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1. INTRODUCTION 

1.1. Historical introduction 

In 1912 Von Laue suggested an investigation on the interaction between 
X-rays and crystals. At that time neither the nature of X-rays nor the atomic 
structure of crystals had been firmly established, although it had been mentioned 
that X-rays might be electromagnetic waves with a wavelength much shorter 
than that of visible light, and that crystals had a periodic structure. For an 
excellent survey of the relevant knowledge at that time, see the book "Fifty 
years of X-ray diifraction" edited by P. P. Ewald i). Von Laue, being trained 
in optics, combined these two possibilities and concluded that if both were true, 
the crystal might act as a three-dimensional grating for the X-rays. Friedrich 
and Knipping performed the experiment and very soon found that a parallel 
incident beam is diffracted by the crystal into many beams. The directions of 
the diffracted beams turned out to be closely connected with the orientation 
of the crystal with respect to the incident beam. In 1912 2) Von Laue and his 
collaborators published a theory explaining these results as a diffraction pheno­
menon. This theory was mainly concerned with the geometrical aspects of 
diffraction: the orientation relationship between the incident and diffracted 
beams relative to the orientation of the crystal. A diffracted beam in his view 
was the result of constructive interference between the wavelets emitted by the 
individual scattering centres. 

In the following year Sir W. L. Bragg ^) published an alternative formulation 
of Von Laue's results, in a form simpler to visualize. In his view diffraction was 
the result of mirror reflexion against densily packed atom planes, with the 
restriction that the waves reflected by successive parallel planes have to be in 
phase. The mathematical formulation is the well-known Bragg equation. 

Both forms of geometrical theory lend themselves to quantitative treatment 
and expressions for the intensities of the diffracted beams can be obtained. The 
result of such a treatment is the kinematical theory of X-ray diffraction. It fits 
remarkably well the experimental data on nearly all crystals. 

Von Laue's interest in the possibility of X-ray diffraction arose from a 
discussion with Ewald in the beginning of 1912. Ewald was preparing his 
doctor's thesis under Sommerfeld on the double refraction in crystals. He could 
show that for an orthorhombic array of dipoles it was not necessary to assume 
an anisotropic scattering by the dipoles to explain double refraction. For some 
unsolved questions he wanted the advice of Von Laue, who was fully trained in 
optics. The discussion did not help Ewald very much since Von Laue was 
obviously preoccupied with one question in this matter: "What is the distance 
between the dipoles in actual crystals?" Ewald could give only the unsatis-
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factory answer that it must be much smaller than the wavelength of visible light. 
In spite of the lack in advice Ewald finished his thesis in February 1912. It is 
clear that Ewald's work has some bearing on the diffraction of X-rays. In 1916 
Ewald *) extended his theory to the case of X-rays, having a wavelength com­
parable with the distance between neighbouring scattering centres. This exten­
sion is the basis of the dynamical theory of X-ray diffraction. The results agree 
with the geometrical theory, but are contradictory to the kinematical theory in 
many important aspects. It was therefore regarded as an impractical theory 
since it did not fit the experimental data. However, in 1941, Borrmann 5) 
observed diffraction phenomena in quartz crystals, which could be explained 
by Von Laue via the dynamical theory. 

The first papers on the dynamical theory, however, were published in 1914 
by Darwin ^). His theory, based on Bragg's way of approach, is easier to 
visualize and comprises less mathematics. The results are identical with those 
obtained by Ewald later, although Darwin restricts his treatment unnecessarily 
to the special situation of the symmetrical Bragg case. 

In 1931, when the stormy evolutions of the initial period had calmed down, 
Von Laue '') gave a third approach to the dynamical theory, by solving Max-
weU's equations for a medium with a periodic dielectric constant. It is remark­
able that Von Laue does not refer to the famous paper by Bloch *), published 
3 years earlier in 1928, dealing with the propagation of electron waves in 
periodic media, in spite of the fact that the problems treated are very similar. 
It may be mentioned further that Darwin's approach, published in 1914, is 
comparable to the Kronig-Penney model )̂ published in 1931. Although there 
is a close relationship between the dynamical theory of X-ray diffraction and 
the electron-band theory, the line of thought is different in the two, and different 
concepts are used. In this thesis we shall have several opportunities to dem­
onstrate the analogy in results in detail. 

1.2. Survey of this study 

From the moment that perfect crystals became available much experimental 
work has been done to verify the dynamical theory. The agreement between 
theory and experiment is excellent. At the same time data were obtained on 
perfect crystals deformed lightly by means of a temperature gradient or external 
forces. To explain the data on a theoretical basis, the dynamical theory has to 
be extended to deformed crystals. A first approach to this problem was given 
in 1961 by Penning and Polder. It is based on a number of assumptions not all 
of which were derived from first principles. It is the aim of this thesis to give a 
more extensive discussion of the different ideas underlying the theory and to 
determine its limitations. 

The dynamical theory differs in a fundamental way from the kinematical 
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theory, widely used in the interpretation of X-ray data. Therefore, in this thesis, 
much attention is paid to the way X-ray diffraction is approached in the two 
discipHnes. In chapter 2 the definitions are considered and in chapter 3 the 
geometrical theory. The specific kinematical way of approach is briefly discussed 
in chapter 4. Since we want to deal with almost perfect crystals the dynamical 
theory for perfect crystals is considered next. Special attention is given to the 
definition of the wave vector (chapter 5), the relation between the possible wave 
vectors for given wavelength and the modes of propagation by which the X-ray 
energy is transported through the crystal (chapter 6). The boundary conditions 
for matching the wave fields inside and outside the crystal are given in chapter 7. 
In actual crystals the amplitude of a mode of propagation decreases when the 
mode travels deeper into the crystal. The cause may be either absorption of 
X-ray energy by the crystal or extinction, an interference phenomenon that 
exists also in non-absorbing crystals. The consequences of introducing extinction 
and absorption on the behaviour of the modes of propagation and on the allow­
ed wave vectors for given wavelength are discussed in chapter 8. An important 
question is whether an absorption coefficient in its normal meaning is an ade­
quate description of the damping in amplitude. 

The theory for diffraction in lightly deformed crystals (chapter 10) is based 
on the idea that an incident pencil beam gives a well-behaved beam inside the 
crystal. In chapter 9 it is shown that in undeformed crystals normal beams result 
only if the extinction does not contribute substantially to the damping in ampli­
tude. The basic assumption of the theory is that in deformed crystals well-
defined beams are present also. To find the path of the beam a matching proce­
dure is proposed, analogous to the matching of light waves in inhomogeneous 
media. The resulting paths in general are not straight. In principle the theory 
may be applied to any type of deformation provided the strain is not too 
inhomogeneous, leading to expressions for the path and the overall absorption 
along the path. The simple examples discussed in chapter 10, lend themselves 
also to an exact treatment that does not require the basic assumptions of the 
ray theory (chapter 11). From this exact treatment it follows that for sufficiently 
slowly varying strain the ray theory gives correct results. The limit of validity 
is in good agreement with that derived in chapter 10 on intuitive arguments. 
For rapidly varying strains the kinematic approach gives the right answer. 

Finally we shall give in chapter 12 a comparison with other theories. 
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2. DEFINITIONS 

2.1. Introduction 

In the theories of X-ray diffraction a number of special concepts are used. 
It is the aim of this chapter to clarify the definitions and the use of those con­
cepts that are needed later. It is not the intention to give exact definitions. They 
are to be found in several textbooks i".11.12) xhis chapter is also necessary to 
introduce the symbols that will be used later. Unfortunately the different 
authors use different symbols for the same parameter and the same symbol for 
different parameters. The symbols used here are again different. 

2.2. Perfect crystals 

A perfect crystal is defined i^) as a body composed of atoms arranged in such 
a way that there exist 3 translation vectors ai, a2 and as, with the property that 
the atomic arrangement looks the same in every respect when viewed from any 
point r as when viewed from the point 

r' = r + «lai + «282 + «383, (2.2.1) 

where m, n-z and «3 are integers. If we specify that /u, «2 and «3 are integers 
for all points that have the property given above, the 3 vectors are referred to 
as primitive translation vectors. The parallelepiped on these 3 vectors is called 
the (primitive) unit cell. The atomic arrangement within the unit cell, together 
with the 3 primitive translation vectors provide all the information necessary 
to describe the positions of all atoms within the crystal. The geometrical theory 
is based on the translation symmetry only. The intensity of the diffracted beams 
is determined by the atomic arrangement within the unit cell, via the structure 
factor. 

In dealing with the propagation of waves in such periodic media it is con­
venient to introduce the reciprocal lattice. We define the primitive translation 
vectors 2bi, 2b2 and 2b3 in the following way: 

2bj • zi = In, 
(2.2.2) 

b« -aj = 0; / ^j. 

The reciprocal lattice is given by the points 

Ihnki = 2/ibi + 2ycb2 + 2/b3. (2.2.3) 

The factor 2 is included to obtain simpler formulae later in the text. The 
vector hhki is perpendicular to the crystal-lattice plane (hkl) and its magnitude 
is JT divided by the distance between two neighbouring planes {hkl), dnu'-

Ibftfczl = Ji/dnici- (2.2.4) 
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The interaction between the crystal and the X-rays takes place via the 
electrons. The electron density *) Q 'm a. periodic crystal may be written as a 
Fourier sum: 

e(r) = liQhki exp {Ijbhki • r), (2.2.5) 

with 
Qhki = Ci/Vc) ƒ e(r) exp (—Ijbhki • r) dV, (2.2.6) 

where Vc is the volume of the unit cell. 
Actual crystals can never be perfect, because of the motion of the atoms. 

As a matter of fact it was generally thought in 1912, that Von Laue's idea would 
bear no fruit because of the thermal motion. Since diffraction was observed, we 
consider in detail the case that ah atoms are located at their average position. 
The effects of thermal motion are discussed in sec. 10.1. 

2.3. Scattering mechanism 

The alternating electric field of the X-ray sets the electrons inside the crystal 
into forced vibrations. The vibrating dipoles emit radiation (scattered wavelets) 
that is coherent with the exciting field in polarization, frequency, phase and 
amplitude. 

The polarization relationship is shown in fig. 2.1. With reference to the 

K=cos2e 
'Tf-polarizatfon 

•K=1 

•polarization 

Fig. 2.1. The two main directions of polarization. 

direction in which the wavelet is emitted, distinction can be made between two 
main directions of polarization: the ff-polarization if the wavelet is emitted in 
a direction perpendicular to the electric-field strength of the exciting field and 
the 7r-polarization if emission takes place in a direction perpendicular to the 
magnetic-field strength of the exciting field. If the wavelet is emitted in an 
arbitrary direction, the exciting field may be decomposed into two parts, each 
corresponding with one of the main polarization directions given above. In the 
mathematical treatment, it is sufficient to introduce a parameter K to account 
for the polarization effects: 

*) See also sec. 2.4 for what is meant by electron density. 
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Â  =̂  1 ff-polarization, 
(2.3.1) 

K = cos 26 7t-polarization, 

with 26 the scattering angle. 

The relation between the amplitude and phase of the exciting field strength Eo 
and the emitted wave is conveniently described by introducing as a unit of 
scattering, the scattering by one free electron. The amplitude of the forced 
vibration is so small, that the vibrating free electron may be considered as a 
Hertzian dipole. In the "distant zone" (distance from dipole /•> A) the am­
plitude of the scattered wave is equal to 

£ = ( - reKjr) Eo exp (-jo^rlc), (2.3.2) 

where re is the classical electron radius: 

re = e^/4neomc^ = 2-818.10-15 (m). (2.3.3) 

The other parameters have their usual meaning. In using this standard two 
important points have to be kept in mind. Firstly, the electrons are not free. 
This point will be dealt with in the next section. Secondly, the field strength in 
the distant zone is used. The argument for this is different in the kinematical 
and dynamical theory. In the kinematical theory only small crystals are consider­
ed and the point of observation of the diffracted beams lies well outside the 
crystal. Hence eq. (2.3.2) is valid and the / - i dependence of the amplitude may 
be neglected. In the summing of the contributions from all atoms the r depend­
ence of the phase factor plays an important part. Further it is assumed in the 
kinematical theory that the crystal is so small that the total amplitude of the 
diffracted waves is always negligible compared with the incident wave. Accord­
ingly the amplitude of the exciting wave is constant and equal to the amplitude 
of the incident wave. In the dynamical theory the crystals may have infinite size 
and the point of observation may lie within the crystal. Furthermore the situa­
tion may be such that the diffracted waves have amplitudes comparable with 
the amplitude of the incident wave. To obtain such large amplitudes a large 
number of electrons must contribute because one electron is only a poor scatter-
er. The majority of this large number lies in the "distant zone" for which eq. 
(2.3.2) is valid. Since the diffracted waves may have appreciable amplitudes in 
the dynamical theory the exiting field strength Eo in eq. (2.3.2) must be the total 
amplitude of the incident and diffracted wave. In this respect the dynamical 
and kinematical theory differ fundamentally. 

2.4. Atomic scattering factor and structure factor 

The atomic scattering factor is defined as the ratio in amplitudes of the wave 
scattered by one atom and the wave scattered by a free electron. Quantum-



mechanical treatment shows that one may define a local electron density Q 
(charge density Qe) that vibrates under the influence of an electromagnetic field 
as if it were completely free. This value of Q is equal to the real electron density 
if the frequency of the electromagnetic field is large compared with the reso­
nance frequency of any electron in the atom. For lower frequencies a dispersion 
correction has to be applied to determine Q (Hönl correction i^)). 

The mathematical expression for the atomic scattering factor/, follows from 
eq. (2.3.2): 

ƒ = ƒ e(r) exp{-/-(ko-ko') • r} dV, (2.4.1) 

where ko and ko' represent vectors of length 2nlX in the direction of the phase 
velocity of the incident and diff"racted waves, resp. In most cases Q may be 
considered as spherically symmetric. Choosing the origin at the nucleus gives 
a real value off, which is a function of sin {6)1 X, with 6 half the angle between 
ko and ko'. In fig. 2.2 an example is given. 
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Fig. 2.2. The atomic scattering factor for germanium calculated by Berghuis et al. 2''). 

It will be discussed later (sec. 2.6) that it is possible to account for absorption 
by adding to g a small imaginary part that usually shows spherical symmetry 
also. With the origin again in the centre of symmetry the value o f / i s now 
necessarily complex. 

The structure factor, F, is defined as the amplitude of the wave scattered by 
all atoms in one unit cell in comparison with the amplitude of the wave scatter­
ed by one classical free electron located somewhere within the unit cell. 

F = S / i exp {—j (ko — ko') • u], (2.4.2) 
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where n is the distance between the nucleus of the i-th atom and the location 
of the reference electron. The summation has to be carried out over all atoms 
in the unit cell. Combining eqs (2.4.1) and (2.4.2) gives 

F = ƒ e exp {-J (ko - ko') • r} dV. (2.4.3) 

The value of F is dependent on the choice of the location of the reference 
electron. In non-absorbing crystals {g real) it is always possible to choose the 
origin in such a way that F is real. The value of F is then insensitive to the sign 
of ko — ko'. In absorbing crystals {Q complex) the value of F is in general 
complex and sensitive to a reversal in sign of ko — ko'. In the following we 
shall treat only the case that the crystal structure shows inversion symmetry. 
Locating the origin in the inversion centre leads to complex values of F but 
the real and imaginary parts are independent of the sign of ko — ko'. 

We shall see later (sec. 4.1) that the diffracted wave has an appreciable 
amplitude if the vectors ko and ko' satisfy or almost satisfy the relation (see 
eq. 3.2.1) 

ko — ko' = Tbhki-

Hence one may write also 

Fnki == ƒ e exp {-j2hhki • r} dV, (2.4.4) 

and by using eq. (2.2.6), 
Fnki = Vc Quki. (2.4.5) 

2.5. Susceptibility 

To solve Maxwell's equations for the propagation of X-rays in crystalline 
solids one has to attribute to the medium a value of £ on a sub-atomic scale 
{fj, = jAü). Von Laue ') argues as follows: the heavy positive nucleus is not set 
into motion by the electromagnetic field. Hence the distribution of the positive 
charge over the medium is irrelevant and may be chosen in any convenient way, 
provided it is treated as stationary. By distributing it in such a way that the 
crystal is electrically neutral on a sub-atomic scale, a medium is obtained for 
which E may be calculated in the usual way: 

e = eo — Qe^/mw^. (2.5.1) 

In this equation Q is the density of electrons that are free to move and accord­
ingly equal to the electron density introduced in the previous section. In ab­
sorbing crystals it is complex. 

The susceptibility y), 

y> = {e — Êo)/eo = —Qe^/somco^, (2.5.2) 

is periodic in a perfect crystal and may be analysed in a triple Fourier series as 
discussed in sec. 2.2: 
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fhki = —{e^/eomü>^ Vc) f Q exp {—2jbhki • T) dV, (2.5.3) 

or by using eq. (2.4.4) for Fhki-

fhki = —e^FhkileomcoWc. (2.5.4) 

Later we shall frequently use the parameter Vhki'-

Vnki = («2/c2) Kxpuu = -AnreKFnkilVc (2.5.5) 

The order of magnitude of ip is the same for all crystals. It may be estimated 
by calculating yooo for Ge and CuKa radiation (A = 1-54 A). In Ge crystals 
there are 8 atoms with each 32 electrons in a cube with edges of 5-35 A: 

Worn = —3.10~5. 

The susceptibility is hence much smaller than unity. So small indeed, that ^^ 
and often f itself may be neglected in comparison with unity. 

2.6. Absorption 

Up till now the interaction between the X-rays and electrons was assumed 
to be "elastic". The electron acts as a "transmitter" of energy from the incident 
to the diffracted wave. However, there are other possibilities, where the energy 
absorbed by the electrons is emitted in a way not coherent with the exciting 
wave. Examples of such processes are the photo-electric effect and the Compton 
effect. 

To account for these inelastic scattering mechanisms we shall follow Prins ^^), 
unquestioned, in his suggestion to add a small imaginary part to the electron 
density Q. According to eq. (2.5.2) this is identical with adding a small imaginary 
part to the susceptibility. Since not all the electrons of an atom will suffer 
inelastic scattering to the same extent, the argument of Q need not be the same 
everywhere. We shall be mainly interested in the case of X-rays not very close 
in wavelength to an absorption edge on the short-wavelength side where the 
absorption is very strong. The imaginary part in Q is then small compared with 
the real part. 
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3. GEOMETRICAL THEORY 

3.1. Von Laue's treatment 

According to Von Laue 2) the diffraction phenomenon must be interpreted 
as a result of constructive interference between the wavelets emitted by all 
atoms. The necessary and sufficient condition is that the difference in path 
lengths from source to observer via the reference point in the different unit 
cells is an integral number of wavelengths. For sufficiently large distances from 
source and observer to the crystal the condition, in mathematical terms, is 

(ko — ko') • ai = 2nh, 
(ko - ko') • a2 = 27rA:, (3.1.1) 
(ko — ko') • as = 2nl, 

where h, k and / are integers and ko and ko' vectors of length 2nlX, in the 
direction of the incident and diffracted waves, respectively. The structure factor 
does not enter, since we are dealing with the geometrical aspects only. In their 
original paper 2) Von Laue, Friedrich and Knipping could interpret the X-ray 
photograph by assigning a set of integers, hkl, to each spot. 

3.2. Bragg's equation 

The equation (3.1.1) may be written in a simpler form by using reciprocal-
lattice vectors. It is easily shown that they are equivalent to the vector equation 

ko - ko' = 2/ïbi + 2A:b2 + 2/b3 = Ibm- (3.2.1) 

In fig. 3.1 an example is given. Since the vector bhu is perpendicular to the 

reflecting 
plane (tiki) 

Fig. 3.1. The relation between the wave vector ko of the incident wave and ko' of the diffracted 
wave for maximum diffracted intensity, according to the geometrical theory. 

plane (hkl) and the vectors ko and ko' have equal length, they must make equal 
angles 9 with the plane {hkl). Bragg ^) pays special attention to this result and 
concludes that diffraction may be interpreted also as a mirror reflexion against 
planes. This view is generally accepted. The plane {hkl) is referred to as the 
reflecting plane (see next section, point (3)) and the wave travelling parallel 
to ko' as the reflected wave. 

Remembering that \bhki\=^ldiiki (eq. (2.2.4), eq. (3.2.1) may be trans-
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formed into the well-known Bragg equation in a slightly modified formulation 
(see next section, point (3)): 

A = 2 dnu sin 6. (3.2.2) 

The major advantage of Bragg's view is that the diffraction phenomenon is 
reduced from the 3-dimensional Von Laue's treatment to a 1-dimensional one. 
For a given reflected wave the distribution of atoms over the reflecting plane is 
immaterial as far as the geometrical condition for constructive interference is 
concerned. Of the entire crystal lattice only the distance dnu plays a part. In a 
quantitative theory, however, this is not true in general, but in the X-ray case 
it holds in most situations because of the weak interaction between wave field 
and electron clouds. The only exception is a direction of ko such that the Bragg 
condition is satisfied for more than one set of reflecting planes (multiple 
diffraction). Such situations will be excluded in this thesis. 

3.3. Discussion and further definitions 

Regarding the results obtained above, the following remarks have to be made: 
(1) The index of refraction of the medium was set equal to unity, since we 

used as wavelength its value in vacuum. We shall deal with this point in 
sec. 5.1. 

(2) Of the 4 parameters defining ko and ko', only 3 can be determined from 
eqs (3.1.1) or (3.2.1). One remains free to choose, corresponding to a 
rotation of ko and ko' around the vector bua- This ambiguity is avoided 
by understanding in the following that the plane through ko, ko' and bhu 
is given: the plane of incidence. 

(3) Usually Bragg's equation is given in the form 

nk = 2d%\ne. (3.3.1) 

It is then implicitely understood that the crystal may be considered as a 
regular stacking of layers that contain all atoms. The distance between the 
layers is d. The parameter n is then the order of reflexion. Darwin for 
example uses such a model for the derivation of a kinematical and dynamical 
theory. It must be remarked, however, that such a model is useful only for 
crystal structures with a small number of atoms per primitive unit cell. In 
general the planes through the atoms are not equidistant (see for example 
the planes (111) in the diamond lattice). Therefore we prefer in the general 
case the description with {hkl) as the indices of the reflecting plane, even 
when h, k and / have a common multiple. 

(4) The geometrical theory gives only the direction of ko in the plane of 
incidence for which the diffracted wave has maximum amplitude. It is the 
aim of the kinematical and dynamical theories to calculate the diffracted 
intensity as a function of the direction of ko. 
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4. KINEMATICAL THEORY 

4.1. Von Laue's treatment 

To calculate the intensity of a diffracted wave, Von Laue considers a crystal, 
irradiated by a plane-parallel wave in such a way that the diffracted wave hkl 
is generated. He assumes the crystal to be so small that the amplitude of the 
diffracted wave is very small in comparison with the amplitude of the incident 
wave. It is this assumption that makes his treatment a kinematical one. All unit 
cells are hence subject to the same exciting field. The amplitude of the diffracted 
wave is calculated by summing the wavelets scattered by all unit cells to a point 
at a large distance R from the crystal. If the crystal is a parallelepiped with sides 
along the primitive translation vectors a? of length Nisn, the intensity of the 
diffracted beam, 1R, is related to the intensity /o. incident on the crystal: 

IR = /o {re^K^IR^) \Fnki\^gi^g2^g3^. (4.1.1) 

The factors gi depend on the orientation of the wave vectors k« and kr of the 
incident and diffracted wave, resp.: 

gi = sin {Ni{kr — k„) • af}/sin{(kr — kv) • a«}. (4.1.2) 

The value of IR is only appreciable if kr — kt, is almost equal to 2bhki. In fig. 
4.1 the areas are shown in which the vectors kj, and kr have to be located for 
an appreciable diffracted intensity if the crystal is a cube with sides of 10"^ cm. 

Fig. 4.1. A reasonable amplitude of the wave diffracted by a small crystal is expected if the 
wave vectors of the incident wave kj, in a given plane of incidence, and the wave vector of 
the diffracted wave kr fall within the regions indicated. 

In this diagram the vector kt, is kept in the plane of incidence, see remark (2) 
in sec. 3.3. For given kv the angular divergence in kr is of the order of 1 minute 
of arc. For a smaller crystal the divergence is correspondingly larger. 
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The diffracted intensity is a maximum if k„ — kr is exactly equal to 2bhki in 
agreement with the geometrical theory, and hence gt = Nt: 

lR,m^x = /o {re^K^/R^) IFhkil^NiNzNs)^. (4.1.3) 

To obtain results that allow for an experimental check, the diffracted intensity 
has to be integrated over the divergence in kr in two directions and over the 
divergence in ki, in one direction. The resulting integrated diffracted intensity 
is directly proportional to N1N2N3, the total number of unit cells in the crystal 
and proportional to \Fkici\^. Both results are typical for the kinematical theory 
and in contradiction with the results of the dynamical theory. 

4.2. Darwin's treatment 

Darwin *) is thinking along the lines given by Bragg. One infinite single sheet 
of unit cells acts as a (poor) reflector for an incident plane-parallel wave *). 
The vectors k„ and kr are rigidly coupled. The vector kr lies in the plane of 
incidence through k„ and bhki and makes the same angle with the reflecting 
plane (fig. 4.2). This is in sharp contrast with Von Laue's result where kr shows 

Fig. 4.2. In Darwin's model of the crystal the wave vectors k,- (incident wave) and kr (reflected 
wave) are coupled because of mirror reflexion. In a given plane of incidence the range of 
ki,-values that give a reasonable diffracted intensity is indicated. 

an angular divergence. The explanation is that Darwin's sheet is unbounded. 
The ratio in amplitude of the reflected and the incident wave jg, can be calculated 
(see sec. 11.4.4): 

Jq = jkFnkireKdjVc sin 6 = —jXdVhkil^n sin 0, (4.2.1) 

where djVc is the number of unit cells per unit area in the sheet. The factor 
+ j indicates that there is a jump in phase of 7r/2 during reflexion. 

The intensity per unit area of the reflected wave may now be calculated by 
summing the contribution of all «s sheets that constitute the crystal. In the 

•) See for a more detailed discussion sub-section 5.1.1. 
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situation that the Bragg condition is satisfied exactly all the sheets contribute 
in phase and the reflected intensity is a maximum. It follows immediately that 
the maximum in reflected intensity is proportional to \Fhki\'^ and ««̂  

The integrated reflected intensity R, obtained by integrating over variations 
in kv while keeping it in the plane of incidence, is proportional to \Fhki\^ and «s, 
in agreement with the results obtained by Von Laue. 

