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Layman's Abstract

Traditionally, populations have only been measured by direct counting, supplemented by mathematical
models such as the Lotka–Volterra equations. However, these models of population dynamics gener-
ally do not consider random events in nature, such as unexpected births, sudden disease outbreaks
or environmental changes, which can impact population size. This thesis improves upon this model by
incorporating randomness (noise) through the use of Wiener processes, resulting in a more realistic
outcome. Furthermore, it is proven for two species that the resulting model has a unique, global solu-
tion.
The Extended Kalman Filter (EKF) is used to handle incomplete and noisy data. It is proven here that
the EKF has bounded expected error. Finally, it is demonstrated that population estimates can be
determined for a different, related species even if data is only available for one species.

ii



Abstract

Classically, population dynamics are described by the deterministic Lotka-Volterra equations. These
equations do not accurately reflect reality, where stochastic influences have a big impact on popula-
tions of species, due to unpredictable environmental and biological factors. Using the Wiener process
to include these influences allows for more realistic results, but means that solutions can deviate to un-
realistic population numbers. This thesis provides a self-contained proof of the existence, uniqueness
and boundedness of solutions of such systems.
In many cases, population data for all species is unavailable. To make accurate estimates for the un-
known or hidden data, the extended Kalman filter can be applied. Which, through a combination of the
data and the mathematical model, creates an estimate for the population. An exponential bound for
the error of this estimation is derived in expectation
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Summary

In order to model a population, data for that population is generally required. Models such as the Lotka-
Volterra equations can be fitted to that data in order to obtain a specific set of equations that closely
align to reality. Actual population estimates cannot always be done on basis of reliable data; sometimes
only very noisy data is available, or even no data at all. In that case, it might be, that data from other
species in close relationship with the former, is available. From this data, an estimate could be made
for the population of the former.

In this thesis, a fundamental framework is introduced to enable the construction of a mathematical
model which accurately reflects interactions between populations in nature. After the establishment of
this model and proving the well-posedness of that model, a possible algorithm to deduce the unknown,
or ’hidden’ population, is proposed, and a bound for the error of this method is demonstrated. This is
then applied to data in order to prove the usefulness of this combination of model and algorithm.

The commonly used Lotka-Volterra system of equations, describing the populations of interacting species,
was expanded with a noise term, thus allowing the inclusion of stochastic effects, such as random births
and deaths, but also diseases, floods and other random biological or environmental changes. Global
existence and uniqueness of these equations were proven, thus determining that the stochastic differen-
tial equations are, mathematically, valid. This was done by proving the boundedness and nonnegativity
of solutions, using equilibria, thereby also satisfying a biological constraint.

After establishing the necessary mathematical framework, the extended Kalman filter is formulated.
This filter is used to determine the hidden state and filter out some of the noise from the data. As this
filter only provides an estimate, an error most likely exists. An exponential bound in expectation for this
specific set of equations was proven, generalising the proof from [Reif et al., 2000] in certain respects.

The reliability of the model, in combination with the extended Kalman filter is further substantiated by
application to real and simulated data, thus reinforcing the usefulness of the model.
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1
Introduction

Mathematical models are indispensable for understanding the numerous complex factors that influence
changes in a species’ population over time. Among the various variables influencing these changes,
some common ones are birth and death rates [Kendall, 1948], competition, predation [Wangersky,
1978], environmental factors, such as climate, habitat loss [Johnston et al., 2019] or even seasonal
variations [Fretwell, 1972], and genetic mutation, including evolutionary adaption [Turcotte et al., 2011].
Interspecific interactions consist mainly of competition [Tilman, 1982], predation and symbiosis [Bron-
stein, 2015], which includes both mutualistic and parasitic relationships.

Population models have a very long history. In 1202 an exercise in an arithmetic book written by
Leonardo of Pisa (c. 1170–1250) involved building a mathematical model for a hypothetical scenario
involving the growth of a rabbit population under ideal conditions, where each pair of rabbits produces
a new pair each month. He provided an early and simple example of exponential population growth,
known today as the Fibonacci sequence [University of Utah, 2009].

One of the earliest and best-known population models was introduced by Alfred Lotka in 1910. Lotka
published a set of first-order nonlinear differential equations[Lotka, 1910] that later became known as
the Lotka-Volterra equations or, more commonly, the predator-prey model. This describes a model in
which the number of prey grows exponentially in the absence of predators, and the number of preda-
tors declines exponentially in the absence of prey [Murray, 2002]. A form of these equations is given
in Equation 1.1, here n different species are modelled, and the population changes for each species i
depend on interactions with all other species, including itself, at a rate of ai,j where j denotes the re-
spective interacting species. The interaction constant ai,j describes the type of relationship, symbiotic,
competition or predation, respectively; the death rate for ai,i, and ri describes the reproduction rate.
The Lotka-Volterra equations for a system of n dimensions can be given by:

dX1

dt
= X1

(
r1 −

n∑
i=1

a1,iXi

)
,

dX2

dt
= X2

(
r2 −

n∑
i=1

a2,iXi

)
,

...

dXn

dt
= Xn

(
rn −

n∑
i=1

an,iXi

)
.

(1.1)

Where Xi(t) describes the population of species i at time t.

1



2

Since the publication of Lotka’s original model, modifications have been made and new models have
been developed. Although the basic idea has remained the same, integral equations are now often
used. The Lotka–Volterra equations remain popular, partly because of their simplicity. However, a
significant limitation to this is its deterministic character. Population changes are not solely dependent
on the amount of a species, but are inevitably linked to uncertainty. Some of the unpredictable fac-
tors are environmental fluctuations[Louthan & Morris, 2021] and random genetic variation[Matic, 2019].
Incorporating one or more stochastic elements into this model provides a more realistic portrayal of
population dynamics. Randomness in birth, death, and interaction rates, has a vast impact on ecolog-
ical systems [Schnute, 1991]. A common approach is by adding noise, taken as standard Brownian
motion, with the intensity dependent upon the total population of all species. The resulting stochastic
integral equations can be solved using Wiener or Itô integration.

In practice, it is often challenging to model populations accurately, due to the frequent lack of complete
real-time data for all species involved. Often, information regarding the population size of one or more of
the species is unavailable, or unreliable. This lack of data can be remedied using filtering techniques,
which mathematically estimate the unknown or ”hidden” state of a system from noisy or incomplete
observations.

Kalman filtering (KF) is a commonly used method applied to stochastic differential systems, subject
to Gaussian noise or even with incomplete data [Akram et al., 2019]. Stochastic filtering, of which
Kalman filtering is a part, can be defined as a way to estimate the state of a dynamic system from noisy
observations [Kallsen, 2018]. The KF algorithm is recursive and thus continuously refines the estima-
tion, facilitated by constant integration of new (partial) measurements and the subsequent updating of
any preceding estimates[Kalman, 1960]. The extended Kalman Filter (EKF) is a widely used exten-
sion of the original algorithm. It allows nonlinear systems to be approximated through linearisation and
is applied in a multitude of situations. Particularly it is widely used in localisation [Ullah et al., 2021],
[Al Malkia et al., 2020]. But also in the prediction of pest outbreaks, for instance in the case of flies
[Bono Rosselló et al., 2023]. However the applications for population estimates of a species remain
comparatively limited. Some attempts have been made to predict the number of fish [Gudmundsson,
1995], [Ennola et al., 1998] or the weight of these fish [Aljehani et al., 2023]. In contrast, the EKF has
been widely applied to model the prevalence and spread of viruses, for example, COVID-19 [Piccirillo,
2021], [Zhu et al., 2025]. Whilst Bayesian approaches have been used to estimate the parameters of
the Lotka-Volterra system [Rahman et al., 2012], and other observers have been used, like state ratio
dynamics, [Badri, 2022], the (extended) Kalman Filter remains a commonly used estimator. Recently
the extended Kalman Filter has been used to approximate the parameters of fish stocks [Benz et al.,
2021]. Although this is done using Lyapunov methods, which will not be used in this paper.

The objective of this report is to clearly introduce a system of stochastic differential equations (SDEs)
that can accurately describe different interacting populations, and prove that these SDEs are well-
posed. The aim is to apply the extended Kalman filter to enable the use of partial and noisy observa-
tions while still obtaining an accurate population estimate. An asymptotic exponential error bound for
estimations retrieved from this filter should be derived.

In order to do this, first some fundamental knowledge will be introduced in Chapter 2, then the Lotka-
Volterra model will be modified to include the stochastic elements, thus resulting in an SDE. This, as
well as proving that this SDE has a unique, bounded solution will be done in Chapter 3. In the next
Chapter, 4, the error of applying the extended Kalman filter will be determined in expectation. Lastly,
the extended Kalman filter will be applied to example data, with the earlier determined model. Then,
two examples for finding the hidden state will be given with simulated data, in Chapter 5. The results of
this report are discussed in chapter 6, and ultimately a conclusion is drawn in chapter 7. Furthermore,
data and the used code will be provided in the appendices A-E.



2
Preliminary Concepts

2.1. Biological Basis
In biology, interactions between species are generally categorized as either predatory or symbiotic.
Symbiotic relations are then often subdivided into the following six divisions: Mutualism[Britannica,
2025b], Commensalism[Britannica, 2025a], Parasitism[Britannica, 2025c], Neutralism[Lidicker, 1979],
Amensalism[Britannica, 2010] and Competition[Britannica, 2019]. This can be seen in Table 2.1

Species A ↓ \Species B → Benefit Neutral Harm

Benefit Mutualism Commensalism Parasitism

Neutral Commensalism Neutralism Amensalism

Harm Parasitism Amensalism Competition

Table 2.1: Types of symbiotic relations between species A and B

Although it may seem from this table that parasitism and predation are the same, there is an important
difference between them; the method of prey consumption. Parasites feed on living tissue, whereas
predators kill their prey before or during the feeding process.

2.2. Remarks on Lotka Volterra model
As is done in the Introduction the general predator prey model used in this report is based on the Lotka-
Volterra model, and given by Equation 2.1. Here ai,j describes the influence the population of j has
on species i, the reproductive rate of species i is given by ri > 0. Then, for a system of n different
species, there are n equations describing the change in population for each individual species.
As the reproduction rate ri only depends on the population of the respective species, it is scaled only
by Xi; the interaction described by ai,j is multiplied by both Xi and Xj , expressing its dependence
on the population of both species. This is because there are fewer interactions when there are fewer
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individuals of one or both species.

dX1

dt
= X1

(
r1 −

n∑
i=1

a1,iXi

)
,

dX2

dt
= X2

(
r2 −

n∑
i=1

a2,iXi

)
,

...

dXn

dt
= Xn

(
rn −

n∑
i=1

an,iXi

)
.

(2.1)

A symbiotic relationship between species i and species j exists if ai,j < 0 and aj,i < 0, competition
between the species i, j is described by ai,j > 0 and aj,i > 0, and lastly a predator-prey model is
described using ai,j < 0 and aj,i > 0 where species j would be the prey. If ai,j = 0 then the population
of species j has no effect on the growth or decline of the population of i.

2.2.1. Example: predation
This report will explore a predator-prey interaction between two species as an example. In such a rela-
tionship, one species, the predator, feeds on the other (the prey). This means, that the prey population
supports the growth of the predator population, it exerts a positive influence. However, the latter has a
negative influence on the prey population by reducing its numbers through predation.
For this example the interaction between moose and wolves in the Isle Royale National Park is chosen.
The data used is given in Appendix A, plotting this data yields Figure 2.1

Figure 2.1: The population wolves (left vertical axis) and of moose (right vertical axis) in the Isle Royale National Park between
1980 and 2019

Here, a classic predator-prey dynamic is exemplified by an interaction between wolves and moose. At
the outset of the graph, a lack of predators (wolves) allows the prey population (moose) to multiply
quickly. The rapid resulting abundance of prey leads to an increase in the number of predators. As
the wolf population grows, the predation of other species increases, resulting in a drastic reduction in
the number of moose. In response to the decreased number of prey, the wolf population also declines,
reducing the pressure on the prey and enabling the moose population to recover.
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When fitting the Lotka-Volterra equations to this data, which is about only two populations, the equations
simplify to just two:

dX1

dt
= X1r1 − a1,2X1X2 (2.2)

dX2

dt
= X2r2 − a2,1X1X2 (2.3)

(2.4)

Then by inputting r1 = 0.466, a1,2 = 0.00819, r2 = 0.0001, a2,1 = 0.107 the LV equations achieve a result
(Figure 2.2) that is close to the real data. Note that the estimation for the wolf population is always a
little higher than in real life, this is mainly due to the severe difference in population sizes between the
wolves and the moose.

Figure 2.2: The population wolves (left vertical axis) and of moose (right vertical axis) in the Isle Royale National Park between
1980 and 2019. With the LV-equations for r1 = 0.466, a1,2 = 0.00819, r2 = 0.0001, a2,1 = 0.107.

2.3. Stochastic Noise
A stochastic process is a collection of random variables, often dependent on the time, describing the
state of a process at for example a time t. This allows stochastic processes to describe systems ex-
periencing random changes. Each random variable takes a value from a range of possibilities, with
a certain probability [Ross, 1996][Gallager, 2013]. Or, if all possible outcomes are seen as a family
of paths, then the stochastic process describes the probability of taking one of these paths[Mörters &
Peres, 2010]

The noise added to the equations on population interaction (Equation 2.1) will be given by aWiener pro-
cess, which is sometimes called Brownianmotion. Both names will be used interchangeably throughout
this thesis.

Definition 2.3.1. Wiener process [Szabados, 1994]:
A stochastic processWt is called a Wiener process if the following holds:

1. W (0) = 0 almost surely.
2. ∀s, t with: 0 ≤ s ≤ t it holds thatW (t)−W (s) ∼ N (0, t− s).
3. ∀s, t, u, v, such that 0 < s < t ≤ u < v, it holds thatW (s)−W (t) is independent ofW (u)−W (v).
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4. t 7→W (t) is continuous, almost surely.

