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 a b s t r a c t

Learning curves show the expected performance with respect to training set size. This is often used to evaluate 
and compare models, tune hyper-parameters and determine how much data is needed for a specific performance. 
However, the distributional properties of performance are frequently overlooked on learning curves. Generally, 
only an average with standard error or standard deviation is used. In this paper, we analyze the distributions 
of generalization performance on the learning curves. We compile a high-fidelity learning curve database, both 
with respect to training set size and repetitions of the sampling for a fixed training set size. Our investigation 
reveals that generalization performance rarely follows a Gaussian distribution for classical classifiers, regardless 
of dataset balance, loss function, sampling method, or hyper-parameter tuning along learning curves. Further-
more, we show that the choice of statistical summary, mean versus measures like quantiles affect the top model 
rankings. Our findings highlight the importance of considering different statistical measures and use of non-
parametric approaches when evaluating and selecting machine learning models with learning curves.

1.  Introduction

In (supervised) machine learning, the goal is often to optimize the 
expected performance of a model. For optimizing the expected perfor-
mance, samples are assumed to be drawn from some fixed distribution. 
However, in practice, we do not have access to this distribution. Instead, 
we rely on training and testing sets obtained from finite datasets, which 
introduces stochasticity. Factors such as, initialization or optimization 
procedures, further contribute to the variability of model performance.

To account for stochasticity, performance is most often summarized 
using the average [1]. While averages are useful in many problems, 
they are not always sufficient. If the performance distribution is highly 
skewed, exhibits heavy tails, or contains substantial outliers, the mean 
may fail to capture the underlying behavior. In such cases, more robust 
estimators such as quantiles can provide a clearer picture. For example, 
in high-risk settings, one may prefer a more conservative or, conversely, 
a more optimistic estimate than the mean. In finance, the Value-at-Risk 
measure is widely used to quantify potential losses at a specified prob-
ability level [2], and in medical applications such as drug discovery, 
higher quantiles can be used to evaluate promising candidates [3].

Average performance is used for obtaining learning curves, model se-
lection and hyper-parameter tuning. Although generally non-parametric 
tests are available, often parametric ones are utilized without being able 
to test the assumptions of it. For instance, a set of performance esti-
mates are often used with (paired) 𝑡-tests to determine if the expected 
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performance of models are significantly different with limited number 
of samples. This prevents accurately testing if actually the individual 
model performance or their differences follow a Gaussian distribution 
or not [4]. This assumption of Gaussianity is often justified by viewing 
each prediction as a Bernoulli trial, leading to a Binomial distribution 
over errors. For large and fixed test sets, the Binomial distribution is 
assumed to converge asymptotically to a Gaussian [5]. However, when 
we use finite datasets, this assumption may not hold.

To highlight that generalization performance along learning curves 
might be complex, we show an example on a OpenML-46597 classifica-
tion problem in Fig. 1(a). Here, the generalization accuracy of Quadratic 
Discriminant classifier (QDC) and Logistic Regression classifier (LREG) 
without regularization are plotted against training-set size (𝑛), with the 
solid lines representing the average performance, and the dotted lines 
representing 5% and 95% quantiles. The shaded area indicates the two 
standard deviations away from the average performance. If we look at 
average performance, QDC is preferred over LREG for a training set size 
around 𝑛 > 100. When the 5% quantile is used for comparison QDC has 
higher accuracy for 𝑛 > 200. However, if we choose the 90% quantile, 
the threshold where one chooses QDC over LREG earlier 𝑛 > 80.

This issue does not only pertain to the learning curves, but can also 
affect other sub-sampling based generalization performance estimation 
strategies. Fig. 1(b) shows the accuracy distribution of a multi-layer 
perceptron (5 hidden layers with 16 neurons) resulting from 20-fold 
cross-validation repeated 1000 times on a OpenML-1046 classification 
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Fig. 1. Performance Distributions for learning curve and cross-validation.

task. We can clearly observe a bimodal distribution for generalization 
performance, one below 0.5 accuracy level and one above. This means 
that some models resulting from the cross-validation procedure perform 
worse than random chance and some not. Across different learning rates, 
the dominant mode of the performance distribution can change. When 
conducting cross-validation with a limited computational budget, one 
may miss some of these modes and end up selecting a suboptimal learn-
ing rate.

