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Critical scaling of Bagnold rheology at the jamming transition of frictionless two-dimensional disks
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We carry out constant volume simulations of steady-state shear-driven rheology in a simple model of bidisperse
soft-core frictionless disks in two dimensions, using a dissipation law that gives rise to Bagnoldian rheology. We
discuss in detail the critical scaling ansatz for the shear-driven jamming transition and carry out a detailed scaling
analysis of our resulting data for pressure p and shear stress σ . Our analysis determines the critical exponent β

that describes the algebraic divergence of the Bagnold transport coefficients limγ̇→0 p/γ̇ 2,σ/γ̇ 2 ∼ (φJ − φ)−β

as the jamming transition φJ is approached from below. For the low strain rates considered in this work, we show
that it is still necessary to consider the leading correction-to-scaling term in order to achieve a self-consistent
analysis of our data, in which the critical parameters become independent of the size of the window of data used
in the analysis. We compare our resulting value β ≈ 5.0 ± 0.4 against previous numerical results and competing
theoretical models. Our results confirm that the shear-driven jamming transition in Bagnoldian systems is well
described by a critical scaling theory and we relate this scaling theory to the phenomenological constituent laws
for dilatancy and friction.

DOI: 10.1103/PhysRevE.93.052902

I. INTRODUCTION

The behavior of athermal (T = 0) granular particles under-
going uniform shear flow has been much studied in different
contexts, including both hard dry granular materials and
soft materials such as foams, emulsions, and non-Brownian
suspensions [1]. For such shear-driven systems, the control
parameters may be viewed as the particle packing fraction φ

and the shear strain rate γ̇ . At sufficiently low strain rates
γ̇ , at densities φ below jamming, such systems are generally
found to have either a Newtonian rheology, with pressure p

and shear stress σ proportional to γ̇ , or a Bagnoldian rheology
[2], with p,σ ∝ γ̇ 2. It has been argued recently [3] that it is
the particular mechanism of energy dissipation in the system
that determines which of these two rheologies a given system
will display.

For a system with Newtonian rheology we can define
the viscous transport coefficients p/γ̇ ≡ ηp and σ/γ̇ ≡ ησ .
For a system with Bagnoldian rheology we can define the
Bagnold transport coefficients p/γ̇ 2 ≡ Bp and σ/γ̇ 2 ≡ Bσ .
These transport coefficients characterize the global rheological
response to shearing. In the limit of sufficiently small γ̇ below
jamming, these transport coefficients by definition become
independent of γ̇ [1,3–5] and hence depend only on the particle
packing fraction φ. We will refer to this limit of sufficiently
small γ̇ as the hard-core limit.

Upon increasing the packing fraction φ to a critical value
φJ , such granular systems undergo a shear-driven jamming
transition [6–8] from a liquid to a rigid but disordered solid
state. In the hard-core limit, this transition is characterized by a
divergence of the transport coefficients p/γ̇ n and σ/γ̇ n (n = 1
for Newtonian and n = 2 for Bagnoldian rheology). For soft-
core particles above the jamming transition, these transport
coefficients diverge as γ̇ → 0, reflecting the existence of a
finite yield stress in the solid state.

For frictionless particles, the jamming transition is gener-
ally believed to be continuous. In the hard-core limit, transport
coefficients diverge as a power law of the distance from

jamming p/γ̇ n,σ/γ̇ n ∼ (φJ − φ)−β as φ increases to φJ from
below. For soft-core particles a critical scaling theory, in
analogy with phase transitions in equilibrium systems, has
been used [7–13] to give a unified description of the critical
behavior of rheology as a function of both φ and γ̇ in the
neighborhood of the jamming transition.

The goal of the present work is to numerically simulate
a simple granular model that displays Bagnoldian rheology
(n = 2) and carry out a scaling analysis of the resulting p

and σ to determine the critical exponent β and related critical
parameters. We emphasize that when we refer to the critical
exponent β, we mean the exponent that characterizes the
true algebraic divergence asymptotically close to the athermal
jamming critical point, i.e., T = 0, φ → φJ , and γ̇ → 0.
While this asymptotic region may be small (and indeed
the present work argues it is), it is of fundamental interest
because analogy with equilibrium critical phenomena leads
one to expect that this asymptotic exponent β is universal,
i.e., independent of microscopic details [14,15]. Determining
the numerical value of β then allows one to test competing
theoretical models that make specific predictions for behavior
in this asymptotic region about the critical point.

To determine the critical exponent β, it will be necessary to
test that the data used in the analysis is indeed in the asymptotic
critical region. If one fits to numerical or experimental data that
lie outside this true asymptotic critical region, one is liable
to find only effective values of the exponent that may vary
depending on the range of data considered (as will be shown
in Figs. 6 and 7) or may depend on other microscopic details.
Thus, in determining β from data fitting or scaling collapses, it
is essential to check the self-consistency of the resulting value
of β (and other fitting parameters) by varying the window
of data used in the fit, shrinking it ever closer to the critical
point to see if parameter values are systematically changing
or if they remain stable. Without such a test, the value of β

obtained from such an analysis is likely to be unreliable, even
though the fit may seem very good (as will be illustrated in
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Fig. 5). Very few of the prior works in the literature carry
out such a test. Here we will show that, although we go to
quite low shear strain rates γ̇ , comparable to or smaller than
other prior works, we cannot get close enough to the critical
point so that a leading scaling analysis gives self-consistent
results; rather it becomes necessary to include the next leading
correction-to-scaling term to arrive at consistent numerical
values of the critical parameters, as we have found earlier for
systems with Newtonian rheology [8].

Although we expect that β should be universal for a
given class of rheology, we do not expect β to be the same
for Newtonian systems (n = 1) as for Bagnoldian systems
(n = 2), and prior works [8–19] are consistent with that. For
systems with Newtonian rheology, numerical works using a
simple scaling analysis gave values of β ≈ 1.65, 2.2, and 2.17
in two dimensions [7,16,17] and 2.63 in three dimensions [17].
However, other works, either going closer to the critical point
or including corrections to scaling, found generally somewhat
larger values, β ≈ 2.77, 2.58, and 2.5 in two dimensions
[8,14,15] and 2.55 in three dimensions [18]. Recent theoretical
work has predicted β ≈ 2.83 [19]. The value of the exponent
β, being a property of the hard-core limit, has been shown to
be independent of the details of the elastic repulsive interaction
between particles [14] and independent of the mechanism
of energy dissipation [15] provided the rheology remains
Newtonian. Further discussion of the numerical value of the
exponent β for Newtonian systems and its relation to earlier
works may be found in Ref. [18].

For systems with Bagnoldian rheology (n = 2), the value
of the corresponding exponent β remains in dispute. Otsuki
and Hayakawa developed [9,10] a phenomenological mean-
field theory of the jamming transition that predicted the value
β = 4. Numerical simulations [9–13], carried out by varying
φ in a constant volume ensemble, have reported values of β

somewhat smaller than 4, but seem perhaps to be approaching
this prediction as the window of data analyzed shrinks closer to
the jamming critical point. However, simulations by Peyneau
and Roux [20], using an ensemble at constant normal pressure,
found significantly different results, equivalent to a value of
β ≈ 5. Recent theoretical work by DeGuili et al. [19] has
argued for a value β ≈ 5.7.

In the present work we carry out a careful scaling analysis
of the critical behavior of the Bagnold coefficients Bp and
Bσ so as to try to resolve this discrepancy. We use the same
model of massive frictionless disks as in earlier studies [9–13],
with a dissipation proportional to the normal component of
the velocity difference between particles in contact, such as is
known to result in Bagnoldian rheology. Our simulations are
carried out varying φ and γ̇ , shearing the system at constant
volume. When we include the leading correction-to-scaling
term in our analysis, we find that our results are consistent
with those of Peyneau and Roux [20] and thus closer to the
theoretical prediction of DeGiuli et al. [19] than to that of
Ostuki and Hayakawa [9,10].

The remainder of this paper is organized as follows. In
Sec. II we present the details of our numerical model and
simulations. In Sec. III we review the scaling ansatz for
the shear-driven jamming transition, making a connection to
the constituent equation formulation common in the granular
rheology community. We discuss the scaling functions and

corrections to scaling. In Sec. IV we review previous theoret-
ical and numerical results for the exponent β for Bagnoldian
rheology. In Sec. V we present our results and scaling analysis.
In Sec. VI we summarize and present our conclusions.

II. MODEL AND SIMULATION METHOD

We use a well studied model [21] of frictionless, bidisperse
soft-core circular disks in two dimensions, with equal numbers
of big and small particles with diameter ratio db/ds = 1.4.
Particles interact only when they come into contact, in which
case they repel with an elastic potential

Vij (rij ) =
{

1
α
ke(1 − rij /dij )α, rij < dij

0, rij � dij .
(1)

Here rij ≡ |rij |, where rij ≡ ri − rj is the center-to-center
displacement from particle j at position rj to particle i at ri

and dij ≡ (di + dj )/2 is the average of their diameters. In this
work we will use the value α = 2, corresponding to a harmonic
repulsion. We will measure energy in units such that ke = 1.
The resulting elastic force on particle i from particle j is

fel
ij = −dVij (rij )

dri

= ke

dij

(
1 − rij

dij

)α−1

r̂ij , (2)

where r̂ij ≡ rij /rij is the inward-pointing normal direction at
the surface of particle i.

Particles also experience a dissipative force when they come
into contact. We take this force to be proportional to the
projection of the velocity difference of the contacting particles
onto the direction normal to the surface at the point of contact.
The dissipative force on particle i from particle j is

fdis
ij = −kd [(vi − vj ) · r̂ij ]r̂ij , (3)

where vi ≡ dri/dt is the velocity of particle i. We have earlier
[3] denoted this model of dissipation by CDn for “normal
contact dissipation.” This dissipative force is well known to
result in Bagnoldian rheology [3,5,9–13].

Particle motion is governed by Newton’s equation

mi

d2ri

dt2
=

∑
j

[
fel
ij + fdis

ij

]
, (4)

where mi is the mass of particle i and the sum is over
all particles j in contact with particle i. In this work we
take particles to have a mass proportional to their area, i.e.,
small particles have mass ms and big particles mass mb, with
mb/ms = (db/ds)2.

The above model possesses two important time scales [3],
the elastic and dissipative relaxation times

τe ≡
√

msd2
s /ke, τd ≡ ms/kd. (5)

The parameter

Q ≡ τd/τe =
√

mske/(kdds)2 (6)

measures the elasticity of collisions; a head-on collision of two
small particles will be totally inelastic (coefficient of restitution
e = 0) when Q < 1/2. In the present work we will measure
distance in units such that ds = 1 and time in units such that
τe = 1 (hence, in these units, ms = 1). Our simulations are
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in the strongly inelastic limit with Q = 1, though the critical
behavior sufficiently close to φJ is expected [22,23] to be
independent of the value of Q.

We simulate N = 262 144 total particles in a box of fixed
area L2, using periodic Lees-Edwards boundary conditions
[24] to impose a uniform shear strain γ (t) = γ̇ t with flow in
the x direction. The box length L is chosen to set the particle
packing fraction

φ = πN

2L2

[(
ds

2

)2

+
(

db

2

)2
]
. (7)

Our system size is sufficient large that finite-size effects are
negligible for the range of parameters we consider, as we
demonstrate explicitly in Appendix A.

To determine the global rheology of the system we measure
the pressure tensor of each configuration. We consider only
the part arising from the elastic contact forces, since at the low
strain rates γ̇ considered here the elastic part dominates over
the kinetic and dissipative parts. The elastic contribution to the
pressure tensor is [21]

pel ≡ L−2
∑
i<j

fel
ij ⊗ rij . (8)

The average pressure and shear stress in the system are then

p = 1
2

[〈
pel

xx

〉 + 〈
pel

yy

〉]
, σ = −〈

pel
xy

〉
. (9)

Here and in the following 〈· · · 〉 represents an ensemble average
over configurations in the steady state.

