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Abstract—Foundation models (FMs) such as large language
models are becoming the backbone technology for artificial intel-
ligence systems. It is particularly challenging to deploy multiple
FMs on edge devices, which not only have limited computational
resources, but also encounter unseen input data from evolving
domains or learning tasks. When new data arrives, existing prior
art of FM mainly focuses on retraining compressed models of
predetermined network architectures, limiting the feasibility of
edge devices to efficiently achieve high accuracy for FMs. In this
paper, we propose EdgeTA, a neuron-grained FM scaling system to
maximize the overall accuracy of FMs promptly in response to their
data dynamics. EdgeTA’s key design features in scaling are (i) proxy
mechanism, which adaptively transforms a FM into a compact ar-
chitecture retaining the most important neurons to the input data,
and (ii) neuron-grained scheduler, which jointly optimizes model
sizes and resource allocation for all FMs on edge devices. Under
tight retraining window and limited device resources, the design of
EdgeTA can achieve most of the original FM’s accuracy with much
smaller retraining costs. We implement EdgeTA on FMs of natural
language processing, computer vision and multimodal applications.
Comparison results against state-of-the-art techniques show that
our approach improves accuracy by 21.88% and reduces mem-
ory footprint and energy consumptions by 27.14% and 65.65%,
while further achieving 15.96 % overall accuracy improvement via
neuron-grained scheduling.

Index Terms—Evolving data, foundation model, neuron-grained
scaling, resource scheduling, retraining.

I. INTRODUCTION

OUNDATION models (FMs), e.g. BERT and GPT, are be-
F coming standard building blocks for artificial intelligence
(AI) systems [9]. Such large-scale and pre-trained FMs are also
increasingly adopted on Al applications at edge, ranging from
natural language processing (NLP) [77] and computer vision
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Fig. 1. An example scenario of edge-based model retraining.

(CV) [66] to multimodal applications [75]. FMs outperform
traditional application-tailored models in both accuracy [32],
[78], [78], [92] and sample efficiency (requiring fewer samples
to reach the same performance) [49]. To deploy a FM on an edge
device, existing adaptation techniques need to retrain/fine-tune
it according to an application’s specific input data [77], [79],
[83], [86], [98], [103], and compress it to meet the stringent in-
ference latency constraints [40], [75]. Such compressed models
encounter the challenge of evolving input data at edge and hence
need continuously retraining to maintain consistent accuracy [6],
[51]. The state-of-the-art [11], [14] takes up to hours to retrain
such FMs on powerful GPU servers or multiple GPU edge
devices [4], [55], [58], [68], [69], thus calling for new and
lightweight methodologies especially for edge devices.

Fig. 1 illustrates an example scenario where an unmanned car
runs three concurrent FMs for autonomous driving, interaction
with humans, and goods querying applications, respectively.
This scenario poses two key challenges in edge-side FM re-
training: (1) evolving data: each application faces continuously
evolving input distributions consisting of new/unseen domains
(e.g. unlabeled distribution shifts in applications 1 and 2) or
tasks (e.g. new classes in application 3’s labeled data), and they

1536-1233 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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arrive in high volume (0.2 to 2.3 GB/second). (2) Limited com-
putational resources (GPU cycles): the device has small GPU
cores (TFLOPS is 1.33) and memory (8 GB), which are shared
by multiple retraining jobs and other programs. Moreover, each
retraining job needs to be completed within a short retraining
window (e.g. 10 minutes) to maintain consistent accuracy of
applications [6]. The success of FMs is mainly credited to their
large model sizes, diverse training data, and massive amounts of
computational resources—key factors of neural scaling law [29],
[82]. However, small/compressed model size and tight resource
budget greatly increase the difficulty of effective learning on
challenging patterns of evolving data.

Predetermined network architectures lower model accuracy
in learning new data: On edge devices, it is infeasible to retrain
original FMs even using the fastest adaptation techniques such
as Parameter-Efficient Fine-Tuning (PEFT) [37]. This is because
although they only update a small proportion of model parame-
ters in retraining, they still need to perform a forward operation
on all parameters at each iteration and this operation may exceed
the memory limit. For instance, LoRA [41] consumes 53.1 GB
memory in forward when retraining GPT-Neo with batch size 16.
Hence current edge retraining systems [6], [51] directly retrain
compressed FMs that have restricted learning capacity when
learning new tasks [3], [13], [47], [54], [73] or domains [8], [27],
[59], [70], [87],[96], [97], [100]. In Fig. 1(a)’s example with five
retraining jobs, directly retraining the compressed FM results
in 23.40% lower accuracy than the computationally expensive
method that first retrains the original model and then compresses
it. This is because in each retaining job, the later method dynami-
cally changes the network architecture of the compressed model
such that it retains the most important parameters to the newly
arrived data. The first challenge, therefore, is how to keep the
small model size for low-overhead on-device retraining, while
dynamically adapting network structures to evolving input data
for high accuracy.

Coarse model granularity hinders optimizing resource al-
location: Under limited device resources and short retraining
windows, how to allocate resources among co-running retraining
jobs is critical for model performance. Current edge sched-
ulers for inference jobs make the latency-accuracy tradeoff
using model upsizing/downsizing and offline profiling, under the
strong assumption of data input is stationary [5], [28], [34], [46],
[65]. In contrast, schedulers (Uniform, Ekya [6] and RECL [51])
for retraining jobs focus on allocating resources to maximize
their overall accuracy, using fixed-size compressed models.
However, allocating the same amount of resource to a model may
result into considerably different accuracy improvements when
handling different retraining jobs, as shown in Fig. 1(b). The
ideal scheduler, which scales up models with higher accuracy
improvements and allocates more resources to them (and vice
verse in scaling down models), hence can achieve much higher
accuracies than the current edge schedulers (Fig. 1(c)). The
second challenge now requires us to investigate how fo manage
resource allocation at a finer model granularity.

In this paper, we design EdgeTA, an Edge-side Transformer
Adaptation system to maximize the overall accuracy of multiple
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FMs in response to their data dynamics at run-time. The key
idea of EdgeTA is to perform FMs’ retraining at the granularity
of neuron [17], [81], the basic computational unit that forms
FMs’ /transformers’ layers. For each retraining job, EdgeTA
identifies a small proportion of neurons from its FM that are
most important to the current input data’s accuracy and uses
them to construct a proxy model at run-time. EdgeTA also
constructs neuron indexes to record these neurons’ mapping
relationship between the proxy model and the FM, thus support-
ing their low-cost collaborative training via the proxy model.
In multi-application scenario, EdgeTA supports the dynamic
scaling of their FMs and thus enables neuron-grained resource
scheduling to optimize the overall accuracy of multiple retrain-
ing jobs. In particular, the contributions of this paper are as
follows:

e [Fast and accurate adaptation via proxy model: EdgeTA
introduces a novel concept of proxy model that extracts a
FM’s neurons most important to the arriving input distribu-
tion, thus training this model to achieve both high accuracy
and low cost for adaptation. To maintain model generality,
EdgeTA also employs a knowledge base to accumulate
the learned knowledge and transfer this knowledge to the
original FM with small overheads.

