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An Efficient Risk-aware Branch MPC for Automated Driving that is
Robust to Uncertain Vehicle Behaviors

Luyao Zhang1, Georgios Pantazis1, Shaohang Han2 and Sergio Grammatico1

Abstract— One of the critical challenges in automated driving
is ensuring safety of automated vehicles despite the unknown
behavior of the other vehicles. Although motion prediction
modules are able to generate a probability distribution associ-
ated with various behavior modes, their probabilistic estimates
are often inaccurate, thus leading to a possibly unsafe motion
plan. To overcome this challenge, we propose an Efficient Risk-
Aware Branch MPC (EraBMPC) that appropriately accounts
for the ambiguity in the estimated probability distribution.
We formulate the risk-aware motion planning problem as
a min-max optimization problem and develop an efficient
iterative method by incorporating a regularization term in the
probability update step. Via extensive numerical studies, we
validate the convergence of our method and demonstrate its
advantages compared to the state-of-the-art approaches.

I. INTRODUCTION

After two decades of development, automated vehicles
have been able to navigate a variety of traffic scenarios
successfully. Nevertheless, operating in highly interactive
environments, such as intersections without traffic lights,
still remains a significant challenge. One main reason is
that an automated vehicle struggles to properly account for
the different behavior modes of the surrounding vehicles.
Specifically, in the classic planning framework [1], the mo-
tion planner receives the most likely predicted trajectories
of the surrounding vehicles from a prediction module, and
then generates a motion plan without considering multi-
modal behaviors. One drawback of this framework is that
the generated motion plan might be overly aggressive or
overly conservative, thus resulting in collisions or traffic
jams, respectively.

To properly consider multi-modal behaviors, the so-called
branch model predictive control (BMPC) [2] has been pro-
posed, also referred to as contingency planning in [3], [4],
or trajectory tree motion planning in [5]–[7]. An advantage
of BMPC planners is their ability to utilize the multi-modal
trajectory prediction provided by the latest motion predic-
tion module [8]. In contrast with traditional robust motion
planners, which aim to generate a motion plan that accom-
modates all predicted trajectories, BMPC planners construct
a trajectory tree with multiple branches corresponding to
(possibly) different behavior modes. Thus, BMPC planners

*This work is partially supported by NWO under project AMADeuS and
by the ERC under project COSMOS.

1Luyao Zhang, Georgios Pantazis and Sergio Grammatico are
with the Delft Center for Systems and Control, Delft University
of Technology, The Netherlands. {l.zhang-7, g.pantazis,
s.grammatico}@tudelft.nl.

2Shaohang Han is with the Division of Robotics, Perception and Learn-
ing, KTH Royal Institute of Technology, Sweden. shaohang@kth.se.

Yield Assert

Branch 0

Branch 1

Branch 2

Risk-aware Branch MPC

Yield

Assert(1, 0)

(0, 1)

Yield

Assert(1, 0)

(0, 1)

Fig. 1: Unsignalized intersection crossing. The other vehicle (in pink)
has two potential behavior modes: “Yield” and “Assert”. The motion
predictor indicates that the other vehicle is more likely to “Yield”. However,
the behavior mode “Assert” can result in a potential collision. To avoid
unsafe motion, the risk-aware branch MPC planner generates a trajectory
tree that handles different behavior modes by considering their associated
ambiguity. In this example, it focuses more on the behavior mode “Assert”
by appropriately reshaping the probability distribution.

can avoid overly conservative motion plans since only the
shared branch needs to adapt to all potential predicted
scenarios.

However, a significant challenge arising with multi-modal
behaviors is that estimates on the probability of each tree
branch might be inaccurate [9]. To address this issue, it is
necessary to deal with ambiguity in the probability estimates
by leveraging tools from risk-aware stochastic optimization.
In [2], [10], [11], the authors propose a risk-aware MPC
framework, where they employ the so-called Conditional
Value at Risk (CVaR), a risk measure that accounts for
unlikely scenarios at the tail of the probability distribution.
They then develop a risk-aware motion planner, leveraging
the dual form of CVaR [12] to obtain a min-max optimization
problem with a nonconvex-concave structure.

