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Abstract

The escalating demand for higher data rates in modern communication networks are pushing more
transmitters and receivers to use a modulation technique with more spectral efficiency, like pulse am-
plitude modulation 4-level (PAM-4).

On the receiver side, phase detection for PAM-4 has proven to be difficult with most receivers us-
ing phase detection for non return to zero (NRZ) data. This neglects most transitions and thus some
phase information is lost. This results in low bandwidth and jitter tolerance, which is a problem in noisy
communication systems where it will lead to a high bit error rate (BER).

This thesis explores an integrated PAM-4 clock and data recovery (CDR) circuit utilizing a novel PAM-4
bang bang phase detector (BBPD) considering all data transitions. A digital oscillator with variable
gain is used in order to achieve high jitter tolerance as-well as low jitter generation. at 24Gb/s the CDR
consumes 8mW and generates 487fs of jitter. and has a 1 UI at 30MHz.
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1
Introduction

This chapter provides an introduction to the background information required to understand the thesis
project. It outlines an overview of the basic clock and data recovery (CDR) concepts as well as pulse
amplitude modulation (PAM) and recent developments in academia. Following this, it outlines the
motivation and specifications of the thesis project. Finally, a thesis outline is presented along with the
contributions of each chapter.

1.1. Clock and Data Recovery
In wireline communications, a data stream is transmitted over a channel from a transmitter (TX) to
a receiver (RX). A general block diagram is presented in Fig. 1.1. Data is serialized prior to being
equalized and transmitted across a channel. At the receiver side, the incoming data is first amplified
with a continuous time linear equalizer (CTLE) to compensate for channel loss. In most applications,
the transmitter clock is not transmitted; this would require extra power and an extra channel. Therefore,
the receiver has no information about the frequency and phase of the incoming data. A clock recovery
circuit is used to align the receiver clock with the incoming data. With the recovered clock, a retimer or
deserializer is used to create synchronized output data. Together, they make a CDR.

PLLReference
Clock

Equalizer, 
Driver 

Serializer 

TX 
Data 

Channel 
CTLE 

Clock
recovery

Deserializer 

RX 
Data 

Transmitter (TX) Receiver (RX)

CDR

Figure 1.1: General TX-RX architecture.

Most CDRs are based on a phase-locked loop (PLL) design, using the data as a reference instead
of a crystal oscillator. A CDR always consists of a few necessary components, as depicted in Fig. 1.2.
The incoming data is compared to the CDR clock by the phase detector (PD), a defining element in the
CDR that will be discussed later. Subsequently, the phase information is transmitted through a filter to
adjust the frequency of a voltage-controlled oscillator (VCO) to align its phase and frequency with the
data. The updated clock is then used for a renewed phase comparison and data extraction.

1
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Phase
detector

Data extraction

RX Input

RX Data

RX Clock

Filter VCO

Figure 1.2: Standard CDR block diagram

Since CDR topologies vary widely, comparing the state-of-the-art designs is complicated. The ab-
sence of a universally accepted figure of merit (F.O.M), due to the various, sometimes conflicting design
metrics, adds to the challenge of comparison. The optimal CDR choice depends on the specific imple-
mentation requirements.

The main design metrics for evaluating a CDR are as follows:

• Data rate: The maximum rate at which data can be processed by the CDR.
• Jitter tolerance: The maximum amount of jitter the CDR can tolerate before bits are misinter-
preted and bit errors occur.

• Jitter generation: The jitter that is generated by the CDR on the output clock.
• Jitter transfer: The amount of jitter the CDR transfers from input to output.
• Power consumption: The power consumed by the CDR, typically measured in pJ/bit for a fair
comparison.

Jitter tolerance and jitter transfer directly oppose each other. For jitter tolerance the input jitter needs
to be tracked accurately to the output in order to keep a valid data sample, thus increasing jitter transfer.
The bandwidth of the CDR needs to be increased in order to have better tracking. To minimise jitter
transfer the input jitter needs to be filtered out and a small bandwidth is required, thus decreasing jitter
tolerance.

An important part of data recovery is data re-timing. This is done by sampling the data with the re-
covered clock. An optimal point exists where the bit error rate (BER) is minimal. This point is in the
middle of a bit where amplitude noise, timing noise (jitter) and intersymbol interference (ISI) are least
noticeable. This process is illustrated in Fig. 1.3. Half a symbol shift is therefore required between the
received data rising edge and internal clock rising edge.
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TX Data 

TX Clock 

RX Input 

RX Clock 

RX Data 

Time 

(a) TX and RX waveforms

Optimal sampling point 

Time 

(b) Eye diagram and optimal sample point

Figure 1.3: CDR data recovery.

1.1.1. Pulse Amplitude Modulation
The previously discussed phase detectors were illustrated using non-return-to-zero (NRZ) data. A form
of pulse amplitude modulation (PAM) with two levels, where the data is encoded in the amplitude of the
signal. PAM-4 utilizes four different amplitudes, an eye diagram for NRZ data is illustrated in Fig.1.4a
and for PAM-4 in 1.4b. Due to the higher possible states, the data rate is twice the baud rate. This is
beneficial when high data rates are required. Loss in the medium is frequency-dependent, therefore it
is better to transmit data at a lower frequency. However, since the states are only separated by 1

3 of the
signal amplitude, the signal to noise ratio is −9.5dB lower than NRZ data without channel loss. This
creates an optimum modulation type depending on the channel loss and data rate [1].

(a) NRZ Eye diagram[1] (b) PAM-4 Eye diagram[1]

Figure 1.4: Eye diagrams for different PAM modulation techniques

1.2. Phase Detection
One of the most defining blocks of a CDR is the PD. In order to understand the challenges in PAM-4
phase detection, the topic of this thesis, it is beneficial to first analyze the phase detection methods of
NRZ data. Not all common methods will be covered. Many topologies rely on the binary nature of NRZ
data to extract the phase information and are difficult to adjust to PAM-4 data, with the Hogge PD being
a prime example [2].

Phase detectors can be divided into two classes based on the type of information they provide to the
rest of the CDR loop. A linear phase detector has a linear relation between input and output, as plotted
in Fig. 1.5a. This generally allows for faster phase and frequency locking, but phase detection can be
more difficult since the phase detector needs to provide a linear relation between the input phase error
and its output. Linear PDs are mostly used in analog CDR loops where complex calculations can be
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done easily in the current domain at no extra cost.

The Bang-Bang phase detection (BBPD) provides only binary information (early or late) to the loop filter,
as illustrated in Fig. 1.5b. This simplicity allows for easy implementation in digital PLL-based CDRs.
Since the phase information is already 1-bit quantized, no additional step is required to move from the
analog to the digital domain. However, the simplicity comes at a cost. Since both large and small
phase errors result in the same update to the VCO, the CDR must either over- or under-compensate
the VCO phase error. Under compensation will result in slow locking while over compensation will re-
sult in additional jitter generation due to the increased phase step (dithering jitter) creating a trade-off
between the two. A more in-depth analysis of BBPD is done in Chapter 3 3.

Output

0

(a) Linear PD transfer characteristic.

Output

0

(b) Bang-Bang PD transfer characteristic.

Figure 1.5: Phase detector classes

1.2.1. Alexander Phase Detector
The Alexander PD [3] uses positively and negatively clocked flip-flops to detect the phase error. The
topology is presented in Fig.1.6a. To illustrate the functionality, the waveforms for a lagging clock are
presented in Fig.1.6b. The input data is sampled at the positive clock flank with FF1 to create Dk and
at the negative clock flank with FF2 to create Ek. Dk represents the data samples and Ek represents
the edge or transition samples. On the subsequent clock flanks, the states are propagated to the next
flip-flops in order to store the samples. The Alexander PD compares the transition sample Ek−1 to both
its preceding bit Dk−1 and its proceeding bit Dk to determine the phase information. The samples of
Ek are not taken at rail-to-rail voltage since the sample is taken during a transition; the flip-flop acts as
a 1-bit quantizer. If Ek−1 andDk are opposite, it means that the edge sample was taken closer toDk−1

and the clock phase is leading the input data. Signal B becomes high in this case. If Ek−1 is equal to
Dk, as illustrated in the figure, the phase is lagging and signal A becomes high.
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(a) Alexander PD topology.

Din

Ck

Dk
Ek

A

B

(b) Lagging waveforms of the Alexander PD.

Figure 1.6: Alexander PD.

Comparing whether the transition Ek−1 was closer to Dk or Dk−1 can be extended to PAM-4 data.
This does pose extra challenges since a 1-bit quantizer is not sufficient for the multi-level data.

1.2.2. Baud-Rate Phase Detector
While the Alexander PD takes samples with twice the bit rate, a Mueller Muller PD [4] detects phase
error with only data samples. Therefore, it is also known as a ”Baud-Rate PD”. Several types of al-
gorithms exist, each with its own applicable data patterns. Let us examine an algorithm for baud rate
detection to understand the basic principles.

In the waveforms and samples of Fig.1.7, the clock signal CK is lagging the data stream Din sig-
nificantly. The phase detector takes samples at each positive clock flank to create Sk. The samples
are also resolved to the nearest data point to create Dk. For data patterns with one transition and two
consecutive bits, the following formula can determine phase information:

Phase error = (sk · dk−1)− (sk−1 · dk)
If dk ̸= dk−1

And dk−1 = dk−2

The first three samples are sk = −0.25, sk−1 = 0.5, and sk−2 = 0.25 relative to the mid voltage. The
resolved data dk, dk−1 and dk−2 is −1, 1, 1 respectively, and a quantized data stream will correspond
to this. Applying the aforementioned algorithm: −0.25 · 1 − 0.5 · −1 = 0.25 yields a positive value
corresponding to a lagging clock. For samples sk−4 = 0.25, dk−5 = −0.5 and dk−2 = 0.25, the same
can be computed: 0.25·−1−−0.5·1 = 0.25 again indicates a lagging clock. Not all data patterns provide
phase information. Alternating bits sk−2, sk−3, sk−4 will result in 0 for lagging and leading cases.
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Din

CK

Sk

Dk

sk sk-1 sk-2 sk-3 sk-4 sk-5 sk-6 sk-7

dk dk-1 dk-2 dk-3 dk-4 dk-5 dk-6 dk-7

Figure 1.7: Baud-Rate PD waveforms.

Baud-rate PD relies on ISI and the channel attenuation to compute the phase information. The pre-
ceding bit attenuates the amplitude of the proceeding bit. The point at which the data sample is taken
determines how much ISI is measured. Although the reduced sample rate is beneficial for high-speed
data links, there are several drawbacks. As mentioned earlier, not all data patterns provide phase in-
formation, requiring some signal processing. Other baud rate detectors may use different algorithms
requiring different data streams. Furthermore, the accuracy of the phase information depends on the
level of ISI; if ISI is too low to be measured (also dependent on the sample resolution), no phase infor-
mation can be detected. In the previous example, phase information can only be extracted when the
clock shifts enough for ISI to occur. As the data stream has limited ISI, the clock can wander freely in
a large range, resulting in high jitter.

Due to these intrinsic qualities of the Mueller-Muller PD, it is widely adopted in long-range high-speed
communication systems where the benefits of the lower sample rate become crucial, and significant
ISI occurs due to frequency-dependent attenuation of the channel. Since the Mueller Muller PD relies
on ISI, less equalization is needed in these systems. However, a high-speed ADC is required, usually
leading to high power consumption. The principle of baud-rate PD can be extended to PAM-4 with
more complex algorithms.