In this paper, we systematically analyze the distributions of gener-
alization performance obtained for learning curves across a wide range 
of models, datasets, sampling strategies, and evaluation metrics. To this 
end, we create a high-fidelity learning curve database (lcdb++)1 We 
refer to it as high-fidelity since the biases introduced by predefined 
sampling grids or the limited number of repetitions that affect other 
databases [6,7]. We examine the extent to which the common Gaus-
sianity assumption holds for this database and explore how factors such 
as dataset balance, model type, loss functions, multi-class extensions, 
hyper-parameter tuning, and sampling strategies influence this. Finally, 
we assess the practical impact of these deviations by comparing model 
selection outcomes when using traditional statistics (mean and standard 
deviation) versus alternative measures such as quantiles.

2.  Experimental setup

We investigate the generalization performance along learning 
curves, which show generalization performance with respect to train-
ing set size. In this section, we formalize our definition of a learning 
curve and introduce how we constructed our learning curve database.

2.1.  Generalization performance along learning curves

Let us denote the input and output spaces as 𝕏 and 𝕐 , respectively. 
A learning algorithm  takes a training set 𝑛 ∶= (𝑥𝑖, 𝑦𝑖)𝑛𝑖=1, which is 
sampled from a dataset containing i.i.d. samples 𝑁 ∶= (𝑥𝑖, 𝑦𝑖)𝑁𝑖=1 from 
unknown distribution (𝑥, 𝑦) over 𝕏 × 𝕐 . Providing this algorithm with 
training data result in a hypothesis ℎ from a class ℍ: ℎ𝑛 ∶= (𝑛) ∈ ℍ. 
Note that, producing a hypothesis can involve hyper-parameter tun-
ing as well. Then, the prediction of a learner can be represented as 
𝑦̂ = ℎ𝑛(𝑥) ∈ 𝕐 . The performance of the learner is measured by a loss 
function (𝑦, 𝑦̂). The expected performance  of a hypothesis ℎ over 
the true distribution (𝑥, 𝑦) is given by:

(ℎ𝑛) = ∫ (𝑦, 𝑦̂)(𝑥, 𝑦)𝑑𝑥𝑑𝑦 (1)

The true performance in Eq. (1) is attainable only when we have 
access to (𝑥, 𝑦) and when the integral is tractable. In practice, the risk 

1 Our database can be found at https://surfdrive.surf.nl/files/index.php/s/
eJCTZ5n9rG72k9w.

is usually estimated through cross-validation, bootstrapping, or other 
related methods [8]. A learning curve can then be obtained by increasing 
the training set size 𝑛, repeatedly sampling training sets 𝑛 from a finite 
dataset 𝑁 , and computing the average risk

̄𝑛 = 𝔼
𝑛∼𝑁

((𝑛)). (2)

2.2.  High-fidelity learning curve database

When constructing learning curves, two key decisions must be made: 
the selection of training set sizes used to evaluate generalization perfor-
mance, and the number of repetitions performed for each size. Existing 
learning curve databases [6,7] typically employ only 25 repetitions per 
training set size. However, this number is insufficient to obtain reliable 
distributions of generalization performance, which is the focus of our 
study. To address this, we repeat our experiments 1000 times. This ap-
proach allows us not only to analyze average performance but also to 
estimate additional statistical measures, such as quantiles, with greater 
accuracy. Furthermore, previous databases rely on a sparse grid of train-
ing set sizes, whereas we consider every possible training set size for 
each dataset. In addition, unlike prior work, we account for different 
sampling and splitting strategies as well as hyperparameter optimiza-
tion.

The database contains the generalization performance of Logistic 
Regression (LREG), Linear and Gaussian Kernel Support Vector Ma-
chine (LSVC, GSVC), Linear Discriminant and Quadratic Discriminant 
(LDC, QDC), Nearest Mean (NMC), Decision Tree (DT), Random For-
est (RFOR), AdaBoost (ADAB) classifiers. Since some of these methods 
do not support multi-class classification we use one-vs-rest for general-
ization performance estimates. In our experiments we investigated 10 
datasets from OpenML database [9]. We utilize the four widely used 
performance measures for classification tasks. Area Under the receiver-
operating characteristic curve (AUC), Brier Loss (BRI), Accuracy (ACC) 
and Cross-Entropy Loss (CE) . Note that AUC is only for binary clas-
sification, hence we use one-vs-rest strategy to generalize two-class 
classifiers to multi-class classifiers [10]. Every training set size in the 
range 𝑛 ∈ [1, 0.7 ∗ 𝑁] for fixed models and 𝑛 ∈ [10, 0.7 ∗ 𝑁] for hyper-
parameter tuned learning curves is used. Moreover, for every training 
set size we repeat the experiments 1000 times.