® Neuron-grained resource scheduling with dynamic model
scaling: EdgeTA supports dynamic model scaling at the
neuron granularity and online estimation of different model
sizes’ accuracy improvements per resource unit usage,
thereby achieving fine-grained resource scheduling by first
allocating resources to the model neurons with the largest
accuracy improvement.

o Lightweight system design and applicability on variety
of FMs: EdgeTA implements lightweight systems to per-
form online scaling, accuracy improvement estimation and
retraining of FMs with low overheads. Our approach is
designed to support prevalent edge-side applications of
different modalities (image, text and multimodal data) and
its implementation supports both Hugging face transform-
ers and other user-specified FMs, and it is available at
https://huggingface.co/spaces/LINC-BIT/EdgeTA.

Summary of experimental results: We evaluate EdgeTA on

four commodity edge devices whose GPU ranges from 256
cores to 1972 cores and memory size ranges from 8 GB to
32 GB. Using six representative workloads in CV, NLP and
multimodal applications, our experiments compare against the
state-of-the-art FM adaptation techniques in both single- and
multi-application scenarios: (i) evolving input data adaptation.
We compare EdgeTA against 13 input data adaptation methods
and the results show: under the same resource budgets, our ap-
proach improves accuracy by 21.88% in average (up to 35.80%),
while reducing memory footprint and energy consumptions by
27.14% and 65.65% respectively. (ii) Multi-application sce-
narios. Compared to five edge schedulers, our neuron-grained
resource scheduler achieves 15.96% improvement in the overall
accuracy of all retraining jobs. EdgeTA can also be integrated
with typical server-based resource schedulers to improve model
accuracy by 14.23%.
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Fig.2. A motivation example to understand EdgeTA.

II. MOTIVATION

In this section, we lay out two observations to understand
how evolving data and model retraining requires FM scaling,
and present the design objectives of EdgeTA.

New tasks/domain shifts in evolving input data: A pre-trained
FM is a general purpose model for diverse input distribution
space. When adapting to an application, it is fine tuned ac-
cording to its source data offline, as illustrated in Fig. 2(a). In
dynamic edge environment, the deployed model usually encoun-
ters evolving input data consisting of new tasks and/or domain
shifts and thus needs retraining. Specifically, continual learning
methods update the model according to new tasks that have
multiple classes (e.g. different cats or vehicles) not seen in the
source data [105], and maximize the overall accuracy of all tasks.
Domain adaptation methods address domain shifts in input
features (e.g. light illumination or background) to mitigate the
model’s accuracy depredation. In both types of model retraining,
we have two observations as follows.

Observation 1. Evolving input data activates different model
neurons: The intrinsic property of neural networks means a FM’s
neurons have differentiated importance values to different input
distributions [36] (Fig. 2(b)). During the forward operation, a
neuron’s importance value represents the amount of input data
information its contains. This value can be calculated using
Feature Boosting and Suppression (FBS) [30] or Squeeze-and-
Excitation (SE) module [42]. When further considering all neu-
rons in alayer, Fig. 2(c) shows they have a long tail such that most
of the neurons have much smaller importance values than a small
percentage of neurons with large values. However, previous
studies only use neuron importance values in offline structured
model pruning [53], [57] or online model scaling in inference
jobs [28], [33], based on a strong assumption of stationary input
distribution.

Design objective 1: EdgeTA adaptively transforms the FM
into a small model that retains the FM’s most important neurons

(e) (f)

for the newly arrived data, thus achieving both low overheads
and high accuracy in retraining.

Observation 2. Distribution distance can be mapped to dis-
crepancy in model accuracies: When scheduling resources
(GPU cycles) among retraining jobs of variable model sizes,
profiling these jobs’ accuracy improvement per resource unit
usage is a necessary condition. However, each profiles needs at
least several training iterations and hence it is computationally
expensive on edge devices. Previous studies show that it is
possible to perform such profiling for the source data offline [28],
[33] (Fig. 2(d)) and, at the same time, calculating the distribution
distance between the source data and the newly arrived data can
be completed quickly online (Fig. 2(e)). For example, the Frechet
distance [26] calculates the distance between two distributions
using their average feature vectors p and covariance matrices.
Hence it is possible to calibrate a FM’s accuracy improvement
for a new distribution according to its distance to the source data
(Fig. 2(9).

Design objective 2: EdgeTA develops an online estimator to
accurately predict accuracy improvements for models of vari-
able sizes, thus supporting neuron-grained resource scheduling
of retraining jobs.

III. DESIGN OF EDGETA
A. Overview

EdgeTA is designed based on the network neurons which
widely exist in today’s FMs/transformers. We note that FMs
differ from traditional CNNs from two aspects: (1) FMs are
pre-trained with diverse data and its neurons store more generic
knowledge than filters (the basic computational unit in CNNs).
Hence before deployment, a FM needs to be fine tuned to adapt to
an application’s specific input data (2) The number of neurons in
a FM is usually much larger than the number of filters in a CNN
(e.g. 50x larger), and the proportions of model parameters in
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neurons of different network layers are highly unbalanced [17],
[81]. For instance, the linear layers (including QKYV, attention,
and feed forward layers) have about 30% of neurons in the model
and these neurons contain over 99% of model parameters. Hence
the retraining job needs to carefully select neurons to process
to avoid high costs. Based on the characteristics of neurons,
EdgeTA designs proxy mechanism and neuron index to support
dynamic scaling of FMs in response to evolving input data at
runtime.

First, EdgeTA’s proxy mechanism adapts a generic large FM
to a distribution-specific small model using two stages. At the
offline stage, it transforms the FM into a much smaller and
application-specific knowledge base, namely multiple network
layers of neurons, which supports the input-adaptive and fast
generation of small proxy models in retraining. At the online
stage, once a retraining job starts, it constructs a proxy model
that retains a small proportion (e.g. 20%) of knowledge base’s
most important neurons to the current input data. This model
only retains the distribution-specific knowledge in the FM’s
neurons, thus consuming much smaller training resources than
the original FM while achieving most of its model accuracy.
We note that this proxy mechanism also alleviates catastrophic
forgetting in model continuous model retraining [18]. This is
because the retraining of the proxy model only updates the
neurons most relevant to the current input data, and maintains
other neurons of the FM unchanged. After retraining, the proxy
model is used during inference until the next input distribution
shift happens.

Second, EdgeTA develops neuron indexes to support the
dynamic model scaling at the neuron granularity with two objec-
tives: (1) the neuron indexes leverage the dynamic importance
values of neurons and hence can achieve accuracy-size tradeoff
in a finer granularity. (2) The number of neurons is much
smaller (e.g. 1000x smaller) than that of model parameters,
thus guaranteeing the small memory footprint of neuron indexes

euron-grained scheduling for multiple applications
N d scheduling f Itipl licat
o i
[ . ; , Estimation results
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S model sizes ; I
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and fast processing of neurons in model retraining. Given that
most model parameters are stored in linear layers’ neurons,
EdgeTA only constructs neuron indexes for linear layers to
further reduce the overheads. With neuron indexes, neurons’
mapping relationships between the FM and the knowledge base,
and between the knowledge base and the proxy model can be
recorded for quick knowledge transfer. This step accumulates the
proxy model’s learned knowledge in the knowledge based and
the FM, and can mitigate catastrophic forgetting in continuous
model retraining.

Fig. 3 illustrates the architecture of EdgeTA, which s splitinto
single-application and multi-application parts. EdgeTA operates
at the neuron granularity. A neuron consists of a set of model
parameters, and it takes a vector as input and outputs a number.
A model layer usually contains hundreds of neurons.