1.3. State of the Art
As the industry transitions towards PAM-4 wireline communication, more research is focused on en-
hancing receivers. The phase detector is a relatively new subject and there is no dominant method yet.
This section discusses several state-of-the-art PAM-4 phase detectors, their primary advantages, and
their limitations.

1.3.1. PAM-4 Linear PD Based CDR
In [5], a quarter-rate linear phase detector (QLPD) is implemented using a sample and hold technique.
The detailed schematic of the proposed CDR can be seen in Fig.1.8. Since the CDR runs at a quarter
rate of the baud rate, four data recovery paths are required, each using a different clock phase. Only two
phase detection paths are used to reduce power consumption. The CDR creates a voltage proportional
to the phase error and converts it to current using a V/I amplifier. A simple RC low pass filter is used
to update the LC-VCO. The VCO is used in a second PLL to generate the multi-phase clock required
for quarter rate operation. The data path employs a sample and hold technique with 3 comparators to
slice the data and a decoder to create an MSB and LSB output.
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Figure 1.8: Block diagram of [5].

The phase detector schematic is presented in Fig.1.9. At CKE0, the differential data is sampled.
Since only major transitions are considered, the ideal middle voltage is 0V , a phase offset will result in
a voltage offset from this ideal point. A minor transition from -1 to +1 also results in a middle voltage of
0V , but due to the different slope, this transition would result in a different gain. Edge selection logic
(ELS) uses the data paths to connect or disconnect the V/I stage. When a non-major transition occurs,
no current should be provided to the loop filter since it will not provide correct information. Rising and
falling transitions result in different polarities for the same phase offset. In order to compensate for this
problem, the ESL switches the positive and negative input to the V/I stage between rising and falling
transitions.

Figure 1.9: QRLPD schematic and waveforms [5].

The phase detection method shows a few issues. Although linear PD is good for avoiding the
dithering jitter of bang-bang phase detection, due to the different slopes andmiddle voltages, it becomes
impossible to consider all data transitions. Since only major transitions are considered and there are
only two phase detectors, the update density is low at 0.0625. This results in a low jitter tolerance of 1UI
at 2MHz. Due to the linear phase detection, accompanied by the LC oscillator and second PLL loop
for phase generation, the CDR has very low jitter generation of 352fs while only consuming 0.46pJ/bit.
The CDR is fabricated in 40nm technology.
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1.3.2. PAM-4 Alexander PD Based CDR
In [6], a PAM-4 CDR is proposed, based on the bang-bang Alexander PD. The block diagram can be
seen in Fig.1.10. Due to the high data rate, parallel PDs and data extraction units are used. Current
mode logic is used to update a VCO operating at the baud rate. A latch-based clock divider is used to
create the necessary clock phases for phase detection and data recovery.

Figure 1.10: Block diagram for [6].

Each phase detector takes three consecutive samples: The leading bit, VA, the lagging bit VB , and
the transition VE . The sum Vsum = VA+VB − 2VE shows if the transition was closer to VA or VB and is
calculated in the current domain with four V/I stages, one extra is needed for offset calibration. Again,
a problem arises with the ambiguity of the polarity of Vsum. If a falling transition occurred, a leading
clock results in a high Vsum but a rising transition results in a negative Vsum. To counter this problem,
the direction, VB − VA, is calculated in a similar fashion. The output of the phase detectors cannot
immediately control the charge pumps due to non-transitions where the VCO should not be updated.
Three charge pumps are controlled by each phase detector and activated by the data extraction unit
when a transition occurred. The phase detector considers all data transitions leading to a high jitter
tolerance of 1UI at 10MHz.

The CDR is fabricated in 28nm technology and has an incredibly low power consumption of 0.14pJ/bit,
while maintaining 574fs jitter generation. There are still a few downsides to this design, first the use
of an LC oscillator lowers the jitter generation but increases the area, this is especially important since
this design is meant for die-to-die communication. Since the phase detection method requires a lot of
calculation, a high loop delay is introduced, lowering the phase margin. Finally, since each level tran-
sition activates a charge pump, a different amount of charge pumps are used for different transitions.
Major transitions activate all three while minor transitions only activate one. This leads to a variable
phase detector gain and makes the loop difficult to optimize.

1.3.3. Baud-Rate PAM-4 PD Based CDR
In [7], a pattern-based baud rate phase detector is used. A diagram of the complete CDR and PD can
be seen in Fig.1.11. Four phase detectors are placed in parallel to allow for a quarter rate operation.
The majority voter (MV) assesses the major status among the phase detectors. Using MV instead
of individual PD outputs relaxes the speed at which the digital low pass filter (DLF) has to operate.
The DCO receives updates with a proportional path directly from the MV. Digitally synthesized logic
is employed for the integral path. Data recovery is facilitated using two comparators and reusing the
phase detector comparators in combination with a time-based decoder, omitting the use of an extra
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comparator.

Figure 1.11: Block diagram for [7].
.

The phase detector uses three consecutive data points as a pattern. A transition diagram is shown in
1.12. Each phase detector has two comparators with reference points -1 and 1. When two consecutive
data transitions occur with either -1 or 1 as the middle data point, it can be determined if the data falls
early or late depending on the output of the comparators. Only an update density of 0.125% is achieved
with this method and with the majority voter algorithm this further falls to 0.103%. When no equalization
is present the locking points of transitions C3,4,7,8 differ from C1,2,5,6. Therefore the phase detector has
two options, one where all eight transitions are considered and one for under-equalized signals where
only C1,2,5,6 are considered.

Figure 1.12: Transition diagram for [7].

The CDR is fabricated in 28nm technology. The drawbacks and advantages of baud rate phase
detectors become clear in this design. With a power consumption of 0.83pJ/bit including the continuous
time linear equalization (CTLE), it is a very efficient design. However, the jitter performance is lacking
with an integrated jitter from 1kHz to 100MHz of 430fs, a smaller bandwidth than previously discussed
papers. The jitter tolerance exceeds the mask for CEI-56G-VSR, which corresponds to a 1UI jitter
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tolerance at 0.8MHz, a relatively low standard.

1.4. Thesis Motivation
As discussed before, wireline PAM-4 transceivers are becoming more popular due to the higher spec-
tral efficiency the modulation technique provides. Many ADC-based PAM-4 CDR’s exist [8] [9] [10].
High-speed ADCs have a large power consumption, making these designs inefficient. Transceivers
with phase detection in the analog domain [11], [12] [13] have provided an adequate solution for this.
However, these designs do not consider all data transitions, which can improve both jitter generation
and tolerance.

To better understand this a phase domain model of an analog CDR is presented in Fig.1.13. The
output clock phase tracks the input data phase:

Kpd(s) KVI(s) LPF(s) VCO(s)

Figure 1.13: General phase domain model for CDR.

Φout = HclΦin (1.1)

Hcl =
Kpd(s) ·KV I(s) · LPF (s) · V CO(s)

1 +Kpd(s) ·KV I(s) · LPF (s) · V CO(s)
(1.2)

A better tracking of the input phase means more jitter tolerance is achieved. This can be done by
increasing the bandwidth or tuning the gain of each individual stage, as done in [14] [15]. However,
increasing the phase detector gain is most beneficial. Each stage provides an additional noise source.
Due to the closed-loop operation of the CDR, each noise source will be suppressed by the gain of the
preceding block. The output-referred noise of each source can be expressed as:

ϕ2
out,data,n = ϕ2

data,n|Hcl(s)|2 (1.3)

ϕ2
out,pd,n = ϕ2

pd,n|Hcl(s)|2
∣∣∣ 1

Kpd(s)

∣∣∣2 (1.4)

ϕ2
out,vi,n = ϕ2

vi,n|Hcl(s)|2
∣∣∣ 1

Kpd(s) ·KV I(s)

∣∣∣2 (1.5)

ϕ2
out,lpf,n = ϕ2

lpf,n|Hcl(s)|2
∣∣∣ 1

Kpd(s) ·KV I(s) · LPF (s)

∣∣∣2 (1.6)

ϕ2
out,vco,n = ϕ2

vco,n|Hcl(s)|2
∣∣∣ 1

Kpd(s) ·KV I(s) · LPF (s) · V CO(s)

∣∣∣2 (1.7)

Looking at these equations, each noise source, except for the input noise, can be suppressed
with a higher phase detector gain. The phase detector gain is linearly proportional to the transitions
considered and transition density.

Kpd(s) ∝ αT (1.8)

Since the transition density of PAM-4 is 0.75 instead of 0.5 for NRZ, this provides an opportunity for
improvement in jitter generation and jitter tolerance of the CDR.

The objective of this thesis is to design a PAM-4 CDR for wireline communication with low jitter genera-
tion and high jitter tolerance by considering all data transitions for phase detection. To have a practical
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design, a high data rate, low power consumption, and low area should also be achieved. The aimed
design specifications are presented in table 1.1.

Design Metric Specification
Modulation PAM-4
Data rate 24Gb/s
Jitter generation <500fs
Jitter tolerance 1 UI at 30MHz
Power consumption 0.5pJ/bit
Oscillator Type Ring oscillator

Table 1.1: Design requirements.

1.5. Thesis Structure
The thesis is structured into several chapters to describe the design and analysis of the PAM-4 CDR:

• Chapter 1: Introduction - This chapter introduces the thesis and discusses background infor-
mation for PAM-4 CDR.

• Chapter 2: System-Level Design - A novel phase detection method is proposed and based on
this a system-level design is presented.

• Chapter 3: System-Level Analysis - A linear method is proposed to analyze the system and
choose optional design parameters.

• Chapter 4: Circuit Design - This chapter elaborates on the design of the RF and mixed-signal
blocks in the CDR.

• Chapter 5: Register Calibration Loop - The calibration loop is discussed and analyzed.
• Chapter 6: Simulation Results - The simulation results are discussed and compared to the
expected performance.

• Chapter 7: Conclusion - This chapter concludes the thesis and provides suggestions for im-
provement and future work.



2
System-Level Design

This chapter delves into the system-level design and expands on the architecture of the PAM-4 CDR.
First, the difficulties of PAM-4 phase detection will be discussed, and a novel phase detection method
will be proposed. Subsequently, from the functionality requirements, a system-level design will be
constructed for the whole CDR.

2.1. Phase Detection Method
The theoretical benefits of a PAM-4 considering all data transitions have been explained in 1.4. How-
ever, this poses a few problems in practice. The adoption of PAM-4 complicates the phase detector
due to the quaternary nature of the input. Unlike NRZ data, where only transitions between maximum
and minimum voltage are considered, PAM-4 modulation involves the use of voltages between these
levels for data symbols. This leads to many more transitions, as illustrated in Fig. 2.1. The transitions
differ in three fundamental aspects: different slopes, different directions and different middle voltages,
making a universal approach to each transition impossible.

Major Middle high Middle low

Minor high Minor mid Minor low

Figure 2.1: Different transition types in PAM-4 modulation.

12
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Fig. 2.2 presents a graphical illustration of the proposed phase detection method. To utilize all data
transitions for clock recovery, the PD will take three samples. First, a data sample (shown in red), next,
a transition sample (shown in blue) and finally, a second data sample (again in red). With the two data
samples, the expected middle voltage (shown in green) can be determined. This reference voltage is
compared to the transition sample to determine if the phase is leading or lagging with respect to the
data. This method ensures all twelve transitions can be considered for determining the phase error.

D
at

a 
Vo

lta
ge

Time

Lagging clock Leading clock No information

C
lo

ck
Vo

lta
ge

Figure 2.2: Graphical illustration of the phase detection method.