To investigate the effect of splitting and sampling schemes in learn-
ing curve generation, we consider the most common approaches. One 
way to obtain a learning curve is by using all available data, while 
another is by separating a test set at the beginning [8]. If the whole 
dataset is used, the size of the test set decreases as the number of train-
ing samples increases. We refer to this approach as Varying Testset. In 
contrast, when the dataset is split at the start, we call it Fixed Testset. 
To obtain multiple training datasets for a given training size, several 
sampling strategies may be employed, such as input density preserving 
sampling, cross-validation, random sampling, or the bootstrap method 
[11]. In our study, we focus on the simplest settings to examine the 
effect of sample replacement and sample dependence. Specifically, we 
use Random sampling, where samples are drawn without replacement; 
Bootstrap sampling, where samples are drawn with replacement; and Ad-
ditive sampling, where random samples are drawn without replacement 
and incrementally added to the training dataset. A visual summary of 
the possible samplings is shown in Fig. A.4, and information about the 
OpenML datasets used can be found in Table A.8.

To maintain a manageable computational load, we limited hyper-
parameter tuning to a single parameter for models with multiple hyper-
parameters, specifically ADAB (maximum iterations), DT (minimum leaf 
size), and RFOR (number of trees). For each hyper-parameter, we con-
ducted a grid search over 20 values. Continuous hyper-parameters were 
sampled logarithmically between 10−8 and 10−1, while discrete hyper-
parameters were sampled uniformly between 1 and 100. All experiments 
were performed using our in-house learning curve generation tool [12].
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Fig. 2. Investigating the performance distribution in various settings for OpenML-1063 dataset with fixed testset.

Table 1 
Percentage of non-normal performance distributions for each loss measure and dataset.

 11  23  37  53  61  1063  44037  46597  46733  46847
 Accuracy  98.16 ± 6.28%  99.75 ± 0.46%  97.63 ± 6.68%  94.85 ± 13.75%  99.38 ± 2.47%  93.77 ± 9.98%  91.95 ± 16.79%  88.10 ± 19.30%  97.76 ± 9.73%  94.66 ± 15.14%
 AUC  92.27 ± 12.85%  97.14 ± 5.96%  93.57 ± 21.84%  82.15 ± 28.38%  91.51 ± 13.61%  88.82 ± 15.25%  87.70 ± 21.64%  86.47 ± 16.13%  97.54 ± 4.82%  86.63 ± 23.61%

Table 2 
Percentage of non-normal performance distributions for each loss measure and model.

 ADAB  DT  GSVC  LDC  LREG  LSVC  NMC  NNC  QDC  RFOR
 Accuracy  99.58 ± 2.21%  97.90 ± 5.12%  97.25 ± 8.14%  99.14 ± 2.33%  95.99 ± 8.43%  92.87 ± 18.94%  97.91 ± 6.04%  92.79 ± 13.59%  85.64 ± 22.16%  98.07 ± 5.53%
 AUC  94.55 ± 5.12%  93.56 ± 7.98%  96.09 ± 10.37%  88.83 ± 14.34%  94.99 ± 9.73%  97.28 ± 8.82%  89.70 ± 22.09%  85.07 ± 19.30%  69.43 ± 35.53%  95.58 ± 8.84%

3.  Results

In this section, we investigate if the generalization performance dis-
tributions follow a Gaussian distribution and the effect of it. This inves-
tigation is conducted from various aspects, including model family, per-
formance metric, and sampling strategy. Samples of generalization per-
formance distributions from our learning curve database are presented 
in Fig. 2, along with density estimations of the observed generalization 
performance for several cases. Results in this section pertain only to 
Accuracy and AUC. Furthermore, unless pairwise comparisons are not 
mentioned the whole database is used, for the paired investigations 3 
missing dataset results are excluded. The corresponding results for other 
loss measures are presented in Appendix D.

