven regression models.

our case as described in Section III-C. In Figure 5, we present

the run-times of the models-set of metrics that are depicted in

Figure 4.

The run-time values are the averages of the run-times of all

time windows explained in the previous section. The run-time

of Gradient Boosting is significantly higher than of the second-

best models with difference larger than 800%. This increase of

run-time is crucial for our simulations as the predictor is used

at every monitoring event to estimate the current contention for

each running VM. Therefore, we choose Linear Regression
as our regression model which is the simplest among the

other second-best models and introduces a lower computation

overhead for the predictor run-time than that of Gradient
Boosting . As for the number of metrics/regressors of the linear

regression model, we end up with the 5 out of 6 selected

metrics because the remaining metric increases the model

accuracy less than R2
impr (LR5 = 0.862, LR6 = 0.865). In

the end we choose as CPU contention predictor the model

presented in Equation 1.

Gi(Pj)
t
v = LR(dtv, d

t
c, n

t
v, r

t−1
v , rt−1

c) (1)

D. Verification of the model accuracy

To verify our chosen regression model, we run our datacen-

ter simulator using the CPU-Contention predictor and compare

the results with the real-world values collected by the system

monitor. Figure 6 depicts this comparison by presenting the

R2 score for the percentage of data being tested (#data > 19
million values). The results indicate a highly accurate predictor

of CPU-Contention for 99% of the values (0.93), albeit a lower

accuracy for the total number of values (0.61).

V. CONCLUSION

In this work, we address our research question about se-

lecting an efficient predictor for CPU contention among VMs

running business-critical workloads in cloud datacenters. We

present a method through which we pick metrics correlated

to CPU contention and use combinations of those metrics

0.92
0.94
0.96
0.98
1.0

R
2

vertical range not continuous!

0 20 40 60 80 100

Samples [%]

0

Fig. 6: Accuracy of the tuned predictor.

to investigate the predictive accuracy of multiple regression

models. The method we propose could be used for selecting

a predictor of a different contention metric than CPU Ready

or even of a performance metric with different purpose.

Selecting an efficient predictor does not only require ac-

curacy measurements, because the prediction process might

be time-inefficient. Thus, we also consider the computation

overhead of the predictions in our selection process.

For the future, we will test the method against other

workloads and setups. Further, we will incorporate the CPU

Contention predictor presented in this work in datacenter

scheduling research in future work.

REFERENCES

[1] IDC, “Worldwide and regional public it cloud services: 2013-2017
forecast,” IDC Tech Report. [Online] Available: www.idc.com/getdoc.
jsp?containerId=251730, 2013.

[2] European Commission, “Uptake of cloud in europe,” Final Report.
Digital Agenda for Europe report. Publications Office of the European
Union, Luxembourg, 2014.

[3] S. Shen, V. van Beek, and A. Iosup, “Statistical characterization of
business-critical workloads hosted in cloud datacenters,” in CCGRID,
2015.

[4] V. van Beek, J. Donkervliet, T. Hegeman, S. Hugtenburg, and A. Iosup,
“Self-expressive management of business-critical workloads in virtual-
ized datacenters,” IEEE Computer, vol. 48, no. 7, pp. 46–54, 2015.

[5] X. Ren, S. Lee, R. Eigenmann, and S. Bagchi, “Prediction of resource
availability in fine-grained cycle sharing systems empirical evaluation,”
Journal of Grid Computing, vol. 5, no. 2, pp. 173–195, 2007.

[6] S. Blagodurov, S. Zhuravlev, and A. Fedorova, “Contention-aware
scheduling on multicore systems,” ACM Transactions on Computer
Systems (TOCS), vol. 28, no. 4, p. 8, 2010.

[7] VMware, “vSphere 6 documentation: Monitoring and performance,”
Official support resources. [Online]. Available: https://www.vmware.
com/support/pubs/vsphere-esxi-vcenter-server-6-pubs.html

[8] A. Iosup, H. Li, M. Jan, S. Anoep, C. Dumitrescu, L. Wolters, and
D. H. J. Epema, “The grid workloads archive,” FGCS, vol. 24, no. 7,
pp. 672–686, 2008.

[9] P. Xiong, C. Pu, X. Zhu, and R. Griffith, “vPerfGuard: an automated
model-driven framework for application performance diagnosis in con-
solidated cloud environments,” in ICPE. ACM, 2013, pp. 271–282.

[10] D. M. Corey, W. P. Dunlap, and M. J. Burke, “Averaging correlations:
Expected values and bias in combined pearson rs and fisher’s z trans-
formations,” The Journal of General Psychology, vol. 125, no. 3, pp.
245–261, 1998.

[11] V. Vovk, “Combining p-values via averaging,” arXiv preprint
arXiv:1212.4966, 2012.

[12] P. Refaeilzadeh, L. Tang, and H. Liu, “Cross-validation,” in Encyclope-
dia of database systems. Springer, 2009, pp. 532–538.

[13] N. R. Draper, H. Smith, and E. Pownell, Applied regression analysis.
Wiley New York, 1966, vol. 3.

61

