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Abstract

Meetings represent a key component of collabora-
tion in the workplace, serving purposes like brain-
storming, discussion, and negotiation. Despite their
importance, reaching a consensus among partici-
pants can frequently be difficult because different
people can leave the debate with different perspec-
tives. In order to promote efficient communication
and decision-making in organisational contexts, the
use of the Shape Language is proposed. The Shape
Language consists of shapes that people can use in
meetings in order to represent abstract ideas, that
would be difficult to represent by only words. In
order to track how people interact with these ob-
jects, computer vision tools can be used. This study
aims to explore the current existing computer vi-
sion tools for segmenting and classifying objects
in meetings, aiming to find limitations in how well
these models are able to recognize objects in the
context of meetings and negotiations. Results of
this study show that after fine-tuning four models
on the custom dataset, they can recognize the three
shapes provided as classes in most of the cases, but
still make mistakes when assigning classes, or miss
objects that they should classify all together, which
show limitations of these modern tools.

Keywords: Meetings and negotiations, Shape Language,
computer vision tools, object segmentation, object classifica-
tion, fine-tuning models, custom dataset, limitations, human-
object interaction

1 Introduction

Advancements in computer vision have provided opportu-
nities for analysing and monitoring human behaviour in a va-
riety of settings. Workplace meetings and negotiations are
among the most essential settings for effective communica-
tion and decision-making. However, these encounters fre-
quently meet obstacles, such as different interpretations of
discussion points, making consensus-building difficult. The
introduction of Shape Language [8], a system of geometric
shapes such as spheres, cubes, and pyramids is intended to ad-
dress this issue. The Shape Language promotes collaboration
and comprehension by providing participants with concrete
tools for representing abstract ideas. However, incorporat-
ing Shape Language into meeting contexts presents a substan-
tial challenge: effectively identifying and categorising these
shapes in dynamic surroundings, using computer vision tools.
An example of how a frame containing the Shape Language
objects look, can be seen in figure 1.

Recent improvements in computer vision, particularly in
object detection and segmentation, offer intriguing methods
for tackling this problem. Tools such as the Segment Any-
thing Model (SAM) [3] and its successor [5] have revolution-
ized object segmentation and tracking in images and videos.
Furthermore, object detection, recognized as one of the most
fundamental yet challenging problems in computer vision,

Figure 1: Example of a frame from the dataset containing the Shape
Language objects

has gained significant attention in recent years [10]. The cur-
rent landscape offers not only the capability to perform these
tasks but also a variety of models to choose from, each pre-
senting unique trade-offs in terms of performance, accuracy,
and application.

Despite their innovative potential, these tools exhibit no-
table limitations, primarily due to the novel state of the tech-
nology. Their effectiveness has not yet been thoroughly ex-
amined in specialized contexts, such as negotiations that em-
ploy human-object interaction. Additionally, there is a lack of
detailed evaluations regarding the accuracy, limitations, and
trade-offs of these models in specific application scenarios
(since most comparisons were done on generic object datasets
[9]), leaving researchers with limited guidance on the suit-
ability of specific models for particular tasks.

The following work addresses this gap by evaluating the
performance of novel object detection models in recognis-
ing and classifying Shape Language shapes during meetings.
By fine-tuning these models on a custom dataset, we are de-
termining their strengths, limitations, and applicability for
this specific scenario. The findings contribute to expanding
our understanding of how modern computer vision tools can
improve collaborative processes, providing a foundation for
improved human-object interaction technologies in organisa-
tional contexts.

The remainder of this paper is organized as follows. Sec-
tion 2 provides information about the literature used in order
to build this paper. Section 3 provides a detailed overview
of the methodology, including the frame annotation process,
the selection and fine-tuning of object detection models, and
the metrics used for evaluation. Section 4 presents the ex-
perimental setup, results, and a comprehensive discussion of
the performance of the models. Section 5 provides a discus-
sion that situates the results within the context of prior work,
offering insights into the capabilities and limitations of the
models. Section 6 outlines the limitations of the study, in-



cluding constraints related to the dataset and computational
resources. Section 7 addresses responsible research, focus-
ing on ethical considerations, reproducibility, and the impli-
cations of the findings. Finally, Section 8 concludes the paper
by summarizing the contributions and suggesting directions
for future research.