Neuron-grained FM scaling and retraining for one applica-
tion (Section III-B). In EdgeTA, the knowledge base and its
corresponding neuron index are first constructed offline and
then used to support online scaling of the application’s FM.
Specifically, EdgeTA first takes the pre-trained FM (its ¢-th
layer’s j-th neuron is denoted as 67 ") and the source data of
an application as inputs, and outputs the application-specific
knowledge base (that is, a matrix of neurons, in which the i-th
layer’s j-th neuron is denoted as 6;’,”""), its neuron indexes
to the FM, and profiles of the FM’s accuracy improvements
under different model sizes (Section III-B1). In a neuron index,
a weighted average of multiple neurons in the FM corresponds
to a neuron in the knowledge base. The construction process is
only executed once offline.

At the online stage, EdgeTA first sends offline profiles to the
neuron-grained scheduler and obtains the selected model size
and allocated resources (i.e. GPU cycles). It then performs FM
scaling and retraining with four steps. At step 1, the distribution-
adaptive model generator (Section II1-B2) first extracts a proxy
model from the knowledge base to retain the FM’s most

Authorized licensed use limited to: TU Delft Library. Downloaded on March 27,2025 at 08:10:49 UTC from IEEE Xplore. Restrictions apply.
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important neurons (i.e. the neurons with the darkest colors
in Fig. 3) to the current distribution, and then constructs this
model’s neuron indexes to the knowledge base. Each neuron in-
dex records one and the same neuron in the proxy model and the
knowledge base. In the following three steps, the collaborative
learner of FM and proxy model (Section III-B3) sequentially
retrains the proxy model (step 2), updates the FM (step 3), and
updates the knowledge base (step 4). The last two steps only need
quick tensor addition and multiplication operations (rather than
slow iterative training operations), and they aim to accumulate
the proxy model’s learned knowledge in the FM and knowledge
base.

Neuron-grained resource scheduling among multiple applica-
tions (Section III-C). The scheduling consists of two modules:
the proxy model estimator (Section III-C1) takes optional proxy
model sizes (s to s¢) and the current input distribution as inputs,
and calculates this model’s accuracy improvement per resource
unit and memory footprint for each model size. The neuron-
grained scheduler (Section I1I-C2) checks up all retraining jobs’
estimation results and the edge system’s available resources, and
finds the optimal model sizes and assigned resources for these
jobs that maximize their overall accuracy under the optimization
constraints (e.g. device memory capacity).

B. Neuron-Grained FM Scaling and Retraining

1) Knowledge Base and Neuron Index: To support online
scaling of a FM at the neuron granularity, EdgeTA first constructs
knowledge base and its neuron indexes offline, as illustrated in
Fig. 4.

First, for the same set of neurons in a layer of the FM,
EdgeTA constructs multiple neuron indexes and thus retains
multiple neurons in the knowledge base. For example, in Fig. 4’s
FM, each layer has 768 neurons (each neuron consists of 768
model parameters). Using one neuron index, these neurons are
combined into one neuron in the knowledge base. Overall, 384
neurons are constructed in one layer of the knowledge base using
384 different neuron indexes. These indexes represent different
ways of combining the neurons in the FM, thereby increasing
the diversity of the knowledge base and improving its learning
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capacity for unseen distributions. Formally, the knowledge base
is defined as a two-dimensional matrix §° of neurons:

FBS

eproxy gproxy

ey

eproa:y gpro:m,/

FBS

where 0" represents the i-th layer’s j-th neuron in the

knowledge base, and n represents the number of layers. Each
line represents the neurons in one layer, and it also contains a
Feature Boosting and Suppression (FBS) module [30], which
is used to identify the most important neurons in proxy model
generation.

Second, a neuron index records how a layer of neurons in
the FM are combined into one neuron in the knowledge base.
Formally, let HZf T, HZf 5", ... be the neurons in the FM’s i-th layer
and 05’7 gomy be one neuron in the knowledge base, a neuron index
is a set of relevance coefficients {I'; ; 1,1%; j2,...}:

Zef W T )

where T; j ;. is the relevance coefficient between 0;"”"" and

apromy

9{_ Zl and k ranges from 1 to the number of neurons in the FM’s
i-th layer. In Fig. 4’s example, EdgeTA only constructs neuron
indexes for linear layers because they contain 99.87% of model
parameters but have the same number (384) of neuron indexes
as the LayerNorm layer.

2) Distribution-Adaptive Model Generator: Given a new in-
put distribution and a selected model size (by the neuron-grained
scheduler), the generator transforms the FM into a distribution-
adaptive proxy model and constructs its neuron indexes to the
knowledge base with three steps.

Representative sample selection: Given v samples &y
to Z,, step 1 selects the one with the highest informa-
tion entropy [S9]: & = argming c(z 7, 7.1~ 2. PYf)
log(p(ys)), where p(ys) represents the probability that Z; is
predicted as class c. The selected sample denotes the most
difficult one in the input data and it provides the largest amount
of information about how to learn features for correct classi-
fication [71]. In other words, this sample maximizes the dif-
ference among neurons’ importance values. Taking ViT-B as
an example, Fig. 5 visualizes the correlation between the input
sample’s entropy (small, medium, and large) and the distribution
of neurons’ importance values. We can see the sample with
the highest entropy (e.g. the most difficult sample) leads to the
largest difference of neurons’ importance values.
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Proxy model generation: Step 2 first uses the model neu-
rons and the FBS module in the knowledge base to generate
an intermediate model using multiple iterations. Each itera-
tion constructs a model layer by combining one layer of the
knowledge base, a parallel network branch, and a FBS module.
Subsequently, this step identifies the neurons with the highest
importances from the intermediate model, and assembles them
into a proxy model. Formally, given a neuron 6}"""Y, its neuron
importance Q(0;"""") is defined as the amount of input infor-
mation by taking sample Z* as input:

pi = FBS(F:), Q(07"°"™) = pi; 3)
FBS(F;) = ReLU(Linear(AvgPool(F;)))  (4)

J

where F; is the input of the knowledge base’s -th layer. In (3),
the FBS module takes J; as input, and outputs a vector p; whose
j-th element j; ; is 6]"°""’s neuron importance. (4) represents
that a FBS module consists of one average pooling layer, one
linear layer, and one ReLU layer. (5) represents that £* is the
input of the knowledge base’s first layer.

Note that our approach utilizes the FBS module to estimate
neurons’ importance. This is because this module is used at
the inference stage in traditional approaches and it only needs
one forward operation in estimation. In contrast, current model
pruning techniques [15] either calculate neurons independent of
input distributions (data-free techniques), or require at least a
batch of input samples to calculate importance and are much
slower.

Comparative analysis with hot/cold neurons: PowerInfer [81]
is anovel method that employs a neuron’s activation frequency to
measure its importance, and thus divides neurons into hot or cold
ones according to their frequencies. There exists two differences
between Powerlnfer and EdgeTA. First, the proportions of hot
and cold neurons (e.g. 20% and 80%) are predetermined at the
offline pre-training stage, because PowerInfer is developed for
model inference and the input distribution is stationary. In con-
trast, EdgtTA is developed for evolving input distributions. Each
time a retraining is triggered, neurons are first ranked according
to their importances to the current input data. The proportion
of neurons retrained in the proxy model is then determined
online according to the allocated resources to this retraining.
Second, in Powerlnfer, hot and cold neurons are loaded into
Video RAM (VRAM) and RAM and processed by GPU and
CPU in inference, respectively. In EdgeTA, only the neurons
in the proxy model are loaded into VRAM and processed in
retraining.

