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Migrastatic therapy as a potential
game-changer in adaptive cancer
treatment

Katharina Schneider%, Louise Spekking?°, Sepinoud Azimi?, Barbora Peltanova3,
Daniel Résel?, Joel S. Brown*, Robert A. Gatenby*, Jan Brabek? & Katefina Starikova2?™*

Adaptive therapy, which anticipates and counters the evolution of resistance in cancer cells, has
gained significant traction, especially following the success of the Zhang et al.’s protocol in treating
metastatic castrate-resistant prostate cancer. While several adaptive therapies have now advanced
to clinical trials, none currently incorporates migrastatics, i.e. treatments designed to inhibit cancer
cell metastasis. In this study, we propose integrating migrastatics into adaptive therapy protocols and
evaluate its potential benefits through a spatial game-theoretic model. Our results demonstrate that
combining adaptive therapy with migrastatics effectively delays the onset of metastases and reduces
both the number and size of metastases in most cancer scenarios analyzed. Including migrastatics

to adaptive therapy not only extends the time to the first metastasis, but also enhances the overall
efficacy of adaptive therapies. Our findings suggest a promising new direction for cancer treatment,
where adaptive therapy, in combination with migrastatic agents, can target both the evolution of
resistance and the metastatic spread of cancer cells.

Cancer represents the second leading cause of death worldwide. Moreover, recent trends show that cancer may
become the first leading cause of death by 20302 Cancer treatment typically targets uncontrolled cancer cell
proliferation with the aim to eradicate tumors®=>.

In standard of care, patients are typically given the maximum tolerated dose (MTD), which is the highest
dose that a mean patient can handle without experiencing intolerable toxicity*®’. While MTD-based therapy
offers survival benefits, it often comes with severe side effects. Moreover, recurrence is almost inevitable due
to the emergence of therapeutic resistance®~'2. To address these challenges, adaptive therapy (AT), also known
as evolutionary therapy, has been proposed!>~%. AT involves adjusting treatment dosing and timing based on
cancer’s response to therapy. Mathematical models informed by known cancer biology and data have been
crucial in its development>!'®1821-23 Often, AT aims at maintaining a sufficient population of drug-sensitive
cells, enabling them to outcompete drug-resistant cells when treatment is not applied, and hereby control the
tumor burden longer. A pilot example of AT is Zhang et al’s protocol in metastatic castrate-resistant prostate
cancer (mCRPC)?4%>, In this clinical trial, mCRPC is treated with MTD until the total tumor burden is halved
compared to its initial size. Upon reaching this threshold, the treatment is stopped and the tumor is allowed to
regrow to its original size, allowing for competition between drug-sensitive and resistant cells. When the total
tumor burden reaches its initial size, treatment with MTD is reinstated and a new treatment cycle begins. Zhang
et al’s protocol aims to control the tumor burden through limiting the development of uncontrollable drug
resistance rather than cancer eradication and nearly triples patients’ time to progression 22>

Existing AT protocols aim at tumor containment, control or eradication!®!821222426 and they do not target
spread of the disease. However, up to 90% of mortality in solid tumors is due to metastasizing rather than cancer
growth alone?”?%. In order for the primary tumor to successfully metastasize, cancer cells need to complete a
number of sequential events, the so-called invasion-metastatic cascade?-3!,

Conventional cytotoxic and/or cytostatic therapeutics target uncontrollable proliferation, which ultimately
results in Darwinian selection of resistant clones within the tumor®2 These approaches ignore the invasive
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potential of cancer cells, and may support metastasizing®>. To effectively treat cancer, cancer cell motility and
invasion need to be successfully targeted.

Therefore, inhibiting cell motility via migrastatics, i.e. drugs targeting invasion and migration, has been
proposed as a novel therapeutic approach®-%. Unlike cytotoxic drugs that target proliferation, migrastatics
interfere with invasion mechanisms, addressing cancer’s motility to prevent metastasis.

Moreover, migrastatic strategies possess some significant advantages compared to cytotoxic therapies. While
cytotoxic therapy can result in tumor shrinkage, the migration capacity and metastatic potential of resistant cells
are not affected. Although the migrastatics are neither cytotoxic nor cystostatic they significantly reduce the
motility of cancer cells. Thus, one of migrastatics’ most significant advantages lies in the potential reduction of
high-dose cytotoxic treatment.