The comparison of the reference voltage and transition sample alone is insufficient for determining
phase information. Due to the consideration of both rising and falling transitions, a leading clock can
result in either a higher or a lower sample voltage. This can be seen in the leading and lagging clock
examples in Fig. 2.2. In order to circumvent this problem, the sign of the comparison needs to be evalu-
ated along with the direction of the transition. An additional consideration arises when two consecutive
bits occur. this will result in no information on the phase of the data, and therefore the clock should not
be updated.

The use of reference voltages introduces potential challenges. The attenuation of the channel is un-
known, and variations in transition times can further complicate the determination of the middle voltage
(in relation to time). This renders the exact middle voltage unknown. If predetermined reference volt-
ages are used, the locking points of the transitions can differ. To address this, a calibration loop that
can adjust the reference voltages to an optimal point is essential.

The phase detection method and challenges described above can be summarized into several circuit
functions for the CDR, a flowchart is presented in Fig. 2.3.
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Figure 2.3: Flowchart of circuit functions

2.2. Block Diagram
The proposed top-level block diagram of the system can be seen in Fig. 2.4. In order to facilitate
enough computation time, eight phase detectors operating at 1

8 of the baud rate, operate in parallel.
Given that data extraction is required for phase detection, the PD’s also generate synchronized output
data. The PD’s provide tertiary information to the digital loop filter (DLF). To limit complexity, a bang-
bang PD is employed by the system.

The DLF consists of a proportional path for phase error correction and an integral path for frequency
errors [16]. The digitally controlled oscillator (DCO) generates 16 clock phases for the operation of the
PDs. Finally, the calibration loop provides the reference voltages to each phase detector and receives
phase information from one PD. Due to the low frequency of the calibration loop, phase information
of only one PD is sufficient for calibration. Considering all eight PD outputs for calibration will result
in unnecessary power consumption while not significantly improving performance. This block diagram
ensures the effective operation of the PAM-4 CDR.

PAM-4 PDPAM-4 PDDin PAM-4 PD DLF DCO

Dout 
Calibration

LoopPD 1-8

PAM-4 PDPAM-4 PDPAM-4 PD

Figure 2.4: Block diagram of the PAM-4 CDR

2.3. PAM-4 Phase Detector
The PD is the most complex block. A block diagram can be seen in Fig. 2.5. The accommodating
timeline of the calculation steps and data can be seen in Fig. 2.6
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Figure 2.5: Block diagram of the PAM-4 Phase Detector
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Figure 2.6: Timeline of calculation steps for 12GHz input data

The sample-and-hold circuits are designed to capture voltage samples of the incoming data at ϕ0

and ϕ1, corresponding to the transition and data, respectively. The timeline positions the transition
sample at 0ps since this is the moment the phase information is measured.

The data sample is sliced by three comparators at ϕ1 to determine the corresponding symbol. Each
phase detector only takes one data sample, the leading data sample is sliced by the previous PD. The
transition logic calculates which transition occurred with the two symbols. To maintain the validity of
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the transition logic outputs after the slicers reset, flip-flops are used as buffers. This step takes 208ps
and is ready at ϕ7.

The flip-flops generate control signals for the multiplexer (MUX). This can be done directly with the
flop-flop output due to the MUX design. A binary digital-to-analog converter (DAC) is used to create
a reference voltage. The MUX selects the bits of the register corresponding to the correct transition
and provides them to the DAC. The register is incorporated in the calibration loop outside of the phase
detector. All PDs require the same information. This step takes 250ps and is ready at 500ps after the
transition sample.

The generated reference voltage is compared to the transition sample using a comparator. However,
as discussed previously, this comparison alone does not provide phase information. An interpreter is
needed to combine the comparator information with the direction of the transition and to create tertiary
phase information in the case of non-transitions. Finally, the phase information needs to be buffered
to maintain its validity for a complete clock cycle. The last step takes 208ps and is done at ϕ2, 9 sym-
bols after the initial measurement. The information is passed to the DCO at ϕ3 due to the delay of the
flip-flop.

2.4. DLF and Oscillator
The digital low-pass filter needs to create a low-pass characteristic for the phase information provided
by the phase detectors. The DLF consists of a proportional path and an integral path. The block
diagram is presented in Fig. 2.7.
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Figure 2.7: Block diagram of the DLF and oscillator

The proportional path of the filter must cycle through the outputs of the eight phase detectors. This
needs to happen at the data frequency to maintain the instantaneous characteristic of the proportional
path. Given that the oscillator operates at 1

8 of the data frequency, the clock phases need to be com-
bined to create a smaller duty cycle before they can serve as select signals for the MUX.

The integral path does not require a higher frequency as it has a slower response. During each clock
cycle, the outputs of the eight phase detectors are summed and added to a counter that controls the
integral path of the DCO. The number of bits in the integral path determines the locking range according
to Eq. 2.1, with KDCO representing the DCO gain, ρ the integral path gain and N the number of bits
in the integral path. The 12 bits in the final design corresponds to a locking range of 50MHz in the
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positive and negative direction.

Locking Range = KDCO · ρ · (2N − 1) (2.1)

The DCO generates 8 complementary clock phases, resulting in a total of 16 clock phases. All the
clock cycles are necessary to provide the stages of the phase detector with the correct control sig-
nals. Additionally, a clock buffer is essential since not every clock phase will be loaded equally, this
imbalance would affect the phase spacing which could lead to timing errors.

2.5. Reference Calibration Loop
The final block is the reference calibration loop, which is necessary for adjusting the reference volt-
ages. This loop is needed to compensate for two phenomena. The first is unequal rise and fall times,
as illustrated in Fig. 2.8. If the data experiences unequal rise and fall and the same predetermined
references are used for rising and falling transitions, the locking points of rising and falling transitions
will not be aligned. The locking point of the CDR will be the average of all locking points, assuming
all transitions have an equal occurrence. However, since the locking point of each transition does not
align with the locking point of the complete CDR, unnecessary jitter will be generated. Therefore, the
reference voltages need calibration to address this issue and align all locking points.

Equal rise
and fall

time

Unequal
rise and
fall time

Average
locking point

Locking
points

individual
transitions

Locking
points 

rise
transitions

Locking
points 

fall
transitions

Average
locking point

Figure 2.8: Effect of unequal rise and fall transition times on locking point.

The second phenomenon involves deterministic non-idealities in the sampling. Due to the unequal
middle voltage of each transition, the overdrive voltage of the sampling switch will differ between tran-
sitions. This results in unique time constants, and thus, different delays. This leads to a positive offset
for falling transitions and a negative offset for rising transitions. Non-deterministic non-idealities, like
the comparator offsets or DAC Differential nonlinearity (DNL), cannot be compensated with this loop
since these phenomena are different for each phase detector.

A block diagram of a single calibration loop is illustrated in Fig. 2.9. In total, twelve loops are required,
one for each transition. This diagram depicts the functional aspects. The actual implementation of the
loop will be designed using register-transfer level (RTL) code. The loop can operate at a very low fre-
quency compared to the data frequency, an external clock CKext will provide this low-frequency signal.
The output of one phase detector needs to be buffered to the lower clock frequency in order to maintain
validity during the low-frequency clock.
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Figure 2.9: Calibration loop block diagram.

The buffered transition signals, PDout, Rise and Major for the major rising transition, will activate
the correct calibration loop. The phase information will be summed and accumulated each time the
loop is activated. If the accumulated phase information reaches a threshold the register voltage needs
to be adjusted. The accumulated phase information needs to be compared to both a positive and a
negative threshold since the locking point of a transition can both be early or late with respect to the
global locking point. The adjustment of the register can both be +1 or −1 depending on the direction
of the transition and the phase information. The register value is adjusted with an accumulator. After
the register is updated the accumulated phase information needs to be reset. The calibration loop is
further explained in Chapter 5.



3
System-Level Analysis

In order to analyze the noise sources in the system and to determine the required oscillator gain, a
phase domain model is required. First, a discrete-time domain model is presented. Subsequently, the
noise contributions are introduced and the complete model is translated to the phase domain. The
CDR is simulated in Matlab to derive the required system parameters, the expected performance and
to verify the phase domain model.

3.1. Discrete Time Domain Model
The time discrete or Z-domain model of the proposed PAM-4 CDR is presented in Fig. 3.1.

Figure 3.1: Discrete time domain model of the CDR.

The parameter of interest Tdata denotes the midpoint of the data transition. The CDR attempts to
align the sampling time Tout with Tdata by minimizing terr. The phase detector converts the incoming
timing error into tertiary information: either ”early”, ”late”, or ”neutral” in the absence of a transition. A
delay is also added to the system by the phase detector due to the calculation time required for the
phase information. The information is then passed through a digital low-pass filter with proportional
gain α and integral gain ρ, and the oscillator frequency is updated with gainKDCO

Hz
LSB . The DCO gain

is multiplied by a factor 1
f2
data

in order to move to a time step update. A sinc function is needed to model
the zero-order hold (ZOH) characteristic of the oscillator [17].

3.1.1. BBPD Linearization
The main obstacle in creating a linear model arises from the non-linear gain of the BBPD. The transfer
function of the phase detector can be characterized by the sign function 3.1.

Kpd(terr) =


−1 if terr < 0

0 if terr = 0

1 if terr > 0

(3.1)

19
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A linear approximation can be created by introducing a quantization error as discussed in [18]. Here,
Kpd remains constant while a variable quantization error creates the properties of the sign function. This
is illustrated in Fig. 3.2.

Output

Figure 3.2: Linearization of the BBPD gain.

u(t) = Kpdterr + q(t) (3.2)

In the given expression u(t) represents the output, Kpd denotes the linearized gain and q(t) repre-
sents the quantization error. The BBPD gain can be linearized due to the effect of jitter. In the presence
of a minor timing error between the CDR oscillator and the input data, jitter can result in a sample with
incorrect information. A smaller timing error and higher jitter increase the likelihood of missampling and
will thus result in a lower average output. This creates a linear gain behavior for small phase errors
[19]. Kpd can be estimated by minimizing the quantization error. Following the analysis of [18], Kpd

can be expressed by equation 3.3.

Kpd =

√
2

π

αT

σterr

(3.3)

Where αT denotes the transition density and σterr represents the timing error between DCO rising
clock edge and the middle of the input data transition. It is important to note that this analysis only
remains valid when the timing error of the system stays within the linear gain region, about 2σterr . The
CDR will still work with larger input errors, but its behaviour can not be linearized anymore. In order
to determine σterr , all the noise sources in the complete system and their transfer functions must be
known.

Moving on to the next block, the DCO, the oscillator’s gain is specified in frequency but can be trans-
formed into a time adjustment for Tout.

fDCO = fDCO,0 +KDCO ·W (3.4)
1

TDCO
=

1

TDCO,0
+KDCO ·W (3.5)

∆T = TDCO − TDCO,0 (3.6)
−∆T

TDCOTDCO,0
= KDCO ·W (3.7)

(3.8)

Assuming TDCO ≈ TDCO,0, which is the case for KDCO · W ≪ fDCO,0 with W representing the
dimensionless control word.

∆T =
KDCO

f2
dco

(3.9)
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3.1.2. Noise Sources
In the system, four distinct noise sources exist: input noise, DAC quantization noise, phase detector
quantization noise, and oscillator phase noise. Only the computation of quantization noise sources is
needed. The input noise arises from the implementation and the oscillator noise results from the circuit
design.

BBPD Quantization Noise
Recognizing that the power of the PD output u(t) is equal to the transition density and using equation
3.3, it follows that the PD quantization noise power is only dependent on the transition density [18]. The
output referred noise due to the quantization error, is of course dependent on more parameters.