The given probability density function of the Wiener process for t > 0 as presented in Equation 2.5 is:

fWt
(x) =

1√
2πt

e−x
2/(2t). (2.5)

The probability density function is the same as that of a normal distribution with mean 0 and standard
deviation t. From this distribution function it immediately follows that E (Wt) = 0, and Var (Wt) = t.
Furthermore the increment Wt −Ws is proportional to N (0, t− s), meaning it is normally distributed
with mean zero and a variance of t− s.

Let the number of samples be 200, then a possible realisation of the Wiener process is given in Figure
2.3:

Figure 2.3: Brownian motion for 200 samples, to the left the vector with the samples, to the right the histogram of the values. It
can be observed, that this histogram approximates that of a normal distribution, that the mean is zero.

A filtration is an increasing sequence of sigma algebras on the probability space. Increasing means
the sequence is nested, thus a later filtration is a superset of an earlier one, it includes all earlier sets.
It is used to depict knowing more about the outcome of a stochastic process as time progresses and
more information is known. Informally, it contains all information known at time t, more formally it can
be defined as:

Definition 2.3.2. Filtration[Oksendal, 2000]:
A family of σ-algebras, F = {Ft}t≥0 is a filtration if, ∀ 0 ≤ t ≤ s:

Ft ⊆ Fs.

The Wiener process which will be used in this paper is a Ft-Wiener process, meaning the wiener pro-
cess is consistent with the available information at time t, as defined by the filtration Ft.

Definition 2.3.3. Adapted Process[Oksendal, 2000]:
Let {Ft}t≥0 denote a filtration with probability space Ω. A stochastic process g(t, ω) : [0,∞)×Ω → Rn
is said to be adapted to the filtration Ft if, ∀t ≥ 0, the mapping ω 7→ g(t, ω) is measurable with respect
to Ft.
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A stochastic process is adapted when the value of the process at any given time depends only on the
information available up to the time it is happening and not on any future information. It is often used in
stochastic modeling, for example, in finance and control theory, where decisions are based on current
and past information.

A filtration denotes the information known until some time t. In certain contexts, only the minimal fil-
tration, with respect to which the stochastic process is measurable, is required. This minimal filtration
is equivalent to the filtration generated by that process. For Brownian motion, this specific filtration is
termed the Brownian filtration. Formally, this can be defined as:

Definition 2.3.4. Brownian Filtration[Kozdron, 2009]:
On a probability space (Ω,F ,P) the Brownian Filtration with respect to the Wiener processWt is given
by

Ft = σ(Ws, 0 ≤ s ≤ t). (2.6)

From now on, W denotes a Wiener process with respect to the filtration Ft, σ(Ws, 0 ≤ s ≤ t) is the
smallest σ-algebra where allWs, for 0 ≤ s ≤ t are measurable.

2.3.1. Population dependent noise
Noise refers to stochastic events, which influence the population of one or more species. The random
increase, or more often, decrease in population can happen due to a multitude of contrasting causes.
Examples include accidental deaths, e.g. collisions with cars; diseases, e.g. viruses; environmental
changes, especially climate change, which is an increasingly important cause of damage; and direct
human activities, e.g. hunting, which has a major impact on noise, depending on the species.
A fundamental aspect of this noise is its dependence on the size of the affected species. However,
it might also depend on the size of other species. For instance, one species might be the carrier of
a disease deadly to another species. In such a case the probability of transmitting this disease to a
susceptible species increases as the population size of the carrier species grows.
In order to prove boundedness this paper will assume the influence of the stochastic noise becomes
zero, somewhere before the lower and upper bounds. Meaning, that if D is the maximum population
capacity of some species i, that the support of the noise for some Xi is compact and a strict subset of
[0, D]. If Si,j is the support of σi,j then

Si,j ⊂ (0, D)n, ∀i, j ∈ (1, n). (2.7)

This support condition will be formulated more specifically in later chapters, when this is necessary.
As the noise should not decrease too sharply, i.e. discontinuously, it is furthermore assumed that the
function σi,j is Lipschitz continuous for all i, j = 1, . . . , n.

Both Wiener and Itô integration are methods of integration with respect to a stochastic process. Wiener
integration can be considered a special case of Itô integration in that the latter permits integration over
a wider range of functions and integrands. The Itô integral is a more general concept, allowing the
integration of adapted stochastic processes with respect to semimartingales, e.g. Brownian motion.
This paper will only define Itô integration.

Definition 2.3.5. Itô Integration[Kozdron, 2009]:
LetL2 denote the space where ∀t ≥ 0 : g(t) is adapted toFt , with Ft being the Brownian Filtration, and
where ∀ T > 0 :

∫ T
0
E
[
g2(t)

]
dt <∞. Then the following limit is well posed as a limit in L2(Ω× [0, T ]):

It(g)(ω) =

∫ t

0

g(s, ω)dBs(ω) =

n∑
i=1

Xi−1(ω)
(
Bti(ω)−Bti−1

(ω)
)

(2.8)

This integral is a random process in a way that it is a random variable in L2(Ω), which also guarantees
its existence and uniqueness as L2(Ω× [0, T ]) is a Hilbert space.
Furthermore, it is well known that the stochastic integral definition in this way is continuous almost
surely [Kozdron, 2009].
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2.4. Filtering
In 1949, Norbert Wiener introduced the Wiener filter, as a method to retrieve signals from noisy mea-
surements. His solution was a significant improvement from earlier solutions to the filtering problem.
Generally, the filtering problem can be stated as follows: given some stochastic (possibly noisy) signal
x, and y is the observable data. This means that when x is measured, it is possible that some noise
is added to the original data, yielding y as an observation with noise. The filtering problem tries to
calculate an estimate, x̂, as close as possible to the original, from y. This is done by minimising the
mean squared error between true and estimated data, meaning it tries to minimise:

E
[
||x− x̂||2

]
. (2.9)

Where x̂ depends only on y and not on x.
Wiener assumed generalised noise, such as multiplicative or additive noise, meaning y = x + ε. Al-
though this was a central condition to his solution, it was later let go, as different filters could solve
the problem for any type of noise. Subsequent filtering techniques often only necessitate covariance
matrices and means of x and y.
Kalman filtering extends this problem to a dynamic system using partial and noisy observations. It gets
results by combining the new observations with predictions. In this case, the predictions are done by
applying the Predator-Prey equations. This means, that instead of the earlier mentioned minimisation
of the mean square, which was given in Equation 2.9 the mean square error that is to be minimised by
the Kalman filter, in the discrete case, is given by:

E
[
||xk − x̂k|k||2

]
, (2.10)

where
x̂k+1|k = E [xk+1|y1, . . . ,yk] . (2.11)

In this sense the Kalman filter is the best possible linear estimator [Reid, 2001].
In application, the (standard) Kalman filter assumes a linear relationship between data x and measur-
able data y. The extended Kalman filter, which will be used in this thesis, removes this constraint, and
is often applied to nonlinear systems. For completeness both cases will be given, both in continuous
and discrete versions. The continuous case is mathematically more interesting, but due to the applica-
tion of the filter later in the thesis, using code, the discrete case will also be given.

2.4.1. Continuous Kalman Filtering
Traditionally the Kalman filter has been used only in discrete cases, as data generally only comes in
discrete time steps. Nevertheless the continuous Kalman filter is often used, as the situations described
by the filter progress in continuous time. Modelling them accordingly provides more theoretical knowl-
edge about the system and the filter.
The continuous Kalman, or often called the Kalman-Bucy filter provides a state-estimation method for
continuous systems. The provided solution is a consistent solution to the linear Gaussian problem.
Although used less for real-world applications it provides a lot of insight into the more theoretical work-
ings of a system. By giving a better understanding of the properties of the filter.
Assuming the model is of the form:

dx = F(t) · x(t)dt +dv(t),

dy(t) = H(t) · x(t)dt +dw(t).
(2.12)

Where Q(t) and R(t) describe the variances of the noise, v(t) ∼ N (0,Q(t)) respectively w(t) ∼
N (0,R(t)).

The continuous Kalman filter can be derived from the discrete case by taking the limit of the timestep-
size to zero. Doing so results in the following equations [Frank L. Lewis, 2007]:
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d

dt
P = F(t) ·P(t) +P(t) · FT (t) +Q(t)−K(t) ·R(t) ·KT (t),

K(t) = P(t) ·HT (t) ·R−1(t),

dx̂ = F(t) · x̂(t)dt+K(t)(dy(t)−H(t) · x̂(t)dt).

(2.13)

2.4.2. Discrete Kalman Filtering
Discrete Kalman filtering is commonly used in the application of the Kalman filter. Although most sys-
tems are continuous, implementation, using for example real-life data, often demands a discrete filter.
This is due to the fact that it is often not possible to measure data continuously. This is the case for
this thesis because continuous population data is unavailable. This is because populations of species
have to be counted.

In general Kalman filtering is based on data with a given uncertainty, the covariance. This means it is
in the form

x̂k−2|k−2, x̂k−1|k−1, . . . ,

Pk−2|k−2,Pk−1|k−1, . . . .

Meaning the data at time k− 2 is based on the state at time k− 2. With this a prediction is made based
on the data at time k − 1 using the predator-prey equations:

x̂k|k−1,

Pk|k−1.

This is combined (updated) with the new noisy and or partial measurement to yield

x̂k|k,

Pk|k.

To give an approximate number of predators and prey at time k. The combination is made using the
optimal Kalman gain; this sequence can be repeatedly done until the prediction is made for the desired
time interval.
More formally, assume a model of the form:

xk = Fk · xk−1 +vk,

yk = Hk · xk +wk.
(2.14)

Where

• Fk ∈ RD×D is the state transition matrix,
• Hk ∈ RM×D is the measurement matrix,
• vk ∈ RD×1 is the Gaussian noise vector with vk ∼ N (0,Qk,
• wk ∈ RM×1 is the Gaussian noise vector with wk ∼ N (0,Rk.

Prediction
The prediction is then made by performing the following calculations [Kovvali et al., 2013]:

x̂k|k−1 = Fk · x̂k−1|k−1,

Pk|k−1 = Fk ·Pk−1|k−1 · FTk +Qk.
(2.15)
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Estimate
In order to compute the estimate x̂n|n the following has to be calculated[Kovvali et al., 2013]:

Sk = HkPk|k−1H
T
k +Rk,

Kk = Pk|k−1H
T
k S

−1
k ,

x̂k|k = x̂k|k−1 +Kk(yk −Hkx̂k|k−1),

Pk|k = Pk|k−1 −KkHkPk|k−1.

(2.16)

Here, of course, x̂k|k and Pn|n are the prediction respectively the uncertainty of the prediction. Using
these two, and the model, a new prediction can be made, and subsequently a new estimate for time
n+ 1.

2.4.3. Extended Kalman Filter
The extended Kalman filter(EKF) is used to estimate the states of a nonlinear dynamic system. The
EKF is based on the traditional Kalman Filter, which works on linear dynamic systems with Gaussian
noise, this use is extended by the EKF to nonlinear systems, by approximating the functions as linear.
In the past the extended filter has been used in for example robotics, navigation and for GPS, which
are systems that generally experience nonlinear behaviour.

Instead of the state transition and observational models being linear, they can now be any differentiable
function. Again, first the continuous filter will be given and afterwards the discrete case.

2.4.4. Continuous Extended Kalman Filter
Instead of supposing that there is a linear relationship between x and y

dx(t) = f(x(t)))dt+G(x(t))dv(t),

dz(t) = h(x(t))dt+ dw(t).
(2.17)

With initial values at time t0
x̂(t0) = E[x(t0)],
P(t0) = Var[x(t0)].

(2.18)

Where Var denotes the variance and v(t) ∼ N (0,Q(t)) and w(t) ∼ N (0,R(t)).

Let
F (t) =

∂f

∂x

∣∣∣∣
x̂(t)

,

H(t) =
∂h

∂x

∣∣∣∣
x̂(t)

.

(2.19)

This allows for the approximation of the non-linear functions f and h by:

f(x(t), t) ≈ f(x̂(t), t) + F (x̂(t), t)(x(t)− x̂(t)),

h(x(t), t) ≈ h(x̂(t), t) +H(x̂(t), t)(x(t)− x̂(t)).
(2.20)

With x̂(t) being the current state estimate.

In the continuous case the predict and update steps are done simultaneously [Morrel, 1997]:

K(t) = P (t)H(t)TR(t)−1,

x̂(t) = f(x̂(t)) +K(t)(z(t)− h(x̂(t))),

d

dt
P (t) = F (t) · P (t) + P (t)F (t)T −K(t)H(t)P (t) +GQ(t)GT .

(2.21)
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Then lastly for the discrete extended Kalman filter.

2.4.5. Discrete Extended Kalman Filter
The assumed model is of the form:

xk = f(xk−1) + vk−1,

zk = h(xk) +wk.
(2.22)

Again with v(t) ∼ N (0,Q(t)) and w(t) ∼ N (0,R(t)).

Then, for the prediction step, we have the following[Morrel, 1997]:

x̂k|k−1 = f(x̂k−1|k−1),

Pk|k−1 = Fk ·Pk−1|k−1 · FTk +Qk−1.
(2.23)

Let:
F(t) =

∂f

∂x

∣∣∣∣
x̂k−1|k−1

,

H(t) =
∂h

∂x

∣∣∣∣
x̂k|k−1

.

(2.24)

Then the update step is then done in the following way:

ỹk = zk − h(x̂k|k−1)

Sk = HkPk|k−1H
T
k +Rk,

Kk = Pk|k−1H
T
k S

−1
k ,

x̂k|k = x̂k|k−1 +Kkỹk,

Pk|k = Pk|k−1 −KkHkPk|k−1.

(2.25)



3
Stochastic Integral Equations for

Population Models

In numerous ways, population dynamics are subject to unpredictable occurrences. Whilst births, deaths
and interaction rates can be represented by fixed parameters on a grander level, there always will be
an inherent probability that reality deviates from these averages. A particular deterministic model was
discussed in Section 2.2, which describes population changes using average interaction and growth
rates. However, this, and other models like it, do not account for stochastic influences on population
size, which, depending on the scale, could significantly influence one or more species. Incorporating
stochastic fluctuations or ’noise’ into the mathematical models is a logical next step in describing pop-
ulation changes more accurately. This chapter will outline one approach to incorporating noise and
prove that solutions to this model exist.

