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Ground-Based Soil Moisture Retrieval Using the
Correlation Between Dual-Polarization GNSS-R

Interference Patterns
Marcel M. El Hajj , Susan C. Steele-Dunne , Member, IEEE, Samer K. Almashharawi, Xuemeng Tian,

Kasper Johansen , Omar A. López Camargo , Student Member, IEEE, Adria Amezaga-Sarries ,
Andreu Mas-Viñolas, and Matthew F. McCabe

Abstract— Soil moisture (SM) is an important state variable
in land surface models. Here, we investigate the potential of a
ground-based global navigation satellite system receiver with two
linearly polarized antennas that measure the interference power
(IP) of direct and reflected signals in horizontal polarization
(H-pol) and vertical polarization (V-pol) to estimate SM. The
coefficient of determination between the IP waveforms at H-pol
and V-pol (R2

v/h) was used as a predictor of SM. A coherent
specular reflection model was employed to first explore the
relationship between R2

v/h and SM for different values of soil
roughness. That relationship was subsequently applied to esti-
mate SM from R2

v/h determined from global positioning system
(GPS) signals acquired continuously by a ground-based receiver
between May and December 2022 for an area with very smooth
bare soil. The results show that the proposed method can estimate
the SM of the upper 10-cm layer with high accuracy (with a
root-mean-square error (RMSE) of approximately 1.5 vol.%) and
demonstrate the potential of the ground-based IP technique as
a practical system solution for proximal remote sensing of SM
over bare soils.

Index Terms— Global navigation satellite systems reflectometry
(GNSS-R), interference power (IP), soil moisture (SM).

I. INTRODUCTION

SOIL moisture (SM) is a key variable routinely used to
understand and predict the behavior of Earth’s climate

and water cycle. Active and passive X-, C-, and L-band
microwave sensors are the primary remote sensing systems
used to estimate SM over large spatial extents. Synthetic
aperture radar (SAR) satellites, such as Sentinel-1 (C-band),
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have shown great potential for repetitive mapping over both
large areas and at small plot scales [1], [2], [3]. However,
SAR C-band backscattering is not sensitive to the SM under-
neath well-developed crop canopy cover and often provides
overestimation or underestimation in the case of rough and
smooth soils, respectively [1], [4]. While passive radiometry
satellites map SM with a higher revisit time than SAR systems,
they provide much lower spatial resolution (between 10 and
50 km). Importantly, the brightness temperature measured
by satellites can be significantly disturbed by interferences
from anthropogenic radio wave sources from the ground
[5], [6], [7].

Over the past decade, global navigation satellite systems
reflectometry (GNSS-R) techniques, which measure the direct
signal from global positioning system (GPS) satellites as well
as the reflected signal from the Earth’s surface, have emerged
as a “signal of opportunity” [8] for continuous and near
real-time SM estimation. Since 2007, multipath signals have
been used to estimate SM, primarily through three ground-
based GPS receiver setup configurations [9], [10], [11], [12],
[13]. The first configuration uses two antennas, one looking
toward the zenith to acquire the direct signal at the right-
hand circular polarization and the other looking toward the
ground (nadir) to acquire the reflected (multipath) signal at the
left-hand circular polarization. With this ground-based GPS
receiver configuration, SM can be estimated from the reflection
coefficient computed by dividing the averaged waveforms
from direct and reflected GNSS signals [13]. The second
configuration employs an interferometric GNSS-R ground-
based receiver with a single antenna, and it estimates SM by
analyzing the phase, amplitude, and frequency of the interfer-
ence pattern between the direct and reflected signals [9], [10],
[11]. The third ground-based receiver configuration is known
as the interference pattern technique (IPT). It employs a dual-
polarized antenna oriented horizontally to measure the power
fluctuations of the interference of direct and reflected signals
at horizontal polarization (H-pol) and vertical polarization
(V-pol).