The effect of sampling strategies is visualized in Fig. 2(a), using a 
fixed learner ADAB and OpenML-1063 dataset. While the overall varia-
tion between sampling methods are not substantial, it is apparent that 
the fixing the test set size can shift the current modes and add other 
modes to the generalization performance. Since we do not see a signif-
icant difference between the sampling strategies, we use the Additive
sampling strategy in the rest of the Fig. 2 with the Fixed Testset as that 
is the mostly used setting in supervised machine learning applications.

Fig. 2(b) shows slices of training set sizes versus generalization per-
formance for a fixed QDC model for OpenML-1063 dataset, and the ac-
curacy performance metric. As seen in the figure, when the training set 
size is small (𝑛 = 1) performance distribution has two distinct modes. As 
the sample size increases, the distribution of generalization performance 
changes significantly. So, the generalization performance distribution 
changes with respect to training set size.

For the same dataset and training set size, different models have com-
pletely different performance distributions. In Fig. 2(c), we plot perfor-
mance distributions for a fixed sample size (𝑛 = 100) and a fixed dataset 
across all models. It is evident that not only does the average of the 
performance distributions vary, but the shapes of the distributions also 
differ. LSVC displays a heavy-tailed performance distribution, NMC has 
bi-modal distribution, while DT has a more uniform spread. In contrast, 
the ADAB exhibits a multiple modes that are close to each other.

Tuning the hyper-parameters for the same sample size of one model 
(QDC in this case) can also alter the generalization performance distri-

bution compared to fixed model. As shown in Fig. 2(d), although the 
average of the performance improves with tuning, it creates another 
mode that is close to the not tuned version performance, indicating that 
tuning can still lead to poorly performing models in some cases.

As illustrated in Fig. 2, the distribution of generalization perfor-
mance can vary significantly depending on how learning curves are ob-
tained, and may deviate from Gaussianity. In the following section, we 
qualitatively investigate how frequently this deviation occurs using our 
learning curve database, derived from various real-world datasets.

3.1.  Deviations from the Gaussian distribution

Across all loss functions and datasets, we investigate, for each train-
ing set size, whether the distribution of generalization performance is 
Gaussian along learning curves. Approximately 94% of the generaliza-
tion performance distributions are found to be non-Gaussian according 
to the Shapiro-Wilk test [13,14] with significance level of 𝛼 = 0.05. To 
further validate these results, we also conducted D’Agostino and Pear-
son’s normality test [15] at the same significance level, which identi-
fied 89% of the distributions in our dataset as non-Gaussian. The close 
agreement between the two tests reinforces that generalization perfor-
mance distributions rarely follow a Gaussian form in our learning curve 
database for classical learners. For the remainder of this paper, all nor-
mality analyses are performed using the Shapiro-Wilk test.

In Table 1, we present the percentages of non-Gaussian generaliza-
tion performance distributions, along with corresponding standard de-
viations. For nearly all datasets, the accuracy metric consistently shows 
the lowest level of Gaussianity, with only around 5% of distributions de-
tected as Gaussian. This shows that it is rare to find performance distri-
butions that are Gaussian on our database of generalization performance 
distributions.

Among all datasets, OpenML-23 exhibits the lowest proportion of 
Gaussian distributions, approximately 2%. This dataset is imbalanced, 
containing a different number of samples across all available classes. In 
contrast, OpenML-46597, which is balanced (with the same number of 
samples per class), exhibits the highest percentage of Gaussian cases.

To better investigate the effect of dataset imbalance, Table 3 also 
reports our statistics separately for balanced and imbalanced datasets. 
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Table 3 
Effect of dataset imbalance to the 
Gaussianity.

 Imbalanced  Balanced
 Accuracy  96.95%  93.57%
 AUC  92.66%  86.96%

Table 4 
Percentage of non-normal and loss 
measure for binary and multi-class 
cases of LREG.

 Binary  Multi-class
 Accuracy  96.99%  94.78%
 AUC  93.21%  96.43%

Table 5 
Percentage of non-normal test splits for each dataset for Accuracy and a fixed 
testset.

