
 
 

Delft University of Technology

Influence of foam on the stability characteristics of immiscible flow in porous media

van der Meer, Jakolien; Farajzadeh, Rouhi; Rossen, Bill; Jansen, Jan Dirk

DOI
10.1063/1.5000891
Publication date
2018
Document Version
Final published version
Published in
Physics of Fluids

Citation (APA)
van der Meer, J., Farajzadeh, R., Rossen, B., & Jansen, J. D. (2018). Influence of foam on the stability
characteristics of immiscible flow in porous media. Physics of Fluids, 30(1), Article 014106.
https://doi.org/10.1063/1.5000891

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1063/1.5000891
https://doi.org/10.1063/1.5000891


Green Open Access added to TU Delft Institutional Repository 

‘You share, we take care!’ – Taverne project 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public.

https://www.openaccess.nl/en/you-share-we-take-care


PHYSICS OF FLUIDS 30, 014106 (2018)

Influence of foam on the stability characteristics of immiscible flow
in porous media

J. M. van der Meer,a) R. Farajzadeh,b) W. R. Rossen, and J. D. Jansen
Department of Geosciences and Engineering, Delft University of Technology, Delft 2628 CN, The Netherlands

(Received 19 August 2017; accepted 19 December 2017; published online 26 January 2018)

Accurate field-scale simulations of foam enhanced oil recovery are challenging, due to the sharp tran-
sition between gas and foam. Hence, unpredictable numerical and physical behavior is often observed,
casting doubt on the validity of the simulation results. In this paper, a thorough stability analysis of
the foam model is presented to validate the simulation results. We study the effect of a strongly non-
monotonous total mobility function arising from foam models on the stability characteristics of the
flow. To this end, we apply the linear stability analysis to nearly discontinuous relative permeability
functions and compare the results with those of highly accurate numerical simulations. In addition,
we present a qualitative analysis of the effect of different reservoir and fluid properties on the foam
fingering behavior. In particular, we consider the effect of heterogeneity of the reservoir, injection
rates, and foam quality. Relative permeability functions play an important role in the onset of fingering
behavior of the injected fluid. Hence, we can deduce that stability properties are highly dependent on
the non-linearity of the foam transition. The foam-water interface is governed by a very small total
mobility ratio, implying a stable front. The transition between gas and foam, however, exhibits a huge
total mobility ratio, leading to instabilities in the form of viscous fingering. This implies that there is
an unstable pattern behind the front. We deduce that instabilities are able to grow behind the front but
are later absorbed by the expanding wave. Moreover, the stability analysis, validated by numerical
simulations, provides valuable insights about the important scales and wavelengths of the foam model.
In this way, we remove the ambiguity regarding the effect of grid resolution on the convergence of the
solutions. This insight forms an essential step toward the design of a suitable computational solver
that captures all the appropriate scales, while retaining computational efficiency. Published by AIP
Publishing. https://doi.org/10.1063/1.5000891

I. INTRODUCTION

Foam enhanced oil recovery (EOR) is applied to increase
oil production by reducing disadvantageous effects like chan-
neling, viscous fingering, and gravity override. When gas is
injected into a porous medium containing a surfactant solution,
a foam front forms. The foam captures the gas in bubbles and
reduces its mobility. The effectiveness of the process depends
on the stability of the created foam controlled by the magnitude
of the capillary pressure. It has been observed that foam expe-
riences a significant coalescence when the capillary pressure
approaches the so-called limiting capillary pressure, P∗c .9,12 In
other words, when the water saturation drops below a critical
value, called the limiting water saturation S∗w, foam becomes
too dry and collapses. The mobility of the gas, which is the
ratio of the relative gas permeability and the gas viscosity,
therefore contains a sharp transition around the limiting water
saturation.

To reduce the operational risks associated with injectivity
decline because of generation of very strong foams, material

Note: This manuscript is an extended version of a paper presented at the SPE
Reservoir Simulation Conference held in Montgomery, Texas, USA, 20-22
February 2017.
a)Electronic mail: j.m.vandermeer@tudelft.nl.
b)Also at Shell Global Solutions International, Rijswijk, The Netherlands.

compatibility, and well integrity, it has been suggested to inject
gas and surfactant solution into an alternating mode, i.e., a slug
(fraction of the pore volume) of surfactant followed by a slug
of gas. Upon mixing of the gas and the surfactant solution in the
pores, foam lamellae will form in situ. Behind the foam front,
gas reduces the water saturation to saturations close to the
limiting water saturation and therefore with gradual or abrupt
collapse of foam, the gas mobility increases from the foam
front toward the injection well. The instabilities that might
occur within this bank (between the front and the injection
point) have been the subject of a recent study,10 which sug-
gested that the fingering has a physical origin and is not due to
numerical artifacts discussed in the paper. This phenomenon,
the extent of which depends mainly on the properties of the
foam behind the front, may not be visible in simulations with
poor grid resolutions.

Because of this aspect of foam, accurate field-scale sim-
ulations are challenging. Hence, unpredictable numerical and
physical behavior is often observed, casting doubt on the valid-
ity of the simulation results.2,3,5,10,15 In this paper, a thorough
stability analysis of an implicit texture (local equilibrium)
foam model is presented to validate the simulation results
and lay a foundation for a tailor-made solver, which can
both handle large-scale reservoir simulations and accurately
resolve front instabilities. We study the effect of a strongly
non-monotonous total mobility function, arising from foam
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models, on the stability characteristics of the flow. To this
end, we generalize the linear stability analysis of Yortsos
and Hickernell,29 Riaz et al.,20 Riaz and Tchelepi,16,17,19 and
Meulenbroek et al.14 to nearly discontinuous relative perme-
ability functions and compare the results with those of highly
accurate numerical simulations.

In this earlier work on the stability of immiscible two-
phase flow in porous media, a linear stability analysis was
performed for the quasi-linearized model. This was done in a
transformed coordinate frame that moves along with the front.
By using a perturbation theory that exploits a normal mode
decomposition strategy, it was shown that the onset of the insta-
bilities of the displacing fluid is governed by the total mobility
ratio across the shock (as opposed to the mobility ratio over the
entire transition region). The shape of the relative permeability
curves plays an important role at this stage.17

We therefore propose to apply the perturbation theory to
the foam model, in order to investigate the effect of the abrupt
changes in the gas relative permeability on the stability of
the foam front. We are especially interested in the effect of
this particular relative permeability function on the stability
characteristics of the model. The function form differs from
the ones described by Riaz and Tchelepi17 because it allows for
discontinuities and the corresponding total mobility function
is non-monotonic and can have an unfavorable shock-mobility
ratio.