We integrate the equations of motion (4) using a modified
velocity-Verlet algorithm with a Heun-like prestep to account
for the velocity-dependent acceleration. We use an integration
time step of 
t = 0.1τe. We simulate over a range of strain
rates from γ̇ = 10−4 down to 2 × 10−8, for a window of φ

no greater than 1% above and below φJ . We shear to a total
strain γ that depends on the strain rate: For γ̇ � 10−5 we use
γ ∼ 10–30, for γ̇ = 10−6 we use γ ∼ 2–10, for γ̇ = 10−7 we
use γ ∼ 0.5–2, and for γ̇ = 2 × 10−8 we use γ ∼ 0.5–0.8,
with the runs being longer the closer φ is to φJ . Simulations at
our largest γ̇ are started from an initial random configuration
at each φ; simulations at smaller γ̇ start from the ending
configuration of the simulation at the next larger γ̇ , at the
same value of φ. In each case we exclude the initial 20% of
the run in order to reach steady state and then collect data for
our averages from the remainder of the run.

III. CRITICAL SCALING

In this section we describe the theory of critical scaling
that we will use to analyze our numerical data, discussing
the scaling functions, critical exponents, and corrections to
scaling. We will also discuss the relation between this scaling
theory and the empirical constituent equations that are often
used to describe the rheology of hard-core particles. Although
our numerical simulations in the present work are for a system
with Bagnoldian rheology, we frame the discussion here
more generally to deal with both Newtonian and Bagnoldian
systems.

A. Scaling ansatz

The scaling ansatz [7,8] for describing critical behavior
in the neighborhood of a continuous jamming transition is
motivated by analogy with the renormalization-group theory of
equilibrium phase transitions. It posits that, as one approaches
close to the critical jamming point, there is a diverging length
scale ξ and that (i) the behavior of the system at different
locations in the control parameter space is, to leading order,
the same at equal values of ξ and (ii) if one changes the control
parameters so as to change the length scale ξ by a factor b,
ξ ′ = ξ/b, all critical observables and control parameters will
scale with the distance from their values at the critical point as
some power of b; these powers define the critical exponents. As
a consequence, critical observables are homogenous functions
of the distance of the control parameters to the critical point.

For our simulations the control parameters are the packing
fraction φ and the shear strain rate γ̇ . The jamming transition is
at φ = φJ and γ̇ = 0. Our scaling variables are therefore δφ ≡
φ − φJ and γ̇ . Taking pressure as an example of an observable
that displays critical behavior at the jamming transition, we can
then write

pby/ν = f (δφb1/ν,γ̇ bz,w1b
−ω1 ,w2b

−ω2 , . . . ). (10)

In the above, the wi represent additional parameters that
might describe other microscopic aspects of the system, for
example, a parameter controlling the dispersity of the particles.
We choose them such that at the critical point wi = 0. By
assumption, the scaling function at the critical point is a
constant.

The parameters δφ and γ̇ are said to be relevant variables; it
is necessary to tune them to specific values, i.e., δφ = γ̇ = 0,
to see the singular critical behavior. The scaling exponents of
relevant variables, in this case 1/ν and z, are positive. The
parameters wi are said to be irrelevant; there is no need to
tune them to any specific values to see the singular behavior.
The scaling exponents of irrelevant variables, in this case the
−ωi , are negative (and so the ωi are by definition positive).
The leading irrelevant variable is the irrelevant variable whose
scaling exponent has the smallest absolute value. In our
discussion below we will consider only the leading irrelevant
variable.

To see how Eq. (10) leads to critical scaling, we now choose
for the arbitrary scaling factor b the specific value b = γ̇ −1/z.
This gives

p = γ̇ y/zνf

(
δφ

γ̇ 1/zν
,1,wγ̇ ω/z

)
. (11)

Note that as the control parameters are tuned to the jamming
transition, and so γ̇ → 0, the dependence of p on the variable
w vanishes as a consequence of the exponent ω/z > 0 (which
follows since w has a negative scaling exponent −ω < 0).
This is why w is called irrelevant and why it is not necessary
to explicitly tune the system to the value w = 0 in order to
explore the singular critical behavior.

Exactly at the jamming density δφ = 0, the above gives as
γ̇ → 0 the nonlinear rheology

p = γ̇ qf (0,1,0), q ≡ y/zν at φ = φJ . (12)
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Above the jamming density, where δφ > 0, we expect that
limγ̇→0 p is just the finite yield stress p0. For Eq. (11) to be
finite and independent of γ̇ in this limit requires

f (x,1,0) ∼ xy as x → +∞ (13)

and gives

p0(φ) = lim
γ̇→0

p(φ,γ̇ ) ∼ δφy for φ > φJ . (14)

Hence the exponent y determines how the yield stress vanishes
as φ decreases to φJ from above.

Below the jamming density, where δφ < 0, we expect that
limγ̇→0 p ∼ γ̇ n, where n = 1 for Newtonian rheology and n =
2 for Bagnoldian. For Eq. (11) to agree with this behavior then
requires

f (x,1,0) ∼ |x|−(zνn−y) as x → −∞ (15)

and gives

lim
γ̇→0

p/γ̇ n ∼ |δφ|−β, β ≡ zνn − y for φ < φJ , (16)

where the exponent β gives the divergence of the hard-core
transport coefficient as φ increases to φJ from below.

Note that in Eqs. (12) and (16) for the exponents q and β,
the exponents ν and z enter only in the combination zν. Thus
the nonlinear rheology at φJ (given by q), the vanishing of the
yield stress above φJ (given by y), and the divergence of the
transport coefficient below φJ (given by β) are all determined
by just two exponent combinations y and zν.

Since the exponents y and q are determined by behavior
above and exactly at φJ , where the softness of the particles
is an essential feature (strictly hard-core particles cannot be
compressed above φJ or sheared at a finite rate γ̇ exactly at
φJ ), it is expected that y and q will depend on details of the
soft-core interaction potential [21] and hence the exponent α

in Eq. (1). However, since the exponent β is determined from
behavior in the hard-core limit below φJ , we expect that β will
not depend on the interaction exponent α; we have explicitly
verified this in simulations of a Newtonian system [14].

Finally, we note that if one is sufficiently close to the
jamming point, so that wγ̇ ω/z is small enough to be ignored,
then Eq. (11) predicts that data at different values of φ and γ̇

will all collapse to a single curve if plotted as

p

γ̇ y/zν
vs

δφ

γ̇ 1/zν
. (17)

Such a collapse is the defining signature of the critical scaling
theory; a single scaling function f (x,1,0) unites behavior
above, below, and at the transition φJ , as a function of
both control variables φ and γ̇ . Testing for such a collapse
provides one way to numerically determine the exponent
combinations q = y/zν and 1/zν and hence y = qzν and
β = zνn − y = (n − q)zν.

Another key assertion of the critical scaling theory is that
the exponents ν, z, and ω have the same values, independent
of which observable is being measured. The exponent ν

is known as the correlation length critical exponent, z the
dynamic critical exponent, and ω the correction-to-scaling
critical exponent. The exponent y is specific to the observable
being measured. In this work we will be concerned with the
scaling of the pressure p and the shear stress σ . It is generally

assumed that, since p and σ are both components of a unified
tensor, their scaling exponents y are the same. This has been
confirmed numerically for the case of Newtonian rheology [8]
and we confirm in the present work that this is also the case
for Bagnoldian rheology.

B. Corrections to scaling

The scaling collapse of Eq. (17) will only hold if wγ̇ ω/z is
small enough to be ignored; this will always be true sufficiently
close to the jamming transition. However, since w is not
directly tuned in the simulation (and indeed it may not even
be known what physical features of the system are represented
by the parameter w) it may be that this term is not sufficiently
small over much of the range of control parameters φ and γ̇

where simulations are feasible. In this case one must take into
account the finite effects of the leading irrelevant variable and
these are known as corrections to scaling [25,26]. Corrections
to scaling have been found to be important in equilibrium
spin-glass problems [26] and we have previously shown them
to be important for Newtonian rheology near jamming [8].

In this case one can expand Eq. (11) about w = 0 for small
but finite w to get

p = γ̇ y/zν

[
f1

(
δφ

γ̇ 1/zν

)
+ γ̇ ω/zf2

(
δφ

γ̇ 1/zν

)]
. (18)

The first term is the leading scaling term and gives the results
discussed in the previous section. The second term is the
leading correction-to-scaling term and ω is the correction-
to-scaling exponent. Because of the prefactor in front of the
second scaling term f2, a simple data collapse as in Eq. (17)
will no longer hold and one must fit data to the above more
complicated form in order to determine the critical exponents.

The correction-to-scaling term effects the three limiting
critical behaviors of the previous section as follows. Exactly
at φJ , where δφ = 0, Eq. (18) becomes

p = γ̇ q[f1(0) + γ̇ ω/zf2(0)], q ≡ y/zν, (19)

giving a correction to Eq. (12) for the asymptotic power-law
relation for the rheology as γ̇ increases at φ = φJ .

For the limiting behaviors as γ̇ → 0 above and below φJ ,
it is easiest to return to Eq. (10) and choose b = |δφ|−ν to get

p = |δφ|yf
(

±1,
γ̇

|δφ|zν ,w|δφ|ων

)
. (20)

Expanding in w then gives

p = |δφ|y
[
f̃1±

(
γ̇

|δφ|zν
)

+ |δφ|ωνf̃2±

(
γ̇

|δφ|zν
)]

, (21)

where ± denote above and below φJ , respectively.
For φ > φJ , such that δφ > 0, we expect p to approach the

finite yield stress p0 as γ̇ → 0, hence we expect f̃1+(0) and
f̃2+(0) to be finite and so

p0(φ) = δφy[f̃1+(0) + δφωνf̃2+(0)], (22)

giving a correction to Eq. (14) for the vanishing of the yield
stress as φ → φJ from above. For φ < φJ , such that δφ <

0, we expect p ∼ γ̇ n as γ̇ → 0, hence we expect f̃1−(x) ∼
f̃2−(x) ∼ xn as x → 0 and so

p/γ̇ n = |δφ|−β[Cp1 + |δφ|ωνCp2], β ≡ zνn − y, (23)
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with Cp1 and Cp2 constants, giving a correction to Eq. (16) for
the divergence of the hard-core transport coefficient as φ → φJ

from below. Note that in all three cases, the correction term
is governed by the same correction-to-scaling exponent ω and
the relative contribution of the correction term vanishes as φJ

is approached, i.e., as δφ → 0.
We have shown earlier how corrections to scaling are crucial

for a consistent understanding of the behavior of systems
with Newtonian rheology [8]. Independent simulations by
Kawasaki et al. [18] have recently confirmed this. In the
present work we will show that it is also necessary to consider
corrections to scaling for systems with Bagnoldian rheology
for the parameter range that is typically simulated.

A final note on the preceding scaling theory is in order: In
equilibrium phenomena, another form of scaling corrections
may occur in the special case when the system dimension d

is exactly equal to the upper critical dimension dUC. For d <

dUC, fluctuations are important and dimensionality can affect
the value of critical exponents. For d > dUC fluctuations are
unimportant, mean-field results describe the transition well,
and critical exponents become independent of the dimension d.
When d = dUC, logarithmic corrections are believed to modify
the scaling variables. As it has been suggested that dUC =
2 for the jamming transition, we discuss this possibility of
logarithmic corrections in Appendix B.