With the IPT technique, SM is currently estimated by
determining the so-called notch position θB : the angular ele-
vation value (i.e., θ) of the smallest interference power (IP)
oscillation at V-pol [12]. SM is estimated from θB following
a quasi-linear law, where θB decreases between ∼27◦ and
∼15◦ as SM increases between 5 vol.% and 40 vol.% [12],
[14]. To determine θB , Rodriguez-Alvarez et al. [12] computed
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Fig. 1. (a) From the top of the pole to the bottom, the SMIGOL-R instrument installed at 4.75 m, the power supply system for the SMIGOL-R, the solar
panel to charge the power supply of the SMIGOL, the solar panel, and the data logger for the SM sensors. (b) Close image of the soil showing the very
smooth surface (roughness ∼0.5 cm). (c) Another view angle of the installed system showing the irrigated area.

the upper and lower envelopes of the IP waveform (i.e.,
IP variation as a function of θ) at V-pol. θB is then θ

where the difference between the upper and lower envelopes
is the smallest. Arroyo et al. [14] estimated θB by computing
the phase difference between IP at H-pol (IP-H) and IP at
V-pol (IP-V). They first retrieved the positions of maxima
and minima points in IP-H and IP-V waveforms. Then, for
each polarization, the first relative maximum or minimum
is taken as a reference, and from there, the entire phase
of the interference pattern for that polarization is inferred,
given that the phase difference between consecutive rela-
tive maxima or minima is 180◦. θB is equal to θ when a
phase difference between IP-H and IP-V equal to 90◦ is
observed. Alvarez et al. [12] and Arroyo et al. [14] found
it challenging to accurately determine θB in real GNSS-R
acquisitions, especially when the IP waveform exhibits low-
frequency oscillations or maintains constant amplitude over
a wide range of θ . This complexity is particularly evident
in operational GNSS-R applications. Inaccurate estimation of
θB leads to inaccurate estimation of SM, as θB is highly
sensitive to moisture variations. Indeed, a variation of 1◦ of
θB corresponds approximately to a variation of 2.5 vol.% in
SM [12]. Therefore, a more robust and practical method to
estimate SM from IP-H and IP-V waveforms is needed.

This work advances the study of [14] by developing a more
practical and robust method to estimate SM over bare soil
using both IP-H and IP-V waveforms. In this study, IP-H
and IP-V were recorded by a ground-based GPS receiver,
the SM interference-pattern GNSS observations at L-band
reflectometer (SMIGOL-R), installed on a patch of bare soil
in Saudi Arabia. The estimation of SM from SMIGOL-R was
validated using continuous in situ SM measurements collected
between May and December 2022.

II. SMIGOL-R INSTRUMENT AND EXPERIMENTAL
DETAILS

The ground-based GPS receiver, SMIGOL-R, has a dual-
polarized antenna and was developed by Microwave Sensors
and Electronics (https://www.mwse.tech/). The SMIGOL-R
was used to measure the instantaneous IP (IP-H and
IP-V) from the direct and reflected GPS L1-band signals
(1.57542 GHz). The SMIGOL-R was placed at a height
of 4.75 m above the ground on a patch of bare soil at a
study site in the Al-Jawf region of Saudi Arabia (38.322986◦,
29.858745◦) with the antenna oriented horizontally at an
azimuth angle of approximately 175◦ (Fig. 1).

The SMIGOL measures the variation of the IP as the
GPS satellites move, so the measured IP is a function of
the satellite θ . The reflected signal on the Earth’s surface
that is recorded by the system is that scattered from the so-
called Fresnel zone, which is the area around the specular
point from where the scattered signals are collected, with a
normalized scattering coefficient that is higher than 1/e [12].
The Fresnel zone has an elliptical shape facing the antenna,
and its dimensions depend on antenna height, soil roughness,
and satellite elevation angle. For an antenna height of 4.75 m,
a maximum extension for the Fresnel zone of approximately
40 × 1 m is feasible [12].