2 Related Literature

Advances in object detection and segmentation have been
critical to computer vision research. Several basic and re-
cent works have influenced the discussion of Shape Language
classification in meetings.

Object detection has advanced dramatically over the last
two decades, with deep learning algorithms making sig-
nificant contributions. Zhao et al. [8] presented a de-
tailed overview of object detection strategies, emphasising
the transition from traditional approaches to new deep learn-
ing frameworks. Similarly, Zou et al. [9] described the
progress in object detection over the last 20 years, empha-
sising the challenges and breakthroughs in dynamic contexts
such as real-world meetings.

Among the multitude of options when it comes to object
detection models, four particular ones have been chosen, after
careful consideration of their different characteristics:

* YOLOVS (You Only Look Once): Yolov8 builds upon
the foundation of the YOLO family of object detection
models, originally introduced by Redmon et al. (2016)
[6]. Tt is a single-stage object detection model that uses a
single CNN architecture to divide images into grid cells
and predict bounding boxes and classes directly for each
cell. Yolov8 is characterized by its speed and accuracy,
making it suitable for real-time applications, as well as
imbalanced datasets. These qualities make it a strong
candidate for applications requiring efficient and accu-
rate detection in dynamic environments. The main idea
of how Yolo works can be seen in figure 2.

Figure 2: Main idea of Yolo [6]

¢ SSD: (Single Shot Multibox Detector): SSD is a
single-stage object detection model that employs a sin-
gle CNN to predict bounding boxes and classes for mul-
tiple scales in a single pass [4]. It is fast and efficient,

with a simple architecture, making it ideal for real-time
applications. However, SSD struggles with small ob-
jects and has lower accuracy compared to RCNN vari-
ants, which can limit its effectiveness in scenarios with
fine object details. The architecture of SSD can be seen
in figure 3.

Figure 3: SSD architecture [4]

* RCNN: is a two-stage object detection model proposed
by Girshick et al. [2] in 2014, that uses region propos-
als generated via Selective Search for per-region feature
extraction and classification. It achieves high accuracy
and performs well with complex and small objects, mak-
ing it suitable for varied object sizes. However, RCNN
is slow, computationally expensive, and not end-to-end
trainable, which limits its practicality for real-time ap-
plications. The RCNN architecture is described in figure
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Figure 4: RCNN Architecture [2]

* RetinaNet: is a single-stage object detection model that
uses a single CNN with a Feature Pyramid Network
(FPN) for multi-scale feature extraction.[7] It predicts
bounding boxes and classes while achieving a balance
between accuracy and speed. RetinaNet performs well
with imbalanced datasets and offers strong performance
overall. However, it is slower than YOLO and SSD and
has a higher computational cost compared to simpler
single-stage models, making it less suitable for real-time
scenarios. The RetinaNet architecture is shown in figure
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Figure 5: RetinaNet architecture [7]

A summary of the features of these four models, as well
as the tradeoffs and differences between them, which con-



tributed to the choice of fine-tuning these specific models can
be found in figure 6. The comparison of speed, and accuracy
of the models was made relative to eachother, in order to give
a qualitative estimate of how the models perform when tested
on generic datasets.
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Figure 6: Summary of comparison of different features of the four
models chosen

3 Methodology

In figure 7, a high-level overview of the workflow, from
annotating images, until analysing results is provided. This
chapter will now provide a detailed explanation of each of
these phases.
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Figure 7: High-level workflow pipeline [1]

3.1 Frame Annotation Process

To facilitate effective analysis of the target models, the
videos in the dataset were preprocessed by converting them
into frames, which serve as discrete images for further analy-
sis. Rather than uniformly sampling frames across the entire
video, optical flow algorithms were employed to guide the
frame extraction process. This approach prioritizes sampling
frames in segments of the video where significant motion is
detected, ensuring that dynamic and relevant content is cap-
tured with higher temporal resolution. By focusing on areas
of substantial motion, this method not only enhances the effi-
ciency of the process, but also significantly reduces the mem-
ory footprint required for storing the frames. Additionally, it
minimizes the manual annotation workload by avoiding the
inclusion of redundant or static frames. For computing the
optical flow, the Farneback algorithm is calculated using the

@

cv2.calcOpticalFlowFarneback method, of the cv2 python li-
brary. This works by modeling the pixel intensity neighbor-
hood using a quadratic polynomial approximation. The in-
tensity I(x) at a point x in the image is expressed as:

Ix)~z Az +b 'z +c
where:

* x is the pixel location,

* A is a symmetric matrix representing the quadratic
terms,

* b is a vector for the linear terms,
* cis a scalar constant for the intensity offset.