C. Constituent equations

The above scaling approach has been framed in terms of
the packing fraction φ and strain rate γ̇ , which are the control
parameters of our, and many earlier, simulations of soft-core
particles. For the rheology of hard-core particles, however,
studies are often done at constant pressure rather than constant
volume and it has been common to introduce as the control
parameter the quantity

I ∝ γ̇ /p1/n. (24)

For Bagnoldian rheology with n = 2, I is referred to as the
inertial number [27]. For Newtonian rheology with n = 1, I

is referred to as the viscous number [28]. Because I is defined
for the hard-core limit below the jamming transition, where
the pressure obeys the strict relation p ∝ γ̇ n, the transport
coefficient p/γ̇ n ∝ 1/In is independent of γ̇ and only varies
with the packing fraction φ. Hence there is a unique mapping
between I and φ and so the behavior of the system depends
only on the value of I and not the specific values of p and γ̇

separately. Further, I = 0 locates the jamming transition.
The rheology in this hard-core limit below jamming is then

characterized by two empirical constituent equations, which
in the limit of small I can be written as [27,28]

φJ − φ(I ) ∝ I a, (25)

μ(I ) − μJ ∝ I b. (26)

Here φ(I ) is the packing fraction at control parameter I and
μ(I ) ≡ σ/p is the effective macroscopic friction of the system,
which in general is finite even though the particles in our model
are themselves frictionless; μJ is the value of μ at the jamming
transition. The first of the two constituent equations is often

referred to as the dilatancy law, while the second is the friction
law.

We now show how these constituent equations may be
derived from the critical scaling theory and how the exponents
a and b are related to the critical exponents ν, z, y, and ω.
Equation (25) follows directly from Eq. (23). We have, to
lowest order in the correction to scaling,

I ≡ lim
γ̇→0

[(γ̇ n/p)1/n] = |δφ|β/nC
−1/n

p1 [1 − |δφ|ωνCp2/nCp1].

(27)

Inverting the above to write |δφ| in terms of I , we get to lowest
order

|δφ| = φJ − φ = I n/β[Cφ1 + Cφ2I
ωνn/β ]. (28)

Thus Eq. (25) represents the leading term above as I → 0 and

a = n/β. (29)

To get the second constituent equation we just note that the
shear stress scales similarly to the pressure in Eq. (23), i.e., as
γ̇ → 0,

σ/γ̇ n = |δφ|−β[Cσ1 + |δφ|ωνCσ2], (30)

so we can write for the hard-core limit γ̇ → 0,

μ ≡ σ

p
= Cσ1 + Cσ2|δφ|ων

Cp1 + Cp2|δφ|ων
. (31)

Because p and σ both scale to leading order with the same
exponent y (and hence the same β = zνn − y), the variation
of μ with φ is due entirely to the correction-to-scaling terms,
depending on the correction-to-scaling exponent ω. Expanding
the above to lowest order in |δφ| we get

μ = μJ + Cμ|δφ|ων, (32)

where μJ ≡ Cσ1/Cp1 is the value when δφ → 0−, i.e., as
jamming is approached from below. Substituting in for |δφ|
from Eq. (28) then gives

μ − μJ = Iωνn/β [Cμ1 + Cμ2I
ωνn/β ]. (33)

Thus Eq. (26) represents the leading term above as I → 0 and

b = ωνn/β = ωνa. (34)

IV. SUMMARY OF PREVIOUS RESULTS

The critical exponents of the static jamming transition
arising from compression or quenching have been found to
be independent of the dimensionality of the system [21]. A
similar result has been claimed numerically [9,10] and argued
theoretically [19] for the shear-driven jamming transition. In
this section we therefore review prior results from both two-
and three-dimensional simulations, although our own work
reported here has been in two dimensions.

Numerous simulations have been carried out by others on
the model of spherical particles interacting with the elastic
and dissipative forces described in Sec. II. Many of these
simulations are for particles that include tangential frictional
forces in their interactions. Here we focus on those simulations
that are for frictionless particles, such as those we study in the
present work. We first consider those simulations carried out in
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an ensemble at fixed volume, where φ and γ̇ are the simulation
control parameters. We then consider simulations carried out
in an ensemble at fixed pressure p.

A. Constant volume simulations

Simulations by Garcia-Rojo et al. [29] suggested that, at
low packing fractions, the shear viscosity σ/γ̇ diverged as
1/(φc − φ), with φc < φJ . However, later work [9,10] argued
that this conclusion was an artifact of not probing closely
enough to the jamming transition φJ ; it was later shown that
the true scaling region near φJ shrinks in size as particles
become increasingly elastic [22].

Hatano [11] studied essentially the same bidisperse model
as described in Sec. II, simulating in three dimensions for the
case of harmonic (α = 2) and Hertzian (α = 5/2) interactions,
with elasticity parameters Q = 10 and Q = 100, respectively.
Using N = 1000 particles and exploring a window of packing
fraction |δφ|/φJ ≈ 0.1 and strain rate range 10−4 � γ̇ τe � 1,
he collapsed his data according to a common scaling curve
[similar to our Eq. (17), but using instead scaling variables
p/|δφ|y and γ̇ /|δφ|zν] and claimed evidence for exponents
y = 1.2 and β = 2.6 for σ and y = 1.2 and β = 3.0 for p for
the harmonic interaction and y = 1.8 and β = 3.0 for both σ

and p for the Hertzian interaction.
Otsuki and Hayakawa [9,10] developed a phenomeno-

logical mean-field-like theory for the exponents describing
the rheology of Bagnoldian systems. Defining 
 ≡ α − 1
as the power law for the repulsive interaction force, they
have predicted the exponents y = 
 and β = 4, the latter
being independent of 
. For the harmonic interaction with

 = 1, Eqs. (12) and (16) would then lead to the conclusion
1/zν = 2/(β + y) = 2/5 and q = y/zν = 2/5.

To numerically test these predictions, Otsuki and Hayakawa
[9,10] then carried out numerical simulations of the same
model as that used here, in the strongly inelastic limit with
Q = 1, considering several different examples of the size
dispersity of particles, in two, three, and four dimensions, for
both harmonic (α = 2) and Hertzian (α = 5/2) interactions.
They used systems with more particles and much slower strain
rates than Hatano [11], with up to N = 4000 particles and
5 × 10−7 � γ̇ τe � 5 × 10−5 in two dimensions. They argued
that their results agreed with their theoretical predictions,
however they demonstrated this only by data collapses (using
the same scaling variables as Hatano), in which they used the
assumed values of the critical exponents and a predetermined
estimate of φJ . No independent data fitting to determine the
best-fitted values of the exponents and φJ were performed.
Since the best-fitted values of exponents can depend very
sensitively on the value taken for φJ , the scaling collapses
of Refs. [9,10] cannot be taken as conclusive.

The mean-field theory of Otsuki and Hayakawa [9,10] also
involves as a key assumption that the relevant time scale for the
rheology at a packing fraction φ is set by the frequency ω∗ that
marks the low-frequency edge of the plateau (boson peak) in
the density states of elastic vibrations of the statically jammed
solid at φ [30]. This frequency scales as ω∗ ∼ δφ
/2 [31].
However, Lerner et al. [17] have shown that, for a sheared
system with Newtonian rheology, there is a unique isolated
mode below ω∗ that is responsible for the diverging time scale

of the shearing rheology; thus it is reasonable to wonder if the
same might be true for Bagnoldian rheology and hence the
relevant time scale may behave differently from that assumed
by Otsuki and Hayakawa [9,10].

More recently, Hatano has repeated his earlier simulations
[12] for the harmonic interaction in three dimensions, but now
using N = 4000 particles and a smaller window of packing
fractions |δφ|/φJ ≈ 0.023 and smaller range of strain rates
10−7 � γ̇ τe � 10−2. He then finds exponents y = 1.5 and
β = 3.5 for σ and y = 1.5 and β = 3.9 for p. Otsuki and
Hayakawa have similarly repeated their simulations [13] for a
polydisperse system of N = 4000 particles with the harmonic
interaction in two dimensions. For a packing fraction window
of |δφ|/φJ ≈ 0.024 and a strain rate range of 5 × 10−7 �
γ̇ τe � 5 × 10−5, they now fit their data to a scaling form with
φJ and exponents as free fitting parameters. They then find y =
1.09 and β = 3.56 from σ and y = 1.06 and β = 3.59 from p.

Summarizing these previous simulations at constant vol-
ume, it appears that the value for the transport coefficient
exponent β is increasing as the data get restricted to a smaller
window about the critical jamming point (i.e., smaller γ̇ and
smaller |δφ|/φJ ). Moreover, this value is perhaps approaching
the Otsuki and Hayakawa mean-field prediction [9,10] of
β = 4.

B. Constant normal pressure simulations

Simulations have also been carried out in an ensemble
at constant normal pressure p, rather than constant volume.
By “normal pressure” we mean the pressure on surfaces for
which the unit normal direction is orthogonal to the direction
of the shear flow. These simulations use particle stiffnesses
ke and strain rates γ̇ that are thought to put the system in
the hard-core limit where the inertial number I of Eq. (24)
is independent of γ̇ and p separately, but depends only on
the ratio I ∼ γ̇ /

√
p. To put I into dimensionless form, we

follow convention [27] and for a Bagnoldian system use
I = γ̇

√
m/pd, with m and d the mass and diameter of a

typical particle, respectively. Measuring the ensemble-average
packing fraction 〈φ〉 and macroscopic friction μ = 〈σ 〉/p then
determines the exponents a and b via the constituent equations
(25) and (26).

It is often argued [1,27,32] that the constituent equations
(25) and (26) are linear in I at small I , i.e., a = b = 1. In terms
of the discussion of Sec. III C this would imply a transport
coefficient exponent β = 2/a = 2 and ων = 1. However,
this claim is best supported by results for particles with
microscopic frictional interactions, rather than the frictionless
particles considered here. That the constituent equations for
frictional and frictionless particles involve different expo-
nents is nicely illustrated in Ref. [33] for the macroscopic
friction μ.

Early simulations by da Cruz et al. [5] for a two-
dimensional polydisperse system with harmonic elastic inter-
action considered both frictional and frictionless particles. For
systems with up to N = 5000 particles and a range of inertial
number 6 × 10−4 � I � 0.3, they claimed that the packing
fraction φ remained a linear function of I (hence a = 1) for
both frictional and frictionless cases. For frictional particles,
μ − μJ was found to be linear in I , but for frictionless particles
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it was claimed to be sublinear, though no exponent value for b

was given.
Hatano [34] has carried out simulations in three dimensions

with N = 10 000 polydisperse frictionless particles using both
the harmonic and Hertzian interactions with elastic parameter
Q = 1. Fitting to a range of inertial number 10−5 � I � 0.5,
he finds the exponents a ≈ 0.56 ± 0.02 and b ≈ 0.28 ± 0.05
for both interactions. By Eqs. (29) and (34) these values
translate into the transport coefficient exponent β = 2/a ≈
3.57 ± 0.13 and ων = b/a ≈ 0.5 ± 0.1.

Similar simulations have been carried out by Peyneau
and Roux [20] with up to N = 4000 strongly inelastic
monodisperse particles in three dimensions using the Hertzian
interaction. Fitting to a range of inertial number 10−5 � I �
10−2, they find exponents a ≈ 0.40 ± 0.02 and b ≈ 0.39 ±
0.02, giving β ≈ 5.0 ± 0.3 and ων ≈ 1.0 ± 0.1.