Neuron index construction: For each selected neuron, step 3
constructs a neuron index to record its mapping relationship to
the neuron in the knowledge base. This index guarantees that
the model parameters of two connected neurons should keep the
same.

3) Collaborative Learner of FM and Proxy Model: The
collaborative learner first retrains the proxy model to provide
high accuracy for the current input data, then updates the FM
to accumulate the learned knowledge. Finally, it updates the
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knowledge base to transfer the latest FM’s learning capacity to
1t.

Proxy model retraining: The learner only trains a small por-
tion of neurons because other neurons have small gradients and
skipping them can accelerate retraining with negligible accuracy
losses [10]. To identify these neurons, a naive approach requires
a full and expensive forward/backward to compute the gradients
of all model parameters. In EdgeTA, the learner only calculates
the gradients of parameters in the normalization layers. This
is because in a typical transformer, each neuron in the linear
layer pairs with a neuron in the normalization layer (LayerNorm
or RMSNorm). That is, the gradients of model parameters in
each paired neuron are positively correlated (e.g. the average
Kendall’s Tau correlation [50] is up to 0.858in ViT-B). However,
the calculation of gradients is much more expensive in the
linear layer. Hence our learner chooses to only calculate the
parameters’ gradients in the normalization layer and use these
gradients to select neurons in both types of layers. Finally, the
learner selects a small subset (e.g. 20%) of neurons that take
most of (e.g. 80%) cumulative gradients, and updates these
neurons using supervised/unsupervised retraining algorithms.
The retraining can be further accelerated by distributing the
computation to more edge devices [4], [55], [58], [68], [69].

FM updating: Let AB]"”" be the updating extent of neuron
0;"." in the proxy model, the learner first updates this neuron’s
corresponding neuron in the knowledge base:

070" = 077 + A0 (6)
where < denotes the assignment operation. Subsequently, the
learner updates the FM according to the relevance coefficient
I'; ;. between it and the knowledge base:

Of — 01 + T g - AP )
Note that the value of I'; ; ;. is set during the construction of
neuron index offline, and represents the similarity of model
parameters between the neuron Hlf’ " in the FM and the neuron
07" in the proxy model. That is, two similar parameters
also have similar updating directions in their loss space [22].
Hence when updating neuron 9{ o using (7), a large relevance
coefficient means the proxy model can transfer more of its
learned knowledge to the FM; otherwise, neuron 95_ Zl keeps
more of its original knowledge. '

Knowledge base updating: Based on the updated FM, the
learner updates each neuron of the knowledge base as:

o7 < D 01K i ®)
k

Overhead analysis: Without loss of generality, suppose the
proxy model have pn linear layers and (1 — p)n other layers
(0 < p < 1), whose model parameters have the shape d x d and
d x 1, respectively.

® Gradient calculation: The FLOPs and memory footprint

are (pnd® + (1 — p)nd?) and pnd? + 2(1 — p)nd for a
full backward, and (1 — p)nd? and 2(1 — p)nd when only
considering the normalization layers (saving one magni-
tude of FLOPs and memory).
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® Proxy model retraining: The memory overhead is
16(pnd® + 2(1 — p)nd) when training all neurons [74],
and (4 + 12a%)(pnd? + 2(1 — p)nd) when only training
a% of neurons (saving 4/(1 4+ 3a%)x memory, that is,
2.5x when a% = 20%).

® Feedback learning: The FM and the knowledge base can be
loaded into memory layer-by-layer. Assume they have 16x
and 4x model parameters than the proxy model, the peak
memory usage will be 22d (far smaller than an inference)
and the FLOPs will be 68pnd?> (similar to an inference).

C. Neuron-Grained Scheduling Among Multiple Applications

Given A co-running applications, C' optional model sizes
{s1,82,...,8c} and a resource unit, suppose each application
encounters its k-th input distribution, the proxy model estimator
first predicts each application’s accuracy improvement per re-
source unit for the current input distribution. The neuron-grained
resource scheduler then takes the online estimation results, the
offline profiles and the available resources (that is, retraining
window t™** and available memory m™%*) as inputs, and
outputs all applications’ model sizes and assigned resources to
maximize their overall accuracy.

1) Proxy Model Estimator: The estimator takes the i-th ap-
plication’s accuracies before and after training in the source data
(obtained offline), the discrepancy between the source data and
the k-th newly arrived distribution, and a model size s; as inputs,

and outputs this application’s accuracy before retraining 7k

2,7 °
the accuracy after retraining Ii(];), and the memory footprint

M; ; (1 <i <A, 1< 5 <C). The estimation can be completed
quickly for two reasons. First, itis based on a tiny neural network,
which maps the discrepancy of two input distributions to the
discrepancy in accuracies in retraining. Second, it only uses a
small batch of samples to calculate the discrepancy of the current
input distribution to the source data. Note that the batch size used
to calculate this discrepancy may vary across different source
datasets, because they have distinct feature space. Hence at the
offline stage, the estimator predetermines this batch size using
two steps. Step 1 applies data augmentation techniques in source
data to simulate a newly arrived distribution. Step 2 gradually
doubles the batch size (e.g. 8,16,32,...), and calculates the
discrepancy between the simulated input distribution and the
source data for each size. This step stops if the tested batch size
brings a sufficient precision in discrepancy calculation: its cal-
culated discrepancy has an error smaller than 10% compared to
the ground truth (the discrepancy calculated using all samples).
Taking the GTAS [76] dataset as an example, Fig. 6 shows that
a batch size of 128 leads to only 9.7% error to the ground truth.
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Moreover, the estimator calibrates the k-th input distribution’s
prediction result using the actual/monitored accuracies of the
(k — 1) seen distributions:

(k) 7@
(k) “ + Za 1 Wa - z(;

iy > ©
i® (a)

- + Weq * 2

")« T 5 ! J (10)

where Ii(z-) and fi(z-) is the actual accuracies of the a-th distribu-
tion and w, (0 <a <k —1,0 < w, < 1) is the reciprocal of
this distribution’s discrepancy to the newly arrived distribution
(normalized by softmax). In calibration, the estimator calculates
the k-th distribution’s accuracy by averaging it with the weighted
combination of the (k — 1) previous distributions’ accuracies (9)
and (10).

In addition, the memory footprint M; ; is proportional to its
size and it is estimated as (s; / FM’s model size X FM’s memory
footprint).