As novel drugs, migrastatics do not have a defined administration regime yet, and since their effect is
distinct from that of cytotoxics, it is crucial to adopt a new approach for their administration. Three specific
regimens of therapeutic use of migrastatic drugs have been proposed to combat the formation and progression
of metastases®®. Firstly, the neoadjuvant/adjuvant therapy suggests the administration of migrastatics before
and after surgical procedures. The inclusion of migrastatics seeks to counteract and/or to minimize the risk of
tumor cells initiating a metastatic program as a result of pro-invasive changes in their environment caused by
wound-healing processes (pro-migratory effect of cytokines) and post-operative treatments (anticoagulants)®’.
Secondly, the combination of cytotoxic and migrastatic drugs is proposed to effectively reduce the development of
metastases. Combining these two treatments aims to target both the primary tumor and the migratory potential
of cancer cells, reducing the likelihood of metastatic spread. Lastly, migrastatic therapy aims to minimize the
long-term risk of metastasis. It can be used alone to slow down or even prevent metastasis. Alternatively, it can
be used in combination with either non-systemic treatment targeting only the primary tumor, such as surgery or
radiotherapy, or in combination with immunotherapy>®.

We believe that incorporating migrastatics into both classical and adaptive therapy protocols has strong
potential to control tumor growth while simultaneously preventing metastasis. To demonstrate the potential
of including migrastatics into the existing treatment protocols, we utilize a spatial game-theoretic model that
is conceptually similar to that of You et al. (2017)*. The model allows us to examine a potential impact of
applying both cytotoxic and migrastatic treatments and that of applying migrastatic treatment only. As treatment
strategies, we investigate both the standard of care and an AT approach.

Results

Migrastatics prevent metastases and tumor growth

The spatial game-theoretic model has been tested with 5 alternative fitness matrices, representing potential
interactions between treatment sensitive and resistant cells. For details, see methods. Firstly, we evaluate the
effect of migrastatics alone with these five fitness matrices. Figure 1 summarizes this effect for fitness matrix
Ay, while Appendix A summarizes the outcomes with the other fitness matrices. In all case studies, including
migrastatics slows down the increase of total tumor burden when compared to no treatment (Fig. 1A). This is
likely due to the limitation of space when the probability of migration is lowered, making the placement of an
offspring less likely. As expected, with migrastatics, the number of metastases is lower, while time to the first
metastasis is longer (Fig. 1B). In addition to a lower total tumor burden and later metastasizing, the formed
metastases contain less cells (Fig. 1C).
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Fig. 1. Dynamics of cancer cells under migrastatic treatment for the case study with the fitness matrix A;:
Migrastatic treatment reduces the total tumor burden (A) by decreasing both metastasis formation (B) and
size of metastases (C). Time to first metastasis increases, and average metastasis size decreases. In all panels the
results are averaged over 50 simulations.
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Combining adaptive therapy and migrastatics hinders metastasizing

Hereafter we analyze the effect of migrastatics combined with cytotoxic treatments. Firstly, we note that the
addition of migrastatics to Zhang et al’s AT protocol does not alter the tumor burden’s expected oscillatory
behavior in all evaluated cases (Figs. 2, 3, 4, 5 and 6).

In all but one of the cases AT prolongs time to progression. In the case of the fitness matrix A5, AT becomes
ineffective around the 20th generation, due to all sensitive cells being killed by the cytotoxic drugs (Fig. 3B). This
is in correspondence with the fully resistant ESS of this fitness matrix. After the 20th generation, the increase
of the total tumor burden of MTD and AT per generation becomes similar, and as the cell population at that
generation is larger with AT, the total tumor burden of AT becomes higher than that of MTD.

With the fitness matrix A4, AT still facilitates oscillations at the end of the simulation (Fig. 2B) and cells
sensitive to the cytotoxic treatment are more frequent than resistant cells at this generation (Fig. 2A). Similarly to
the case of the fitness matrix As, the addition of migrastatics to the cytotoxic treatment prolongs time to the first
metastasis. Metastases occur first in conditions treated with AT, followed by MTD and last in MTD combined
with migrastatics. With both fitness matrices A4 and As, the average number of cells per metastasis when
migrastatics are applied is low. In the case of the fitness matrix A4, metastases occur earlier when migrastatics are
combined with AT, followed by migrastatics combined with MTD. However, at the end of the simulation, there
are no sensitive cells present for MTD with migrastatics, while they are still present when AT and migrastatics
are combined. Additionally, at this generation, both the number of metastases and the cell growth are lower
when AT is combined with migrastatics, compared to those of MTD with migrastatics.