The SMIGOL antenna is a symmetrical probe-feed patch
antenna featuring two probes for each polarization. Each
set of probes for a specific polarization is connected to a
180◦ hybrid circuit (resulting in two 180◦ hybrids). This
arrangement is carefully designed to achieve a symmetric
antenna and ensure a radiation pattern that is uniform in all
directions. The ultimate goal is to maintain a consistent gain
for a given elevation angle and its corresponding negative
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Fig. 2. Temporal variations of SM at 10 (SM-10), 25 (SM-25), and 40 (SM-40) cm depths. Vertical lines show rainfall events. Vertical dashed lines show
irrigation activities.

elevation angle, thus preventing any introduction of aberrations
into the interference pattern. The patch antenna is fabricated
using a Rogers RO4003 substrate and boasts a beamwidth of
±40◦, along with a gain typical of a patch antenna, measuring
approximately 6 dB. To safeguard the antenna, it is enclosed
within a protective Teflon radome.

For the investigation period (May–December 2022), the
average daily air temperature ranged from 30 ◦C in May,
40 ◦C in August, and 15 ◦C in December. The maximum
air temperatures of up to 47 ◦C were recorded in August.
Rain events were rare and occurred mostly between November
and December, with a cumulative rainfall of 29 mm over the
study period. As rainfall is scarce, two irrigation experiments
were conducted on May 16 and 17 and November 10, 2022,
using five sprinklers to induce spatial variability in the SM
conditions. The irrigated area was located in front of the
antenna and extended over an elliptical area with dimensions
of 50 × 20 m, thus encompassing the size of the Fresnel zone.
In the first irrigation experiment, irrigation was triggered on
May 16, 2022 at 17:00 and on May 17, 2022 at 18:00, for
a duration of 8 h each. In the second irrigation experiment,
irrigation was triggered once on November 10, 2022 at 10:00
for a duration of 3 h. In situ SM was recorded by ThetaProbe
sensors every 15 min at 10 cm (SM-10) (two sensors with
the average moisture value considered), 25 cm (SM-25), and
40 cm (SM-40) depths (Fig. 2).

Prior to the first irrigation activity, on May 12, 2022,
SM-10, SM-25, and SM-40 values were approximately 7.5,
8.5, and 9.5 vol.%, respectively (Fig. 2). During the first
irrigation activity, the values of SM-10 and SM-25 reached
the maximum values of 25.0 vol.%, while the values of SM-
40 reached a lower value of 16.5 vol.%. This indicates that
the amount of infiltrated water is reduced beyond a depth of
>25 cm. After the first irrigation, SM-10 dried out faster than
SM-25, and the latter, in turn, dried out faster than SM-40,
due to higher evaporation rates in the upper soil layers. In the
absence of irrigation and rainfall, SM-10, SM-25, and SM-40

continued to decrease. A similar behavior of SM was observed
in the second irrigation activity performed on November 10,
2022, and after rain events occurring after November 13, 2022
(Fig. 2).

III. METHOD

In this study, the SM was estimated from the coefficient
of determination, R2

v/ h(1), between the IP-H and IP-V wave-
forms. Arroyo et al. [14] observed that for θ between 5◦ and
30◦, the IP-H and IP-V waveforms are in-phase for θ < θB ,
while they are in counter phase for θ > θB . Accordingly,
in extremely dry conditions when θB is ∼27◦ [12], almost
the whole IP-H and IP-V waveforms are oscillating in-phase,
thus yielding a high R2

v/ h value. Inversely, in extremely wet
conditions, when θB is around 5◦ [12], almost the entire
IP-H and IP-V waveforms are oscillating in counter phase,
thus yielding a low R2

v/ h value. However, the relationship
between R2

v/h and SM variations remains unknown. To address
this knowledge gap, we used simulations from the coherent
specular reflection model [15]

R2
v/ h=

 ∑
(x − mx)(y − my)√∑

(x − mx)2 ∑
(y − my)2

2

(1)

where x and y represent the amplitude of the IP-H and IP-V
waveforms at each GPS elevation angle, respectively, and mx
and my denote the respective averages of the IP-H and IP-V
waveforms.