E[u2] = E[(Kpdterr) + q)2] (3.10)

σ2
u =

1

N − 1

N−1∑
k=0

(u[k]− µ)2 = αT (3.11)

αT = K2
pdσ

2
terr + σ2

q (3.12)

σ2
q = αT − 2

π
α2
T (3.13)

DAC Quantization Noise
The calculation of DAC quantization noise is not straightforward. Fig. 3.3 depicts the consequences
of quantized reference voltages. Instead of the ideal voltage points the nearest quantized voltage has
to be used. This quantization error alters the locking point of an individual transitions. As the shift is
unequal for the transitions, the locking points of individual transitions become misaligned. The time
shift of locking point ∆t can be described by equation 3.14.

∆t = ttrans ·
Vq − Videal

Vtrans
(3.14)

Ideal DAC
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Vref a
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Locking
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Real
Locking
pointsVd

at
a

t

Figure 3.3: Illustration of the shift in locking point due to quantization noise

ttrans represents the transition time, Vq denotes the quantized reference voltage, Videal the ideal
reference voltage and Vtrans the voltage difference between data levels for a certain transition. This
formula assumes linear transitions, if this is not the case the slope has to be used around the locking
point.

A shift of the locking point in successive transitions is analogous to an instantaneous shift in the in-
put data. The power of the quantization error is equal to the power of a discrete time signal containing
the shift of each locking point.
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σ2
q,DAC =

1

N − 1

N−1∑
k=0

(∆t[k]− µ)2 (3.15)

Here, σ2
q,DAC denotes the power or variance of the quantization error, ∆t[k] is a vector containing

the shift of each locking point. N is the number of transitions, and µ is the average locking point. The
total number of transitions is 16 in PAM-4 since non-transitions also have to be considered. The shift
of a non-transition is zero since no locking point exists.

Alternatively, one can assume that the ideal reference codes are randomly positioned. The quanti-
zation noise can now be approximated similar to calculating the DAC quantization noise in [20]. This
approximation gives more insight into the effects of design parameters. Since only twelve reference
codes exist, the quantized references can fall on unfavorable positions and have a higher quantization
error. Eq. 3.18 can either over or under estimate the actual quantization noise due to this uncertainty.
VDAC represents the full DAC swing, N the number of DAC bits, ttrans the transition time and Vswing

the amplitude of the input signal.

σ2
q,DAC =

1

ALSB

∫ ϵ=
−Alsb

2

ϵ=
Alsb

2

A2
error(ϵ) dϵ (3.16)

σ2
q,DAC =

2

16

1

ALSB

∫ ϵ=
−Alsb

2

ϵ=
Alsb

2

ϵ2 · ( ttrans
Vswing

)2 dϵ+

4

16

1

ALSB

∫ ϵ=
−Alsb

2

ϵ=
Alsb

2

ϵ2 · ( ttrans
2
3Vswing

)2 dϵ+

6

16

1

ALSB

∫ ϵ=
−Alsb

2

ϵ=
Alsb

2

ϵ2 · ( ttrans
1
3Vswing

)2 dϵ (3.17)

σ2
q,DAC =

65

16

(
VDAC

(2N − 1)
√
12

)2(
ttrans
Vswing

)2

(3.18)

3.2. Phase Domain Model
The translation from the Z-domain to the S-domain can be accomplished using the following formula:

Z = ejωTdata (3.19)
For f << fdata (3.20)

Z = 1 +
s

fdata
(3.21)

Z−1 = 1− s

fdata
(3.22)

The open loop transfer function of the system is now given by:

Hol = Kpd · e−sTdata·D ·
(
α+

ρfdata
s

)
·
(KDCO

sTdata
· 1

f2
data

)
· sinc

( f

fdata

)
(3.23)

and in the closed-loop configuration:

Hcl =
Hol

1 +Hol
(3.24)

The sinc function is neglected since the approximation does not hold for larger frequencies where
the sinc function becomes noticeable.
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σterr can now be calculated using the phase noise profiles and the loop dynamics. It is important to
note that the incoming data jitter, DAC quantization noise and quantization noise have white spectra.

Ltot(s) = Ldata(s) + Lq,DAC(s) + Lq(s) + LDCO(s) (3.25)

Ltot(s) = Hcl(s) · (σ2
data+σ2

q,DAC) ·
(2π · fdata)2

1
2fdata

+
Hcl(s)

Kpd
·σ2

q ·
(2π · fdata)2

1
2fdata

+
1

1 +Hol(s)
·Sϕ,DCO(s)

(3.26)

σ2
terr =

∫ −0.5

0.5

Hcl(ω) · (σ2
data + σ2

q,DAC) ·
(2π · fdata)2

1
2fdata

dω +∫ −0.5

0.5

Hcl(ω)

Kpd
·
(
αT − 2

π
α2
T

)
· (2π · fdata)2

1
2fdata

dω +∫ −0.5

0.5

1

1 +Hol(ω)
· Sϕ,DCO(ω) dω (3.27)

With the equations 3.3 and 3.27 an analytical solution can be derived given the phase noise profile
of the DCO and the input noise are known. Alternative analytical approaches for the BBPD gain are
presented in [21], [22] and [23]

3.2.1. Limit Cycling
The linear system not only fails in the presence of large disturbances but also in scenarios with minimal
noise. The absence of noise prevents the loop from converging to a stable point. Due to the delay and
fixed frequency gain, the system toggles between phase states, resulting in spurs at specific frequen-
cies in the phase spectrum. This phenomenon is known as limit cycling [24], [25]. While ring oscillators
are less prone to this issue due to the random input data, it remains important to be mindful of this
aspect. The minimum noise requirement can be expressed as:

σterr ≥ αKDCO(D + 1)

αT f2
dco

√
3

(3.28)

3.3. MATLAB Time Domain Model
A time domain simulation of the system was created in Matlab, similar to the approach in [26], and
compared to the linearized phase domain model. Matlab code can be found in appendix A. The results
are presented in Fig. 3.4. It can be seen that the quantization noise is slightly underestimated. This
can be attributed to the timing error occasionally falling outside the linear region.
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Figure 3.4: Comparison of linear model and time domain simulation

The circuit implementation of the phase detector introduces a few critical non-idealities to the system.
These can have a significant impact on the system and should therefore be added to the Matlab model.
The modelled non-idealities are:

• Feed-through: When the sample switch is closed, some feed-through still occurs, attenuating
the sample.

• Comparator settling: If the difference between the sample and the reference voltage is small,
the comparator cannot settle in the given time, leading to no phase information.

• Low bandwidth integral path: The integral path is not updated at the data rate but at the DCO
frequency.

• Deviations from the ideal oscillator gain: The final DCO will have non-ideal gain due to mis-
match and compression.

These effects cause the timing error to deviate from the Gaussian distribution assumed in [18]. The
PD gain can be calculated with the simulated decisions and timing error.

Kpd =
E[u(t) · terr]

E[t2err]
(3.29)

And for the quantization error:

q[k] = u[k]−Kpd · terr[k] (3.30)

σ2
q =

1

N − 1

N−1∑
k=0

(q[k]− µ)2 (3.31)

This way, the noise contributions of the quantization and oscillator can be compared, and an optimal
Kdco, ρ, and N can be chosen.

3.4. Parameter Design
The system has three tunable parameters: the number of DAC bits N , the oscillator gainKdco, and the
integral path gain ρ with respect to α. Here, α is set to one.

3.4.1. Number of Bits
The DAC should be designed with a minimal number of bits to reduce power consumption. However,
choosing too few bits will result in additional phase noise. The power of the quantization noise can be
calculated using equations 3.14 and 3.15, as discussed previously. The noise is shaped by the closed-
loop transfer function. Furthermore, the DAC noise reduces the PD gain, increasing the contribution
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of other noise sources. The additional phase noise due to the DAC thus consists of both its direct and
indirect contributions, making it difficult to calculate its overall impact analytically. In Fig. 3.5, the total
phase noise and the direct DAC quantization phase noise are plotted for N = 4, 5, 6 for a worst-case
scenario of a maximum transition time of the incoming data. N = 5 is chosen since it adds only 40fs
of jitter while significantly reducing power consumption. In practice, the added jitter will most likely be
less due to the sinusoidal transition waveform having a steeper slope around the locking point.
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Figure 3.5: DAC quantization noise contribution

3.4.2. Optimal Parameter Choice for Jitter
The only parameters that can be tuned without changing the circuit architecture are Kdco and ρ. In Fig.
3.6, the phase noise and open loop transfer functions are plotted for three different oscillator gains:
4.5MHz, 9MHz, and 25MHz. If the gain is too low, i.e., 4.5MHz, the oscillator thermal noise is not
sufficiently suppressed, and therefore, jitter will be too high. If the gain is too large, the phase margin
degrades, and limit cycling occurs. This also leads to an increase in jitter generation. The optimalKdco

is 9MHz.

(a) Kdco = 4.5MHz. (b) Kdco = 9MHz. (c) Kdco = 25MHz.

(d) Kdco = 4.5MHz. (e) Kdco = 9MHz. (f) Kdco = 25MHz.

Figure 3.6: One sided PN spectrum and Bode Plot for different Kdco.

The phase margin experiences degradation due to delay. This effect is illustrated in the two cases
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examined in Fig. 3.7. In Fig. 3.7a, a delay of 5 symbols is used, enabling a large open-loop gain and
thus a large Kdco. In Fig. 3.7b, the delay is increased to 15 symbols while maintaining Kdco. It is clear
that the phasemargin has degraded significantly, resulting in a peak in the phase noise spectrum. Since
a highKdco is needed to sufficiently suppress the DCO noise, it is important that the delay is minimized
in the system. If it cannot be minimized, it can be beneficial to increase the power consumption in the
DCO, lowering the phase noise and thus the requiredKdco for optimal suppression. In the final system,
a delay of 10.5 bits is achieved.

(a) Delay = 5symb. (b) Delay = 15symb.

Figure 3.7: Phase margins of the CDR for different delays.

The second adjustable parameter is the integral gain, ρ. Fig. 3.8 presents the Bode plot and phase
noise for three distinct values of ρ. As ρ increases, the zero in the DLF shifts to a higher frequency
as illustrated in Fig. 3.8d - 3.8f by the red line, giving more prominence to the proportional path. If ρ
is chosen too low, as shown in Fig. 3.8a, the DCO noise is not suppressed enough, and flicker noise
will start to have an influence. Note that flicker noise is absent in the time-domain simulation but only
present in the linear model. A lower ρ also reduces the locking range for a given number of bits in the
integral path according to Eq. 2.1. If ρ is chosen too high, as shown in Fig. 3.8c, it will reduce the
phase margin, which is clearly visible in the Bode plot in Fig. 3.8f. A final value of ρ = 0.001 is used.
This leads to a minimal reduction in phase margin while suppressing the flicker noise and maintaining
enough locking range.

(a) ρ = 0.0001. (b) ρ = 0.001. (c) ρ = 0.01.

(d) ρ = 00001. (e) ρ = 0001. (f) ρ = 001.

Figure 3.8: One sided PN spectrum and bode Plot for different ρ.
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3.5. Jitter Tolerance
Jitter tolerance is the maximum allowed jitter amplitude at a specific frequency in order to maintain an
acceptable bit error rate (BER). The linearized model is unusable for calculating jitter tolerance since
cycle slipping needs to occur. The phase error is too large for the linear model to stay valid.