The foam-water interface has usually a very small total
mobility ratio, leading to a stable front. The subsequent tran-
sition front, where foam turns into gas, exhibits a large total
mobility ratio. This implies that there is an unstable pattern
behind the front, which can be detected by highly accurate
numerical simulations. An indication of this behavior was
shown in the study of Farajzadeh et al.10 for a two-phase
incompressible immiscible foam model.

The question is to which extent the strong non-linearities
in the foam model can be described by a linear stability
analysis. To answer this, we compare the linear stability
results with accurate numerical simulations, where we approx-
imate several properties, such as the interfacial length, wave
number, and maximum growth number. To solve the sys-
tem of saturation and pressure equations, we apply a semi-
implicit finite volume method. To minimize numerical dif-
fusion around the front, we use a second-order monotonic
upstream-centered scheme for conservation laws (MUSCL)
for the hyperbolic flux functions and a central scheme to com-
pute the pressure values. Both equations contain a strongly
non-linear mobility function, and therefore the system is con-
sidered stiff. Hence, the time step of the numerical scheme
is very restricted, and the numerical scheme exhibits stability
issues. To improve the stability of the numerical scheme, a
Taylor-Galerkin method is applied to the entire system. The
non-linearity is accounted for by introducing auxiliary vari-
ables.1 Using this scheme, we are able to resolve the very
fast wave speeds that emerge from the non-linearity of the
model.

The structure of the paper is as follows: first, we introduce
the two-phase foam model and discuss its characteristics in
Sec. II. For this model, a linear stability analysis is per-
formed in Sec. III. The results from this analysis, listed

in Sec. IV, are then compared to numerical simulations
discussed in Secs. VI and VII. Finally, we discuss the outcomes
of both analyses in Sec. VIII.

II. FOAM MODEL

We use the non-dimensional model described by Ref. 19
for the injection of an incompressible gas into a porous rock
initially filled with water, which is given by

∂tS = −∇

(
Mkrg

λ
u + G

krgkrw

λ
∇ z +

krgkrw

Ncaλ

dPc

dSw
∇ S

)
= −∇ · (krw ∇ P̄), (1)

∇u = 0, (2)

u = −λ∇P̄ + Gkrg∇z +
1

Nca
krg

dPc

dSw
∇S, (3)

where S = (Sg � Sgr)/(1 � Swc � Sgr) is the normalized gas
saturation,

∇P̄ = ∇Pw + (ρwgk/µwU)∇z (4)

is the derivative of the scaled pressure P̄, Pc = Pw � Pg

is the capillary pressure, u is the total Darcy velocity, and
λ = Mkrg + krw is the dimensionless mobility function. Here,
krα denote the relative permeability functions of phase α ∈ w,
g, which are defined later. The variables M, G, and Nca denote
the dimensionless end point mobility ratio, gravity number,
and capillary number, respectively, which are given by

M =
µw

µg

krge

krwe
, (5)

G =
k∆ρg
µgU

, (6)

Nca =
µgUW

γgw
√
φk

, (7)

where W is a characteristic length scale of the model where
viscous and capillary terms are of comparable magnitude29

and U is a characteristic velocity, which is set equal to
the gas injection rate divided by a unit surface area. The
other parameters are explained in Appendix A. We consider
the one-dimensional version of this equations with u = 1,
given by

∂tS + ∂x

(
f (S) +

krgkrw

Ncaλ

dPc

dSw

dS
dx

)
= 0. (8)

If capillary pressure is neglected (Ca → ∞), this equation is
the Buckley-Leverett equation with a non-convex flux

f =
Mkrg

λ

(
1 + G

krw

M

)
, (9)

for which we can derive the characteristic solution. The charac-
teristics of this solution depend on the form of the normalized
relative permeability functions krw and krg, which are given by

krg =
Sng

fmr
, fmr = 1 + R · Fw, (10)
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FIG. 1. Relative permeability function of the local-equilibrium foam model with foam present ( fmr > 1) and without foam present ( fmr = 1). The sudden drop
in the relative permeability of gas, due to foam, is shown for different transition rates κ, for S∗w = 0.3, R = 10, M = 1, and G = 0.26 (a) κ =∞, (b) κ = 40.

krw = (1 − S)nw , (11)

where fmr is the mobility reduction factor due to foam
generation and R is a constant that accounts for the maximum

flow resistance of the foam. The function Fw describes the

dependency of the foam strength to water saturation and is
given by23

FIG. 2. Flux function and flux derivative of the local-equilibrium foam model with and without foam present, for S∗w = 0.15, κ = 1000, R = 1000, M = 1, and
G = 0.26 (a) Flux, (b) flux derivative.

FIG. 3. Saturation and pressure solution of the Buckley-Leverett equation at t = 0.05, for S∗w = 0.1, κ = 1000, R = 10 000, M = 1, and G = 0. (a) Saturation,
(b) pressure.
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Fw = 0.5 +
arctan

(
κ(Sw − S∗w)

)
π

, (12)

where S∗w represents the limiting water saturation and κ is a
positive parameter that controls the width of the gas-foam
transition. For κ = ∞, the gas-foam transition is instant
[Fig. 1(a)], and no foam exists below S∗w. For smaller values of
κ, the mobility reduction of foam (i.e., of the foam strength)
increases as the water saturation increases in the transition
zone [Fig. 1(b)]. In other words, foam collapse occurs over a
range of water saturations whose width is determined by κ.
The corresponding flux functions and derivatives are shown in
Fig. 2.

The characteristic solution of the Buckley-Leverett equa-
tion for gas injection into a water saturated medium with the
given relative permeability functions consists of a rarefaction
and a right-moving shock wave22 as shown in Fig. 3. The
shock-speed vs can be determined from

vs =
df (S)

dS

�����Ss

=
f (Ss) − f (Si)

Ss − Si
, (13)

where Ss is the shock saturation and Si = 0 is the initial gas
saturation in the porous medium. For saturation values larger
than Ss, the solution consists of a rarefaction wave, for which
x/t = f ′(S(x, t)).13

III. LINEAR STABILITY ANALYSIS

To analyze the influence of foam on the stability charac-
teristics of the fluid displacement, we perform a linear stability
analysis on Eqs. (1) and (2), where we start off with the full sys-
tem including capillarity. To do so, we linearize the equations
around a base state that is given by the characteristic solu-
tion of the one-dimensional version of the saturation equation,
Eq. (8). For this equation, a self-similar solution exists as a
function of ξ = x � vst, in the neighborhood of the Buckley-
Leverett shock where ξ = 0, which does not change in time.29

This solution can be used as the base state (S0, P0) for the
stability analysis,19 which is given by

dS0

dξ
=

λCa
krwkrgP′c

(vsS0 − f (S0)) , (14)

dP0

dξ
=

1
λ

(
Gkrg +

krg

Ca
P′cS′0 − 1

)
. (15)