A. Coherent Specular Reflection Model
The coherent specular reflection model [15] was imple-

mented to explore the relationship between R2
v/ h and SM,

as this relation has not previously been examined in detail.
Here, only a brief description of the model is presented as
the model equations, and derivation and further details are
explained in [12]. The simulated IP waveform at a given polar-
ization is a coherent addition of the signal received from the

Authorized licensed use limited to: TU Delft Library. Downloaded on January 11,2024 at 13:31:29 UTC from IEEE Xplore.  Restrictions apply. 



5800210 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

GPS satellite (direct signal) and the reflected signal (multipath)
altered by the soil parameters, both received simultaneously by
the SMIGOL-R. In the coherent specular reflection model, the
Fresnel reflection coefficients are used to simulate the reflected
signal, as we assume that the reflection surface of the study
area was smooth enough to accomplish the Rayleigh criterion
of smooth soil (i.e., the soil surface is smooth with respect to
the GPS wavelength) [16]. The Fresnel reflection coefficients
for H-pol and V-pol for a single interface between two soil
layers (i and i + 1) are computed as follows:

rhi,i+1 =

q
εri − εri sin2 θinc −

q
εri+1 − εri sin2 θincq

εri − εri sin2 θinc +

q
εri+1 − εri sin2 θinc

(2)

rvi,i+1 =

εri+1

q
εri − εri sin2 θinc − εri

q
εri+1 − εri sin2 θinc

εri+1

q
εri − εri sin2 θinc + εri

q
εri+1 − εri sin2 θinc

(3)

where rhi,i+1 and rvi,i+1 are the reflection coefficients from the
interface between layers (i and i + 1) for H-Pol and V-Pol,
respectively. εri and εri+1 are the dielectric constants of layers
i and i + 1, respectively. θinc is the satellite incidence angle
(90–θ). The surface reflection coefficient at q polarization
can be computed for n-layers as the sum of ri,i+1+r i+1,i+2+

ri+2,i+3 + · · · + rn−1,n+1. For the sake of simplicity, a three-
layer reflection model for bare soil (air and two soil layers)
was used. Equation (3) shows the implementation of the three-
layer model used

Rq,total = e−( 4πσ
λ

)
2 ri,i+1 + ri+1,i+2.eS.e j.2ϕ

1 + ri+1,i+2.ri+1,i+2.eS.e j.2ϕ
(4)

where σ is the surface soil roughness, λ is the wavelength, S
is the surface’s roughness correction factor, and ϕ is the phase
term associated with the interaction between layers. Finally,
the total received power by the antenna from both the reflected
and direct signals is simulated as follows:

P = F(θ)|1 + Rq,total.e j∅
| (5)

where F(θ) is the antenna radiation pattern and ∅ is the phase
difference due to different electrical paths between the direct
and reflected signals. The phase difference ∅ is calculated from
the antenna height (ha), incidence angle (θinc), and wavelength
(λ) with the following equation:

∅ =
4π

λ
ha cos θinc. (6)

B. SM Estimation From Correlation Between IP-H and IP-V

The coherent specular reflection model [15] was used to
explore the relationship between R2

v/h and SM for differ-
ent surface soil roughness values (σ = 0.5, σ = 1, and
σ = 2 cm). With the coherent specular reflection model,
IP-H and IP-V waveforms were simulated for moisture values
between 5 vol.% and 30 vol.% at intervals of 5 vol.% and
for different surface soil roughness values (σ = 0.5, σ = 1,
and σ = 2 cm). The simulation was done by considering
an antenna height equal to the installed SMIGOL-R height

(4.75 m) (6). In addition, a soil composition of 78% sand,
10% silt, and 12% clay was used in the simulations to
compute the dielectric constant (ε) in (2) and (3). ε was
computed from soil composition and SM using equations
developed in [17]. Then, for each roughness condition, the
relationship between R2

v/h (computed on simulated IP-H and
IP-V waveforms) and SM (between 5 vol.% and 30 vol.%
with a step of 5%) was established. To estimate the SM, the
relationship obtained between R2

v/h and SM via simulations
with the coherent specular reflection model was later applied to
R2

v/h calculated based on the actual IP-H and IP-V waveforms
recorded by SMIGOL-R. Finally, the SMIGOL-R derived SM
was compared to in situ SM-10, SM-25, and SM-40 using root-
mean-square error (RMSE) and bias (estimated-reference) for
evaluation.