2) Neuron-Grained Scheduler: The scheduler aims to max-
imize the overall accuracy of all applications given a resource
budget. To this end, it define the optimization objective as the
accuracy improvement per unit of resource usage ( (11)): for
each application, this metric is the cumulative accuracy over the
retraining window Z, " - m I8 (gmaw — f ) divided by
the retraining Wmdow tm‘” With two constraints (retraining
window t"*** in (14) and available memory m™%* in (15)), the
optimization problem is formalised as follows:

Ti

M(-k>> k
“ 28y

i o T T 2. (tmm

max E E
S(k)

i,j 1=1j5=1 gmas
s.t.
St e {0,13, Zs(’“) (12)
k) k k
(k) _ Zb 1(1( Iz'(,b)) 'Sz'(,b) (13)
i - k k
S e (@ — ) - Se
C
E .
V1<i<A, 5 Sl < gmer (14)
j=1 M4
A C
SN M58 < mmas (15)
i=1 j=1

e S .(k.) indicates whether the ¢-th application chooses the j-th
(k) _

model size for the k-th input distribution (S = 1) or not
(Si, 7 =0).
o (k)

w; ~ is the proportion of allocated GPU cycles for the
i-th application. It is equal to the ratio of this applica-
tion’s accuracy improvement Zle (i(lz) 7(12)) Sq(’z

the sum of all applications’ accuracy ifnprovements This
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Fig. 7.  System implementation of EdgeTA.
metric guides the scheduler to allocate more GPU cycles > User-specified FMs: EdgeTA designs a standard FM

to applications with higher accuracy improvements.

® Given the total retraining window t?*, the i-th appli-
cation’s retraining time 7; ; is amplified by 1/ /,Lgk) times
because its retraining job uses only ugk) of GPU cycles.

e The sum of all applications’ memory footprint should be

smaller than the device’s available memory m™%*.

The above optimization problem is non-linear and non-
convex. The scheduler uses the genetic algorithm to search the
best solution by repeating the three steps. Step 1 generates new
solutions by initializing random solutions or mutating previously
retained solutions. Step 2 computes the solutions’ fitness (the
value that each solution corresponds to in (11)). Finally, step
3 retains solutions with higher fitness. If it cannot find better
solutions, it stops and outputs the currently found best solution.
This search completes within a few seconds because the solution
space is small (A, C' < 10 in typical edge scenarios) and it can
compute the fitness of multiple solutions in parallel.

IV. IMPLEMENTATION

EdgeTA is implemented in Python with 8k LOCs and it is
currently targeted for transformers [91] running on commodity
edge devices and Linux environment. Its scaling and retrain-
ing of transformers are implemented based on timm 0.9.1 and
transformers 4.30.2. Its scheduler is built upon the optimization
problem solver in scikit-opt 0.6.6 and resource management
systems in Docker 10.03.6 and K3s 1.18.12.

Applicability: Fig. 7 illustrates the three steps of running a FM
using EdgeTA. To facilitate the integration of a model, EdgeTA
decouples the integration of a model (step 1) from its offline
construction of knowledge base and neuron index (step 2) and
online scaling and retraining of FM (step 3). This system design
allows users only to implement the FM API at step 1 to integrate
a model. Specifically, EdgeTA supports two types of models.

> Hugging Face FMs [94]: We implement EdgeTA to sup-
port FM APIs in the Hugging Face Al community. Using
the AutoModel as example, EdgeTA calls function Auto-
Model. from_pretrained () to initialize a FM and calls
function AutoModel . forward () to perform a forward op-
eration. EdgeTA allows users to run a Hugging Face’s FM using
about 30 LOCs.

API (colored by green in Fig. 7) to unify user specified FM
implementations. This API mainly defines: (i) how the FM
performs an inference using the given sample; (ii) how the
accuracy of the FM is measured using the given test dataset;
(iii) how to manipulate (e.g. compress/update/remove) a specific
layer in the FM. For each FM, this API can be implemented using
about 200 LOCs.

Moreover, EdgeTA features on lightweight system implemen-
tations from two considerations. First, it addresses three major
overheads in retraining: (1) each layer of the knowledge base is
divided into multiple pieces in inferences to reduce the memory
overhead; (2) when updating the FM and the knowledge base,
its neuron indexes allow each network layer to be processed sep-
arately to reduce memory footprint. and (3) the step() function
in PyTorch’s optimizers is revised to freeze model parameters
of small gradients to save computational costs. Moreover, it
employs the thread pool to parallelize and accelerate the the
optimization problem solving, and implements resource alloca-
tion based on the open source K3s [2] (a lightweight version of
Kubernetes).

V. EVALUATION
A. Settings

Testbeds: We choose four different edge devices imposing
different architectural features: NVIDIA Jetson TX2, Xavier
NX, AGX Xavier, and AGX Orin, whose processors are 256-core
Pascal GPU, 384-core Volta GPU, 512-core Volta GPU, and
1792-core Ampere GPU, respectively; and memory sizes are 8
GB, 16 GB, 32 GB, and 32 GB, respectively. All devices are
equipped with the operating system Ubuntu 18.04.5 and they
run transformers using PyTorch 1.9.0.

FM models, datasets, and applications: To evaluate EdgeTA’s
generalization capability on different edge applications, we se-
lected three most important applications, as listed in Table 1.

e CVapplication: It takes images and videos as inputs. With-
out loss of generality, we select three popular workloads:
image classification, semantic segmentation that recog-
nizes the category of each pixel in an image, and object
detection that recognizes the category and the location of
all objects in an image.
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TABLE I
SUMMARY OF APPLICATIONS AND WORKLOADS
Application: Source New arrival M
workload data input data
. New
CV: image tasks MSCOCO2017 [60]
classification .
Domain
shifts GTAS5 [76] Cityscapes [16]
CV: semantic Domain Supervisely- BaiduPerson [95] ViT-B/16 [25]
segmentation shifts Person [16]
CV: object Domain
detection shifts
NLP: text 2;:\; 20Newsgroups [1]
classification Domain
. HL5Domains [43] Liu3Domains [61] Bertpgse [20]
shifts Ding9Domains [23]
NLP: POS Domain 5
. . SemEvall4 [85]
tagging shifts
Multimodal: | Domain VoAV VQAV2-C [31], [39]
visual question |— 0 first 1000 VQAVZ's Tast VILT-B/32 [52]
answering tasks classes [31] 2129 classes [31]

® NLP application: It analyzes text data and we select two
most commonly used workloads: text classification and
part-of-speech (POS) tagging that categorizes a sentence’s
each word into a specific part of speech (e.g. noun and
verb).

® Multimodal application: It analyzes text-image matches

and we test the visual question answering workload that
gives a text answer according to an image and the text
question.

Accuracy metrics: For CV applications, top-1 classification
accuracy, mloU (mean Intersection over Union), and mAP@0.5
(mean average precision over Intersection over Union (IoU)
threshold 0.5) are used to measure image classification, semantic
segmentation, and object detection workloads, respectively. In
addition, top-1 accuracy is used to measure two NLP workloads,
and VQA score (the accuracy of the generated answers compared
to the actual human answers) is to measure the multimodal
workload.

B. Evaluation of FM Retraining Under Evolving Input Data

Here we compare EdgeTA with two types of baseline adapta-
tion methods and also report the source accuracy as the method
without adaptation.

e Continual learning of new tasks: Five methods of two
categories are tested: (1) regularization-based methods:
Elastic Weight Consolidation (EWC) [54] avoids large
changes in model parameters using Fisher information
matrix; Adaptive Group Sparsity (AGS) [47] adjusts the
regularization strength according to the given task; and
Memory Aware Synapses (MAS) [3] determines the reg-
ularization strength according to the importance values of
model parameters. (2) Memory-based methods: Gradient
Episodic memory (GEM) [13] calibrates current gradients
using gradients calculated on previous stored samples;
and Balanced Continual Learning (BCN) [73] controls the
strength of learning new task by dynamic programming.