The works [2], [10] address the min-max reformulation by
converting the inner maximization problem into a minimiza-
tion problem via the dualization technique. However, such a
formulation introduces additional auxiliary decision variables
and hard constraints. Furthermore, the nonconvexity of such
constraints due to the collision cost renders this problem
computationally challenging to solve. Another popular cat-
egory of algorithms for min-max optimization would solve
the maximization problem and perform a gradient descent
step for the minimization problem. Particularly, in [13], the
maximization problem is solved approximately by employing
multiple gradient ascent steps. In contrast, in single-loop
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algorithms such as the gradient descent-ascent (GDA), the
update for one variable only occurs once before another
variable is updated. However, the GDA method fails to
converge even for some simple bilinear problems [14]. To
improve convergence, Lu et al. [15] propose the so-called
Hybrid Block Successive Approximation (HiBSA), where
a regularization term is introduced to the maximization
problem, resulting in a perturbed version of the original
projected gradient ascent step.

To iteratively solve the outer minimization problem, a
projected gradient descent (PGD) method is employed in
[13]. However, as the feasible set in the motion planning
problem is often non-convex, the projection to such a set is
computationally challenging. To compute the update more
efficiently, Li et al. [11] replace the gradient descent with
iterative LQR (iLQR), an efficient numerical optimization
method that exploits the sparse structure inherent in optimal
control problems [16, Chapter 8]. iLQR is initially applied
to unconstrained motion planning in [17], while in [18],
a projected quasi-Newton method is employed to consider
input constraints. To handle more general inequality con-
straints, a barrier function and an augmented Lagrangian
function are integrated into the framework of iLQR in [19]
and [20], respectively. The authors in [11], [21] have recently
developed iLQR-based solvers for the BMPC problem.

In this work, we propose an efficient risk-aware mo-
tion planner for applications in autonomous driving. Our
contributions with respect to the related literature can be
summarized as follows: (i) To circumvent the computational
challenges of the formulations in [2], [10], our work builds
upon [11] and proposes an iterative algorithm based on the
augmented Lagrangian iterative linear quadratic regulator
(AL-iLQR) to efficiently solve the minimization problem
in the min-max reformulation of the risk-aware motion
planning problem. (ii) We combine the method above with a
variant of Hybrid Block Successive Approximation (HiBSA)
[15]; specifically, to address scenarios of oscillatory behavior
observed by implementing the numerical method in [11], we
introduce a regularization term to the inner maximization
problem. We empirically validate the effectiveness of such an
additional term via extensive numerical simulations. (iii) We
compare our method with other state-of-the-art methods and
demonstrate its applicability in real-time motion planning by
considering different intersection-crossing scenarios.

II. PROBLEM FORMULATION

A. Unsignalized intersection crossing

We consider an unsignalized intersection-crossing scenario
in which vehicles operate without direct communication. Fig.
1 illustrates such an example, where the ego vehicle makes
a left turn while the other vehicle follows a straight path.
To turn left successfully, the ego vehicle should take into
account the different behavior modes of the other vehicle.
In this example, two behavior modes can be identified for
the other vehicle. The first behavior mode is called “Yield”
mode, i.e., the other vehicle decides to slow down and
wait for the ego vehicle to turn left. In this case, the

ego vehicle can maintain the current speed (assuming it is
sufficiently slow to make a left turn) and proceed through the
intersection. The second behavior mode is the “Assert” mode,
where the other vehicle does not decelerate and continues
following the straight path. Consequently, the ego vehicle
should slow down to avoid a potential collision. The traffic
scenario in Fig. 1 illustrates how different behavior modes
can have a significant effect on motion planning. To account
for this, we introduce a motion planner based on the branch
MPC framework.

B. Nominal Branch MPC

A branch MPC planner generates a so-called trajectory
tree, i.e., a decision tree whose branches correspond to
distinct behavior modes of the surrounding vehicles. An
example of the trajectory tree is illustrated in Fig. 1, which
comprises one shared branch and a branching point that leads
to two possible outcomes. We denote the time step when the
shared branch splits into multiple individual ones by Ts and
the length of the entire planning horizon by T .