After that, given two consecutive frames,
I (), Ia(z + d)

the algorithm estimates the displacement d (optical flow) by
minimizing the squared difference between the two frames:

B(d) = / s(z+d) — L(2)]? da

This is achieved by expanding the neighborhood polynomial
model and using an iterative process to compute the motion
field across the image.

Following frame extraction, a thorough annotation process
was carried out. Each object relevant to the study, specifi-
cally the geometric shapes from the Shape Language (sphere,
cube, and pyramid) was manually annotated and assigned its
corresponding class label. These annotations provide the nec-
essary ground truth for training and evaluating the models.
An example of an annotated frame, depicting the three object
classes, is shown in Figure 8. These annotated images form
the foundational dataset for training the target models, en-
abling them to learn object detection and classification tasks.

—_

Figure 8: Example of an annotated image containing the three geo-
metric object classes: sphere, cube, and pyramid.



3.2 The Target Models

With the annotated dataset prepared, four object detec-
tion and classification models were selected for fine-tuning:
YOLOVS, SSD (Single Shot Multibox Detector), R-CNN and
RetinaNET. The purpose of employing multiple models is
to evaluate their comparative performance in detecting and
classifying the three geometric object classes from the Shape
Language, as annotated in the dataset.

During training, the models utilize the annotated images
to learn the distinguishing features of each object class, ulti-
mately producing bounding box predictions and class labels,
along with confidence scores for each label, for unseen test
images. When choosing the models, their different character-
istics, along with their strengths and weaknesses were con-
sidered in order to make a decision.

3.3 Model Fine-Tuning

These models were then fine-tuned to identify and clas-
sify the geometric shapes using the annotated dataset. In
order to evaluate the models, the predictions of the test set
were plotted, along with some metrics (confusion matrix, F1
score, precision-confidence curve, recall-confidence curve,
and precision-recall curve). The comparative analysis of
these models provides insight into how well they perform in
terms of precision, and flexibility in recognizing the Shape
Language. An example of how the predictions of the models
looked after fine-tuning can be found in figure 9

T

Figure 9: An example of a very confident RetinaNet test frame with
predictions

4 Experimental Setup and Results

4.1 Experimental Setup

To ensure a robust and fair comparison of the four mod-
els, the following standardized experimental conditions were
established:

» Dataset Composition: The dataset comprised 90 anno-
tated images derived from four meeting scenarios, rep-
resenting the Shape Language objects (sphere, cube, and
pyramid). These images were selected after applying the
optical flow algorithm on the 4 recordings, and they were
distributed into three sets: 74 for training, 8 for valida-
tion, and 8 for testing. The training set was comprised
of 1322 shapes, out of which: 330 cubes, 406 pyramids
and 586 spheres.

¢ Model Training Parameters: Each model was fine-
tuned over 150 epochs, and a confidence threshold of
0.5 was uniformly applied to filter predictions.

* Data Representation: To maximize diversity, the im-
ages captured objects in varied orientations, positions,
and interactions within the meeting environment. An ex-
ample on how the setup of the data recorded looks in the
video can be seen in Figure 10.

Figure 10: Example of a frame from the dataset containing the Shape
Language objects

» Evaluation Metrics: Performance was evaluated using
standard metrics, including:

— Confusion Matrix: It provides a detailed break-
down of model performance for each class. Use-
ful for identifying which classes are being confused
and where the model is struggling.

— Precision-Recall Curves: Analyzes the trade-off
between precision and recall at different classifica-
tion thresholds. For example, high precision with
low recall means the model is conservative, predict-
ing fewer but more accurate positives.

TP

Precision = ———
TP + FP
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TP + FN

— F1 Score: Used to evaluate the model’s perfor-
mance when both precision and recall are impor-
tant, especially in imbalanced datasets where one
metric alone might be misleading. A high F1 score
indicates that the model has a good balance of pre-
cision and recall, making it reliable for classifica-
tion tasks.