 DT  LDC  LREG  RFOR
 Not Tuned  97.67±6.03%  99.80± 0.57%  97.89 ±5.47%  97.82±5.47%
 Tuned  98.73±4.84%  99.50 ± 1.67%  98.72 ±4.35%  100.0 ±0.00%

Our analysis indicates that data imbalance has only a marginal overall 
effect for the accuracy metric. However, for AUC metric there is around 
6% increase in Gaussian distributed performance. A similar result is ob-
served for Brier Loss, see Appendix D. This indicates that performance 
metrics can be affected by data imbalance.

Different models lead to different performance distributions. An example 
of this is shown in Fig. 2(c). To assess whether certain models are more 
prone to producing non-Gaussian generalization performance distribu-
tions, Table 2 reports the percentage of non-Gaussian cases observed 
for each model across different loss functions. Our selection covers a 
diverse range of model families, including ensemble methods, gradient-
based learners, and models with analytical solutions. Among all models, 
ADAB shows the lowest propensity for Gaussian generalization perfor-
mance, with approximately 1% of its accuracy distributions classified as 
Gaussian. This effect is slightly reduced when using the AUC metric. By 
contrast, the QDC model yields 30% Gaussian distributions for the AUC.

There are several modeling decisions involved in solving supervised 
classification problems. One key decision arises when adapting a binary 
classifier to handle multi-class classification tasks. In our setup, we use 
the one-vs-rest strategy to enable this extension. To evaluate the effect 
of this approach, we focus on the Logistic Regression model applied to 
both binary and multi-class problems, as shown in Table 4. Our results 
indicate that this modeling has different effects for performance met-
rics. The accuracy metric shows minimal sensitivity to the transition 
from binary to multi-class classification with a slight increase in normal 
distributions. In contrast, the AUC metric exhibits a decrease. This is ex-
pected since it also requires adaptation through the one-vs-rest scheme 
in multi-class settings.

Hyper-parameter tuning increases the non-Gaussian performance distri-
butions. In Table 5, we examine the effects of hyperparameter tuning. 
Four different models are considered are, DT, LDC, LREG, and RFOR, 
which represent a diverse set of modeling approaches. In our database 
learning curves for hyper-parameter-tuned models are shorter than their 
untuned counterparts since their starting point is training set size 𝑛 = 10
instead of 𝑛 = 1. Hence, we restrict the analysis of untuned models to the 
same sample sizes used in the tuned setting. The evaluation metric is 
accuracy for consistency. For all selected models, hyper-parameter tun-
ing results in slight increase for non-Gaussianity of the generalization 
performance. In the case of the RFOR model, performance is entirely 
non-Gaussian.

Normality of paired performance differences. Table 6 reports the pro-
portion of non-normal performance difference distributions across all 

Table 6 
Percentage of non-normal paired generalization perfor-
mance differences for all model combinations.

 Accuracy  AUC
 Not Tuned + Varying Testset  84.85%  81.25%
 Tuned + Fixed Testset  99.24%  98.40%

Fig. 3. Plots of normality frequency and quantile–mean differences along learn-
ing curves.

model combinations. We observe that when fixed models are evaluated 
on varying test sets, the paired differences between models are more 
likely to follow Gaussian distributions, around 20% of the cases, com-
pared to learning curves obtained from tuned models on fixed test sets, 
where this holds in only about 1% of the cases. Notably, neither model 
tuning alone nor the choice between fixed and varying test sets shows 
such a pronounced increase in the normality of paired performance dif-
ference distributions.

Smaller training set sizes exhibit less normally distributed generaliza-
tion performance. Thus far, we have established that generalization per-
formance distributions along learning curves are predominantly non-
Gaussian, regardless of the assumptions made during the construction of 
the curves. To illustrate the spatial dependence of this phenomenon with 
respect to sample size, we normalize all learning curves obtained, with 
Additive sampling and Fixed Testset, to the range [0, 1] with respect to 
the training set size and report the frequency of observed non-Gaussian 
distributions across this normalized domain. As depicted in Fig. 3(a), 
the general trend indicates that the likelihood of observing Gaussian 
generalization distributions increases with larger training sample sizes. 
On our preliminary inspection we found an exception for the AUC met-
ric compared to others, where the initial segments appear to exhibit 
more Gaussian behavior. This, however, is largely due to the lack of 
variation, where the metric often remains constant at 0.5. In such cases, 
the Shapiro-Wilk test becomes invalid due to zero variance. Only 4.2%
of the generalization performance distributions in our database exhibit 
this behavior, which we nevertheless regard as Gaussian.