In the absence of capillarity (Ca→∞), the base state satisfies

S0

dξ
= δ(ξ), (16)

dP0

dξ
=

Gkrg − 1

λ
. (17)

We can expand the full solution in terms of the base state and a
perturbation function.19 The last is written as a set of stream-
wise eigenfunctions ŝ and p̂ times a normal mode series, such
that

(S, P)(ξ, y, t) = (S0, P0)(ξ) + (ŝ, p̂)(ξ)einy+σt , (18)

where n denotes the wave number of the perturbation and
σ denotes the wave growth rate. Substituting this eigenmode

expansion into Eqs. (1) and (2), and solving the resulting eigen-
value problem,16,19 leads to an expression for the disturbance
velocity,

σ

n
=

fg1 − fg0

S1 − S0

λ1(1 − Gkrg0 ) − λ0(1 − Gkrg1 )

λ1 − λ0
, (19)

where the subscripts 0 and 1 denote the front and back edges
of the shock, respectively. The derivation of these equations
can be found in Appendix B. If there is no gravity influence
(G = 0), i.e., if we consider a horizontally located reservoir,
this becomes

σ

n
=

fg1 − fg0

S1 − S0
= vsΛ, (20)

Λ =
Ms − 1
Ms + 1

, (21)

where Ms = λ1/λ0, the mobility ratio across the shock, and Λ
is the disturbance number. Hence we see that this number is
positive if Ms > 1, which means that the flow is unstable at the
shock. Vice versa, a mobility ratio smaller than one leads to a
stable displacement. If gravity is included, it has been shown
by Ref. 19 that

G(krg1 −Mskrg0 ) < 1 −Ms (22)

to obtain stable displacement. If capillarity is included, apart
from the shock mobility ratio, the fractional flow profiles
have an influence on the stability of the flow. In the limit of
small wave numbers, the disturbance velocity can therefore be
extended to a higher-order formulation29 given by

σ = Γ1n + Γ2n2 + Γ3 ln (n(s1 − s0))n2, (23)

where Γ1 is given by Eq. (19) and Γ2 and Γ3 are determined
by the derivative of the total mobility and the fractional flow
profiles.

IV. STABILITY CHARACTERISTICS

The above analysis for the model without capillarity and
gravity allows us to investigate the influence of foam on
the viscous instability at the front. Based on the results of
Farajzadeh et al.,10 different scenarios are addressed: a weak
foam (low mobility reduction factor, case 1), three cases of a
strong foam (high mobility reduction factor, case 2–4) with
different transition lengths from foam to gas (see Fig. 4), and
a fifth case with the effect of gravity included.

Since we only looked at the linearized model without cap-
illarity, there is no damping at large wave numbers,19 and hence
the wave growth is a linear increasing function of the wave
number. Moreover, the base state of the model without capillar-
ity contains a shock wave at S0 = Ss = maxS

fg(S)−fg(SR)
S−SR

, which
marks the interface between gas and water. The shock wave is
followed by a rarefaction wave, where water and gas co-exist.
As shown in Fig. 5(a), the shock saturation of water (gas)
is almost everywhere smaller (larger) than the limiting water
(gas) saturation, i.e., the saturation that marks the transition
from gas to foam. Therefore, only due to a numerically and/or
physically dispersed shock (denoted by red dashed lines), or
a very wide transition range of foam (denoted by blue dashed
lines), foam can exist in this model. The second plot [Fig. 5(b)]
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FIG. 4. (a) Flux functions and (b) flux derivative/wave speed of the five test cases of Farajzadeh et al.10 and two reference cases without foam.

FIG. 5. (a) Shock saturation, Ss, ver-
sus the limiting water saturation, S∗w, for
κ = 1000, R = 1000, and G = 0. (b) Shock
speed, vs, versus the limiting water satu-
ration, for κ = 1000, R = 1000, and G = 0.
The red dashed lines indicate the diffu-
sion around the shock because of cap-
illarity and/or numerical diffusion. The
blue dashed lines indicate the transition
width of the foam, which is governed by
the inverse of κ.

shows that the shock speed increases with the limiting water
saturation because strong foam slows down the front signif-
icantly. It follows from Eq. (20) that the viscous instability
increases linearly with the shock speed. Thus, strong foam
has less instabilities than weak foam, according to this anal-
ysis. This corresponds to the results obtained by Farajzadeh
et al.10

We can also examine the influence of the mobility ratio
on the growth rate of the various test cases described in the
study of Farajzadeh et al.,10 as depicted in Fig. 6(a). As the
mobility ratio increases, the growth rate also increases. For a
small mobility ratio, the growth rate increases very fast for the
fifth test case f 5, after which it scales with approximately M1/2,
which is similar to what Riaz and Tchelepi16 observed for their

FIG. 6. (a) Growth rate versus the mobility ratio M and (b) total mobility ratio across the shock versus M, for the five test cases of Farajzadeh et al.10
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FIG. 7. Stability regions in the κ–R plane for the rest of the parameter set of (a) test case one and (b) test case two of Farajzadeh et al.10 The stable and unstable
regions are separated by the thick black lines, and the different test cases are denoted by thick black dots.

test cases without foam. The first three cases including foam
(denoted by f 1, f 2, f 3) show an overall increase of M1/2, and
the fourth test case f 4 has a more or less constant growth num-
ber which is always smaller than zero. This implies that the
fourth test case is always stable, whereas the first test case is
always unstable (σ/n > 0). The other three test cases are unsta-
ble at the shock front for larger mobility ratios only, according
to this analysis. Also, if we have a look at the mobility ratio
across the shock depicted in Fig. 6(b), we see the same pattern.
For the fourth test case, the shock ratio Ms < 1 for all M, which
is according to our expectations and implies a stable displace-
ment for all values of M. For the first test case, Ms > 1 for all
M, implying an unfavorable displacement, with instabilities.
The other three test cases have unfavorable mobility ratios for
values of M > 10. Moreover, for large viscosity ratios, we
observe an oscillatory pattern due to the total mobility values,

which are very sensitive to small changes in the parameters
[see Fig. 10(a)].

Since the foam models are characterized by the parame-
ters R, κ, and S∗w, we studied the influence of these parameters
on the dimensionless growth number Λ. Figure 7 shows the
contour lines of the growth number in the κ–R plane, for the
remaining parameter sets of the test cases one and two of
Farajzadeh et al.10 The stable region for the parameter set of
the first parameter set defined in Table I is much larger than for
the parameter set of the test case 2–4. This is probably an effect
of the mobility ratio, which is larger for the second parameter
set (M2 = 235 vs M1 = 61). We also observe that the stability
contour lines, which are set by the dimensionless growth num-
ber, are all straight with a positive angle. This means that an
increasing mobility reduction factor (R) has a stabilizing effect,
while an increasing non-linearity (κ) has a destabilizing effect.