In the trajectory tree, the initial control inputs are con-
strained to remain consistent over the interval [0, Ts − 1] to
allow for adaptation to all potential predicted scenarios. We
denote the tree of control inputs by ū :=

(
ū0, ūi

)
i∈[1,d]

,
where d is the number of branches, ū0 := (u0

t )t∈[0,Ts−1]

represents the shared control input sequence from time step
0 to Ts − 1, and ūi := (ui

t)t∈[Ts,T−1] denotes the control
input sequence for branch i from time step Ts to T − 1.
We consider a state xi

t ∈ Rnx corresponding to branch i
at time step t, which evolves according to the dynamics
xi
t+1 = f(xi

t, u
i
t), where f : Rnx × Rnu → Rnx is a

nonlinear function. The initial state for the shared branch is
denoted by x0, while xTs represents the state at the start of
the branching. Note that the state evolution can be expressed
as a function of the initial condition x0 and the input ū.
Consider J0(x0, ū

0) =
∑Ts−1

t=0 ℓ0(x0
t , u

0
t ) and J i(xTs

, ūi) =∑T−1
t=Ts

ℓi(xi
t, u

i
t)+ ℓiT (x

i
T ), where ℓi : Rnx ×Rnu → R and

ℓiT : Rnx → R denote the stage and final cost, respectively,
and p = (pi)i∈[1,d] is the collection of probability estimates
for all branches, which originates from a prediction module
or behavior planner and takes values in the probability
simplex. We define the cost function J of the branch MPC
as the weighted sum of the branch costs:

J(x0, ū) := J0(x0, ū
0) +

d∑
i=1

piJ i(xTs
, ūi). (1)

In practice, however, the probability estimate can often be
inaccurate, resulting in possibly unsafe motion plans.

C. Risk-aware branch MPC

Revisiting the unsignalized intersection-crossing problem
in Fig. 1, the motion predictor assesses the likelihood of
each behavior mode and indicates that mode “Yield” has
a larger probability of occurrence. However, the behavior
mode “Assert” could lead to a potential collision with the
ego vehicle, which implies that ambiguity in the probability
estimates carries a significant risk for the safety of both
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Algorithm 1: Risk-aware AL-iLQR tree
Input: x0, x̄ref, ūref, p
Output: ū∗, q
Initialize λ̄0, µ0, ū0 ← ūref, k ← 0
Perform rollout using ūref to obtain x̄0

while stopping criterion not satisfied do
minmax iLQR tree(x0, x̄ref, ūk, p, λ̄k, µk);
Update λ̄k, µk;
k ← k + 1;

end

vehicles. Therefore, the ego vehicle should be more aware
of the risk associated with potential misinterpretation of the
other vehicle’s intentions. To generate a robust motion plan
for such intricate cases, we develop a risk-aware branch MPC
planner, which focuses more on the potentially dangerous
scenarios by minimizing a risk measure of the cost function.

1) Preliminaries: Let us first introduce the concept of risk
measures. A popular class of risk measures used in stochastic
optimization is the so-called coherent risk measures, which
satisfy certain properties, including convexity, monotonic-
ity, translation equivariance, and positive homogeneity; see
[12] for technical details. While widely used as a coherent
risk measure, the expectation fails to effectively account
for events that lie at the tail of a given distribution. To
circumvent this issue, Conditional Value at Risk (CVaR)
[12], [22] is a popular means for improved risk assessment.
For computational efficiency, the dual representation of a
coherent risk measure [12, Eq. 6.40] is commonly employed:
ρ(X) := supQ∈A EQ[X], where X is a random variable
and the ambiguity set A is closed and convex. The dual
representation indicates that a coherent risk measure can
be viewed as the worst-case expectation with respect to
all probability distributions in the ambiguity set. In this
work, we consider that uncertainty arises from the unknown
discrete behavior modes of the surrounding vehicles. This
motivates the study of discrete probability distributions q =
(qi)i∈[1,d], where the considered ambiguity set of CVaRα for
α ∈ [0, 1], is the intersection of the probability simplex and
the set of boxes, based on the nominal probability vector p:

Aα(p) =

{
q ∈ Rd |

d∑
i=1

qi = 1, qi ≥ 0, αqi ≤ pi

}
. (2)

Selecting α = 0 implies a lack of confidence in the nominal
probability distribution, resulting in the ambiguity set being
equivalent to the entire probability simplex. For α = 1,
the decision maker has more confidence in the nominal
probability distribution.