3.1. Stochastic noise in the LV model
The Lotka-Volterra equations, which form the basis of all subsequent equations in this report, were out-
lined in Section 2.2. For the incorporation of the stochastic elements into this equation, these equations
will be rewritten into integral equations. This can simply be done by integrating all equations, as they
are only first order differential equations. The results of this are given in equation 3.2.

∫ t

t0

dX1

ds
(s)ds =

∫ t

t0

X1(s)
(
r1 −

n∑
i=1

a1,iXi(s)
)
ds,

∫ t

t0

dX2

ds
(s)ds =

∫ t

t0

X2(s)
(
r2 −

n∑
i=1

a2,iXi(s)
)
ds,

...∫ t

t0

dXn

ds
(s)ds =

∫ t

t0

Xn(s)
(
rn −

n∑
i=1

an,iXi(s)
)
ds.

(3.1)

⇔

12
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X1(t) = X1(t0) +

∫ t

t0

X1(s)
(
r1 −

n∑
i=1

a1,iXi(s)
)
ds,

X2(t) = X2(t0) +

∫ t

t0

X2(s)
(
r2 −

n∑
i=1

a2,iXi(s)
)
ds,

...

Xn(t) = Xn(t0) +

∫ t

t0

Xn(s)
(
rn −

n∑
i=1

an,iXi(s)
)
ds.

(3.2)

Then in order to add the noise as described in section 2.3.1, Brownian motion, described byWi, needs
to be added. Furthermore, as this noise term does not have the sameweight for each individual species,
see Section 2.3.1, a noise term dependent on the populations of the species, σm,n(t,X1, . . . , Xn), de-
scribing the stochastic influence of species n on species m will be added, which will be integrated with
respect to the Brownian motion. Fully working this out yields equation 3.3.

X1(t) = X1(t0) +

∫ t

t0

X1(s)
(
r1 −

n∑
i=1

a1,iXi(s)
)
ds+

n∑
i=1

∫ t

t0

σ1,i(s,X1(s), . . . , Xn(s))dWi(s),

X2(t) = X2(t0) +

∫ t

t0

X2(s)
(
r2 −

n∑
i=1

a2,iXi(s)
)
ds+

n∑
i=1

∫ t

t0

σ2,i(s,X1(s), . . . , Xn(s))dWi(s),

...

Xn(t) = Xn(t0) +

∫ t

t0

Xn(s)
(
rn −

n∑
i=1

an,iXi(s)
)
ds+

n∑
i=1

∫ t

t0

σn,i(s,X1(s), . . . , Xn(s))dWi(s).

(3.3)

These equations can then be solved using the Itô integral as described in definition 2.3.5.

3.2. Properties
In this section, some properties for this system of equations will be proven; these will be important for
biological realism and mathematical correctness. One of these properties is well-posedness, which is
essential for validating the model, as it demonstrates the existence of a unique solution to Equation 3.3,
which will now be written as:

dX1(t) = X1(s)
(
r1 −

n∑
i=1

a1,iXi(s)
)
ds+

n∑
i=1

σ1,i(s,X1(s), . . . , Xn(s))dWi(s),

dX2(t) = X2(s)
(
r2 −

n∑
i=1

a2,iXi(s)
)
ds+

n∑
i=1

σ2,i(s,X1(s), . . . , Xn(s))dWi(s),

...

dXn(t) = Xn(s)
(
rn −

n∑
i=1

an,iXi(s)
)
ds+

n∑
i=1

σn,i(s,X1(s), . . . , Xn(s))dWi(s).

(3.4)

Here X = (X1, X2, . . . , Xn)
T ∈ Rn, the matrix Σ ∈ Rn×n with elements i, j = 1, . . . , n being σi,j , and

ri, ai,j ∈ R are constants with ai,j being the elements of matrixA. LetW = (W1, . . . ,Wn)
T . This allows

a rewrite of Equation 3.4 to:

dX(t) = X(t) (r−AX(t)) dt+Σ(X(t), t)dW(t). (3.5)

The stochastic component is described using a Wiener process, within the filtered probability space
(Ω,F ,Ft,P), where Ω is the sample space, F is all σ-algebra’s with respect to the whole process, Ft
is the Brownian filtration, and lastly P is the Wiener probability measure. From now on, this probability
space will be used, if no other is mentioned.
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It is assumed, that Xi(t0) and Ft are measurable.
We define solutions in a similar fashion as strong solutions in [Evans, 2013], henceforth these type of
solutions will just be referred to as solutions.

Definition 3.2.1. Solution to a stochastic differential equation
A stochastic process {X(t) : t0 ≤ t ≤ T}, with X ∈ Rn and X(t0) being the initial condition, is called a
solution to a stochastic differential equation, like equation 3.4:

X(t) = b(X(t), t)dt+Σ(X(t), t)dW(t), (3.6)

whereb is the vector [b1, b2, . . . , bn], bi = Xi(t)(ri−
∑n
j=1 ai,jXj(t)), andF is the filtration, if the following

conditions are satisfied:

1. the process X is adapted to the filtration.
2. b satisfies the integrability condition

E

[∫ T

t0

|b(X(s), s)|ds

]
<∞.

3. Σ, evaluated along the process X, satisfies the integrability condition

E

[∫ T

t0

|Σ(X(s), s)|2ds

]
<∞,

where Σ denotes the matrix with elements σi,j .
4. Almost surely the process X(t) fulfills the integral equation:

X(t) = X(t0) +

∫ t

t0

b(X(s), s)ds+

∫ t

t0

Σ(X(s), s)dW(s),

for all t ∈ [t0, T ].
5. The initial condition X(t0) is Ft0 measurable.

The following model assumptions are placed on the system and its variables in order to ensure that the
real-life data and interactions between species can be described mathematically.
It is assumed that the effects of noise in positive as well as in negative sense can be seen as equivalent
in expectation. Gaussian noise is a popular choice due to its mathematical properties.

Model Assumption 3.2.1.
Gaussian noise is assumed to accurately describe the influence of noise on the populations 1, . . . , n.

In nature, it is not expected that populations of species will change in any way other than through simple
birth and death. However, in some less wild environments, such as many reserves, species are added
or removed if their numbers become unsustainable (e.g. [U.S. National Park Service, 2015b]). This,
of course, cannot be predicted by a mathematical model.

Model Assumption 3.2.2.
A key biological assumption is that the environment is isolated, except for stochastic effects. This
means that no individuals are added to or removed from the system through large-scale external inter-
ventions, e.g. the reintroduction of species.

Lastly the assumptions that are already placed on the Lotka-Volterra system are naturally also applica-
ble here. This means that the following is assumed:

Model Assumption 3.2.3.
The standard Lotka-Volterra assumptions are naturally applicable. These conditions for the model to
work are:
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• The LV model assumes [Sandeep C H, 2019] that the prey population -which does not consume
other species- always has enough food. However, predators only consume the prey described in
this model, other food sources are not exploited.

• The rate of change of the population is entirely dependent on its size, i.e. an increase in the
number of prey is directly proportional to an increase in the number of births of that species.

• There are no impactful environmental changes during the described time, and genetic adaptation
is irrelevant.

• Lastly, no spatial or age aspects are considered; the population of each species is just that, no
other attributes are included.

Furthermore, some pure mathematical assumptions are also made about the coefficients in the equa-
tions. These will be used to prove the boundedness of solutions.

Assumption 3.2.1.
Local Lipschitz continuity[Searcóid, 2006] is assumed for the coefficients bi : [0, T ] × R 7→ R and
σi,k : [0, T ] × Rn 7→ R. In other words, let i = 1, . . . , n, some constant B ≥ 0, and ∀xi with x =
(x1. . . . , xi, . . . , xn)

T , there exists a neighbourhood S(x) such that ∀y ∈ S(x), such that y = (y1, . . . , yi, . . . , yn)
T

the following inequality holds:

|bi(t,x(t))− bi(t,y(t))|+
n∑
k=1

|σi,k(t,x(t))− σi,k(t,y(t))| ≤ B|xi − yi|, ∀t ∈ [0, T ]. (3.7)

From this assumption it easily follows that the coefficients experience local linear growth i.e. for some
neighbourhood S(x) around x there exists a constant B ≥ 0, where ∀y(x) the following holds:

|b(t,y(t))|+
n∑
k=1

|σi,k(t,y(t))| ≤ B(1 + |yi|), i = 1, . . . , n. (3.8)

Theorem 3.2.1. Boundedness of the quadratic LV system [Baigent, 2017]:
For a system as in Equation 3.2 with t ∈ [t0, T ], with n = 2, which can be written as:

X(t) = b(X(t), t)dt, (3.9)

for b a vector with elements bi = Xi(t)(ri −
∑n
j=1 ai,jXj(t)) for i = 1, . . . , n, with ai,j > 0, ri > 0. Then

∀i = 1, . . . , n there exists some DC ∈ R such that Xi(t) < DC∀t ∈ [t0, T ]∀i = 1, . . . , n.

Definition 3.2.2. Population Capacity:
The constant DC for a deterministic system as in Equation 3.4 with DC the smallest upper bound as
given by Theorem 3.2.1, will be referred to as the maximum population capacity or DC .

As mentioned in the Preliminaries, Section 2.3.1, the support for σ is compact and a strict subset of
(0, D)n. From now on it will be assumed that the support of each σi,j exists only on some bounded
interval [c, C] with 0 < c < C < DC and c, C,DC ∈ R forDC an upper bound on the population capacity
as in 3.2.1. Thus, ensuring that the support is a compact, strict subset of [0, DC ].

Assumption 3.2.2.
Let i = 1, . . . , n, c, C ∈ R, 0 < c < C then the following holds

∀Xi /∈ [c, C] ⇒ σi,j(t,X) = 0. (3.10)

It should be noted again that the support condition formulated in Assumption 3.2.2 can be stated more
generally. Hypothetically, the support for σ(i, j) could be a strict subset of the set [0, D]. The nature of
the proofs in this chapter does not change and will be given with the support as in the assumption for
simplicity.
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3.3. Solutions
Inmathematics, well-posedness is a fundamental requirement of a system that describes two conditions
of a solution: its existence and its uniqueness. What constitutes as a solution was given earlier in
Definition 3.2.1, now the existence and uniqueness of this solution will be proven. This is done by
proving the boundedness of a solution.
Some important properties of the equations will be listed here, as they are important for the following
theorems and proofs:

• In the defintion of aWiener process 2.3.1 it was demanded that future increments are independent
of past increments. This characteristic is called the Markov- or memory less -property.

• It is easily visible that local Lipschitz continuity holds for all coefficients of Xi, with i = 1, . . . , n,
without any conditions for the growth factor bi = Xi(s)(rn−

∑n
j=1 ai,jXj(s)) which is quadratic, it

also holds for all σi,j(t,X1(t), . . . , Xn(t)), i, j = 1, . . . , n by assumption.

First to look at the equilibria of the system, in the case of two species.
Lemma 3.3.1. Equilibria for a system of two species:
Let n = 2, and let T ∈ R>0, t0 ∈ [0, T ] denote times, X = (X1, X2)

T being a a local solution to
Equation 3.6 with b and σ of this equation satisfying Assumption 3.2.1, with respect to the initial condition
X(t0) ∈ [0, DC ]

2, with DC as in Theorem 3.2.1 the maximum population capacity of a species.
The nondimensionalised equivalent of this system has the equilibria (0, 0), (1, 0) and (0, 1), which are
unstable if Assumption 3.2.2 holds, meaning the support for σi,j(X(t), t) doesn’t exist at 0and D and
furthermore, if both

a1,2r2
a2,2r1

< 1 and
a2,1r1
a1,1r2

< 1. (3.11)

Moreover, if ∃ p ∈ R :

Bp(X∗
1 , X

∗
2 ) ∩ supp(σi,j(t,X)) = ∅, ∀i, j ∈ (1, . . . , n) and t ∈ [t0, T ], (3.12)

whereBp(X) denotes a ball with radius p, and centreX = (X1, X2), then a fourth equilibrium, (X∗
1 , X

∗
2 ) =

(
a1,1(a2,2r1−a1,2r2)
r1(a1,1a2,2−a1,2a2,1) ,

a2,2(a1,1r2−a2,1r1)
r2(a1,1a2,2−a1,2a2,1) ) exists.

Furthermore, the eigenvectors of the equilibria (0, 0), (1, 0), (0, 1) are the unit vectors in R2.

Proof: The system for two species is given by

dX1(t) = X1(t)
(
r1 − a1,1X1(t)− a1,2X2(t)

)
ds

+ σ1,1(s,X1(t), X2(t))dW1(t) + σ1,2(s,X1(t), X2(t))dW2(t), (3.13)
dX2(t) = X2(t)

(
r2 − a2,1X1(t)− a2,2X2(t)

)
ds

+ σ2,1(s,X1(t), X2(t))dW1(t) + σ2,2(s,X1(t), X2(t))dW2(t). (3.14)

Where, as mentioned in Chapter 2 and reiterated in a earlier Assumption (3.2.2) on the system, the
support for all σi,j with i, j = 1, 2 is limited to some c, C st. 0 < c < C < DC . In order to prove that the
equilibria of the deterministic system also exist in the stochastic system remember that the support of
the stochastic influence is limited by Assumption 3.2.2. If the stochastic part of the SDE is zero, then
the equilibria of the deterministic system can be found; this allows the equations to simplify as:

dX1(t) = X1(t)
(
r1 − a1,1X1(t)− a1,2X2(t)

)
dt, (3.15)

dX2(t) = X2(t)
(
r2 − a2,1X1(t)− a2,2X2(t)

)
dt. (3.16)

To nondimensionalise this system, take the following: L1 =
X1a1,1
r1

, L2 =
X2a2,2
r2

, τ = r1t, ρ = r2
r1
, b1 =

a1,2r2
a2,2r1

, b2 =
a2,1r1
a1,1r2

this results in the following system:

dL1

dτ
= L1(1− L1 − b1L2), (3.17)

dL2

dτ
= ρL2(1− b2L1 − L2). (3.18)
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The following equilibria: (0, 0), (1, 0), (0, 1), ( 1−b1
1−b1b2 ,

1−b2
1−b1b2 ) can be obtained by setting both equations

to zero. Where the last one only exists if b1b2 6= 1 ⇔ a1,2a2,1
a1,1a2,2

6= 1

The stability of the equilibria can be analysed by looking at the linearised system given by the Jacobian
of equation 3.17, which is:

J =

(
1− 2L1 − b1L2 −b1L1

−ρb2L2 ρ(1− b2L1 − 2L2)

)
. (3.19)

Now the eigenvalues can be calculated by det (J − λI) = 0.
In case of the equilibrium (0, 0) this equation results in (1 − λ)(ρ − λ) = 0, meaning the eigenvalues
are λ1 = 1, λ2 = ρ. This equilibrium is always unstable due to at least one of the eigenvalues being
positive [Hirsch et al., 2012].
The equilibrium (1, 0) has the characteristic polynomial 0 = (−1 − λ)(ρ(1 − b2) − λ) resulting in the
eigenvalues λ1 = −1, λ2 = ρ(1− b2) this equilibrium is only unstable if b2 < 1. Meaning the equilibrium
is unstable since a2,1r1

a1,1r2
< 1.