TABLE I. Simulation parameters for the four test cases of Farajzadeh et al.10

Parameter (unit) Case 1 Case 2 Case 3 Case 4

Foam strength R 1.8 × 104 2.5 × 104 2.5 × 104 2.5 × 104

Critical saturation S∗w 0.268 0.29 0.29 0.29
Foam transition width κ 105 105 104 102

End point gas permeability krge 0.94 0.94 0.94 0.94
End point water permeability krwe 0.2 0.2 0.2 0.2
Gas viscosity µg (Pa s) 5 × 10�5 2 × 10�5 2 × 10�5 2 × 10�5

Water viscosity µw (Pa s) 0.65 × 10�3 10�3 10�3 10�3

Power coefficient gas ng 1.8 1.3 1.3 1.3
Power coefficient water nw 2 4.2 4.2 4.2
Gas density ρg (kg/m3) 10�5 10�5 10�5 10�5

Water density ρw (kg/m3) 10�5 10�5 10�5 10�5

Residual gas saturation Sg ,r 0.0 0.0 0.0 0.0
Residual water saturation Sw ,c 0.0 0.0 0.0 0.0
Injected gas saturation Sg ,inj 1.0 1.0 1.0 1.0
Injection rate gas I (m3/s) 3.5 × 10�5 3.5 × 10�5 3.5 × 10�5 3.5 × 10�5

Absolute permeability K (m2) 5 × 10�10 5 × 10�10 5 × 10�10 5 × 10�10

Porosity φ 0.2 0.2 0.2 0.2
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FIG. 8. Stability regions in the S∗w–κ plane for the rest of the parameter set of (a) test case one and (b) test case two of Farajzadeh et al.10 The stable and unstable
regions are separated by the thick black lines, and the different test cases are denoted by thick black dots.

Hence, strong foam (higher R with a small transition width κ) is
usually stable, while weak foam (lower R) can become unsta-
ble quickly for relatively low values of κ. Test cases 1 and 2
are examples of weak foam and strong foam that are unsta-
ble, while test cases 3, 4, and 5 are stable according to this
analysis. Finally we see that between the region of instabil-
ity and stability there is a zone, which can be both stable and
unstable. This is due to a strong sensitivity of the shock mobil-
ity, to the foam parameters κ and R, which becomes larger if
R increases. Overall, we can deduce that the isolines of the
dimensionless growth number are linear and hence we can
write

∂Λ

∂R
+ a

∂Λ

∂κ
= 0, (24)

where a = ∆κ
∆R is a constant wave propagation speed, which

can be linked to the growth of disturbances in the κ–R space.
This speed is highest for low R and high κ values.

The influence of the limiting water saturation S∗w is more
complicated, as can be seen in Figs. 8 and 9. These figures
depict the disturbance velocity and show that the solutions
are stable only for low values of the limiting water saturation.
This can be partly explained by Fig. 5(a), which shows that
the region where foam can exist for this model is limited to
values of S∗w < 0.4. Hence, a limiting water saturation that is
larger implies that there is no foam present such that instabili-
ties at the front are not subdued. Moreover, we observe that the
region of the highest disturbance velocities is located around
S∗w = 0.6 for the first parameter set and around S∗w = 0.9 for
the second parameter set. As can be deduced from Fig. 7, the
growth number is highest for low R and high κ. So, even if
there is no foam present, the choice of S∗w influences the sta-
bility of the solutions, since both the shock saturation and the
shock velocity increase with an increasing limiting water sat-
uration (see Fig. 5). The disturbance velocity scales linearly
with the shock velocity and hence will increase too, and the

FIG. 9. Stability regions in the S∗w–R plane for the rest of the parameter set of (a) test case one and (b) test case two of Farajzadeh et al.10 The stable and unstable
regions are separated by the thick black lines, and the different test cases are denoted by thick black dots.
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FIG. 10. (a) Total mobility and (b) apparent viscosity of the five test cases of Ref. 10.

dimensionless growth number depends on the mobility ratio
around the shock, which will be larger if the shock saturation
increases. Hence, we see that large values of S∗w introduce a
non-physical effect in the model by changing the shock satu-
ration, although foam is absent. However, foams effective in
surfactant-alternating-gas (SAG) applications are expected to
have a small limiting water saturation in combination with a
non-zero transition width.4

The online version of this article contains supplementary
material where we introduce six additional test cases that are
located in highly unstable or stable parts of the parameter space
or around the boundaries of the stable parameter range. Those
are also depicted in Figs. 7–9 and support the conclusions that
can be drawn from this linear stability analysis.

V. NUMERICAL METHODS

The results from the linear stability analysis can be
compared with the results obtained by high resolution two-
dimensional numerical simulations of foam on a rectilinear
grid with a horizontal injection well. The two-dimensional
reservoir simulator was further developed by the first author for
this purpose and based on the numerical simulator described
in the study of Van der Meer et al.26 We address the same test
cases as in the study of Farajzadeh et al.10 For the second case,
an interesting artifact was observed in the apparent viscosity
of the foam, in the form of a fingering pattern behind the foam
front (Fig. 6 in Ref. 10). These fingers did not significantly
influence the saturation behind the front. Therefore, it was not
clear from these results whether this is a physical effect or
a numerical artifact. To analyze this effect and validate the
numerical simulations of the foam model, we repeat the first
four test cases of Farajzadeh et al.10

Instead of solving the equations in a fully implicit way,
we opt for the implicit pressure explicit saturation (IMPES)
method, which is designed for this kind of hyperbolic-elliptic
problem because it takes into account the different nature of
the equations. Because of the non-linearity in the foam param-
eters, the numerical stability of the foam simulations is a major
concern.25 To improve the stability of the numerical scheme,