In the case of the fitness matrix A3, only resistant cells remain halfway through the simulation (Fig. 4A)
and AT becomes ineffective (Fig. 4B). In the two other anti-coordination cases, A1 and A (Figs. 5 and 6), the
application of AT prolongs time to progression, as sensitive cells are still present halfway through the simulation,
with total tumor burden still oscillating at the end of the simulation for the case of A1 (Fig. 5A). In all cases
where sensitive and resistant cells are expected to coexist at the ESS, migrastatic treatment prolongs time to
metastasizing, and the final average metastasis size is smaller, with best results for AT combined with migrastatics.

Discussion

The aim of this study was to identify a treatment strategy that not only aims to inhibit tumor growth while limiting
the number of resistant cancer cells but also reduces the formation of metastases. This was to demonstrate a high
potential that migrastatic treatment may have, especially in combination with AT treatments.

We have demonstrated that Zhang et al’s AT protocol?*?* is successful in postponing time to progression
when compared to the standard of care for most scenarios studied. This is because this protocol prevents
outgrowth of resistant cell types and successfully facilitates the survival of drug-sensitive cancer cell populations.
However, due to the high total tumor burden the Zhang et al’s protocol maintains, it may promote cancer cell
migration and the formation of metastases. This often results in earlier metastasizing of the tumor and larger
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Fig. 2. Cancer cell growth with the fitness matrix A4 with four treatments combining Adaptive Therapy (AT)
or Maximum Tolerable Dose (MTD) with and without migrastatics. (A) Reduced metastases and persistence
of sensitive cells with AT. (B) Migrastatics do not inhibit overall growth. (C) Delayed and reduced metastases,
especially with AT. (D) Smaller, delayed metastases with migrastatics. Figures in panels C and D are averaged
over 50 runs.
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Fig. 3. Cancer cell growth with the fitness matrix As with four treatments combining Adaptive Therapy (AT)
or Maximum Tolerable Dose (MTD) with and without migrastatics. (A) Reduced metastases. (B) Migrastatics
do not inhibit overall growth and AT fails with tumors becoming fully resistant. (C) Delayed and reduced
metastases with migrastatics, earlier but fewer metastases with AT. (D) Smaller, delayed metastases with
migrastatics. Figures in panels C and D are averaged over 50 runs.
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Fig. 4. Cancer cell growth with the fitness matrix A3 and treatments combining Adaptive Therapy (AT) or
Maximum Tolerable Dose (MTD) with and without migrastatics. (A) Reduced metastases with migrastatics.
(B) Migrastatics do not inhibit overall cancer growth; AT fails with completely resistant tumors. (C) Delayed
and reduced metastases with migrastatics. (D) Smaller, delayed metastases with migrastatics. Figures in panels
(C,D) are averaged over 50 runs.

metastases. These results point to the need to expand the scope of adaptive therapies beyond drug resistance
alone and include targeting cancer cells’ invasiveness.

When migrastatics were added to both the MTD and AT treatment protocols, we observed both a decrease
in the number and size of metastases and an increase in the time to metastasis for all cases evaluated here.
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Fig. 5. Cancer cell growth with the fitness matrix A; under four treatments: Adaptive Therapy (AT),
Maximum Tolerable Dose (MTD), with and without migrastatics. (A) AT preserves sensitive cells; MTD leads
to resistance. In all treatment strategies, migrastatic treatment reduces metastasis. (B) Migrastatics does not
affect overall tumor growth. (C) Delayed, reduced metastasis with migrastatics. Metastases form earlier with
AT. (D) Smaller, delayed metastases with migrastatics, smaller metastates with AT. Results in panels C and D
are averaged over 50 runs.
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Fig. 6. Cancer cell growth with the fitness matrix A> under four treatments: Adaptive Therapy (AT),