Similarly to the equilibrium (1, 0) the eigenvalues of the equilibrium (0, 1) can be calculated resulting in
λ1 = −ρ, λ2 = 1− b1 which is unstable if b1 < 1, which is equivalent to saying a1,2r2

a2,2r1
< 1 by filling in b1.

The last equilibrium, ( 1−b1
1−b1b2 ,

1−b2
1−b1b2 ) = (L∗

1, L
∗
2) has a more complex characteristic polynomial; its

eigenvalues are given by

λ1,2 =
−b1 − b2ρ+ ρ+ 1±

√
(b1 + b2ρ− ρ− 1)2 − 4ρ(1− b1b2)(b1 − 1)(b2 − 1)

2(1− b1b2)
.

If the aforementioned conditions are met, meaning b1, b2 < 1, then these eigenvalues are real but not
necessarily negative. Stability of this equilibrium, when both eigenvalues are negative [Hirsch et al.,
2012] happens when:

tr J(L∗
1, L

∗
2) < 0, (3.20)

det J(L∗
1, L

∗
2) > 0. (3.21)

Then this equilibrium can only be stable, if there are no stochastic fluctuations around the equilibrium,
meaning ∃p ∈ R where for a ball Bp(L∗

1, L
∗
2) with radius p, for i, j = 1, 2 we have that if X ∈ Bp(L∗

1, L
∗
2)

then σi,j(X, t) = 0 for all t. Allowing that the system, around this equilibrium, is locally described by a
deterministic equation.

Now to look at the eigenvectors, these can easily be calculated using matrix J and the already cal-
culated eigenvalues by (J − λI)v = 0 for I being the identity matrix, v being the eigenvector corre-
sponding to eigenvalue λ and 0 being the zero vector. Doing so results in the observation that for
the equilibria (0, 0), (1, 0) and (0, 1) the eigenvectors are all the same, and that they are the unit vec-
tors (1, 0)T , (0, 1)T . Due to the matrix always having one zero on the diagonal and one zero on a
off-diagonal.

Lemma 3.3.1 can be easily visualised if some values for the constants are chosen. Let b1 = 0, 5, b2 =
0, 5 and ρ = 1 for b1, b2 and ρ being the variables of the nondimensionalised system as defined in the
lemma, then the conditions are met for a stable equilibrium in the first quadrant of the phase plane. This
can be seen in Figure 3.1. Solutions beginning in the first quadrant tend toward the stable equilibrium.
All other solutions do not cross into the positive quadrant.



3.3. Solutions 18

Figure 3.1: The phase plane of the system 3.17 with b1 = b2 = 0, 5 and ρ = 1

Some other phase planes can also be constructed, in the case that the equilibrium (L∗
1, L

∗
2) is a stable

spiral sink or a centre. For readers unfamiliar with the terminology used in dynamical systems, formal
definitions of these types of equilibria can be found in [Hirsch et al., 2012]. This happens in the case
where b1 = 0.3, b2 = −0.01 and ρ = 0.6, which can be seen in Figure 3.2, respectively when b1 =
2, b2 = 3 and ρ = −0.5 which is given in Figure 3.3. Notice that solutions do not cross the boundary
[0, 1] on both axes in the first two cases. The bounds are [0, 1] instead of [0, D], for some D ∈ R, due
to the nondimensionalisation. The third case only has solutions that stay inside the boundary if the
initial values satisfy X1(t0)X2(t0) < 1. This is due to the parameters b1, b2 > 1, they do not satisfy the
conditions from Lemma 3.3.1.

Figure 3.2: The phaseplane of the system 3.17 with b1 = 0.3, b2 = −0.01 and ρ = 0.6
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Figure 3.3: The phaseplane of the system 3.17 with b1 = 2, b2 = 3 and ρ = −0.5

In order to prove boundedness, some conditions have to be set. The following assumptions are re-
called:

• It is again set as a condition that the coefficients σi,j are locally Lipschitz continuous and experi-
ence local linear growth, meaning they satisfy Assumption 3.2.1.

• Similarly, the coefficients σi,j are of the form as described by Assumption 3.2.2. Meaning for
0 < c < C < DC

∀Xi /∈ [c, C] := σi,j(t,X) = 0,

with DC being some population capacity.

Two new assumptions are established, firstly in order for Lemma 3.3.1 to hold the following is assumed:
Assumption 3.3.1. The values of the variables are bounded in the following way for some ϱ > 0:

a1,2r2
a2,2r1

< 1
a2,1r1
a1,1r2

< 1 (3.22)

a1,2a2,1
a1,1a2,2

6= 1 ϱ > r1r2 > 0. (3.23)

Furthermore the second new assumption to be established, is due to the biological impossibility of
Xi < 0, as the population of a species cannot be negative and as we are trying to prove that a pop-
ulation cannot be greater than some upper bound. Biologically, this is also impossible, as this would
mean that there are more animals then could be sustained in nature. That means it can only happen,
if more of that species are added by for example humans.
These bounds of course also hold for the initial condition, as such it is assumed:

Assumption 3.3.2.
Let for a constant DC > 0, the initial condition Xi(t0) satisfy: 0 < Xi(t0) < DC for all i = 1, . . . , n
almost surely.

Theorem 3.3.1. Boundedness:
Let 0 < t0 < T , both denoting times and assume the abovementioned Assumptions, 3.2.1, 3.2.2,

3.3.1, are fulfilled where it is required that 0 < c < C < DC , where DC is the maximum population
capacity, given by Theorem 3.2.1. Let Xi(t) denote a local solution to 3.4, i = 1, 2, for t ∈ [t0, t1), for
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t1 = t1(ω) ∈ (t0, T ), both denoting times, with Xi(t0) being the initial condition subject to Assumption
3.3.2.
It holds that for i = 1, 2 and a unique solution on [t0, t1), there exists some D ≥ DC

0 ≤ Xi(t) ≤ D for t ∈ [t0, t1).

Meaning the population of each species i is always nonnegative and bounded by D, which will subse-
quently be called the population maximum.

Proof: Fix an ω ∈ Ω such that a solution exists for time t ∈ [t0, t1(ω)). To prove that a solution exists
globally it is enough to prove uniform boundedness of the solution, in (ω, t) ∈ Ω× [t0, t1(ω)), meaning
the solution does not increase beyond a bound, in this case D, and is bounded from below, presently
by 0. The existence and uniqueness of local solutions for equation 3.4 was established in Theorem
3.3.2 by proving that the coefficients of the equation are locally Lipschitz continuous. This property
implies continuity for all t ∈ [t0, t1), which is the domain in which solutions exist.
To substantiate the boundedness of solutions, individual cases for the initial condition will be analysed.

By assumption, any initial condition Xi(t0) < 0 or Xi(t0) > DC are ruled out. These cases will thus not
be considered.

Consider the case where the initial condition is confined in a region where the stochastic variable has
support, meaning Xi(t0) ∈ [c, C]. Due to the continuity of solutions, it can be concluded that the solu-
tion either remains confined in the bounds of the support of the stochastic variable, thus proving global
existence, or leaves one of the two deterministic regions (0, c) or (C,DC).

Case 1: Xi(t0) = 0, for at least one i ∈ (1, 2)
When Xi(t0) = 0, the difference equation is simply the deterministic equation, as for all j σi,j is zero,
when Xi is sufficiently small. The difference equation can be written as

dXi

dt
(t) = Xi(t)(ri −

n∑
j=1

ai,jXj(t)), (3.24)

for i = 1, 2. Following Theorem 3.3.2, a unique local solution exists on [t0, t1). Given that dXi(t) = 0
for t ∈ [t0, t1) it follows that this solution is Xi(t) = 0 ∀t1(ω) ≥ t ≥ t0. By extension it is clear than that
for all t ∈ [t0, T ] we have Xi(t) = 0.

Case 2: Xi(t0) ∈ (0, c), for at least one i ∈ (1, 2)
In this case, the solution Xi(t) is, at least initially, deterministic. By continuity, the solution satisfies
the deterministic equation and is differentiable over some interval [t0, tE ], with its differential given by
Equation 3.24 from t0 until at least the later time tE :

dXi

dt
(t) = Xi(ri −

2∑
j=1

ai,jXj). (3.25)

First to consider the possibility of the solution crossing into the negative domain. Assume that there
exists some t3 such that Xi(t3) < 0, this means that there exists some t2 < t3 such that Xi(t2) > 0
due to continuity. However, this means

∃t4 ∈ [t2, t3] : Xi(t4) = 0.

Meaning when the equation is restarted at this point, it will stay there, i.e.

Xi(t) = 0, for t > t4.

Case 3: Xi(t0) ∈ (C,DC), for at least one i ∈ (1, 2)
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A similar argument holds to the case where Xi(t0) ∈ (0, c). Meaning that for Xi to leave (C,DC) there
must be a time t2 such that either Xi(t2) = C or Xi(t2) = DC which would either reduce it to Case 2
or Case 4 below.

Case 4: Xi(t0) = DC , for at least one i ∈ (1, 2)
Whenever Xi(t0) = DC , the solution is at the upper bound of the domain for the initial conditions.
Similar to the case when Xi(t0) = 0, the system is governed by the deterministic part of the equation,
see Equation 3.24, as there is no support for the σ−functions. Solution will not increase far beyond
DC . This can be seen by looking at the nondimensionalised system as given in Lemma 3.3.1:

dL1

dτ
= L1(1− L1 − b1L2), (3.26)

dL2

dτ
= ρL2(1− b2L1 − L2). (3.27)

By Assumption 3.3.1 b1, b2 < 1 and ρ > 0, ρ being bounded from above, because the system is
nondimensionalised, L1 and L2 are not necessarily bounded by the sameDC but this does not change
the proof, for the upper bound of the initial condition DC will be taken, with DC = 1 [Murray, 2002] and
we allow D > 1 = DC . Two cases need to be considered:
first, if b1 > 0: then it is easily visible, that if L1 = DC it holds that for any L2 ∈ [0, DC ]:

dL1

dτ
= DC(1−DC − b1L2) < 0 (3.28)

thus, meaning that solutions do not increase permanently, they do not achieve values greater than DC .
This also holds similarly for L2 = DC if b2 > 0.
Then, if b1 < 0, as L2 ∈ [0, DC ] it holds that

dL1

dτ
= DC(1−DC − b1L2) (3.29)

≤ DC(1−DC − b1DC). (3.30)

This means the growth of L1 is bounded, as 1− L1 − b1DC < 0 if L1 > 1− b1DC , which is inevitable if
L1 is increasing, as 1− b1DC is some positive number greater than 1. Thus, proving that L1 cannot be
unbounded, as it has a negative differential if L1 gets big enough, i.e. if L1 = D = 1− b1DC . A similar
argument holds for L2, thus proving boundedness for both L1 and L2.
Boundedness for the nondimensionalised system of course also means boundedness of the original
system.

Thus, it was proven that solutions move away from both Xi = 0 and Xi = D, enclosing the space
between them. For the case of n = 2, which was proven, the solutions for X1, X, 2 being respectively
0 or D, can be seen as a box enclosing the space.

Using this result the global existence and uniqueness of a solution in the case n = 2 can be proven.
This proof is short as it almost entirely follows from theorem 3.3.1.

Local existence and uniqueness will be proven using a theorem from [Evans, 2013], which states the
following:

Theorem 3.3.2. Existence and Uniqueness:

For X(t) ∈ Rn, t ∈ [t0, T ], the Wiener process W(t) and r ∈ Rn, A,Σ ∈ Rn×n let the stochastic
differential equation be,

dX(t) = X(t)(r−AX(t))dt+Σ(X(t), t)dW(t). (3.31)
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With the matrix A having elements ai,j and matrix Σ having elements σi,j .
Let X(t0) be the initial condition, such that X(t0) is Ft0 measurable. Then if the following conditions
hold:

• The second moment of the initial condition is bounded,

E
[
|X(t0)|2

]
<∞.

• The initial condition is independent of the Wiener process.

Then, by assumption 3.2.1, for almost all ω ∈ Ω a unique local solution exists to Equation 3.31, i.e. a
solution exists on [t0, t1) for some time t1 where t1 = t1(ω) ∈ [t0, T ].

Proof: of Theorem 3.3.2 globally:
This proof will be done by contradiction. Assume there exists some final time tf < T so that X(t) only
has a solution for t ∈ [t0, tf ).

Earlier, it was assumed that the coefficients bi and σi,j for i, j = 1, 2 are locally Lipschitz continuous.
This means, that for a set S, with x,y ∈ S and i = 1, 2 there exists a B such that:

|bi(t,x(t))− bi(t,y(t))|+
n∑
k=1

|σi,k(t,x(t))− σi,k(t,y(t))| ≤ B|xi(t)− yi(t)|. (3.32)

Due to this local Lipschitz continuity, it is then known that a local solution exists on [t0, t1), t1 = t1(ω).
At this time, the solution, X(t) is still in the box [0, D] for all t ∈ [t0, t1) as was just proven in Lemma
3.3.1. Assume that this t1 = tf , thus that no solutions exist after this t1.
TakeX(t1) := limt↑t1 X(t), which exists due to the boundedness ofX(t) on the aforementioned interval.
Restart the equation at t = t1, with X(t1) being the new initial condition. Then this means that at this
point, there will still be a solution, as the conditions are still fulfilled due to the boundedness of X at t1,
meaning a solution exists on [t1, t2) for some t2 = t2(ω). But this t2 > tf , hence a solution exits until T ,
in other words, tf = T .