2) Risk-aware formulation:: By adopting CVaR as a risk
measure and leveraging its dual form, the original cost in (1)
has the following risk-aware counterpart:

JR(x0, ū) := J0(x0, ū
0) + max

q∈Aα(p)

d∑
i=1

qiJ i(xTs
, ūi), (3)

where the ambiguity set Aα(p) is given in (2). Informally
speaking, the solution to this maximization problem tends to
assign a larger probability to the branch with a higher cost.
With the cost function in (3), we can formulate the risk-aware
motion planning problem (RAMP) as follows:

RAMP



min
ū

JR(x0, ū)

s.t. x0
t+1=f(x

0
t , u

0
t ), ∀t ∈ [0, Ts − 1],

h0(x0
t , u

0
t ) ≤ 0, ∀t ∈ [0, Ts − 1],

xi
Ts

= xj
Ts
, ∀i, j ∈ [1, d],

xi
t+1=f(x

i
t, u

i
t),∀t ∈ [Ts, T − 1], ∀i ∈ [1, d],

hi(xi
t, u

i
t) ≤ 0, ∀t ∈ [Ts, T ], ∀i ∈ [1, d],

(4)
where hi(·) encapsulates general inequality constraints for
different branches, including control input bounds, colli-
sion avoidance constraints, and road boundary constraints.
The motion planning problem (RAMP) can be alternatively
viewed as a two-player zero-sum game, where the first player
seeks a comfortable and collision-free trajectory, while the
second player acts as an adversary wishing to increase the
total cost by redistributing the probability of each branch.

III. EFFICIENT RISK-AWARE MOTION PLANNING

In the subsequent developments, we draw inspiration from
the methods in [11], [15] to obtain a solution to RAMP.
Following [11], we keep the probability vector q fixed for
each step and solve an approximated optimal control problem
of RAMP via the iLQR scheme. We combine this method
with a variant of HiBSA proposed in [15]. In particular,
to improve convergence, we introduce a regularization term
to the maximization problem, which perturbs the original
projected gradient ascent step. As in [11], we replace the
projected gradient descent with a Newton-like step to further
aid in convergence. Our proposed algorithmic scheme is
detailed in Algorithm 1 and 2. The vectors x̄ref and ūref
denote the reference state and input sequences.

A. Augmented Lagrangian iLQR tree
To solve RAMP efficiently, we exploit the inherent sparse

structure of the optimal control problem by leveraging ideas
from dynamic programming [16]. This leads to an iLQR-
based method, where the following subproblem is solved at
each time step t:

iLQRi
t

{
min
u

Qi
t(x, u, x

′) = V i
t (x)

s.t. x′ = f(x, u), hi
t(x, u) ≤ 0,

(5)

where the Q-function Qi
t(·) describes the cost incurred

after applying the control input u for branch i at time
step t, and hi

t(·) represents general state and control input
constraints. Based on dynamic programming, we compute
the Q-functions for the trajectory tree as follows:

Q0
t (x, u) = ℓ0t (x, u) + V 0

t+1 (f(x, u)) , t ∈ [0, Ts − 2], (6)

Q0
Ts−1(x, u) = ℓiTs−1(x, u) +

d∑
i=1

V i
Ts

(f(x, u)) , (7)

Qi
t(x, u) = ℓit(x, u) + V i

t+1 (f(x, u)) , t ∈ [Ts, T − 1], (8)
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Algorithm 2: minmax iLQR tree

Input: x0, x̄ref, ū0, p, λ̄, µ
Output: ū∗, q
Perform rollout using ū0 to obtain x̄0

while stopping criterion not satisfied do
Approximate Q-functions;
Backward pass through Riccati equation (10);
Forward pass, including rollout and line search;
if line search failed then