Recall =

Pl 9 Precision - Recall

" Precision + Recall

4.2 Results - Confusion Matrices

The confusion matrices for the four models can be seen in
Figure 11.
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Figure 11: The confusion matrices showing the performance of the
4 models on the test set

In evaluating the performance of the four object detection
models against the ground truth, RetinaNet demonstrated the
most consistent and accurate results. RetinaNet detected 165
objects, slightly exceeding the ground truth of 154, but had
the lowest number of misclassifications (17). It performed
particularly well in detecting spheres (67), cubes (39), and
pyramids (42), closely aligning with the respective ground
truth values of 70, 41, and 43. RCNN can be thought of as
the second best, detecting 163 objects with 26 misclassifica-
tions. Although it performed well in pyramid detection (40),
it struggled with cube detection (31), which was significantly
below the ground truth. YOLOVS detected 146 objects, which

is slightly under the ground truth, and achieving relatively
low misclassification rates (20). However, it underperformed
in detecting spheres (56) and pyramids (37). SSD, despite
detecting 155 objects, had the poorest overall performance,
with 30 misclassifications and substantial underperformance
in detecting spheres (55) and pyramids (37). These results
highlight RetinaNet as the most reliable model for accurate
object detection in this context, while SSD showed the most
limitations.

A summary of the numbers of objects detected for each
model can be found in the table below:

Metric Ground Truth  RCNN SSD YOLOv8 RetinaNet
Number of objects detected 154 163 155 146 165
Number of spheres detected 70 66 55 56 67
Number of cubes detected 41 31 33 33 39
Number of pyramids detected 43 40 37 37 42

Number of wrong objects 26 30 20 17

Table 1: Performance comparison of RCNN, SSD, YOLOVS, and
RetinaNet models against the ground truth.

4.3 Results - Quantitative Performance Analysis
using Recall, Precision and F1 Score

The performance of four object detection models was
evaluated using confidence-F1, precision-recall, precision-
confidence, and recall-confidence curves. Each model’s ca-
pability to detect and classify the three Shape Language ob-
jects (sphere, cube, and pyramid) was analyzed. Below, a
performance analysis per metric is provided.

F1-Confidence Curves

These curves show the F1 score, a harmonic mean of preci-
sion and recall, plotted against confidence thresholds. Higher
F1 scores indicate better balance between precision (accuracy
of positive predictions) and recall (coverage of actual posi-
tives).

The F1-Confidence scores per class, and combined can be
seen in figure 12.
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Figure 12: The F1-confidence scores on the 4 models on the test set



* RetinaNet: Exhibits high F1 scores across the major-
ity of confidence thresholds, maintaining consistency
across classes. The performance remains stable un-
til very high confidence thresholds, indicating a robust
model.

* Yolov8: Demonstrates very high F1 scores within an op-
timal confidence range (0.2-0.8). Peaks at a confidence
threshold around 0.6-0.8 before slightly declining, indi-
cating it is highly effective in precise detections within
this confidence range.

e SSD: Shows similar results to RetinaNet in general
trends, but with slightly lower performance and more
variability in F1 scores among classes.

* RCNN: Performance decreases consistently with in-
creasing confidence thresholds. Shows balanced but low
F1 scores across all classes, suggesting weak detection
capability for specific shapes at high confidence levels.

Precision

The following graphs illustrate how the model’s precision
(ratio of correct positive predictions to total positive predic-
tions) changes with increasing confidence thresholds. Higher
precision at a broader range of confidence thresholds indi-
cates fewer false positives. The precision-confidence scores
per class, and combined can be seen in figure 13.
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Figure 13: The precision-confidence scores on the 4 models on the
test set

* RetinaNet: Precision increases consistently with higher
confidence thresholds, showcasing robust performance
at higher thresholds. Displays very good precision
across all classes until extreme thresholds.

* Yolov8: Achieves high precision even at low confidence
thresholds, with a peak near 0.8 confidence. Outper-
forms other models in precision consistency, especially
at moderate thresholds.

e SSD: Precision trends are similar to RetinaNet but
slightly lower across all confidence levels. Suffers from
sharper precision drops at the highest thresholds.

* RCNN: Precision trends gradually decline as confidence
thresholds increase, reflecting high false positives for
lower-confidence predictions. Performance is generally
weaker and more variable compared to other models.