Most recently, DeGuili et al. [19] have proposed theoretical
arguments that the exponents a and b for the constituent
equations are the same for Bagnoldian rheology as for
Newtonian rheology. If so, then since β = n/a, we expect
βBagnold = 2βNewton. Using scaling arguments based on the
distribution of contact forces at the static jamming transition,
as found numerically in two and three dimensions [35,36] and
as computed exactly within an infinite-dimensional mean-field
calculation [37,38], DeGuili et al. predict the value a ≈ 0.35,
thus giving for Bagnold rheology β ≈ 5.7. They also predict
a = b and so ων = 1.

Because the works summarized in this subsection claim to
be in the hard-core limit, they cannot give any information
about the critical exponents y, 1/zν = 2/(β + y), or q =
y/zν, which describe behavior at or above jamming. However,
if one assumes the value y = 1 for the harmonic interaction
(as done by Otsuki and Hayakawa [9,10] and as is believed
to be the case for static compression-driven jamming [21]),
then one can obtain values for 1/zν and q; using the value of
β ≈ 5.7 from DeGuili et al., we would have 1/zν = q ≈ 0.3.

V. RESULTS

In this section we present our results for the pressure p

and shear stress σ , as functions of the packing fraction φ and
shear strain rate γ̇ , using the model and simulation methods
described in Sec. II. Because we will be fitting our data to
scaling expressions such as Eq. (18), for which we do not
a priori know the detailed form of the scaling functions, we
wish to do our simulations in the region of the parameter space
where the scaling variable x = δφ/γ̇ 1/zν is small so that we
may use expansions of the scaling function at small x to do the
fitting. Thus, as we decrease γ̇ , we restrict data to a decreasing
window of φ about the jamming φJ .

We have considered in this work strain rates in the interval
2 × 10−8 � γ̇ � 10−4, going to lower rates than previous
simulations. In Fig. 1 we indicate the specific parameter
points (φ,γ̇ ) at which we have done our simulations; the
colors and symbol shapes shown in this figure may be used to
identify data points in subsequent plots. The vertical dashed
line in Fig. 1 (and in subsequent Figs. 2 and 3) indicates the
location of φJ . The curved dotted lines represent contours of
constant scaling variable |x| = |δφ|/γ̇ 1/zν . We have used here

10 8
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10 6

10 5

10 4

0.834 0.837 0.840 0.843 0.846 0.849

.

|x| = 0.4

J

|x| = 0.2

FIG. 1. Control parameter phase space (φ,γ̇ ). Data points in-
dicate the locations of control parameters used in our simulations.
Points with the same shape and color are at a common value of γ̇ .
Curved dotted lines indicate contours of constant scaling variable
|x| = |δφ|/γ̇ 1/zν = 0.2,0.4. The vertical dashed line indicates the
location of the jamming φJ at x = 0. We have used the values
φJ = 0.843 35 and 1/zν = 0.32 to define x.

the values φJ = 0.843 35 and 1/zν = 0.32, as determined by
our analysis below.

In Fig. 2 we plot our raw results for p and σ vs φ for
different values of γ̇ . Our data for p and σ span roughly six
orders of magnitude. In Fig. 3 we replot these data in terms
of the Bagnold coefficients Bp ≡ p/γ̇ 2 and Bσ ≡ σ/γ̇ 2. The
data at φ < φJ are shown to collapse to a common curve
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J

FIG. 2. (a) Pressure p and (b) shear stress σ vs packing fraction
φ at different values of the applied shear strain rate γ̇ . The strain rate
γ̇ decreases as curves go from top to bottom. The vertical dashed line
indicates the location of the jamming φJ . Error bars are smaller than
the size of the data symbols and are not shown.
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FIG. 3. Bagnold coefficients for (a) pressure Bp ≡ p/γ̇ 2 and
(b) shear stress Bσ ≡ σ/γ̇ 2 vs packing fraction φ at different values
of the applied shear strain rate γ̇ . The strain rate γ̇ increases as curves
go from top to bottom. The vertical dashed line indicates the location
of the jamming φJ . Error bars are smaller than the size of the data
symbols and are not shown.

as γ̇ decreases, confirming that our system does indeed have
Bagnoldian rheology; this common curve as γ̇ → 0 represents
the hard-core limit. As φ increases to φJ , the strain rate
γ̇ ∗ below which this hard-core limit is attained is shown to
decrease; the scaling theory of the preceding section predicts
γ̇ ∗ ∼ |δφ|zν .

For our units in which ms = ds = 1, we have for the
inertial number I = 1/

√
Bp. Noting the range in Fig. 3(a)

over which we have data in the hard-core limit, we see
that our simulations allow us to probe a range of inertial
numbers 5 × 10−5 < I < 6 × 10−3, with our smallest value
of I somewhat larger than that used by Peyneau and Roux
[20]. However, an important virtue of the scaling function
approach is that it unifies the hard-core behavior below φJ

with the soft-core behavior approaching and above φJ ; it thus
lets us use data outside the hard-core limit in order to determine
the exponent β that characterizes the hard-core rheology.

A. Without corrections to scaling

We will first attempt to fit our data to the scaling form
ignoring corrections to scaling, i.e., to Eq. (18), ignoring the
second scaling term f2 [or equivalently using Eq. (11) taking
w = 0]. To carry out such a fitting we want to use data that
is close enough to the critical point, i.e., small enough δφ

and γ̇ , so as to be the scaling region. However, we also
need a parametrization of the unknown scaling function f1(x).
Because of the wide range of values spanned by p and σ , we
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FIG. 4. χ 2 per degree of freedom χ 2
DOF of our fits of (a) pressure

p and (b) shear stress σ to the scaling form of Eq. (11) without
corrections to scaling (i.e., taking w = 0), as a function of the upper
limit γ̇max of data used in the fit. We show results for several different
values of xmax, where only data with |x| = |δφ|/γ̇ 1/zν � xmax are used
in the fit. Data are restricted to the range 0.838 � φ � 0.846.

choose an exponential parametrization, using

f1(x) = exp

(
5∑

n=0

anx
n

)
, (35)

and thus fit our data to p,σ = γ̇ qf1([φ − φJ ]/γ̇ 1/zν), with
φJ , q, 1/zν, and a0–a5 as free fitting parameters. We use the
Levenberg-Marquardt algorithm to do our fitting.

Because our parametrization in Eq. (35) involves an
expansion in x to finite (i.e., fifth) order, it will be an acceptable
form for fitting only at sufficiently small x. We have therefore
concentrated our efforts on simulations where x is suitably
small, as indicated in Fig. 1. However, it is important to realize
that the scaling form of Eq. (18) is valid at all values of
x = δφ/γ̇ 1/zν , provided φ and γ̇ are both sufficiently close
to the critical point. Thus, once we have determined values
for φJ , q = y/zν, and 1/zν from fits at small x, then plotting
our data as in Eq. (17) should give a good collapse even for
data points with larger values of x outside the fitting region,
provided the data points (φ,γ̇ ) are all sufficiently close to the
jamming critical point (φJ ,0).

To determine the goodness of our fits, we measure the χ2 per
degree of freedom χ2

DOF. Fits are judged to be reasonably good
when χ2

DOF ∼ O(1). We carry out fits to p and σ separately,
using only data with 0.838 � φ � 0.846, within 0.6% of φJ .
We have confirmed that restricting the data to a narrower
window in φ does not change our results. Since we do find
that our results are quite sensitive to the range of γ̇ used in
the fit, we systematically restrict the data to γ̇ � γ̇max, using
decreasing values of γ̇max, in order to control how close our
data are to the critical point γ̇ → 0. We also restrict the data
to values where |x| = |δφ|/γ̇ 1/zν � xmax, in order to test over
how wide a range of x our parametrization of the scaling
function in Eq. (35) will be reasonable [39]. We then study
how the results of our fits depend on the cutoffs γ̇max and xmax.

In Fig. 4 we show the resulting χ2
DOF for our fits to p and

to σ , vs the strain rate cutoff γ̇max, for several different values
of xmax. We see that the fits look reasonable, i.e., χ2

DOF ∼
1, when γ̇ � 5 × 10−6, and |x| � 0.4. We therefore use the
values of φJ , q, and 1/zν obtained from the fits using γ̇max =
5 × 10−6 and xmax = 0.4 and in Fig. 5 show the resulting data
collapses for p and for σ , according to Eq. (17). Only our data
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FIG. 5. Scaling collapse of (a) pressure and (b) shear stress σ

plotted as p/γ̇ q and σ/γ̇ q vs x = δφ/γ̇ 1/zν . Data are restricted to the
ranges 0.838 � φ � 0.846 and γ̇ � 5 × 10−6. Only data for |x| �
0.4, i.e., the data between the two vertical dashed lines, were used in
doing the fit to the scaling function, however data at any value of x

are shown in the plot. The resulting fitted values of φJ , q, and 1/zν,
as well as the exponent β = (2 − q)zν, are as shown in the figures.

satisfying 0.838 � φ � 0.846 and γ̇ � 5 × 10−6 are plotted.
Even though only data with |x| = |δφ|/γ̇ 1/zν � 0.4 were used
in generating the fit, all the data for |x| � 1 appear to collapse
reasonably well to the same continuous curve. The fitted values
of φJ , q, and 1/zν that were used to obtain these collapses,
as well as the exponent β = (2 − q)zν, are indicated in the
figures.

Although the data collapses in Fig. 5 appear quite good
to the eye and although the fits are quantitatively good with
χ2

DOF ∼ 1, it is somewhat troubling that the fitted exponents
for p do not agree with those for σ , as we would have expected
(and as we found earlier in a model with Newtonian rheology
[8]). In particular, from p we find β = 4.35 ± 0.04, while from
σ we find β = 4.05 ± 0.04; thus the two values of β are not
equal within the estimated statistical errors. That there is a
problem becomes more apparent if we look at the dependence
of the fitted parameters on the values of the fit cutoffs γ̇max

and xmax. To have a stable self-consistent fit, we need not only
χ2

DOF ∼ 1, but also that the fitted parameters remain constant,
within the estimated statistical errors, as the window of fitted
data shrinks closer to the critical point, i.e., as γ̇max decreases.

In Fig. 6 we show the fit parameters φJ , q, and 1/zν that
result when we fit p and σ separately to the scaling form of
Eq. (11) (with w = 0), restricting the data used in the fit to γ̇ �
γ̇max and |x| = |δφ|/γ̇ 1/zν � xmax. We plot the parameters vs
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FIG. 6. Fitted parameters φJ , q, and 1/zν for pressure p (left
column) and shear stress σ (right column) vs the strain rate cutoff
γ̇max that defines the range of data γ̇ � γ̇max used in the fit. We show
results for different values of the additional cutoff xmax, where only
data with |x| = |δφ|/γ̇ 1/zν � xmax are used in the fit. Results are from
fits to the scaling form of Eq. (11) without corrections to scaling (i.e.,
taking w = 0).

γ̇max for several different values of xmax. We see that there is
little significant dependence on the choice of xmax, however
there is a clear and systematic dependence on the value of
γ̇max. In particular, φJ systematically increases, and q and 1/zν

systematically decrease, as γ̇max decreases; this remains true
even for γ̇ � 5 × 10−6, where the χ2

DOF has become roughly
equal to unity.

In Fig. 7 we similarly show the exponents for the Bagnold
transport coefficient and the yield stress β = (2 − q)zν and
y = qzν, respectively, vs γ̇max for different xmax. The behavior
of β that we see here is consistent with the behavior observed
in previous simulations, as discussed in Sec. IV A, in that β

increases as γ̇max decreases, and we find similar numerical
values for β when considering the larger values of γ̇max that
were used in these earlier works. For all the parameters φJ , q,
1/zν, β, and y, we see that in general the values obtained from
the fits to p appear to agree with those obtained from the fits
to σ only at the smallest values of γ̇max; at the larger γ̇max they
can be quite noticeably different.