Add regularization terms to Hessian matrices;
else

Update the probability vector q using (12);
end

end

where (6) and (8) are associated with the Q-functions of
the shared branch and individual branches, respectively.
Equation (7) represents the Q-function of the branching
node, where the value functions for all branches at the next
time step are summed up. Next, the hard constraints are
incorporated through the Lagrangian as follows:

Qi
a,t(x, u, λ, µ) = Qi

t(x, u) + λ⊤hi
t(x, u)

+
1

2
hi
t(x, u)

⊤Iiµ,th
i
t(x, u), (9)

where λ is a vector of Lagrange multipliers, and µ is a
penalty weight. Iiµ,t denotes a diagonal matrix that selects
the active constraints:

Iiµ,t,mm = 0 if hi
t,m(x, u) < 0 & λm = 0, otherwise µ,

where m is the index of the m-th constraint. By using
augmented penalty terms, we now convert iLQRi

t into an
unconstrained optimization problem. We then linearize the
dynamics and approximate the Q-functions using second-
order Taylor expansions. We employ the generalized Gauss-
Newton Hessian approximation due to its ease of compu-
tation and the theoretical guarantee that the approximated
Hessian is always positive semi-definite [23]. The Newton
descent direction at time step t can then be obtained by
minimizing the approximated version Q̂i

a,t of the augmented
Langrangian Q-function:

min
δu

Q̂i
a,t(δx, δu). (10)

Since Q̂i
a,t is in quadratic form, we can derive an affine

control law of the form δu = Ki
tδx+dit [20]. The backward

pass involves solving (10) from the leaf tree nodes to the
root node. It is worth noting that the computation from
the leaf nodes to the branching node can be performed in
parallel, thus improving the computation speed significantly.
After the backward pass, we conduct a forward rollout using
the nonlinear dynamics to obtain the updated trajectory tree.
A backtracking line search [24] is performed to achieve a
sufficient decrease in the trajectory cost. We introduce a
regularization term to aid the Newton direction towards the
gradient descent direction in case the line search fails [18].

B. Projected gradient ascent with regularization

We note that the risk-aware motion planning in (4) is
a nonconvex-concave problem. For this class of problems,
applying the GDA method directly might result in oscil-
lations [14]. Therefore, motivated by [15], we render the
original cost function (3) strongly concave with respect to q
by introducing a quadratic regularization term:

JR(x0, ū) := J0(x0, ū
0)+

max
q∈Aα(p)

d∑
i=1

qiJ i(xTs
, ūi)− ρ

2
qi2,

(11)

where ρ > 0 is the regularization weight. A large value of ρ
drives the vector q towards the centroid of the simplex. To
mitigate the impact of the regularization term on the saddle
point, we adopt a diminishing regularization weight ρk =
ρ0/
√
k + 1. We then perform a projected gradient ascent to

approximately solve (11) at iteration k:

qk+1 ← projAα(p)

(
(1− γρk)qk + γJ̄(xTs

, ū)
)
, (12)

where J̄(·) = (J i(·))i∈[1,d] is the collection of all branch
costs except for the shared branch, proj(·) denotes the
projection operator and γ > 0 is the step size. We compute
the projection projAα(p)(q) = projbox[0, p

α ](q−ϕ∗1d), where

box[0, p
α ] := {q ∈ Rd | 0 ≤ qi ≤ pi

α ,∀ i ∈ [1, d]},
1d = (1, 1, . . . , 1) ∈ Rd represents a vector with all
elements being 1, and ϕ∗ is a root of the equation m(ϕ) :=
1⊤
d projbox[0, p

α ](q − ϕ1d) − 1 = 0. Since m(ϕ) is non-
increasing, its root can be efficiently computed through the
bisection method [25, Chapter 6.4.3].