It can be remarked, that a proof for global well-posedness could be made by setting the coefficients
to only exist on [0, D], by letting bi(t,x(t)) = b̃i(t,x(t))1[0,D]. However, this brings a new problem, as
this would mean that the coefficients are not continuous anymore, which is why the possibility was not
considered.



4
Bounding the estimation error of the

Extended Kalman Filter

The extended Kalman filter, described in Chapter 2.4.3, is a widely used tool to estimate the state
of nonlinear systems. It is broadly used, most often with economic or navigation purposes [Kovvali
et al., 2013]. Although the usefulness of the filter is proven repeatedly for many applications and its
performance is generally robust [Lu & Niu, 2014], understanding its faults and possible errors is of high
importance to further substantiate its findings.

In this chapter, the stability of the continuous time EKF will be studied under the specific conditions of
population dynamics. The analysis will be based on the error bounds found by Konrad Reif [Reif et al.,
2000], who detailed conditions ensuring the boundedness of the error. However, in contrast to Reif’s
general proof and conditions, this chapter will simplify this analysis due to the more specific nature of
the SDE model, as described in Equation 3.4. Consequently, the stability proof here does not require
a smallness condition for the initial error. Furthermore, the proof does not require the use of Lyapunov
functions or general assumptions, as some of them become redundant due to the conditions already
placed on the model.
Although the Lotka-Volterra equations are generally only given for two species, the proof given in this
chapter will hold for the general case with n species. The specific conditions for when n = 2, for
example, when there is just one predator and one prey, will be worked out in the corollary (see 4.0.1.1).

The same SDE will be used, as in the previous chapters, it is given by Equation 3.4 and writing it in
terms of vectors and matrices yields:

dX(t) = X(t)(r−AX(t))dt+Σ(X(t), t)dW(t). (4.1)

Where X(t) ∈ Rn, t ≥ 0 describes the time, X(t0) is the initial condition , W(t) ∼ N (0, Q(t)) is the
Wiener process in Rn and r ∈ Rn is the vector of ri’s, A ∈ Rn×n the matrix with row i having elements
ai,j where j is the respective column, lastly Σ ∈ Rn×n has the elements σi,j(X, t) on the ith row and
jth column. The functions σi,j can take on any form; they are not limited to the functions with compact,
bounded support that were previously examined. This allows the following theorems to be stated for
more general functions, although the existence and uniqueness of these systems have not been proven;
they are nonetheless assumed to hold. Meaning unique solutionsX(t) to equation 4.1 are assumed to
exist globally.
The observation is given by

dY(t) = h(X)dt+Φ(X(t), t)dV(t). (4.2)

HereY(t) ∈ Rm, h describes the observation, with initial conditionY(t0), Φ ∈ Rm×m the matrix describ-
ing the intensity of the measurement noise and V(t) ∈ Rm a Wiener process independent of W and
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V(t) ∼ N (0, R(t)). For h(X), a function describing the change in observation of X(t) whose differen-
tial is quadratic, it is assumed that h is a polynomial of at most second order in space and smooth in time.

This systemwill be assessed using the following state estimator, which was generally given by Equation
2.21 in an earlier chapter:

dX̂(t) = X̂(t)(r−AX̂(t))dt+K(t)(dY(t)− h(X̂(t), t)). (4.3)

Here K is the Kalman gain, also described in Equation 2.21. The error of this estimation is then given
by

η(t) = X(t)− X̂(t). (4.4)
By linearizing equation 4.1 by letting B(X = d

dXb(X) and equation 4.2 by settingH(X) = d
dXh(X), and

lettingψ(X(t), X̂(t)), χ(X(t), X̂(t)) be the remaining nonlinear terms fromf(X(t))−f(X̂(t)) respectively
h(X)− h(X̂), i.e.

ψ(X(t), X̂(t)) = b(X(t))− b(X̂(t))−B(X(t))[X(t)− X̂(t)], (4.5)

χ(X(t), X̂(t)) = h(X(t))− h(X̂(t))−H(X)[X(t)− X̂(t)]. (4.6)

Where, as earlier b(X(t)) = X(t)(r−AX(t)) thus ψ is a vector with its i-th element being

ψi(t) = (xi(t)− x̂i(t))

 n∑
j=1

ai,j(xj(t) + x̂j(t))

 . (4.7)

The vector χ(t) depends on the choice of h(X).
From now on, instead of writing B(X(t)) notation will be simplified and B(t) will be written.
Both of these functions, ψ, χ are quadratic as the functions described by them are polynomial function
of at most power two. Lastly set ℓ(t) = ψ(X(t), X̂(t))−K(t)χ(X(t), X̂(t)) in order to rewrite η(t) as

dη(t) = [(B(t)−K(t)H(t))η(t) + ℓ(t)] dt+ (Σ(X(t), t)dW(t)−K(t)Φ(X(t), t)dV(t)). (4.8)

Let this system be rewritten as:

dη(t) = f(η(t), t)dt+G(η(t), t)dW̃(t). (4.9)

Meaning f : Rn × [t0, T ] → Rn, f(η(t), t) = B − K(t)H(t))η(t) + ℓ(t), G(η(t), t) = Σ(X(t), t) −
K(t)Φ(X(t), t) and W̃ is the vector with W and V.
Let K(t) be locally Lipschitz continuous, then f , G are locally Lipschitz continuous and experience
local linear growth as the other coefficients already satisfy this criterion. Furthermore, assume that
the coefficients of the derivative of f with respect to t are again Lipschitz continuous, that is, ∂

∂tf has
Lipschitz continuous coefficients in space.

Lemma 4.0.1. Itô’s lemma[Kozdron, 2009]:
Let η(t) : [t0,∞) 7→ R be a diffusion satisfying the SDE (equation 4.9) with initial condition η(t0)

dη(t) = f(η(t), t)dt+G(η(t), t)dW̃(t). (4.10)

Then, for all V ∈ C2(Rn)× C1(R) almost surely for t ∈ [t0, T ]:

dV (η(t), t) = LV (η(t), t)dt+G(η(t), t)∇ηV (η(t), t)dW̃, (4.11)

with

LV (η(t), t) =
∂V

∂t
(η(t), t) + f(η(t), t)(∇ηV (η(t), t)) +

1

2
tr(GT (η(t), t)Hη(V (η(t), t))G(η(t), t)). (4.12)

Here ∇ηV is the gradient of V with respect to η, just as Hη(V ) is the Hessian matrix of V with respect
to η, lastly tr denotes the trace of a matrix.
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Due to the earlier assumptions, a solution exists until some later time T , meaning an infinitesimal gen-
erator can be defined. An infinitesimal generator, sometimes called a differential generator provides a
bridge between stochastic differential equations and deterministic equations, by describing the move-
ment of a process for a short time interval. In Itô’s lemma, this differential generator for some stochastic
process V is given by LV . This will be used to calculate the estimation error.

Lemma 4.0.2. Bound on a determinate part:
LetX(t), X̂(t) be global solutions to Equations 4.1 respectively 4.3, P the covariance matrix and R the
variance of the observer’s noise, as per Section 2.4.3. Assume the following conditions: ∃p, r,∈ R>0

such that:
pI ≤ P (t), P invertible, (4.13)

rI ≤ R(t), (4.14)

for t ∈ [t0, T ].

Then the following inequality holds for all times t ∈ [t0, T ] almost surely:

2(X− X̂)TP−1ℓ(t) ≤ 2

(
κψ
p

+
hκχ
r

)
||(X(t)− X̂(t))||2, (4.15)

Where ℓ(t), X̂(t)) = ψ(X(t), X̂(t))−K(t)χ(X(t), X̂(t)).

Proof: First, it is good to remember that due to the condition of local linear growth it is known that for
some ϵψ, ϵχ, κψ, κχ ∈ R>0 the following holds:

∀X(t), X̂(t) : ||X(t)− X̂(t)|| ≤ ϵψ it holds ||ψ(X(t), X̂(t))|| ≤ κψ||X(t)− X̂(t)||, (4.16)

∀X(t), X̂(t) : ||X(t)− X̂(t)|| ≤ ϵχ it holds ||χ(X(t), X̂(t))|| ≤ κχ||X(t)− X̂(t)||. (4.17)

For X(t), X̂(t) being solutions of equation 4.1 respectively 4.3 on t ∈ [t0, T ].

This works for example for κψ = 2D

√∑n
i=1

(∑n
j=1 ai,j

)2

, due to the bounds onX(t) by Theorem 3.3.1
and Equation 4.7.
Again, for χ it depends on the chosen function h.

By definition (Equation 2.21) it is given that K(t) = P (t)HT (t)R−1(t), filling this in into the left side of
Equation 4.15 yields:

2(X(t)− X̂(t))T (t)P−1ℓ(t)

=2(X(t)− X̂(t))T (P−1(t)ψ(X(t), X̂(t))−HT (t)R−1(t)χ(X(t), X̂(t))), (4.18)

≤2(X(t)− X̂(t))T (
1

p
ψ(X(t), X̂(t))−HT (t)

1

r
χ(X(t), X̂(t))). (4.19)

Here R−1 exists, as R is diagonal and greater than zero. As X is bounded, so is the observer matrix
H, as this matrix discribes observing a bounded value. Thus it is given that ∃h ∈ R>0 such that:

||H(t)|| ≤ h (4.20)

By filling in Assumptions 4.13 and 4.14. Then taking the norm of this equation and filling in Equation
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4.20

||2(X(t)− X̂(t))TP−1ℓ(t)|| =||2(X(t)− X̂(t))T (
1

p
ψ(X(t), X̂(t))−HT (t)

1

r
χ(X(t), X̂(t)))||, (4.21)

≤||2(X(t)− X̂(t))||
(
||1
p
ψ(X(t), X̂(t))||+ ||HT (t)|| · ||1

r
χ(X(t), X̂(t))||

)
,

(4.22)

≤2||(X(t)− X̂(t))||
(
1

p
||ψ(X(t), X̂(t))||+ h

r
||χ(X(t), X̂(t))||

)
. (4.23)

And then by filling in the last two inequalities 4.16 and 4.17, taking ϵψ,χ = min(ϵψ, ϵχ) it holds for
X(t), X̂(t) : ||X(t)− X̂(t)|| ≤ ϵψ,χ:

||2(X(t)− X̂(t))TP−1ℓ(t)|| ≤ 2||(X(t)− X̂(t))||
(
κψ
p

+
hκχ
r

)
||(X(t)− X̂(t))||. (4.24)

Which can easily be rewritten into Equation 4.15.

The following lemma holds for general Σ, although later it will be used for the specific Σ, as used all
throughout the paper.

Lemma 4.0.3.
For K(t) being the Kalman gain, P (t) the covariance matrix as described in Section 2.4.3, equation
2.21 and Σ,Φ time varying matrices on t ∈ [t0, T ], fulfilling the following conditions: ∃p, k, ωΦ ∈ R>0 I
being the identity matrix, n,m being the number of rows of Σ and Φ respectively:

pI ≤ P (t), (4.25)

||K(t)|| ≤ k, (4.26)

||Σ(t)|| ≤ ς(t), for some function ς(t), (4.27)

||Φ(t)ΦT (t)|| ≤ ωΦ, (4.28)

then:
tr
[
(Σ(t)ΣT (t) +K(t)Φ(t)ΦT (t)KT (t))P−1

]
≤ (ς2(t) + k

2
ωΦm)

1

p
. (4.29)

Proof: A p ∈ R>0 : P (t) ≤ pI exists as P only has a bounded support and Xi being bounded above
(see Chapter 3).
Just as in Lemma 4.0.2 P−1 exists with probability 1, as due to 4.25 P is bounded on the diagonal by p
as a lower bound and all other elements are 0. As p > 0 no eigenvalue can be zero, thus P is invertible
[de Groot, 2021] with probability 1.
Due to ||Σ(t)|| being bounded by ς(t), the following equalities hold:

||Σ(t)ΣT (t)|| ≤ ||Σ(t)|| · ||ΣT (t)|| ≤ ||Σ(t)||2 ≤ ς2(t). (4.30)

Due to the bound on ||Φ(t)ΦT (t)|| its trace is bounded by ωΦtr[Im×m] with Im×m being the identity ma-
trix with m rows, which results in the following bound on the trace: tr

(
Φ(t)ΦT (t)

)
≤ mωΦ.

Then, again by condition 4.25 the following holds:

p−1I ≤ P−1(t) ≤ p−1I (4.31)
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Furthermore, by conditions 4.26,4.27 and 4.28

tr
[
(Σ(t)ΣT (t) +K(t)Φ(t)ΦT (t)KT (t))P−1(t)

]
(4.32)

≤
(
tr
[
(Σ(t)ΣT (t)

]
+ ktr

[
Φ(t)ΦT (t)

]
k
) 1
p
, (4.33)

≤ (ς2(t) + kωΦmk)
1

p
. (4.34)

Lemma 4.0.4. Gronwall inequality[Tao, 2006]:
Let u : [t0, T ] → R be continuous and nonnegative and suppose u fulfils the following inequality for all
t ∈ [t0, T ], α ≥ 0, β(t) : [t0, T ] ∈ R>0 continuous:

u(t) ≤ α+

∫ t

t0

β(s)u(s)ds, (4.35)

then ∀t ∈ [t0, T ]

u(t) ≤ α exp

(∫ t

t0

β(s)ds

)
. (4.36)

The following theorem proves the asymptotic boundedness of the extended Kalman filter error, denoted
by η(t), in expectation. This proof is based on Reif’s proof [Reif et al., 2000], which has been expanded
through generalisation and specification in certain parts. This is done by using a more general function
for the estimated covariance matrix P , as well as relaxing the bound on ||Σ(X(t), t)||. Due to the nature
of the system of equations, as described in Equation 4.1 and the earlier conditions, some of the con-
straints could be relaxed. Furthermore, this proof does not use Lyapunov functions and is fully worked
out, which simplifies it.