3.2.  Gaussianity assumption gone wrong

In the previous section, we demonstrated that the assumption of 
Gaussianity is frequently violated along learning curves. In this section, 
we investigate the consequences of this violation. Specifically, we ana-
lyze the learning curves of all models across all datasets for the Additive
sampling strategy with Fixed Testset and examine whether the rankings 
of the top-3 models change.

Our baseline is the commonly used approach of selecting mod-
els based on the mean and standard deviation, which implicitly as-
sumes Gaussian performance distributions. We compare this with se-
lection based on alternative statistical measures: the 0.975-quantile, the 
median (0.5-quantile), and the 0.025-quantile. To ensure a consistent
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Table 7 
Top-3 model Probability of observing a 
change in the top 3 models for Accuracy and 
AUC Measures with Additive Sampling where 
the test set is separate and hyper-parameter 
tuning is done. Excluding the 3 datasets that 
had missing learning curves.

 Accuracy  AUC
𝜇 + 2𝜎 vs 0.975-Quantile  0.94  0.90
𝜇 vs Median  0.42  0.44
𝜇 − 2𝜎 vs 0.025-Quantile  0.40  0.44

comparison between quantiles and the mean, we evaluate the 
0.975/0.025-quantiles relative to the mean using the interval 𝜇 ± 2𝜎, 
where 𝜇 and 𝜎 are the mean and standard deviation of the performance 
distribution, respectively in Table 7. From the table, we observe that 
selection based on the mean often resembles selection based on lower 
quantiles, with the probability of a different model ordering around 
0.40 for accuracy and 0.44 for AUC. Comparing the mean with the me-
dian shows a slightly higher probability of reordering, while the 0.975-
quantile produces the most conflicts, with a 0.94 probability that the 
top-3 models differ in ranking or composition. This indicates that model 
ordering changes significantly across different quantiles with respect to 
the mean, especially when the best-performing models are of interest.

4.  Discussion and conclusion

In this work, we investigate the distribution of classifier performance 
across multiple datasets, evaluation measures, sampling strategies, and 
training set sizes. We find that, in most cases, performance distribu-
tions deviate from a Gaussian distribution. In particular, smaller train-
ing sets often produce distributions with long tails and multiple modes, 
and hyper-parameter tuning amplifies the non-Gaussian behavior. This 
effect is consistent across different test splits and sampling strategies, 
although the choice of sampling method itself has only a minor impact 
on Gaussianity.

In addition to the normality tests presented in Section 3.1, skew-
ness [16] and kurtosis [17] tests at a significance level of 𝛼 = 0.05, show 
that approximately 84% of the skewness values and 75% of the kurtosis 
values in our database deviate from those of a Gaussian distribution. 
Analyzing the median skewness for the final training set sizes in our 
learning curve database suggests that, for all metrics, generalization 
performances are left-skewed. In terms of kurtosis, the median values 
indicate that the AUC and Accuracy metrics tend to exhibit leptokurtic 
behavior, whereas the Brier and Cross-Entropy losses generally display 
platykurtic characteristics. These results are shown in Appendix B.

The results reported in [18,19] suggest that the normality assump-
tion is well justified for many sources of variation in hyper-parameter 
optimization for deep learning applications, which are not covered in 
our study. Nevertheless, not all generalization performances in these 
studies conform to a Gaussian distribution also. Moreover, their experi-
mental setup differs from ours: their sources of variation do not include 
training set sizes. Our spatial analysis along learning curves further re-
veals that smaller training sets are more likely to yield non-Gaussian 
distributions, whereas larger sets tend to produce distributions closer to 
Gaussian behavior, partially explaining the patterns observed in prior 
work. High-fidelity learning curve generation for deep learning models 
is needed to fully verify these results.

We show the deviations from Gaussianity have practical conse-
quences for model selection. When comparing models using the mean 
and standard deviation versus robust statistics such as quantiles and me-
dians, substantial discrepancies arise. For instance, ranking models by 
the 0.95 quantile instead of the mean changes the top three models in 
90% of the cases, highlighting that relying solely on mean performance 
can be misleading.