C. Detailed formulation

1) Vehicle modeling: We model the vehicle as a kinematic
bicycle with the state vector x̃ := (px, py, θ, v), the control
input vector u := (a, δ), where (px, py), θ, and v represent
the rear-axle position, heading angle, and speed of the ve-
hicle, respectively; a and δ are the acceleration and steering
angle. In (4), the stage cost only depends on the current state
and control input. Therefore, to penalize the rate of change
of the input, we augment the state by concatenating it with
the previous control input, resulting in xk := [x̃⊤

k , u
⊤
k−1]

⊤.
2) Cost: The motion planner is designed to track the

reference trajectory tree, maximize the driving comfort level,
and keep a safe distance from surrounding vehicles. To
account for the driving comfort, we penalize the control
input and its rate of change. Moreover, we design the safety
cost between the ego vehicle and the other vehicle as ℓsaf =
max(Dprox −D, 0)2, where D is the Euclidean distance be-
tween two vehicles, and Dprox denotes the threshold distance.

3) Safety constraints: To account for the lack of smooth-
ness of the distance between two vehicles, we use instead
an overapproximation of the shape of each vehicle, which
comprises the union of a collection of linked circles [6], as
shown in Fig. 2a. Additionally, following [26], we approx-
imate the road boundary constraints by constructing a safe
driving corridor along the reference trajectory tree provided
by the behavior planner.
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SV1
SV2

(a) Test scenario 1 (TS1)

SV1
SV2

(b) Test scenario 2 (TS2)

Fig. 2: Test scenarios. The ego vehicle (in blue) intends to turn left. (a)
Both surrounding vehicles have two potential behavior modes: “Yield”
and “Assert”, represented by the red and orange arrows, respectively.
(b) The upper vehicle exhibits different behavior modes: “TurnLeft” and
“GoStraight”.

IV. NUMERICAL SIMULATIONS

We test our method (EraBMPC) in two distinct unsignal-
ized intersection-crossing scenarios, as illustrated in Fig. 2.
In both scenarios, the ego vehicle (in blue) intends to turn
left, while two surrounding vehicles are present with different
driving intentions per scenario. Since two possible behavior
modes are considered for each surrounding vehicle, we have
in total four different combinations of behavior modes.

Note that the choice of the initial guess of the trajectory
tree can significantly influence the convergence speed or in
some cases hinder the convergence of the motion planner.
As such, the initial guess should be appropriately selected.
In our setup, we adopt a simple sampling-based behavior
planner [27], [28]. Specifically, we control the longitudinal
and lateral motion of the ego vehicle via a PD controller and
a pure pursuit controller, respectively, and forward simulate
its motion under different desired speeds to obtain a set
of trajectories. For each joint behavior mode, we select the
best trajectory from the trajectory set based on certain user-
defined criteria. Our motion planner operates at 10 Hz with a
discretization step of 0.1 s and a planning horizon of 5 s. The
number of shared nodes Ts is set to 5. We conduct all sim-
ulations on a laptop with a 2.30GHz Intel Core i7-11800H
processor and 16GB RAM. The code is publicly available
at https://github.com/Luyao787/Era-BMPC.

We run open-loop Monte Carlo simulations to empirically
validate the convergence of the proposed motion planner
under 500 different initial states of the ego vehicle. To obtain
these states, we perturb the nominal initial state by ±3m
for the longitudinal position, ±1m for the lateral position,
±10% for the longitudinal speed. Additionally, we set pi =
0.25 for all i ∈ [1, d] and α = 0.6 when constructing the
ambiguity set. We compare our motion planner with MARC
[11] and Dual MPC [2]. We implement Dual MPC using the
IPOPT [29] interface provided by CasADi [30] with MA57
[31] as the linear solver for enhanced performance. The
statistical results on convergence and average computation
time are presented in Table I. Our method achieves successful
convergence in all the cases. However, when employing
MARC, we observe that in certain cases the values of the
probability vector q oscillate between two vertices of the
ambiguity set. A potential reason is that the solver of the
linear program often outputs a vertex as the optimal solution,
but the saddle point might be a point on a facet of the

TABLE I: Statistical Results

Test Scenario Metric EraBMPC MARC [11] Dual MPC [2]

TS1
Convergence

Runtime (ms)
100%

4.45
96.8%

10.50
100%

1300.8

TS2
Convergence

Runtime (ms)
100 %

14.22
100 %

14.52
100%

1520.7
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Fig. 3: Box-plots of the total number of iterations obtained from 500 Monte
Carlo simulations.
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Fig. 4: Velocity profiles for the risk-aware motion planners with α = 0.1
and α = 0.8 and the nominal motion planner. The nominal probability
vector is set to (0.25, 0.25, 0.25, 0.25).

ambiguity set that is not necessarily a vertex. Dual MPC
has the highest computational cost since additional decision
variables are introduced and the original nonconvex cost
becomes a part of hard constraints after dualization.