Theorem 4.0.1. Exponential bound of the squared error in expectation:
Let X(t), X̂(t) be solutions of equation 4.1 respectively 4.3 on t ∈ [t0, T ] such that E[X(t0)]

2 +
E[X̂(t0)]

2 <∞ for all t ∈ [t0, T ].
For the stochastic equation as in 3.4 let the following assumptions hold: ∃p, r, q, ωΦ ∈ R>0 and let I be
the identity matrix

pI ≤ P (t), for all t ∈ [t0, T ], (4.37)

rI ≤ R(t), for all t ∈ [t0, T ] and subsequently R(t) being invertible, (4.38)

qI ≤ Q(t), for all t ∈ [t0, T ], (4.39)

||Σ(X(t), t)|| ≤ ς(t), ς ∈ L2, for all t ∈ [t0, T ], X(t) ∈ Rn (4.40)

||Φ(X, t)ΦT (X, t)|| ≤ ωΦ, for all t ∈ [t0, T ], X(t) ∈ Rn. (4.41)

Then, for all t ∈ [t0, T ]:

E
[
||η(t)||2

]
≤ E[||η(t0)||2] exp(−

∫ t

t0

(
−µς2(t) + pµd + µn(t)

)
ds). (4.42)
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Proof: First, remember, due to the condition of local linear growth, ∃ϵψ, ϵχ, κψ, κχ ∈ R

∀X(t), X̂(t) : ||X(t)− X̂(t)|| ≤ ϵψ it holds ||ψ(X(t), X̂(t))|| ≤ κψ||X(t)− X̂(t)||, (4.43)

and
∀X(t), X̂(t) : ||X(t)− X̂(t)|| ≤ ϵχ it holds ||χ(X(t), X̂(t))|| ≤ κχ||X(t)− X̂(t)||. (4.44)

Again, this holds for a specific κψ as described in Lemma 4.0.2, κχ depends on the choice of h. Also
remember, that just as in Lemma 4.0.2 ∃h ∈ R>0:

||H(t)|| ≤ h. (4.45)

As well as a p ∈ R>0 such that:
P (t) ≤ pI, (4.46)

exists as P is bounded, due to Xi being bounded above (see Chapter 3).
Now let V (η, t) = ηT (t)P−1(t)η(t), again assuming P−1 exists as in the Lemmas 4.0.2 and 4.0.3.
Remember by Equation 4.9 η satisfies dη(t) = [(B(t)−K(t)H(t))η(t) + ℓ(t)] dt+ (Σ(X(t), t)dW(t)−
K(t)Φ(X(t), t)dV(t)), then:

∂V

∂t
(η, t) =

d(ηT (t)P−1(t)η(t))

dt
(t) = ηT (t)

dP−1(t)

dt
(t)η(t). (4.47)

And as for almost all t ∈ [t0, T ], with f from Equation 4.9: f(η, t) = (B(t) − K(t)H(t))η(t) + ℓ(t),
remember that by equation 2.21 P is defined by d

dtP (t) = F (t) · P (t) + P (t)F (t)T − K(t)H(t)P (t) +
GQ(t)GT , then:

f(η(t), t)(∇ηV ) = [(B(t)−K(t)H(t))η(t) + ℓ(t)] (∇ηV ), (4.48)
= [(B(t)−K(t)H(t))η(t) + ℓ(t)] (∇η(η

T (t)P−1(t)η(t))), (4.49)
= [(B(t)−K(t)H(t))η(t) + ℓ(t)] (IP−1(t)η(t) + ηT (t)P−1I), (4.50)
= [(B(t)−K(t)H(t))η(t) + ℓ(t)] (2ηT (t)P−1(t)), (4.51)
= ηT (t)(B(t)−K(t)H(t))TP−1(t)η(t)

+ ηT (t)P−1(t)(B(t)−K(t)H(t))η(t)

+ ℓ(t)2ηT (t)P−1(t), (4.52)

with ℓ(t) = ψ(X(t), X̂(t)) − K(t)χ(X(t), X̂(t)), and (P−1)T (t) = P−1(t) as P−1(t) is diagonal due to
condition 4.37 and 4.46. Also ℓ(t)2ηT (t)P−1(t) = 2ηT (t)P−1(t)ℓ(t) and
1

2
Tr(GT (η(t), t)Hη(V )G(η(t), t)) =

1

2
Tr(GT (η(t), t)2P−1(t)G(η(t), t)) = Tr(GT (η(t), t)G(η(t), t)P−1(t)).

(4.53)
As V (η, t) = ηTP (t)−1η = P−1(t)||η||2 due to diagonality of P−1 then the Hessian with respect to η is
Hη(P

−1(t)||η||2) = 2P−1(t). Filling in G = Σ(X(t), t)−K(t)Φ(t) then results in the following equation:
1

2
tr(GT (η(t), t)Hη(V )G(η(t), t)) =tr

(
(ΣT (X, t)Σ(X, t)− ΣT (X, t)K(t)Φ(t)

−(K(t)Φ(t))TΣ(X, t) +K(t)Φ(t)ΦT (t)KT (t))P−1
)
. (4.54)

By filling in V (η, t) = ηT (t)P−1(t)η(t) in the differential generator, Equation 4.12 from Itô’s lemma,
Lemma 4.0.1, combining this with Equations 4.47, 4.52 and 4.54 yields:

LV (η(t), t) = ηT (t)
dP−1

dt
(t)η(t)

+ ηT (t)(B(t)−K(t)H(t))TP−1(t)η(t)

+ ηT (t)P−1(t)(B −K(t)H(t))η(t)

+ ℓ(t)2ηT (t)P−1(t)

+ tr
(
(ΣT (X(t), t)Σ(X(t), t) +K(t)Φ(t)ΦT (t)KT (t))P−1

)
. (4.55)
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Using Lemma 4.0.2 it is known that: 2(X− X̂)TP−1ℓ(t) ≤ 2
(
κψ
p +

hκχ
r

)
||(X− X̂)||2, due to conditions

4.37 and 4.38 as well as that R is invertible, on ϵψ,χ = min(ϵψ, ϵχ). Let µd = 2
(
κψ
p +

hκχ
r

)
.

Furthermore from Lemma 4.0.3, whose conditions are satisfied by 4.37, 4.40 and 4.41, as the bound
onK is given by then ||K|| = ||P (t)HT (t)R−1(t)|| ≤ ph

r = k, due to 4.38, 4.45 and 4.46 it is known that:

tr
(
(ΣT (X, t)Σ(X, t) +K(t)Φ(t)ΦT (t)KT (t))P−1

)
≤ 1

p (ς
2(t) + k

2
ω2
Φm

2) Let µn(t) = 1
p (ς

2(t) + k
2
ωΦm)

Combining this with Equation 4.55 yields:

LV (η(t), t) ≤ ηT (t)
dP−1

dt
(t)η(t)

+ ηT (t)(B(t)−K(t)H(t))TP−1(t)η(t)

+ ηT (t)P−1(t)(B −K(t)H(t))η(t)

+ µd||(X(t)− X̂(t))||2 + µn(t). (4.56)

By utilizing K(t) = P (t)HT (t)R−1(t), and given that R−1(t) and P−1(t) are diagonal, due to R(t) and
P (t) being diagonal the following holds:

ηT (t)
dP−1

dt
(t)η(t) + ηT (t)(B(t)−K(t)H(t))TP−1(t)η(t) + ηT (t)P−1(t)(B(t)−K(t)H(t))η(t) (4.57)

=ηT (t)

(
dP−1

dt
(t) + (B(t)−K(t)H(t))TP−1(t) + P−1(t)(B(t)−K(t)H(t))

)
η(t) (4.58)

=ηT (t)

(
dP−1

dt
(t) +BT (t)P−1(t)−HT (t)KT (t)P−1(t) + P−1(t)B(t)− P−1(t)K(t)H(t)

)
η(t) (4.59)

=ηT (t)

(
dP−1

dt
(t) +BT (t)P−1(t)−HT (t)(R−1(t))TH(t) + P−1(t)B(t)−HT (t)R−1(t)H(t)

)
η(t)

(4.60)

=ηT (t)

(
dP−1

dt
(t) +BT (t)P−1(t) + P−1(t)B(t)− 2HT (t)R−1(t)H(t)

)
η(t). (4.61)

The derivative of a matrix by a scalar is given by d
dtP

−1(t) = −P−1(t) d
dtP (t)P

−1(t)[Pawel, 2006], in
combination with d

dtP = B(t)P (t) + P (t)BT (t)− P (t)H(t)TR(t)−1H(t)P (t) + ΣQ(t)ΣT from Equation
2.21, this yields the following equivalence:

ηT (t)

(
dP−1

dt
(t) +BT (t)P−1(t) + P−1(t)B(t)− 2HT (t)R−1(t)H(t)

)
η(t) (4.62)

=ηT (t)
(
−HT (t)R−1(t)H(t)− P−1(t)Σ(t)Q(t)ΣT (t)P−1(t)

)
η(t). (4.63)

Combining equation 4.63 with 4.56 yields

LV (η(t), t) ≤ ηT (t)
(
−HT (t)R−1(t)H(t)− P−1(t)Σ(t)Q(t)ΣT (t)P−1(t)

)
η(t)

+ µd||η(t)||2 + µn(t). (4.64)

By using Equations 4.39 and 4.46, as well as usingHT (t)R−1(t)H(t) ≥ 0, due to 4.38,R being diagonal
and 4.40 it is given that

LV (η(t), t) ≤ −
q

p2
(
ηTΣ(t)ΣT (t)η(t)

)
+ µd||η(t)||2 + µn(t),

≤
(
−
q

p2
||ΣT (t)||2 + µd

)
||η(t)||2 + µn(t). (4.65)
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The following holds

LV (η(t), t) ≤
(
−
q

p2
ς2(t) + µd

)
p

p
||η(t)||2 + µn(t), (4.66)

≤
(
−µς2(t) + pµd

)
V (η(t), t) + µn(t). (4.67)

Due to V (η(t), t) = η(t)P−1(t)η(t), inequalities 4.37, 4.40, 4.46 and by taking µ =
qp

p2
.

Then due to L being the differential operator and rewriting 4.67 using 4.11 from Lemma 4.0.1:

V (η(t), t) ≤ V (η(t0), t0)−
∫ t

t0

([
−µς2(t) + pµd

]
V (η(s), s) + µn(t)

)
ds+

∫ t

t0

GdW̃. (4.68)

Recall that G(t) = [Σ(X(t), t),−K(t)Φ(t)] and that ||Σ(X(t), t)|| ≤ ς(t), ς ∈ L2, ||K(t)|| ≤ k and
||Φ(X(t), t)ΦT (X(t), t)|| ≤ ωϕ thus ||Φ(X(t), t)|| is bounded. As such

∫ T
0
E[||G(t)||2]dt exists and is

bounded meaning the expected value of the martingale can be calculated, using Itô integration as
outlined in Definition 2.3.5. This expected value is zero as

∫ t

t0

G(t)dW̃ = lim
m→∞

m∑
i=1

G(ti−1)(W̃(ti)− W̃(ti−1)). (4.69)

By Definition 2.3.1 E
[
W̃ (ti)− W̃ (ti−1)

]
= 0, then:

E [V (η(t), t)] ≤ E [V (η(t0), t0)]− E
[∫ t

t0

([
−µς2(t) + pµd

]
V (η(s), s) + µn(t)

)
ds

]
. (4.70)

By Fubini’s theorem, see [Halmos, 1950], this is equivalent to

E [V (η(t), t)] ≤ E [V (η(t0), t0)]−
∫ t

t0

([
−µς2(t) + pµd

]
E [V (η(s), s)] + µn(t)

)
ds. (4.71)

Where
∫ t
t0
µn(t)ds is bounded, as ς(t) is in L2. Then, by Gronwall’s inequality, Lemma 4.0.4, and

V (η(t), t) = ηT (t)P−1(t)η(t) the exponential bound on the error η is proven in expectation, and we
have

E
[
||η(t)||2

]
≤ E

[
||η(t0)||2

]
exp(−

∫ t

t0

(
−µς2(t) + pµd + µn(t)

)
ds). (4.72)

One of the main differences between this proof and the one from Reif, is that this one allows a closer
bound on ||Σ(X(t), t)||, as the bound can depend on time, and only has to be in L2. For example, if Σ
is of the following form:

Σ(X(t), t) =

(
1/t

1
4 0

0 1/t
1
4

)
(4.73)

then, ||Σ(X(t), t)|| = t−
1
4 , the square of which is integrable, but the function is unbounded. Thus al-

lowed by this theorem, but not in the one from Reif’s paper [Reif et al., 2000].