Average learning curves can be used for model selection [20] faster 
and equally reliable as cross-validation. Under the appropriate assump-
tions, one can even find strong results regarding the expected minimum 
error achievable for a given training set size [21]. However, we argue 
that quantile-based learning curves can provide additional insights into 
training set size requirements and model robustness. For example, in 
Fig. 3(b), the average performance of the Quadratic Discriminant Clas-
sifier on the OpenML-11 dataset increases steadily with more training 
data, yet the lower quantile remains flat, indicating that poorly per-
forming runs do not improve until the training set size reaches 𝑛 = 40. 
Conversely, while the average performance appears to plateau around 
100 samples, the lower quantile begins to improve, revealing delayed 
benefits for underperforming runs. These patterns demonstrate that av-
erages can obscure critical information about reliability and robustness.

The failure of the Gaussianity assumption has further implications. In 
particular, it violates assumptions underlying (paired) 𝑡-tests commonly 
used for algorithms trained with random sub-sampling. Although we did 
not use the exact sampling strategies from [22,23], similar assumptions 
may be violated there as well, given that we observed no significant 
differences between sampling methods.

For robust empirical studies, we recommend using quantiles of gen-
eralization performance distributions using the statistical frameworks 
presented in [24,25] or investigating stochastic dominance as proposed 
in [26]. While generating well-sampled performance distributions for 
accurate quantile estimation is computationally demanding [27], such 
rigor is essential for benchmarking and model comparison to fulfill their 
intended scientific purpose [28,29], particularly in data-scarce or high-
uncertainty settings.
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Appendix A.  Learning curve database

A.1.  Dataset information and sampling strategies

As mentioned in Section 2 we have selected 10 datasets from 
OpenML [9]. The rationale for selecting the datasets is directly tied 
to the effects we aim to investigate, primarily the problem type (bi-
nary versus multi-class classification) and the degree of class imbalance. 
Given that our learning curve database evaluates performance across 
varying training set sizes, incorporates 1000 repetitions per experiment, 
and includes hyperparameter optimization, there is a significant com-
putational demand. To ensure feasibility, we have selected datasets of 
small to medium size. In constructing our collection, we carefully en-
sured that all key features relevant to our study objectives are repre-
sented. The classification datasets used in this work are presented with 
their corresponding OpenML-ID is given in Table A.8.

Our database consists of multiple sampling and splitting strategies 
these are illustrated in Fig. A.4.
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Fig. A.4. Summary of sampling strategies for learning curve generation (Ad-
ditive,Bootstrap,Random Selections and with and without split) used in this work. 
The dataset for training and testing for 2 repetitions is given for sample sizes 
2 and 3 for both varying and fixed test set. At the top (above the pink line) a 
fixed test set is used, in the bottom a varying test set is used. The dashed lines 
encapsulate the testing set, and the solid lines encapsulate the training set used 
for the learning curve creation. The colored balls represent the data points in 
the dataset. Each ball has a unique color, hence seeing the same colored data 
point multiple times indicate sampling with replacement. Ellipsis represent the 
repetition of the experiment with different samplings for the same sample size.

Table A.8 
Dataset information used in creating the Learning 
Curve Database.
 ID  Samples  Features  Classes  Balanced
 11  628  4  3  7
 23  1473  9  3  7
 37  768  8  2  7
 53  270  13  2  3
 61  150  4  3  3
 1063  523  21  2  7
 44037  4970  12  2  3
 46597  2111  16  7  3
 46847  383  16  2  7
 46733  520  16  2  7

 Description
 11  Balance Scale Weight & Distance
 23  Contraceptive Method Choice
 37  Pima Indians Diabetes
 53  Statlog (Heart)
 61  Iris
 1063  KC2 Software Defect Prediction
 44037  Tabular Benchmark
 46597  Estimation of Obesity Level
 46847  Differentiated Thyroid Cancer Recurrence
 46733  Early Stage Diabetes Risk Prediction

A.2.  Missing learning curves

In our current experiments 94 learning curves are missing out of 
4800 expected learning curves. These are due to timed out experiments 
which are not finalized because of time constraints. The missing exper-
iments are summarized in Table A.9. From these one can see that the 
missing learning curves mostly come from Gaussian Kernel Support Vec-
tor Classifier for large datasets with hyper-parameter tuning.