a Taylor-Galerkin method is applied to the entire system. The
non-linearity is accounted for by introducing auxiliary vari-
ables.1 Using this scheme, we are able to resolve the very
fast wave speeds that emerge from the non-linearity of the
model. Additionally, solving the saturation equation explicitly
with a higher-order scheme introduces less artificial diffusion.
This is important in this case because we are interested in
the detailed fingering behavior at the front and behind the
front. By using operator splitting, as described in the study of
Hvistendahl Karlsen et al.11 and Van der Meer et al.,26 we can
split the saturation equation into a hyperbolic conservation law
and an ordinary differential equation (ODE) for the mass flow
rate. They are solved sequentially using a second-order Strang
splitting scheme, which preserves the symmetry of the oper-
ator. The hyperbolic equation is solved with a second-order
MUSCL scheme, which is a total variation diminishing finite
volume method reconstructed from the first-order Godunov’s
method.24 The Total Variation Diminishing (TVD) property
prevents instabilities to occur that are due to the numerical
method. In other words, a TVD scheme is monotonicity pre-
serving if the Courant-Friedrichs-Levy (CFL) condition on the
time step is satisfied.24 The ODE is solved by the second-order
trapezoidal rule, which is A-stable and therefore suitable for
stiff ODEs.7 The size of the time step of an A-stable method
does not suffer from stringent restrictions, and the choice only
depends on the desired accuracy. For the elliptic equation (2),
we use a multi-grid linear solver that combines a five-point
stencil with a nine-point stencil that is rotated by 45◦ to reduce
the grid-orientation effect.27 The five-point stencil accounts for
the unrotated coefficients and is combined with a nine-point
stencil that accounts for the rotated coefficients and is pro-
jected back onto the original grid. The domain is parallelized
by Message Passing Interface (MPI) using the HYPRE library8

to speed up the computations, since roughly 73% of the sim-
ulation time is spent on the pressure solver for this model.28

VI. NUMERICAL RESULTS

The foam displacement is modeled in a reservoir of size
1 × 1 × 1 m, discretized using 300 grid blocks in the first

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-021801
ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-021801
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FIG. 11. (a) Saturation profile and (b) logarithm of the apparent foam viscosity, for the first test case of Ref. 10 after 0.4 PV of injected gas.

two directions and one grid block in the z-direction (hence we
have a 2D model). The porous medium used in the model
has porosity ψ = 0.2, and a log-random permeability field
with an average permeability K = 5 × 10�13 m2, a Dykstra-
Parsons coefficient of 0.1, and correlation lengths Lx = 0.01
and Ly = 0.01. Initially the reservoir is filled with water mixed
with surfactants, and pure gas is injected at a fixed injection
rate I, via a horizontal injector along the entire left side of
the reservoir. Water and gas are then produced via a horizon-
tal producer along the right side of the reservoir, keeping the
pressure constant at 50 bars. In Table I, the parameter values
for each of the cases are specified. The resulting saturation and
apparent viscosity profiles for the first four test cases and two
reference cases are discussed later.

The apparent gas viscosity is given by the product of the
gas viscosity and the mobility reduction factor,

µf = µg · fmr(S), (25)

and is therefore a function of the saturation. This quantity will
be greatest at the foam front and decrease quickly up to the
injection point as shown in Fig. 10(b).

A. Test case 1

Test case 1 describes a foam displacement process with a
relatively low resistance of foam to flow (R), and a low limiting
water saturation (S∗w), which means that the effective foam
viscosity µf is still much higher than the water viscosity µw.
Hence the flow is characterized by instabilities like viscous
fingering, as shown in Fig. 11. This is reflected in the interfacial
length, growth rate, and vorticity norm of the simulation (see
Fig. 17). These consist of three stadia: first, there is a quick
increase visible in the growth rate, thereafter it is more or less
linear, and then it becomes constant.

B. Test case 2

The second test case describes strong foam, with a high
resistance of foam to flow and high limiting water saturation,
and a very sharp transition from gas to foam (κ). This sharp
transition from gas to foam could potentially lead to numeri-
cal instability, if not treated with appropriate care.21,25 It was
for this test case that10 observed the viscous fingering pattern
behind the front in the apparent viscosity of the foam (see
Fig. 12).

FIG. 12. (a) Saturation profile and (b) logarithm of the apparent foam viscosity, for the second test case of Ref. 10 after 0.35 PV of injected gas.
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FIG. 13. (a) Saturation profile and (b) logarithm of the apparent foam viscosity, for the third test case of Ref. 10 after 0.42 PV of injected gas.

FIG. 14. (a) Saturation profile and (b) logarithm of the apparent foam viscosity, for the fourth test case of Ref. 10 after 0.42 PV of injected gas.

C. Test case 3

The third test case resembles test cases 2 and 4, apart
from the transition speed from gas to foam, which is a factor
10 lower here than for test case 2 and a factor 10 higher than
test case 4. The simulation results are shown in Fig. 13.

D. Test case 4

Test case 4 simulates strong foam, with a relatively wide
transition zone between gas and foam. This means that the
numerical method will have no major stability issues, and the
restriction on the time step is less than for the three preceding
cases. As shown in Fig. 14, the foam front is stable, since the
foam is strong and no fingering behind the front is observed,
which is in agreement with the results of Ref. 10.

E. Reference cases without foam

As a reference, we repeat the above simulations without
foam for test cases 1 and 2 (cases 3 and 4 only differ in foam
transition width from case 2). The simulation results are shown

in Figs. 15 and 16. Since there is no foam present, the apparent
foam viscosity is equal to the gas viscosity, which is constant
everywhere. Therefore, we show the total viscosity in the fig-
ures on the right. The difference in the solutions with foam
is striking, since the fingers for these two cases are less pro-
nounced, because the shock is much more diffused. Also, gas
breakthrough is almost immediate for these cases, and the dif-
ference between cases 1 and 2 without foam is much less, than
in the presence of foam.

VII. NUMERICAL STABILITY ANALYSIS

We can approximate the growth rate σ numerically,16 by
the vorticity norm

ω̄ =

√∫ 1

0

∫ 1

0
ω2dxdy, (26)

where

ω =
1
λT

dλT

dS
∇S × u, (27)
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FIG. 15. (a) Saturation profile and (b) total viscosity, for simulation case 1 without foam after 0.12 PV of injected gas.

FIG. 16. (a) Saturation profile and (b) total viscosity, for simulation case 2 without foam after 0.06 PV of injected gas.

is a measure of the rotation at the finger tips. The maximum
growth rate can then be approximated by

σmax ≈ ln

(
ω̄(t)

ω̄(t − ∆t)

)
/∆t. (28)

The dominant mode can be measured numerically as a function
of time, using the energy spectrum of the solutions, so that

nmax ≈

∫ K

0
kE(k, t)dk∫ K

0
E(k, t)dk

, (29)

where E is the energy spectrum,18 which is computed by

E(k, t) =

(∫ 1

0

[∫ 1

0
ω(x, y, t)dx

]
e−iktdy

)2

. (30)

The disturbance number Λnum, which is a measure of pertur-
bation growth with respect to the front speed, can then be
approximated by

Λnum =
σmax

nmax
. (31)

Likewise, the interfacial length Γ, which is a measure of
the amount of fingering or instability going on, can be
approximated numerically16 by

Γ ≈

∫ 1

0

∫ 1

0

√(
∂S
∂x

)2

+

(
∂S
∂y

)2

dxdy. (32)

In the figures below, those quantities were approximated for
the same test cases as earlier (see Figs. 17–20) and compared
to each other in Fig. 21. In Fig. 17, we see that the interfa-
cial length shows three stages: starting off very fast for small
times, and then very slowly descending, while finally becom-
ing almost constant. Compared to the case without foam, the
initial growth is larger, but while the no-foam case slows down
eventually due to merging of small fingers into big ones,17,29

the interfacial length for this weak foam case keeps increasing
over the observed period of time. It could be the case that a
larger reservoir is needed for the interfacial length to decrease.
Also we have to mention that the approximated interfacial
length sums over the squared partial derivatives in each grid
block. Since the foam model contains a peak in the derivative
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FIG. 17. Numerical approximation of the interfacial length, growth rate, and vorticity norm for test case 1 of Farajzadeh et al.10 (a) Interfacial length, (b) growth
rate, (c) vorticity norm.