To ensure a reasonable BER, we aim to keep the phase error below h, measured in degree or unit
intervals UI, h depends on the CDR’s performance and incoming signal quality. A graphical illustration
of h can be seen in Fig. 3.9, with tdata representing the bit period, ttrans the transition time and σrj the
random jitter between the clock and the data. The clock can drift a certain amount h before a bit error
occurs.

In an ideal case, h equals to π radians or 0.5UI (half the bit) since ideally, the clock is situated in
the middle of a bit. For PAM-4 modulation, it’s crucial to avoid sampling in transition regions to prevent
errors, especially for major transitions quickly crossing to the next symbol level. Random jitter also
needs to be considered. To achieve a BER of 10−12, 7σrj needs to be taken into account. h can be
calculated in UI with equation 3.32.

σrj

tdata

ttrans ttrans
h

Figure 3.9: Graphical description of h.

h =
tdata − 1

2 trise −
1
2 tfall

2tdata
− 7σrj

tdata
(3.32)

3.5.1. Cycle Slipping
Since the linear model is invalid, another method is needed to find the point where terror > h. There
are three regions in the jitter transfer function. At high frequencies, the transfer is flat since the CDR
cannot keep up with the input jitter. At medium frequencies, the proportional path is dominant and
the transfer has a slope of −20dB/dec. At low frequencies, the proportional path is dominant and the
transfer has a slope of −40dB/dec.

In the flat region, the jitter tolerance is equal to h since no jitter is transferred from input to output
due to the high frequency.

In the−20dB region, the proportional path of the CDR can compensate for phase errors. To approx-
imate the maximum tolerable jitter, let us examine the case presented in Fig. 3.10a. In this figure, the
excess input and output phase are plotted when a sinusoidal jitter is applied to the input data. Since in
this region the frequency is too high for the proportional path to have an effect, only the linear phase
compensation of the proportional path is considered. The phase change of the input is too large for
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the CDR to keep up. With each time step, a larger phase error between input and output is created.
The maximum phase error ∆ϕmax occurs when the slopes of the input and output are equal. After this
point, the output starts to catch up. Since this point is difficult to approximate, the zero crossing of the
excess output phase is considered, here the phase error ≈ ϕmax. The following derivation finds an
approximate formula for the jitter transfer.

ϕin(t) = ϕin,a cos (ωt+ δ)

ϕout(t) = ϕout,a −KDCOαT

∆ϕmax = ϕin,a cos (ω
T

4
+ δ)

δ = arccos
(π2KDCOαT

ϕin,aωin

)

Equating ∆ϕmax to h and solving for ϕin,a gives:

|GJT | =
√
π4(αTKDCO)2 + h2ω2

in

ωin
(3.33)

(a) Dominant proportional path. (b) Dominant integral path.

Figure 3.10: In and output phase error [19].

The low-frequency region is the The −40dB/dec region, where the integral path of the system is
dominant. This region can be approximated with a similar method for a quadratic output phase instead
of a linear one. A graphical illustration is given in Fig. 3.10b. Now the approximate maximal phase
error occurs at t = T

2
√
2
.

ϕout(t) = ϕout,a −
∫

αTKDCOρfdatatdt

ϕout

(T
2

)
= −ϕout,a = ϕout,a −

1

2
αTKDCOρfdata

T 2

4

∆ϕmax = ϕin,a cos (ωin
T

2
√
2
+ δ)

δ = arccos
(π2αTKDCOρfdata

4ϕin,aω2
in

)
Equating ∆ϕmax to h and solving for ϕin,a gives:

|GJT | ≈
√
0.06c2 − 0.31chω2

in + h2ω4
in

ω2
in

(3.34)

c = αTKDCOρfdataπ
2 (3.35)
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The result can be seen in Fig. 3.11a for Kdco = 9MHz. With a jitter tolerance of 1UI at 14MHz,
the jitter tolerance is lower than the desired specification of 30MHz. However, the jitter tolerance can
be easily increased with a higher Kdco due to the high transition density. In high-jitter environments,
where the jitter tolerance is more important, this does not lead to an increase in jitter generation due to
the reduced Kpd. If Kdco = 19.5MHz, the jitter tolerance increases to 1UI at 31MHz as can be seen
in Fig. 3.11b. It is therefore proposed that the oscillator can switch between two frequency gains.
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(a) JGEN optimised path with KDCO = 9MHz.
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Figure 3.11: Estimated jitter tolerance.



4
Circuit Design

This chapter covers the circuit design at the transistor level of the phase detector, digital low-pass filter,
and oscillator. It also discusses the layout of the phase detector and verifies the functionality of each
block.

4.1. Phase Detector
The phase detector consists of several analog and digital blocks, each requiring different design con-
siderations. The primary design bottleneck of the phase detector is the delay. As seen in section 3.4.2,
a lower delay in the phase detector allows for a larger oscillator gain, increasing the suppression of the
dominant noise source, the DCO. Power consumption is also an important factor since, in the complete
CDR, 8 parallel phase detectors exist. An accurate delay can only be found with a layout; therefore,
the layout of the phase detector is needed to accurately illustrate the functionality of the CDR.

4.1.1. Sample and Hold
The sample and hold circuit is responsible for taking a sample of the incoming data and holding it before
it is used by the comparator. The comparators require a input signal larger than the PMOS threshold
voltage. Raising the signal after the sample and hold circuit would introduce an additional step and
thus, additional delay. In order to circumvent this the incoming data ranges from 0.6V to 1.1V . In future
work, an level shifter is needed to raise the signal to this level. Although sampling a higher voltage
signal is more difficult due to the increased resistance of PMOS transistors, the timing budget in the
phase detector is more important. In order to be able to compensate for the increased resistance of
the PMOS transistors, a bulk connection is used to increase the overdrive voltage. The sample and
hold circuit consists of a large switch with dummy switches and a sampling capacitor. The schematic
and its waveforms can be seen in Fig. 4.1. The sampling circuit is the same for both the data sample
and the transition sample to ensure equal time constants. The sampling capacitor cannot be made too
large due to the increased charging time, the bottom limit is set by the discharging of the capacitance
due to leakage current and, most importantly, the kickback of the comparators.

30
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Figure 4.1: Sample and Hold Circuit.

The waveforms are presented in Fig.4.1b. The control signals C and nC are combined clock sig-
nals with a higher duty cycle for C (87.5%) and a lower duty cycle for nC (12.5%). This is done for two
reasons: if direct clock signals with 50% duty cycle would be used, four sampling capacitors would be
connected at all times, increasing the load on the level shifter. Now only one sampling capacitor is con-
nected at all times, reducing the load. Additionally this also ensures the transition sample stays valid
for a longer time increasing the calculation time budget. The transition sample needs to be compared
to the generated reference voltage before the switch opens and a new sample is taken. With the lower
duty cycle the calculation budget increases from 4 symbols, to 7 symbols.

M1 is the main sampling switch, its width is large to reduce on-resistance. Increasing it indefinitely
will result in the parasitic capacitances becoming dominant over the sampling capacitance and thus
will have no benefit.

Since M1 is relatively large, problems arise in the circuit. Charge injection occurs when switch M1
turns on. This can easily be mitigated by the dummy switches M2 and M3 having half the size of M1.
The dummy switches turn on when switch M1 turns off, absorbing the injected charge.

Another problem is the drain-source capacitance Cds. This will result in a capacitive division with the
sample capacitor when the switch is off, and feed-through of the data will occur, as can be seen in
Fig.4.2. Without shielding, the feed-through on the sample would reach 15.7% of the input, leading to
large errors in the transition sample. Since most of Cds comes from the metal connecting the doped
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regions, metal shields can be placed over the gate with a strong connection to ground to insulate the
drain and source metal connections [27]. The schematic layout can be seen in Fig.4.3. This lowered
the feed-through to about 0.5% in simulations.
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Figure 4.2: Sample voltage with and without shielding.

Fig. 9: Comparison table. 

This work [3] [2] Kull, ISSCC

2013

D. Li, JSSC 

2020

[6]

Temperature [K] RT 4.2 RT 4.2 RT 4.2 RT RT RT

Architecture TI SAR TI SAR TI SAR SAR SAR TI SAR

Max fs[MS/s] 900 1000 1000 900 1000 1300 900 12800

Resolution [bit] 7 7 6-8 8 7 7

Technology [nm] 40 40 40 32 40 65

Supplies [V] 1.1 1.1 1.1, 2.5 1 1.1 1.2

SNDR@Nyquist [dB] 38.2 38.7 38.2 41.1 33.4 36.2 39.3 39.7 26.4

SFDR [dBc] >50 >50 >50 >50 48.4 48.5 49.6 54.8 32.4

Power [mW] 1.871,2 1.791,2 1.941 10.31 10.61 3.1 2.6 162

FoMw[fJ/c.step] 31.31,2 25.41,2 29.21 20.91 2601 2001 28 36.6 740

Core area [mm2] 0.0421,2 0.0421 0.0451 0.0015 0.014 0.23

ADC driver ✔ ✖ ✖ ✖ ✖ ✔

1Full ADC, clock receiver and all timing circuitry 2including amplifier

Fig. 3: Proposed floating inverter amplifier (FIA). 
Fig. 5: Back-bias generation DAC.

Fig. 4: Cascode (M5-M8) layout. 

Fig. 7: Measured a) spectrum @ 4.2 K, b) spectrum @ RT, c) SNDR/SFDR vs. fs @ Nyquist d) SNDR/SFDR vs fs. 

Fig. 8: Measured a) INL/DNL, b) two-tone test. 

Fig. 2: Timing diagram.
Fig. 1: System overview with timing calibration.

Fig. 6: Chip micrograph.

Figure 4.3: Schematic shield layout [27].

A transient simulation is depicted in Fig.4.4 for the two different major transitions. The control
signals C and nC were created by NOR and NAND gates from the clock signals. It can be observed
that Vsamp tracks Vin, although slightly lagging, when C is low. Since Vsamp lags Vin the falling transition
results in a higher sample and a lower sample in the rising transitions. This shows that it is difficult to
use predetermined voltages, however since the sample and hold circuits are the same for each phase
detector, and thus the time constant, the calibration loop can adjust the reference voltages to its closest
value. This is further explained in Chapter 5. It is also visible that charge gets injected and absorbed
during the switching of C and nC. Finally, it can be seen that the feed-through is minimal when C is
high. The component parameters can be seen in Fig. 4.1a
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Figure 4.4: Transient S/H simulation

4.1.2. Comparator
In the phase detector, four comparators are needed: Three to slice the PAM-4 data and one to compare
the transition sample. A StrongARM latch is used for all comparators, and the schematic is depicted in
Fig.4.5. The working of a StrongARM latch is well-established and extensively discussed in [28].

The StrongARM latch comprises two complementary inverters, M3 to M6. The input transistors, M1

andM2, pull down nodesX and Y . Whichever node is pulled down faster creates the stronger inverter.
The strongest inverter turns the weaker inverter off, and the circuit is latched in a stable state.

A few modifications have been introduced to enhance performance. Buffers are added to the out-
put to address unequal loading and ensure sufficient drive to the next stage. Additionally, instead of
resetting nodesX and Y to VDD, they are reset to VDD −Vth and equalized withM10. This adjustment
reduces kickback to the input, which needs to be minimized to allow for a smaller sampling capacitor.
This adjustment increases the reset time, which is not an issue in this design.