IV. RESULTS AND DISCUSSION

A. Relationship Between R2
v/h and SM Using Simulated IP-V

and IP-H

The coherent specular reflection model [15] was used to
explore the relationship between R2

v/h and SM (between 5 and
30 vol.%) for different levels of roughness (σ = 0.5, σ = 1,
and σ = 2 cm). The simulation presented in Fig. 3 shows that
θB depends on SM variation (θB decreases as SM increases)
but does not depend on σ variation [12]. For instance, for all
σ values (0.5, 1, and 2 cm), θB was equal to 24.88◦, 18.71◦,
and 13.86◦ for SM of 10 vol.%, 20 vol.%, and 30 vol.%,
respectively (Fig. 3). Furthermore, the simulation showed that
the IP-H and IP-V waveforms are in-phase and in counter
phase when θ < θB and θ > θB , respectively. As an example,
for SM = 30 vol.% and σ = 1 cm [Fig. 3(g)], IP-H and IP-V
waveforms oscillate in-phase when θ < θB (θB = 13.86◦).
However, for θ > θB (θB = 13.86◦), IP-H and IP-V waveforms
begin to oscillate in counter phase, and the difference in phase
level increases as θ increases. These results are in accordance
with those obtained in the study in [14].

Importantly, the simulation results confirm the potential use
of R2

v/h to estimate SM. Indeed, θB changes the position with
SM variation, which changes the portion of the IP-H and IP-V
waveforms that are in-phase and in counter phase. This also
results in R2

v/ h changing with SM, with low R2
v/ h for high

values and high R2
v/ h for low values of SM. Considering an

SM = 10 vol.% (θB = 24.88◦), the portion where IP-H and
IP-V waveforms oscillate in-phase is larger than when SM =

30 vol.% (θB = 13.86◦), meaning that R2
v/ h at 10 vol.% SM

will be higher than when at 30 vol.% SM (Fig. 3). Fig. 4 shows
the relationship between R2

v/ h and moisture for different levels
of σ . R2

v/ h is highly correlated with SM and the obtained
relationship does not depend on σ . The absence of any effects
of σ on the relation between R2

v/ h and moisture was expected
because θB was found not to be dependent on σ (Fig. 3) [12].

B. Sensitivity of R2
v/h to SM Variation

We evaluated the sensitivity of R2
v/h values computed on

actual IP-H and IP-V waveforms measured by the SMIGOL-R
instrument in response to changes in SM. To illustrate the
sensitivity of R2

v/h, four representative IP waveforms acquired

Authorized licensed use limited to: TU Delft Library. Downloaded on January 11,2024 at 13:31:29 UTC from IEEE Xplore.  Restrictions apply. 



EL HAJJ et al.: GROUND-BASED SOIL MOISTURE RETRIEVAL 5800210

Fig. 3. Simulation of IP in decibels (dB) for satellite elevation angles between 5◦ and 30◦ (a)–(i). The simulation was performed for SMs of 10 vol.%,
20 vol.%, and 30 vol.% and for three levels of soil roughness (σ). In the simulation, the antenna height was 4.75 m and soil composition was 78% sand,
10% silt, and 12% clay.

Fig. 4. Coefficient of determination between IP-H and IP-V (R2
v/h) versus

SM for different levels of soil roughness (σ = 0.5, 1, and 2 cm).

before, during, and after irrigation were analyzed. Before irri-
gation, on May 12, 2022 (SM of approximately 7 vol.%), IP-H
and IP-V waveforms oscillate in phase, yielding high R2

v/h =

0.80 [Fig. 5(a)]. During irrigation [Fig. 5(b)], on May 16,
2022 (SM of approximately 24 vol.%), the addition of water
into the soil column modified the IP-V waveform mainly by
reducing its amplitude for θ (between 9◦ and 14◦). This was
expected, as θB moves toward lower values of θ when SM
increases [12] [Fig. 5(b)]. However, precise identification of