® Domain adaptation of domain shifts: Eight methods of
three categories are tested: (1) LayerNorm tuning methods:
SAR [70] only retrains the model parameters in LayerNorm
layers. (2) Feature alignment methods: Source HypOthesis
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Transfer (SHOT) [59] retrains the model using entropy
minimization and pseudo labels; ConDA [87] improves
SHOT by storing previous samples; Bottom-Up Feature
Restoration (BUFR) [27] aligns a lightweight feature
approximation between domains; Incremental Adversar-
ial Domain Adaptation (IADA) [97] retrains the model
with the help of a generative adversarial network; Mo-
bileDA [100] retrains the model by distilling knowledge
from a larger teach model; and CUA [8] aligns the feature
between domains using current and stored samples. (3)
Whole network retraining methods: Adapting to Changing
Environments (ACE) [96] generates labeled images in new
domain and use them for retraining.

Offline application-specific adaptation: For each workload,
baseline methods use the application’s source data to fine-tune
the pre-trained FM, and compress it by removing 90% of model
parameters. For the six workloads in Table I, all methods use
the same hyperparameters: (1) the number of iterations are 80k,
80k, 80k, 10k, 10k, and 80k, respectively; (2) the learning rates
are le-4, Se-4, le-4, le-3, Se-4, and le-4, respectively; (3) the
batch sizes are 64, 16, 16, 8, 8, and 64, respectively. The offline
training of all methods is executed once on a GPU server (48-GB
Quadro RTX 8000 Graphics Card). Baseline methods’ training
time varies between 3.97 and 24.22 hours, and EdgeTA’s training
time varies between 8.76 and 46.58 hours.

Online adaptation settings: We use an open-source bench-
mark [104] that automatically constructs evolving distribution
at edge and searches hyperparameters for evaluated methods.
The image classification, text classification, and POS tagging
workloads are evaluated on Jetson TX2, the semantic segmen-
tation and object detection workloads are evaluated on Jetson
Xavier NX, and the visual question answering workload is
evaluated on Jetson AGX Xavier. Each workload consists of
30 new input distributions (new tasks or domain shifts). The
retraining window is 1800s for image classification and visual
question answering workloads with new tasks, and this window
is 300s for all other workloads.

In comparison, the proxy model in EdgeTA has the same
model size as baseline methods. We report three metrics:
(1) consistent accuracy [51] over the retraining window;
(2) memory footprint measured by jtop on NVIDIA devices;
and (3) energy consumption measured by in_power0_input
interface on devices.

Comparison of accuracy: Fig. 8 illustrates the comparison
of consistent accuracy between EdgeTA and baseline methods
across different workloads and platforms. We have two key ob-
servations from the result. First, EdgeTA consistently achieves
higher accuracies than baseline methods at every retraining
window. On average, EdgeTA increases accuracy by 21.88% (up
to 35.80%). The result indicates that our distribution-adaptive
proxy model and continuously updating knowledge base are
able to deliver state-of-the-art retraining accuracy under a given
resource budget. Second, when running on edge devices with
tighter resources (e.g. Jetson TX2 in Figures 8(a)(d)(e)), EdgeTA
achieves more improvement in adaptation accuracy. This is be-
cause each proxy model consists of the most important neurons
to the current input data and has the highest convergency speed in
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retraining, thus archiving the largest accuracy improvement per
resource unit. In contrast, baseline methods suffer from severe
accuracy degradation for two reasons. First, they rely on fixed
and compresses models or introduce extra generative networks
that are hard to train stably (e.g. IADA and ACE). Second, some
methods need to extra regularization computation (e.g. EWC,
AGS, and MAS) or process previous samples (GEM and BCN),
thus have lower training efficiency within the short retraining
window. Overall, EdgeTA improves the accuracy by an average
of 21.88% compared to all baselines.

Comparison of memory footprint: Fig. 9 displays the compar-
ison results of all methods’ memory footprints over three phases
(workload initialization, retraining, and retraining completion)
in a retraining window. EdgeTA has two extra phases (proxy
model generation and collaborative learning). We can see that
our approach has the lowest memory footprints in most of the
phase, because the retraining of its proxy model only processes
model neurons/parameters with the largest gradients and the
updating of its knowledge base and FM only processes neurons
in the linear layers. The only exception is the proxy model
generation phase, in which one inference operation on the large
knowledge base is performed. This inference completes quickly
and this phase is short. In contrast, MobileDA introduces a large
teacher model in knowledge distillation and thus has the highest
memory usage in most of the cases (Figures 9(a)(b)(d)(f)). BCN
concurrently retrains the main model and a reference model and
it causes much larger retraining time and memory overhead than
other methods. When considering the entire retraining process,
EdgeTA achieves 27.14% reductions in memory footprint on
average.

TABLE I
AVERAGE ENERGY CONSUMPTION (J) IN EACH DOMAIN SHIFT

Image{ Semantic Object TexF ) POS Visufil
Classifi-  Segment- Detection Classifi- Tagging Question

cation ation cation Answering
SAR 1098.2 874.8 842.6 878.0 726.2 833.0
SHOT 1036.0 - - 616.7 - 905.3
BUFR 1218.8 - - 932.4 - 2082.5
MobileDA  1776.0 14787 1112.6 1608.4 16783 1554.1
CUA 11954 916.8 931.7 924.6 893.5 1196.8
TADA 1142.6 935.5 795.8 777.0 808.1 921.5
ConDA 1122.0 - - 700.0 - 801.0

ACE 2237.8 1741.9 1581.5 - - -
EdgeTA 706.4 550.1 458.4 470.9 559.4 718.1
TABLE III

AVERAGE ENERGY CONSUMPTION (J) IN EACH NEW TASK

Image Text Visual Question
Classification  Classification Answering
EWC 2474 567.2 2835.7
AGS 386.8 370.0 1749.1
MAS 226.2 555.0 2811.8
GEM 2002.6 1340.3 9329.6
BCN 8414.5 1742.8 14194.3
EdgeTA 165.0 217.9 1287.7

Comparison of energy consumption: Tables II and III list
the energy consumption of all methods. The notation “-” in
Table II represents the corresponding method is inapplicable for
the workload. We can see that EdgeTA consumes the smallest
amount of energy because it has the shortest retraining time and
the lowest memory usages. In contrast, some baseline methods
(e.g. ACE) need long retraining time and some methods (e.g.
MobileDA and BCN) need high memory footprints. The later
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Evolving domain shifts (a-f)
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Evolving task shifts (g-i)
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Fig. 9. Memory footprint comparison within one retraining window.
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Fig. 10.  Accuracies when SHOT and SAR run alone or run under EdgeTA.

methods trigger more page in/out operations between RAM and
ROM and thus has higher energy consumption. Compared to
all baseline methods, EdgeTA saves energy consumptions by
an average of 48.62% and 82.68% in domain adaptation and
continual learning jobs, respectively.

Integration with adaptation methods: EdgeTA can use exist-
ing adaptation methods to improve their accuracies. We take
SHOT (the image classification workload) and SAR (the POS
tagging workload) as example and the results in Fig. 10 show that

EdgeTA brings 11.28% and 18.30% higher accuracies than the
original methods. This is because our proxy model mechanism
allows these methods train larger FMs with the same resource
budget.

C. Evaluation of Multi-Application Resource Scheduling

Following the setting of the above evaluation, this section
evaluates edge resource scheduling in multi-application scenar-
ios. In each scenario, we randomly select 2 to 4 concurrently
running applications on an edge device. All tested schedulers
aims to maximize these applications’ average accuracy in each
retraining window (600s).