FIG. 18. Numerical approximation of the interfacial length, growth rate, and vorticity norm for test case 2 of Farajzadeh et al.10 (a) Interfacial length, (b) growth
rate, (c) vorticity norm.

FIG. 19. Numerical approximation of the interfacial length, growth rate, and vorticity norm for test case 3 of Farajzadeh et al.10 (a) Interfacial length, (b) growth
rate, (c) vorticity norm.

FIG. 20. Numerical approximation of the interfacial length, growth rate, and vorticity norm for test case 4 of Farajzadeh et al.10 (a) Interfacial length, (b) growth
rate, (c) vorticity norm.
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FIG. 21. Numerical approximation of the interfacial length and vorticity norm for the first four test cases of Farajzadeh et al.10 (a) Interfacial length, (b) vorticity
norm.

around the limiting water saturation, this approximation over-
estimates the total interfacial length at the front. This measure
is therefore more suited to compare the quantitative behav-
ior of the fingers with each other, than to give a qualitative
measure for the front interfacial length. The same is true for
the growth rate, which takes into account the derivative of the
mobility, which is highest behind the front, and thus does not
directly reflect the instabilities at the front. However, it was
the unstable behavior behind the front that is of interest in this
paper. The consequence of this is that the growth rate of insta-
bility measure shows a much higher variation than for the foam
case. The average growth rate is more or less constant after an
initial increase. The growth rate for the case without foam is
decreasing first and later showing a small increase that could
be due to numerical issues since it was not observed by Riaz
and Tchelepi.16 The vorticity norm gives a more consistent
pattern, which resembles the interfacial length, and after a fast
initial growth, shows a slight decrease after which it increases
very slowly.

For the second test case, we see the same initial increase
of the interfacial length as for the first test case in Fig. 18,
after which it remains constant. The same case without foam
shows a gradual increase which becomes constant after some
time. The growth rate decreases for the model without foam
after which it becomes negative (due to the gas reaching the
right boundary). For the strong-foam model, we see again a
huge variation in the growth rate, and the vorticity norm shows
a steep increase after which it becomes constant. Again, the
vorticity norm is higher than for the case without foam, due to
the large derivatives of the mobility behind the front.

Test case 3, depicted in Fig. 19, gives results almost iden-
tical to the second test case, but an order 10 smaller for the
growth rate and the interfacial length. The same holds for the
fourth test case in Fig. 20, in which the growth rate is reduced
by an order 1000 with respect to test case 2. Hence, we can
assume that the vorticity norm of the simulations depends lin-
early on the parameter κ, for a strong foam (test case 2, 3,
and 4), i.e.,

ω̄ ∼ κ. (33)

This means that reducing κ by approximately a factor 10 leads
to a reduction in the vorticity norm by a factor 10. This can

also be seen in Fig. 21, where the test cases are compared to
each other. However, it shows that the vorticity of test case 1
is an order 10 lower than of test case 2, although they have
the same transition width. This can be due to a lower mobil-
ity reduction factor for test case 1 (see Table I), which causes
a smaller mobility derivative around the limiting water satu-
ration. Hence a lower vorticity is expected behind the front,
whereas an increase in fingering at the front should partly com-
pensate for this. The interfacial length is largest for the cases
without foam (until the front in the second case reaches the
right side of domain, and the interfacial length drops below
that of the first foam case). After that, weak foam shows the
highest interfacial length, as we could also observe from the
saturation plots. The strong-foam cases are all really stable
at the front and therefore more or less constant around the
same value. On the other hand, the average growth rate for
test case 2 is almost as large as for test case 1, which implies
that instabilities behind the front must contribute to this result.
The average growth rate of the other two test cases are smaller
and almost zero. The growth rate of the case without foam is
not comparable here because of the chosen measure, as was
explained before. If we compare the results with the linear sta-
bility analysis, we see that indeed a higher non-linearity (i.e.,
a smaller transition width from gas to foam) leads to more
instability.

VIII. CONCLUSIONS

The physical instabilities that were observed behind the
front in the study of Farajzadeh et al.10 seem to be inherent
to the non-linearity in the mobility of foam. The linear stabil-
ity analysis made it clear that the foam parameters κ, R, and
S∗w had a significant influence on the physical stability of the
results. We could identify stability regions in the foam parame-
ter space by calculating the dimensionless disturbance number,
which show for which parameter sets the solutions are poten-
tially stable or unstable. The first four test cases studied in this
paper, and the additional test cases that are available in the
supplementary material, confirmed these results numerically.

We found that strong foam with a narrow transition width
between gas and foam (test case 2) shows the highest growth
rate of all test cases, although the front is most stable. We

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-021801
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investigated the influence of the parameters that determine
foam strength, transition width, and critical water saturation
on the stability characteristics of the solutions. It shows that
a high mobility reduction factor (foam strength) has a stabi-
lizing effect on the solutions, while a higher non-linearity of
the gas-foam transition (shorter transition width) has a desta-
bilizing effect. It turns out that the growth rate of instabilities
is linearly dependent on both the inverse foam strength and
transition width control parameters (1/R and κ). There is also
a strong effect of the critical water saturation on the stability
characteristics.

In this research, we neglected the influence of capillarity
in both the linear stability analysis and the simulations because
it has a damping effect on the instabilities at the front. For a
more realistic outcome, the effect of additional diffusion could
be investigated. Furthermore, we could extend this analysis to
a quarter-five spot setup. This would add an extra complex-
ity to the model due to a spatially varying strain field that
affects the stability front, as was shown for a miscible flow
case in the study of Chen and Meiburg.6 Moreover, we recom-
mend to extend the current local equilibrium foam models to
more complex models at the front to gain more insight into the
nature of instabilities that occur behind the foam front and to
investigate whether they are able to cause an unstable displace-
ment. In this case models that take into account the gas-foam
interface might give an outcome.