The size of transistors creates a trade-off between mismatch and speed. The comparator has two
equal branches where the parasitic capacitances of all transistors need to be discharged. Increasing
the size ofM3−8 will result in more capacitance in each branch resulting in a slower settling of the com-
parator. However if the size is decreased the mismatch between the capacitances on each branch will
be more resulting in more offset, if one branch has more parasitic capacitance the input voltage needs
to be higher to achieve the same discharge time. The exception is the input pair M1,2, where larger
transistors result in both less mismatch and faster comparison since they supply the current required
to drain the capacitance in each branch. However these transistors have an upper limit since they
increase the kickback experiences on the input. Since the optimization focus of this design is primarily
on speed, all transistors, except for the input pair, are chosen close ti minimal size.

An overview of transistor dimensions is provided in Fig. 4.5. Switches M7 and M8 are set to the
minimum size, as there is enough time to ensure a full reset to VDD for nodes W and Z. Transistors
M3 to M6 are chosen close to the minimum size, as they increase capacitance at nodes W − Z and
consequently slow down settling. In contrast, transistors M1 and M2 are relatively large compared
to M3 and M4, supplying the necessary current for discharging nodes X and Y . Increasing the size
further would lead to higher kickback. Finally, transistor M9 is chosen with twice the width of M1 and
M2 to ensure enough current is available.
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The comparator schematic is simulated with cadence virtuoso and the results are presented in Fig.
4.6 Settling of the comparator nodes in a transient simulation is presented in Fig.4.6a. The settling
takes around 60ps for an input difference of 5mV , less than 0.5LSB. A mismatch Monte Carlo simu-
lation can be seen in Fig.4.6b. The standard deviation of the offset is 19mV . As 3σ should be taken
into account, this would lead to misinterpreted data and phase information. The calibration loop of
the reference voltages provides no solution since the mismatch in each comparator is different while
the reference voltages are the same for each PD. A second foreground calibration loop is required in
future work. This could be done by equalizing the capacitances on nodeW and Z, as proposed in [29].
Both inputs are connected to a equal common mode voltage and varactors are connected to node W
and Z. Comparisons are of the equal input are accumulated and the capacitance on the faster branch
increased. This is done until the comparator has an equal decision change with equal inputs.
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Figure 4.5: StrongARM comparator.
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Figure 4.6: Comparator circuit simulations.

4.1.3. Transition Logic
The transition logic calculates which PAM-4 transition occurred for the sampled transition. This hap-
pens with standard TSMC LVT logic gates. Fig.4.7 provides an overview of the circuit at the logic gate
level. In order to compute the correct transition, the circuit compares the outputs of each comparator
to see at which level a crossing occurred. Dlead2−0 is XOR’d withDlag2−0 to create cross signalsXa,b,c

and nDlead2−0 is XNOR’d with nDlag2−0 to create non-cross signals nXa,b,c. All transitions can be
found using this information. It is beneficial to use both comparator outputs to minimize loading of the
comparators.

The process for three distinct transitions is illustrated in Fig.4.8. For a MinorL transition, a transi-
tion occurs only at the lowest voltage level. If Xa is high and Xb, Xc are low, this transition must have
occurred. For MiddleH , Xa must be low and Xb, Xc are high. For Major, all XOR signals must be
high. It is important to note that not all levels need to be considered for each transition. Looking back
at the MinorL transition, if Xa is high and Xb is low, Xc can only be low and therefore should not be
considered.

It is still ambiguous if the transition is rising or falling. This can be computed by comparing the XOR
signals with the leading data. If a transition occurred at the lowest level, Xa is high, comparing this sig-
nal to the leading data at the lowest level, Dlead0, the direction can be determined. If Dlead0 is positive,
the transition must be falling and if it is negative, rising. Since a transition can occur at all three levels,
all have to be considered and combined for a valid rise or fall signal. A NAND gate implementation is
used to minimize the delay and area. The lagging data can also be used, but since the leading data is
available sooner, it is preferred to use these signals.

The power consumption is very low at 100µW for a data frequency of 12GHz. The delay of the transition
logic is predicted to be around 166ps in TT corner post-layout.
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4.1.4. Dynamic Flip-Flop
The conventional TSMC Dynamic Flip-Flop (DFF) has long setup and hold times, introducing undesired
delay to the phase detector and thus limiting the maximum data rate. A faster alternative is based on the
true single-phase clocking (TSPC) topology with split outputs [30]. This topology is not yet sufficient for
high-frequency operation due to the degraded internal low voltage. Replacing the clocked transistors
with complementary MOS switches, as used in [31], full swing is achieved at the internal nodes. The
schematic is presented in Fig.4.9. The complementary switches can charge or discharge nodesW −Z
to full swing. A comparison of the proposed circuit and the standard TSMC-DFF in a frequency division
test can be seen in Fig.4.10. The TSMC-DFF fails at an input of 8GHz while the TSPC-DFF maintains
its functionality until 18GHz.
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Figure 4.10: Performance of DFF in divide-by-two circuit.

To understand the working of the DFF, a transient simulation is presented in Fig.4.11, where Din

switches to positive and 50ps later CK goes positive. During low CK, the DFF can be set up. If CK
is low, the first inverter stage of the DFF is active, charging W and X to nDin. Node Y will be charged
if Din is positive, leaving Z floating and vice versa for a negative Din. When Y or Z is charged, the
DFF is set up, this takes about 40ps. At the positive clock edge, the second inverter stage turns on,
connecting Y and Z. This allows the charged state to propagate to the output. At this point, W and X
are isolated, ensuring changes on Din cannot propagate to Y and Z. After the positive clock edge, it
takes another 50ps for Dout to become valid.
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Figure 4.11: Transient simulation.

4.1.5. Multiplexer
A 12-to-1 multiplexer (MUX) is needed to provide the correct register bits to the DAC. Since the registers
of each transition contain 5 bits, 5 MUXes are needed in parallel. The conventional implementation em-
ploys standard digital logic as can be seen in Fig.4.12. The desired output bit passes through the AND
gate only if all the select signals are set to the correct value. In the Fig.D1 is selected with S0,1 = 00.
Incorrect select signals result in a low output from the AND gate and therefore an OR gate is used to
combine the outputs.

This implementation of a MUX is straightforward but has some serious drawbacks. The logic gates
will need a large number of inputs and will therefore be slow. The inputs are also selected with binary
encoding, this means that the control signals of the transition logic need conversion adding additional
delay. Furthermore, this topology scales to 2n inputs, leading to four redundant lines in this implemen-
tation.

S1
S0 D3

D2

D1

D0

Out

Figure 4.12: Standard MUX topology.

A more effective implementation is a pass gate topology. As illustrated in Fig.4.13. When S0 = 1
both the NMOS and PMOS are turned on, enabling the transmission of bit D0 to the output. Although
complementary transistors add extra output capacitance, an NMOS is needed for passing 0 and a
PMOS is needed to pass 1. Without the complementary gates, the output can only be charged to
Vgs − Vth.
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A drawback of this topology is the large output capacitance due to the 12 input ports. This results
in low charging of the output. Using larger transistors will not help since Ron scales with 1

W and Cdd

withW . Due to this problem, close to minimal size can be used for the NMOS, while the PMOS should
be proportionately sized to maintain equal Ron and thus equal delays for negative and positive bits.
Another limitation is the need for 12 select signals, requiring the use of additional digital logic, albeit
simple, to be added between the transition logic and the MUX.

c

S0

S̅0

c

S12

S̅12

Out

D0

D12

Figure 4.13: Pass gate MUX topology.

Both problems are addressed with the final topology depicted in Fig.4.14. To reduce the output
capacitance, the MUX is split into two stages: one for the transition type and one for the direction. No
additional logic is required for generating select signals since the DFFs have complementary output.
The time constant reduces from 12RC to 10RC, which is still significant since it takes 5τ to fully charge
the output. An inverter is introduced to mitigate this delay. Only 0.69τ is needed to reach 0.5V DD
and activate the inverter. Adding an inverter between the stages is not beneficial since the delay time
is more than 2RC. To accommodate the unequal loading by the DAC, the inverters of each MUX are
scaled proportionally.

A transient simulation in the complete system is presented in Fig.4.15. At 9.9ns, the DFFs pass their
outputs. It can be seen that the negative control signals arrive slightly earlier due to the DFF design.
The direction control signals rise faster due to the decreased loading with respect to the transition con-
trol signals. The internal nodes X and Z experience significant charging time, while the output node
has a propagation delay of about 150ps after the setup of the flip-flops.
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Figure 4.14: Final MUX topology.
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Figure 4.15: Transient simulation of the MUX.

4.1.6. Binary Current Steering DAC
The DAC is tasked with converting a binary code from the MUX into a reference voltage swiftly and
with minimal power consumption. Various DAC topologies exist, but current steering is chosen for its
superior speed [32], since this is the main limitation of the PD.

In the DAC, the delay time is influenced by power consumption; a time budget is thus required. To
ensure the reference voltage is compared before the transition sample resets, the time budget is cal-
culated as the reset time minus the time for the reference code to arrive and one comparator delay,
approximately 70ps.

In section 3.4.1 of the system-level analysis, it was determined that the DAC requires 5 bits. The
DAC will drive a sampling capacitor of 5.8fF connected to the comparator. The sampling capacitor
is needed to equalize kickback. This leads to the following simplified schematic illustrated in Fig.4.16.
The DAC needs to charge the capacitor to less than 0.5LSB error. The resistance and current can be
calculated by evaluating the case for discharging the capacitor to minimum voltage, leading to Eq. 4.1
and Eq. 4.2. The required resistance is 2800Ω. 2200Ω is chosen to compensate for the additional drain
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capacitance, leading to a current of 7.1µA per current cell.

c
c

c

c

Din

R

CLI0

Vout

Figure 4.16: Simplified DAC.

Vout(t) = V DD − I0R+ Vswinge
−t

RCL

R =
−t

CL · ln( 1
2n+1 )

(4.1)

I =
Vswing

2n ·R
(4.2)

The current cell is presented in Fig.4.17. M1 and M2 steer the current to the correct branch and
should be the minimum size. M3 is used to increase INL and to reduce power consumption. The DAC
stays dormant during most of the clock cycle. It only needs to be active when the MUX output is ready
and until the comparator is settled. The DAC can therefore be turned on and off to save power con-
sumption; this is done with control signal C. It is important to note that the DAC needs time to charge
internal capacitances and therefore should be turned on before the MUX is ready. The duty cycle of C
is 0.375 and is constructed from the available clock phases. M3 can be the minimum size since it adds
loading on C and the mismatch requirement can be reached with M4.

Finally, transistor M4 deals with the non-linearity of the current sources and sets the current. INL
due to output resistance is less important in this design. It is the same for all DACs and therefore the
calibration loop can compensate for this. DNL, however, is an issue. It can lead to missing codes and
thus a higher quantization error. To avoid missing codes, the DNL should be less than 0.5LSB. The
maximum DNL due to mismatch for a binary DAC occurs at the MSB switch. It can be calculated with
Eq.4.3 [33]. This allows for a maximum σi of 637µA. Since the mismatch scales with area according
to Eq.4.4, the width and length can be increased until the mismatch is acceptable.

The size is chosen to be W/L = 550n/350n. The final DAC is simulated in cadence virtuoso, the
results are presented in Fig. 4.18. Fig.4.18b presents the mismatch of the current cell in a Monte Carlo
simulation, with σi = 467n the DNLmax = 0.37LSB. The INL is 0.53. Fig.4.18a shows the transient
simulation for the DAC. A modified version of the MUX simulation is presented where all bits switch
leading to a worst-case scenario. Again at 9.9ns, the DFF clock switches to positive. One clock phase
later the DAC control signal becomes high. At 10.1ns, 200ps after the DFF passes its output, Vout

reaches 0.5LSB error.
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Figure 4.17: DAC current source.