Thus, while the fits are quantitatively good and the scaling
collapses of Fig. 5 appear to be good, they do not give self-
consistent results in that the values of the fit parameters are
continuously changing as γ̇max decreases. This leads us to
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FIG. 7. Exponents β = (2 − q)zν and y = qzν obtained from the
fit parameters of Fig. 6 for pressure p (left column) and shear stress
σ (right column) vs the strain rate cutoff γ̇max. We show results for
different values of the additional cutoff xmax, where only data with
|x| = |δφ|/γ̇ 1/zν � xmax are used in the fit. Results are from fits to the
scaling form of Eq. (11) without corrections to scaling (i.e., taking
w = 0).

conclude that our simple approach in this section, ignoring the
leading correction to scaling, is not adequate for describing the
critical behavior of the rheology over the range of parameters
we have simulated.

B. Including corrections to scaling

Since the approach of the previous section failed to give
consistent results, we now reanalyze our data by including the
leading correction to scaling according to Eq. (18). Because
of the γ̇ ω/z prefactor of the scaling function f2(x) in Eq. (18),
when the correction-to-scaling term is no longer negligible
there can be no nice scaling collapse of the data when plotted
according to Eq. (17).

We may still, however, get a graphical sense of the effect
of the correction to scaling by considering the following. In
the limit of γ̇ → 0 we expect the following behaviors for the
pressure p (and similarly for the shear stress σ ): (i) Below φJ ,
p vanishes as p ∝ γ̇ 2; (ii) above φJ , p → p0, the finite yield
stress; and (iii) exactly at φJ , p ∝ γ̇ q . If we now consider the
quantity p/γ̇ q , we expect that (i) below φJ , p/γ̇ q vanishes as
p/γ̇ q ∝ γ̇ 2−q ; (ii) above φJ , p/γ̇ q diverges as p/γ̇ q ∝ γ̇ −q ;
and (iii) exactly at φJ , p/γ̇ q is constant. If we now consider
the behavior at φJ as γ̇ increases, then p/γ̇ q will depart from
the limiting small γ̇ constant when the correction-to-scaling
term ∼γ̇ ω/z becomes non-negligible.

In Fig. 8 we plot p/γ̇ q and σ/γ̇ q using the value q = 0.38
as found by our subsequent analysis detailed below. We see
that φJ ≈ 0.843 35 separates the curves that curve upward as
γ̇ decreases (these are above φJ ) from the curves that curve
downward (these are below φJ ). The dashed lines represent
the constant values of p/γ̇ q and σ/γ̇ q expected at φJ for
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FIG. 8. (a) p/γ̇ q and (b) σ/γ̇ q vs the strain rate γ̇ for different
values of the packing fraction φ. The value q = 0.38, obtained from
our scaling analysis, is used. The dashed lines represent the small γ̇

limiting values exactly at φJ and separate the curves with φ > φJ

(above the dashed line at small γ̇ ) from those with φ < φJ (below the
dashed line at small γ̇ ). The value of φ decreases as curves go from
top to bottom.

sufficiently small γ̇ . If we look at the curves closest to φJ , i.e.,
at φ = 0.8433 and 0.8434, we see that they are roughly flat for
a wide range of γ̇ and then curve upward as γ̇ increases; this
is the effect of the γ̇ ω/z correction-to-scaling term. Comparing
p to σ in Fig. 8, we see that the correction-to-scaling term is
larger for the shear stress σ than for the pressure p; a similar
conclusion was previously found for a related model system
with Newtonian rheology [8]. Our results of Fig. 8 emphasize
that the rheology p,σ ∼ γ̇ q expected exactly at φJ only holds
asymptotically at sufficiently small γ̇ and does not persist to
arbitrarily large values of γ̇ .

We now fit our data to the scaling form of Eq. (18) and
test whether the fit is good, i.e., χ2

DOF ∼ 1, and whether the
values of the fitted parameters remain consistent as we vary
the window of data used in the fit. To carry out this data fitting
we parametrize the two scaling functions of Eq. (18) as

f1(x) = exp

(
4∑

n=0

anx
n

)
, f2(x) = b0exp

(
3∑

n=1

bnx
n

)
. (36)

In contrast to the previous section, here we use an expansion
of lower order in x in order to keep the total number of fit
parameters manageable. We thus might expect, and indeed we
do find, that our fitting will be more sensitive to the choice
of xmax than was found in the previous section. Since the
correction-to-scaling term needs to be sizable if we are to
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FIG. 9. χ 2 per degree of freedom χ 2
DOF of our fits of (a) pressure

p and (b) shear stress σ to the scaling form of Eq. (18) including the
correction to scaling, as a function of the upper limit γ̇max of data used
in the fit. We show results for several different values of xmax, where
only data with |x| = |δφ|/γ̇ 1/zν � xmax are used in the fit.

determine it properly, here we choose our smallest γ̇max =
5 × 10−6, larger than the value 5 × 10−7 used in the previous
section. For f2 we include the multiplicative factor b0, rather
than writing it as exp(b0) as in f1, since we wish to allow for
the possibility that the correction term could be negative; in
practice, however, we always find that b0 > 0.

In Fig. 9 we show the χ2
DOF for such fits to p and σ

separately, as a function of γ̇max for several different values
of xmax. The fits seem reasonable, with χ2

DOF � 1.5, for all
γ̇max � 5 × 10−5 at the two smallest xmax.

In Fig. 10 we show the resulting fit parameters φJ , q, and
1/zν; we will consider the correction-to-scaling exponent ω/z

in the following section. In Fig. 11 we show the exponents β =
(2 − q)zν and y = qzν, as computed from the exponent values
shown in Fig. 10. We plot these parameters vs γ̇max for several
different values of xmax. Compared to the corresponding results
of Figs. 6 and 7 without corrections to scaling, here we see
(i) no strong systematic dependence of the parameters on
γ̇max, (ii) greater consistency comparing p and σ over the
entire range of γ̇max (in Fig. 6 parameters tend to agree only
at the smaller γ̇max, but not at the larger γ̇max), (iii) greater
sensitivity to the choice of xmax, particularly for σ , and (iv)
larger statistical errors, which may be attributed to the increase
in the number of fitting parameters and to the loss of accuracy
in the fitting functions at larger values of x [because the
expansion in powers of x is truncated at lower order; compare
Eqs. (35) and (36)].

We thus find that the fit of our data to the scaling form
of Eq. (18), including the corrections to scaling, gives a
reasonable fit with consistent values for the fitting parameters;
however the accuracy of these parameters suffers from the
effects described in (iv) above. We conclude that φJ ≈
0.843 35 ± 0.000 10, q ≈ 0.38 ± 0.05, 1/zν ≈ 0.32 ± 0.02,
β ≈ 5.0 ± 0.4, and y ≈ 1.15 ± 0.05. We note that these values
are consistent (within the estimated errors) with the results
found from our fits ignoring the correction to scaling, shown
in Figs. 6 and 7, provided we consider in those figures only the
smallest value of γ̇max. This thus suggests that the correction-
to-scaling term is becoming negligible at the smallest strain
rates γ̇ that we simulate. In Table I we compare the values
of the exponents found in the present work for Bagnoldian
rheology with the corresponding exponents found in Ref. [8]
for Newtonian rheology. We see that the values of φJ and the
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FIG. 10. Fitted parameters φJ , q, and 1/zν, for pressure p (left
column) and shear stress σ (right column), vs the strain rate cutoff
γ̇max that defines the range of data γ̇ � γ̇max used in the fit. We show
results for different values of the additional cutoff xmax, where only
data with |x| = |δφ|/γ̇ 1/zν � xmax are used in the fit. Results are from
fits to the scaling form of Eq. (18) including corrections to scaling.
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FIG. 11. Exponents β = (2 − q)zν and y = qzν, obtained from
the fit parameters of Fig. 10 for pressure p (left column) and shear
stress σ (right column), vs the strain rate cutoff γ̇max. We show results
for different values of the additional cutoff xmax, where only data with
|x| = |δφ|/γ̇ 1/zν � xmax are used in the fit. Results are from fits to
the scaling form of Eq. (18) including corrections to scaling.
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TABLE I. Critical parameters for Bagnoldian rheology as found in the present work, compared to the corresponding parameters for
Newtonian rheology as found in Ref. [8], for frictionless particles with a harmonic elastic repulsion. Here n = 2 for Bagnoldian and n = 1 for
Newtonian rheology.

Model φJ q 1/zν β = (n − q)zν y = qzν ω/z ων

Bagnoldian 0.84335 ± 0.00010 0.38 ± 0.05 0.32 ± 0.02 5.0 ± 0.4 1.15 ± 0.05 0.35 ± 0.07 1.1 ± 0.3
Newtonian 0.8435 ± 0.0002 0.28 ± 0.02 0.26 ± 0.02 2.8 ± 0.3 1.08 ± 0.03 0.29 ± 0.03 1.10 ± 0.06

exponent y agree within the estimated errors and that the value
of y is slightly bigger than unity; however the exponents q and
1/zν appear to be different for the two different rheologies.

We note that the value of q found here for Bagnold rheology
is in rough agreement with the value q = 2/5 obtained from
Otsuki and Hayakawa’s phenomenological mean-field theory
[9,10]. However, our value of 1/zν ≈ 0.32 is noticeably
different from their value of 2/5. Thus our result for β =
2zν − y ≈ 5 is clearly larger than the value of 4 predicted
by Otsuki and Hayakawa [9,10], but is in agreement (within
the estimated errors) with the numerical result of Peyneau
and Roux [20]. Comparing our βBagnold with our previously
determined βNewton [8], we find that the prediction of DeGiuli
et al. [19] that βBagnold = 2βNewton is obeyed within the outer
range of our error estimates, however our βBagnold = 5.0 ± 0.4
is somewhat smaller than the value 5.7 that one gets from their
calculation of the dilatancy exponent a ≈ 0.35.

C. Macroscopic friction

In this section we discuss our results for the correction-to-
scaling exponent, which is closely related to the macroscopic
friction μ ≡ σ/p. From Eq. (29) we have that the exponent a

of the dilatancy law (25) is a = 2/β ≈ 0.4. From Eq. (34) we
then have that the exponent b of the friction law (26) is related
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FIG. 12. Correction-to-scaling exponent ω/z and the related
exponent ων, as obtained from fits to pressure p (left column) and
shear stress σ (right column), vs the strain rate cutoff γ̇max. We show
results for different values of the scaling parameter cutoff xmax. Only
data with γ̇ � γ̇max and |x| = |δφ|/γ̇ 1/zν � xmax are used in the fit.

to the exponent a by b/a = ων, where ω is the correction-
to-scaling exponent of Eq. (18). The exponent combination
ων also gives the variation of the macroscopic friction μ with
packing fraction φ, as given in Eq. (32). We thus wish to
determine ων.

Our fits to Eq. (18) determine the exponents ω/z and
1/zν, from which we can then compute ων = (ω/z)/(1/zν).
In Fig. 12 we plot the values of ω/z obtained from our fits
to p and to σ , and the resulting values of ων, vs the strain
rate cutoff γ̇max for several different values of xmax. We see
that it is difficult to get accurate values of ων. However, our
results are not inconsistent with the value ων = 1 claimed by
DeGiuli et al. [19], which was also found in the numerical
simulations of Peyneau and Roux [20]. It is also consistent
with the values ων ≈ 1 that we previously found [8,40] in a
model with Newtonian rheology.

Our discussion of μ in Sec. III C dealt specifically with
the limit of hard-core particles below φJ . We can, however,
consider the more general case of μ for soft-core particles at
finite γ̇ and above φJ . In Fig. 13 we show our results for μ

vs φ for different values of γ̇ . We see that as γ̇ → 0, μ is
everywhere approaching a finite φ-dependent constant. That
μ is finite at φJ as γ̇ → 0 confirms, via Eq. (18), that the
scaling exponent y (and hence q and β) is the same for both p

and σ . A very similar looking plot of μ vs φ for models with
Newtonian rheology was found in Ref. [15].