In this paper, we did not compare our stability or numeri-
cal results with experimental results, since those experiments
do not exist for this particular study. Experiments that look at
fingering phenomena of a highly mobile gas being injected into
the low-mobile foam would be very valuable to validate numer-
ical simulations of foam enhanced oil recovery processes. One
way to do this would be to create foam between two glass plates
with obstacles in between, to mimic the porous rock in two
dimensions. After this gas could be injected through a hole
into the middle of the plates, in order to study the fingering
behavior in a porous medium in the presence of foam. These
results can then be compared to highly accurate simulations in
two dimensions.

Finally the results from the stability analysis can be used
to identify important scales and wavelengths of the problem,
which in turn can be adapted in building an efficient numerical
solver that is able to capture both the fast waves that occur due
to the foam and the slow waves occurring in the rarefaction
wave.

SUPPLEMENTARY MATERIAL

See supplementary material for the additional six test
cases that are located in highly unstable or stable parts of the
foam parameter space or around the boundaries of the stable
parameter range.
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APPENDIX A: DERIVATION OF THE TWO-PHASE
FLOW EQUATIONS

In subsections 1 and 2 of Appendix A, we give a derivation
of the non-dimensional incompressible, immiscible two-phase
flow equations for gas and water and foam in a porous medium.
Mass conservation of each phase, which is described by a
mass-balance equation for the phase saturation Sα ∈ [0, 1],
is given by

φ∂tSα = −∇ · uα, (A1)

where the subscript α ∈ {w, g, f } denotes the phase (water,
gas, or foam in this case), φ denotes the reservoir porosity, and
uα denotes the phase velocity that is given by

uα = −λα (∇Pα + ραg) . (A2)

Here Pα is the phase pressure, ρα is the phase density, g is the
gravitational force, and λα is the phase mobility,

λα = k
krα(Sα)
µα

, (A3)

where k is the absolute permeability, µα is the phase viscosity,
and krα is the phase relative permeability, which is defined in
the main part of this article.

1. Two-phase flow

In case of two fluids, the difference between the phase
pressures is described by the capillary pressure, defined as

Pc ≡ Pw − Pg, (A4)

such that

uw = −λw

(
∇Pc + ∇Pg + ρwg

)
, (A5)

ug = −λg

(
∇Pg + ρgg

)
. (A6)

The total velocity, which is the sum of the phase velocities, is
thus equal to

u = −
[
λT∇Pg + λw∇Pc + (λwρw + λgρg)g

]
, (A7)

where λT is the total mobility (sum of mobilities). Hence, we
can express the phase velocity of water in terms of the total
velocity as follows:

uw = −λw∇Pc +
λw

λT
(u + λw∇Pc + λg(ρg − ρw)g)

=
λw

λT
u −

λwλg

λT
(∇Pc + ∆ρg)

= fwu − λwfg(∇Pc + ∆ρg), (A8)

where fα = λα/λT is the phase fractional flow function and
∆ρ = ρw � ρg. Hence we can express Eq. (1) as

φ∂tSw = −∇ · fw
(
u − λg(P′c∇Sw + ∆ρg)

)
, (A9)

where P′c is the derivative of the capillary pressure with respect
to the phase saturation,16 that is approximated by

P′c =

√
φ

k
γgw sin(θ), (A10)

ftp://ftp.aip.org/epaps/phys_fluids/E-PHFLE6-30-021801
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where γgw is the interfacial tension between gas and water and
θ is the tilting angle of the rectangular domain with respect
to the gravitational force. From the definition of saturation, it
follows that the sum of the phase saturations is one everywhere,
i.e., ∑

α

Sα = 1, with α ∈ {w, g}, (A11)

so that we only have to solve for one phase. Hence, Eqs. (10),
(11), and (13) imply that

∇ · u = 0, (A12)

which describes the pressure decay in the porous medium.

2. Non-dimensional formulation

To reduce the number of parameters, we scale the model
given by Eqs. (1), (2), and (14), in a similar way as was done
by Riaz and Tchelepi.16 If we let U be a characteristic velocity
scale, L be a characteristic length scale of the model, and W
be a characteristic width scale, such that A = L/W is the aspect
ratio, we can scale the other variables as follows:

x = Lx̃, (A13)

y = Wỹ, (A14)

∇ =
∇̃

L
, (A15)

u = Uũ, (A16)

t =
φL(1 − Swc − Sgr)

U
t̃, (A17)

P =
µUL

k
P̃, (A18)

P′c = γgw

√
φ

k
P̃′c, (A19)

where the tilde denotes a non-dimensional variable. The rel-
ative permeability functions are scaled by their end point
relative permeabilities, i.e., the relative permeability of
the residual water and gas saturation, krwe = krw(Sgr) and
krge = krg(1 � Swc), respectively. The gas saturation is nor-

malized by S̃g =
(Sg−Sgr )

(1−Swc−Sgr ) . Substituting these variables into
the two-dimensional model leads to a non-dimensional system
of the form

∂t̃ S̃g = −∇̃ ·


M

k̃rg

λ̃

(
ũ −

k̃rw

Nca
P̃′c∇̃S̃g − k̃rw

G
M
∇̃z

)
, (A20)

ũ = −λ̃w∇̃P̃c − λ̃∇̃P̃g − λwG∇z, (A21)

∇̃ũ = 0, (A22)

where λ̃ = Mk̃rg + k̃rw is the dimensionless mobility function.
Here, the variables M, G, and Nc denote the end point mobil-
ity ratio, gravity number, and capillary number, respectively,
which are given by

M =
µw

µg

krge

krwe
, (A23)

G =
k∆ρg
µgU

, (A24)

Nca =
Uµw

γgw sin(θ)
, (A25)

where g is the magnitude of the gravitational force. The mobil-
ity ratio together with the dimensionless foam parameters R,
κ, and S∗w, the dimensionless injection rate Ĩ, and the porosity φ
determines the entire behavior of the fluids for a certain initial
boundary value problem. In the rest of the article, we will drop
the tilde for readability and define S ≡ Sg and f ≡

krgM
λ .