DNLmax =
√
2n − 1

σi

∆I
(4.3)

σi =
A√
WL

(4.4)
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Figure 4.18: DAC circuit simulations.

4.1.7. Data extraction
The comparator outputs need to be converted into two data streams, one for the MSB and one for the
LSB. There are three data points from the comparator which can be used. Fig. 4.19 shows the data
extraction block. Illustration 4.19a shows the PAM-4 data points and the comparator data points. Grey
encoding is used; this ensures a missample of a symbol only results in one bit error instead of two. For
the MSB, we can directly look at D1; if this is high, the MSB is high. The LSB is high when the signal
is above D0 but below D2. The simple implementation can be seen in Fig.4.19b.
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Figure 4.19: Data extraction.

4.1.8. Interpreter
The final phase detector block is the interpreter. This block converts the information from the sample
comparison into phase information. It utilizes the complementary output of the comparator and the
buffered rise and fall signals from the transition logic. The interpreter has to consider five possible
cases, each illustrated in Fig.4.20. The comparator decision, CDR task, and PD output are also pre-
sented for each case. The DCO is controlled by PMOS transistors; therefore, Out < 1 : 0 >= 11
corresponds to less current flowing to the DCO and thus a lower frequency. After the interpreter, the
output gets inverted twice: once by the DFF (the negative output is faster than the positive) and once
by the DLF MUX, resulting in the same bits being presented to the DCO.

The logic implementation can be seen in Fig.4.21. Limited logic can be used since complementary
comparator signals are available, as well as complementary rise and fall signals. Out < 1 > is always
set to 0 and is pulled up when the CDR needs to slow down. Out < 0 > is always set to 1 and is pulled
down when the CDR needs to speed up. The truth table can be seen in Tab. 4.1. The output signals of
the interpreter are buffered with the previously discussed flip-flop and the inverse output is used, since
this output is available sooner.

ReferenceReference
Sample Sample

Reference

Reference
Sample

Sample

Sample

Comp = 0 
Speed up 
Out = 00 

Comp = 0 
Slow down 

Out = 11 

Comp = 1 
Slow down 

Out = 11 

Comp = 1 
Speed up 
Out = 00 

Comp = x 
Nothing 
Out = 01 

Figure 4.20: Illustration of interpreter decisions.
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Figure 4.21: Interpreter circuit.

Comp Rise Fall Out
x 0 0 01
1 0 1 11
0 0 1 00
1 1 0 00
0 1 0 11

Table 4.1: Interpreter decisions.

4.1.9. Layout
The layout of the complete PD is presented in Fig.4.22. The individual components are annotated.
Note that in the final design, eight PDs are needed. The PD components have been closely integrated
to minimize the signal delay between each block.
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Figure 4.22: Phase detector layout.

The critical delay path is from the DFF that buffers the transition logic output to the start of the
reference comparator. This path needs to complete before the sample gets reset at the positive edge
Φ14. The DFFs pass their signal at Φ2, meaning there is a total delay of 9 symbols in the phase detector.
The half symbol delay in the proportional path and 1 symbol delay in the DCO since the phase of the
DCO is not updated instantaneously. A total delay of 10.5 is achieved.

The functionality of the phase detector is illustrated in Fig.4.23. A transient simulation is shown in
Fig.4.23a for an open-loop simulation of the phase detectors and DLF for a lagging oscillator clock. A
pseudo-random bit stream (PRBS) is used as input. As can be seen, the output is consistently low,
corresponding to the increase in DCO frequency, unless no transition occurs. A case with a leading
DCO clock is presented in Fig.4.23b for the same input. As can be seen in the figure, the output is
consistently high unless there is no transition; the same behavior occurs for non-transitions in both
cases.
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(a) Phase detector outputs with a lagging DCO clock.
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(b) Phase detector outputs with a leading DCO clock.

Figure 4.23: Post-layout phase detector behaviour.

The power consumption of one PD is 370µW leading to a total PD power consumption of 3mW .
The area of one PD is 37µm2. At a data rate of 12GHz, the maximum speed of the PD, the delay of
the PD is 10.5 symbols.

4.2. DLF
The secondmain component of the CDR loop is the digital low-pass filter (DLF). Both paths aremanually
designed. For the proportional path, speed is of the essence. For the integral path, RTL code would
lead to high power consumption due to the high-frequency operation.

4.2.1. Proportional Path
The proportional path consists of two 8-to-1 pass gate muxes. The design process is similar to the reg-
ister MUX implemented in the phase detector. There is no benefit in splitting the MUX into two stages
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since the time constant τ remains 8RC.

The proportional path needs to cycle between each phase detector output with the data frequency.
As earlier mentioned, this poses a problem since the oscillator runs at a lower frequency. Low-duty
cycle control signals are again constructed from the low-frequency clock phases. The circuit and its
waveforms are presented in Fig. 4.24. A circuit diagram is illustrated in Fig.4.24a, and the waveforms
in Fig.4.24b show the phase detector taking a transition sample at ϕ0. After nine symbols, at ϕ2, the first
phase detector output PD0 is transmitted. Due to the delay of the DFF in the PD, the output becomes
valid between ϕ2 and ϕ3. The output should then be passed between ϕ3 and ϕ5, which equals one
symbol. The delay is equal to 9.5 − 10.5 symbols since the DCO phase update is not instantaneous.
Control signal S0 is constructed with a NOR operation between ϕ5 and ϕ11. The negative control signal
S0 is constructed with a NAND operation between ϕ3 and ϕ13.

c

S0

S̅0

PD0

Out<1:0>

c

S8

S̅8

PD8

(a) Schematic of DLF MUX.

PD0

S0

S̅0

(b) Waveforms of DLF MUX.

Figure 4.24: Proportional path of the DLF.

4.2.2. Integral Path
The integral path needs to collect the phase information for each individual phase detector, combine
them, and add them to an internal counter. The block diagram with sub-circuits is presented in Fig.4.25.
The circuit is manually designed instead of with Verilog to ensure minimal gates. The delay does not
matter, but since the circuit runs at a high frequency, 1

8fdata, it is important to keep the gates to a
minimum.
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Figure 4.25: DLF schematic for the integral path.

The phase detector outputs become valid one at a time, which can induce racing conditions in the
adders, making it uncertain when the output is valid. It is, therefore, necessary to buffer the phase de-
tector outputs to create the DLF input. The phase detector outputs will be applied to two paths, one for
the positive increment and one for the negative increment. Since 00 corresponds to a desired increase
of the clock, NOR gates are used to create the unary increments, and an AND gate is used to convert
11 into negative increments.

The binary adder is created using a series of adders. For the first level, half adders can be used
since the maximum output is 10. The next levels combine the 2-bit data into 3-bit data and the 3-bit
data into 4-bit data. For the multiple-bit adders, ripple carry adders are used, with the first full adder
replaced by a half-adder since no input carry is needed. The output of these adders is unsigned.

The next stage is a 4-bit ripple borrow subtractor. The output is converted in this stage into 2’s comple-
ment form. The output of the subtractor is a 5-bit signal since it ranges from −8 to 8.

The counter is the final step in the DLF integral path. The update increment needs to be buffered
since the delay of the increment calculation is roughly 400ps for a worst-case scenario. This does not
leave enough time to complete the calculation in one cycle. The increment is added to the internal
13-bit state of the counter. In 2’s complement form, the 5-bit increment can easily be extended to the
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longer format by copying the MSB. The output is then loaded into register flip-flops. The complemen-
tary output of these registers is used to control the integral path gain.

Lastly, a reset needs to be built-in. This is done by implementing a MUX between the 13-bit counter
and the register. If the reset is high, a standard string is loaded into the registers. The string consists
of zeros except for the MSB and the first bit not supplied to the DCO.

In Fig.4.26, the waveforms of the 13-bit counter can be seen. Since in a ripple carry adder the out-
put is calculated consecutively, the full delay takes a significant time of 500ps if all bits change. The
power consumption is low, estimated at 271µW .
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Figure 4.26: Worst case counter ripple carry delay.

4.3. DCO
The final analog component is the DCO. The DCO needs to provide 16 equal clock phases and needs
three different gains: a jitter generation optimized proportional gain of 9MHz, a jitter tolerance opti-
mized proportional gain of 19.5MHz, and a 13-bit binary integral gain of 9kHz for the LSB.

4.3.1. Topology
A ring oscillator is chosen instead of an LC oscillator. Although the LC oscillator has a serious benefit
in phase noise performance, the increased area of the inductor makes it an impractical option in most
short-reach applications. Since an even number of equally spaced phases is required, only differential
oscillators can be used. If a ring of CS-amplifier stages or inverters are used, the circuit will latch up.
The oscillators considered, Fig. 4.27 are the differential ring oscillator (see Fig.4.27a) and the pseudo-
differential oscillator (see Fig.4.27b). If designed properly, the differential oscillator cannot latch up since
current will be steered to one of the two branches in each stage. In the pseudo-differential oscillator,
the extra inverters added to the ring oscillator ensure the circuit cannot latch up.
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Figure 4.27: Ring oscillator topologies.

A comparative study between the two oscillator designs has been conducted in [34]. The differen-
tial ring oscillator exhibits a better figure of merit (FOM) in the lower frequency range. The differential
oscillator exhibits less up-conversion of flicker noise. On the other hand, the pseudo-differential oscil-
lator performs better in the thermal noise region due to its full output swing. Since the phase noise
transfer of the DCO has two zeros, one for the DCO itself and one for the DLF, low-frequency noise
will be greatly suppressed. Therefore, the inverter-based ring oscillator is a more practical solution for
this design. Although the addition of cross-coupled inverters to make the single-ended ring oscillator
pseudo-differential does result in a small performance degradation, it still outperforms the differential
ring oscillator in the thermal noise region.

To minimize the phase noise in the oscillator, the inverters must be properly sized to minimize the im-
pulse sensitivity function (ISF). When a transition takes place, the oscillator is most sensitive to noise
[35]. It is therefore important to minimize the transition times. In the pseudo-differential oscillator, the
inverters of the main chain are fighting with the cross-coupled inverters during a transition. The cross-
coupled inverters should therefore be made as small as possible. However, making them too weak
will stop them from preventing latch-up. The inverter ring should also have equal rise and fall times to
minimize the DC components of the ISF and therefore minimize flicker noise up-conversion.
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Figure 4.28: Phase Noise of the DCO.

Increasing the transistor sizes results in less flicker and thermal noise in the transistors. However,
this comes at the cost of increased capacitance in the oscillator and thus increased power consumption
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for the same frequency. The sizing of the transistors can be seen in Tab. 4.2, and the phase noise
is illustrated in Fig.4.28. It is important to realize that the oscillator runs at 1

8 of the data frequency.
Adjusted for this, the phase noise is about 18 dBc higher at the data frequency. The flicker noise corner
is high at about 5 MHz, and at 1 MHz, the phase noise is slightly more than -80 dBc. The oscillator
consumes 2.8 mW. A transient simulation of the oscillator output is shown in Fig.4.29.

Device M W L

NMOS Main 4 1.4u 70n
PMOS Main 4 2.8u 70n
NMOS Latch 4 600n 70n
PMOS Latch 4 1400n 70n

Table 4.2: Oscillator transistor sizing

Figure 4.29: Transient simulation of the oscillator.