Recall

The following graphs depict the recall (ratio of true posi-
tives to the sum of true positives and false negatives) at dif-
ferent confidence thresholds. Models with high recall across
thresholds are better at detecting positive instances. The
recall-confidence scores per class, and combined can be seen
in figure 14.
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Figure 14: The recall-confidence scores on the 4 models on the test
set

* RetinaNet: Displays high recall across most thresholds,
with only a sharp drop at extreme confidence levels, in-
dicating good sensitivity for all classes.

* Yolov8: Maintains high recall at lower thresholds but
declines rapidly at higher thresholds, highlighting limi-
tations in exhaustive detections, and a strong preference
for lower confidence thresholds in maintaining sensitiv-
ity.

* SSD: Shows moderate recall, with some difficulty in de-
tecting specific objects like spheres and pyramids.

* RCNN: Displays consistently declining recall as confi-
dence thresholds increase.

Precision-Recall

These curves analyze the trade-off between precision and
recall. A curve closer to the top-right corner indicates better
performance, as it suggests high precision and recall across
multiple thresholds. The precision-recall scores per class, and
combined can be seen in figure 15.
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Figure 15: The precision-recall scores on the 4 models on the test
set

* RetinaNet: High precision is maintained across a wide
range of recall values, showing reliable detection across
all classes. Sharp drop in precision occurs at high re-
call values for certain shapes, showing limitations under
exhaustive detection conditions.

* Yolov8: Near-perfect precision is achieved at most re-
call values, with steep declines only at extreme recall
levels. This indicates its suitability for highly accurate
detections, with low tolerance for false positives.

* SSD: Precision trends align with those of RetinaNet but
with sharper declines at high recall values. Shows re-
duced reliability compared to RetinaNet and YOLOVS,
especially for specific classes.

* RCNN: Precision remains relatively low across all re-
call values, showing inefficiency in identifying objects
without false positives. Performance is erratic at lower
recall values, indicating inconsistency.

The comparative evaluation of the four models shows some
differences in their ability to detect and classify the three
Shape Language objects. RetinaNet consistently demon-
strated the best overall performance, maintaining high F1
scores, precision, and recall across various confidence thresh-
olds and object classes. YOLOvS did well in precision-recall
metrics, achieving near-perfect precision at moderate confi-
dence thresholds, but its recall declined sharply at extreme
thresholds, indicating sensitivity to specific detection condi-
tions. SSD showed moderate performance, with acceptable
F1 scores but lower precision and recall, particularly for cer-
tain shapes like spheres and pyramids, making it less reliable
overall. RCNN exhibited the weakest performance across
metrics, with significant variability in precision and recall,
indicating challenges in detecting objects accurately, espe-
cially smaller or less prominent ones. Overall, RetinaNet
emerged as the most balanced and robust model, followed
by YOLOVS, while SSD and RCNN had some limitations in
handling this custom dataset. A summary of the results can

be seen in table 2:

Metric RCNN | RetinaNet YOLOvS SSD

F1 Score (Overall) Low High Very High (Optimal Range) | Moderate
Precision Low High Very High Moderate
Recall Moderate High High (Declines at Extremes) | Moderate
Performance Consi: Y Low High High Moderate
Best Confid Range Low-Mid | Mid-High Mid Mid-High

Table 2: Performance Comparison of Object Detection Models

5 Discussion

By using advanced models such as Yolov8, SSD, RCNN,
and RetinaNet, this study adds to the growing body of re-
search on how computer vision may improve working envi-
ronments. However, in order to fully comprehend the im-
portance and limitations of the findings, they must be placed
within a broader context.

5.1 Comparison to Previous Work

Traditional object detection research relies on generic
datasets like COCO or ImageNet, which may not effectively
capture the complexities of dynamic, real-world scenarios,
such as meetings involving human-object interaction. Un-
like previous studies, this study fine-tunes novel models, in
order to test their effectiveness specifically in identifying ge-
ometric shapes in interactive situations. This approach em-
phasises the distinct issues presented by small dataset sizes,
varying object orientations, and dynamic participant-object
interactions.