4.3. Discussion 

The kinematical theory, although in agreement with the greater part of 
experimental evidence, cannot be correct from a theoretical point of view. 
According to Von Laue's treatment the reflected intensity is proportional to 
the volume of the crystal and may exceed the incident intensity for a sufficiently 
large crystal. This result is partly trivial, since the increase in IR is partly caused 
by an increase in IQ which was defined as the intensity incident on the crystal. 
But in Darwin's treatment with a crystal of infinite size in two directions the 
reflected intensity per unit area of the slab still rises with increasing thickness. 
This unsatisfactory result is simply due to the assumption that all sheets are 
subject to the same exciting field, the constant amphtude l̂ l̂ of the incident 
wave. Apparently the kinematical theory gives correct results only as long as 
the amplitude of the reflected wave \Er\ remains small compared with \Ei\. 

Hs sheets 

Fig. 4.3. Schematic drawing to demonstrate how the maximum in diffracted intensity is 
calculated in the kinematical theory. 

According to the example given in fig. 4.3, this condition amounts to 

\g\ns < 1, 

which may be transformed into a requirement for the thickness: 

t<2cos{6)ojlc\Vnki\. (4.3.1) 

Substituting orders of magnitude for co/c (4.10* cm^i) and \Vhki\ (2.101^ cm^) 
one finds an upper limit for / of a few microns. In practice the crystals are 
usually thicker. That the kinematical theory still applies to these crystals was 
explained by Darwin by introducing the concept "mosaic crystal" (see sec. 10.1). 

file:///g/ns
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The length cos (ö)ft>/c \Vhki\ appearing in eq. (4.3.1) plays an important part 
in the dynamical theory, the "Pendellösung"-length L (eq. (6.5.1). 

The loss in intensity of the incident wave because of the generation of the 
reflected wave is called primary extinction. For strong reflexions it is much 
larger than the loss due to absorption. Even for an absorption coefficient of 
1000 cm-i the incident wave would lose only 10% in intensity over a distance 
of 1 [l. 

To improve the kinematical theory in this respect, one could suggest intro­
ducing an "absorption" coefficient to account for the loss in intensity to the 
reflected wave. However, this would not lead to correct results, since in the 
situation where such a correction is necessary the atoms are subject to both 
the incident and the reflected wave. The best solution in this line of thought 
is to introduce an incident and a reflected wave right from the start and to 
investigate the scattering due to the sum of both waves. Such a procedure was 
followed by Darwin in his dynamical theory. 
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5. DYNAMICAL THEORY *) 

5.1. Darwin's approach 

5.1.1. Scattering by one layer of atoms 

In sec. 4.2 it was pointed out that Darwin regards the crystal as a regular 
stacking of layers (distance d) and these contained all the atoms. Although the 
atoms have finite dimensions, they are considered to be so small that in between 
the layers there is a region where the medium is essentially vacuum. 

When a plane-parallel wave with wave vector k« strikes a layer the influence 
is twofold. The vibrating electrons give a scattering in the forward direction and 
in the reflected direction. Far from the layer both scattered waves are plane and 
travel parallel to kj and k/, respectively. The vectors kj and kj' make exactly 
the same angle 6 with the layer (mirror reflexion). These results were used in 
sec. 4.2 in deriving the kinematical expression for the reflected intensity. In the 
dynamical theory the observer is inside the infinitely large crystal and one has 
to know the disturbance very close to the layer. Darwin follows the simplest 
course by assuming that in the vacuum both scattered waves are plane parallel 
even at distances dl2 or less from the central plane of the layer. This assumption 
is identical with spreading out the electrons evenly in directions parallel to the 
layer, so that the electron density is only a function of the coordinate, z, per­
pendicular to the layer. The situation is now very similar to that in the Kronig-
Penney model. In the latter case the electron density is a specified function of z, 
whereas in Darwin's treatment it may be any function. Such a fictitious crystal 
is characterized by one primitive translation vector ZD and one primitive 
reciprocal-lattice vector 2bD, where 

\bD\ = nl\zD\ = njd. (5.1.1) 

Darwin shows that the amplitude of the forward-scattered wave hjqo times 
the amplitude of the undisturbed wave at the same place. The value of qo, 
following from eq. (4.2.1) by substituting Ö = 0 in Fhki (— î̂ ooo), is very small 
compared to unity. Apparently the layer gives an extra phase shift qo to the 
incident wave while passing through the layer. The amplitude of the reflected 
wave isjq times the amplitude of the incident wave, with79 given in eq. (4.2.1). 
The argument oïjq depends on the location of the place where the two waves 
are compared via the structure factor F. We shall take the point of reference in 
the plane of symmetry inside the layer. In non-absorbing crystals q is then real. 

It is important to keep in mind that in this way the influence of the layer as 
the unit is given. The behaviour inside the layer is not considered. It may be 
included by making a Kronig-Penney model of the crystal, by transforming the 

*) Reviews of the dynamical theory are found in refs 16 and 17. 
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constant electron density inside the layer into a dielectric constant deviating 
from unity, by using eq. (2.5.1). 

In general the two waves will be present on both sides of the layer. With the 
assumptions made above it is possible to relate the amplitudes of the waves 
above and below the layer. The amplitude of the wave parallel to kj is denoted 
by T, the amplitude of the wave parallel to kj' by S. Let us compare the ampli­
tudes T2 and S2 in point B, a distance az)/2 above the centre of the layer with 
the amplitudes Ti and Si in A, a distance ZD below B (fig. 5.1). The vector a^ 

^ amph •̂  

atom layer 

ampl. T, 

Fig. 5.1. Explanation of the symbols used in the text to determine the influence of one layer 
of atoms on the amplitudes of the incident and reflected waves (eqs (5.1.2)). 

is perpendicular to the layer and so large that both A and B lie in vacuum. 
The amplitude T2 consists of two parts: one arising from the transmitted wave 
and one arising from the reflected wave. The same is true for Si. Note that here 
an improvement is obtained over the kinematical theory where the influence 
of S on r and of T on 5 is neglected. It is easily verified that 

T2 = Ti{l + Jqo) exp (—ykj • ZD) + jqSz exp {\j (kj' — kj) • a^} 

and (5.1.2) 

Si = Si (I +jqo) exp (—/kj • ZD) + JqTi exp {^J (kj' — kj) • ZD}. 

Use is made of the relation kj' • an = —kj • ZD that exists because of the 
mirror reflexion of the wave. In the plane through A or B the amplitudes vary 
with the phase factor 

exp{—i7(k« + k^')•^}• 

5.l.2. Wave fields inside the crystal 

By setting the period in the crystal lattice equal to ZD {\ZD\ = d) the change 
in T and S over one period is given in eq. (5.1.2). The translation behaviour 
over an arbitrary number of distances ZD follows from a multiple application 
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of eq. (5.1.2). Such a procedure is lengthy and tedious. It results in general in 
amplitudes that change in magnitude and phase for each step. Following Darwin 
we shall proceed in a different way, by looking for such solutions that show a 
more regular translation behaviour, namely an equal and constant phase shift 
in T and S while going up over a distance ZD : 

7-2/71 = S2IS1 = exp {-j<f,). (5.1.3) 

This requirement may be written in a different form: 

SilTi = S2/T2 = I exp (]<!>). (5.1.4) 

The ratio in amplitude of the two plane waves in the narrow vacuum sections 
between the layers, is therefore constant for such solutions. The factor exp {]<!>) 
is included in eq. (5.1.4) to obtain consistency with the value of i used later. 

Whether such solutions exist can be determined by substituting eqs (5.1.3) 
and (5.1.4) in eq. (5.1.2), leading to 

exp {J {—4> + kj • ZD)} = 1 +Jqo + jq^ 
and (5.1.5) 

tXTp{j{4> + kj • ZD)) = I +jqo +Jq/i-

For a given direction of kj the equations can be solved for f and exp {j(f>). 
Apparently there exist solutions that show the simple translation behaviour 
expressed in eqs (5.1.3) and (5.1.4). These solutions will be referred to as modes 
of propagation. Characteristic for the modes is that apart from a phase shift 
their behaviour is identical in all unit cells *). If kj is given there are two 
solutions for | and exp (y^), but for given | there is only one solution for 
exp {j<l>). 

For moderate values of f, i.e. 9 < |f| < l/q, the right-hand side of eqs 
(5.1.5) is close to unity, so that both <̂  — kj • ao and <̂  + kj • a^ have to be 
close to a multiple of 2JC : 

—.̂  + kj • ao = —p27t + qo + ?f, ,- , ,. 
(5.1.6) 

<f> + ki- ZD = {n + p)27i + qo + q/^. 

The term 2nn is included to make kj • ZD close to nn, i.e. the Bragg condition 
for the rtth-order reflexion. The factor p is an arbitrary integer. 

Darwin applies eqs (5.1.6) to the symmetrical Bragg case only. We shall 
proceed in a more general way. For one mode of propagation the phase is 
known (apart from a multiple of 27r) in all planes midway between two adjacent 
layers. We want to introduce now a vector k that describes the phase in these 
planes correctly by the phase factor exp (—yk • r). Hence 

*) For cut-off modes and for modes in absorbing crystals (see chapter 8) there is a decrease 
or increase in both T and 5 while going from cell to cell. 
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^ = k . a . ^ . . v ^ - ^ ^ ^ . ^ H ^ ' ^ F ^ . 

and (5.1.7) 
\ (kj + kj') • t = ki • t = (k - 2pbD) • t, 

where t is a unit vector parallel to the layers in the plane of incidence. According 

to the definition of bj? we have (eq. (5.1.1)) ^uJi c -_ ^^0+ 't ' t . "^^ 

bD-ZD = 7i. ^ i^AM^r^'' ' ' ^ ' 

It may now be verified that k has to satisfy the conditions t ^ - W ^ " ^ ' ^ Ir ''•, 

.-̂  (k - 2pbD)^ = w2/c2 + Fo + F„f L\-'-5 I f l e ï * ^ ^ ^ ^ ^ 
and ^ ( 5 . 1 . 8 ) ' / ^ ^ ' ^ 

(k _ 2pbD - 2«bz))2 = w2/c2 + Fo + F„/f. , ^ ^ ^ ' ^ " ^ C W 

With the aid of eq. (4.2.1) ^0 and q are replaced by Fo and Vn = Vuki- The 
higher^ordetJerms in q and qo are neglected. The parameter p is still arbitrary. 

5.1.3. Wave vector characterizing the wave field inside the crystal 

The vector k introduced in the previous sub-section is a wave vector but in a 
restricted sense. The wave vectors of waves in uniform media give the difference 
in phase between any two points 1 and 2 via k • (ra — ri). In our case the 
phase is given correctly at points midway between two layers. For other points 
the phase is not given by k • r. The immediate consequence of this restriction 
is that the vector k cannot be determined from eqs (5.1.8); the integer/> is still 
free. A convention has to be introduced to make k uniquely determined. 

In the electron-bund theory the convention is that k shall lie in a coherent 
region of k-space (the Brillouin zone), that is chosen beforehand; in our case, 
for example, the region is where (a — 1) bo'^ < k • bo < (a + 1) b^^ with a 
arbitrary but fixed *). 

In the dynamical theory of X-ray diffraction another convention is used. 
Before we can say which one, the wave fields inside the crystal have to be 
examined in more detail. Up till now the variation of T and S within the layer 
has been left out of consideration, but we need it now. Since these variations 
are not known in detail we have to rely on qualitative arguments. 

In a mode of propagation, where T and S have the same phase difference 
and amplitude ratio midway between two layers, the variation in T and 5 will 
be identical in all unit cells. Hence it is permitted to write for the total ampli­
tude W: 

W = Wk{T) exp {-jk • r), 

where Wk is periodic in r, with period ZD : 

Wk (r) = PFk (r + ZD). 

The periodic function can be written as a Fourier series: 

*) Usually a is set equal to 0. 
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Wk (r) = S Wk.m exp {jlmbD • r). 

The local amplitude W is then, for any value of r, 

W=i: Wk,m exp {-j (k - 2mbD) • r}. (5.1.9) 

The total wave field consists of an infinite number of plane-wave components, 
each with a well defined amplitude (if Wk is known) and wave vector. The 
respective k-values lie 2b apart. To characterize the translation behaviour of 
the wave field it is sufficient to give the k-vector of one plane-wave component. 
It is immaterial which one, because expy (k — Ipbo) • ZD = expj'k • ZD-

An example is shown in fig. 5.2. The circles represent points midway between 

l<+2b 

/ 
/k-2b 

\ -•-^/f+26 

Fig. 5.2. Lines of equal phase in Darwin's model of a crystal. The points A, B and C lie mid­
way between layers of atoms in vacuum. The drawn lines labeled k,- and k,:' are lines of equal 
phase of the incident and reflected waves, respectively. Inside the atom layers the phase is 
not known. The total wave field inside the crystal can be decomposed into an infinite number 
of plane-wave components. There are two predominant ones with wave vectors k and k —2bo-
The lines of equal phase for these two components (known everywhere) are given as dash-dot 
lines. For the two other components, with small amplitudes, the lines of equal phase are given 
as dashed lines. All k-vectors of the plane-wave components lie a multiple of 2bD apart. 
Note that the reflexion is of the first order. In the figure the subscript D in bo is omitted. 

the layers where the phase of T is the same. The lines of equal phase of T are 
given also (labeled kj). The fines are perpendicular to the vector kj given in the 
right-hand side of the figure. It is important to note that lines of equal phase 
in A and B do not lie in line, because of the interaction with the layer. The 
deviation is smaU as follows from eq. (5.1.2). We shall deal with a mode of 
propagation, for which eq. (5.1.3) is valid. Accordingly lines of equal phase of 
S also pass through the circles, although the phase of S and T need not be the 
same there. They are perpendicular to kj' and therefore make the same angle 
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with the layer as the lines of equal phase of T. We see that, when the Bragg 
condition is nearly satisfied, the lines of equal phase of S make a small angle 
with the line AC. In the description of the wave field with plane-wave compo­
nents the lines of equal phase for each component are straight throughout the 
crystal. A few examples have been drawn. They are labeled with the correspond­
ing k-vectors on the right-hand side of the figure. In view of the small difference 
in orientation between kj and k, and between kj' and k — 2bfl, when there is 
diffraction, we may expect that the plane-wave components k and k — 2bo 
have a much larger amplitude than the other components; the ratio is of the 
order of q {fa 10-^). Accordingly we conclude that in the Fourier-series 
equation (5.1.9) only two terms are predominant. 

In view of this result it is not surprising that in the dynamical theory of X-ray 
diffraction the wave is characterized by the k-vector of one of its predominant 
plane-wave components. The major advantage is that the modulus of the 
characterizing wave vector is now close to ojjc. To remove the last ambiguity 
we shall choose that wave vector of the two for which k • bz) is positive, as was 
done in fig. 5.2. According to this convention we may write for eqs (5.1.8): 

k2 = co2/c2 + Fo + F „ | 

and (5.1.10) 
(k-2«bz))2 = C02/c2 + Fo + Vnl^. 

Far off Bragg angle there are 2 possibilities: 
(1) The line AC is far from perpendicular to kj'. The value of S must be small 

( 1 ^ 0), and the only predominant component is k with 

k2 = w2/c2 + Fo, f --> 0. (5.1.11) 

(2) The line AB is far from perpendicular to kj. Now the value of T is very 
small and the only predominant component is k — 2b, with 

(k-2nbz>)2 = cj2/c2 + Fo, ll | -> oo. (5.1.12) 

Although there is only one predominant plane-wave component, we note that 
in this limiting case lk| is not close to mjc and that k is not the wave vector of 
this predominant component. 

From eq. (5.1.9) one might conclude that the wave field inside the crystal 
contains only plane-wave components with wave vectors k — 2pbD. This is 
not true. In his treatment Darwin assumed the waves in vacuum between the 
layers to be plane parallel. In reality this is not the case since there will be a 
modulation in planes parallel to the layer. This periodicity may be analysed in 
a Fourier series also, with b-vectors parallel to the layer and amplitudes of the 
same order of magnitude as the amplitudes of the components that were neglect­
ed above (k — 2/>bz), with p ^ 0,/;). In general one must expect that the wave 
field is given by 

• - • - - ' - ^ 
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ff = S Wk,hki{r) exp {-j (k - 2bkki) • r}, (5.1.13) 
hkl 

or written in a slightly different way (the Bloch form), 

W= Wk exp {-jk • r), (5.1.14) 

where Wk is identical in all primitive unit cells. 

5.2. Von Laue's treatment 

Von Laue solves the dynamical problem by reducing it to the propagation 
of electromagnetic waves in a periodic medium. The electric-field strength has 
to satisfy the differential equation 

JE - V (V • E) = - ( 1 + f) Ecü2/c2. (5.2.1) 

The susceptibility f, discussed in sec. 2.5, is periodic in three dimensions and 
can be expanded in a triple Fourier series: 

y) = 1iy)m exp {j2bm • r), (5.2.2) 
m 

where m is any set of 3 integers. 
Von Laue proposes as solution a sum of transverse plane-parallel waves: 

D = £0 (1 + v) E = S Dk-2bp exp {-j (k - 2bj,) • r}, (5.2.3) 
p 

where p is again a set of 3 integers. In view of experimental evidence and 
Darwin's results, he asserts that according to specific circumstances, a small 
number of plane-wave components are predominant above all other compo­
nents. Only a limited number of components have to be taken into account, 
all other amplitudes are zero. To determine k unambigiously, we shall follow 
the convention discussed in the previous sub-section. 

As is shown in many textbooks on X-ray diffraction the proposed solution 
satisfies the differential equation for given w. The following three cases can be 
distinguished: 
(1) There is only one predominant plane-wave component, with amplitude 

Dk-2bp. The only relevant wave vector, k — 2bj,, is denoted by k according 
to the X-ray convention. The relation between k and co now reads: 

k2 = w2/c2 + y^_ (5.2.4) 

(2) There are two predominant plane-wave components, because of the inter­
action with one set of reflecting planes {hkl) = n. Now the two relevant 
wave vectors are denoted by k = k — 2bj, and k' = k — 2bj,+B = k —2bn, 
giving 
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k2 = C02/c2 + Fo + F „ | , 
(5.2.5) 

(k - 2b„)2 = «2/^2 + Fo + Vn/i, 
with 

f = Dk~2bJDk. (5.2.6) 

Here f is defined at the location of the reference electron in the calculation 
of the structure factor. 

(3) There are 3 or more predominant plane-wave components, because of the 
simultaneous interaction with two or more sets of reflecting planes. This 
situation is outside the scope of this thesis. We remark only that in such 
situations Von Laue's treatment allows for a rigorous treatment, whereas 
Darwin's approach excludes such a possibility in its basic assumption. 

5.3. Basic equations of the dynamical theory 

The solution obtained along the lines given by Darwin (eq. (5.1.10)) and the 
solution found by Von Laue (eq. (5.2.5)) are identical. In the further develop­
ment we shall use the following notation for the basic equations of the dynamical 
theory: 

k2 = w2/c2 + Fo -f Vli, 

k'2 = (k - 2b)2 = Ö;2/C2 + FO + ViH 

with 
I = Dk-2b/Dk. 

In the limiting cases far off Bragg angle we have 

k2 = cü2/c2 + Fo, Dk-ab - > 0 (5.3.3) 
or 

(k — 2b)2 = co2/c2 + Fo, Dk -> 0. (5.3.4) 

The angular region in the plane of incidence, for which diffraction takes place 
(moderate values of f) is very narrow because |Fo| and |Fi| are much smaller 
than a)2/c2. In those terms that are relatively small, we shall often replace k 
by ko and k' by ko', where ko and ko' satisfy Bragg's equation exactly. 

The basic equations apply also to the case of absorbing crystals, where Fo 
and Fi are complex (sec. 2.6). It now follows immediately that k and | are 
complex also. Complex values of k give rise to an exponential increase or 
decrease of the amplitudes Dk and Dk2b via the phase factor exp (—7k • r). 
Their ratio is constant, however. Having allowed for complex l-values we see 
that in non-absorbing crystals the wave vector k may be complex also. The 
resulting exponential decrease or increase in amplitude is named extinction, 
and the corresponding wave fields cut-off modes. A detailed discussion of 
absorption and extinction is given in chapter 8. 

(5.3.1) 

(5.3.2) 
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6. MODES OF PROPAGATION, 
GROUP VELOCITY AND w-SURFACE 

6.1. Introduction 

In the previous chapter it was shown that in periodic media there exist modes 
of propagation for electromagnetic waves. In contrast to the kinematical 
approach where in the case of diffraction the reflected wave is generated from 
the incident wave, the dynamical theory considers primarily wave fields where 
incident and reflected wave are in dynamical equilibrium. Their ratio is un­
changed, while going from unit cell to unit cell. In this chapter the variation 
of the amplitude over a unit cell for such a mode of propagation is discussed, 
together with the direction of energy flow that is associated with it. Finally the 
relation between the wave vector k and the frequency is discussed. For given m 
all allowed values of k lie on a surface in k-space. In the literature this surface 
is usually called the dispersion surface. We prefer the name co-surface, since 
dispersion is commonly associated with a frequency dependence, whereas here 
the frequency is constant and the dependence of |k| on its direction is important 
(anisotropy). 

6.2. Modes of propagation 

In the case of interaction with one set of reflecting planes the mode of prop­
agation contains two predominant plane-wave components. The, upward-
travelling wave with wave vector k and amplitude Dk and the downward-
travelling wave with wave vector k — 2b and amplitude Dk-2b = fDk. In the 
(7-polarization the vectors Dk and Dk-2b are parallel to each other and parallel 
to the reflecting planes. In the yr-polarization Dk and Dk-2b lie in the plane of 
incidence. Since we shaU restrict ourselves to a narrow region around the 
Bragg angle (including the limits far off" Bragg angle), the angle between Dk 
and Dk-2b may be set equal to 26. 

The total amplitude D is according to eq. (5.2.3) 

D = Dk exp {—jk • r) + Dk-ab exp {-j (k - 2b) • r}. (6.2.1) 

The magnitude of D is easily shown to be 

D = |Dk| (I + |2)i/2 {1 + 2/s: f cos(2b • r)/(l + |2)}i/2 (6.2.2) 

for both directions of polarization. The factor before the brackets is the root-
mean-square of the amplitudes of the two components. In fig. 6.1 a few examples 
of the variation of D within the unit cell are given for a first-order reflexion. 
The polarization assumed was a with K=l. For f either 0 or oo, Z) is independ­
ent of r, and there is only one predominant plane-wave component. For 
I = i t 1 the two plane-wave components have equal amplitude and their 
interference pattern gives rise to nodes of zero amplitude. There is a standing 
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wave in the direction perpendicular to the reflecting planes. In the yr-polarization 
the amplitude in the modes are finite even for | = ± 1. The vectors Dk and 
Dk-2b cannot cancel since they are not parallel. For given root-mean-square 

Fig. 6.1. The variation in amplitude of the dielectric displacement over the unit cell for some 
modes of propagation in the o--polarization. The horizontal lines indicate the centre of the 
atom layers. The vectors indicate the direction of power flow. 

amplitude the pattern is the same for | and 1/^, showing the equivalence of 
the two plane-wave components. Finally the difference in modes with positive 
and negative values of f has to be noted. If f < 0 the amplitude is a minimum 
in the reflecting planes; for f > 0 it is a maximum *). 

It is possible to construct wave fields with the nodes in intermediate positions. 
The value of I, however, has then to be complex, leading to exponentially 
decreasing or increasing amplitudes, as was pointed out already in sec. 5.3. 

6.3. Power flow, group velocity and velocity of energy transport 

The time average of the power flow in a wave field is given by the real part 
of the product E x H*/2, where H* is the complex conjugate of H. In our case 
we are interested in the power flow averaged over the unit cell in a direction 
perpendicular to the reflecting planes: 

z+d 

P = ƒ Re {E XH*} dzl2d. (6.3.1) 
z 

Substituting the solution proposed by Von Laue and neglecting all terms which 
are of the order y) or smaller, gives for real values of I : 

*) If fl > 45° the reverse is true for the w-polarization (K < 0). 
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2weoP/c2 = |Dk|2ko + |Dk-2bl2ko' 

= |Dk|2(l -f P) {ko - b + b (1 - |2)/(i + |2)}. (6.3.2) 

The power flow is hence equal to the vector sum of the power flow in the two 
components. The effect of the interference between the two components is 
eliminated by taking the average over the unit cell. The component of P along 
the reflecting planes (parallel to ko — b) depends only on the root-mean-
square amplitude of the wave field. The component perpendicular to the 
reflecting planes (parallel to b) is strongly dependent on i. For I = 0, P is 
paraflel to ko and for I = oo, P is parallel to ko'. For I = ± 1 the two com­
ponents have equal amplitude and the power flow must be parallel to 
ko + ko' = 2(ko — b), i.e. parallel to the reflecting planes, in agreement 
with eq. (6.3.2). 

The direction of the energy flow is also found by calculating the group 

velocity v^: V ^ V - ^ 

yg = V^oj. ^7 '^ ^ (6.3.3) 

By taking Vk of the basic equations (5.3.1) and eliminating Vk one finds 

v,w/c2 = ko - b + b (1 - |2)/(i + |2). (6.3.4) 

In absorbing crystals and in the case of cut-off modes complications arise. 
It may be shown, however, that even in these cases the first of eqs (6.3.2) is still 
valid. Accordingly we may write in general 

2w£oP/c2 = |Dk|2(l 4- | f |2){ko-b + b( l - |f|2)/(l + 1112)}. (6.3.5) 

This Poynting vector allows for the definition of a new velocity Vc, the velocity 
of energy transport. It is defined as the ratio of P to the average energy density 
per unit volume {•pv |Dk|2/2Êo): 

ve«/c2 = k o - b + b ( l - |f|2)/(l + |||2). . (6.3.6) 

For non-absorbing crystals and real values of I, Ve is identical with v^. 

6.4. The co-surface 

Before discussing the co-surface in detail, we consider first the shape of the 
co-surface in the electron-band convention (see sub-section 5.1.3) for weak 
interaction (Fi ^ 0). The general expression for the co-surface off Bragg angle 
is (eq. (5.1.8)) 

(k - 2;7bi))2 = co2/c2 + Fo. 

The value of the integer p has then to be adjusted in such a way that 
(k — 2pbD) • bo lies between given limits. The vector k — 2pbD for this value 
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ofp is denoted by k. We shall use as boundaries for the Brillouin zone 

-bz)2/2 < k • bfl < 1-5 bB2. 

In the example of fig. 6.2 the intersection of the w-surface with a plane through 
bo is shown. The circle has a radius (1 + i y)o)u>/c. The co-surface consists of 
branches, in which parts of the circle are easily recognized. In point A the 
wave field has as predominant component the plane wave with wave vector 

Fig. 6.2. An fo-surface in the electron-band convention. The points I, II and III correspond 
to the k-vectors giving the first-, second- and third-order reflexion, respectively (b = bo). 

corresponding to point A'. In point B the wave with wave vector of point B' 
is predominant. Interesting points are the intersections, since there the wave 
field may have two predominant plane-wave components with wave vectors 2nbD 
apart. Apparently the Bragg condition is satisfied in these points. It is easily 
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Fig. 6.3. The w-surface in the X-ray convention for the same frequency as in fig. 6.2. The 
points I, II and III again correspond to the first-, second- and third-order reflexion (b = b^). 
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verified that in the points labeled I, II and III the reflexions are of the first, 
second and third order, respectively. 