Compared baselines: We compare EdgeTA with five edge
schedulers: (1) one-time adaptation [51] only retrains the model
in the first distribution; (2) uniform [6] retrains the model in each
distribution; (3) AMS [80] retrains the teacher model and distills
its learned knowledge to the compressed model; (4) Ekya [6]
retrains the model using the best hyperparameters searched by
online profiling, and allocates more resources to the application
that brings more accuracy improvement; and (5) RECL [51]
retrains the selected model from a zoo of previous models, and
allocates resources like Ekya. The first three schedulers equally
allocate resources to each application.

1) Comparison With Edge Resource Schedulers: Fig. 11
demonstrates the fluctuation of model accuracies across different
schedulers. Each point in the figure represents the accuracy
averaged over all applications. Only domain adaption jobs are
tested because AMS, Ekya, and RECL do not support continual
learning jobs. The scenarios of Fig. 11(a-b), (c-d), and (e-f)
are evaluated on Jetson Xavier NX, Jetson AGX Xavier, and
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Fig. 11.  Comparison of overall accuracy in multi-application scenarios.

Jetson AGX Orin, respectively. We can see EdgeTA achieves
consistently higher accuracies than baseline schedulers, because
it provides quick estimation of different model sizes’ impact
on accuracy and first allocates resources to neurons bringing
the largest accuracy improvements. In contrast, Ekya needs to
perform time-consuming online profiling and less resources can
be used in model retraining, thus may result in lower accuracies
than the uniform scheduler. RECL adaptively selects an optimal
model from the model zoo but stills assumes that all models
have the same sizes. Overall, our approach achieves 15.96%
improvement in accuracy.

2) Integration With Server-Based Resource Schedulers: In
this evaluation, we integrate EdgeTA with three server-based
schedulers (AFS [45], Synergy [67], and Muri [107]) that op-
timize the retraining job’s makespan, and discuss how EdgeTA
improves their performance. The evaluation uses Fig. 11(e)’s ap-
plications, and the three cloud schedulers either run alone (with
fixed model sizes) or run with EdgeTA (with neuron-grained re-
source allocations). The results show that for AFS, Synergy, and
Muri, the accuracies of running alone (with fixed model sizes)
are 0.4472, 0.3087, and 0.3762; and these accuracies of running
with EdgeTA are 0.5198, 0.5248, and 0.5145. Overall, EdgeTA
improves server-based schedulers’ accuracy by an average of
14.23%.

D. EdgeTA Overhead Breakdown

In a new distribution, EdgeTA’s overheads mainly lie in five
steps: (1) distribution discrepancy calculation in proxy model
estimator; (2) proxy model generation; (3) gradient calculation
for identifying retrained neurons; (4) proxy model retraining;
(5) FM and knowledge base updating. We evaluate their wall-
clock time on the workloads and edge devices of Fig. 8. The
results in Fig. 12 show that the proxy model retraining takes
most (87.43%) of the wall-clock time, and the total time of other
four steps takes only 4% of the retraining window.

Overhead saving of gradient calculation: In identifying the
retrained neurons, we compare the computational overhead of

B Step 1: Distribution discrepancy calculation

I Step 2: Proxy model generation

Step 3: Gradient calculation for identifying retrained neurons
[ Step 4: Proxy model retraining

[ Step 5: Collaborative learning

80
.60
2
g 40
=
20
Image  Semantic  Object Text POS Visual
Classifi- Segment- Detection Classifi-  Tagging Question
cation ation cation Answering
Application
Fig. 12.  EdgeTA overhead breakdown at the online stage.

two design choices: calculating the parameters’ gradients in
all layers (the naive choice) or only the normalization layers
(EdgeTA’s choice). The results in Fig. 13 show that EdgeTA’s
choice saves the wall-clock time by 25.23% and the memory
footprint by 83.79%. This is because: (1) EdgeTA immediately
releases the parameters’ gradients of other layers (except nor-
malization layers) after calculation and reduces the memory
footprint; (2) the less memory footprint leads to 69.23% less
memory allocation operations (measured by PyTorch Profiler),
thereby reducing wall-clock time.

E. Understanding EdgeTA’s Accuracy Improvements

Using the image classification and semantic segmentation
workloads, this section discusses the design choices of EdgeTA.
The first evaluation consists of four ablation studies.

® Knowledge base size: This size of knowledge base de-

termines the upper bound of the proxy model’s accuracy.
Fig. 14(a) shows that using the original size (1.00x size)
indeed brings the highest accuracy.

Authorized licensed use limited to: TU Delft Library. Downloaded on March 27,2025 at 08:10:49 UTC from IEEE Xplore. Restrictions apply.



2702
[ Calculating gradients on all layers
[ZZA Calculating gradients on only normalization layers
_1.30
)
2 0.65
E
'_
0 Image Semantic  Object Text POS Visual
Classifi- Segment- Detection Classifi- Tagging  Question
cation ation cation Answering
Application
(a) Wall-clock Time
o
é800
2400
€ m
g + *
= Image Semantic Object Text POS Visual
Classifi- Segment- Detection Classifi- Tagging  Question
cation ation cation Answering
Application
(b) Memory
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Fig. 14.  Accuracies when EdgeTA under different design choices.

® Updating of FM and knowledge base: This updating ac-
cumulates knowledge from newly arrived input data and
Fig. 14(b) shows that it brings 9.12% and 4.33% accuracy
improvements in two workloads because of the accumu-
lated knowledge from the previous input data.

® Proxy model generation strategy: Fig. 14(c) shows that
retaining the neurons of the largest importance values
achieves 4.13% and 8.63% accuracy improvements in two
workloads, indicating that these neurons indeed contribute
to most of model accuracy.

® Model retraining strategy: Fig. 14(d) shows that retraining
the proxy model with the model gradients of the largest
gradients brings 11.32% and 16.07% accuracy improve-
ments.
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— 1st retraining in the distribution “Liu3Domains”
— 2nd retraining in the distribution “Liu3Domains”
— 3rd retraining in the distribution “Liu3Domains”
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Fig. 15. Loss and model perplexity under the same distribution.

The second evaluation discuss how our proxy model achieves
high accuracy using only a small proportion of neurons based
on two theories: (1) the gradient flow theory [64] states that
a model’s loss in training is inversely correlated to its model
parameters’ importance values. EdgeTA’s proxy model thus
preserves the most important neurons to the newly arrived input
data. Fig. 14(c)’s result shows this choice indeed brings 6.72%
accuracy improvement. (2) The winning hand theory [21] states
that the upper bound of a model’s accuracy is inversely propor-
tional to the discrepancy between the current input data and the
data used to calculate neuron importances. Fig. 14(c) shows us-
ing the newly arrived data (i.e. the data used in retraining) rather
than the source data (i.e. data used in pre-training) in calculating
neurons’ importances achieves 8.39% higher accuracy.

The third evaluation uses the POS tagging workload as an
example and discusses how the collaborative learning further
improves accuracy. Fig. 15 demonstrates the curves of losses
and model perplexities when EdgeTA encounters the same in-
put distribution “Liu3Domains” for the first, second, and third
time. Model perplexity represents the number of choices when
predicting the next word’s tag (lower is better). We can see
that EdgeTA achieves considerable lower losses and model
perplexities when learning the same distribution for the second
and third time, because it accumulates the knowledge of seen
data in the FM.