While previous models such as RCNN and SSD have been
verified on big, well-annotated datasets, the outcomes of
this work highlight their limits in terms of computing effi-
ciency and accuracy on small, specific datasets. This study
adds to the previous literature by extending the evaluation
of these models to specialised scenarios, revealing RetinaNet
and YOLOVS as particularly effective in balancing precision
and recall in Shape Language contexts.

5.2 Insights from Model Performance

The models’ performance study reveals numerous crucial
insights into their capabilities and limitations when detect-
ing Shape Language objects in meeting scenarios. RetinaNet
consistently outperformed all measures, thanks to its capac-
ity to handle multi-scale features and reduce class imbalance,
making it ideal for datasets with varying object sizes and
orientations. YOLOvVS achieved very high precision and F1
scores within an optimal confidence range, demonstrating its
usefulness for precise and efficient detections; nevertheless,
recall decreased at extreme thresholds, revealing sensitivity
to specific detection conditions. SSD demonstrated moder-
ate performance, with significant trouble preserving consis-
tency across object classes, most likely because to its sim-
pler architecture and less advanced loss optimisation. RCNN,
while useful for detailed detections in other contexts, fell
short due to its computational complexity and reliance on
region recommendations, which struggled with the dataset’s
low size and diversity. Overall, these findings highlight the



importance of model architecture, dataset features, and task-
specific obstacles in predicting detection performance. Reti-
naNet and YOLOVS appear as the most reliable models for
this task, with RetinaNet providing balanced performance
and YOLOVS excelling in precision-critical cases.

5.3 Reflection on Methodology and Results

The performance differences of RCNN, RetinaNet,
YOLOVS, and SSD can be attributed to their respective ar-
chitectures, dataset restrictions, scene complexity, and com-
putation constraints. RetinaNet outperformed thanks to its
Feature Pyramid Network (FPN) and focus loss, which al-
lowed for robust multi-scale identification and management
of class imbalances, resulting in high F1 scores, precision,
and recall. YOLOV8’s single-stage approach, which was op-
timised for speed and precision, worked well in most cases
but suffered with overlapping objects and high recall thresh-
olds. SSD, while ideal for real-time applications, performed
poorly for small or overlapping objects due to its simplified
architecture and loss function. RCNN’s two-stage technique,
while powerful for complex objects, was computationally ex-
pensive and unable to generalise on the small dataset, result-
ing in lower precision and recall.

Most likely, the dataset’s limited size and diversity further
exacerbated challenges, impacting models like RCNN and
SSD more significantly than RetinaNet and YOLOvVS. Ad-
ditionally, computational resource constraints likely hindered
optimization, particularly for resource-intensive models such
as RCNN and RetinaNet. These parameters explain the ob-
served performance differences among the models.

6 Limitations

While this study provides useful insights into the use of
computer vision technologies for identifying, segmenting,
and tracking the Shape Language in meetings, certain limi-
tations must be noted in order to motivate the findings and
guide future research paths.

6.1 Limited Dataset

The dataset used in this study is limited to a few record-
ings, which represent a narrow range of meeting situations
and object interactions. This restriction may have an impact
on the models’ generalisability because it does not fully re-
flect the diversity of object locations, lighting circumstances,
and participant behaviours. Furthermore, due to time con-
straints, only 90 frames were annotated, reducing the variety
and scale of the training data. A larger and more diversified
dataset is likely to improve model resilience and allow for a
more comprehensive evaluation of performance in different
scenarios.

6.2 Computational Constraints and Memory
Usage
The models were trained and evaluated with restricted
GPU power, limiting the experiment’s size and complexity.
For example, resource constraints prevented hyperparameter
adjustment and testing with bigger batch sizes or deeper mod-
els. This may have had an impact on the performance of

some models, particularly those that require a lot of comput-
ing power, such as R-CNN.

Moreover, the preprocessing pipeline, which splits videos
into frames and stores them for annotation and model train-
ing, requires a substantial amount of RAM. Although the ap-
plication of optical flow techniques reduced the amount of
redundant frames, the memory requirements for storing and
processing the dataset remained high. Future studies may
investigate more memory-efficient techniques, such as on-
the-fly frame generation or leveraging compressed video for-
mats.