Maximum Tolerable Dose (MTD), with and without migrastatics. (A) Migrastatics reduces metastasis

formation. (B) Migrastatics inhibits overall cell growth; AT fails after three cycles due to resistance. (C)

Migrastatics delays and reduces metastasis; earlier but fewer metastases with AT. (D) Migrastatics leads to

smaller, delayed metastases, with the fewest cells in AT combined with migrastatics. Figures in panels C and D
are averaged over 50 runs.
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Importantly, adding migrastatics does not interfere with the dynamics of total tumor burden and the oscillatory
behavior of AT. For fitness matrices where AT prolonged time to treatment failure, addition of migrastatics
to the AT improved the time to progression, number of metastases, and time to the first metastasis. Together,
our modeling results demonstrate that the combination of migrastatics with AT can help target both tumor
resistance and metastasizing.

While there is implicitly no reason for the prevalence of cells which would eventually get resistant to
migrastatics, because such resistance would not give them a proliferative advantage33%40, the synergistic effect
with AT will have yet to be validated in preclinical and clinical studies. Initially, the combination of AT with
migrastatic therapy will be tested in a 3D spheroid model*!, and subsequently in a suitable mouse model of
metastasis, tailored for testing of migrastatic drug efficacy, e.g., model from*2. Data collected during these
experimental studies can be used to validate our models and optimize AT enhanced by migrastatics.

Our model assumes a fixed location of the primary site and potential metastatic sites. Future studies should
validate our results when assuming varying potential number of metastases as well as varying locations of both
the primary site and potential metastatic sites. The location of the primary tumor may be a determining factor to
where metastases will form and the metastasis locations are correlated with patient survival*>*4,

In our game-theoretic model only resistance to the cytotoxic drug is assumed. This is because we expect
that little to no resistance against migrastatics will develop in the tumor cell population®2. This is hypothesized
because while standard drugs drive selection of resistant cell populations by targeting cell proliferation,
migrastatics do not disrupt proliferative signaling. Therefore, as migrastatics are not expected to reduce tumor
growth, no proliferative advantage would be gained by migrastatic resistance, limiting the enrichment for
migrastatic resistant cell types in the tumor environment. Our future work will validate this hypothesis in in vivo
and in vitro studies.

In the present model, sensitive and resistant cancer cell types are fixed and no transitions between these
two cell types occur. This deliberate simplifying assumption allows us to focus on competition between pre-
existing resistant and sensitive cells, a scenario commonly used in spatial agent-based models of cancer?>.
In general, phenotypic switching or mutation can be incorporated by allowing probabilistic type of changes
during the birth-death process, as is standard in many spatial ABMs*’. While our current formulation captures
treatment effects only through phenotype-specific birth and death rates®® and migration, future extensions
could include quantitative resistance or mixed qualitative-quantitative resistance, as well as switching along
fitness gradients®>*->0, We expect that introducing low-rate transitions between sensitive and resistant cancer
cells would modulate the relative frequencies of the phenotypes but would not alter the qualitative treatment
outcomes observed here.

The five fitness matrices (A1-As) used in the current study were chosen to represent qualitatively distinct
evolutionary games relevant to cancer eco-evolutionary dynamics. Matrices A — A3 instantiate anti-coordination
games with mixed ESSs, whereas matrices A4 and As represent coordination games with pure ESSs. The
latter instantiate the same type of games analyzed in recent works on coordination games in cancer®->* . Our
numerical choices were designed to instantiate these distinct game classes rather than to represent one specific
biological system. We do not expect that moderate variations in the fitness matrix entries alter the qualitative
treatment ranking or the advantages of combining migrastatics with adaptive therapy, because the evolutionary
game types remain the same.

While our model makes assumptions regarding resistance and initial conditions, these choices were selected
to represent key biological mechanisms at a tractable level of abstraction. In addition to resistance structure, two
further parameters are particularly relevant for interpreting treatment outcomes: the effectivity of the cytotoxic
drug and the initial tumor size. To evaluate the robustness of our findings, we examined the influence of these
two assumptions. In our baseline simulations, cytotoxic therapy removed 60% of sensitive cells per generation,
reflecting a strong but non-eradicating drug response under MTD-like dosing, while resistant cells remained
unaffected. This value was chosen to represent substantial therapeutic pressure without collapsing competitive
dynamics and an average affect of treatment. Importantly, this kill fraction lies within the previously reported
biologically plausible range of cytotoxic effectivity (40-90%)>*. Moreover, changing the cytotoxic effectivity
within this range produced qualitatively similar outcomes. Because the model is not tailored to any specific
cancer type or drug, we consider this value of 60% as a general and biologically plausible magnitude of the
cytotoxic effect®.