In fig. 6.3 the other convention introduced in sub-section 5.1.3, is shown. Far 
off Bragg angle the wave field is characterized with the wave vector of its pre­
dominant plane-wave component, corresponding to a circle around the origin 
as co-surface. Bragg reflexion is expected according to the basic equations 
(5.1.10), whenever "t^i_ t^^^y-

k2 _^^"2«b i , )2 = 4nbD • (k - «bo) = F„ (I - 1/f) ^ 0. 

These regions are indicated by the small circles. They are labeled again I, II 
and III to indicate the order of reflexion n. It was shown, however, that in the 
limit ^ - ^ 00 the co-surface is given by eq. (5.1.12): 

(k — 2nbz,)2 = co2/c2 + Fo, 

a circle with the same radius as the one given in the figure, but now with 
centre 2nbD. The relevant parts of these circles are shown also in the figure. 

The circles given in figs 6.2 and 6.3 are limiting values for k if Fi -> 0. In 
the X-ray case the value of Vi is so small in comparison with co2/c2 that ap­
preciable deviations occur only in the immediate vicinity of the intersections. 
The scale has to be magnified by approximately a factor of \y!\~'^ (i=» 10 )̂ in 
order to bring out the details. In fig. 6.4 an example is shown. The reciprocal-

-A^vJ. 

20"(!^, = -2.1Ö'^) 

k 

Fig. 6.4. Detail of the co-surface in the region where Bragg reflexions occur. The value of | 
is given as parameter along the co-surface. 

lattice vector for the reflexion is b. The co-surface, given in eqs (5.3.1), is a 
hyperbola with the circles co2/c2 + Fo = k2 or (k — 2b)2 as asymptotes. In view 
of the large scale they may be considered as straight lines. The shortest distance 
between the branches is \y)i\cü/c cos 6. In the scale of fig. 6.3 this distance is 
less than 10-'' cm. Since diffraction only occurs if the deviation from the 
limiting circles is small (|f| not too far from unity) the angular region for dif-
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fraction in the plane of incidence is very narrow. The intersection with the 
sphere of radius wjc is also given in fig. 6.4 (coyac)-

The co-surfaces for the two directions of polarization are different. The 
asymptotes are the same, but since K for the 7r-polarization is smaller than 
unity, the distance between the branches is in the 7t-polarization smaller than 
in the 0-polarization. 

In fig. 6.4 the value of | is given as a parameter along the branches. On the 
left-hand branch | is positive, on the right-hand branch negative (Fi < 0) *). 
For the limiting values of | , 0 or 00, the co-surface approaches the appropriate 
circle for k off Bragg angle. In the plane b • (k — b) = 0, | = ± I. The group 
velocity is normal to the co-surface, according to eq. (6.3.3). From fig. 6.4 it 
follows that the direction of Vj, changes appreciably for a minute change in k. 
The variation of Vj, with f (eq. (6.3.4)) is much less rapid. Therefore we prefer 
I to characterize the mode of propagation instead of k. 

In absorbing crystals and for cut-off modes, f is in general complex. Such 
situations need a closer inspection, which is given in chapter 8. 

6.5. Wave fields consisting of two modes 

The modes of propagation do not change in amplitude as they travel through 
the unbounded crystal. This is not merely a result from the assumption that the 
crystal does not absorb X-ray energy. In fact, we have been looking for such 
solutions via the equations (5.1.4) and (5.2.3). Solutions with variable amplitude 
in non-absorbing crystals are obtained by considering wave fields that consist 
of two (or more) modes of propagation. An important example is the combina­
tion of the two modes with | = I and | = — 1. Since these modes have a 
different phase velocity along the reflecting planes it is possible to find a place A 
(fig. 6.5) where the upward-moving components are in phase and accordingly 

Fig. 6.5. If the total wave field consists of two modes with ^ = 1 and | = — I, the power 
flow is not parallel to the reflecting planes everywhere. It oscillates between the directions of 
ko and ko'. The distance AC is 2TT times the "Pendellösung""-length L. 

the downward-moving components in anti-phase. If the two modes have equal 
amplitudes the last two components cancel. The total wave field in A then 
consists of two plane waves travelling almost parallel to ko. The Poynting vector 
accordingly makes an angle 6 with the reflecting planes. But this situation cannot 
exist everywhere, because of the diflTerence in phase velocity of the two modes. 
If the distance between the two k-vectors is given by Zlk, the upward-travelling 

*) If Ö > 45°, the sign of K is reversed in the 7r-polarization. 
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components are in anti-phase a distance jr/|Zlk| further along the reflecting 
planes (point B). The upward-travelling components cancel and the Poynting 
vector makes an angle —9 with the reflecting planes. Still one distance :;r/|Zlk| 
further along the reflecting planes the situation is identical with that in A. So 
if two modes of equal amplitudes with i = 1 and —1, resp., are present in the 
crystal, the X-ray energy is transported along the reflecting planes over long 
distances, and at the same time oscillates in a direction perpendicular to the 
reflecting planes. In fig. 6.5 the "path" of the energy transport is shown. The 
period AC plays an important part later. It is connected with the "Pendel-
lösung"-length L, in the following way: 

L = 1/Mk| = cos(6i)cü/c|Fil = c/sin(2ö)/7r[t/)il. (6.5.1) 

From this example it is clear that any combination of two modes of propagation 
results in a gradually changing wave field. All such solutions, however, will be 
periodic, with a period equal or longer than 27iL. 

The gradual change in the direction of the energy flow is closely connected 
with the primary extinction discussed in sec. 4.3. In point A we have the situation 
that is treated in the kinematical theory. AH atoms are subject to the field 
strength of one plane-parallel wave. The generation of the reflected wave causes 
the rotation of P from ko towards ko'. From the discussion given above it 
follows that the suggestion, made in sec. 4.3, to account for primary extinction 
by introducing an "absorption" coefficient is inadequate, because it would 
never lead to oscillations in the direction of P. 

The "Pendellösung"-length L may be considered as a characteristic length 
for the diffraction phenomenon. Propagation over distances short compared 
to L, has only a small effect on the wave fields. A kinematical approach is 
sufficient to calculate the change. Over distances large compared to L, the 
kinematical theory is incorrect and the dynamical theory has to be applied. 
The interaction between the two predominant plane-wave components is 
manifest only over distances of the order of L or larger. 
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7. MATCHING AT THE BOUNDARIES 

7.1. Definitions 

Up till now only wave fields in unbounded crystals have been considered. 
In this chapter we treat the matching of the wave fields inside and outside the 
crystal at the boundaries. 

For the medium outside the crystal we choose always vacuum. The incident 
wave is assumed to be plane parallel with wave vector kt,. Because of diffraction 
there may appear another plane wave in vacuum, the diffracted wave, with wave 
vector kr. The polarization may be either a or n. It is the same inside and outside 
the crystal. 

The crystal itself is assumed to be a plane-parallel slab, the boundaries flat 
and abrupt. The orientation of the surfaces is characterized by the surface 
normal s, pointing into the crystal at the front surface, and the parameter y: 

y = kj, • s/kr • s = ko • s/(ko — 2b) • s. (7.1.1) 

The small difference between k» and ko or between kr and ko — 2b in the region 
of diffraction has a negligible effect on y. The value of y may lie anywhere 
in between —oo and oo. The extreme cases of y i^ 0 (k„ almost parallel to the 
surface) and y ^ ± oo (kr almost parallel to the surface) will not be discussed. 

Depending on the sign of y two situations can be distinguished: 
(a) The Laue case of diffraction, if y > 0. An example is shown in fig. 7.1a. 

At the front surface both k„ and kr are pointing into the crystal, and at the 

Fig. 7.1. The Laue case (a) and the Bragg case (b) of diffraction. The important difference 
lies in the direction of kr with respect to the surface. In the Laue case kr is pointing into the 
crystal at the front surface, in the Bragg case at the back surface. 

back surface both are pointing outwards. Consequently there is in front of 
the crystal only an incident wave and behind the crystal a transmitted 
wave (wave vector kt,) as well as a diffracted wave (wave vector kr). In 
the case y = 1, the symmetrical Laue case, the surface is perpendicular to 
the reflecting planes. 

(b) The Bragg case of diffraction, if y < 0 (fig. l.\b). Now the orientation of 
the surface is such, that at the front surface kr is pointing into the vacuum. 
There are an incident and a reflected wave in front of the crystal and only 
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a transmitted wave (wave vector k„) behind the crystal. In the case y = —1, 
the symmetrical Bragg case, the reflecting planes are parallel to the surface. 

7.2. Matching of k-vectors *) 

The wave fields inside and outside the crystal must have the same periodicity 
along the surface. Accordingly the wave vector of the modes activated inside the 
crystal, have to satisfy the relation \ , I ' 

k = kt, 4- Tis, -^ (7.2.1) 

where n has to be adjusted in such a way that k lies on the co-surface. Since k 
is almost equal to kt,, the value of n is small compared with m\c. Substitution 
of eq. (7.2.1) into the basic equations and eliminating TI leads to (terms in TI2 
being neglected) o ./w-w R.-»-^^ t..»-^K 

Vi ( I - y/f) = (y - 1) Fo + 4yb • (k, - b). (7.2.2) 

From this equation follows there are two values of I, one for each of the two 
modes of propagation that are activated inside the crystal. They are closely 
related to each other: 

hi2 = -y, (7.2.3) 

a result that we shall use frequently. The magnitude of TI is given by 

2Tiko • s = Fo + Vil (7.2.4) 

Note that TI is indeed small compared with co/c in the region of diffraction. 
Both modes contain also a predominant plane-wave component k — 2b that 

has to be matched to the reflected wave in vacuum, if such a wave is present 
(back-surface Laue case and front-surface Bragg case): t ^ ^ 4 3 ' 

k - 2 b = kr + T2S. ' ^^ (7.2.5) 

In general T2 J^ TI, so that kr is only approximately equal to k,, — 2b. 
A simple construction for the wave vectors ki and k2 of the modes activated 

inside the crystal, for given kv and s, is shown in fig. 7.2 (fig. 7.2a for the Laue 
case and fig. 7.2b for the Bragg case). The wave vectors are found as the inter­
sections of the co-surface with a line parallel to s through kt,. In the Laue case 
of diffraction the two solutions lie on different branches. In view of later discus­
sions it is important to note that the velocity of energy transport is never closely 
parallel to the surface. Both modes travel into the crystal. At the back surface 
they decompose into two uncoupled plane waves, one with wave vector kt, and 
one with wave vector kr. The vector kr + 2b is given in the figure. 

*) Although non-absorbing crystals are discussed, all results derived in this and the next 
section, are valid in absorbing crystals also. Only the appropriate "cu-surface" has to be 
used. 
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In the Bragg case of diffraction (fig. 1.2b) the two k-vectors lie on the same 
branch or there are no intersections at all. If there are two solutions, the energy 
velocity of one mode (ki) is pointing into the crystal and gives an energy flow 
from the front to the back surface. For the other mode the energy velocity is 
such that the energy flows from the back surface to the front. Behind the crystal 
there is only one plane wave parallel to kt,. In front of the crystal there are two 

Fig. 7.2. Graphical representation of eq. (7.2.1). The wave vectors ki and ks of the modes 
excited inside the crystal and the wave vector of the ditfracted wave plus the relevant recip­
rocal-lattice vector (kr + 2b) fall on a straight line parallel to the surface normal (s) passing 
through the wave vector of the incident wave (k,,). In the Laue case there are always two solu­
tions for k, one on each branch (a). In the Bragg case there are either two solutions for k 
on the same branch, or no real solutions at all (6). 

waves, one parallel to k„ and the other parallel to kr with kr + 2b given in the 
figure. For kt, equal to either kA or ks there are two coincident solutions for k. 
The energy velocity of these modes is parallel to the surface. Between kA 
and ks there exist no real solutions for k. However, eq. (7.2.2) may be solved 
in these situations, but the resulting ^-values are complex, leading to complex 
values of k. We shall deal with these cut-off" modes in the next chapter. 

7.3. Matching of amplitudes 

The second requirement for matching concerns the amplitudes. The tangential 
components of E and H, and the normal components of D and B have to be 
continuous. In view of the small change in the "optical density" some simplifica­
tions are possible. In the first place one may neglect the wave reflected from the 
surface as if it were a mirror (the k-vector of this wave is the other intersection 
of the co-surface in vacuum, with the line parallel to s through k,,). Secondly the 
matching of the total amplitude of B and D suffices. Working out this condition 
shows that it is equivalent to matching the dielectric displacements inside and 
outside the crystal, of the upward- and downward-travelling waves separately. 
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Far off Bragg angle the wave penetrates the crystal without change in ampli­
tude. Near Bragg angle distinction must be made between the Laue and the 
Bragg cases, as well as between the front and back surfaces. 

Laue case: front surface: Do = Di + D2, 

0 = hDi + I2Ö2, 

back surface: Dt = Di' + D2', 

Dr= hDi' + hD2; 

Bragg case: front surface: Do = ^1 + D2, 

Dr = l iDi 4- i2D2, 

back surface: Dt = Di' -f D2, 

0 = hDi' -f I2D2'; 

(7.3.1) 

(7.3.2) 

here Do, Dr and Dt represent the amplitudes in vacuum of the incident, 
reflected and transmitted wave, respectively. The two modes activated inside 
the crystal are characterized by ^1 and I2, respectively, their amplitudes being 
Di and D2 at the front surface and Di' and D2 at the back surface. The relation 
between the amplitudes with and without prime is determined by the phase 
behaviour of the mode via the k-vector. 

Note that in the Bragg case the amplitude of the reflected wave in front of 
the crystal depends on what happens at the back surface. 

7.4. Total reflexion 

In the discussion of the k-matching for the Bragg case of diffraction (sec. 7.2) 
it was pointed out that there is a region of directions of kt, where the solutions 
for I are not real. According to eq. (7.2.2) this region is given by 

2Fi (-y)i/2 < (y _ 1) Fo + 4yb • (k„ - b) < - 2 F i (-y)i/2. (7.4.1) 

The value of | is then 
f = (_y)i/2 exp {jcp), (7.4.2) 

with 
2 (—y)i/2 Fl cos cp = {y—\)Vo + 4yb • (kt, - b). (7.4.3) 

There are two possible solutions for f, one giving rise to an exponentially 
decreasing amplitude for deeper penetrations (via the complex k-vector) and 
one giving an exponential increase. 

Imagine now (fig. 7.3) a plane wave with a wave vector k„ satisfying the 
condition (7.4.1), striking a crystal of such thickness that the exponentially 
decreasing mode is attenuated to a negligible amplitude before it reaches the 
back surface. The mode with increasing amplitude is then not excited at the 



— 35 — 

front surface. From the first pair of eq. (7.3.2) it follows that the reflected wave 
and the incident wave have an amplitude ratio 

DrIDo = h. 

Fig. 7.3. If there are no real solutions for k in the Bragg case the net power flow inside the 
crystal is parallel to the surface and the incident wave is totally reflected. The crystal is 
assumed to be thick and non-absorbing. 

With the aid of fig. 7.3 one may deduce that the ratio of the X-ray power im­
pinging on (/o) and reflected from {IR) a unit area of the surface is given by 

IRIIO = - (l/y)ii)r/öo|2 = - i l i |2 /y . (7.4.4) 

Above we found | | | to be equal to (—y)i/2 (eq. (7.4.2)), so that 

iRlh = 1. 

Apparently the reflexion is total in the region where the solutions for f and k 
are complex. The incident X-ray energy is not transported into the crystal but 
reflected completely. This is in agreement with the fact that in these cases the 
velocity of energy transport is parallel to the surface, as may be verified easily 
with the aid of eq. (6.3.6) taking into account the definition of y (eq. (7.1.1)). 

If kt, is oriented outside the region of total reflexion the velocity of energy 
transport is pointing into the crystal and the reflexion coefficient is smaller than 
unity. 

In absorbing crystals the reflexion coefficient is always smaller than unity. 
A net influx of power is necessary to maintain the wave field present inside the 
crystal. If the absorption per "Pendellösung"-length is small, however, the 
reflectivity is still close to unity over an appreciable region in kt, (see fig. 9.14). 

In the later discussions the region of high reflectivity, occurring in the Bragg 
case of diffraction only, plays an important part. In this region the familiar 
concepts of absorption coefficient and y^-ray lose their normal meaning. 
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8. ABSORPTION AND EXTINCTION 

8.1. Introduction 

In this chapter exponentially damped modes are discussed. Such modes we 
have already found in non-absorbing crystals in the Bragg case of diffraction 
and total reflexion (sec. 7.4). The decrease in amplitude is due to a special 
interference phenomenon: extinction. In absorbing crystals such modes must 
always be present, because part of the X-ray energy in the wave field is trans­
formed into other forms of energy. However, in absorbing crystals extinction 
may take place also, but it is then always mixed with absorption. A sharp 
distinction between the two types of attenuation is not possible. 

According to sec. 5.3, exponentially damped modes are obtained by making 
Fo, Fl and | complex. The following notation will be used: 

Vo=Vo+jWo, 

Vi=Vi+jWi, (8.1.1) 

f = |f |exp(;V), 0 < | ( p | < 7 r . 

A bar underneath the symbol denotes the real part. In practical cases both | Wo\ 
and \Wi\ are small compared with lFo| and lFi|. The wave vector k has to be 
complex too: 

k = k + 7 K . (8.1.2) 

The real part describes the phase behaviour and the imaginary part the ampli­
tude behaviour. The planes in real space perpendicular to K are planes of equal 
amplitude and the relative decrease in amplitude per unit length in the direction 
of K is given by |K|. 

In non-absorbing crystals and no extinction the two basic equations allow 
for the determination of |k| and | if co and the direction of k are given. In the 
general case with complex parameters the basic equations represent four rela­
tions from which a solution may be obtained if the directions of both k and K 
are given. For a given orientation of the surface we know that the component 
of k parallel to the surface has to be continuous and that the vector K must 
be perpendicular to the surface since the planes of equal amplitude are parallel 
to the surface. The boundary condition, eq. (7.2.1), still applies, the adjustable 
parameter TI being complex. Although the problem of diffraction in a plane 
slab of an absorbing perfect crystal is now completely solvable, a complication 
arises, in comparison with non-absorbing crystals, since the parameters |K|, 
|£| and cp depend on the orientation of the surface at which the mode was 
generated. The origin of the complication is that we had to introduce the 
vector K to describe the damping. In optics and in the kinematical theory the 
attenuation is usually accounted for by means of a scalar parameter, the ab-
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sorption coefficient, giving the relative decrease in power flow per unit length 
in the direction of the power flow. The question we want to discuss is under 
what conditions the use of an absorption coefficient is allowed and when it is 
imperative to use the attenuation vector K. 

Let us compare modes of propagation with the same direction of energy 
transport, but generated at surfaces with different orientations. These modes 
have the same value of |f| since \e is a function of |^| only (eq. (6.3.6)). The 
vector K has an orientation and magnitude that is sensitive to the direction of 
the surface normal. The notion absorption coefficient now implies that the 
relative decrease in amplitude in the direction of Ve is insensitive to a change 
in s. In other words, the definition of an absorption coefficient, 

/c = - 2 K • Ve/lVe!, (8.1.3) 

is an adequate one, as long as the value of ju is independent of the orientation 
of K in respect to \e. 

In this chapter it will be shown that an absorption coefficient is an adequate 
description of the damping if the velocity of energy transport is not closely 
parallel to the surface. In all other cases where \e is almost parallel to the sur­
face, viz. total reflexion and glancing incidence, the orientation of s with respect 
to Ve plays a part in the attenuation in the direction of \e. It must be remarked 
that this limitation in the applicability of /< is also present in optics. In the case 
of total reflexion the decrease in amplitude of the light wave in the less dense 
medium is not given correctly by the absorption coefficient. 

In view of this result we shall distinguish between two types of modes 
(excluding the case of glancing incidence): 

(1) Cut-off modes, where the decrease in amplitude is mainly due to extinction. 
The transport of energy in these modes is almost parallel to surface. The small 
component of the power flow into the crystal is only necessary to maintain the 
wave field inside the crystal. The greater part of the incident X-ray power is 
reflected. In the mathematical treatment the attenuation has to be described 
with the vector K. We shall show that the phase angle 99 in f may have any 
value that is not close to either 0 or i TÏ- The magnitude of K • Ve/|ve| is not 
constant for given |f |, but still depends on 9?. The real part of the wave vector 
does not lie close to the co-surface discussed in sec. 6.4. 

(2) Surface-independent modes, where the decrease in amplitude is mainly due 
to absorption. The velocity of energy transport of these modes is not closely 
parallel to the surface. The relative decrease in power flow may be described 
with an absorption coefficient. The magnitude of K • Ve/|Ve| is now independent 
of cp, which is always close to either 0 or ± TT. The real part of the wave vector 
always lies very close to the branches of the co-surface. In the mathematical 
treatment of such modes the parameters Fo, Fi, k and f can be considered as 
real, provided an absorption coefficient is attributed to the mode characteristics. 
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If such a treatment gives ^ = —y then the modes have cut-off character and the 
approximation of real parameters is incorrect. 

In non-absorbing crystals the modes activated in the crystal are either surface-
independent and then undamped, or cut-off modes. In absorbing crystals the 
distinction is not sharp. It is possible to activate modes with properties in be­
tween, namely in the regions just outside total reflexion in the Bragg case. Since 
these regions are narrow for low absorption coefficients, we shall not deal with 
them. 

Experimentally it has been found that the relative decrease in amplitude per 
wavelength is always very small. The higher-order terms in K in comparison 
with higher-order terms in k shall be neglected. This procedure leads to the 
inconsistent result |K| «a co/c when either kt, or kr is closely parallel to the sur­
face (glancing incidence or glancing reflexion), situations that are left out of 
consideration. 

Finally it is supposed that s lies in the plane of incidence. If this is not the 
case, the calculations below give the component of K in the plane of incidence 
and s represents the unit vector in the plane of incidence parallel to the projec­
tion of the surface normal on this plane. 

8.2. Mathematical treatment 

The equations involved in the mathematical treatment of exponentially 
damped modes are rather complicated. In this section a number of equations 
are given. The discussion comes in later sections. 

To characterize the material it is convenient to introduce 

g = PFo/Fi, e = Wi/Wo, r = Fo/Fi. (8.2.1) 

Far off Bragg angle the basic equations read 

k2 = ft>2/c2 _|_ Fo 
(8.2.2) 

2k • K = Wo. 

The term K^ is neglected. The second equation shows that the component of K 
in the direction of k is the only relevant one. It is small compared with co/c. 
Near to Bragg angle we obtain 

k2 = co2/c2 + Fl {r + cos (9p)|f I - €g sin {cp)\^\}, 

(k _ 2b)2 = co2/c2 + Fl {r + cos {cp)/\i\ + ,g sin {cp)/\i\], 
(8.2.3) 

2k • K = Fl {g + sin {cp)\i\ + eg cos {cp)\i\}, 

2(k - 2b) • K = Vi{g- sin {cp)/\i\ + eg cos (cp)/\||}. 

We shall introduce the dimensionless parameters A, B, C and D, corresponding 
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to the components of k — ko and K parallel and perpendicular to the reflecting 
planes in units of the reciprocal "Pendellösung"-length L: 

(8.2.4) 

-2L(^ii -ArocosÖ) = r + C = r + i ( | f | - f | | | - i )cos 99-^tg( | | | - | | | - i )s in (p, 

-2L(^^-A:osinÖ)tanÖ= A= KIII- l f | - i )cos 9^eg ( | ^ | + |^|-i)sin9?, 

-2LKn =g+D=g+\{\^\-\^\-^)smcp+\eg{\^\M^\-^)co%<p, 

-2LK^tzn6 = B= i{\^\ + m-^)smcp+^eg{\^\-\^\--')coscp. 

Since the parameters A, B, C and D are functions of the two variables | | | and cp 
only, there must exist two relations between them: 

AB—CD = —eg, 
(8.2.5) 

^2 _ 52 _ ^2 + p 2 = _ 1 + £2^2. 

For given value of | | | and cp both k and K are single-valued. All values of k 
fall in a well-defined region of k-space. It is bounded by the hyperbolae 

C2 - ^2 = 1 (8.2.6) 

and 
C2 _ ^2 = _^2g2_ (8.2.7) 

The first one corresponds with the expression for the co-surface for undamped 
modes {g = 0 and real values of I). In fig. 8.1 an example is shown. The scale 
is the same as in fig. 6.4. The numerical values underlying the figure are 

g = 0-125, 'e = 0-8, tan 6 = 0-5. 

For an arbitrary value of cp the values of k fall on the hyperbola 

C2 — ^2 = C0S2 cp — e2g2 sin2 ^. (8.2.8) 

The influence of extinction or absorption is hence determined by the value of cp. 
If cp is close to 0 or ± TT, the vector k lies close to the co-surface for no absorption 
{g —> 0). Only when cos2 cp is significantly less than unity, are appreciable 
deviations from the co-surface present. The values of k for a given value of |f| 
fall on ellipses that touch the 4 hyperbola branches given in eqs (8.2.6) and 
(8.2.7). Note that for small values of g these ellipses are very eccentric. 

The allowed values for K fall between the hyperbolae 

D2 _ 52 = ^2g2^ (8.2.9) 

and 
D^ — B^ = —l. (8.2.10) 

In fig. 8.2 this region is shown. The scale is the same as in fig. 8.1 so that 
|K! < co/c, except when K is almost parallel to the asymptotes. It is easily 
verified, however, that there either the incident or the reflected wave is closely 
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parallel to the surface (K//s), a possibility deliberately left out of discussion. 
For a given value of |f i the possible values of K fall on an ellipse that touches 
the four branches of the hyperbolae given by eqs (8.2.9) and (8.2.10). For small 

Fig. 8.1. If one allows for complex values of f, the real part of the possible wave vectors for 
given frequency fall within a region bounded by the hyperbolae. The ellipses represent the 
possible values of k for given j.^]. The phase angle in I is q>. 

values of eg they are very eccentric. All modes with given | | | have the same 
velocity of energy transport Ve (eq. (6.3.6)). It can be shown by straightforward 
calculation that Ve is parallel to the short axis of the ellipse. For a given value of cp 
the possible K-values fall on the hyperbola: 

D2-B2 = {eg)2 cos2 cp - sin2 cp. (8.2.11) 

For a given orientation of the surface an incident plane-parallel wave 
generates inside the crystal only those modes for which K is parallel to the 
surface normal. It may be verified that in the terms now introduced, the con­
dition K//s leads to 

g + D = B{y + \)/{y-l). (8.2.12) 

Elimination of 5 and D from eqs (8.2.5) and (8.2.12) gives a relation between A 
and C: 
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(^2 _ C2 + 1 _ e^g2)[{y _ 1) ^ _ (y + 1) C]2 = 

= g' [{y - me + e)2 _ {(y _ 1) ^ + (y + 1) e}2]. (8.2.13) 

Since A and C correspond to the components of k perpendicular and parallel 
to the reflecting planes, respectively, eq. (8.2.13) gives the aUowed values of k 
for given orientation of the surface and given oj. Apparently this "co-surface" 

VLianB 

Fig. 8.2. The counterpart of fig. 8.1, giving the imaginary part of the possible wave vectors 
for given ct>. If |f | is given the K-values fall on an ellipse with the short axis parallel to the 
velocity of energy transport. 

does not coincide with the co-surface found for undamped modes (eq. (8.2.6)). 
To distinguish between the two types of co-surfaces we shall refer to the relation 
between k and co for absorbing crystal slabs of given orientation, as "co-surface". 