7 Responsible Research

7.1 Ethical Considerations

While the study focusses on improving decision-making
processes and working together efficiency, it is also required
to critically assess the potential ethical consequences of im-
plementing such technologies in real-world settings. There
are two main ethical considerations that are relevant to this
study:

1. Privacy: The use of computer vision in meetings could
involve acquiring and analysing sensitive video data
containing individuals. Ensuring participants’ privacy
is critical. To overcome this, the study follows tight
data privacy procedures. All datasets were anonymised,
thus no personal identifiers were included in the analy-
sis. Any use of these technologies in real-world contexts
must follow existing privacy rules, such as GDPR, and
include mechanisms for participants’ informed consent.

2. Bias and Fairness: The models used in this study rely
on annotated datasets for training, which may introduce
biases depending on the dataset composition. This bias
may have an impact on the model’s accuracy and fair-
ness when applied to different surroundings or people.
To address this, the dataset was carefully chosen to in-
clude a wide range of object placements and settings.
Future research should investigate the models’ general-
isability by testing them on different datasets and finding
any biases in their predictions.

7.2 Reproductibility

Reproducibility is a key component of responsible re-
search. This study focusses on transparency and reliability
by:

1. Open-source technology: The preprocessing, annota-
tion, training, and evaluation frameworks, as well as ver-
sions of the five object detection models, are openly
available. This ensures that other researchers can repro-
duce and evaluate the results.

2. Detailed Methodology: The methodology section con-
tains detailed information on the data preparation, anno-
tation, and model training methods. The use of standard-
ised datasets and uniform evaluation processes means
that the findings may be independently validated. More-
over, all hyperparameters, training epochs, and experi-
mental settings are documented to ensure reproducibil-



ity. Any deviations from standard practices are clearly
stated.

In conclusion, this study follows responsible research
procedures by addressing ethical concerns, assuring trans-
parency, and promoting repeatability. These principles drive
the study’s contribution to the progress of computer vision ap-
plications in the workplace, while also protecting participant
rights while promoting trust in the use of new technology.

8 Conclusions and Future Work

8.1 Conclusion

The purpose of this study was to assess the performance
of four current computer vision models: YOLOvVS, SSD,
RCNN, and RetinaNet in recognising and categorising Shape
Language objects in meeting scenarios. These geometric
shapes serve an important role in promoting collaboration in
meetings by acting as boundary objects between abstract and
concrete concepts.

The findings show that RetinaNet regularly outperforms
competing models on all evaluation criteria, particularly pre-
cision, recall, and F1 score. However, YOLOVS appeared as
a strong contender, providing great precision and robust per-
formance while maintaining an optimal confidence level. In
contrast, SSD displayed moderate reliability, and RCNN ex-
perienced issues due to its computational complexity and in-
efficiency on the restricted dataset. These findings highlight
the need of balancing model architecture and dataset features
when using computer vision models in specialised situations
such as Shape Language recognition.

Despite these achievements, some limitations were discov-
ered in the study. The short dataset limited the generalisabil-
ity of the conclusions, while computing restrictions limited
the opportunity for hyperparameter adjustment and deeper
evaluations. These issues require more research, in order to
provide accurate results.

8.2 Future Work

This research opens several areas for future investigation.
Some of these come from finding solutions to the limitations
described in Section 7. Other future improvements can in-
clude the following:

1. Addressing occlusions and variable object sizes:
Real-world situations frequently include items of dif-
ferent sizes because of variations in position, orienta-
tion, or distance from the camera, as well as occlu-
sions, in which objects partially or totally block one an-
other. Accurate detection and classification are show-
ing limitations in these circumstances. To improve
the models’ capacity to manage these complexities, fu-
ture research can investigate different strategies like
transformer-based models such as DETR, in order to
deal with these cases better. Furthermore, robustness
and generalisation can be enhanced by using artificial
datasets with improved occlusion scenarios and gather-
ing data with a wider variety of object sizes.

2. Semi-supervised and active learning: To address the
limitations of manual annotation, future work could ex-
plore semi-supervised or active learning frameworks to
reduce annotation effort while maintaining high-quality
training datasets.

In conclusion, this study provides a framework for using
computer vision techniques to improve workplace collabora-
tion by automating the analysis of interactions with the Shape
Language. Researchers can improve these tools and broaden
their application to various and complicated real-world cir-
cumstances by resolving the identified limitations and imple-
menting the outlined recommendations in the future.
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