θB was not straightforward because the amplitude and the
frequency of the oscillations were not high enough for θ

values between 9◦ and 14◦ [14] [Fig. 5(b)]. Most importantly,
for θ > 14◦, IP-H and IP-V waveforms are almost totally
in counter phase (the maxima position of IP-V matches the
minima position of IP-H and vice versa), thus reducing R2

v/h
to 0.09 [Fig. 5(b)]. On May 19, 2022, two days after irrigation
(SM of approximately 18 vol.%), IP-H and IP-V waveforms
are partially in counter phase (for θ > 14◦), which slightly
increased R2

v/ h to 0.19 compared to during irrigation (R2
v/ h =

0.09) [Fig. 5(c)]. After irrigation, on June 12, 2022 (SM-10
of approximately 10 vol.%), R2

v/h, IP-H and IP-V waveforms
were mainly in-phase with an increased R2

v/h value of 0.75
[Fig. 5(d)]. Therefore, the relation obtained between R2

v/h
and SM when using simulations from the coherent specular
reflection model remains consistent with actual observations
from the SMIGOL-R instrument, demonstrating the feasibility
of using R2

v/h to track SM variations.
Analysis of a large number of IP waveforms acquired

by different satellites when soil conditions were unchanged,
revealed an effect of the satellite’s azimuth angle on the IP-H
and IP-V waveforms and thus on the calculated R2

v/h. For
instance, Fig. 6 shows the IP recorded by GPS-8 and GPS-21
on May 10, 2022 with a time difference of approximately 2 h.
The soil around the SMIGOL-R at this time was completely
homogeneous, as no irrigation or other activity had occurred
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Fig. 5. IP profile for H-pol and V-pol acquired before (May 12, 2022 “a”),
during (May 16, 2022 “b”), and after (May 19, 2022 “c” and June 13, 2022
“d”) irrigation. Titles show acquisition date, time (start and end), and GPS
number.

for a long time. Although having similar soil conditions at
the two GPS acquisition times, R2

v/h and, consequently, the
estimated SM (Fig. 4) of GPS-8 (R2

v/h = 0.72 gives an
estimated SM of 7.2 vol.%) and GPS-21 (R2

v/h = 0.56 gives
an estimated SM of 11.9 vol.%) were different (difference in
R2

v/h and SM is 0.16 and 4.7 vol.%, respectively) (Fig. 6).
A potential reason is the azimuth angle position of the
GPSs during IP recording (the azimuth angle of GPS-8 and
GPS-21 was ∼201◦ and ∼173◦, respectively) [18]. To under-
stand the effects of satellite azimuth angle on R2

v/h, it was
calculated for each GPS acquisition between May 10 and
15, 2022 (i.e., stable dry soil conditions) and expressed as

Fig. 6. IP profile for H-pol and V-pol acquired on May 10, 2022. (a) GPS-8.
(b) GPS-21.

Fig. 7. Correlation between IP at V-pol and H-pol (R2
v/ h) as a function of

the satellite azimuth position (Az).

a function of the GPS azimuth angle (average of azimuth
angle values during recording) (Fig. 7). Fig. 7 shows that
for similar soil conditions, R2

v/h varies between 0.6 and
0.8, and this variation depends on satellite azimuth angle
(R2

= 0.76), see Fig. 7. This relation illustrates the effect
of azimuth angle position on the GPS signals recorded by
SMIGOL-R.

C. SM Estimation From SMIGOL-R

In this section, the temporal variations of in situ SM and
R2

v/h between May 15, 2022 and December 31, 2022 were
analyzed. Given the influence of azimuth angle position on
R2

v/h (Section IV), the obtained R2
v/h was presented in groups

with similar azimuth angles (170◦ < Az170−185 < 185◦, 185◦

< Az185−200 < 200◦, 200◦ < Az200−230 < 230◦), see Fig. 8.
Fig. 8(a) shows that variations in satellite azimuth angle
position cause a shift in R2

v/h values, with this shift observed
throughout the period of the experiment. Regardless of the
group of azimuth angle, the R2

v/h values inversely covary
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Fig. 8. (a) Temporal variation of the correlation between IP-V and IP-H (R2
v/h). (b) Selected 21-day period around the time of the first irrigation activity.