We can understand some of the features of our data in
Fig. 13 by considering the scaling form that μ should obey.
Since the exponents q = y/zν are the same for p and σ , we
have, from Eq. (18),

μ ≡ σ

p
= h1

(
δφ

γ̇ 1/zν

)
+ γ̇ ω/zh2

(
δφ

γ̇ 1/zν

)
. (37)
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FIG. 13. Macroscopic friction μ ≡ σ/p vs packing fraction φ for
different values of the shear strain rate γ̇ . The vertical dashed line
locates the jamming transition at φJ . The strain rate γ̇ decreases as
curves go from top to bottom.
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FIG. 14. Macroscopic friction μ ≡ σ/p vs shear strain rate γ̇ at
φ = 0.8434 ≈ φJ . A fit to Eq. (38) determines the exponent ω/z ≈
0.41 ± 0.01.

Exactly at φJ , where δφ = 0, the above becomes

μ(φJ ,γ̇ ) = h1(0) + h2(0)γ̇ ω/z. (38)

Thus plotting μ at φJ vs the strain rate γ̇ should allow one to
determine the correction-to-scaling exponent ω/z.

In Fig. 14 we plot μ vs γ̇ at φ = 0.8434 ≈ φJ . Fitting
to Eq. (38) we find the value ω/z ≈ 0.41 ± 0.01, consistent
within the estimated errors with the results in Fig. 12. We do
not try any more elaborate fits to μ(φ,γ̇ ) since the quality of
our data at the lowest γ̇ is rather poor; the difference in values
μ(γ̇ ) − μ(γ̇ ′), for neighboring values of γ̇ and γ̇ ′, is less than
the estimated errors on the values of μ(γ̇ ) and μ(γ̇ ′).

To investigate the behavior of μ in the limit of vanishingly
small strain rates γ̇ → 0, we can write an alternative scaling
form for μ by using Eq. (21). Again noting that the critical
exponents y for p and σ are equal, we get

μ ≡ σ

p
= h̃1±

(
γ̇

|δφ|zν
)

+ |δφ|ωνh̃2±

(
γ̇

|δφ|zν
)

, (39)

where ± indicate the scaling functions above and below φJ ,
respectively. Thus, as γ̇ → 0, we expect the limiting behavior

μ = h̃1±(0) + |δφ|ωνh̃2±(0). (40)

Taking the limit of Eq. (40) as φ → φJ from below we
therefore get μ(φ−

J ) = h̃1−(0), while taking the limit φ → φJ

from above we get μ(φ+
J ) = h̃1+(0). Since there is no reason

why we should have h̃1−(0) = h̃1+(0), Eq. (40) implies that as
γ̇ → 0, μ takes a discontinuous jump 
μ = h̃1+(0) − h̃1−(0)
at φJ . Looking at our data in Fig. 13, however, we cannot
detect any suggestion of such a discontinuity in μ at φJ ; the
expected discontinuity may be too small or may not become
sharp enough until even smaller γ̇ is reached.

We do, however, see what appears to be a discontinuous
slope in μ at φJ , as γ̇ → 0. This is also a consequence of
Eq. (40). If we assume that ων = 1, then as φ → φJ from
below we have dμ/dφ = −h̃2−(0), while for φ → φJ from
above we have dμ/dφ = +h̃2+(0), giving a discontinuity in
the slope 
(dμ/dφ) = h̃2+(0) + h̃2−(0). The physical reason
for this discontinuous slope is straightforward: As γ̇ → 0
below φJ , μ is the ratio of Bagnold coefficients μ = Bσ/Bp

as p and σ each individually goes to zero; above φJ , μ is
the ratio of the shear and pressure components of the yield
stress μ = σ0/p0. There is no reason that the φ dependence
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FIG. 15. Inertial number I = γ̇ /
√

p vs packing fraction φ for
our data that are in the hard-core limit φ < φJ and γ̇ → 0.

of Bσ/Bp should be smoothly related to the φ dependence of
σ0/p0 and this is formalized in the scaling of Eq. (40).

D. Hard-core limit

Our scaling analysis in the previous sections required us to
consider corrections to scaling in order to arrive at consistent
results. It is therefore puzzling how Peyneau and Roux [20]
managed to get from the constituent equations (25) and (26)
the same exponents as we find here, without having to consider
corrections to scaling. Although they simulate with soft-core
particles as we do, they claim that their particles are sufficiently
stiff (and γ̇ sufficiently small) that their results were all
obtained in the hard-core limit where the inertial number
I ∼ γ̇ /

√
p is independent of the specific values of p and

γ̇ and only depends on the packing fraction φ, as discussed in
Sec. III C.

From Eq. (18) we see that p (and similarly σ and so
μ) depends on the scaling variable x ≡ δφ/γ̇ 1/zν . Since the
hard-core limit is characterized by sufficiently small γ̇ , where
|x| is therefore large, the crossover from the hard-core to
the soft-core region is set by the scaling function to be at
some particular value x∗; |x| � x∗ is the hard-core region
while |x| � x∗ is the soft-core region. Equivalently, if γ̇ ∗(φ) ≡
|δφ/x∗|zν , then γ̇ � γ ∗ is the hard-core region. Since the data
we have used in our fits all satisfy |x| � xmax, for some suitably
small xmax, our scaling analysis above has used data that are
all explicitly in the soft-core region. It is therefore of interest
to instead consider our data that are in the hard-core region
and see what exponents are obtained from an analysis of those
results.

From Fig. 3(a) for Bp = p/γ̇ 2, we see that we have data
that are in the hard-core limit, with Bp independent of the
strain rate γ̇ at sufficiently small γ̇ , for packing fractions up
to the value φ = 0.8425. Thus we are able to get hard-core
results to within 0.1% of φJ ≈ 0.843 35. In Fig. 15(a) we plot
the inertial number I = γ̇ /

√
p vs φ for our data points that

are in the hard-core limit. We see that we get down to the
smallest value of Imin ≈ 5 × 10−5. In comparison, Peyneau
and Roux [20] consider two different numerical systems, with
different particle stiffnesses, one of which extends down to
Imin = 10−5 and the other to Imin = 3.2 × 10−5. Fitting to
values of Imin � I � 10−2, they find for their two cases with
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FIG. 16. Macroscopic friction μ ≡ σ/p vs packing fraction φ for
our data that are in the hard-core limit φ < φJ and γ̇ → 0.

different Imin the dilatancy exponents a = 0.42 ± 0.02 and
a = 0.39 ± 0.01, respectively.

Inverting the constituent equation (25) to write I ∝ (φJ −
φ)1/a , we fit our hard-core data in Fig. 15 to this form, with φJ ,
a, and the proportionality constant as free fitting parameters.
We use the same range Imin � I � 10−2 as Peyneau and Roux
[20]. We find φJ = 0.843 14, slightly smaller than the value
0.84335 obtained from our earlier analysis of data in the soft-
core region. We find a dilatancy exponent a = 0.526 ± 0.006,
larger than the value a ≈ 0.4 found by Peyneau and Roux and
giving a value of β = 2/a ≈ 3.8 that is significantly smaller
than the β = 5.0 ± 0.4 found from our earlier analysis but
is roughly equal to the value found in Fig. 7 provided we
included a broad range of strain rates with γ̇max ≈ 10−4. We
thus conclude that, even in the hard-core region, our data do
not get sufficiently close to the critical point that we can avoid
the need for corrections to scaling.

We thus remain with the unanswered question as to why
Peyneau and Roux [20] found seemingly correct results
without considering corrections to scaling. It is possible that
this agreement is just fortuitous. Although they claim that
their results are in the hard-core limit, when they compare
data for two different particle stiffnesses, their results for
φ vs I show a very small but noticeable and systematic
difference at the smallest values of I (see their Fig. 7), thus
suggesting that the soft core is influencing their results at
the points closest to jamming (I → 0). They also have a
small, but measurable, finite-size effect in their data (see their
Figs. 6 and 8). However, their simulations differ from ours in
several other ways. They simulate at constant normal pressure,
rather than constant volume. It is claimed that fluctuation
and finite-size effects are reduced in the constant pressure
ensemble. However, even if so, our data are certainly accurate
enough and our system size (N = 262 144, compared to
Peyneau and Roux’s 4000) is certainly large enough that this
cannot be the source of the difference. Peyneau and Roux [20]
simulate in three dimensions, while we are in two dimensions.
They use a monodisperse system, while we use a bidisperse
system. It thus may be that the magnitude of the corrections to
scaling are affected by the dimensionality or dispersity of the
system.

Finally, we consider the macroscopic friction μ for our data
in the hard-core region. Since our control parameter is φ rather
than p, in Fig. 16 we plot μ vs φ (rather than I ) for the same

hard-core data points as in Fig. 15. Fitting our data to Eq. (32),
we find φJ ≈ 0.843 08 and the exponent ων ≈ 0.96 ± 0.19.
Thus, as in the analysis of Fig. 15, the value of φJ found here
is somewhat smaller than found in our earlier analysis, but the
value of ων is in good agreement.

VI. CONCLUSION

We have carried out constant volume simulations of a well
studied model of frictionless disks in two dimensions that
displays Bagnoldian rheology. Simulating at shear strain rates
γ̇ slower than studied previously, we analyze our results for
pressure p and shear stress σ according to a critical scaling
ansatz. We show that, for the range of parameters considered
here, a simple scaling analysis fails to give consistent results as
we vary the window of data about the jamming transition that
is used to fit to the scaling expression; parameter values are
found to systematically vary with the width of the window of
data used. Our results highlight that, in carrying out a scaling
analysis of critical parameters, it is not sufficient to do a fit to
the data and find a good looking scaling collapse, as in Fig. 5;
rather it is essential to check the stability of the fitted critical
parameters to a narrowing of the window of data about the
critical point, as shown in Figs. 6 and 7.

We show, however, that consistent results are found once
we include corrections to scaling in the analysis. The exponent
β that describes the divergence of the hard-core Bagnold
coefficients Bp and Bσ is found to be noticeably larger
than the value β = 4 predicted by the theory of Otsuki
and Hayakawa [9,10]. Our value β ≈ 5.0 ± 0.4 is consistent
with earlier numerical simulations by Peyneau and Roux
[20], who found β ≈ 5.0 ± 0.3, and is closer to the value
β ≈ 5.7 predicted theoretically by the recent work of DeGiuli
et al. [19]. Our results therefore cast significant doubt on
the mean-field calculations of Otsuki and Hayakawa [9,10]
while lending support to the theoretical arguments of DeGiuli
et al. [19].

We have considered the macroscopic friction μ and
shown how the dependence of μ on φ is directly related
to corrections to scaling. While we have found it difficult
to determine an accurate value of the relevant correction-
to-scaling exponent ων, our results are consistent with the
value ων ≈ 1, in agreement with the claims of DeGiuli et al.
[19] and consistent with the numerical results of Peyneau and
Roux [20].

Our detailed comparisons with the earlier simulations of
Peyneau and Roux [20] suggest that the magnitude of the
corrections to scaling may be affected by the dimensionality of
the system or the size dispersity of the particles. This remains
for further investigation.
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APPENDIX A

In this Appendix we demonstrate that our system with N =
262 144 total particles is big enough so that there are no finite-
size effects in our data and we comment on the applicability
of a finite-size-scaling approach to analyze our system. For a
continuous phase transition there is usually a correlation length
ξ that diverges as the critical point is approached. When ξ

becomes comparable to, or bigger than, the system length L,
finite-size effects become manifest. If we wish to do critical
scaling in the infinite-system-size limit, such as we have done
in this work, we therefore need to make certain that our system
size is sufficiently large that L � ξ for all the parameters (φ,γ̇ )
where we carry out our simulations. While in the present
model it is not straightforward to measure ξ directly, we
can nevertheless check that we are in the appropriate limit
by comparing results from simulations of different system
sizes L.