In practice, and historically, most systems that describe the interaction between animals consist of just
two species, typically, a predator and its prey. In the following corollary, the necessary conditions for
Theorem 4.0.1 to hold will be worked out for the case where i = 1, 2meaning there are just two animals.
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Corollary 4.0.1.1. Bound on error in expectation in 2D case
Let X(t) = (X1(t), X2(t))

T be the solution of a system as in 4.1 for n = 2, satisfying the same local
Lipschitz conditions on the coefficients as given in Assumption 3.2.1, with a solution on [t0, T ]. The
system is then given by:

dX1(t) = X1(t)
(
r1 − a1,1X1(t)− a1,2X2(t)

)
ds

+ σ1,1(s,X1(t), X2(t))dW1(t) + σ1,2(s,X1(t), X2(t))dW2(t), (4.74)
dX2(t) = X2(t)

(
r2 − a2,1X1(t)− a2,2X2(t)

)
ds

+ σ2,1(s,X1(t), X2(t))dW1(t) + σ2,2(s,X1(t), X2(t))dW2(t). (4.75)

If the absolute value of
∑2
k=1 σi,kσj,k is bounded for all i, j = 1, 2 i.e.∣∣∣∣∣

2∑
k=1

σi,kσk,j

∣∣∣∣∣ < ασ, i, j ∈ (1, 2), (4.76)

for some ασ ∈ R>0. A similar condition for the elements of Φ, ϕi,j should hold: ∃αϕ ∈ R>0 such that∣∣∣∣∣
2∑
k=1

ϕi,kϕk,j

∣∣∣∣∣ < αϕ, i, j ∈ (1, 2). (4.77)

Lastly ∃ r, q ∈ R>0:

rI ≤ R(t) and R being invertible, (4.78)

qI ≤ Q(t), for all t ∈ [t0, T ]. (4.79)

Then Theorem 4.0.1 holds; there exists an exponential bound on the expectation of the error between
the real data and the resulting estimate from the extended Kalman filter. Meaning

E
[
||η(t)||2

]
≤ E

[
||η(t0)||2

]
exp(−

∫ t

t0

(
−µς2(t) + pµd + µn(t)

)
ds). (4.80)

Proof: The random fluctuations at all times ensure that the covariance matrix is never zero on the
diagonal, although it might be for all other values of the matrix. This ensures Condition 4.37.
Conditions 4.38, 4.39 are given in the same way, and as such, they hold.
All values of ΣΣT can be described by

∑2
k=1 σi,kσj,k, where this is the element (ΣΣT )i,j . As all these

elements are bound, so is the determinant. Meaning conditions 4.40 and 4.41 are given, and the
Theorem holds.
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Filtering Stochastic Population

Models

In this chapter, the model described in Chapter 3 will be implemented using the Extended Kalman Filter
with the data as in Section 2.2.1. Furthermore, data will be simulated using the Lotka-Volterra equation,
and noise will be applied. On this data, the model will again be applied, and an implementation will be
done simulating the case when just one of the two species has population data. All implementations
are done using Python; the data can be found in Appendix A, respectively Appendices D and E for the
simulated data, and the respective code can be found in Appendices B and C.

5.1. Example Implementation
Using the discrete extended Kalman filter as described in Section 2.4.3, the equations described in
Equation 3.4 can be fitted to the data from the Isle Royale National Park (Appendix A). The implemen-
tation of the EKF was done using Python; the code can be found in Appendix B.

Equation 3.4 simplifies to just two dimensions, thus:

dXw(t) = Xw(t0) +

∫ t

t0

Xw(s)
(
rw − aw,wXw(s)− aw,mXm(s)

)
ds

+

∫ t

t0

(
σw,w(s,Xw(s), Xm(s))dWw(s) + σw,m(s,Xw(s), Xm(s))dWm(s)

)
, (5.1)

dXm(t) = Xm(t0) +

∫ t

t0

Xm(s)
(
rm − am,wXw(s)− am,mXm(s)

)
ds

+

∫ t

t0

(
σm,w(s,Xw(s), Xm(s))dWw(s) + σm,m(s,Xw(s), Xm(s))dWm(s)

)
. (5.2)

Here t0 is of course the first time the number of wolfs and moose was recorded, being in this case
1980. The wolf population is described by Xw, and the population of the moose by Xm. By taking the
following interaction and reproduction values:

rw = 0.2 rm = 0.1 aw,w = 0.01 (5.3)
aw,m = 0.001 am,w = 0.0002 am,m = 0.00005. (5.4)

Let σi,j(Xm, Xw) = σ̃i,j(Xm, Xw)1Xi∈(cm,Cm) for i, j being w or m, with σ̃m,m(Xm, Xw) = −(Xm −
cm)(Xm−Cm), similar for σ̃w,w(Xm, Xw) = −(Xw− cw)(Xw−Cw) and let σ̃m,w(Xm, Xw) = 0 same as
σ̃w,m(Xm, Xw) = 0. This includes that σm,m(Xm, Xw) and σw,w(Xm, Xw) are zero, when Xm respec-
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tively Xw not in [c, C]. The following values are taken for c, C:

cm = 100 Cm = 2000 (5.5)
cw = 1 Cw = 20 (5.6)

And by taking the observation matrix H to be the identity matrix, as the observations are Xw, respec-
tively Xm, meaning

h(X(t)) =

(
Xm 0
0 Xw

)
, (5.7)

the differential of which is I ∈ R2×2 the following result is achieved:

Figure 5.1: The extended Kalman filter applied to the recorded number of moose and wolves in the Isle Royale national park
where the populations were described using Equation 5.1

A visual comparison of this result with the Lotka-Volterra system implementation shown in Figure 2.2
reveals that, even if a better LV fit were possible, this solution is much closer to the data points. This
is because the EKF solution allows for a fitted curve that is more irregular, which aligns more with the
data.

5.2. Finding the hidden state
This section presents an implementation of the Extended Kalman Filter (EKF), which is used to esti-
mate the ’hidden’ state. This implementation demonstrates how the model can be used in combination
with the EKF when only limited and noisy data is available.

To simulate a realistic scenario, data is generated using the Lotka-Volterra equations for two species
as given in Equation 3.2. Afterwards, random, normally distributed noise is added.

Then the model as described in Chapter 3 will be applied using the EKF, with the important difference
that it is assumed that only the number of wolves is known. This means that the filter does not know
how many moose are there, except for the initial number. The observation matrix is thus H = [0, 1]
instead of the identity matrix, which would be the case if both species are separately counted. In ecol-
ogy, it is often the case that reliable data is only available for just one species, although knowing the
number of both species could be desired. The EKF can then be used to estimate the other species, in
this case, the number of moose.
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The code for this implementation can be found in Appendix C, and was done using Python. The pack-
ages used were NumPy, for linear algebra and computations, Matplotlib.pyplot for plotting the results,
SciPy for integrating the differential equations, and Math, for computations.

Although the results may vary, due to the added stochastic noise, a possible result will be given here.
Two cases will be examined, the first being a predator-prey relationship, similar to the Wolf and Moose
interactions from earlier. The second examined case will be that of a competition relationship, where
both species curb the population growth of the other.

5.2.1. Predator-Prey Example:
The predator-prey relationship is characterised by one species hunting the other. This means that one
species directly hurts the growth of the other, whilst the latter is the basis for the population growth of
the former.
As described in Chapter 2, the predator prey relationship necessitates that the influence of the prey on
the predator population is positive, in the case of wolves and moose this means am,w > 0 whilst the
influence of the predator on the prey population is negative i.e. aw,m < 0.
In this case, it will still be assumed that populations of moose and wolves are modelled, the variables
were assumed to be the following:

rw = 1 rm = −1 aw,w = −0.01

aw,m = 1 am,w = −1 am,m = −0.01.

The added normally-distributed noise had a standard deviation of 0.5 and a mean of zero do to the
sigma functions outlined below; furthermore,

Q =

(
0.1 0
0 0.1

)
, R = 0.52, P =

(
0.1 0
0 0.1

)
. (5.8)

For both the predator and the prey the bounds of the noise are the same, c = 0, 5 and C = 5. The as-
sumption ismade that the σ-functions are the same as before, i.e. σi,j(Xm, Xw) =

0.5
t σ̃i,j(Xm, Xw)1Xi∈(cm,Cm)

for i, j beingw orm. with σ̃m,m(Xm, Xw) = −(Xm−cm)(Xm−Cm), σ̃m,w(Xm, Xw) = 0, σ̃w,w(Xm, Xw) =
−(Xw − cw)(Xw − Cw) and σ̃w,m(Xm, Xw) = 0 where cm = cw, Cm = Cw.
The simulated data is provided in Appendix D.

Figure 5.2: The extended Kalman filter applied to simulated data estimating the ’hidden’ number of moose, using equations 5.1
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5.2.2. Competition Example:
Competition between species occurs when both species rival for the same resource. In nature, there
are many examples where two species compete for the same food sources, but this is not limited to
different species. Two groups of the same species might also be seen as two competing populations.
Some well known examples are lions and cheetahs, but also woodpeckers and squirrels. The only
thing all these have in common is that they compete for food, water, habitats, etc..

By using the same code as for the last example, which is given in Appendix C, but changing the vari-
ables a simulation of such a relationship can be made for two species, S1 and S2, here of course, as
the influence of each species on the other is negative, it is necessitated that for competition to exist
a1,2, a2,1 < 0.

Take the following variables:

r1 = 0.1 r2 = 0.1 a1,1 = 0.001

a1,2 = 0.00075 a2,1 = 0.0005 a2,2 = 0.00125.

With the same matrices and values for Q,R, P as in the last example, given in 5.2.1. But changing
the standard deviation of the noise, added to the data to 4 for species S1 and 1 for species S2. With
c1 = 1, C1 = 80 for species 1, and for species 2 c2 = 1, C2 = 32.
The functions taken for σ are the same as before.

The generated data is given in Appendix E, the resulting plot can be seen in Figure 5.3.

Figure 5.3: The extended Kalman filter applied to simulated data estimating the ’hidden’ number of species 2 (S2), using
equations 5.1 and data from species 1 (S1), when both species are in competition

It should be mentioned, that instead of the earlier simulated 30-year interval, now 80 years have been
simulated. This is due to the population of the two species stabilising at that point. It can be observed
that both increase to amaximum at approximately 80 and 35 animals for species 1, respectively, species
2.



6
Discussion

In this paper, a model describing the populations of n different species was made. This was done on the
basis of the Lotka-Volterra equations, which were enhanced with a stochastic component describing
the noise. The well-posedness of solutions of these equations was proven, and the extended Kalman
filter was applied to this model, in order to estimate the populations based on partial and noisy data.

6.1. Model Realism
Although the simple Lotka-Volterra equations are already able to describe the populations of a predator
and a prey species approximately, there are some well-known problems with using the model. One of
the main problems, the randomness of interactions, was solved by adding Brownian motion. Making
this noise term dependent on the population of the species addressed the randomness in birth and
death, but also disease outbreaks, climate change or mutations.

However, the assumption that Gaussian noise describes the stochastic influence on one or more
species might not accurately capture the complex interactions. Assuming Gaussian noise is a com-
mon mathematical assumption, but it may not fully describe the noise in practice. One possible prob-
lem could be that the noise is independent of the past, meaning random deaths cannot depend on
random births, although this might seem logical. Furthermore, assuming that the support of the noise
exists only on some bounded interval between the population maximum and minimum, ensures that
the population is bounded, but might be a simplification from real life, where population bounds might
be violated.

The environment in which the species populations are described is also assumed to be isolated. In
practice, in a world less isolated from humans, many interventions are staged to prevent one or more
species from going extinct. These events cannot be predicted by any mathematical model, which
means that the accuracy of a prediction is reduced in such cases.

Furthermore, a population capacity was assumed. This was mainly done for mathematical purposes,
to ensure a prediction could be made. But also because, in practice, a very large population cannot be
sustained, due to food becoming scarce. This term is questionable to some [Dhondt, 1988] and might
oversimplify the complex interactions between species and their environment. Further including the
environment into the mathematical model might more accurately reflect these influences.

The proof for boundedness and nonnegativity, and thus existence and uniqueness of solutions, which
follows from it, was also only done in the case of two species. This means that solutions might not
exists for n or might be unbounded or negative. Although a mathematical proof for n species does not
immediately follow, it is reasonable to assume that a similar approach could be used.
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6.2. Filtering Accuracy 37

6.2. Filtering Accuracy
The extended Kalman filter (EKF) is a central element of this thesis. It is used to estimate nonlinear
population dynamics and fitting the model to data. The algorithm works recursively to estimate the (hid-
den) states from noisy or missing data. The model shows promising results when applied to simulated
data.

A significant finding of this thesis is the asymptotic exponential convergence of the estimation error of
the EKF in expectation. This proves that the results obtained with the EKF, when applied to this model,
are improving quickly when time progresses. By refraining from using Lyaponov functions or heavy
assumptions on the coefficients, the result was generalised in some directions. But this does not mean
that there are no drawbacks. For the proof, certain assumptions have been made, such as bounded
covariance matrices and invertible observation noise matrices. In practice, these condtions might not
always be met, even though they are commonly imposed in filtering theory.

6.3. Application
Although the model was applied to real-life data using the EKF, it has not been tested with many
datasets. Furthermore, issues may arise when applying the model to real-life data, as the data was
simulated when the model was tested in the case of observing just one of the species. Estimating the
parameters of the model can cause significant issues when using models of this kind in practice. This
might also be the case when applying this model.



7
Conclusion

In this report, the Extended Kalman Filter was applied to a stochastic population model. This was
done by first introducing the mathematical framework necessary, including the Lotka-Volterra equa-
tions, which were expanded to include a stochastic component. This stochastic noise was described
using the Wiener process. To this stochastic model, the EKF was applied, in order to investigate the
possibility of finding ’hidden’ states of population, i.e. determining the number of one species, if only
the amount of another species is known.

Following a thorough mathematical analysis, it has been demonstrated that the constructed model has
a unique and bounded solution for two species. This is essential if the model is to be used. In addition,
the biological basis of the model was explained, including the necessity of a bounded solution for the
model to be realistic.

For the extended Kalman filter, it was proven that any estimation using this filter has an error which is
exponentially asymptotic in expectation. This was proven for the specific population equations earlier
established in this report, which allowed for simplification of the proof and clearer, less restrictive as-
sumptions furthermore the proof was generalised in some small ways.

Lastly, the model was applied to real-life data, using the Kalman filter, and the hidden states were de-
termined for simulated data. Thereby proving that, even lacking data of one of the species, and only
having noisy data for the other, an estimation can be made for the population of both species.