Likewise, all simulations were initiated with 2,000 cells (97.5% sensitive, 2.5% resistant), representing a small
heterogeneous tumor with a pre-existing resistant subpopulation. Sensitivity analyses across different initial
tumor sizes did not alter the relative superiority of migrastatic-augmented adaptive therapy, indicating that
our conclusions are robust to variation in initial conditions. Together, these results show that the qualitative
advantage of adding migrastatics to adaptive therapy does not depend strongly on the magnitude of cytotoxic
efficacy or starting tumor size. This robustness strengthens confidence that the combined strategy may remain
effective under realistic biological variability.

The fitness matrices used here are chosen to describe qualitatively different scenarios and demonstrate the
effect of different treatments in such scenarios. These results show that AT can be successfully applied in cases
of games with mixed-strategy ESSs. However, when resistant cells have the highest benefit from interacting
with their own type, compared to the proliferation probabilities of sensitive ones, AT does not improve time
to progression when compared to MTD. Here the resistant cells outcompete the sensitive cells and the tumors
become fully resistant, causing earlier treatment failure.

However, even when AT is ineffective, we demonstrated that addition of migrastatics to the standard cytotoxic
treatment is still effective in reducing metastases. Moreover, one can consider other forms of AT than Zhang
et al’s protocol, such as double-bind or extinction multi-drug evolutionary therapies'>*, which will likely be
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more effective and can still be combined with migrastatics. Treatment optimization to choose the best treatment
timing and dosing using optimal control theory is also a potential next step of our research® .

A valuable direction for future work is to parameterize our model directly through in vivo and in vitro data.
Many of the parameters, such as proliferation and death rates, resistance acquisition probabilities, and migration
probabilities, can be derived from existing experimental setups. For example, migration rates can be informed
by spheroid invasion assays or in-vivo tracking via intravital microscopy®, resistance rates can be estimated
from fluctuation assays or relapse kinetics, and frequency-dependent fitness values can be measured using
game assays in co-culture experiments®12. Agent-based models have also been calibrated to image-based
tumor patterns®® and experimental metastasis data®®. Incorporating such empirical parameterization into our
framework will enhance its clinical interpretability and predictive power.

In our simulations, we initiated the primary tumor with 2000 cells, representing a small but spatially structured
neoplastic population. This magnitude is comparable to typical seeding densities used in 3D in vitro tumor
models, such as spheroid and organoid assays, where 1000-3000 cells per well are commonly used and 2000 cells
often serve as a standard seeding density for robust spheroid formation and invasion assays®>-%’. Although larger
initial tumors could in principle be simulated, increasing No substantially raises computational cost while not
altering the qualitative behavior: sensitivity analyses showed that the qualitative outcomes regarding treatment
effect and the benefits of combining migrastatics with adaptive therapy remain unchanged. This robustness
reflects that the eco-evolutionary dynamics in our model are governed primarily by local interaction structure
and spatial competition, which scale consistently with system size.

We have demonstrated that by combining Zhang et al’s AT protocol** with migrastatics both resistance and
metastasis can be controlled longer and treatment failure is hereby delayed. This points to a promising new
treatment strategy combating both the proliferative and invasive aspects of cancer. Future work should focus on
extending the current model and validating these findings with in vivo and in vitro data, similarly to how it has

been done for other mathematical models>>61:68:69,

124

Methods

To examine the potential of migrastatics in the standard of care and adaptive treatments, we have developed a
continuous-space evolutionary game-theoretic model of metastatic cancer growth and its spread to potential
metastatic sites. This model allows us to explore the impact of cytotoxic and migrastatic treatments on the tumor
growth, formation of metastases, and composition of these metastases. The model includes the primary tumor
and eight possible metastatic sites. The cancer cells are either sensitive or resistant to the cytotoxic treatment
and may migrate and potentially form metastases. Our model includes both frequency-dependent and density-
dependent selection, as cancer cells’ probability of producing daughter cells is given by their pairwise interaction
with other cells within their neighborhood and is captured by the fitness matrix. Different fitness matrices
correspond to different scenarios regarding the likelihood of sensitive cancer cells being able to outcompete the
resistant ones with and without treatment, also seen through different evolutionarily stable strategies (ESSs).
We select examples with different fitness matrices for our case studies, to demonstrate the qualitative results
corresponding to different assumptions on cancer cells’ competition. Our spatial game-theoretic model was
implemented in Java, version 11.0.