Since ξ should diverge at φ = φJ as γ̇ → 0, for the
parameters we simulate, the correlation length ξ will be largest
at our smallest γ̇ at the φ that is closest to φJ . It thus suffices
to look at the behavior of our system, as a function of γ̇ and
particle number N , close to φJ . In Fig. 17 we therefore plot the
pressure p and shear stress σ vs shear strain rate γ̇ for several
different system sizes as measured by the number of particles
N . Our results are for the packing fraction φ = 0.8433, which
our scaling analysis indicates is just very slightly below the
jamming φJ .

For small N we see that p and σ plateau to constant values
as γ̇ decreases; this plateau is a consequence of ξ becoming
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FIG. 17. (a) Pressure p and (b) shear stress σ vs shear strain rate
γ̇ for systems with different number of particles N at the packing
fraction φ = 0.8433, which is just slightly below the jamming φJ .

comparable to the system length L ∼ N1/d , in d dimensions.
The value of γ̇ ∗ at which the plateau sets in and the values
p∗ and σ ∗ on the plateau decrease as N increases, since as
N increases we are able to get closer to the critical point
before the condition L ∼ ξ sets in. For the largest system
sizes however, we see no such plateau, indicating that L � ξ

even at the smallest γ̇ . Comparing the two largest systems sizes
N = 65 536 and 262 144, we see no dependence of our data on
N , within the estimated statistical error. This confirms that our
system with N = 262 144 particles is safely in the infinite-size
limit for the parameters where we simulate and that any finite-
size effects are completely negligible, thus justifying our use of
the scaling of Sec. V. This is the main point of this Appendix.

We may note that it is sometimes possible to determine
critical exponents, characteristic of the infinite-size limit, by
exploiting the dependence of quantities on system size. This
method, known as finite-size scaling, is based on viewing the
inverse of the system length L−1 as a new control parameter
that vanishes at the critical point and generalizing the scaling
of Eq. (10) to the form

pby/ν = f (δφb1/ν,γ̇ bz,w1b
−ω1 ,w2b

−ω2 , . . . ,L−1b). (A1)

Choosing b = L and keeping only the leading irrelevant
scaling variable then gives

pLy/ν = f (δφL1/ν,γ̇ Lz,wL−ω,1). (A2)

The scaling equation above is more complicated than what we
have considered previously, i.e., Eq. (11). Even if we regard
the leading irrelevant scaling variable as small and negligible,
w ≈ 0, the right-hand side of Eq. (A2) still involves two
independent scaling variables δφL1/ν and γ̇ Lz. Since we do
not a priori know either of the scaling exponents 1/ν or z or
the value of φJ , proceeding with Eq. (A2) would require us to
explore a three-dimensional parameter space (φ,γ̇ ,L) rather
than the two-dimensional parameter space (φ,γ̇ ) considered
in Sec. V. To simplify, we need to eliminate one of the control
parameters φ or γ̇ so as to reduce the problem to a single
scaling variable.

If we can do quasistatic shearing simulations [40], with
γ̇ → 0, one can then write (assuming w = 0)

pLy/ν = f (δφL1/ν,0,0,1). (A3)

Plotting pLy/ν vs (φ − φJ )φL1/ν and requiring the data to
collapse to a common curve for different L then determines the
exponents y/ν and 1/ν as well as φJ . However, our simulations
in the present work are all at finite γ̇ , so this approach is not
possible for us.

If we knew the exact location of the jamming point φJ , we
could then simulate at φ = φJ and write (assuming w = 0)
[41]

pLy/ν = f (0,γ̇ Lz,0,1). (A4)

Requiring p to become independent of L as L → ∞ then
requires that f (0,x,0,1) ∼ xy/zν as x → ∞, thus giving in
the infinite-size limit the critical rheology at φJ , p ∼ γ̇ q with
q = y/zν, in agreement with Eq. (12). In the opposite limit
of x → 0, assuming f (0,x,0,1) → const gives limγ̇→0 p ≡
p∗ ∼ L−y/ν and the crossover to this low strain rate limit
occurs at γ̇ ∗ ∼ L−z. Both p∗ and γ̇ ∗ thus scale to zero as
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L increases, in qualitative agreement with what we see in
Fig. 17. Plotting pLy/ν vs γ̇ Lz and requiring the data to
collapse to a common curve for different L then determines
the exponents y/ν and z. However, even if we could do this,
it does not allow us to determine the critical exponent β of
the transport coefficient, which is the focus of the present
work. From Eq. (16) we have for Bagnold rheology (n = 2)
β = 2zν − y = ν(2z − y/ν). The finite-size-scaling method
of Eq. (A4) determines z and y/ν, but does not determine ν,
thus preventing us from determining β. Of course our ability
to even attempt the above analysis depends on our knowing
the exact value of φJ , which we know only approximately and
only because we have already done the infinite-size scaling
analysis of Sec. V.

Finally, we note that since our scaling analysis (Sec. V)
in the infinite-system-size limit indicated that corrections to
scaling from the leading irrelevant variable are important
for the strain rates γ̇ studied here, one should expect such
corrections to be important in systems of finite size as well.
If so, our simple Eq. (A4) is not sufficient to describe our
finite-size data, but rather we should expand Eq. (A2) for
small w and then set δφ = 0 to obtain

pLy/ν = f1(γ̇ Lz) + L−ωf2(γ̇ Lz). (A5)

Indeed, we have found such corrections to scaling to be
important in a finite-size-scaling analysis of a related model
with Newtonian rheology, both for scaling with δφ in the
quasistatic limit γ̇ → 0 [40] and for scaling with γ̇ at φ = φJ

[42].
To summarize, a finite-size-scaling analysis for our model is

problematic for many reasons: (i) To determine all desired crit-
ical exponents we would need to deal with the scaling equation
(A2), which involves two independent scaling variables and a
three-dimensional parameter space (φ,γ̇ ,L), for which there
is no simple way forward; (ii) we cannot simplify to the single
variable scaling with δφ, as in Eq. (A3), as we are not in the
quasistatic limit; (iii) we cannot simplify to the single variable
scaling with γ̇ , as in Eq. (A4), as we do not a priori know the
exact value of φJ ; (iv) even if we could attempt scaling as in
Eq. (A4), our analysis would be complicated by corrections to
scaling; and finally (v), even if we could successfully carry out
a finite-size-scaling analysis based on Eq. (A5), that analysis
would still not be sufficient to allow us to determine the value
of the transport coefficient exponent β. We therefore have
chosen not to pursue a detailed finite-size-scaling analysis for
the present model, but rather to focus our scaling analysis on
behavior in the infinite-size limit.

APPENDIX B

The observation that critical exponents for the static
compression-driven jamming transition appear to be the same
in two as in three dimensions [21] has lead to the speculation
that d = 2 may be at or above the upper critical dimension
dUC for the jamming transition. An analysis by Wyart et al.
[43], considering the spatial fluctuations of the contact number,
argued that dUC = 2. Further evidence that dUC � 2 was
claimed from a finite-size-scaling analysis of contact number
vs pressure in numerical simulations by Goodrich et al.
[44]. Exactly at dUC, scaling variables acquire multiplicative

logarithmic corrections [45]. Evidence for such logarithmic
corrections was claimed in finite-size-scaling analyses of
contact number vs pressure [46] and shear strain vs pressure
[47], in mechanically stable packings of two-dimensional fric-
tionless disks compressed above the static jamming transition.

Although the discussion and evidence that dUC = 2 for the
jamming transition have pertained only to the behavior of
soft-core disks isotropically (on average) compressed above
the static jamming transition, one can wonder if dUC = 2 may
hold as well for the dynamic shear-driven jamming transition
considered in this work. In such a case, the logarithmic
corrections change the scaling of Eq. (10) to the form [48]

pby/ν | ln b|cp = f (δφb1/ν | ln b|cφ ,γ̇ bz| ln b|cγ̇ ), (B1)

where the leading algebraic exponents y/ν, 1/ν, and z take
their mean-field values and the new logarithmic exponents are
cp, cφ , and cγ̇ ; we have ignored for simplicity the irrelevant
variables wi . One may now choose the length rescaling factor
b so that γ̇ bz| ln b|cγ̇ = 1. To leading order as γ̇ → 0, this
results in Ref. [49]

p = γ̇ y/zν | ln γ̇ |c1 f̃

(
δφ

γ̇ 1/zν | ln γ̇ |c2

)
, (B2)

which is the analog of Eq. (11). Exactly at jamming δφ = 0
and the rheology at criticality becomes

p ∼ γ̇ q | ln γ̇ |c1 at φ = φJ , (B3)

with q = y/zν as before. Alternatively, one can choose b so
that |δφ|b1/ν | ln b|cφ = 1, in which case to leading order as
δφ → 0 one gets below jamming

p = |δφ|y| ln |δφ||c̃1 g̃

(
γ̇

|δφ|zν| ln |δφ||c̃2

)
. (B4)

Since below jamming we expect p ∼ γ̇ 2, we then have for
the scaling of the Bagnold coefficient in the hard-core γ̇ → 0
limit

p/γ̇ 2 ∼ |δφ|−β
∣∣ ln |δφ|∣∣c for γ̇ → 0, φ < φJ , (B5)

with β = 2zν − y as before.
We would now like to test our numerical results for evidence

of such logarithmic corrections to scaling. In particular we
wish to see if such logarithmic corrections could give a self-
consistent explanation for our results in Sec. V, without having
to introduce the correction-to-scaling term from the leading
irrelevant variable, as done in Sec. V B.

However, there are many difficulties with attempting to fit
to either Eqs. (B2), (B3), or (B5). We cannot use Eq. (B3)
directly, since we do not a priori know the value of φJ ; using
an incorrect value of φ slightly off from φJ would skew data
at the smallest γ̇ away from the form of Eq. (B2) and so a
fit to Eq. (B2) would give spurious results. It is difficult to
use Eq. (B5) since our simulations are not explicitly in the
hard-core γ̇ → 0 limit; the γ̇ dependence of p/γ̇ 2 sets in at
ever decreasing values of γ̇ as one gets closer to φJ . Moreover,
it can be exceedingly difficult to numerically distinguish the
form xb| ln x|c from the form xb′

when the range of data for x

is limited, as it is in our case. The success of such fits generally
depends on knowing in advance the mean-field value of the
leading exponent b and often the exact location of the critical
point.
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For example, in Ref. [46] the authors do a finite-size scaling
analysis of the average contact number Z with pressure p and
system size N . Using a scaling form similar to our Eq. (B2)
with Z − Zc playing the role of our p, p playing the role of
our δφ, and 1/N playing the role of our γ̇ , they fit to the form

Z − ZN
c = 1

N
f

(
pN2

| ln N |c2

)
. (B6)

However, in their case they know the exact location of their
critical point p = 0 and ZN

c = 2d − 2d/N0 the isostatic value
for a system with N0 nonrattler particles [46]. Furthermore, the
mean-field exponents relevant to this situation are believed to
be known and these values are used in their fits, i.e., the analogs
of y/zν and 1/zν in Eq. (B2) are here 1 and 2, respectively.
Moreover, the authors assume, with no justification given, that
the analog of the exponent c1 in Eq. (B2) vanishes and hence
there is no logarithmic correction to the scaling of the contact
number Z. Thus only the single exponent c2 is to be determined
from the fit and still the authors never show any quantitative
measure of the success of their fit (such as the χ2

DOF) or test the
stability of their obtained value of the exponent c2 to changes
in the window of data used in the fit.