For given A and C the components of K are easily found from 

D = g{C+ e){y - \)/{{y + 1) C - (y - 1) ^} 
and (8.2.14) 

B = g{{y-l)A + {y+l) e}/{{y + 1) C - (y - 1) A}. 

8.3. The "co-surface" 

In absorbing crystals the real part of the wave vector of a mode of propaga­
tion does not faU on the co-surface for undamped modes discussed in sec. 6.4. 
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In this section the new "co-surface" is discussed for two simple cases: the sym­
metrical Laue case and the symmetrical Bragg case. Further we shall show that 
because the experimentally determined values of eg are small, the "co-surface" 
practically coincides with the co-surface for undamped modes, except for the 
cut-off" modes, which have a velocity of energy transport almost parallel to the 
surface. 

In the symmetrical Laue case (y = 1) the "co-surface" is given by (see eq. 
(8.2.13)) 

^2 = (C2 - 1) (1 -f e2^2/C2), (8.3.1) 

where A and C are related to the components of k — ko perpendicular and 
parallel to the reflecting planes (eqs (8.2.4)). In fig. 8.3 the "co-surface" is drawn 

Fig. 8.3. The "to-surface" in the symmetrical Laue case for different values of g. 

for eg = 0, 0-1 and 1. The curve for eg = 0 is the co-surface discussed earlier. 
For eg = 0-1, the difference with the co-surface is so small that it cannot be 
shown in the figure. Only for the extremely large value of eg = 1 is there a 
significant deviation. Since practical values of eg are smaller than O-l the 
deviations are negligible in the symmetrical Laue case. An immediate conse­
quence thereof is that the phase angle cp in i remains always close to either 0 
(left-hand branch) OT ± TI (right-hand branch) and all possible modes are 
surface-independent. 
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In the symmetrical Bragg case (y = —I) the "co-surface" is given by 

^2 = C2 - 1 + g2 {-1 -f e2 + (C + e)2/̂ 2}. (8.3.2) 

In fig. 8.4 it is drawn for the same values of eg as used in fig. 8.3. Only one 
branch is shown, namely that one for which the energy velocity is pointing into 
the crystal {\i\ < 1). The other branch is found by reversing the sign of the 
vertical axis. For eg = 0 the "co-surface" consists of two parts: the co-surface 

Fig. 8.4. The "co-surface" in the symmetrical Bragg case for different values of g. 

for undamped, surface-independent modes and a horizontal straight line (dotted 
curve). Along this straight line 11| is unity and accordingly, the velocity of energy 
transport is parallel to the surface. The matching of such modes of propagation 
with plane-parallel waves in vacuum requires that in vacuum the power flow is 
parallel to the surface also, indicating a reflexion of 100% (total reflexion). The 
phase angle cp is not equal to 0 or i TI. Hence the modes must have cut-off" 
character with an exponential decrease {0 < cp < ji) or an exponential increase 
(—7t < 95 < 0) in amplitude in the direction perpendicular to the surface and 
energy transport. 

For eg = 01 the sharp kinks in the "co-surface" for eg = 0, are replaced 
by smooth bends. The deviations in k due to absorption and extinction are 
only appreciable near to and in between these bends. In this region the value 
of III is close to unity, indicating strong reflexion and cp is neither close to 0 
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or ± TC, showing that the cut-off character is strong. Outside this region of 
the "co-surface" the deviations from the co-surface are small and the value of cp 
is either close to 0 (left-hand branch) or close to ± TÏ (right-hand branch). 

For eg = 1 the deviations are large in the left-hand side and centre of the 
figure. On the right-hand side the deviations remain small. 

From these examples we draw the conclusion that if eg is small the relation 
between k and co is not significantly influenced by the finite value of eg, except 
for such situations that the energy velocity of the mode is parallel to the surface 
(total reflexion). This conclusion may be verified also by considering the general 
expression for the "co-surface", eq. (8.2.13). The right-hand side is small for 
small values of g. In the left-hand side either the first or the second factor has 
to be small. If the first factor is small one obtains the expression for the co-sur­
face for undamped modes in a first approximation. If the second factor is small 
the k-value must satisfy the condition 

{y-\)A={y+\) C. 

In the limit g —>- 0 this corresponds to (eq. (8.2.4)) 

It is easily verified that this condition leads to modes of propagation with an 
energy transport parallel to the surface. 

8.4. Absorption coefficient 

As pointed out in the introduction to this chapter we want to introduce an 
absorption coefficient 

fl = - 2 K • Ve/|V«| 

to describe the relative decrease in power flow per unit length in the direction 
of the power flow. To make this definition an adequate one, it must be required 
that n is insensitive to the direction of K. It is not necessary that/c be independ­
ent of the direction of Vc, the direction of energy transport. 

From eqs (8.2.4) and the expression (6.3.6) for Ve it follows immediately: 

-2LK-Ve/c = gcos(ö){l +2e| | |cos(9?)/(l + |||2)}. (8.4.1) 

The influence of the surface orientation is expressed in the factor cos q). Now 
we found in the previous section that cos2 cp, the measure for the distance 
between k and the co-surface, is close to unity, if the velocity of energy trans­
port is not closely parallel to the surface. By excluding this possibility, we can 
write for cos cp either 1 or —1, dependent on whether k is close to the left-hand 
branch or the right-hand branch of the co-surface. Thus we find 

// = g {1 + 2ef/(l + f 2)} cos {6) c/\ye\ L, 

where ^ is now a real parameter, either positive or negative. This value of fi is 
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insensitive to the orientation of the surface at which the mode with given [|| 
was excited. Therefore we refer to these modes as surface-independent modes. 
The only necessary condition is sin2 93 < 1. This result follows also from 
fig. 8.2, where the possible values of K are shown. For given | | | the vectors K 
fall on a very eccentric ellipse. The variable along the ellipse is cp. Since the 
power flow of all these modes is parallel to the short axis, we see that over a 
large portion of the ellipse K • Ve is constant. Appreciable deviations do occur 
only near the ends of the long axis, where cp is far from either 0 or ± TT and 
where the vector K, which is parallel to s, is almost perpendicular to Ve. 

The value of the absorption coefficient far off Bragg angle, pio, is found by 
setting f equal to either 0 or ± 00 and |ve| = c: 

fio = g cos {d)/L = -Woc/o). (8.4.2) 

The expression for /< now reads 

lU = flo {1 + 2eê/(l + f2)} c/|Ve|. (8.4.3) 

Fig. 8.5. The value of /tl/io, as calculated from eq. (8.4.3), vs If], for two different values of e 
(tan 0 = 0-5). Note that the absorption is enhanced for | > 0 and reduced for | < 0. The 
minimum value of /i/fio is equal to (1 — c)/cos fl. 

In fig. 8.5 the values of /j./fio are plotted as a function of |f | for two values 
of e. If I is positive (left-hand branch) the absorption is enhanced. If | is 
negative (right-hand branch) the absorption is reduced. The value of /n is 
minimum for f = —1. It is equal to /co (1 — e)/cos 6. For the cr-polarization 
and a location of the absorbing electrons close to the reflecting planes, e is 
close to unity, leading to a minimum value of /LI much smaller than juo. The 
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explanation is simple. The mode with | = —1 has its nodes with zero ampli­
tude, in the reflecting planes (see fig. 6.1). Thus the electric field is very small 
at the location of the absorbing electrons. For 1 = 1 the electric field is strong 
there, thereby leading to enhanced absorption. This very low absorption 
coefficient for the mode with f = —1 in the cr-polarization is responsible for 
the phenomenon of anomalous transmission in perfect crystals. 
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9. X-RAY BEAMS 

9.1. Introduction 

In view of the further development of the theory to lightly deformed crystals 
we want to introduce X-ray beams in the same way as in geometrical optics 
where light rays are introduced to describe the path of light energy through 
prisms, lenses and inhomogeneous media. Such rays of light are supposed to 
have the following properties: 

(1) The width. A, of the beam is constant in a uniform medium provided 
the path length is shorter than A^/k, with A the wavelength. Beyond this path 
length the beam diverges with apex angle X/A, because of diffraction. 

(2) The electromagnetic energy present in the ray travels in the direction of 
the path. 

(3) The wave field inside the beam is characterized by one wave vector k. 
Along the path this value of k is constant. At a boundary between different 
media the directions of the paths (parallel to k) are matched by using Snell's 
law. 

(4) The intensity of the ray is given by 

/ = /P-udS', (9.1.1) 
s 

where P is the local value of the Poynting vector and S the cross-sectional area 
of the beam perpendicular to an arbitrary unit vector u. The relative decrease 
in intensity of the ray per unit path length is given by an absorption coefficient. 

In this chapter we shall discuss the question whether or not it is possible to 
introduce well-behaved X-ray beams with the same properties. The procedure 
is to construct a wave packet in a given plane of incidence, centred around one 
complex value of the wave vector k, all satisfying the basic equations of the 
dynamical theory *). We choose the wave packet in such a way that along the 
surface of a semi-infinite crystal the wave field becomes localized around a 
certain point O. Having done this, the amplitude distribution inside the crystal 
may be calculated. 

In most cases, excepting the ones mentioned below, a beam in the sense of 
geometrical optics results. Such well-behaved beams have aU the properties 
mentioned above. Only as far as diffraction is concerned has a modification to 
be introduced in the condition mentioned under (1). This condition is an 
immediate consequence of the curvature of the "co-surface", a circle with 
radius 2TI/X in the optical case. According to the dynamical theory the "co-sur­
face" is curved stronger in the diffraction region, the radius of curvature in 

*) Use is made of a packet of pairs of plane-wave components. The question whether or not 
the beams that are used in practice, can be considered as such a packet, is left out of 
consideration. 
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k-space being of the order of L~^, where L is the "Pendellösung"-length. 
Accordingly we have now to state that the beam starts to diverge after having 
travelled a distance A^/L (see fig. 9.1). 

Fig. 9.1. The effect of diffraction (in optical sense) on the width of an X-ray beam in a crystal 
when the Bragg condition is (nearly) satisfied. The influence is similar to the diffraction of 
light beams, but the "Pendellösung"-length L plays the important part and not the wavelength. 

However, we shall show that in the Bragg case of diffraction in or close to 
the region of total reflexion (sec. 7.4) the localized wave field inside the crystal 
does not have any of the properties (2), (3) and (4) mentioned above. In chapter 8 
it was shown that in these cases an absorption coefficient is not an adequate 
description of the relative decrease in intensity. The properties (2) and (3) are 
absent because of the cut-off character of the modes and the inherent strong 
dependence of the imaginary part of the wave vector on the precise orientation 
of the real part. It should be noticed that in optics a strong variation of K with k 
is present also in the case of total reflexion. A beam of light striking the surface 
of a less dense medium under such an angle that total reflexion takes place, 
does not give a well-behaved beam in the less dense medium. 

9.2. Gaussian wave packet in the linear approximation 

9.2.1. Definition 

To obtain a space-limited wave field a Gaussian wave packet is used, centred 
around the wave vector kc + jKc. Furthermore we shall use the linear approxi­
mation to evaluate the characteristics of the other modes in the packet. In doing 
so the curvature of the "co-surface" is eliminated and therewith the diffraction 
as discussed in the previous section. All phenomena found below have nothing 
to do with diffraction in the optical sense. They are a consequence of the fact 
that the attenuation vector K and the parameter I are not constant in the 
wave packet. 

k = kc + Zip, 

K = Kc + hqs, (9.2.1) 

I = lo (1 + / ! d In l/d/i). 

The unit vector p is tangential to the "co-surface" in the point kc. The param-
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eter q relates the change in the imaginary part to the change in the real part 
of the wave vector. Its magnitude is discussed below; it may be smaller or larger 
than unity depending on the location of kc on the "co-surface". In fig. 9.2 we 
show the coordinate system that is used: the z-axis is normal to the surface 
and the x-axis lies in the surface and in the plane of incidence. The vector p 

X-axis z-axis 

Fig. 9.2. The coordinate system used in this chapter. 

makes an angle a with the x-axis. From the discussions in sec. 8.3 it follows that 
a = 90° in the boundaries of the region of total reflexion, provided there is 
no absorption. In all other cases |a| is smaller than 90°. It is easily verified that 

tan a = dkz/dk^ (9.2.2) 
and 

9/cos a = dK/dkx. (9.2.3) 

The amplitude distribution over the wave packet is taken as Gaussian: 

d£) = /I cos (a) exp {-A^ cos^{a)h^/2} dh/{2Ti)V^. (9.2.4) 

The total amplitude, Dt, of the upward-travelling components is now found 
to be 

Di = exp {—jkc • r + Kc • r + (^s • r —yp • r)2/2yl2 cos2 a}, (9.2.5) 

and the total amplitude, Dr, of the downward-travelling components 

Dr= ^cDi {l+{qs-r - j p • r) (d In ^/dh)/A^ cos2 a}. (9.2.6) 

9.2.2. Upward-travelling wave field 

Let us first consider the variation in A- Along the surface (s • r = 0) the 
magnitude of Dj is given by 

lAI = exp (-X2/2/12); s • r = 0. (9.2.7) 

The amplitude is a maximum for x = 0, it has dropped to exp (—i) for 
X = ± A and may be considered as negligible for much larger values of |x|. 
Inside the crystal along a line parallel to the surface, the amplitude is maximum 
for p • r = 0. Apparently the deepest penetration takes place in the direction 
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perpendicular to p and parallel to the group velocity of the packet (öcw/ök)k=k .̂ 
Along any line z = constant the amplitude has dropped to exp (—}) at a 
distance i A from the line p • r = 0. From this point of view the wave field 
corresponds to a beam of constant width, penetrating deeply into the crystal 
(fig. 9.3). It must be remarked, however, that the direction of deepest penetra-

Fig. 9.3. In the upward-travelling wave field that results from a Gaussian wave packet, the 
amplitude distribution in a plane parallel to the surface is such that it drops to exp (—i) 
of the maximum on the lines p • r = ± /I. The maximum itself occurs at p • r = 0. 

tion may deviate appreciably from the direction of energy transport (see sec. 
9.2.4). For large values of z the expression (9.2.5) for Dt cannot be correct. 
The magnitude of A along the centre line of the beam is given by 

lAI = exp [Kc • r + q^z^/2A2 cos2 a]; p • r = 0. (9.2.8) 

The value of Kc is such that inside the crystal Kc • r is negative, corresponding 
to a decreasing amplitude. But we see from eq. (9.2.8) that sufficiently deep 
into the crystal the amplitude starts to rise again and eventually may reach 
amplitudes exceeding those in the surface. This unreasonable result is an im­
mediate consequence of the linear approximation. Along the entrance surface 
the amplitude distribution is given by eq. (9.2.4). Deeper inside the crystal the 
amplitude distribution is changed, because the different modes suffer a different 
phase shift and a different attenuation. The difference in phase shift causes the 
beam to travel perpendicular to p and is further of minor importance. The 
difference in attenuation causes a shift in /i-value for which the amplitude is a 
maximum. It is easily verified that at a depth s • r = z the maximum in ampli­
tude occurs at 

hm = qz/A^ cos2 a. (9.2.9) 

The attenuation vector Kc' of the mode with maximum amplitude is according 
to the linear approximation 

Kc' = Kc -f sz {q/A cos a)2. 

Apparently there must come a region where Kc' • r is positive, corresponding 
to an increasing amplitude. Long before that point, however, the linear ap­
proximation is incorrect, so that the increasing amplitude does not worry us. 
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However, this result demonstrates a feature that is of great importance, 
namely that the central mode of the wave packet is not the same one along 
the central line. With increasing penetration the central wave vector moves in 
the direction of weaker attenuation. In the Gaussian wave packet this phenom­
enon is not perceptible in the amphtude distribution (fig. 9.3) because of the 
specific character of the wave packet. Had we chosen a square-wave packet 
(dD constant over a finite region of h) then the effect would have manifested 
itself. After penetrating deeply into the crystal only the mode with the least 
attenuation survives and the corresponding wave field must be infinitely wide. 
Such a behaviour is in contrast to property (3) mentioned in the previous 
section. Hence a beam in the sense of geometrical optics cannot be obtained 
unless ^ = 0. We believe, however, that by not looking too deep inside the 
crystal this phenomenon will not play too important a part. A suitable upper 
limit in the change of the central k follows from the condition that it must 
stay well within the original packet. Thus 

j/i^l < (/I cos a)-i. (9.2.10) 

Fig. 9.4. The imaginary part of the wave vector as a function of the component of the wave 
vector parallel to the surface in the symmetrical Laue case. The curves for g = 0 and g = 0-1 
coincide. The larger negative values correspond to modes on the left-hand branch of the 
CD-surface, the smaller negative values to modes on the right-hand branch. 
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The corresponding value for the penetration Zm, beyond which the central mode 
shifts appreciably is 

zm= A cos {a)/\q\. (9.2.11) 

For a well-behaved beam we require that this penetration be much larger than 
its width A, so that well-behaved beams are present only, if 

| q ' | / co sa< l . (9.2.12) 

To obtain an idea of the magnitude of \q\/cos a, we have to calculate |K| as 
a function of kx. In figs 9.4 and 9.5 |K| is plotted versus kx for the symmetrical 
Laue and Bragg cases, resp. Note the difference in scale along the vertical axes. 
The slope of the curve is equal to q/cos a (eq. (9.2.3)) and hence equal to A/zm 
apart from the sign. In the symmetrical Laue case the slope is always small. 
For small values of eg the maximum value of \q\/cos a is 0-4 eg tan 6. Hence 
the beam is always well-behaved. In the symmetrical Bragg case |K| rises to 

-2LtaneK/eg 

^2L (ki-ko cos Ö) +r 

Fig. 9.5. The counterpart of fig. 9.4 for the symmetrical Bragg case. The large negative values 
of K are caused by extinction. 

high values in the region of total reflexion because of extinction. The slope of 
the curve is much steeper and the corresponding value of \q\/cos a much 
larger. In the case of eg = 0-1 its maximum values are 20 and 70 on the left-
hand and right-hand side of the maximum in |K|, respectively. In the entire 
region where extinction is predominant *), the beams are not well-behaved. 

*) The narrow region near the maximum in |K| is left out of consideration. 
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A detailed study of the value of \q\/cos a in non-symmetrical cases shows 
that whenever the extinction is strong \q\/cos a is large and whenever extinction 
is negligible |q'|/cos a is small. In sec. 8.1 a few characteristics of cut-off" modes 
in contrast to surface-independent modes were given. We can add now that 
surface-independent modes give well-behaved beams, whereas cut-off" modes 
give beams in which the characteristics of the central mode change appreciably 
over penetrations less than its width. 

9.2.3. Downward-travelling wave field 

The variation of Dr over the crystal is not exactly the same as that of A , 
because the mode parameter | is not constant over the wave packet. We shall 
choose the beam so wide that the value of i for \h\ = {A cos a)-i deviates 
only very little from Ic- According to eq. (9.2.1) we must have 

ar = (/I cos a)-i d in Ill/dA, |ar| < 1 
and (9.2.13) 

at = {A cos a)-i dcp/dh, \ai\ < 1. 

We shall investigate the behaviour in the region of interest only: z < Zm 
(eq. (9.2.11)) and within a few times A from the centre line of the upward-
traveUing wave field. Equation (9.2.6) may then be rewritten as 

Dr = icDi [ 1 -f arqz/\q\zm + at {x/A + tan (a) z/A}], (9.2.14) 

where the last three terms within the brackets are small compared to unity. 
Straightforward calculation of the maxima in Dr along a line parallel to the 
surface shows that these maxima fall on the straight line: 

x/A + tan (a) z/A = at. 

This line is parallel to the line of deepest penetration, found in the previous 
sub-section, but displaced over a distance xa = aiA. Since we assumed jatj to 
be much smaller than unity the displacement is always small compared with 
the beam width. The displacement is largest when the phase angle cp changes 
sharply in the neighbourhood of kc. For well-behaved beams cp is close to 
either 0 or i TT and cannot change appreciably, so that for those beams the 
displacement is negligible. Everywhere within the well-behaved region we find 
Dr/Di = Ic. For z > Zm the ratio Dr/Dt is constant along a line parallel to the 
surface but its value is no longer equal to |c-

For beams consisting of modes with strong cut-off character the displacement 
may be larger. In fig. 9.6 an example is shown. The matching at the surface in 
this Bragg case requires the presence of two beams in front of the crystal: the 
incident beam exactly fitting the upward-travelling wave field along the surface 
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and the reflected beam, fitting the downward-travelling wave field. Apparently 
the incident beam must penetrate the crystal over a short distance za, before 
it is fully reflected. For non-absorbing crystals it may be shown that the pene­
tration depth is such that for an infinitely wide incident wave the amplitude 
would have dropped there to exp (—i). 

Fig. 9.6. In the region of strong reflexion in the Bragg case of diffraction the centre lines of 
the incident and diffracted beams do not cross in the surface. The incident beam has to 
penetrate into the crystal before it is strongly reflected. 

9.2.4. Power flow 

The expression (6.3.1) for the Poynting vector can be used to calculate the 
local value of P within the beam. By neglecting all terms of the order y or 
smaller one obtains 

2eocü P/c2 = Re{-y ( A V A * + A V A*)}. 

The gradient in A and A consists of two parts. One arises from the change 
in phase and is of the order |£>|/A. The other is due to the limitation in 
space of the wave field. It is of the order \D\/A. Since the width of the 
beam is large compared with the wavelength the latter contribution can be 
neglected, leading to 

2eoco P/c2 = |A|2ko + IA|2 (ko - 2b). (9.2.15) 

In the interesting region the relation between Dt and A is given in eq. (9.2.14): 

2 eoco P/c2 = 
|A|2 [ko -f |^c|2(ko-2b){l + 2arqz/\q\zm + 2[x/A + tan{a)z/A]at}]. 

In a first approximation the power flow is parallel to the velocity of energy 
transport of the central mode kc. Small corrections have to be applied because 
of the terms proportional to Or and at. 

Well-behaved beams consist of surface-independent modes as was shown in 
sub-section 9.2.2. For such modes the phase angle cp remains close to either 0 
or ± 71. A first consequence thereof is that at is very small and the correction 
term with at negligible. Secondly, the "co-surface" in the region of surface-
independent modes practically coincides with the co-surface defined for un-
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damped modes. Accordingly the direction of deepest penetration (parallel to 
Vg = öco/ök) is the same as the direction of the velocity of energy transport 
of the central mode (normal to the co-surface). For z < Zm the central mode 
is kc so that P is parallel to the direction of deepest penetration throughout 
this region. For deeper penetrations the central mode shifts to weaker attenua­
tion as pointed out in sub-section 9.2.2 with a corresponding shift in | and the 
direction of P. It is easily verified that the correction term proportional to ar 
accounts for this phenomenon. An example of such a well-behaved beam in 
the Bragg case of diffraction outside the region of total reflexion is shown in 
fig. 9.7a. 

Fig. 9.7. Lines of power flow in X-ray beams nearly satisfying the Bragg condition. In (a) the 
case of a well-behaved beam. The direction of power flow is the same everywhere and not 
closely parallel to the surface. In (b) the case of a not well-behaved beam. The lines of power 
flow are curved and closely parallel to the surface. The penetration is small compared with 
the beam width. 

Beams that are not well-behaved consist of modes with strong cut-off" character. 
The phase angle cp may have any value not close to either 0 or ± TI. The value 
of cp changes sharply over the wave packet corresponding to a relatively large 
value of at. Moreover the real part of k does not lie closely to the branches of 
the co-surface. According to the example shown in fig. 8.4, the normal to the 
"co-surface" in this region makes a large angle with the surface and accordingly 
with the power flow. It can be shown that the direction of yg always makes a 
large angle with Ve in the region of total reflexion where the activated modes 
have strong cut-off character. Apparently the beams in this region do not have 
the property (2) mentioned in sec. 9.1. To shed some light on this strange result 
we treat in some detail the beam activated in a non-absorbing crystal and the 
symmetrical Bragg case inside the region of total reflexion. The power flow 
associated with each mode in the packet is parallel to the surface, the direction 
of deepest penetration perpendicular to the surface. Since |f | = 1 for all modes, 
ar = 0. The value of at is easily shown to be —2L/A sin cp (0-4 in fig. 9.1b). 
According to the previous sub-section the centre lines of the incident beam 
and the reflected beam do not intersect in the surface. They lie a distance 
2L/sin cp apart. For positive values of x, |A | is slightly larger than | AI, leading 
to a power flow into the crystal under a small angle with the surface. For 
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negative values of x, |AI is smaller than \Dr\ resulting in a power flow out of 
the crystal. In fig. 9.1b two paths of the X-ray energy inside the crystal are 
shown, together with the centre lines of the incident and reflected beams. For 
sufficiently wide beams {\ai\ <€. 1) the decrease in amplitude along the line 
X = 0 is almost the same as if the wave field were infinitely wide. Accordingly 
the centre lines of the incident and reflected beams intersect on the path starting 
at the point x = A, where \Di\ = exp (—i). The other path starting at x = 2/1 
penetrates four times deeper. 

It is evident that the flow pattern in fig. 9.1b does not correspond to a well-
behaved beam. The extinction prohibits the power flow from entering the 
crystal. Nevertheless there is a shght penetration but the field deeper inside the 
crystal along the line of penetration is determined by the very small power influx 
far away from the centre of the incident beam. In the case of well-behaved 
beams (fig. 9.7a) the field deep inside the crystal along the line of penetration is 
determined by the power influx in the immediate neighbourhood of the centre 
of the incident beam. 

The intensity of the beam is defined in eq. (9.1.1). For sufficiently wide beams 
(|ar|, \at\ < 1) and not too deep penetrations (z < Zm) the total power flow 
passing through a plane parallel to the surface is equal to 

ƒ = (1 + |f,|2/y) exp [-2|Kc|z] • (7r)i/2 ylc2ko • s/2eo«. 

According to the previous chapter it is permissible for well-behaved beams, 
where all modes are surface-independent, to replace —2|Kc|z by -jul, where / 
is the distance along the path measured from the surface. Hence 

ƒ = C (1 + I fclVr) exp {-/xl), (9.2.16) 

where C is directly proportional to the maximum amplitude squared of the 
upward-travelling wave field in the beam along the surface. 