Table A.9 
Summary of missing learning curves.
 Category  Group  # of Missing 
 Model  ADAB  2

 GSVC  64
 LREG  6
 NNC  16
 RFOR  6

 Dataset ID  1063  24
 44037  20
 46597  50

 Hyper-parameter  Not Tuned  18
 Tuned  76

Appendix B.  Skewness and excess kurtosis

The kurtosis and skewness values at the final training set size 
of each learning curve in our database are presented in Table B.10. 
The final points were selected because they exhibit the smallest de-
viations from Gaussianity compared to earlier stages of the learning
curves.

Table B.10 
Median values of skewness and kurtosis for 
each metric at the last observation point.
 Metric  Skewness  Excess-Kurtosis
 Accuracy -0.12  0.19
 AUC -2.40  8.23
 Cross-Entropy -0.61 -0.72
 Brier -0.99 -0.72

Appendix C.  Effect of sampling strategies

For the same set of learners used in Section 3.2, we examine 
the effect of different sampling strategies without using a separate 
test split, as shown in Table C.11. The only clear difference appears 
for the Logistic Regression model combined with Bootstrap sampling, 
where we observe an increase in the proportion of performance dis-
tributions classified as Gaussian. However, beyond this case, we do 
not observe any clear or systematic relationship between the sam-
pling methods (Additive, Bootstrapping, and Random Selection) and 
the Gaussianity of the resulting performance distributions, indicating 
that not all models are affected by the sampling strategy in the same
way.

Table C.11 
Average Percentage of non-normal results for selected models 
for investigating the effect of sampling type.

 Additive  Bootstrap  Random
 DT  97.32 ± 7.17%  99.49 ± 2.00%  97.82 ± 5.78%
 LDC  99.63 ± 1.53%  99.87 ± 0.27%  99.45 ± 1.52%
 LREG  98.48 ± 4.50%  97.46 ± 6.36%  99.01 ± 3.51%
 RFOR  99.06 ± 3.90%  98.87 ± 4.20%  98.99 ± 3.90%
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Appendix D.  Corresponding results for brier and cross-entropy 
losses results

This section presents the results corresponding to those reported in 
Section 3, focusing on Brier Loss and Cross-Entropy Loss. Table D.12 
summarizes the impact of class imbalance and the number of classes 
on the Gaussianity of performance distributions. Table D.13 reports the 
Gaussianity across different datasets and models.

Fig. D.5 illustrates which portions of the learning curves exhibit a 
higher prevalence of non-Gaussian performance distributions for each 
loss function. These analyses provide insight into how dataset charac-
teristics and model selection influence the normality of the observed 
learning curve distributions.

Fig. D.5. Quantifying which portion of the learning curves we see more non-
Gaussian performance distributions for Brier and Cross-Entropy losses.

Table D.12 
Effect of dataset imbalance and number 
of classes on Gaussianity for Brier and 
Cross-Entropy losses (transposed).

 Condition  Brier  Cross-Entropy
 Imbalanced  95.21%  96.97%
 Balanced  90.84%  94.43%
 Binary  92.60%  99.74%
 Multi-class  95.22%  99.98%

Table D.13 
Average Percentage of non-normal test splits for 
each loss measure across datasets and models.
 Dataset/Model  Brier  Cross-Entropy
 11  97.72±7.13%  98.99±4.17%
 23  98.82±3.43%  99.46±3.28%
 37  91.42±23.83%  93.32±22.00%
 53  94.40±14.65%  95.39±14.16%
 61  95.74±16.19%  95.13±18.01%
 1063  90.51±15.15%  96.01±10.07%
 44037  82.79±33.02%  91.86±17.80%
 46597  91.79±13.63%  95.32±11.37%
 46733  99.11±3.87%  99.13±3.42%
 46847  93.13±15.69%  94.93±14.72%
 ADAB  99.29±2.95%  99.80±1.51%
 DT  93.89±13.76%  95.31±12.09%
 GSVC  96.42±16.39%  94.97±18.92%
 LDC  93.39±11.63%  94.51±10.73%
 LREG  93.14±12.24%  99.49±2.90%
 LSVC  91.59±27.71%  99.99±0.07%
 NMC  86.60±28.35%  87.17±27.73%
 NNC  95.07±11.91%  94.95±12.12%
 QDC  83.79±24.31%  86.58±23.15%
 RFOR  92.49±15.12%  98.33±4.34%
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