F. Discussion of PEFT

In recent years, PEFT techniques have been widely used to
efficiently adapt large FMs to a given dataset. Although these
techniques only need to tune a small proportion of model param-
eters in training, they still perform the forward operation on all
parameters and take large memory footprint. Hence on resource
constrained edge devices, current edge retraining systems still
use compressed FMs in adaptation [6], [51]. In this section, we
ran a new set of experiments on GPT-Neo [7] to compare CUA (a
technique that tunes all model parameters), LoRA [41] (a typical
PEFT technique), and EdgeTA on five edge devices: a CPU
device Raspberry Pi (4 GB memory), and four GPU devices:
NVIDIA Jetson TX2 (8 GB), Xavier NX (16 GB), AGX Xavier
(32 GB) and Orin (32 GB). Our comparative evaluation reports
three metrics as follows.
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Fig. 16.  Comparison of three retraining techniques.

The maximal model sizes on edge devices: Fig. 16(a) shows
that on the same device, LoRA supports a larger model size
(ranging from 392 MB to 4730 MB) than CUA (ranging from
230 MB to 2521 MB). In contrast, EdgeTA can support the
largest model sizes (ranging from 1186 MB to 8945 MB). This
is because its proxy mechanism first trains a small proxy model
and then feedbacks the learned knowledge to the original model
layer by layer. Overall, EdgeTA increases model sizes by an
average of 2.7x.

Numbers of model parameters in forward/backward opera-
tions: Figures 16(b) shows that in forward operations, LoRA
processes the largest numbers of model parameters because its
model size is larger than that of CUA. In backward operations,
Fig. 16(c) shows that CUA updates the largest numbers of model
parameters because only this method needs to train the whole
model. In contrast, EdgeTA only retrains a small proportion of
most important model parameters, thus reducing the numbers
of parameters by 1.83x and 2.21x in forward and backward
operations, respectively.

Model accuracy with retraining window: Fig. 16(d) shows
that within the same retraining window, CUA achieves 10.60%
higher accuracy than LoRA because it updates 3.7x more model
parameters. EdgeTA achieves 19.4% accuracy improvement
compared to LoRA and CUA for two reasons: EdgeTA updates
the model parameters that are most important to model accuracy,
and it accumulates the learned knowledge in the knowledge base.

G. Discussion of Quantization

Quantization reduces the memory footprint and training time
of FMs in pre-training [19]. By integrating with quantization,
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runs with quantization.

TABLE IV
ACCURACY AND OVERHEAD OF RETRAINING FM WITH
QUANTIZATION AND EDGETA

Accuracy Memory Wall-clock time
Retraining FM (16 bit) 0.5835 17426MB (OOM) 187s
Retraining FM (8 bit) 0.5829 14240MB (OOM) 251s
Retraining FM (4 bit) 0.0411 11094MB 251s
EdgeTA 0.5395 6031MB 78s
TABLE V

SUPPORTED MAXIMAL MODEL SIZE ON FOUR EDGE DEVICES WITH EDGETA

Jetson TX2  Xavier NX AGX Xavier AGX Orin

ViT 1186MB 3772MB 9145MB 9145MB
BERT 1541MB 4752MB 10943MB 10943MB
ViLT 1880MB 5227MB 12392MB 12392MB

EdgeTA can also quantize its data structures (knowledge base,
proxy model, and neuron indexes) to improve training efficiency.
Using the semantic segmentation workload as an example,
Fig. 17’s evaluation result shows that the 16-bit quantization
reduces the memory footprint by 29.78% and the retraining time
by 31.32%, while sacrificing only 1.77% accuracy.

We further compare EdgeTA with the original/uncompressed
FM with quantization. The resultin Table IV shows that although
retraining the original FM with 16-bit or 8-bit quantization has
higher accuracies than EdgeTA, it needs 20x larger memory
and training wall-clock time than our approach. Retraining
the original FM with 4-bit quantization fails to converge. In
conclusion, directly training large FMs with quantization either
incurs Out-Of-Memory (OOM) errors on resource-constrained
edge devices or significantly degrades model accuracy.

H. Upper Bound of Model Size in EdgeTA

Table V lists the maximal sizes of three typical transformers
when running on different devices with EdgeTA. We can see the
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upper bound of a model is determined by the device’s available
memory and the model’s network architecture. This is because
different neural networks have different maximal compression
ratio, e.g. 1.45% for ViT, 1.14% for BERT, and 1.10% for ViLT.

VI. RELATED WORK

Elastic model scaling for stationary input distributions: On
mobile and edge devices, scaling model sizes at run-time to
make trade-offs between inference latency and model accuracy
has been a hot topic recently [12], [101], [102]. Current dynamic
network methods either construct networks (e.g. MSDNet [44])
that allow early exit from an inference task after meeting ac-
curacy targets [24], [56], [62], [88], [89], or generate a list
of descendent models of different sizes (e.g. nested networks
[28], [40], [93] or network blocks [33]) and dynamically select
one of them according to the available resource. However, both
constructed networks and descendent models are produced for a
stationary distribution and hence may suffer from large accuracy
depredations when the new distribution arrives. Similarly, based
on a stationary input distribution, neural architecture search
(NAS) techniques select models from a DNN pool [48], [63]
or automatically search network architectures [84], [108] to
optimize their accuracies according to the underlying devices.

FM adaptation/retraining at edge: Deploying a FM on
an edge device requires both application-specific adaptation
(full/resource/data-efficient fine-tuning [11], [14], [38] or lin-
ear evaluation [72]) and model compression (parameter prun-
ing [30], [35], [53], [57] or knowledge distillation [90]). Current
deployment methods [77], [79], [103] take hours to complete
even using powerful GPU servers or multiple GPU edge de-
vices [4], [55], [58], [68], [69]. Hence when encountering evolv-
ing input data at edge, existing adaptation techniques, namely
continual learning [3], [13], [47], [54], [73], [99] and domain
adaptation [8], [27], [59], [70], [87], [96], [97], [100], directly
retrain the compressed model and thus cannot excavate the FM’s
scaling potential.

Edge-based scheduling systems: Early edge-based schedulers
focus on the inference jobs and optimize their latency, accuracy
or energy consumption [5], [28], [34], [46], [65], [106]. This
run-time optimization is based on the offline generation and
profiling of multiple descendant/nested models [28] or network
blocks [33]. Latest edge schedulers further consider a mix of
inference and retraining tasks. Specifically, Ekya [6] dynami-
cally manages hyper-parameters (e.g. batch size and learning
rate) in retraining tasks. RECL [51] first selects the best model
from a pool of history/seen models when an input distribution
shift occurs and then optimizes resource allocations among
multiple models. However, existing edge schedulers assume
that the model sizes are fixed in retraining tasks, hence limit-
ing the decision space and overlooking the optimal accuracy
tradeoff.

VII. CONCLUSION

This paper presents EdgeTA, a neuron-grained FM scaling
system to improve model retraining performance at edge. Our
approach can support distribution adaptive generation of small
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proxy model to achieve both high accuracy and low overheads in
learning new data. At run-time, EdgeTA can search the optimal
model sizes and allocated resources of multiple applications to
maximize their overall accuracy. Extensive evaluation results
prove the efficacy and practicality of EdgeTA.
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