9.3. Well-behaved beams in plane-parallel crystal slabs 

In this section the use of beams in plane-parallel crystal slabs is demonstrated. 
All numerical examples concern the reflexion (220) in germanium with Cu Ka 
radiation. The parameters used in the calculations are 

6 = 22-7°, fo = -2-85.10-5 _ 8-62.10-7y, 

jUo = 352 cm-i, fi = —2-14.10-5 _ 8-27.10-7 7, (9.3.1) 

|b| = 3-151 A-i, e = 0-9592, g = 0-0403. 

The values of rpo, yi and e were obtained by Okkerse i8.i9). in fig. 9.8 the 
"cu-surface" for the symmetrical Laue case with this reflexion is shown. Along 
the straight line, covac, the deviation from the exact Bragg angle is given in 
seconds of arc. In the right-hand part the value of ju/cos 6 for the slowly 
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damped modes in the cr-polarization is given on the same vertical axis as the 

"co-surface". Note the strong reduction in comparison with /co/cos 6 = 

382 cm-i. 

In the Laue case of diffraction one incident beam generates four well-behaved 

beams inside the crystal, two in the cr-polarization and two in the 7r-polarization. 

The values of I follow from eq. (7.2.2) where Vo and Vi may be considered as 

real parameters. In fig. 9.9 the behaviour of the beams in the a-polarization is 

shown, together with the "co-surface" (schematical). The beams labeled I 

Fig. 9.8. The co-surface for the (220) reflexion in germanium, using CuKa radiation. The 
deviation from the exact Bragg angle, Sfl, is indicated along covac In the right-hand part 
fi/cos B for the slowly damped modes is plotted on the same vertical axis as the left-hand 
part. The parameters used in drawing this figure are given in eq. (9.3.1). 

Fig. 9.9. The direction of the two beams generated in a crystal (Laue case) by a mono­
chromatic incident beam depends strongly on the precise direction of this beam. In the 
figure the resulting beams for three orientations of kuo are shown. Their direction is parallel 
to the normal of the co-surface at the central mode of the beam. The beams labelled I suffer 
reduced absorption (right-hand branch), the beams labeled II enhanced absorption (left-
hand branch). 
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correspond to k-vectors on the right-hand branch and are damped slowly. The 
beams labeled II suffer an enhanced absorption. They travel parallel to the 
normal of the co-surface. From the boundary conditions (eqs (7.3.1)) follow 
the relations between the beam intensities. If the intensity of the incident beam 
in the proper polarization direction is la, the intensity of the beam characterized 
with i inside the crystal is given by 

I = /oy/(y + |2). 

During passage through the crystal the intensity is reduced because of absorp­
tion (eq. (9.2.16)). At the back surface the beam decomposes into two beams, 
one parallel to kt, and one parallel to kr, with kr + 2b indicated in the figure. 
The emerging intensities are 

IT = /oy2 exp (-^/)/(y + |2)2 
and (9.3.2) 

IR = loyi^ exp {-fil)/{y + ^2)2. 

In figs 9.10fl and b a few numerical examples are given for the slowly damped 

a b 
Fig. 9.10. The intensities emerging from Ge-crystal slabs of different thicknesses / in the 
symmetrical Laue case as a function of angle of incidence. The upper curves give the pre-
exponential factors in eqs (9.3.2). The reflexion is (220) with CuKa radiation; (o) gives 
the transmitted intensity, travelling parallel to k»; (b) gives the reflected intensity, travelling 
parallel to kr. 
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modes in the cr-polarization and the symmetrical Laue case (y = 1). The 
transmitted intensity IT and the reflected intensity IR are maximum for 66 !^ 0, 
because there [x is minimum. The slight deviation in 66 from 0 for IT is due 
to the pre-exponential term, the uppermost curves in fig. 9.10. Appreciable 
transmission takes place within a few seconds of arc only. Since jx increases 
with \d6\ the transmission peaks become narrower for thicker crystals. For the 
smallest thickness used in the figures (0-75 mm) and (5Ö = 0 the intensities 
(/j, = /^) emerging from the crystal for the four modes are 

a-polarization reduced absorption: 

enhanced absorption: 

jr-polarization reduced absorption: 

enhanced absorption: 

IT/IO = 7-8.10-2, 

/ T / / O = 1-1.10-25, 

/T//O = 2-2.10-5, 

/y//o = 4-0.10-22. 

Except the first, they are all negligible. 
In fig. 9.11 the transmission peaks for two non-symmetrical Laue cases are 

given. Now the maxima do not occur at óö = 0 and there is a larger difference 

1 -2 -3 
3 e (sec) 

Fig. 9.11. The transmitted and reflected intensities for two non-symmetrical Laue cases as 
a function of angle of incidence. The reflexion is (220) with CuKa radiation. 
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between IT and IR in the maxima. Further there is a difference in width of the 
peaks for the two cases. Note that if case I is a reflexion (220), case II corre­
sponds with the reflexion (220). In fig. 9.12 the dependence of the integrated 
intensities T and R on the orientation of the surface is given. The thickness 
was kept constant, 0-75 mm. The angle between the reflecting planes and the 
surface normal is p, with ko - s = cos {6 — fP) co/c. If ^ > 0, similar to case I 
in fig. 9.11, then R exceeds T. For ^ < 0 we find R<T. Okkerse is) gives 
expressions for the integrated intensities in the symmetrical Laue case as a 
function of crystal thickness. From his expressions it follows that both Tand R 
are proportional to the structure factor F, in contrast to the kinematical theory 
where the integrated reflected intensity is proportional to F^. 

Let us now turn to the Bragg case of diffraction. The "co-surface" (cr-polariza­
tion) is shown in fig. 9.13a. The shape is not drawn accurately. If kt, lies well 
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Fig. 9.12. The integrated transmitted (T) and reflected (R) intensities as a function of the angle 
between the surface normal and the reflecting planes. For case I in fig. 9.11, ;8 is positive. 

Fig. 9.13. The beams generated in the Bragg case when the incident beam is not totally reflected. 
The beam Mi arises from the wave packet centred around mode Mi and similar for beam M2. 
The incident beam generates beam Mi and a reflected beam in vacuum. At the back surface 
beam Mi generates a transmitted beam and a beam M2. 
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outside the region between kA and ks, only two wefl-behaved beams are activat­
ed inside the crystal, one in the a-polarization and one in the jr-polarization. 
In the example of the figure the beam in cr-polarization corresponds to mode Mi. 
The other possible mode cannot be activated since it travels from the back 
surface to the front. The boundary conditions (eq. (7.3.2) with D2 = 0) require 
the presence of a reflected beam in vacuum; see fig. 9.13b for the paths of the 
beams. It is easily verified that 

/ M , = /O (1 + h^/y) 
and 

IRO = —loh^/y. 

If the crystal is sufficiently thin the beam Mi reaches the back surface, where it 
generates a transmitted beam and the other possible beam M2: 

ITO = /O (1 + f i2/y)2 exp (-^/) 
and 

IM2 = - / o l i 2 (I + Ii2/y) exp (-///)/y. 

When beam M2 strikes the front surface again a second reflected beam is 
generated together with a beam Mi in the crystal. 

It must be remarked that this approach with beams only makes sense if the 
thickness is much larger than the beam width, because otherwise the beams 
overlap and interference takes place. 

If kt, lies near or in between kA and ks the energy velocity of the activated 
modes is closely parallel to the surface. The incident beam gives rise to space-
limited wave fields, but these do not correspond to well-behaved beams. The 
values of f must now be calculated with eq. (7.2.2) using complex values of 
Vo and Vi. For sufficiently thick crystal slabs (no transmission) the reflexion 
coefficient is equal to 

iR/io = -\my-

24 22 20 18 16 14 12 10 8 6 4 2 0-2 -4 - 6 -8 
»- deCsec) 

Fig. 9.14. The intensity reflected from a thick Ge crystal in the symmetrical Bragg case vs angle 
of incidence. The reflexion is (220) with CuKa radiation. The dotted line gives the reflected 
intensity in the case of no absorption. 
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In fig. 9.14 the reflexion coefficient is given as a function of d6 in the symmet­
rical Bragg case (y = —I). It is never equal to unity, because there is always 
a finite penetration and hence a finite absorption. The reflexion coefficient is 
maximum on the low-absorption side. The dotted curve gives IR/IO in the limit 
g —> 0, no absorption. It is unity over the entire range of cut-off" modes. For 
lower values of the reflectivity, where the beams inside the crystal are well-
behaved, the curves coincide. An interesting point in fig. 9.14 is further that at 
ÓÖ = 0 the reflectivity is not a maximum. Okkerse 2") performed an elegant 
experiment to verify this result. The width of the reflexion peak is proportional 
to the distance between the two branches of the co-surface and hence propor­
tional to the structure factor F. The integrated reflected intensity is accordingly 
proportional to F and not to F^ as is found in the kinematical theory. 
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10. DYNAMICAL THEORY FOR LIGHTLY DEFORMED CRYSTALS 

10.1. Introduction 

The dynamical theory of X-ray diffraction, discussed in the preceding chap­
ters, is valid for perfect crystals only. The periodicity of the lattice gives in the 
Fourier expansion of the dielectric constant as relevant parameters one vector 
and the corresponding amplitude Vi. In real single crystals the periodicity is 
disturbed by 
(a) small-angle grain boundaries, 
(b) thermal motion of the atoms, 
(c) elastic strains caused by external forces or temperature gradients, 
(d) isolated dislocations, 
(e) point defects such as vacancies and impurities. 
In this section we shall outline how to account for these disturbances. 

The small-angle grain boundaries have the largest influence on the diffraction 
phenomenon. Their presence results in a complete breakdown of the dynamical 
behaviour, as was pointed out by Darwin )̂ in 1914. He assumed that the small-
angle grain boundaries divide the crystal into small perfect blocks with dimen­
sions much smaller than the "Pendellösung"-length L. The orientation of the 
blocks may differ by angles of up to I minute of arc. A plane monochromatic 
beam impinging upon such a crystal meets on its path through the crystal before 
it is absorbed, only a few blocks that are oriented properly for diffraction. 
Because the blocks are small the reflected intensity may be calculated in a 
kinematical way. The total reflected intensity for one direction of incidence is 
small compared with the incident intensity. In practice one measures the 
integrated reflected intensity, either by using a divergent incident beam, o^ by 
rocking the crystal through the Bragg angle. Now the mosaic crystal reflects 
more than the perfect crystal, since all blocks within the absorption length 
contribute, whereas in the perfect crystal the wave field does not penetrate 
deeper than the length L, which is much smaller than /j,o~^ = L/g cos 6. It has 
been verified that all thick crystals satisfying the kinematical theory contain 
small-angle grain boundaries, arising from a more or less systematic arrange­
ment of dislocations. 

The effect of thermal motion has been treated theoretically also lo.is). xhe 
wavelength of most phonons is smaller than L. The crystal without further 
defects may be considered as ideal, but with "smoothed out" atoms. The 
chance Wdu, to find the centre of an atom between distances u and u + du 
from the reflecting plane, will be a peak function, symmetric with respect to 
M = 0 and narrow with respect to the spacing d between the atom planes. It is 
assumed that the electron distribution around the nucleus is not disturbed by 
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the motion. The average value of rp, denoted by f', at a distance x from the 
atom plane is now given by 

00 

y)'(x) = ƒ y){x — u) Wdu, 
— 00 

where 
yj{x — M) = Yifn cos{2Ti.n{x — u)/d]. 

n 

Because of the symmetry in W we may write 
00 

y>n' = V« ƒ eos {27inu/d) W du. 
- o o 

For thermal motion the distribution is Gaussian, giving 

Wn'/fn = exp {—2Ti'^n^u^/d^), 

the well-known Debye-Waller factor. 

The thermal motion is a special case of elastic deformation of the crystal 
lattice. In the treatment of elastically deformed lattices, distinction must be 
made between two extreme situations. Firstly, the deformation is such that the 
lattice parameter changes very much within the "Pendellösung"-length L. Then 
the X-ray wave field cannot adjust itself to the new situation further along its 
path. The treatment is then either the kinematical theory if the same orientation 
is met only once or a few times over the absorption length (examples are given 
in sub-section 11.4.4), or the dynamical theory with "smoothed out" atoms if 
the same orientation is met many times over the length L and the reflected 
intensity is comparable with the incident intensity (an example is the treatment 
of thermal motion). The second extreme is that the relevant lattice parameter 
is almost constant over the length L and changes appreciably after many 
distances L having been traversed. In this case we believe that the X-ray wave 
field may adjust itself to the slowly varying lattice parameter 21). We introduce 
the basic assumption that if one mode is present at a certain point, the mode 
may change its character slowly upon travelling forward, but does not generate 
other modes and hence remains one well-defined mode. This assertion is hard 
to prove. It is based on experimental evidence in other fields of physics. For 
example, a beam of light travelling in a non-uniform medium shows a curved 
path if the change in refractive index is small over one wavelength. In this 
chapter we shall derive a solution for the behaviour of a narrow beam in slightly 
deformed crystals. In special cases of deformed lattices an exact solution can be 
obtained. The result of such a rigorous treatment, given in chapter 11, shows 
that the solution obtained in this chapter is correct as a first approximation. 

The strain fields around isolated dislocations and point defects is in between 
these two extremes. A general solution for these situations is given by Taupin 22) 
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(chapter 12). The generation of new modes is taken into account. To obtain the 
solution for a specified problem, however, a computer is usually necessary. 

10.2. Outline of the ray theory 

The theory to be presented now, is limited in its applicability to crystals, with 
a slightly inhomogeneous strain. In such crystals one expects that the wave field 
in a small volume around an arbitrary point P can be described in dynamical 
terms as if the crystal was perfect. Then the wave vector k, the mode parameter i 
and the group velocity are all well defined. It is clear, however, that this sets 
an upper limit to the admissible inhomogeneity in the strain (sec. 10.3). In P 
we construct a beam and we shall try to follow it through the crystal. For a 
number of reasons this beam has to be well-behaved: 
(1) Only well-behaved beams have constant parameters for the central mode. 
(2) We want to have beams that travel independently, each beside the other, 

which is impossible for not well-behaved beams over distances much larger 
than L. 

(3) We want to be independent of the orientation of the surface. 
The beam in P travels forward in the direction of the power flow and arrives 

in Q, where the periodicity of the crystal is changed significantly. The co-surface 
does not coincide with the co-surface in P. The possible changes are discussed 
in sec. 10.4. 

To match the wave fields in P and Q an important assertion has to be made. 
If the transition in orientation and spacing is sharp (small-angle grain boundary) 
the matching has to be carried out in the normal way. Each mode in P would 
generate four modes in Q, two on the same branch and two on the other branch. 
For a continuous change, however, we expect that one mode remains one mode. 
Therefore a new ad hoc matching condition is introduced (sec. 10.5) to account 
for such a behaviour. The beam in P now gives rise to one beam in Q. Although 
its width and direction may change, the intensity drops only because of absorp­
tion. The amplitude matching requires only the use of the appropriate absorp­
tion coefficient in the intensity. 

In this way it is possible to follow the beam, step by step, through the crystal, 
giving a complete description of its behaviour (sec. 10.6). A few examples are 
treated in some detail in sec. 10.7. Numerical examples of beam transmission 
through deformed crystal slabs are given in refs 21 and 23. 

10.3. Reciprocal-lattice vector and structure factor in deformed crystals 

The elastic deformation of a crystal is described conveniently by the displace­
ment vector v(R), giving the displacement of the atom located at R before the 
deformation. The new position is 

r = R + v(R), 



— 66 — 

or by neglecting higher-order terms in v: 

r = R + v(r). (10.3.1) 

In the undeformed crystal the reflecting planes are given by 

2b' - R = 2Tim, 

where m is an integer and 2b' the relevant reciprocal-lattice vector. In the 
deformed crystal the reflecting planes are deformed also: 

2b' • (r — v) = 2Tim. (10.3.2) 

They are neither flat nor parallel. One can construct a local vector b, perpendic­
ular to the reflecting plane and of magnitude JT over the distance between two 
neighbouring reflecting planes: 

b = b' - Vr (b' • v). (10.3.3) 

It must be emphasized, however, that the vector 2b is not a reciprocal-lattice 
vector as used in the dynamical theory. There it describes the periodicity of the 
lattice and is constant by definition. Here it is essentially variable, because we 
want to investigate the influence of deformation. A reconcihation is obtained 
by remembering that in the dynamical theory b need not be a constant through­
out the entire crystal. According to chapter 9 it is possible to introduce well-
behaved beams. The properties of the lattice outside the beam cannot have an 
influence on its behaviour. In view of the fact that the minimum beam width 
of a well-behaved beam is of the order of the "Pendellösung"-length L, it may 
be expected that the dynamical theory, as developed in the previous chapters 
can be applied locally to deformed crystals if the reciprocal-lattice vector does 
not change appreciably inside a sphere with radius L. A reasonable upper limit 
for the admissible change in b is the distance between the branches of the 
co-surface. The admissible inhomogeneity in the strain is now easily found to 
be such that the relative change in b over a distance d in any direction must be 
smaller than fi^. In most cases of elastic deformation with external means this 
condition is satisfied. The radius of curvature by bending for example must 
exceed 10 cm. The internal strains due to isolated dislocations and point defects 
do not satisfy this condition. 

The important parameters Vo and Vi require further consideration in de­
formed crystals. The electron cloud around each nucleus deforms when the 
interatomic distances change. For example a hydrostatic pressure gives a higher 
electron density and hence larger values of [Ko| and |Ki|. All relative changes, 
however, are small (of the order of the strain) and so they will be neglected. 
Hence Vo and Vi can be treated as constant. Furthermore, since we shall 
consider only well-behaved beams, they are considered as real. The absorption 
is fully accounted for, by introducing an absjrption coefficient. 
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10.4. Effects of the deformation on the cu-surface 

Let us consider a point P, located at r and define there an co-surface correspond­
ing to the local value of b and introduce a well-behaved beam, characterized by 
an arbitrary k-vector lying on the co-surface. The beam travels forward in the 
direction of the group velocity a distance d/, where it arrives in Q, located at 
r + dr, with 

dr = ad/Vkco; a = |vy|-i. (10.4.1) 

In Q the reciprocal-lattice vector has changed by an amount db: 

db = (d r -Vr )b . (10.4.2) 

Apparently another co-surface has to be used in Q. In fig. 10.1 the co-surfaces 
in P and Q have been drawn for an arbitrary change in b. In fig. 10.1a the 
region around ko is reproduced. Since Vo and Vi are independent of the strain, 
the hyperbolae corresponding to the co-surfaces have the same shape and have 
the asymptote parallel to covac in common. Only a shift in the direction per­
pendicular to ko is hence allowed. This follows also from the basic equations. 
We have to calculate the change Ai in k due to db for constant f. This gives 
immediately •") 

Ai-ko = 0 , 
(10.4.3) 

Ai - ko' = 2ko' - db. 

It is important to note that Ai is zero if db is perpendicular to ko — 2b'. In 
other words: the co-surface in the region around ko remains unchanged if the 
component of b in the direction ko' remains constant. 

/W(Q) \ 
/ \ 

Fig. 10.1. The relative position of the co-surfaces in two neighbouring points P and Q on 
the path of one X-ray beam through a deformed crystal. In (a) the area of k-space around ko 
is reproduced, in (b) the area around ko' = ko — 2b. 

*) The magnitudes of Ai and db are so small that k andk —2b may be replaced by ko 
and ko — 2b', respectively, vectors defined for the undeformed crystal. 
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In fig. \Q.lb the co-surfaces in P and Q in the region around ko' are shown. 
Now the line covac is parallel to the other asymptote and the shift A2 must be 
perpendicular to ko —2b'. From the basic equations foUows 

A2 - ko = 2ko • db, 
(10.4.4) 

A2 - ko' = 0. 

The co-surface in this part of the k-space remains stationary if the component 
of b in the direction ko is constant. 

From fig. 10.1 it is evident that we cannot determine which mode(s) will 
prevail in Q for given k in P, without further specification of the problem. 
A change in k has to take place since k in P does not lie on the co-surface in Q. 
If the change in b were abrupt along a certain plane (normal n) then the proce­
dure would be known. The vector k in Q would lie on the line through k in P 
parallel to n, giving two possible modes. A similar procedure in the region 
around ko — 2b' would give two other possible modes. In total four modes 
would be activated in Q. Nevertheless we expect, as mentioned before, that for 
a continuous change in b only one mode is present in Q. The procedure to find 
this k-vector is discussed in the next section. 

10.5. Wave-field matching along the path 

Before giving a solution for the matching, we inspect first the somewhat 
analogous, but much simpler case of a beam of light travelling through a 
medium with variable index of refraction n. There we know that if n varies 
slowly the path of the beam remains well defined. At any place along the path 
one value of k suffices to describe its behaviour. However, the path is curved 
in general, indicating that k varies along the path, not only in magnitude 
because of the change in n, but also in direction. It is well known that dk in 
this case is parallel to Vr«- The component of k in the plane of equal n remains 
unchanged. In other words, one must look for that plane in space through the 
point of observation in which n is constant. Note that the orientation of this 
plane is independent of k. The direction of the necessary change in k is per­
pendicular to this plane. The magnitude of the change is found from the 
requirement that the new value of k must lie on the new co-surface. This 
magnitude depends on the direction of k. 

In the X-ray case we shall follow a similar procedure. We have to look for 
those planes through the point P where the X-ray wave field regards the de­
formed crystal as uniform. In other words we have to find planes in which the 
co-surface remains in the same position in spite of the deformation. In the 
preceding section it was shown that the two parts of the co-surface shift over 
different distances (fig. 10.1). For a finite db it is in general impossible to find 
a plane through P in which both parts remain in the same position. It is possible, 

file:///Q.lb
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however, to find a plane in which the upper part does not shift and another 
plane in which the lower part is fixed. Therefore we shall use different planes 
for the two parts of the co-surface and show later that the new k in the neigh­
bourhood of ko and the new k' in the neighbourhood of ko' correspond to one 
and the same mode. 

First consider the upper part of the co-surface. There Ai is equal to zero if 
the component of b in the direction ko' remains constant (eqs (10.4.3)). What­
ever the strain may be, there is always one plane through P in which as a first 
approximation ko' • b is constant. The assertion *) is now that the change in k 
necessary to match the solutions in P and Q is parallel to the normal of this 
plane: 

dk = TVr(b-ko ' ) . (10.5.1) 

The proportionality factor x follows from the requirement that k + dk must 
lie on the co-surface in Q. From the basic equations follows: 

2ko - dk = Fidl, 

2f2(ko _ 2b') - (dk - 2db) = -Kidf . 

Elimination of df and substituting eqs (10.5.1) and (10.4.2) for dk and db, 
respectively, yields 

T(ko + |2ko') - Vr(ko' • b) = 2f2(dr - Vr) (ko' • b). 

Remembering that ko + l̂ 2ko' is parallel to v^ and introducing the expres­
sion (10.4.1) for dr, gives 

T = (C2/C0) [2^2/(1 + |2)] a dl. 

With the aid of eq. (10.3.3) to eliminate b one obtains for the change in k: 

dk = -(c2/co) [2^2/(1 + |2)] a dl Vr (ko' • Vr) (v - b'). (10.5.2) 

The change in i is equal to 

d l = - 4 {c^/co) [f2/(l + |2)] (a d//Fi) (ko - Vr) (ko' - Vr) (v - b'). (10.5.3) 

Now we turn to the lower part of the co-surface in the neighbourhood of ko'. 
There the co-surface remains in the same position if ko - b is constant (eqs 
(10.4.4)). Using the same idea that the change in k necessary for matching is 
normal to the plane of constant ko - b, leads to 

dk' = r 'Vr (ko • b). 

In the same way as above one calculates: 

*) For a derivation of this assertion from Maxwell's equations, see ref. 30. 
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dk' = {c^/cjj) [2/(1 -f |2)] a dl Vr (ko • Vr) (v - b') (10.5.4) 

and 

di = - 4 (c2/co) [f2/(i + |2)] (^ d//Fi) (ko' - Vr) (ko • Vr) (v - b'). (10.5.5) 

Now the question arises whether the solution obtained in the upper part is 
identical with the solution obtained in the lower part. Since any point on the 
co-surface corresponds to one value of f only, and we started with one mode, 
we must require that the expressions (10.5.3) and (10.5.5) for d | are identical. 
If this were not the case the results would be internally inconsistent, since we 
started with the assumption that one mode remains one mode. The difference 
in (10.5.3) and (10.5.5) is the order in which ko and ko' occur. However, the 
interchange is admissible so that they are indeed identical. 

10.6. Discussion 

In the previous sections it was shown that the assertion that a well-behaved 
beam remains well-behaved, leads to a consistent picture of the beam behaviour 
inside the deformed crystal. The beam has the opportunity to adapt itself to the 
gradually changing lattice, because the changes are small over the "Pendel-
lösung"-length. The problem of beam transmission through a deformed crystal 
is now solved completely. The tangent to the path is given in eq. (10.4.1). It 
depends on the local value of i. The change of | along the path is given in 
eq. (10.5.3). Integrating them simultaneously gives the mathematical expression 
for the path, together with the l-values along the path. The loss in intensity 
because of absorption is given by the absorption coefficient 

{dl)/l =-fl dt, (10.6.1) 

where fj. is a function of | and hence variable along the path. 
We shall use I as the variable mode parameter instead of k. The major 

advantage is then that the shift in co-surface is no longer relevant. Henceforth 
we shall keep the co-surface fixed and investigate only the movement of the 
k-vector along the co-surface. 

10.7. Examples of beam transmission through deformed crystals 

10.7.1. Deformations that do not influence the beam behaviour 

Some types of deformation do not influence the behaviour of the beam inside 
the crystal. A necessary and sufficient condition is that the mode parameter f 
remains constant. A number of possibilities are trivial: 
(a) The displacement vector v is a linear function of r, corresponding with a 

uniform strain. Although the crystal is deformed, it remains perfectly 
periodic. 

(b) f = 0 or ± 00. Now k is so far off Bragg angle that there is no interaction 
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with the periodicity of the lattice and it ought to be irrelevant whether there 
is strain or not. 

(c) The displacement vector v is perpendicular to b'. All atoms are displaced 
parallel to the reflecting planes. Since the distribution of atoms in the 
reflecting planes plays no part in the diffraction phenomenon, no effect is 
expected. 

One non-trivial possibility is found. The differential operator (ko - Vr)(ko' - Vr) 
may be rewritten in the form cos^ {6) d^/öz^ — sin2 {6) b^/dx^, where z and x are 
coordinates along and perpendicular to the reflecting planes, respectively. The 
relevant component of v (//b) is denoted by u. All deformations, for which 

cos2 {6) Ö2M/ÖZ2 — sin2 (6») Ö2M/ÖX2 = 0, 

correspond to deformations that leave the path of the X-ray beam unchanged. 
A simple example is 

u = xz/l. 