Fig. 3 illustrates that the number of total iterations required
to solve a risk-aware branch MPC problem is slightly larger
than that required for the nominal branch MPC problem.
Simulation studies indicate that the difference in the number
of required iterations is due to the presence of gradually
decaying oscillations in the probability update. Such an
update is not present in the case of the nominal branch MPC.
Such extra computational overheads are still acceptable from
a practical point of view, since the projection in (12) can
be efficiently computed in just a few microseconds, and the
average computation time of our method is below 100ms.
Thus, the proposed planner is well-suited for real-time mo-
tion planning after code optimization.

We now compare the closed-loop performance between the
risk-aware branch MPC and the nominal branch MPC for the
scenario (TS1). We assume that the ego vehicle does not fully
know the behavior modes of the surrounding vehicles before
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ta = 1 s. In practice, the ego vehicle can infer the intentions
of surrounding vehicles based on historical observations after
a certain period. Considering this, we assume that the ego
vehicle has complete knowledge of these intentions after
ta = 1 s. Our simulation studies indicate that, as expected,
an increase in ta, results in gradually more conservative
behavior. As the risk-aware planner accounts for the risk
against different behavior mode realizations before ta, its
closed-loop trajectory differs from that of the nominal motion
planner. Note that even after ta, when the ego vehicle knows
the intentions of the surrounding vehicles, the trajectory of
the risk-aware and nominal planners are still different since
the initial differences in the trajectory affect their future
evolution. Fig. 4 shows the velocity profile of the ego vehicle
for the nominal motion planner and the risk-aware motion
planner for two distinct values of the risk parameter α ∈
[0, 1]. We note that smaller values of α imply the presence
of more ambiguity concerning the probabilistic estimates of
the behavior modes. We observe that for up to t = 3 s, the
velocity of the risk-aware motion is slower than the nominal
one, as the risk-aware approach considers the risk of the SV1
not yielding. After t = 3 s the velocity increases compared
to the nominal motion planner, and the profiles coincide after
t = 7 s. Finally, we note that for α = 0.1, the motion planner
is, as expected, more risk-aware of the SV1’s behavior, while
for α = 0.8, its behavior is closer to the nominal one, since
ambiguity is smaller.

V. CONCLUSION

Risk-aware branch model predictive control is applica-
ble to motion planning for automated vehicles subject to
behavioral uncertainty. However, general-purpose numerical
solvers are currently not fast enough to solve the motion
planning problem within the given sampling time. Our
method shows high potential in closing this computational
gap and paves the way towards more efficient real-time
motion planning. In future work, we aim at designing an
efficient interaction-aware behavior planner for intersection-
crossing scenarios. Our final goal is to develop a general
motion planning framework by integrating an advanced be-
havior planner with the proposed risk-aware motion planner.
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[29] A. Wächter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,” en,
Mathematical Programming, vol. 106, no. 1, pp. 25–57, Mar. 2006.

[30] J. A. E. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi:
A software framework for nonlinear optimization and optimal control,” en,
Mathematical Programming Computation, vol. 11, no. 1, pp. 1–36, Mar. 2019.

[31] I. S. Duff, “MA57—a code for the solution of sparse symmetric definite and
indefinite systems,” ACM Transactions on Mathematical Software, vol. 30,
no. 2, pp. 118–144, Jun. 2004.

8212

Authorized licensed use limited to: TU Delft Library. Downloaded on April 11,2025 at 09:56:42 UTC from IEEE Xplore.  Restrictions apply. 