(c) Selected 34-day period around the time of the second irrigation activity. Vertical lines show rain events. Dashed vertical lines show irrigation events.

with SM. R2
v/h decreased from ∼0.7 on May 15, 2022 (SM-10

of approximately 7 vol.%) to ∼0.1 immediately after the
first irrigation on May 16, 2022 [Fig. 8(a) and (b)]. During
the first irrigation activities (between May 16 and 17), when

SM-10 stabilized at around 25 vol.%, R2
v/h remained low

(∼0.1). On May 18, 2022 (just after irrigation), SM and R2
v/h

started decreasing and increasing, respectively. In contrast
to the deeper root zone SMs (SM-25 and SM-40) between
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May 18–20, SM-10 decreased quickly from ∼25 vol.% to
∼16 vol.%. R2

v/h was also found to covary better with
SM-10 variations than root zone SM, indicating that R2

v/h
is mostly sensitive to surface SM rather than the root zone
SM [Fig. 8(a) and (b)] [11]. From June 20 to November
10 (before the second irrigation), R2

v/h was stable (around
0.60, 0.70, and 0.78 for Az170−185, Az185−200, and Az200−230,
respectively) as SM-10 slightly decreased between 9.0 vol.%
and 6 vol.%, indicating that R2

v/h is not sensitive to slight
variation in surface SM in dry conditions [19]. As for the first
irrigation activity, R2

v/h inversely covary with SM variations
because of the irrigation applied on November 11. Similarly,
the increase in moisture due to rain events observed between
November 20 and December 25 caused a decrease in R2

v/h
values [Fig. 8(a) and (c)]. Fig. 8(b) and (c) shows that as
irrigation starts, R2

v/h decreases, while the SM sensors do not
display an increase, as the IP waveform detects the presence
of water on the top surface before water reaches the sensors
installed at 10, 25, and 40 cm depths.

On August 5, a sudden decrease of R2
v/h was observed

simultaneously with a moderate rainfall of 4 mm (daily air
temperature 44◦) with no response from the SM-10 sensor.
The same phenomena were observed on October 25 and
November 15, where negligible rain events occurred (daily
cumulative <2 mm) without any change in the SM-10 sensor.
The decrease of R2

v/h observed from these low precipitation
events (daily cumulative <4 mm) was moderate (0.35), yet
yielded a seemingly unrealistic increase in estimated SM of
10 vol.% when applying the equation in Fig. 4. Therefore,
these instantaneous decreases and increases observed in R2

v/h
on August 5, October 25, and November 15 can likely be
attributed to two factors. First, the presence of rain can affect
both transmitted and multipath GNSS signals [20]. Second,
there is a difference in sensing depth between the ThetaProbe
SM-10 and GNSS signals (0–5 cm), with the assumption
that SM at shallow depths (0–5 cm) may evaporate before
reaching a depth of 10 cm due to the hot, dry conditions in
Saudi Arabia.

The Savitzky–Golay temporal filter (a window length of
7) was applied to combine R2

v/h of each azimuth angle
group. The Savitzky–Golay filter can be applied because
the temporal variations of R2

v/h were similar regardless of
the azimuth angle value, and the shift in R2

v/h was almost
constant and small (mostly <0.20). The results showed that
the use of the Savitzky–Golay filter did not suppress the
variations of R2

v/h associated with the increase and decrease
in SM (Fig. 8). The SM was estimated from R2

v/h obtained
with the Savitzky–Golay temporal filter using the equation in
Fig. 4 and the results were compared to SM-10. The results
showed that R2

v/h provides a slightly biased estimate of SM-10
(−0.13 vol.%) with high accuracy (RMSE ∼1.5 vol.% and
R2

= 0.80) (Fig. 9). Fig. 9 shows a nonbiased estimation of
SM-10 < 8 vol.%, a slight underestimation of −1.12 vol.%
(RMSE = 1.76 vol.%) for SM-10 between 8 vol.% and
18 vol.%, and a slight overestimation of 1.27 vol.% for
SM-10 vol.% > 18 vol.% (RMSE = 1.98 vol.%). The non-
biased estimation is attributed to the dry SM conditions when