It may be verified with the aid of eq. (10.3.2) that in this case the reflecting 
planes remain flat for x,z < /. However, they are not parallel, but they fan 
out from a line far outside the crystal (x = 0, z = —/). A schematic drawing 
is given in fig. 10.2. It is at first sight astonishing that in this case the X-ray 

Fig. 10.2. A schematic drawing for the deformation discussed in sub-section 10.7.1. The 
reflecting planes remain flat but all pass through the line A; = 0, z = — 1. The X-ray trans­
mission is the same as in the undeformed crystal, except for a small change in Bragg angle. 

beam behaves as if the crystal was perfect: the beam remains straight, the value 
of I does not change. However, the actual value of k cannot be constant, since 
b changes. Careful measurements carried out by Cole and Brock 25) show that 
the transmitted beam is not exactly parallel to the incident beam. The difference 
in angle could be explained by assuming that both the incident and the trans­
mitted beam satisfy exactly the Bragg equation. A simple explanation of this 
effect may be given in more physical terms. In the theory use is made of plane-
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parallel waves. The nodal planes in the modes turn out to be flat and equidistant 
with eventually all atoms lying in them. Making use, however, of cylindrical 
waves, which obey Maxwell's laws also, the nodal planes all go through the 
cylinder axis, just as the reflecting planes in the case under discussion now. 
Hence we expect the cylinder wave to pass through this crystal undisturbed. 

10.7.2. Reflecting planes curved, but parallel and equidistant 

A simple example of a deformed crystal where the behaviour of the X-ray 
beam is influenced by the distortion, is a cyhndrically curved lattice. In fig. 10.3 

Fig. 10.3. A schematic drawing for the deformation in sub-section 10.7.2. The spacing between 
the reflecting planes is constant, but there is a curvature of the lattice. 

the situation is drawn schematically. The coordinate system that will be used 
is indicated. The deformation is exaggerated, since it is assumed that the radius 
of curvature R is many orders of magnitude larger than the spacing d between 
the reflecting planes. 

From the figure it follows immediately that 

b = b' — Vr(v - b') = b' + azs. (10.7.1) 

The proportionality factor a is related to the radius of curvature: 

a = sin (Ö) co/cR. (10.7.2) 

Substitution of eq. (10.7.1) into eq. (10.5.3) gives for the variation in f: 

i d (I - l/l) = 2(0 a dl cos2 {6) a/Vi. 

The component of Vj, parallel to the reflecting planes is always equal to c cos 9. 
Thus 

ac cos {6) dl = dz 
and 

i (d/dz) (f - l/i) = 2 (co/c) [cos {e)/Vi] a = j8. (10.7.3) 

We choose the origin in such a way that f = ± 1 for z = 0: 

| - l / | = 2,8z. (10.7.4) 
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The path of the beam follows from the direction of the group velocity (eq. 
(6.3.4)): 

dx/dz = tan (Ö) (1 - |2)/(i + |2)^ 
leading to ' 

|3(x -C)= ± tan (Ö) (I + i32z2)i/2. 

The upper sign corresponds to weakly damped modes (I < 0) and the lower 
sign to strongly damped modes {i > 0). The arbitrary constant C appears in 
the solution because the deformation is independent of x. Setting C equal to 
zero the expression for the path may be rewritten as 

x2 - tan2 (Ö) z2 = tan2 {6)/^^. (10.7.5) 

Apparently the path is a hyperbola. In fig. 10.4a an example is given for 
a > 0 and hence j8 < 0. The asymptotes are parallel to the directions of the 
incident and reflected plane-wave components. The branch curved in the same 
sense as the reflecting planes (the lower one in fig. 10.4a) corresponds to the 

Fig. 10.4. The path of an X-ray beam (a) in a crystal deformed as in fig. 10.3. The wave vector 
of the mode present at a certain point is given in (6) with the same letter. The cu-surface was 
kept fixed. 

weakly damped modes, the branch curved in the opposite sense to the strongly 
damped modes. For stronger curvatures of the lattice the path lies closer to the 
asymptotes. It can be verified that the minimum radius of curvature of the path 
(points D and D') is directly proportional to the radius of curvature of the 
reflecting planes: 

i?min = It/'il R/2 sin2 9. (10.7.6) 

The ratio is of the order of 10-5. Because of this small value the reflecting planes 
may be considered as flat in comparison with the path, and the z-axis as parallel 
to s, as was done in deriving eq. (10.7.1). 

In fig. lQ.4b the co-surface is shown. The k-value of the mode prevailing at a 
certain point is indicated with letters corresponding with fig. 10.4a. Since in the 
k-space the distance between a point on the co-surface and the line DD' is 
proportional to —f -j- | - i , and eq. (10.7.4) states that this parameter is 
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proportional to z, the local k-vector moves with constant vertical speed along 
the co-surface. 

The two rays are absorbed in a different way. The absorption is extreme 
in D and D', where the path is parallel to the reflecting planes. For the upper 
ray it is maximum: (1 -4- e) /^o/cos 9, and for the lower ray minimum: 
(1 — e) /^o/cos 9. The general expression for the fractional decrease in intensity 
(eq. (10.6.1)) may be written in this case as 

(1/7) (d//dz) = - { 1 + .2^/(1 + |)2}^o/cos 9. 

The local values of f follow from eq. (10.7.4). Integration leads to 

In (/2//i) = - { 1 + {^/^t) In {h/h)} fxot/cos 6 (10.7.7) 

for both rays. The parameters f i and I2, having the same sign, correspond to 
the I-values at the beginning and the end of the path over the distance t parallel 
to z. Note that the first term gives the normal absorption as if the beam were 
travelling straight on. The second term accounts for the anomalous behaviour. 
It is positive for the weakly damped modes (II2I > l^il if ;S < 0) and negative 
for the strongly damped modes (|f2| < \ii\ if ^ < 0). In fig. 10.5 the logarithms 
of the beam intensities are given as a function of z. The scale along the vertical 
axis has to be adjusted in such a way that the straight line III gives the decrease 

Fig. 10.5. The variation in intensity along the path of the beam in the crystal. Curve I cor­
responds to the weakly damped beam, curve II to the strongly damped beam and curve III 
to the decrease in the case where there is no diffraction. The parameter e was set equal to 1. 



— 75 — 

in intensity due to normal absorption. The curves I and II then give the relative 
decrease in intensity for the weakly and strongly damped modes, respectively. 
The parameter e was taken 1, so that the minimum slope is 0, and the maximum 
slope twice the slope of III. 

The beam behaviour can be discussed also without so much mathematics. 
The crystal, with its cyhndrically curved reflecting planes, is from X-ray point 
of view uniform in any plane through the cylinder axis. We asserted that the 
necessary change in k is normal to these planes, i.e. parallel to the z-axis. Note 
that in this case the directions of dk are the same in the upper and lower part 
of the co-surface. If a beam present in A is characterized by kA (fig. 10.6) this 

Fig. 10.6. Similar to fig. 10.4. In (a) the curved path of the weakly damped beam is shown! 
in (6) the co-surfaces, taking into account the change in b along the path. 

vector must lie on the co-surface COA, determined by the local value of b in A. 
The group velocity is pointing upward and the beam travelling further in this 
direction comes into a region where b has rotated clockwise over a minute 
amount (point B). Accordingly the co-surface moved downward and ks is found 
as the intersection of dk with COB on the same branch. The group velocity has 
turned clockwise also. Proceeding further in this way one arrives at C where 
yg is parallel to the reflecting plane and still further at D with the group velocity 
pointing more and more downward. The result obtained above that —i -f i~^ 
is proportional to z follows immediately since the shift in co-surface is pro­
portional to the change in z. 

10.7.3. Reflecting planes flat and parallel, but not equidistant 

Another example of a simple deformation that influences the beam behaviour 
is shown in fig. 10.7. The reflecting planes are flat and parallel but their distance 
increases linearly with increasing z. In the figures the increase per reflecting 
plane has been exaggerated grossly. The distortion is assumed to be so small 
that b may be considered as a smooth function of z: 
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b = b' - Vr (v - b') = b' + azs, (10.7.8) 

with |az| <C |b'| everywhere inside the crystal. Note that a is negative in fig. 10.7. 

,,t 

Fig. 10.7. A schematic drawing for the deformation discussed in sub-section 10.7.3. The 
reflecting planes remain flat but their spacing increases linearly with z. 

Proceeding as in the previous case and choosing the plane x = 0 in such a 
way that there I = ± 1, leads to 

I — l/^ = - 4 a x sin (0) tan (Ö) co/cKi = 2j8 tan {6)x. (10.7.9) 

The path, determined from the group velocity, is given by the equation 

z2 — tan2 {6) x2 = ,82. 

We note that all results found now, can be deduced from the results in the 
previous sub-section by replacing x and z there by z tan 6 and x tan 6, re­
spectively. For example, the relative decrease in intensity is also given in fig. 10.5, 
provided the ordinate |^|z is replaced by |,8| x tan 6. 

It is striking that these two types of deformation, being entirely different in 
nature, have the same influence on the overall beam behaviour. Closer inspec­
tion, however, shows that there are marked differences. Let us first compare the 
paths of different beams that are parallel in the region far off" Bragg angle 
(fig. 10.8). In the case of curved reflecting planes (fig. 10.8a) the paths are shifted 

a b 

Fig. 10.8. Neighbouring paths in case of curved reflecting planes with constant spacing (a) 
and in case of flat but not evenly spaced reflecting planes (6). 

in a direction perpendicular to the reflecting planes, because in this direction the 
crystal is uniform. The different paths never cross. In the case of variable spacing 
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the, paths are translated in a direction parallel to the reflecting planes (fig. 10.8^). 
Now the different paths cross over. For neighbouring paths the cross-over lies 
in the region of | | | i%( 1. This behaviour indicates that difficulties will arise in 
this region. More details are obtained by considering the change in k during 
passage through the crystal taking the shift in co-surface into account. In point A 
(fig. 10.9) the beam is travelling upward. It enters a region of larger spacing 
between the reflecting planes and hence smaller values of b. The co-surface shifts 
downward and is given by CWB in B. Since the crystal is uniform in planes that 
are parallel to the reflecting planes ok must be parallel to b. In B the group 
velocity has turned clockwise with respect to v^ in A. This behaviour continues 
until the beam arrives in C where v^ is parallel to the reflecting planes and dk 
is tangent to coc. One would expect that nothing further would happen. 
Propagation along the reflecting planes would not give any change in lattice 
parameter and hence could proceed over large distances. According to our 
results, however, the group velocity continues to rotate clockwise. The beam 
turns downward thus re-entering the region with larger values of b. Eventually 
it arrives in point D on the same reflecting plane as point B. Here the co-surface 

Fig. 10.9. The curved path of the X-ray beam passing through a crystal with variable spacing (a). 
The local wave vector along the path is given in (ft). 

is the same as in B, but a different k-vector is obtained namely at the other 
intersection of ok with COB. Why there is such a behaviour in point C, is not 
easily understood, although it is similar to the well-known phenomenon in 
optics, the "fata morgana", caused by a vertical gradient in the refractive index 
of air. It may be remarked that the case discussed in the previous sub-section 
has no analogy in optics. 
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10.8. Comparison with electron-band theory 

It is interesting to compare these results with the electron-band theory. 
Imagine a single electron moving in a perfect crystal. The wave vector k and 
the energy E are chosen in such a way that we have to consider the interaction 
with one set of lattice planes only. The z-axis is perpendicular to these planes 
(see fig. 10.10a). The E-kz curve in such a situation is given schematically in 

m bL 

Fig. 10.10. Explanation, see text. 

fig. 10.10^. The component of the electron velocity in the z-direction, vz, is 
given by bE/bkz. Imagine now that an electric field is present in the —z-
direction. According to wave mechanics kz increases linearly with time. If the 
form of the E-kz curve is known, one can calculate vz and z as a function of 
time. In figs lO.lOc and lO.lOc/they are given under the assumption that E{kz) 
is a parabola. The drawn lines represent the behaviour of an electron in the 
band with lower energies, the dashed curves for an electron in the band with 
higher energies. The interesting part is that the paths are curved also. The 
phenomenon is essentially the same as in the X-ray case. Here we have a con­
stant lattice spacing but a variable wavelength. In the X-ray case we have a 
variable spacing and constant wavelength. In the electron case it is known that 
for sufficiently strong electric fields there is a chance that the electron may 
"tunnel" from the lower to the higher energy band. In the next chapter it will 
be shown that in the X-ray case a similar effect may be present if the spacing 
varies strongly with z. 



— 79 — 

11. DIFFRACTION IN CRYSTALS WHERE THE STRAIN IS A 

LINEAR FUNCTION OF ONE SPACE COORDINATE 

11.1. Introduction 

The ray theory, discussed in the previous chapter, is based upon the assump­
tion that for slowly varying strain, one mode remains one mode. The adjustment 
of the wave field to the gradually changing lattice requires only a gradual change 
in wave vector and amplitude. The generation of modes with an appreciably 
different wave vector should not be necessary. An upper limit for the permissible 
change in reciprocal-lattice vector per unit distance was derived from the con­
dition that locally the dynamical theory for undeformed crystals should be valid 
(sec. 10.3). It is not certain that the basic assumption is vaUd up to this limit. 
We have been looking for types of strain that allow for an exact solution without 
making use of this assumption. Such a solution should indicate: (1) the upper 
limit of applicability of the ray theory and (2) in what respects the ray theory 
fails for a stronger inhomogeneity in strain. 

Fortunately we found such cases, namely crystals where the reciprocal-lattice 
vector is a linear function of one space coordinate (sz) only: 

b = b' + azs. (11.1.1) 

The two examples discussed in the previous chapter (sub-sections 10.7.2 and 
10.7.3) belong to this group. 

The orientation of the unit vector s with respect to b' is arbitrary. The curved 
reflecting planes (sub-section 10.7.2) are obtained if s is perpendicular to b'; 
the flat but not equally spaced reflecting planes (sub-section 10.7.3) by taking 
s parallel to b'. The solutions obtained in this chapter are valid for any value 
of a, provided b' may be considered as a smooth function of z. 

It must be remarked that in this entire group the direction of strongest 
inhomogeneity is the same for the upward- and downward-travelling plane-
wave components. A check on the correctness of the general matching procedure 
(sec. 10.5) is not obtained. 

In the next section we shall derive the differential equations for the upward-
and downward-travelling plane-wave components. They are satisfied by the 
parabolic cylinder functions. The relevant properties of these functions are given 
in the appendix. Although the solutions apply to an arbitrary orientation of s 
with respect to b', we shall treat only the cases discussed in detail in chapter 10. 
First the results are given (sec. 11.3), thereafter the derivation. 

It is shown that the basic assumption "one mode remains one mode" is valid 
up to the limit given in sec. 10.3. For a stronger inhomogeneity in strain part 
of the X-ray energy passes on, unaffected by the strain gradient. 
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11.2. Derivation of differential equations 

In the crystals under discussion now, the strain is a linear function of z in the 
direction of s. To determine the orientation of s we shall again use the param­
eter y (eq. (7.1.1)), although the crystal is considered to be unbounded. 

By slicing the crystal into thin slabs perpendicular to s, we obtain crystals 
that may be considered as uniform. The boundary conditions require that the 
tangential components of k are the same in all slabs: 

k = kt, + T(z)s. (11.2.1) 

The vector kt, is chosen on the co-surface in vacuum and satisfies Bragg's equa­
tion somewhere inside the crystal. The proportionality factor T has to be 
adjusted in such a way that k lies on the "co-surface" of the slab at z. By 
neglecting terms with a?-, ax and T2, we obtain from the basic equations: 

T(Z) = (Fo + Fi|)/2ko - s (11.2.2) 
and 

Vi{i - y/l) = (y - l)Fo + y4b' • (k, - b') + 4azko - s. (11.2.3) 

In terms with Vo and Vi, k» is replaced by ko, since the precise orientation of 
kt, is not of importance there. Equation (11.2.3) gives two solutions for | , 
indicating that only two modes can be present in any slab. This low number 
is an immediate consequence of the fact that the directions of inhomogeneity 
are the same for the upward- and downward-travelling waves. 

The amplitude matching at the boundaries requires that the total amplitude Dt 
of the upward-travelling waves and the total amplitude Dr of the downward-
travelling waves are both continuous at the boundary. 

Inside an arbitrary slab the total amplitudes vary in the foUowing way: 

Dt = M exp (—7k - r) + M' exp {—jV • r) (11.2.4) 
and 

Dr = {iM exp {—jk - r) + I 'M' exp (-7k' - r)} exp (2/b - r). (11.2.5) 

The parameters characterizing the second mode {M is amplitude of upward-
travelhng component) are indicated with a prime. To eliminate the rapid change 
in phase within one unit cell and to make the problem a one-dimensional one, 
we multiply both amplitudes by exp (ykt, - r). Furthermore we shall consider 
only those points where exp {2j b - r) is equal to unity (identical points in the 
unit cell). We obtain then 

At = M exp {—Jxz) -f M' exp {—jx'z) 
and 

Ar = f M exp {—jxz) + i'M' exp {—jx'z). 

With the aid of these equations and the boundary conditions the differential 
equations for At and Ar are now easily found to be 
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2ko • s dAi/dz = —jVoAt —jViAr (11.2.6) 
and 

2ko • s dAr/dz = -jyViAt -j{yVo + 4yb' - (kt, - b') -f 4azko - s} Ar. (11.2.7) 

By suitable substitutions (sec. 11.4) these equations may be reduced to the 
recurrence formulae for the parabolic cylinder functions, that satisfy Weber's 
equation. 

11.3. Results and discussion 

Before giving the derivation, we shall discuss the results of applying the 
parabolic cylinder functions to our problem. The results are illustrated for the 
two examples treated in the sub-sections 10.7.2 and 10.7.3. 

First the situation of curved, but parallel and equally spaced reflecting planes 
(fig. 10.3). The regions of large values of [z| are of special interest since the 
parabolic cylinder functions are known there in closed form. In fig. 11.1 the 

^Mr(Z<'0) 

Fig. 11.1. The location of the cu-surfaces at |zj > 0 for the situation shown in fig. 10.3. The 
reflecting planes are curved but parallel and equidistant. The figure can be compared with 
fig. 10.66. The exact treatment gives mode 1 for z <C 0 and modes 2 and 3 for z > 0. 

co-surfaces are shown for z < 0 and z > 0. The sign of a is positive so that 
the cu-surface moves downward with increasing z. According to eq. (11.2.1) the 
wave vectors must lie on a line parallel to s through k„. If one starts with one 
mode at z < 0 (mode 1), then there are two possible modes at z > 0, the 
points 2 and 3. According to the ray theory we expect only point 2, lying on 
the same branch as point 1. The exact solution, however, gives a finite amplitude 
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for both modes 2 and 3. By constructing a Gaussian wave packet centered 
around k„, beams are obtained and the centre line of these beams may be 
followed in the regions |z| » 0. They are shown as drawn lines in fig. 11.2. 

SSL tan 9 

Fig. 11.2. The exact treatment of the wave-field behaviour gives in the case of curved reflecting 
planes the drawn lines as paths of the beams. The parts 1 and 2 coincide with the path found 
in the ray theory (see fig. IO.60). Beam 3 is unexpected. 

The mathematical expression of the path is identical with eq. (10.7.5) found 
with the ray theory. All three paths are part of a hyperbola. Apparently mode 3 
corresponds to a beam that passes straight on through the region of strong 
interaction with the lattice. 

It is convenient to introduce the parameter S, to describe the change in strain, 
instead of a: 

5 = |(y/2a) (Ki/2ko - s)2|. (11.3.1) 

The significance of S is illustrated by the fact that the shortest distance between 
the branches of the extrapolated paths (fig. 11.2) is equal to 8 SL tan 6. For 
large values of S the branches do not come closely together. For S of the 
order 1 or smaller the distance between the branches is of the order of the 
"Pendellösung"-length L, or smaller. The rate of change in strain is then large. 

The beam intensities may be calculated also from the parabolic cylinder 
functions. For S > 1 (slowly varying strain) the ratio in intensity of beam 
2 (ƒ2) and beam 1 (/i) is given exactly by eq. (10.7.7) derived with the ray theory. 
The intensity of the "transmitted" beam 3 (ƒ3) is then exceedingly small. Apart 
from normal absorption, based on a straight path, it is given by *) 

h/h = exp {-27iS). (11.3.2) 

The anomalous behaviour in absorption does not play a part there, because what 
is gained by reduced absorption in the first part of the path, is lost by enhanced 
absorption in the second part. 

*) It may be expected that for 5 > 1 the small intensity of the "transmitted" beam is very 
sensitive to seemingly unimportant parameters, such as the change in Vi because of the 
(variable) strain. Only in the case Vi constant and a linear dependence of b on z is the 
pre-exponential factor equal to unity. 
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For 5 «» 1 or smaller the "transmitted" intensity is of the same order as the 
incident intensity, and the ray theory apparently is no longer valid. It can be 
shown, by introducing L instead of Vi in the expression (10.3.1) for S, that the 
condition S > 1 is identical with the condition mentioned in sec. 10.3 neces­
sary to define a local co-surface. 

For 5 <c; 1 we find in non-absorbing crystals as intensity ratios: 

l2/h = 27tS (11.3.3) 
and 

/g/Zi = 1-2715'. (11.3.4) 

The generation of the "transmitted" beam can be explained qualitatively in the 
following way. For large negative values of z the wave field is rather far off 
Bragg angle. The interaction with the lattice is so weak, that in spite of the 
rapid change in orientation of the lattice, the beam may adjust itself gradually. 
Near to the top of the path, however, the downward-travelling component of 
the wave field has to increase so rapidly, in order to obtain the necessary 
curvature of the path, that the number of reflecting planes is insufficient 
to generate it. Consequently, part of the X-ray energy has to pass on without 
being reflected. Such a situation is ideally suited for a kinematical approach. 
It is shown in sec. 11.4.4 that a kinematical treatment indeed gives eq. (11.3.3). 
The parabolic cylinder functions apparently span the entire gap between the 
dynamical and kinematical treatments. 

We did not succeed in calculating the path of the beam in the region of smaller 
values of z, where the top is expected. By using infinitely wide wave fields, 
however, one can calculate the ratio X in amplitudes of the downward- and 
upward-travelling components in the region z < 0. It is shown that for 5 » 1 
this ratio X is equal to f(z), so that indeed one mode remains one mode up 
to the apex of the path. 

The other interesting example that has been investigated in more detail is the 
case of flat and parallel reflecting planes with linearly increasing mutual distance. 
The situation is shown in fig. 10.7 and discussed in sub-section 10.7.3. The 
location of the co-surfaces for large values of |zl is given in fig. 11.3. For given 
kt, there are two possible modes for both z > 0 and z <s 0. In the exact treat­
ment we find that if the modes 1 and 2 are present for z <c 0, there is a mode 3 
for z > 0. The ray theory gives the modes 1 and 2 on one branch only. Con­
structing beams we find as centre lines the drawn parts of the hyperbola in 
fig. 11.4. In agreement with fig. 11.3 the beams 1 and 3 travel upwards and 
beam 2 downwards. Apparently a "transmitted" beam is present in this case 
also. In fact all results obtained in the regions of large values of |z| concerning 
the paths and the intensities are identical with those found in the previous case. 
A similar agreement with the ray theory ( S > 1) and the kinematical theory 
(S C 1) is present. 
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Fig. 11.3. The location of the tu-surfaces at \z\ > 0 for the situation shown in fig. 10.7. The 
reflecting planes are flat and parallel but not evenly spaced. The exact treatment gives modes 1 
and 2 for z < 0 and mode 3 for z > 0. 

Fig. 11.4. The drawn lines correspond to the paths of the beams following from the exact 
treatment in the case of not evenly spaced, parallel reflecting planes. Path 1-2 is the same as 
found in the ray theory (see fig. 10.9a). Beam 3 is unexpected. 

In the region of small values of |z| no details of the beam behaviour have 
been found. We confine ourselves to giving a qualitative argument for the 
presence of the "transmitted" beam. The tops of the hyperbolic path coincide 
with, the boundary between the regions where normal modes are present and 
the region where the modes have cut-off" character. The upper flank of the beam 
above B (fig. 11.4) extends into the region of cut-off" modes. The decrease in 
amplitude there is no longer governed by the beam width but by the extinction 
(see the discussion of fig. 9.6). Although the extinction is strong, it does not 
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reduce the amplitudes to zero. A small amplitude is still present in the region 
where f is real again (above D). The wave field present there must finally 
emerge as a "transmitted" beam. It is difficult to make this argument quanti­
tative, even in the case of no absorption. Assuming that only those cut-off 
modes are activated that give a decreasing amplitude with increasing z, allows 
us to calculate the amplitude relations in B and D. The major difficulty is the 
relation in amplitudes in the points A and B on one side and in the points D 
and E on the other. Although we know that in non-absorbing crystals the 
intensity remains unchanged along the path, the amplitude ratio cannot be 
determined without further consideration, because of the singularity in the beam 
width in the points B and D. It tends to zero there, according to fig. 10.8ft. 
By assuming that |DDI^//E = |ÖB|^//A one obtains eq. (11.3.2). 

To conclude the discussion we calculate the lowest value of S used in Okkerse's 
experiments ^^) to verify the ray theory. The curvature of the lattice planes is 
brought about by a temperature gradient of up to 20 °C/cm. The minimum 
radius of curvature of the reflecting planes is then 83 m and that of the X-ray 
path 0-6 cm (considering the (220) reflexion and CuKa radiation). The value 
of S turns out to be slightly less than 600, well above the lower limit of applica­
bility of the ray theory. 

11.4. Derivation of results 

11.4.1. General solution 

The differential equations (11.2.6) and (11.2.7) for At and Ar may be trans­
formed into the recurrence relations (A2) and (A3) (see appendix) in two differ­
ent ways. Either At is proportional to D,, and Ar proportional to Z),,-i or the 
other way round: 

ease l : ^i =/)Dy(M)exp [... . ], 

Ar = pCDy-i{u) exp [ . . . ] , 
(11.4.1) 

case II: At = pCDy-i{u) exp [ . . . ] , 

Ar = pD„{u) exp [. . . ], 
where 

[ . . . ] = ü " ' -juVo/C2ko - s], (11.4.2) 

U = C {Z + Zr + jZi), (11.4.3) 

and p arbitrary. The other parameters have a meaning as given in table I. For 
a given strain, determining y and a, there are four possible solutions since 
the choice between the cases I and II, and the choice between the two roots of 
2̂ are still free. 