APPENDIX B: DERIVATION OF THE PERTURBATION
EQUATIONS

Here we derive the equations used for the stability analysis
that is described in the study of Riaz and Tchelepi.19 For this,
we rewrite Eqs. (1) and (2) in terms of the transformed variable
ξ = x � vst, y, and t, so that

∂tS − vs∂ξS + ∇ ·
(
krw∇P̄

)
= 0, (B1)

∇ ·

(
λ∇P̄ − Gkrg∇z −

krg

Ca
P′c∇S

)
= 0. (B2)

Substituting (S, P)(ξ, y, t) = (S0, P0)(ξ) + (ŝ, p̂)(ξ)einy+σt in
Eq. (1) gives

∂tS − vs∂ξS + ∂xi(krw∂xiP̄) + ∂y(krw∂yP̄) = 0, (B3)

and hence

∂tS + ∂ξ
(
krw∂ξ P̄ − vsS

)
+ krw∂yyP̄ + k ′rw∂yS∂yP̄ = 0. (B4)

Evaluating all derivatives to y and t leads to

σŝeiny+σt + ∂ξ
(
krw

(
P′0 + p̂′einy+σt

)
− vs

(
S0 + ŝeiny+σt

))
= n2krwp̂einy+σt + n2k ′rwŝp̂(einy+σt)2. (B5)

Multiplying the equation with e�(iny+σt ) gives

σŝ + ∂ξ
(
krwP′0e−(iny+σt) + krwp̂′ − vsS0e−(iny+σt) − vsŝ

)
= n2krwp̂ + n2k ′rwŝp̂einy+σt . (B6)

Now, we express krw(S) in terms of S0 by using a Taylor
expansion, such that

krw(S) = krw(S0) + k ′rw(S0)(S − S0) + O((∆S)2)

= krw(S0) + k ′rw(S0)ŝeiny+σt + O((ŝ)2). (B7)

Substituting this in the above equation we obtain

σŝ + ∂ξ
(
krw(S0)P′0e−(iny+σt) + k ′rw(S0)P′0ŝ + krw(S0)p̂′

+ k ′rw(S0)p̂ŝ′einy+σt − vsS0e−(iny+σt) − vsŝ
)

= n2krw(S0)p̂ + n2k ′rw(S0)ŝp̂einy+σt

+ n2k ′′rw(S0)ŝ2p̂e2·(inx+σt) + O((ŝ)2). (B8)

Neglecting all the higher order terms that include ŝp̂, ŝ2, and
ŝp̂′ and assuming that e�(iny+σt ) → 0 if σ > 0 and t > 0, we
find that

σŝ + ∂ξ
(
krw(S0)p̂′ +

(
k ′rw(S0)P′0 − vs

)
ŝ
)
= n2krw(S0)p̂.

(B9)
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We apply the same technique to Eq. (2), such that

∂ξ

(
λ∂ξ P̄ − Gkrg −

krg

Ca
P′c∂ξS

)
= −∂y

(
λ∂yP̄ −

krg

Ca
P′c∂yS

)
,

(B10)

so that

∂ξ

(
λ(P′0 + p̂′einy+σt) − Gkrg −

krg

Ca
P′c(S′0 + ŝ′einy+σt)

)
= n2λp̂einy+σt − n2 krg

Ca
P′cŝeiny+σt , (B11)

and hence

∂ξ

(
λ(P′0e−(iny+σt) + p̂′) − Gkrge−(iny+σt)

−
krg

Ca
P′c(S′0e−(iny+σt) + ŝ′)

)
= n2λp̂ − n2 krg

Ca
P′cŝ. (B12)

We can express λ(S), krg(S), and P′c(S) in terms of S0 with
a second-order accurate Taylor expansion. Neglecting higher
order terms, that contain multiples of ŝ and p̂ or p̂′, and letting
e�(iny+σt ) → 0 lead to

∂ξ

(
λp̂′ +

(
λ ′P′0 − Gk ′rg −

1
Ca

(krgP′c)′S′0

)
ŝ −

krg

Ca
P′cŝ′

)
= n2λp̂ − n2 krg

Ca
P′cŝ. (B13)

Equations (9) and (13) described an eigenvalue problem with
eigenvalue σ, in terms of the eigenfunctions ŝ and p̂,

σŝ + ∂ξ
(
krwp̂′ +

(
k ′rwP′0 − vs

)
ŝ
)
= n2krwp̂, (B14)

∂ξ

(
λp̂′ +

(
λ ′P′0 − Gk ′rg −

1
Ca

(krgP′c)′S′0

)
ŝ −

krg

Ca
P′cŝ′

)
= n2λp̂ − n2 krg

Ca
P′cŝ, (B15)

where the functions krw, krg, and Pc are functions of S0 and
the apostrophe denotes the derivative with respect to S0 or ξ,
respectively. The base state functions S0 and P0 obey the
boundary values of the Buckley-Leverett problem and obtain
their maximum gradient at ξ = 0 and the eigenfunctions
(ŝ, p̂) = 0 and (ŝ′, p̂′) = 0 at ξ = ±∞. This system can be
solved numerically16 or by matched asymptotic expansions.19

In the absence of capillarity (Ca → ∞), the base state
satisfies

S0

dξ
= δ(ξ), (B16)

dP0

dξ
=

Gkrg − 1

λ
, (B17)

so that it follows from the interface and boundary conditions,
that ŝ = c1δ(ξ), ∀ξ ∈ (�∞, ∞) and c1 ∈ R.19 Away from the
discontinuity at ξ = 0, Eq. (14) implies that

∂ξ
(
krwp̂′

)
= n2krwp̂⇒ p̂′′ = n2p̂⇒ p̂ = ce±nξ . (B18)

Since p̂ = p̂′ = 0 at ξ = ±∞, it follows that

p̂+0 = c2e−nξ , ∀ξ > 0, c2 ∈ R, (B19)

p̂−0 = c3e+nξ , ∀ξ < 0, c2 ∈ R. (B20)

Integrating the full system with capillarity given by Eqs. (14)
and (15) over the discontinuity (from 0�0 to 0+0) gives us two
equations in terms of p+0, p�0, and σ,

krw(S0(0+0))p̂′+0 − krw(S0(0−0))p̂′−0 = −c1σ, (B21)

λ(S0(0+0))p̂′+0 − λ(S0(0−0))p̂′−0 = 0. (B22)

Evaluating the indefinite integral of Eq. (14) over ξ leads to

p̂′ + c1(λ ′P0 − Gkrg)δ(ξ) = c4/λ + n2
∫

p̂dξ. (B23)

Rewriting the terms between brackets as −P′′0 /δ(ξ) by differ-
entiating Eq. (17) with respect to ξ gives

p̂′ − c1P′′0 = c4/λ + n2
∫

p̂dξ. (B24)

Integrating this expression over the discontinuity gives a third
equation in terms of p̂+0 and p̂−0,

p̂+0 − p̂−0 = c1(P′+0
0 − P′−0

0 ). (B25)

Equations (21), (22), and (25) then lead to an expression for
the disturbance velocity

σ

n
=

fg1 − fg0

S1 − S0

λ1(1 − Gkrg0 ) − λ0(1 − Gkrg1 )

λ1 − λ0
, (B26)

where the subscripts 0 and 1 denote the front and back edges
of the shock, respectively.

APPENDIX C: MODEL PARAMETERS

The parameter values and explanations of the four test
cases that were introduced in Sec. IV are given in Table I.
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