In contrast, for our Eq. (B2) we do not know the precise
value of φJ , the exponents q = y/zν or 1/zν, or the new
exponents c1 and c2; these are all quantities we wish to
determine from the fit. Nevertheless, we can attempt to see how
well our data fit the form of Eq. (B2), where we approximate
the scaling function f̃ (x) by the exponential of a fifth-order
polynomial as in Eq. (35) and use the polynomial coefficients
φJ , q = y/zν, 1/zν, c1, and c2 as free fitting parameters. We
compare the results of our fits varying the window of data
used, γ̇ � γ̇max and |x| � xmax, as we decrease the limiting
values γ̇max and xmax just as we have done in the earlier
Sec. V A. We use the following procedure: For given values of
γ̇max and xmax we use as initial guesses for the fit parameters
the values obtained from our earlier fits of Sec. V A at the
corresponding γ̇max and xmax, together with c1 = c2 = 0; using
these parameters, we select the data to be used in the fit
according to the criteria γ̇ � γ̇max and |x| = |δφ/γ̇ 1/zν | �
xmax; we then carry out the fit letting all fitting parameters,
including c1 and c2, vary. Our results, independently fitting to
both the pressure p (left column) and the shear stress σ (right
column), are shown in Figs. 18 and 19.

Although we find that the quality of the fits, as measured
by the χ2

DOF, are reasonably good (at least as good as in Fig. 4
for the fits ignoring the logarithmic corrections), nevertheless
the outcomes of these fits cannot be taken as evidence for the
correctness of the scaling assumption of Eq. (B2). If Eq. (B2)
were correct, we would expect to see the fitted parameters
become independent of the cutoffs γ̇max and xmax as these
cutoffs decreased. However, the values of the exponents q

and 1/zν (and correspondingly β and y), as well as the new
exponents c1 and c2, vary considerably with γ̇max (in some
cases even changing sign). Moreover, we would expect the
critical exponents to be consistent comparing values for p vs
for σ , while here we see noticeable differences, particularly for
q, y, c1, and c2. We conclude that these fits are not reliable. We
believe the main problem is that the functional form of Eq. (B2)
poorly constrains the fit parameters; in particular it is difficult
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FIG. 18. Fits of pressure p (left column) and shear stress σ

(right column) to the scaling form of Eq. (B2) including presumed
logarithmic corrections to scaling. Different curves represent different
cutoffs xmax on the scaling variable; results are plotted vs the cutoff on
the strain rate γ̇max. We show results for the χ 2 per degree of freedom
of the fit χ 2

DOF, the jamming fraction φJ , and the exponents q and
1/zν.

to distinguish the difference between the forms xb| ln x|c and
xb′

over our limited range of data. One can decrease b and
increase c in the first to get results that are hard to distinguish
from a given b′ in the second. Indeed, we see in our fits that as
q and 1/zν get smaller (as γ̇max decreases), the corresponding
|c1| and |c2| get larger. We believe that the same issue of poor
constraint is behind the huge error bars we find on some of our
data points.

To get more meaningful results it is necessary to better con-
strain the fits, for example, by fixing the values of the leading
exponents q and 1/zν to their mean-field values. However, the
values of these exponents are not uncontroversially known
and determining them is the main objective of this work.
Nevertheless, we can fix them according to the predictions
of competing theoretical models and then see if our numerical

052902-17
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FIG. 19. Fits of pressure p (left column) and shear stress σ

(right column) to the scaling form of Eq. (B2) including presumed
logarithmic corrections to scaling. Different curves represent different
cutoffs xmax on the scaling variable; results are plotted vs the cutoff on
the strain rate γ̇max. We show results for the exponent β = (2 − q)zν
and y = qzν and the new exponents c1 and c2 associated with the
logarithmic corrections.

results become consistent with these theoretical predictions
once we include the logarithmic corrections to scaling.

We consider first the phenomenological mean-field theory
of Otsuki and Hayakawa [9,10], which gives β = 4 and
y = 1; with these values, we have 1/zν = 2/(β + y) = 0.4
and q = 2y/(β + y) = 0.4. Fixing q and 1/zν to these values,
we proceed as before, letting all other parameters vary in our fit.
In Fig. 20 we present the resulting values of χ2

DOF, φJ , c1, and
c2, as functions of the cutoffs γ̇max and xmax. We show results
from both fits to pressure (left column) and to shear stress
(right column). We see that c1 and c2 continue to increase as
γ̇max decreases, instead of saturating to a constant value, and

0

2

4

6

8

10

10-5 10-4

0.15
0.20
0.30
0.40

2 D
O

F

max
.

(a)  

xmax

0

2

4

6

8

10

10-5 10-4

0.15
0.20
0.30
0.40

2 D
O

F

max
.

(b) 

xmax

0.84310

0.84315

0.84320

0.84325

0.84330

0.84335

0.84340

10-5 10-4

0.15
0.20
0.30
0.40

J

max
.

(c)  

xmax

0.84310

0.84315

0.84320

0.84325

0.84330

0.84335

0.84340

10-5 10-4

0.15
0.20
0.30
0.40

J

max
.

(d) 

xmax

-0.5

-0.4

-0.3

-0.2

-0.1

0

10-5 10-4

0.15
0.20
0.30
0.40

c 1

max
.

(e)  

xmax

-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

10-5 10-4

0.15
0.20
0.30
0.40

c 1

max
.

(f) 

xmax

-0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

10-5 10-4

0.15
0.30
0.30
0.40

c 2

max
.

(g)  

xmax

-0.4

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

10-5 10-4

0.15
0.20
0.30
0.40

c 2

max
.

(h) 

xmax

pressure p

pressure p

pressure p

pressure p

shear stress 

shear stress 

shear stress 

shear stress 

FIG. 20. Fits of pressure p (left column) and shear stress σ

(right column) to the scaling form of Eq. (B2) including presumed
logarithmic corrections to scaling. Here we fix the exponent values
q = 1/zν = 0.4 as given by the theoretical prediction of Otsuki and
Hayakawa [9,10]. Different curves represent different cutoffs xmax on
the scaling variable; results are plotted vs the cutoff on the strain rate
γ̇max. We show results for the χ 2 per degree of freedom χ 2

DOF, the
jamming fraction φJ , and the exponents c1 and c2 of the logarithmic
corrections.

moreover there is a significant difference between the values
of c1 and c2 obtained from the fits to the pressure as compared
with the values obtained from the shear stress. Because of the
clear dependence of the exponents c1 and c2 on the window
of data used in the fit, we conclude that the logarithmic
corrections of Eq. (B2) do not lead to agreement between our
results and the predictions of Otsuki and Hayakawa [9,10].

Next we consider the theoretical predictions of DeGiuli
et al. [19], which give β ≈ 5.7. Since DeGiuli et al. deal
with a hard-core model, they can make no direct prediction
about the other exponents. However, if we assume y = 1
for the harmonic soft-core interaction, as assumed by Otsuki
and Hayakawa [9,10] and as believed to be the case for
mechanically stable configurations compressed above the
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FIG. 21. Fits of pressure p (left column) and shear stress σ

(right column) to the scaling form of Eq. (B2) including presumed
logarithmic corrections to scaling. Here we fix the exponent value
β = 5.7 as given by the theoretical prediction of DeGiuli et al. [19]
and take y = 1 as assumed by Otsuki and Hayakawa [9,10] and as
found for static jamming [21]. Different curves represent different
cutoffs xmax on the scaling variable; results are plotted vs the cutoff
on the strain rate γ̇max. We show results for the χ 2 per degree of
freedom χ 2

DOF, the jamming fraction φJ , and the exponents c1 and
c2 of the logarithmic corrections. Because the χ 2

DOF is so poor for
xmax > 0.2 [note the logarithmic scale on the vertical axis in (a) and
(b)], in subsequent panels we focus only on the data for xmax � 0.2.

static jamming transition [21] (though not consistent with the
result we claim in this work), we then have q = 2y/(β + y) ≈
0.3 and 1/zν = 2/(β + y) ≈ 0.3. Fixing q and 1/zν to these
values, we proceed as before, letting all other parameters vary
in our fit. In Fig. 21 we present the resulting values of χ2

DOF,
φJ , c1, and c2 as functions of the cutoffs γ̇max and xmax. We
show results from fits both to pressure (left column) and to
shear stress (right column).

We see that the χ2
DOF is generally too big to consider

these fits to be reasonable [note the logarithmic scale on the
vertical axes of Figs. 21(a) and 21(b)]. Only for the smallest

xmax = 0.15, 0.20, at the smaller γ̇max, might one consider
the χ2

DOF as reasonable. In the subsequent panels, therefore,
we focus on the results for these two smallest values of xmax

(data for the larger xmax are thus often falling outside the range
of the plot). We see that, as desired, φJ and c1 found from
the pressure [Figs. 21(c) and 21(e)] are roughly independent
of γ̇max for xmax = 0.15,0.20. However, this is not the case
for the other quantities that, as γ̇max decreases, vary over a
range considerably larger than the estimated errors on the data
points. Moreover, comparing the values of c1 and c2 found
from the pressure with those found from the shear stress, we see
that these values span almost nonoverlapping ranges instead
of being equal. We conclude that adding the logarithmic
corrections of Eq. (B2) into our scaling analysis does not
by itself make our results consistent with the predictions of
DeGiuli et al. [19].

Comparing the χ2
DOF of Figs. 20(a) and 20(b) with that of

Figs. 21(a) and 21(b), one might be tempted to conclude that
the Otsuki-Hayakawa prediction [9,10] better fits the data than
does that of DeGiuli et al. [19]. However, it is important to
note that none of the fits in this appendix are doing particularly
better than the fits of Sec. V A; both the earlier fits of Sec. V A
and the fits of this appendix find critical parameters that
noticeably vary as one varies the window of data used in the fit
and thus are not providing self-consistent results. Our results
therefore seem better explained by the corrections to scaling
that arise from the leading irrelevant variable, as discussed in
Sec. V B.

We have also tried fits to Eq. (B2) assuming slightly
different fixed values of β and y, as well as fits in which only
β is fixed and y may vary (and vice versa), however we do
not find results that are any more satisfactory. A more accurate
test for the presence of logarithmic scaling corrections would
depend on knowing precise values for the leading exponents
q and 1/zν (or equivalently β and y), but unfortunately these
are not known. While our results therefore cannot rule out the
presence of logarithmic corrections, neither do they give any
support for them. Our results do not rule out the possibility that
dUC = 2, however they do show that the addition of logarithmic
corrections alone is not sufficient to make our data compatible
with either of the two theoretical predictions in Refs. [9,10] or
[19] for the leading critical exponents.

As a final comment we note that if indeed dUC = 2, one
would expect to see scaling with mean-field exponents with
no logarithmic corrections if one carried out simulations in
d = 3 > dUC dimensions. To obtain sufficiently accurate data
for our model in d = 3 is a computationally challenging project
that we leave for future investigation. However, we may note
that d = 3 simulations have been carried out by Kawasaki et al.
[18] for a simpler model with Newtonian rheology. In that case
they found (as we similarly found [8] for this Newtonian model
in d = 2) that a simple scaling analysis as in Sec. V A cannot
explain the shear stress over the range of strain rates γ̇ studied;
their subsequent analysis is equivalent to the correction-to-
scaling approach described here in Sec. V B and as used by
us [8] to explain results for this Newtonian model in d = 2.
We therefore might expect that similar correction-to-scaling
terms, from the leading irrelevant variable, would be present
in the present model even in d = 3 and so presumably also in
d = 2, as we argue is the case in this work.
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