The special cases discussed in the sub-sections 10.7.2 and 10.7.3 are obtained 
by considering case I and giving the other parameters values as stated in table II. 
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TABLE I 

Relations between the different parameters introduced 

,-2 

V 

C 

i-yli 

Zr +jZt 

case I 

-j2a 

7(y/2a)(Fi/2ko-s)2 

7(y/C)Ki/2ko-s 

C u/v = —y u/C 

case II 

i2a 

-y(y/2a)(Fi/2ko-s)2 

; (y /?)Fi /2ko-s 

—y C u/v = u/C 

[(y - l)/2a] (Ko/2ko - s) + {y/a) b - (k,, - b')/ko • s 

TABLE II 

Parameter values leading to the examples discussed in sub-sections 10.7.2 and 
10.7.3 

y 

a 

arg C 

argw; z < 0 

argu; z > 0 

Zr 

Zi 

/3 

sub-section 10.7.2 

1 

> 0 

1 Jr 

-iTZ 

iTZ 

( l / a ) b ' - ( k „ - b ' ) / k o - s 

0 

a 2ko - s/Fl 

sub-section 10.7.3 

—1 

< 0 

i^ 

-iTt + A 

\TI + A 

- ( l / a ) b ' - ( k „ - b ' ) / k o - s + 

- (1 /a) Fo/2ko - s 

fXo/2a sin 6 

-a 2ko - s/Fi 
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The parameter A is the phase angle of z + Zr + jzi: 

tan A = zt/{z -f z,); |zl | < TI/2. {11.4.4) 

In the regions |z| > 0, the value of \A\ is small. The imaginary part of Fo is 
replaced by po (eq. (8.4.2)). To give the imaginary part of Fi we use the param­
eter d: 

Vi=Vi{l+jd); 0 < < 5 « l . 

The value of v in both examples is now given by 

v=jS-2dS, 

with S defined in eq. (11.3.1). 

Jm(u) 

(11.4.5) 

^ z»0 

/z«0 
"Dy^Ay+Cy 

!pt>0 

Re(u} 

Z«0 
\=Ay 

Fig. 11.5. The relation between the complex variable u in the parabolic cylinder functions and 
the space coordinate z, for the two cases discussed in this chapter. 

In fig. 11.5 the relation between u and z for both cases is shown. As pointed 
out in the appendix the asymptotic values of Z)̂  for |M| > 0 depend on the 
argument of u. In the figure is also indicated which asymptotic value has to 
be used. The values of |z| are assumed to be so large that Rj, and Sy (eq. (AS)) 
may be set equal to unity. In the regions where Dj, contains only one term the 
resulting values for Dt and Dr will be given the index 1. In the regions where 
Dp contains two terms, these parts will be treated separately. The values of A 
and Dr resulting from B^ or Cy are given the index 2 and those resulting from Ap 
the index 3. Substitution of the expressions for Dy given in eq. (A7) into eqs 
(11.4.1) (case I) and adding a factor exp (—ykt, - r) to obtain A and Dr, leads 
to (y = ± 1) 

(11.4.6) 
A i = /'M" exp {—jkv • T —juVo/C2ko • s}, 

Dri = DiiC/u = -yDii/{i - y/i); 

Di2 = —p (27):)i/2 M->'-i exp {-jkv - r + i «2 J^ jy^^ -juVo/C2ko - s}/F{-v), 

Dr2 = Di2Cu/v = (I - y/f) A2; (11.4.7) 
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A s =/'M" exp {—/kt, - r — 7MFo/C2ko - s}, 
(11.4.8) 

A s = Dt3C/u = -yA3/ ( f - y/f). 

11.4.2. Reflecting planes curved, but parallel and equidistant 

First consider the region where z <s 0. There the argument of u is —IT/A and 
the amplitudes are given in eq. (11.4.6). The ratio in amplitude of the down­
ward- and upward-travelling components is 

X = A i /Ai = ~{i - \/i)-K 

According to eq. (11.2.3) the value of f — l / | is almost real, large and posi­
tive. Hence | A i | is much smaller than |Ai | . Apparently the two components 
form one mode together with a small negative value of I as long as |^| is much 
smaller than l/ | l | . This mode corresponds to point I in fig. l l . l . 

For z > 0, the total tipward- and downward-travelling wave fields are both 
split into two parts, given in eqs (11.4.7) and (11.4.8). The argument of u is 
now 37i;/4, and | — 1/f almost real, large and negative. A similar argument 
as given above shows that Dt2 and Dr2 form a mode with | large and negative 
(point 2 in fig. 11.1) and that Dtz and Drz form a mode with i small and positive 
(point 3). 

To obtain space-limited wave fields we construct a wave packet centered 
around the wave vector kt,o: 

k„ = kt,o + hi, 

where t is a unit vector perpendicular to kt,o, tangent to covac- The amplitude 
distribution is chosen as 

dp = A exp {-/l2/!2/2 +jhVob' • t/2a (ko - s)2} d/i/(2jr)i/2. 

The plane z = 0 (defining b') is chosen in such a way, that 

b' - (k„o — b') = 0, 
leading to zr = 0 and 

M = C {z + /lb' - t/ako - s} = C {z -f /i sin (ö)/a}. 

For sufficiently large values of |z| it is permissible to write 

M = fz exp [h sin {6)/az]. 

The centre line of the beam is found by integrating over the wave packet and 
determining the maximum in amplitude for given z. Such a procedure leads to 

z < 0 (mode 1): xcos Ö — z sin Ö = 5 sin {6)/az, 

z > 0 (mode 2): xcos 0 + z sin Ö = —S sin {6)/az, 

z > 0 (mode 3): xcos 6 — z sin 6 = S sin {6)1 az. 



— 89 — 

In a first approximation all 3 paths are part of the hyperbola 

x2 - z2 tan2 6 = tan2 {6) 2S/a. 

It is easily verified that this equation is identical with eq. (10.7.5) giving the 
path according to the ray theory. The width of the three beams is the same and 
independent of z. 

The intensity of the beams in these regions is proportional to the magnitude 
squared of the predominant plane-wave component, the proportionality factors 
being the same. Denoting the intensity at z = zi < 0 by / i , at z = Z2 > 0 for 
the "reflected" beam by h and at z = Z3 > 0 for the "transmitted" beam by ƒ3, 
we find after substituting the proper values of the parameters, as given in 
table II, into the expressions (11.4.6)-(11.4.8): 

I2/I1 = (—2aziZ2)4«'S exp {-fio {z2 — zi)/cos 6} 

and (11.4.9) 
h/h = (-zi/z3)4«-5 exp {-2TIS - pio {zs - zi)/cos 6}. 

According to eq. (11.2.3) the values of f for mode 1 (small and negative) and 
mode 2 (large and negative) are equal to 

h = -(2azi2/5')-i/2 
and 

I2 = -(2az22/5)i/2. 

From the definitions of d, S and /S follows: 

—4(55' = epio/fi cos 9. 

Su'ostitution of these results in the expression for /2//i (eq. (11.4.9)) yields 
immediately eq. (10.7.7) obtained in the ray theory. This identity does not mean, 
however, that the ray theory is correct for any value of S. In calculating the 
amplitude Dj-2 the value of T{—v) was approximated by using Stirling's series, 
neglecting all terms with S~^ or smaller. Recalculation with more terms shows 
that a factor 

exp [-1(5 (5-1 + 0-1 5-3 . . .)] (11.4.10) 

has to be added. For large values of z, the dependence on z is correct, but an 
extra loss in energy is taking place in the region of small values of |z|. The 
origin of this loss is expected to be the "tunnelling", i.e. the generation of the 
"transmitted" beam. For non-absorbing crystals no approximation is necessary 
(eq. (A20)), leading to 

I2/I1 = I — exp {—27iS) 
and (11.4.11) 

h/h = exp (—27r5). 

The fact that for 5 > 1 the correction term (11.4.10) is much larger than the 
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correction term —exp (—27r5) in (11.4.11), indicates that the "chance of 
tunnelling" is increased by absorption. 

Now we turn to the region of small negative values of z. Here we expect 
for 5 > 1, Dti and Dri to be related in such a way that their ratio X is every­
where equal to the local f-value that lies in between 0 and —1, so that they 
form one mode together. To verify this we calculate X taking into account the 
factor Ry (eq. (A8)) that has to be added for smaller values of u: 

X = CRy-i/uRp = - ( f - l / | ) - i Rp-i/Rp. (11.4.12) 

In the appendix Ry-i/Rp is calculated (eq. (A16)). The important parameter is 

v = { l - 4I'/M2)-I/2 ; I arg t) I < jr/2. 

According to table I 

( | - l / | ) 2 = t/2/v. 

We shall choose the real part of i in between 0 and —1, giving for v. 

V = {1- |2)/(1 + a -

Substituting this value in eq. (A16) gives for eq. (11.4.12): 
Z = I { 1 + {I/V) f2/(l + |2 )2 + (1/^2) |4(3 _ 2|2)/(1 + ^2)5 + 

+ (5/v3) ^«(1 - 2 ^ (3 - |2)/(1 + |2)8 . . . } . (11.4.13) 

For large values of S all terms except the first one are small, showing that up 
to z = 0, where f = — 1, the two plane-wave components form one mode of 
propagation. A check is obtained by calculating X in the point z = 0 (M = 0), 
where the value of the parabolic cylinder function is known also (eq. (A9)): 

jr(0) = 2-1/2 C r ö - i v ) / ? - ( 1 - i v ) =-[C(2jr)i/2/v]{2''+i T{-v)/[T{-iv)]^}. 

Approximating the gamma functions by the Stirling series gives 

^-(0) = - ( 1 -f 1/4)- + l /32v2- 5/128^3 . . .), 

in agreement with eq. (11.4.13). 

11.4.3. Reflecting planes flat and parallel, but not equidistant 

In the region of large values of |z| the treatment of this case is very similar 
to the one given in the previous sub-section. A straightforward analysis along 
analogous lines does not offer fundamental difficulties. Although it has been 
carried out, it will not be reproduced here. 

In the region of smaller values of lz| complications arise. It is likely that a 
similar procedure as given in the previous case, now applied to the region 
z > 0, will show that for sufficiently large values of 5, one mode remains one 
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mode. Since the ray theory does not give a beam here, such a procedure is not 
very worth while. In the region z < 0, where the ray theory gives two beams 
the total amplitudes have to be separated into two parts, one corresponding 
to the upward-travelling beam and the other to the downward-travelling beam. 
For z <c 0 this separation is given in the two parts of the parabolic cylinder 
functions, but it is not certain that for values of z closer to zero such a separation 
is still correct. We did not succeed in finding details of the wave-field behaviour 
in this region. 

TABLE III 

All possible solutions following from the parabolic cylinder functions for the 

cases y = 1, a > 0 and y = —1, a < 0 

A: f - > 00 C: f ^ - 0 

B: | - > 0 D: f ^ —oo 

h = h |2ai2/5|4«-s; h = lo |2a/2/5'|-4''-5; h = h exp {-27iS) 

Finally we give in table III a compilation of the four solutions that can be 
obtained by applying the parabolic cylinder functions to the two types of strain 
treated above. The solutions discussed in detail are found in the upper row. 
The paths of the beams are indicated. In the upper 2 rows there is 1 incident 
beam and 2 emerging beams. In the lower 2 rows there are 2 incident beams 
with only 1 beam emerging. The parameters characterizing the beam are given 
in points located symmetrically on the path. The distance between these points 

f 
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measured along the reflecting planes is either t or 0. In the intensity relations 
a factor exp {—fiot/cos 6) has to be added to account for normal absorption. 
Note that a change in type of mode from C to D or from D to C corresponds 
to a reduced absorption ( | < 0) in agreement with the drop in intensity either 
from /o to h or from h to /o. It must be remarked that in the cases of two 
incident beams amphtude and phase relations exist between the two, making 
these solutions impractical. Furthermore, they represent certain combinations 
of the solutions in the two upper rows and hence provide no new information. 

11.4.4. Kinematical approach 

In the kinematical theory the reflected intensity is calculated by summing the 
amplitudes of the wavelets scattered by all unit cells, under the assumption that 
the amplitude of the incident wave {Ft) is constant. The amplitude U of the 
wavelet scattered by one unit cell follows from the structure factor and eqs 
(2.3.2) and (2.5.5) (the phase factor is accounted for later): 

U = EtVi/4TiN, (11.4.14) 

where A'̂  is the number of unit cells per unit volume of the crystal. The reflexion 
is assumed to take place at a well-defined point within the unit cell. These points 
for different unit cells lie in the reflecting planes. The distribution of these points 
over the reflecting planes is irrelevant, since we exclude multiple reflexion. There 
are Nd reflecting points per unit area in the reflecting plane, if d is the spacing 
between the reflecting planes. 

Fig. 11.6. The orientation of the coordinate system used in sub-section 11.4.4. One curved 
reflecting plane is shown. 

In fig. 11.6 is shown one of the curved reflecting planes in the region where 
the Bragg condition is nearly satisfied. The phase and amplitude of the wavelet 
arriving in Q via a small area dydz around A is 

UNddydz exp [-/27t {PA -f AQ)/X]/r2, 
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where 

PA + AQ = ri + r2 + z^ sin {6)/R + i ( l /n -f- 1/̂ 2) {y^ + z^ sin 6). 

The terms in ƒ and z of order higher than 2 have been neglected. Integration with 
respect to y and z from — oo to 00 gives the total contribution of one reflecting 
plane: 

SEr = -j{UNdX/r2 sin 6) [{X/n + 1//-2) ( l /n + 1//-2 -H 2/R sin é»)]-i/2 x 

X exp {-;27r (n + ^2)/^}. (11.4.15) 

The total amplitude is found by summing the contributions of all reflecting 
planes. The wth plane gives an additional phase change cpm with respect to the 
plane 0 discussed above: 

cpmX/2Ti = —2mdsin 6 + \{\/ri+ \/r2) m^d^ cos2 6. 

The contribution of the first term can be omitted since the relation of Bragg 
is satisfied. The second term makes only a small jump if m is increased by 1. 
Hence it is allowed to replace the sum over all reflecting planes by an integration 
with respect to dx/d, with — 00 < x < 00 and x = md. Carrying out this 
integration and going over to the limits A-I 3> r2 > i? gives for the power 
reflectivity: 

IR/IO = \Er/Et\^ = \UNX/Ei cos 6 \^XR/2 sin 6. 

By introducing Fi with eq. (11.4.14) and replacing /? by 5 via a (eqs (10.7.2) 
and (11.3.1)) one finds after some manipulation: 

IR/IO = 2JT5, 

in agreement with (11.3.3). 
The second case of not equally spaced reflecting planes is somewhat simpler. 

The contribution of one reflecting plane follows from the derivation given above 
(eq. 11.4.15)) by setting i? = 00 and immediately going over to the limit 
ri > r2 - > CO: 

hEr = —jNUMexp [—j2Tt (n + r2)/A]/sin 6, 

identical with eq. (4.2.1). The next step is to calculate the additional phase 
shift in the contribution of the wth plane, cpm. According to the definition of a, 
the z-component of the displacement vector is equal to 

w = —adoz /̂2Tin, 

where do is the spacing that satisfies the Bragg equation and n the order of 
reflexion. Since w gives the relevant part in cpm we find 

fm = 47̂ »̂  sin {9)/X = —az2. 
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Replacing again the sum over all reflecting planes by an integral with respect 
to dz/do, yields for the power reflectivity 

/«//o = {NUk/Et sin 6^ Ti/{-a), 

which result may be transformed again into eq. (11.3.3). 



— 95 — 

12. COMPARISON WITH OTHER THEORIES 

12.1. Classification 

Several authors have given theories for the diffraction of X-rays in deformed 
crystals. Regarding the approach of the problem these theories can be divided 
into two classes. In the first place we have the "wave theories". Starting point 
is the MaxweU equation for E, (eq. (5.2.1)). The susceptibility y> is now a com­
plicated function of the space coordinates and no longer periodic. It is assumed, 
however, that it still may be written in the form 

If =llfm exp {—jbm • r), 

with bm varying slowly with r and ipm constant. For interaction with one set 
of reflecting planes only, the Maxwell equations contain a large number of 
terms. By sorting out the terms that give the largest contribution, one obtains 
two simultaneous differential equations with variable coefficients in Do and DH, 
the amplitudes of the upward- and downward-travelling plane-wave compo­
nents, respectively. The actual wave vector k does not play an important part. 
The first to publish such an approach were Howie and Whelan 26) in the 
"columnar theory", especially useful in electron diffraction, where the Bragg 
angle is small. The most elaborate treatment of the X-ray case is given by 
Taupin 22). His results will be discussed in the next section. Takagi's treat­
ment 27) is of earlier date, but in less detail. Since it is in full agreement with 
Taupin's results, we shall not discuss it. Kato 28) shows from the "wave theory" 
that for sufficiently slowly varying b a local cu-surface may be defined and the 
path of a beam satisfies the variational principle: 

B 
dfk-dr = 0, 

A 

where A and B represent two fixed points on the path. It is analogous to 
Fermat's principle in geometrical optics. 

In the second place there are "ray theories". Besides our own treatment there 
is Bonse's treatment 29). The basic idea in both is the same: the X-ray energy 
travels in the direction of the energy transport, determined by the local "co-sur­
face" and local value of k. The only relevant question is how to match the 
k-vectors in two neighbouring points along the path. Bonse's treatment differs 
from ours in the k-matching. He takes into account the imaginary part of the 
k-vector, whereas we consider k to be real. 

12.2. Taupin's theory 

12.2.1. Results in general terms 

In this sub-section the results of Taupin's theory are reproduced. The nota­
tion is adapted to the convention used in the previous chapters. For the ampli-
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tude of the upward-travelling component Taupin uses the expression 

D« = Do(r) exp (-y^o). (12.2.1) 

The function <̂o must be chosen in such a way that the incident wave field in 
vacuum satisfies this expression also, but with Do a constant. Note that the 
incident wave need not be plane parallel. The influence of the crystal on the 
wave field is incorporated entirely in Do(r). The downward-travelling wave is 
given by 

D, = DH(r) exp {-J<I>H), (12.2.2) 

with 
VkH = Vh - 2b(r). (12.2.3) 

The vector b is normal to the reflecting planes and of magnitude nTi/d{i), where 
n is the order of the reflexion from the set of reflecting planes of mutual 
distance d{r). The vector b is well defined as long as the relative change in strain 
per distance d is small compared with unity. Note that in our treatment the 
relative change in strain had to be small per "Pendellösung"-length L, in order 
to define an co-surface. Taupin shows that substitution of these proposed 
solutions in Maxwell's equation and retaining only terms of the first order 
leads to 

2j (ko • V) ^0 = VoDo + VIDH -jDo (V • V) ^o (12.2.4) 
and 

2j (ko' •V)DH= VODH + F i A - (co2/c2) UHDH -JDH (V ' V) <t>H, (12.2.5) 

where 

-(co2/c2) an = 4b • (V-^o - b). (12.2.6) 

Since the vector b is given by 

b = b' - V (v • b'), (12.2.7) 

the expression for an may be approximated to 

-(c«2/c2) an = 4b' - (V <̂o - b') - 4 (ko' • V) (v • b'). (12.2.8) 

The function <f>o is arbitrary, apart from the fact that exp {—j<t>o) must satisfy 
the wave equation in vacuum. The choice will depend on the problem that has 
to be solved. In our discussion we shall use as the incident wave field a plane-
parallel wave with wave vector k,; so that V^o = kt,. It will be shown later 
that in practical cases V " V ^ H {= 2\/ • \/ {y • b')) is very small compared to 
the other terms in eq. (12.2.5). 

12.2.2. Application to perfect crystals 

To demonstrate the significance of Taupin's equations we consider first the 
case of a perfect crystal (v = 0). According to the dynamical theory a possible 
solution must read: 
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DH = iDo = A expy (—k -|- kt,) • r. 

Substitution of this solution in Taupin's equations gives 

2ko - ( k - k „ ) = F o + Fif 

and 
2ko' • (k - kt,) = Fo + Fi/I + 4b' • (k, - b'). 

Since 
k2 = (k - kt, + kt,)2 ^ co2/c2 + 2ko • (k - kt,), 

(k - 2b')2 = (k - kt, + kt, - 2b')2 !^ co2/c2 - 4b' • (kt, - b') - f 2ko' • ( k - k „ ) , 

the basic equations for the dynamical theory (eqs (5.3.1)) follow immediately. 
If a plane-parallel wave field strikes the flat boundary (surface normal s) of 

a semi-infinite crystal two modes of propagation are activated inside the crystal. 
The ratio is no longer equal to | . It will be denoted by X: 

X = DH/DO. (12.2.9) 

Since the amplitudes are a function of z in the direction of s only, one may write 

2jko • s (d/dz) In oo = Fo + FiA-, 

2jko' • s (d/dz) In DH = Vo + Vi/X + 4b' • (k„ - b'), 

or by introducing y (eq. (7.1.1)) to determine the orientation of s with respect 
to ko and ko': 

2jko - s (d/dz) In A' = (y - 1) Fo - Fi {X- y/X) + 4yb' - (k„ - b'). (12.2.10) 

This equation is satisfied by 

(1 -X/h) / { l - X/h) = exp [ yFi {h - la) z/2ko • s], (12.2.11) 

with l l and I2 the two roots of the equation 

Fl ( I - y/l) = (y - 1) Fo + 4yb' • (k« - b'). (12.2.12) 

According to eq. (7.2.2), which is identical with eq. (12.2.12), l i and I2 are the 
mode parameters of the two modes activated inside the crystal. Equation 
(12.2.11) represents the variation in X because of the z-dependent phase differ­
ence between the two modes. In sec. 6.5 an example thereof was discussed, the 
case b' • (k» — b') = 0 in the symmetrical Laue case (y = 1). It is easily verified 
that in that case l i = —1 and I2 = 1, 

X = -j tan (Fiz/2ko • s). (12.2.13) 

In non-absorbing crystals 1̂ 1 is periodic in z. The period 2jrko-s/|Fi| is 
equal to 2TI times the "Pendellösung"-length L, in agreement with eq. (6.5.1). 
Taupin's equations apply also to absorbing crystals. In this special case we 
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find by adding a small imaginary part jWi (IFi < 0) to Fi in eq. (12.2.13) 
that X tends to —1 for large values of z, in agreement with the fact that the 
mode with | = —1 suffers the least absorption. 

The important conclusion is that eq. (12.2.10) for X gives correct results in 
undeformed crystals even in the case that two modes of propagation are present. 
This is an immediate consequence of the fact that eqs (12.2.4) and (12.2.5) are 
homogeneous in A and DH, showing that any combination of A and DH is a 
possible solution also. In perfect crystals this may not seem important, but it 
leads to the expectation that in deformed crystals the generation of new modes 
inside the crystal is included in Taupin's treatment. 

12.2.3. Deformation a function of one space coordinate 

Next consider the case of deformed crystals where the deformation is a 
function of z in the direction of s only. We assume that the surface on which 
the incident wave field strikes, is normal to s. The amplitude and the phase 
of both Do and DH are again a function of z only. Such situations were discussed 
in chapter 11 and a direct comparison of Taupin's equations with the rigorous 
treatment is possible. Introducing eq. (11.1.1) for the deformation gives for the 
equations (12.2.4) and (12.2.5): 

2j"ko • s dDo/dz = VoDo + VIDH, (12.2.14) 

2yko • s dDn/dz = y F i A + {yFo + 4yb' • (kt, - b') + 4ko - saz} DH. (12.2.15) 

The term with V " V ^ H was omitted. In the special cases we are discussing 
now it would give a term of the order of aDn and has to be compared with 
VODH. According to the definition of a, |a| is equal to |Fo| when the relative 
change in b over a distance L is equal to unity, or when 5 (the parameter used 
in the previous chapter) has the exceedingly small value of |^i | . In any practical 
case |a| will be much smaller than |Fo| so that V ' V ^ H may be neglected 
(for V • V^o = 0) in comparison with Fo. 

The equations (12.2.14) and (12.2.15) are identical with eqs (11.2.6) and 
(11.2.7). Since we could derive from these equations that there is a generation 
of new modes in strongly deformed crystals, it must be concluded that this 
phenomenon is included also in Taupin's treatment, in contrast to our ray 
theory. 

The differential equation for X reads in this case 

2;"ko • s (d/dz) \nX= -Vx {X- y/X) + (y - 1) Fo + 4yb' • (k„ - b') + 

+ 4ko • saz. (12.2.16) 

The solution of the ray theory is obtained by neglecting the left-hand side of 
the equation. The two possible values of A'then are equal to the two possible 
values of | that fohow from the given orientations of k,, and s and the local 
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co-surface. As we have seen in the rigorous treatment such a procedure is 
allowed if the change in X is small over a "Pendellösung"-length L. This 
condition may be derived also from eq. (12.2.16). The contribution of the left-
hand term is negligible if the change in X per length L is small, since L is of 
the order of |ko - s/Fi|. According to the previous sub-section this change is 
zero in perfect crystals, if only one mode is present. In lightly deformed crystals 
the parameter of the one mode present changes very little over a distance L. 

12.2.4. General deformation 

Turning now to the general case we shall show that our ray theory follows 
from Taupin's equations by a procedure similar to the one used at the end of 
the previous sub-section. The equation for X may be derived in the general 
case by multiplying eq. (12.2.4) with the operator (ko' - V) ^o i, eq. (12.2.5) 
with (ko • V) DH~^ and subtracting: 

2 / (ko-V)(ko ' -V) lnA ' = 

= -(Fi/A'2) {ko + X2ko'} • V ^ - 4 (ko - V) (ko' • V) ( v b'). (12.2.17) 

If in any direction the strain varies only a little over the distance L, a local 
co-surface may be defined. At the surface two modes are activated, each with 
a well-defined value of | , although f may vary along the surface. Considering 
only one type of mode we expect according to the foregoing discussions that the 
value of I of one type of activated mode will vary only a little over the distance L, 
whereas X corresponding to a pair of modes shows the beat of the two modes. 
Hence we may neglect the left-hand term if we substitute | instead of X: 

Fl (ko + |2ko') • V I = - 4 | 2 (ko • V) (ko' • V) (v • b'). (12.2.18) 

This equation states that for real (or nearly real) values of | and Fi, we can 
determine the change in | in the direction of the vector ko + |2ko' = 
(co/c;2) (1 -f |2) v^ only. The change d | per distance dl in the direction of the 
group velocity is now identical with eq. (10.5.3) following from our treatment. 
Apparently both treatments are in full agreement with each other, provided 
the strain varies sufficiently slowly and the phase angles in Fi and I are small. 

In the ray theory it is essential that the change in | is determined in the 
direction of the velocity of energy transport. The value of | is free in a direction 
perpendicular to this velocity and the different beams travelling in adjoining 
regions are independent of each other. Introducing a large phase angle in | 
in eq. (12.2.18) leads to two equations, one for the real parts and one for the 
imaginary parts. The equations no longer allow for the calculation of the 
complex I along a line if | is given on one point on that line, as in the case of 
real | . It is necessary to give the complex value of | along the entire entrance 
surface. Only with this knowledge can | be calculated throughout the plane 
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of incidence. Or, in other words, for larger values of the phase angle in | , there 
are no trajectories in the plane of incidence, along which the I variation is 
insensitive to the variation of | along the surface in the plane of incidence. 

12.3. Bonse's theory 

12.3.1. Summary of results 

Bonse investigated experimentally the diffraction in slightly deformed crystals 
in the Bragg situation. To explain his results a theory is needed which describes 
the behaviour of wave fields with complex values of | . Our theory is of no use, 
since it is clearly limited to wave fields with almost real |-values. Bonse claims 
to have developed a ray theory which is not limited by this restriction. Although 
he considers also such slowly varying strains that a local relation between co 
and k may be defined, his theory must be based on more assertions than ours, 
because in his case the imaginary part of the k-vector must be matched in 
adjoining sites also. 