In summary, this thesis presents the mathematical framework for establishing stochastic differential
equations that describe the population dynamics of multiple species. It proves that these equations,
combined with the extended Kalman filter, provide a great tool for estimating the population of animals
in the wild.
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A
Example: Population Data of Wolves

and Moose on Isle Royale

Since 1980 the number of wolves and moose have been tracked on Isle Royale National Park. This
data showcases classical cycles of an increase in the number of wolves yielding a decrease in the
number of moose following an increase in the number of moose. The data is retrieved from the United
States National Park Service [U.S. National Park Service, 2015a]
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Year Number of Wolves Number of Moose
1980 50 664
1981 30 650
1982 14 700
1983 23 900
1984 24 811
1985 22 1062
1986 20 1025
1987 16 1380
1988 12 1653
1989 11 1397
1990 15 1216
1991 12 1313
1992 12 1600
1993 13 1880
1994 15 1800
1995 16 2400
1996 22 1200
1997 24 500
1998 14 700
1999 25 750
2000 29 850
2001 19 900
2002 17 1000
2003 19 900
2004 29 750
2005 30 540
2006 30 385
2007 21 450
2008 23 650
2009 24 530
2010 19 510
2011 16 515
2012 9 750
2013 8 975
2014 9 1050
2015 3 1250
2016 2 1300
2017 2 1600
2018 2 1500
2019 14 2060



B
Example: Extended Kalman Filter for

wolves and moose on Isle Royale

1 # -*- coding: utf-8 -*-
2 """
3 Created on Tue May 13 18:35:18 2025
4

5 @author: olavv
6 """
7 import numpy as np
8 import matplotlib.pyplot as plt
9

10 def EKF(initstate,initcov,wolvesdat,moosedat,procnoisecov,mnoisecov,rw,rm,aww,awm,amw,amm,dt)
:

11 #assumes H=I
12 n=len(wolvesdat)
13 estdat=[initstate]
14 estcov=[initcov]
15 jetztest=initstate
16 jtztcovest=initcov
17 for k in range(n):
18 predictedstate=np.array([
19 jetztest[0]+dt*jetztest[0]*(rw-aww*jetztest[0]-awm*jetztest[1]),
20 jetztest[1]+dt*jetztest[1]*(rm-amw*jetztest[0]-amm*jetztest[1])
21 ])
22

23 F=np.array([[1+dt*(rw-2*aww*jetztest[0]-awm*jetztest[1]),-dt*awm*jetztest[0]],
24 [-dt*amw*jetztest[1],1+dt*(rm-amw*jetztest[0]-2*amm*jetztest[1])]])
25 #Assume sigma is -(x_i-c)(x_i-C)
26 F[:,0]=[i-(i-0.5)*(i-5)*np.random.normal(0,processnoisewolf) if 5>i>0.5 else i for i

in F[:,0]]
27 F[:,1]=[i-(i-0.5)*(i-5)*np.random.normal(0,processnoisemoose) if 5>i>0.5 else i for i

in F[:,1]]
28

29

30 #cov
31 predcov=np.matmul(np.matmul(F,jtztcovest),np.transpose(F))+procnoisecov
32

33 #Kalman ggain
34 H=np.eye(2)
35 S=np.matmul(np.matmul(H,predcov),np.transpose(H))+mnoisecov
36 K=np.matmul(np.matmul(predcov,np.transpose(H)),np.linalg.inv(S))
37

38 #update
39 meas=np.array([wolvesdat[k],moosedat[k]])
40 In=meas-np.matmul(H,predictedstate)
41 updatestat=predictedstate+np.matmul(K,In)
42 I=np.eye(2)
43 updatecov=np.matmul((I-np.matmul(K,H)),predcov)

43



44

44

45 estdat.append(updatestat)
46 estcov.append(updatecov)
47 jetztest=updatestat
48 jtztcovest=updatecov
49 return estdat,estcov
50

51 wolves=np.array
([50,30,14,23,24,22,20,16,12,11,15,12,12,13,15,16,22,24,14,25,29,19,17,19,29,30,30,21,23,24,19,16,9,8,9,3,2,2,2,14])

52 moose=np.array
([664,650,700,900,811,1062,1025,1380,1653,1397,1216,1313,1600,1880,1800,2400,1200,500,700,750,850,900,1000,900,750,540,385,450,650,530,510,515,750,975,1050,1250,1300,1600,1500,2060])

53 years=np.arange(1981,2021)
54 initval=np.array([wolves[0], moose[0]])
55 initcov=np.diag([100,10000])
56

57 #parameters
58 rw=0.2
59 rm=0.1
60 aww=0.01
61 awm=0.001
62 amw=0.0002
63 amm=0.00005
64 timestep=1
65 dim=2
66

67 processnoisewolf=5
68 measurementnoisewolf=3
69 processnoisemoose=50
70 measurementnoisemoose=30
71 pnoisecov = np.diag([processnoisewolf**2,processnoisemoose**2])
72 measurenoisecov=np.diag([measurementnoisewolf**2,measurementnoisemoose**2])
73

74

75 stateest,covest=EKF(initval,initcov,wolves[:-1],moose[:-1],pnoisecov,measurenoisecov,rw,rm,
aww,awm,amw,amm,timestep)

76 estw=np.array([i[0] for i in stateest])
77 estm=np.array([i[1] for i in stateest])
78

79 #plot
80 plt.figure()
81 fig,ax1=plt.subplots(figsize=(12,6))
82 ax1.plot(years,wolves,'ro',label="Number␣of␣Wolves␣(Observed)")
83 ax1.plot(years,estw,'r-',label="Number␣of␣Wolves␣(Estimated)")
84 ax1.set_xlabel("Years")
85 ax1.set_ylabel("Wolf␣population",color='r')
86 ax1.tick_params(axis='y',labelcolor='r')
87 ax1.set_ylim(0,140)
88

89 ax2 = ax1.twinx()
90 ax2.plot(years,moose,'bo',label="Number␣of␣Moose␣(Observed)")
91 ax2.plot(years,estm,'b-',label="Number␣of␣Moose␣(Estimated)")
92 ax2.set_ylabel("Moose␣population",color='b')
93 ax2.tick_params(axis='y',labelcolor='b')
94 ax2.set_ylim(0,3000)
95

96 plt.title("Wolf␣and␣Moose␣Population␣1981-2020")
97 fig.legend(loc="upper␣left", bbox_to_anchor=(0.67,0.88))
98 plt.show()



C
Example: Extended Kalman Filter for

Estimating a Hidden State, Using
Simulated Data

1 # -*- coding: utf-8 -*-
2 """
3 Created on Wed Jun 4 11:38:33 2025
4

5 @author: olavv
6 """
7

8 import numpy as np
9 import matplotlib.pyplot as plt
10 from scipy import integrate
11 import math
12

13 def LV(z,t,a,b,c,d,e,f):
14 x,y=z
15 dx=x*(a+b*y+e*x)
16 dy=y*(c+d*x+f*y)
17 return np.array([dx,dy])
18

19 a=1
20 b=-1
21 c=-1
22 d=1
23 e=0.01
24 f=0.01
25 x0=4
26 y0=2
27

28

29 def EKF(param,times,initval,initcov,R,Q,obs,x1datstd,x2datstd):
30 #Calculating the EKF for the interval 'times' using provided data
31 #Due to the randomness of the data it might be necessary to run more than once to get a '

good' result. It might flatline otherwise. A solution can also be to reduce the noise
.

32 a,b,c,d,e,f=param
33 t=len(times)
34 Sest=np.array(initval)
35 P=np.array(initcov)
36 pred=[Sest]
37

38 for k in range(1,t):
39 dt=times[k]-times[k-1]
40 val=integrate.odeint(LV,Sest,[times[k-1],times[k]],args=(a,b,c,d,e,f))
41 Sestpred=val[1]

45



46

42 F=np.array([[a+b*Sest[1]+2*e*Sest[0],b*Sest[0]],[d*Sest[1],c+d*Sest[0]+2*f*Sest[1]]])
43 #Assume sigma is -(x_i-c)(x_i-C)
44 F[:,0]=[i-(i-1)*(i-20)*np.random.normal(0,processnoisewolf) if 1>i>20 else i for i in

F[:,0]]
45 F[:,1]=[i-(i-100)*(i-2000)*np.random.normal(0,processnoisemoose) if 100>i>2000 else i

for i in F[:,1]]
46

47 Ppred=np.matmul(F,np.matmul(P,np.transpose(F)))+Q
48

49 zk=np.array(obs[k,1])
50 H=np.array([[0,1]])
51 #H=only observe second species
52 hkpred=np.array([Sestpred[1]])
53 yk=zk-hkpred
54 Sk=np.matmul(H,np.matmul(P,np.transpose(H)))+R
55 Kk=np.matmul(P,np.matmul(np.transpose(H),np.linalg.inv(Sk)))
56 Sest=Sestpred+np.matmul(Kk,yk)
57 P=P-np.matmul(Kk,np.matmul(H,Ppred))
58

59 pred.append(Sest)
60 return np.array(pred)
61

62 #Time
63 tms=np.linspace(0,30,30)
64 init=[x0,y0]
65

66 dat=integrate.odeint(LV,init,tms,args=(a,b,c,d,e,f))
67

68 #Adding noise to data & ensuring all species are greater than zero in population
69 #c=0.5, C=5 here, c,C the same for both species
70 x1datstd=0.5
71 x2datstd=0.5
72 ndat=dat.copy()
73 ndat[:,0]=[i+np.random.normal(0,x1datstd) if 5>i>0.5 else i for i in ndat[:,0]]
74 ndat[:,1]=[i+np.random.normal(0,x2datstd) if 5>i>0.5 else i for i in ndat[:,1]]
75 ndat[:,0]=np.maximum(0,ndat[:,0])
76 ndat[:,1]=np.maximum(0,ndat[:,1])
77

78 #covariance
79 initcov=np.eye(2)
80 initcov=initcov*0.1
81 Q=np.array([[0.1,0],[0,0.1]])
82 R=np.array([[x1datstd*x1datstd]])
83 syspar=(a,b,c,d,e,f)
84

85 #Running EKF
86 pred=EKF(syspar,tms,init,initcov,R,Q,ndat,x1datstd,x2datstd)
87

88 #Plto
89 plt.figure()
90 fig,ax1=plt.subplots(figsize=(12,6))
91 ax1.plot(tms,ndat[:,0],'ro',label="Number␣of␣Wolves␣(Simulated␣LV)")
92 ax1.plot(tms,pred[:,0],'r-',label="Number␣of␣Wolves␣(Estimated)")
93 ax1.set_xlabel("Years")
94 ax1.set_ylabel("Wolf␣population")
95 ax1.tick_params(axis='y')
96 ax2=ax1.twinx()
97 ax2.plot(tms,ndat[:,1],'bo',label="Number␣of␣Moose␣(Simulated␣LV)")
98 ax2.plot(tms,pred[:,1],'b-',label="Number␣of␣Moose␣(Estimated␣without␣observation)")
99 ax2.set_ylabel("Moose␣population")
100 ax2.tick_params(axis='y')
101 plt.title("Wolf␣and␣Moose␣Population␣(Simulated␣Lotka-Volterra␣Data␣with␣EKF)")
102 fig.legend(loc="upper␣left",bbox_to_anchor=(0.555,0.88))
103 plt.show()



D
Simulated Data Used for Estimating a

Hidden State, Example 1

In Chapter 5 data is simulated using the code in Appendix C, describing a predator-prey relationship
between wolves and moose. This data is provided here.

Number of wolves Number of moose
4.03394839 1.02070638
0.22050573 4.0255511
0.04609823 1.3100197

0. 1.26167582
0.19648357 0.10968117

0. 0.
0.95907669 0.
2.3345745 0.
4.4960925 0.5709021
0.77608162 4.50582849
0.35441753 2.26430123

0. 0.86030374
1.07797034 0.76343685

0. 0.17301601
0.45604967 0.13183278
0.69436303 0.
1.57929202 0.15276637
4.3132668 1.32460344
0.95027605 4.0286377
0.31589197 2.09064807
0.67955523 0.4768965
0.64319417 0.
0.08719057 0.42942849
0.20994507 0.43430752
0.10239324 0.
3.44742043 0.
6.19153986 0.45853177
0.12036848 5.00341178
0.21173942 1.87439746

0. 1.57811827
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E
Simulated Data Used for Estimating a

Hidden State, Example 2

In Chapter 5 data is simulated using the code in Appendix C, the data describes a competition relation-
ship between species 1 and 2. This data is provided here.

Number of species 1 Number of species 2
10.00000000 5.00000000
10.92025417 5.45292056
11.91083468 5.93902597
12.97446300 6.45930774
14.11347875 7.01451952
15.32974498 7.60512852
16.62454868 8.23126586
17.99850306 8.89267952
19.45145093 9.58868970
20.98237626 10.31815056
22.58932775 11.07942040
24.26935965 11.87034305
26.01849449 12.68824276
27.83171241 13.52993458
29.70297045 14.39175184
31.62525449 15.26959105
33.59066430 16.15897409
35.59053099 17.05512611
37.61556441 17.95306709
39.65602375 18.84771261
41.70190650 19.73398044
43.74314823 20.60689853
45.76982377 21.46170899
47.77234138 22.29396367
49.74162383 23.09960835
51.66926504 23.87505020
53.54766126 24.61720853
55.37011148 25.32354713
57.13088654 25.99208894
58.82526358 26.62141205
60.44953132 27.21063114
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62.00096783 27.75936591
63.47779481 28.26769923
64.87911286 28.73612790
66.20482288 29.16550902
67.45553828 29.55700430
68.63249184 29.91202461
69.73744159 30.23217658
70.77257849 30.51921258
71.74043872 30.77498527
72.64382180 31.00140678
73.48571669 31.20041357
74.26923557 31.37393635
74.99755647 31.52387522
75.67387416 31.65207972
76.30135872 31.76033303
76.88312207 31.85034037
77.42219103 31.92372064
77.92148641 31.98200108
78.38380765 32.02661434
78.81182192 32.05889764
79.20805723 32.08009354
79.57489874 32.09135183
79.91458781 32.09373287
80.22922295 32.08821091
80.52076327 32.07567884
80.79103196 32.05695219
81.04172223 32.03277449
81.27440239 32.00382145
81.49052298 31.97070628
81.69142256 31.93398386
81.87833513 31.89415569
82.05239623 31.85167381
82.21464995 31.80694519
82.36605499 31.76033533
82.50749108 31.71217210
82.63976467 31.66274890
82.76361469 31.61232794
82.87971765 31.56114301
82.98869274 31.50940219
83.09110644 31.45729031
83.18747680 31.40497115
83.27827754 31.35258951
83.36394166 31.30027306
83.44486504 31.24813406
83.52140949 31.19627089
83.59390577 31.14476946
83.66265625 31.09370452
83.72793737 31.04314073
83.79000195 30.99313380
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