Model dynamics

Our continuous-space model contains one primary tumor site with 8 possible migration sites, Figure 7 shows
a graphical overview of our spatial game-theoretic agent-based model. The field is defined as a square [—L, L]
x [~L, L] C R? where L is sufficiently large to avoid boundary effects. The primary site is in the center of
the field and is defined as a disc of a predefined radius with a center at (0, 0). We assume that metastases can
potentially form at 8 metastasis sites, which are located at discs with a predefined radius equal to the interaction
radius and placed in the field. While theoretically, metastatic sites could be put at any position in the field, in our
simulations we assume that their centers are at predefined locations. See Table 1 for all parameter values.

At the onset of the simulation, a predetermined number of cells are randomly distributed within the primary
site, comprising a predefined fraction of cells sensitive (type S) and resistant (type R) to cytotoxic treatment. Of
these cells, a predefined fraction is selected as invasive and can potentially migrate to one of the eight metastatic
sites, or from one of the migration sites to the primary tumor. The same starting configuration, i.e. the placement
of the cells of the primary site, is used for all case studies.

Interactions take place in generations, similarly to You et al. (2017)*. Within each generation, each cell in the
field is selected as a focal cell in a random order and undergoes the following steps:

1. Death: The focal cell may die according to a predefined death probability, which is equal for all cells in the
simulation. If the cell survives, it proceeds to the next step.

2. Migration: If the focal cell survives and possesses the property to be invasive, it migrates to a randomly select-
ed site among the eight possible metastatic sites with a predefined probability. Upon migration, a predefined
survival probability determines the cell’s survival at the new location. Surviving cells can proceed to the next
step.

3. Proliferation: In the final stage of each generation, cells have the potential to proliferate. To do so, an in-
teraction partner is randomly selected from the focal cell’s interaction neighborhood, which is defined as
a disc centered on the focal cell with a radius equal to the interaction radius. Proliferation occurs only if
the total number of cells within this neighborhood remains below the predefined local carrying capacity.
The probability of the focal cell producing an offspring of its own type is determined by the fitness matrix
A = (ai;)2x2. For afocal cell of type 7 interacting with a partner of type j, where i, j € {S, R}, the element
a;j in the matrix A defines the probability that the focal cell generates a daughter cell of its own type ¢. When
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Fig. 7. Schematic overview of the main steps of the spatial game-theoretic agent-based model, happening per
generation. In each generation, all cells are selected as focal cells in a random order. Once selected, each focal
cell undergoes up to 3 sequential phases. First, the focal cell may die with probability p. Dead cells are removed
from the simulation at the end of every generation when the total population is updated. If the cell survives, it
proceeds to the second phase, where it may migrate to one of the eight metastasis locations with probability g.
A migrating cell experiences an additional death probability r. A surviving cell (whether it migrated or
remained at its original location) then enters the third phase, where it interacts with a randomly selected cell
within its interaction radius. The element a;; of the fitness matrix (A;;)2x2 defines the probability that the
focal cell of type i produces a daughter cell of its own type when interacting with a cell of type j. All daughter
cells are added to the random place within focal cells’ interaction radius between generations and therefore
cannot act as focal cells or interaction partners within the current generation.