Bonse states that for appropriate matching the complex k-vector must satisfy 
the foUowing three conditions: 
(1) The basic equations of the dynamic theory have to be satisfied in any 

arbitrary point and its immediate vicinity. 
(2) The wave vector must correspond to planes of equal phase and planes of 

equal amplitude. Accordingly 

V X k = 0. 

(3) According to (1), k is not constant in the immediate vicinity of any arbitrary 
point. It might be expected, however, that the variation is such that the 
wave field remains as uniform as possible. Bonse therefore introduces the 
condition *) 

V (k — b) - - V (k"* — b) = minimum. 

The vector k — b is introduced instead of k or k — 2b, for symmetry reasons. 
From these three assumptions the dyad V (k — b) may be determined as 

a function of y b . However, Bonse is not interested in the dyad itself, but only 
in the change of the complex k-value in the direction of energy flow. The 
calculation of the change in | in the direction of Ve is now straightforward. 
The amplitude matching is obtained in a similar way as in our theory, by 
means of intensities and an "absorption coefficient", as given in eq. (8.4.1), 
still containing 95. 

The results obtained in Bonse's treatment will not be reproduced here. They 
are rather complicated. Two important conclusions given by the author are: 
in the first place, for real values of | (either positive or negative) the two ray 

*) The asterisk indicates the complex conjugate. 
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theories give identical results; in the second place, in the case of tapering 
reflecting planes in an absorbing crystal the change in | is not zero according 
to Bonse. This last result is not only in contrast with our theory (see sec. 10.7.1), 
but also in disagreement with Taupin's result, where even in the case of strong 
tapering the wave fields travel undisturbed. 

12.3.2. Discussion 

It is not necessary to discuss the result of Bonse's treatment in the cases that 
modes are excited with almost real values of | . Bonse states in his paper that 
then the two ray theories are in full agreement. The differences appear in such 
cases where modes with a strong cut-off character are excited. Therefore only 
such situations are discussed. Although Bonse refers to the wave fields as 
"Röntgenwellenfeldstrahlen", the essential point to make it a ray theory is 
missing, namely that the wave fields under consideration have such a character 
that a ray may be constructed. In chapter 9 we discussed in detail the necessary 
conditions. A beam is well-behaved if the central mode has an almost real 
I-value. In perfect crystals the properties of a well-behaved beam remain un­
changed along the path. They are fixed entirely by the magnitude of the incident 
beam in the immediate neighbourhood of the place where the beam is leaving 
the surface. For modes with complex values of | , such that |cos cp\ is signifi­
cantly less than unity the beam is not well-behaved. The properties such as k 
and I of the central mode, change appreciably for penetrations larger than the 
width, even in undeformed crystals. At such penetrations the wave field is 
determined by the power input far away from the centre of the incident beam 
in the surface. In fact, we feel that this is the reason why in Taupin's results for 
slightly deformed crystals the complex value of | had to be known all along the 
entrance surface in the plane of incidence, in order to be able to calculate I 
deeper inside the crystal. 

Turning now to Bonse's treatment again we note that already in assumption 
(1) the ray approach is abandoned. The requirement that the wave field satisfies 
the basic equations in the entire region around an arbitrary point is in sharp 
contrast with the ray theory where one needs only the requirement that the 
basic equations are satisfied in the direction of propagation. Assumption (1) 
brings Bonse's theory nearer to the wave theories. 

It will be appreciated that Bonse's third assumption, although reasonable for 
want of a better, is ad hoc. We shall show that it imposes too stringent a con­
dition on | . It must be noted that in his treatment Bonse does not use the full 
information that is deduced from his assumptions. Of the determin2d dyad 
V (k — b) only the component in the direction of the energy flow is used and 
from that component the change in I is found. The known value of V (k — b) 
allows, however, for the determination of y | . Hence not only the change 
of I in the direction of the energy flow is determined, but also in any direction. 
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It is sufficient to give I on one point of the entrance surface to determine | 
throughout the entire crystal including the surface. The k-matching in vacuum 
and crystal requires that eq. (7.2.2) has to be satisfied. Since I is known in 
modulus and argument, both b - (k» — b) and y may be calculated along the 
surface. Apparently the third assumption imposes also conditions on the type 
of wave field that strikes the entrance surface and on the orientation of the sur­
face normal with respect to the reflecting planes. In practical cases these con­
ditions will not be satisfied in general, showing that the solution given by Bonse 
is overdetermined. 

Taupin's treatment shows that for sufficiently slowly varying lattice param­
eters the complex value of | must obey the differential equation (eq. (12.2.18)) 

Fl (ko + |2ko') - V I = - ^ | 2 (ko • V) (ko' • V) (v • b'). 

If one calculates this component of the vector V l following from Bonse's 
treatment, then exactly the same equation results. Hence it could quite well be 
that by taking into account the necessary shape of the entrance surface and type 
of incident wave field Bonse's treatment gives correct results. But as pointed 
out above, it is unlikely that such a situation is met in practice. 
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APPENDIX 

The parabolic cylinder functions satisfy Weber's equation 

d2A/dl/2 = (_v - i + i «2) £,^, (A. 1) 

From Whittaker and Watson's book ^i) we quote the following properties. 
The solutions with different values of the parameter v are related to each other 
by the recurrence formulae: 

dDy/du = —^uDp + vDy-i (A.2) 
and 

dDy-l/dU = i UDy-l — Dy. (A.3) 

The asymptotic value of Dy for large values of u depends on the argument x 
of u: 

—J^ < X < i^'- A = Ay{u)Ry{u), (A.4) 

iTi < X <i^- Dy = Ay{u)Rp{u) + By{u)Sy{u), (A.5) 

—|7T < X < —i^ : ^v = Ay{u)Ry{u) + Cv{u)Sy{u), (A.6) 
with 

Ay = t/" exp (—^«2), 

By = -(2;r)i/2 exp (;7rv)/r(-v)^,+i, (A.7) 

Cy = JÜj, exp (—2y7rv) 
and 

/?y = 1 - j,(v - 1)/2M2 -f v(v - 1) (v — 2) (v - 3)/8M4 — . . . , 

(A.8) 
Sy=\+{v+\){v + 2)/2M2 + (^ + 1) (t, + 2) (v + 3) (»- -I- 4)/8M4 + . . . . 

The value at M = 0 is 

A(0) = 2 ' ' / 2 r ( i ) / r ( i - i r ) . (A.9) 

In the region where |arg u\ < ITC one can calculate the ratio 

UDy-l/Dy = Ry-l/Ry = Xy. (A. 10) 

Straightforward division of the series Ry-i by the series Ry gives 

A-̂  = 1 -f (1 - v-i) r/i/2 + (1 - v-i) (2 — 3v-i) (r/M2)2 + . . . . (A.l 1) 

The interesting point in this result is that for large values of v this series is no 
longer a function of v/u as in Ry, but a function of v/u^. This suggests a type 
of expansion: 

Xv = Fo + Fl v-i -f- F2 ^-2 + . . . , (A.12) 

where Fo, Fi and F2 are functions of v/u^ only. By introducing 
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H' = r/l<2, (A. 13) 

one can show from the recurrence formulae that 

2H'2 dXy/dW -\-WXy=V {wXy^ - Xy -]- 1). (A.14) 

It turns out by substituting the series (A.12) into (A.14) that an important 
part is played by 

t; = (l_4H')-i/2; |argi; |<7r/2. (A.15) 

Using V as variable instead of w gives for Xy: 

Xy = {2t;/(i; -f 1)} {1 - (t;2 - l)/4r + (v^ - 1)2(1 + 5t;)/32v2 + 

4- 5(1,2 _ 1)3(1 _ 3„) (1 + 2i;)/128r3 . . . } . (A. 16) 

In the problem we want do discuss it is convenient to introduce 

V = d,S exp7 {TI/2 + 2d), (A.17) 

where ds is either 1 or —I, and 5 real and positive. The phase angle d (the 
argument of—Fi) is small. In the expressions (A.7) fox By and Cy enters r{—v). 
For ds= \, Stirling's series may be used to approximate its value. Neglecting 
terms with 02 and 5-i or smaller, yields 

In {F (2(55 -75)/(27r)i/2} = —^nS - { \ — 2(55) In 5 + 

- y [5 In 5' - 71/4 -f Ó -h TidS\ (A. 18) 

For ds = —1 one has to use the relation 

V sin {TIV) r{v)r{—v) = —Ji. 

If 5 is sufficiently large one obtains 

In {F {jS - 2ó5)/(27r)i/2} = -j^jzS - ( i + 2Ó5) In 5 + 

+j [S {In S - I) - Ti/4 - d - TtdS]. (A.19) 

For d = 0 one can show: 

ln{|F(±75)|/(2:r)i/2} = -^TIS-^ In 5. (A.20) 

The values of Ay, By and Cy are now found to be 

In Ap = -i|M|2 cos 2x - ds {xS + 2dS In \u\) + 

-j [i|M|2 sin 2x + dsS (2(5/ - In |M|)]. (A.21) 

In {-By) = i|M|2 cos 2x + iTtS- In {\u\ 5i/2) + dsS{x-Ti + 2d In {\u\/S)} + 

+ 7[i|u|2 sin 2x + TidS-\-d-x + ds{{x-Tt) 2dS-\n {\u\/S)-5-TI/4}], 

In {-Cy) = In {—By) + 2TtdsS + jdATidS. 
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The values of Ay-i, By-i and C^-i follow immediately from the expressions 

given above, taking into account their definition 

Ay-l = Ay/u; By-l = ByU/V, Cy-l = Cyu/v. (A.22) 
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LIST OF FREQUENTLY USED SYMBOLS 

a = \yg\-\ eq. (10.4.1) 

ao shortest vector between adjacent atom layers in Darwin's model 
2b reciprocal-lattice vector for the set of reflecting planes under consider­

ation 
2bD primitive reciprocal-lattice vector in Darwin's model, eq. (5.1.1) 
2b' reference reciprocal-lattice vector in deformed crystals 
c velocity of X-rays in vacuum 
c as index refers to the central mode of the wave packet, eq. (9.2.1) 
C proportionality factor given in table I 
d spacing of reflecting planes in Darwin's model 
do reference spacing of reflecting planes in Darwin's model after defor­

mation 
Dp{u) parabolic cylinder function of the order v 
e electron charge 
g = Wo/Vi, eq. (8.2.1) 
h variable in the description of a wave packet, eq. (9.2.1), sec. 11.4.2 
Jo incident intensity per unit angle of incidence 
TT transmitted intensity per unit angle of incidence for the beam or the 

wave travelling parallel to kt, 
IR reflected intensity per unit angle of incidence for the beam or the wave 

travelling parallel to kr 
k wave vector characterizing the wave field inside the crystal 
k multi-valued wave vector determining the translation behaviour of the 

wave field inside the crystal (sub-section 5.1.3) 
ki, ki' wave vectors of the two plane waves present in the vacuum between 

adjacent atom layers in Darwin's model 
ko, ko' wave vectors, satisfying Bragg's equation, in the incident and diffracted 

direction, resp. 
kt, wave vector of the incident plane wave in vacuum 
kr wave vector of the diff'racted plane wave in vacuum 
k +jK complex wave vector inside the crystal, eq. (8.1.2) 
K polarization factor, eq. (2.3.1) 
L "Pendellösung"-length, eq. (6.5.1) 
m mass of a free electron 
p unit vector tangential to the "co-surface", eq. (9.2.1) 
P power flow averaged over the unit cell, eq. (6.3.1) 
jq amplitude reflexion coefficient for a single layer of atoms in Darwin's 

model, eq. (4.2.1) 
jqo phase change suffered by a plane wave passing through one layer of 

atoms in Darwin's model, eq. (4.2.1) 

file:///yg/-/
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q parameter defined in eqs (9.2.1) and (9.2.3) 
r = Fo/Fi, eq. (8.2.1) 
R integrated reflected intensity; the radius of curvature of a cyhndrically 

curved lattice, figs 10.3 and 11.6 
s normal to the surfaces of a crystal slab, sec. 7.1 
5 parameter describing the inhomogeneity in the strain, eq. (11.3.1) 
T integrated transmitted intensity travelling parallel to kt, 
u variable in the parabolic cylinder functions, eq. (11.4.3) and table I 
Vc velocity of energy transport inside the crystal, eq. (6.3.6) 
yg group velocity of the wave fields inside the crystal, eq. (6.3.4) 
Fo = ko'^xpo, eq. (2.5.5) 
Fo + jWo complex value of FQ in absorbing crystals 
Fl =/i:ko2vi,eq. (2.5.5) 
Vi+jWi complex value of Fi in absorbing crystals 
Vc volume of the unit cell 
X ratio in the total amplitudes of the two plane-wave components, in the 

case there are two modes of propagation present, both arising from 
one incident plane wave, sec. 11.3, eqs (11.4.12) and (12.2.9) 

0 an angle used in chaptec 9 and defined in fig. 9.2; parameter de­
scribing the inhomogeneity in the strain, eqs (10.7.2) and (10.7.8) 

jS parameter describing the inhomogeneity in the strain, eqs (10.7.3) and 
(10.7.9) 

y parameter determining the orientation of the surfaces of the crystal 
slab with respect to the reflecting planes, eq. (7.1.1) 

d phase angle in Fi, eq. (11.4.5) 
e = H^i/fFo,eq. (8.2.1) 
e dielectric constant of the crystal on a sub-atomic scale, eq. (2.5.1) 
Co dielectric constant of vacuum 
^ proportionality factor, relating the space coordinate z to the variable 

u in the parabolic cylinder functions, eq. (11.4.3) and table I 
B Bragg angle 
A wavelength of the X-rays in vacuum 
A beam width, eq. (9.2.4) 
H absorption coefficient, eqs (8.1.3) and (8.4.3) 
p,o absorption coefficient in the case there is no diffraction, eq. (8.4.2) 
V parameter giving the order of the parabolic cylinder functions, table I 
1 ratio in the amplitudes of the two predominant plane-wave compo­

nents in a mode of propagation, eqs (5.1.4) and (5.2.6) 
Q electron density, eq. (2.2.5) 
cp phase angle in | , eq. (8.1.1) 
<f> phase shift suffered by the wave field after having travelled a distance 

ZD, in Darwin's treatment, eq. (5.1.3) 
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fo average value of the susceptibility, sec. 2.5 
yi amplitude of the Fourier component with period b of the susceptibility, 

sec. (2.5) 
CO circular frequency of the X-rays 
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Summary 

The first part of this thesis deals with the concepts used in the theory of X-ray diffraction. 
After an historical introduction and motivation of the study, the definition of several impor­
tant parameters are considered in chapter 2. The geometrical aspects of X-ray diffraction are 
dealt with in chapter 3. To calculate the intensity of diffracted beams two theories have been 
developed: the kinematical theory, applicable to mosaic crystals (chapter 4) and the dynamical 
theory, applicable to perfect crystals (chapters 5 and 6). Accorcling to the dynamical theory 
the simplest form of X-ray-energy transport is a mode of propagation, consisting of a number 
of plane-wave components. Special attention is paid to the definition of the wave vector 
characterizing such a mode of propagation and the possible values of the wave vector for given 
circular frequency: the cu-surface. Other important characteristics such as the composition 
of the wave field and the associated power flow are also discussed. Since all crystals have 
finite dimensions, the matching of the wave fields inside and outside the crystal is treated in 
chapter 7. 

Absorption of X-ray energy and extinction of the wave fields by an interference phenomenon 
present in non-absorbing crystals also, are dealt with in chapter 8. It is shown that under the 
influence of these phenomena the shape of the cu-surface changes and that the change itself 
depends on the orientation of the surface with respect to the reflecting planes. In cases where 
the power flow is not closely parallel to the surface, extinction does not contribute significantly 
to the damping in amplitude and the change in co-surface is negligible. The decrease in ampli­
tude is then described adequately with an absorption coefficient. If the power flow is closely 
parallel to the surface the complex value of the wave vector is very sensitive to the small angle 
between the power flow and the surface and the extinction plays a greater part than the ab­
sorption. The damping must be described with the imaginary part of the wave vector. 

Chapter 9 deals with space-limited wave fields inside a crystal. A pencil beam striking a 
crystal does not always give beam(s) inside the crystal. Only in those cases where the modes 
of propagation excited have a power flow not closely parallel to the surface does a well-
behaved beam result. 

An extension of the dynamical theory to lightly deformed perfect crystals is presented in 
chapter 10. The underlying assumptions are: (1) the dynamical theory may be applied locally 
to narrow beams, (2) the beam remains well-behaved along its path which need not to be 
straight, (3) the matching of the wave field along the path is achieved by a postulated procedure 
analogous to the case of a light beam travelling through an inhomogeneous medium. In 
principle the theory may be applied to any kind of deformation, provided it is not too in-
homogeneous. It leads to expressions for the path of the X-ray beam and the absorption along 
the path. 

To verify the first and second assumption, the examples discussed in chapter 10 are treated 
again in chapter 11. It is shown that an exact solution is possible by making use of the parabolic 
cylinder functions. For sufficiently slowly varying strains a good agreement with the ray theory 
is found, although it was not possible to verify all results of the ray theory. For rapidly varying 
strains part of the X-ray energy passes on without being affected by the strain. An analogy 
in the electron-band theory is the phenomenon of "tunnelling". In the case of very rapidly 
varying strains a kinematical treatment of the examples gives results in agreement witli the 
exact solution. The upper limit of validity of the ray theory, derived on the basis of intuitive 
arguments, is in accord with the results obtained in this chapter. 

In chapter 12 the ray theory is compared with other theories. Taupin's treatment is more 
general than the one presented here, but for slowly varying strains both theories give the same 
results. Bonse's theory is an extension of the one presented in chapter 10 to cases where 
extinction plays an important part. It is argued that his theory in these cases gives correct 
results only if the incident wave field satisfies certain conditions concerning the amplitude 
and phase distribution along the surface of the deformed crystal. 
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Samenvatting 

In het eerste deel van dit proefschrift wordt de aandacht gericht op de begrippen, die ge­
bruikt worden in de theorie der diffractie van Röntgenstralen. Na een historische inleiding 
en een motivering voor deze studie worden verschillende belangrijke parameters besproken 
in hoofdstuk 2. De geometrische aspecten der Röntgendifïractie komen aan de orde in hoofd­
stuk 3. Om de intensiteit van de gebroken stralen te berekenen zijn 2 theorieën ontwikkeld: 
de kinematische theorie, van toepassing op mozaïek-kristallen (hoofdstuk 4) en de dynamische 
theorie, van toepassing op ideale kristallen (hoofdstukken 5 en 6). Volgens de dynamische 
theorie is de eenvoudigste vorm van energie-transport door middel van Röntgenstralen een 
specifieke combinatie van vlakke golven. Speciaal wordt aandacht besteed aan de golfvector, 
die zulk een combinatie kenmerkt wat haar translatie-gedrag betreft en de verzameling van 
mogelijke golfvectoren voor een gegeven frequentie CD : het co-oppervlak. Ook andere belang­
rijke eigenschappen van zo'n golfveld, zoals de samenstelling als functie van de golfvector 
en de erbij behorende richting van energiestroom worden besproken. Omdat nu eenmaal alle 
kristallen eindige afmetingen hebben, wordt de aanpassing van de golfvelden in en buiten het 
kristal behandeld in hoofdstuk 7. 

In hoofdstuk 8 komt aan de orde de vermindering van de amplitude van het golfveld ten 
gevolge van absorptie en extinctie. Het laatste verschijnsel is een gevolg van interferentie dat 
ook in niet absorberende kristallen kan optreden. Er wordt aangetoond dat onder invloed 
van deze verschijnselen de vorm van het co-oppervlak verandert, en dat de verandering zelf 
afhangt van de oriëntatie der reflecterende vlakken ten opzichte van het oppervlak. In die 
gevallen waar de energiestroom niet nagenoeg evenwijdig aan het oppervlak loopt, zijn de 
verschillen evenwel te verwaarlozen. De extinctie draagt dan ook maar weinig bij tot de af­
name in amplitude. Indien de energie vrijwel evenwijdig aan het oppervlak stroomt, dan is 
de golfvector complex met het imaginaire deel sterk in grootte afhankelijk van de kleine hoek 
tussen de energiestroom en het oppervlak. De extinctie speelt dan een belangrijker rol dan 
de absorptie. De afname in amplitude moet dan beschreven worden met het imaginaire stuk 
van de golfvector. 

In hoofdstuk 9 komen ruimtelijk begrensde golfvelden aan de orde. Een nauwe bundel, die 
vanuit het vacuum op een kristal valt, geeft niet altijd een straal of stralen in het kristal. Alleen 
in die gevallen waar de in het kristal opgewekte energiestroom niet nagenoeg evenwijdig aan 
het oppervlak loopt, ontstaat een zich normaal gedragende straal of stralen in het kristal. 

Een uitbreiding van de dynamische theorie, zodat die toepasbaar wordt op vervormde 
ideale kristallen, wordt gegeven in hoofdstuk 10. De theorie is gebaseerd op de volgende ver­
onderstellingen: (1) de dynamische theorie mag plaatselijk worden toegepast op een smalle 
bundel, (2) de bundel blijft zich normaal als een bundel gedragen, al behoeft de gevolgde baan 
niet recht te zijn, (3) de aanpassing van het golfveld langs de baan wordt verkregen met be­
hulp van een postulaat dat veel lijkt op het postulaat in de geometrische optica waarmee de 
stralengang in inhomogene media kan worden berekend. De theorie kan toegepast worden 
op welke deformatie-toestand dan ook, behalve in die gevallen, waarbij de deformatie te 
sterk inhomogeen is. De theorie geeft uitdrukkingen voor de baan die de straal volgen zal 
en hoe groot de absorptie langs deze baan zal zijn. 

Om de juistheid van de eerste 2 veronderstellingen te toetsen, worden in hoofdstuk 11 de 
voorbeelden uit hoofdstuk 10 nogmaals behandeld. Er wordt aangetoond dat in deze speciale 
gevallen niet-benaderde oplossingen gegeven kunnen worden door gebruik te maken van de 
parabolische cylinder-functies. Als de vervorming slechts langzaam verloopt met de plaats, 
dan is de overeenstemming met de straal-theorie uitstekend, hoewel niet alle resultaten van 
de straal-theorie gecontroleerd konden worden. Als de vervorming sterk afhangt van de plaats, 
loopt een gedeelte van de invallende energie recht door, zonder invloed van de snel verande­
rende deformatie te ondervinden. Een soortgelijk verschijnsel is ook bekend in de theorie der 
electronen-banden: het "tunnelen" van de ene band in de andere bij voldoend grote veld­
sterkten. Als de deformatie zeer snel verloopt geeft een kinematische behandeling van de 
diffractie hetzelfde resultaat als de niet-benaderde oplossing. De bovengrens voor de toepas­
baarheid der straal-theorie, die was afgeleid op basis van intuïtieve argumenten, is in goede 
overeenstemming met de resultaten bereikt in dit hoofdstuk. 

Een vergelijking tussen de door ons gegeven straal-theorie en een aantal andere theorieën 
wordt gegeven in hoofdstuk 12. De theorie ontwikkeld door Taupin is algemener dan de onze, 
maar voor slechts langzaam veranderende vervormingen geven beide theorieën identieke 
resultaten. Bonse's theorie is een uitbreiding van de onze tot die gevallen, waarin extinctie 
niet meer verwaarloosd kan worden. Er wordt aangetoond, dat zijn theorie in die gevallen 
alleen juiste resultaten geeft, als het opvallende golfveld langs het oppervlak van het vervormde 
kristal voldoet aan bepaalde voorwaarden wat betreft phase en amplitude. 
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I 

In de dynamische theorie voor Röntgen-diflfractie wordt de grootheid absorp­
tiecoëfficiënt meestal op slordige wijze ingevoerd. Het samenvattend artikel 
van Batterman en Cole vormt hierop een uitzondering. 

B. W. B a t t e r m a n and H. Co le , Rev. Mod. Phys. 36, 681-717, 1964. 

II 

De experimentele resultaten van Bonse, beschreven in i), geven niet de ge­
zochte bevestiging van zijn theorie 2). 

1) U. Bonse , Z. Phys. 177, 529-542, 1964. 
2) U. Bonse, Z. Phys. 177, 385-423, 1964. 

III 

Het verdient aanbeveling om in de kristal-optica niet de poolfiguur van de 
phase-snelheid, maar de poolfiguur van de reciproke phase-snelheid te ge­
bruiken. 

IV 

Het rendement van de ideale energie-transformator, werkend boven O °K, die 
electro-magnetische straling kan omzetten in mechanische, electrische of 
chemische energie, is kleiner dan 1. 

D. K a h n , Plant Physiol. 36, 539-540, 1961. 
L. N. M. Dui jsens , Plant Physiol. 37, 407-408, 1962. 

V 

Omdat Saccocio en Zajac in de mathematische opzet geen volledig gebruik 
gemaakt hebben van de symmetrie in het geval van simultane diffractie aan 
3 gelijkwaardige stelsels (220)-vlakken, misten zij de aansluiting naar minder 
symmetrische gevallen. Gezien de resultaten van Borrmann en Hartwig ver­
dienen deze wel de aandacht. 

E. J. S a c c o c i o and A. Zajac , Phys. Rev. 139, A255-A264, 1965. 
G. B o r r m a n n und W. H a r t w i g , Z. Kristallogr. 121, 401-409. 1965. 

VI 

De bewering van Oldeman dat in eenzelfde medium de voortplantingssnelheid 
van de longitudinale golf tenminste 1,7 maal die van de transversale golf zou 
zijn, is onjuist. 

J. O l d e m a n , Ned. T. Natuurk. 31, 10-15, 1965. 



vil 

De kwalitatieve verklaring van Brewster's wet vanuit de electronen-theorie, 
gegeven door Sommerfeld, is voor een goed begrip te simpel. 

A. Sommerfeld, Opties, Lectures on theoretical Physics, Vol. IV, 
Academie Press, New York and London, 1964. 

VIII 

De numerieke factor («:;l/9) in de relatie tussen de dichtheid der willekeurig 
over het volume verdeelde dislocaties en de hoekafwijkingen van het rooster, 
gegeven door Gay e.a., is onjuist berekend. 

P. Gay, P. B. Hirsch and A. Kelly, Acta Met. 1, 315-319, 1953. 

IX 

De formulering van Fermat's principe: 

d ƒ k • dr = O 
A 

is algemener dan de gebruikelijke: 

B 

d ƒ nd/ = 0. 
A 

N. Kato, J. Phys. Soc. Japan 18, 1785-1791, 1963. 

X 

Begaafden hebben de morele plicht hun intellect mede aan te wenden om gees­
telijk gebrekkigen te helpen zo intensief mogelijk deel te nemen aan de vrije 
maatschappij. 

XI 

Een nadere bestudering van de strafprocedure, vigerend binnen een bedrijf, 
is gewenst. 