Fig. 9. Estimated SM versus in situ SM at 10 cm depth (SM-10).
Samples represented with an “x” symbol belong to the period when irrigation
commenced during which the IP signals detected the presence of water before
it reached the sensor installed at a 10 cm depth and during light rain events
(i.e., rainfall <4 mm) on August 5, October 25, and November 15.

the penetration depth of the L-band signal can reach 10 cm
[11], [19]. The observed underestimation and overestimation
were expected, given that the L-band GNSS-R signal is
sensitive to the moisture in the top 5 cm [11] for wet soil
conditions. Indeed, when SM-10 is between 10 vol.% and
18 vol.% (period of two days after the end of irrigation),
SM-10 dries slower than SM in the top 5 cm, resulting in
a lower SM estimate from the GNSS-R signals, which are
more sensitive to moisture at 5 cm depth. Conversely, the
observed overestimation, mainly for the highest SM values of
∼25 vol.% (during irrigation), can be attributed to the fact that
the top 5 cm of soil received water before infiltration reached a
10 cm depth, resulting in an overestimation of moisture levels
at SM-10 during irrigation.

V. SUMMARY AND CONCLUSION

The experiment was carried out over a bare and smooth
surface to estimate the SM from the correlation between
IP-V and IP-H waveforms. Theoretically, the IPT technique,
which is based on the calculation of the Fresnel coefficient,
assumes that the ground surface is smooth with respect to the
GPS wavelength (i.e., it meets the Rayleigh criterion for the
L-band). Winkel [21] reported a range of σ (2–5 cm) below
which a surface is considered smooth for an L-band wave
transmitted with θ between 5◦ and 30◦. Future research will
need to focus on testing the method developed herein under
rough soil conditions. Since roughness affects H-pol and V-pol
equally [14], it is anticipated that R2

v/h can estimate the SM
for rough soil up to a certain threshold of σ .

A stable R2
v/h was observed during the dry period between

the two irrigation activities, reflecting the robustness of the
use of R2

v/h to estimate SM. However, R2
v/h was not sensitive
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to the small decrease of moisture under dry conditions (in situ
SM <7 vol.%), probably due to the high penetration depth
of GNSS-transmitted signals into dry soil (penetration of
L-band increases with decreasing SM) [19], [22]. Indeed, in a
study conducted in areas of severe drought in Senegal (95%
sand), Ha et al. [19] reported that when the transmitted signal
penetrates deep into the soil, the reflected signal does not
contain information on SM because the deep propagation of
the transmitted wave within the soil affects its amplitude and
phase (parameters used to estimate the SM).

The use of R2
v/h to estimate SM shows satisfactory results

for continuous monitoring at 10 cm depths. However, root zone
SM is also a vital variable needed in hydrological applications.
Leveraging previous studies exploring SM profile extrapo-
lation, GNSS-R-derived SM could be used to estimate root
zone moisture via an exponential filter [23] or by assimilating
GNSS-R-derived surface SM into a hydrological model [24].

A method that leverages the high revisit time of GPS signals
was developed to estimate SM over a bare and very smooth
surface. The study progresses the work of [12] and [14] by
providing a practical method to estimate SM at 10 cm depth
with a high accuracy (RMSE ∼1.5 vol.%) using both IP-H
and IP-V. Indeed, the developed method herein overcomes the
uncertainty associated with the estimation of the notch position
(θB), either from the calculation of the IP waveform envelope
[12] or from the calculation of the phase difference between
IP-V and IP-H waveforms [14]. Future work should focus on
correcting azimuth effects and testing the method presented
herein under rough soil conditions and in areas with vegetation
cover. In addition, future work will consider the installation
of SM sensors at a 2.5 cm depth to measure the SM in the
0–5-cm soil layer. Installing a network of SMIGOL-R
receivers over a vast area will contribute to the calibration of
satellite space missions dedicated to monitoring SM globally.
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