Description Value
Number of simulation runs 50
Number of initial cells 2000

97.5% sensitive cells,
Initial cell type distribution

2.5% resistant cells

Local carrying capacity (cells per unit area) | 6

0.15(A1-A3)0.10 (A4 & As)

Natural death probability

Density radius 1

Reproduction radius 1

—_

Interaction radius

Number of metastatic sites 8
Survival probability at a new site 0.1
Fraction of invasive cells 0.1

Migration probability without migrastatics | 0.1

Migration probability with migrastatics 0.01
(—60, 60), (0, 60), (60,60), (—60, 0) (60, 0), (—60, 60),(0, —60),(60, —60)

Metastasis center locations

Table 1. Parameters common for all evaluated scenarios.

the cell is determined to proliferate, the newly produced cell of the same type as the focal cell is then placed
randomly within the interaction neighborhood. Daughter cells in the current generation cannot be chosen
as interaction partners until the next generation, but are taken into account when evaluating whether the
carrying capacity has not been reached. New cells are therefore effectively only placed between generations.

In all simulations, sensitive and resistant phenotypes are fixed: no transitions between the sensitive and resistant
cells occur.

Case studies
We investigate the impact of different treatment schedules for our model with 5 different fitness matrices, each
corresponding to a different type of interactions between the sensitive and resistant cancer cells. An element a;;
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of the fitness matrix (a;;)2x2 defines the probability that cancer cell of type i produces an offspring of its own
type when interacting with cell of type j.

Three of these matrices represent competition between sensitive and resistant cell populations. In these three
matrices, interactions of a cell with its own type result in a proliferation probability of 0.2 for both sensitive and
resistant cell types, while proliferation probabilities when interacting with a cell of different type vary.

The first matrix, A;, corresponds to an anti-coordination gameSZ:

S R
S (02 0.7
R |03 02

This fitness matrix has a mixed evolutionarily stable strategy (ESS). Here, either type of cell has a higher
probability of proliferating when interacting with cells of the other type than when interacting with cells of its
own type. In the mostly resistant environment, sensitive cells will grow more than resistant cells, while in the
mostly sensitive environment, resistant cells will grow more than the sensitive cells.

The second matrix, Az, corresponds to an anti-coordination game®?, which switches the roles of the sensitive
and resistant cells in comparison to matrix A;:

S R
S 102 03
R 0.7 02

This matrix has a mixed-strategy ESS, too. Here, in a mostly resistant environment, resistant cells will grow
more than the sensitive ones, whereas when the environment consists of mostly sensitive cells, resistant cells will
grow more than the sensitive ones.

The third matrix, A5, corresponds to a symmetric anti-coordination game, containing one mixed-strategy

ESS>2:

S R
S 02 05
R |05 02

Here, neither sensitive nor resistant cells outcompete each other when interacting with a cell of the other
type.

Cancer cells of the same type could also cooperate with each other during tumor growth. Here we evaluate two
cases, one where sensitive cells benefit from interactions with their own type, with ESS containing only sensi-
tive cells, and another one, where the same holds for the resistant cells, and there is a fully resistant ESS. These
games are defined via fitness matrices A4 and As, respectively:

S R S R
s 108 02 .4 S (02 02
R 102 02 R 102 0.8

For each of the five fitness matrices, four treatment strategies are compared to each other and to no treatment,
in terms of the time to progression. The four treatment strategies combine two treatments:

1. Cytotoxic treatment: When cytotoxic treatment is applied, 60% of all sensitive cells are killed and removed
immediately in step the treatment is applied. Resistant cells are not affected.

2. Migrastatic treatment: When migrastatic treatment is applied, the probability of migration of all cells is low-
ered to 0.01.
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We compare (i) no treatment, (ii) applying migrastatics only, (iii) cytotoxic MTD treatment without migrastatics,
(iv) cytotoxic MTD treatment with migrastatics, (v) adaptive cytotoxic treatment (AT) without migrastatics, and
(vi) adaptive cytotoxic treatment with migrastatics. Here AT refers to Zhang et al’s protocol?#?. In this on- and
off- treatment strategy, MTD is administered until the overall tumor burden has been reduced to 50% of its
initial size. Once this reduction is achieved, therapy is paused, allowing the tumor to regrow to its initial size,
when the therapy is resumed and a new treatment cycle starts.

Data availability

The simulations were performed using the Migrastatics simulation software, implemented as a Java application,
version 11.0. The source code and executable JAR file are publicly available at https://gitlab.tudelft.nl/evolution
ary-game-theory-lab/Migrastatics.git. The Java platform is available from https://www.oracle.com/nl/java/tech
nologies/downloads/#java2l.
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