4.3.2. DCO Tuning
In order to track the phase changes as well as pinpoint the exact data frequency, the DCO frequency
should be tunable. As previously discussed, three gain paths should be designed: a proportional gain
for jitter generation, one for jitter tolerance, and an integral gain. The base frequency of the design
should also be tunable in order to compensate for PVT variations and operate at lower data frequen-
cies.

There are two common methods of tuning the frequency. The first is adding or removing capacitance
from the DCO. This can be done by switching capacitors in or out. In the DCO of this CDR, this method
is undesirable. Each clock phase needs an equal amount of capacitance, which means that for each
bit controlling the DCO frequency, 16 capacitors are needed. This greatly increases the complexity in
the design due to the several gain paths required. Mismatch in these capacitors will also cause the
phases to become unequally spaced. Mismatch can be especially problematic since the capacitors
need to be incredibly small; each capacitor needs to be 1

16 of the total capacitance added.

A better alternative is manipulating the current available to the DCO. If digitally controlled current
sources are placed between the supply and the VDD of the oscillator, the frequency can be altered.
A complete schematic is presented in Fig.4.30. By controlling the current available to the DCO, the
frequency can be increased or decreased.
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Figure 4.30: Schematic of the DCO

An immediate concern is the way the current sources are implemented. If the gate is set to V SS,
the current sources are in the triode region, making the current a function of the drain-source voltage.
This would result in compression of the gain when more stages are active. The higher the frequency,
the higher the DCO supply voltage, and thus the less current the source provides.

In order to examine this issue, the supply sensitivity, KVDD, needs to be known, and by extension,
the variation the DCO supply will experience over the frequency range. The frequency should vary
from f = 1.493GHz to f = 1.507GHz. Fig.4.31 shows the frequency of the DCO vs. VDD. A very
small range is required for VDD from about 993mV to 998mV due to the large KVDD of 3.91GHz.
However, if VDS is low for the current sources, this can still lead to issues.
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Figure 4.31: DCO frequency vs supply voltage.

Due to the low VDS of 100mV available to the current sources, the small change in VDS of 5mV has
a significant impact on the gain. The second proportional current source shows a compression of 10%.
To test this problem, the time-domain model is adjusted for variable DCO gains with a look-up table.
Compression will lead to an increase of 30fs. The best way to compensate for this issue is by creating
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a larger gain in the second proportional current source.

With the problem of the triode region examined and mitigated, the current sources can be designed.
The dimensions of the current sources can be found in Tab. 4.3. The lower bits of the integral path will
result in long transistors with large input capacitance. These bits also change quickly without having
much effect on the output. It is therefore beneficial to only count the lower bits internally in the DLF and
not update the DCO. A time-domain MATLAB simulation shows that the first 6 bits can be neglected
while only adding 2fs of jitter. The dimensions of the current sources can be seen in Tab. 4.32. An MC
simulation is done for the smallest current source. The standard deviation of 1% is simulated in MAT-
LAB and adds a negligible amount of jitter. In total, the DCO nonidealities, compression, mismatch,
and neglected integral bits add 6fs of jitter for a total of 431fs in the time-domain model. The final
design has an F.o.M of 157dBc/Hz according to formula 4.5.

FoM = −L(∆ω) + 20log10

( ω0

∆ω

)
− 10log10
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Figure 4.32: Monte Carlo simulation of smallest current source.

Device M W L Ideal Actual Error

Proportional JGEN<0> 1 260n 640n 1.125M 1.142M 1.51%
Proportional JGEN<1> 1 270n 640n 1.125M 1.147M 1.95%
Proportional JTOL<0> 1 290n 320n 2.438M 2.467M 1.24%
Proportional JTOL<1> 1 310n 320n 2.438M 2.429M 0.76%
Integral<12> 1 655n 320n 4.608M 4.625M 0.36%
Integral<11> 1 610n 640n 2.304M 2.324M 0.87%
Integral<10> 1 265n 640n 1.152M 1.156M 0.34%
Integral<9> 1 120n 745n 576K 573.5K 0.44%
Integral<8> 1 120n 1.51u 288K 293.3K 1.84%
Integral<7> 1 120n 3.08u 144K 141K 2.01%

Table 4.3: Dimensions of the current sources for DCO tuning.



5
Register Calibration Loop

This chapter will present the design of the calibration loop and discuss its functionality and behavior.

5.1. Clock Domain Crossing
The calibration loop receives data from one of the phase detectors. Since the calibration loop runs at a
slower clock, the phase detector outputs cannot be used directly. Clock domain crossing (CDC) must
be implemented with the use of a synchronizer circuit 5.1. The circuit is presented in Fig. 5.1a and Fig.
5.1b illustrates the waveforms during metastability on node Y .

D Q D Q D Q

CKsCKf

Din
X Y Dout

(a) Multi-flipflop syncronizer.

Din

CKf

X

CKs

Y

Dout

(b) Waveforms during metastability.

Figure 5.1: Clock domain crossing.

The fast-changing signals Din are buffered with the fast clock CKf . A clock phase can be chosen
in order to not violate set-up and hold times, since the phase of Din with respect to CKf is known.
However, the phase of the slow clock CKs is unknown with respect to the fast clock. Metastability can
occur for signal Y if the setup time is violated. To mitigate this risk, a second slow flip-flop needs to be
added to allow sufficient time for node Y to settle to a valid state before it is used by the calibration loop.
Theoretically, metastability can still occur if Y does not settle within one clock period, although this is
improbable due to the long clock period. Additionally, the propagation delay of the flip-flop should be
longer than the hold time. Another important consideration is that some input data will be neglected
when crossing clock domains, as this is inherent to clock domain crossing (CDC).

5.2. Calibration Loop Algorithm
If the reference code of a transition does not align with the sample in the locked state, the calibration
loop must gradually adjust the register code for that transition. When the code is not aligned, the tran-
sition will have a higher chance to provide one type of phase information. It is crucial that at least one
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transition is locked. Since the DCO has discrete frequency steps, the settled frequency will have some
offset. This results in a higher probability, albeit very slight, of one type of phase information types be-
ing dominant. Consequently, wrongful adjustments of registers may occur if the calibration loop runs
for a long time. If no registers are locked, all the values will wander until no phase information can be
determined.

An algorithm of the calibration loop can be seen in Fig. 5.2. At the start of the loop, the initial reg-
ister values are loaded, as well as the threshold. Certain registers are also locked.

Lock certain
registers

Load initial values

Phase information?

Enabled? Stop

Leading

Yes

Direction?

Rise Fall

Increase
register &

reset
counter

Decrease
register &

reset
counter

Decrease
counter by 1

No

Counter>threshold?

Lagging

No info

Start

Yes

Direction?

Rise Fall

Decrease
register &

reset
counter

Increase
register & 

reset
counter

Increase
counter by 1

No

Yes

Counter<-threshold?

No

Figure 5.2: Register calibration algorithm.

If the register is enabled by the transition and enable signal, the correct register is selected. The
phase information determines the direction of the counter. If there is leading phase information, the
counter will be decreased. If there is lagging phase information, the register will be increased. If the
counter is full, the register will be adjusted depending on the direction of the transition and the phase
information. Leading information for rise signals will result in a positive increment, while fall signals will
decrease. For lagging phase information, the direction of the increments is switched.

The calibration loop is written in Verilog code and can be viewed in Appendix B. The functionality
was verified in QuestaSim, and an equivalent Verilog-A block was created and simulated in Virtuoso.
The transient simulation was run with a locked major fall transition and fall transitions twice as short as
rising transitions. Fig. 5.3 plots the codes for all twelve transitions.
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Figure 5.3: Register codes during non equal rise and fall times.

In the initial phase, all reference voltages are set to the middle of the transition. Initially, all codes
converge to the average locking point. This is why the falling transitions are adjusted. After this point
has been reached, the locked transition slowly pulls the codes of the other transitions to the set locking
point. Since the codes will not perfectly match the voltage at the set locking point, the final state will
switch between two codes.

5.3. Noise
A drawback of this calibration loop is that low-frequency jitter is passed to the output. This occurs
because the loop adjusts the reference voltages alongside the jitter. The magnitude of this effect is
determined by the bandwidth of the calibration loop fbw = fclock

Threshold·N , where fbw is the bandwidth of
the loop, fclock is the frequency of operation, and N is the number of different transitions. To illustrate
this, the calibration loop is simulated in MATLAB with a high bandwidth. The result can be seen in Fig.
5.4. In order to minimize the jitter added by this effect, the loop should run at a low frequency. Another
reason to run at a low frequency is the power consumption of the loop.
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Figure 5.4: Phase noise of CDR with and without calibration



6
Simulation Results

In this chapter, the simulation results of the complete CDR will be discussed and compared to the
system requirements.

6.1. Locking Behavior
6.1.1. Phase Locking
The locking behavior is simulated using a pseudo random binary sequence (PRBS) with rise and fall
times of 41.66ps and amplitude of 0.5V . In the initial state the DCO is leading the data with 20ps or
about 1

4UI UI. The results are illustrated in Fig. 6.1. Fig. 6.1a shows the DCO frequency. The red line
indicates the ideal frequency and the black lines indicate the ideal proportional path frequency steps.
As can be viewed in the plot, the CDR immediately resorts to a higher frequency until the phase is
corrected. Extracting and comparing the zero crossings of all even (or odd) DCO phases, the full rate
operation of the CDR can be illustrated. The frequency plot can be seen in Fig. 6.1b, again the red line
indicates the ideal frequency and the proportional steps are shown in black.
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Figure 6.1: CDR operation for an initial leading phase.

Due to the noise in the system, it can be difficult to see what happens. To illustrate the decisions the
CDR makes, the previous simulation is repeated without input noise and an ideal Verilog-A oscillator.
The result are presented in Fig. 6.2. Fig. 6.2a shows the DCO output and Fig. 6.2b, the full-rate
frequency. As can be seen in the plot, due to the initial phase error, the integral path gets wrongfully
updated. This error is slowly corrected once the CDR has caught up to the initial phase error. Since the
frequency will be updated eight times during each clock cycle, the ideal DCO frequency experiences
more than three discrete output steps, the full-rate frequency does show only three steps.
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Figure 6.2: CDR operation for an initial leading phase without noise

Since the phase recovery is dependent on data recovery it is important to test the system with a
maximal phase error where the data samples fall in the middle of a transition and no accurate data can
be recovered. Again a PRBS with rise and fall times of 41.66ps and amplitude of 0.5V is applied to the
input. In the initial state the DCO is leading or lagging by 41.66ps. The results are presented in Fig.
6.3. Fig,6.3a shows the frequency output for the DCO, while Fig. 6.3b shows the constructed full-rate
clock from the individual phases. The CDR response shows three regions, separated with green lines.
Initially, due to the inaccurate data recovery, the CDRmakes arbitrary decisions and wanders randomly
until a point is reached where data can be recovered. Consequently the CDR makes leading phase
decisions until the phase error corrected. Finally the CDR starts normal operation.

The simulation is repeated with an ideal verilogA oscillator, to get more insight into the decisions of
the CDR, note that input jitter is still present to disturb the system, otherwise the system would stay
in its wandering state for longer. The result can be seen in Fig. 6.4. Since the data samples fall on
transitions and the transition sample on a data point, some patterns will result in no phase information,
some in lagging and some in leading information. The smaller the phase error, the more data patterns
can be correctly interpreted. For this reason wrong updates are still given to the CDR even though the
phase error is already getting corrected.
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Figure 6.3: CDR operation for an initial maximal phase error.

The simulation is repeated with an ideal verilog-A oscillator, to get more insight into the decisions
of the CDR. It is important to note that input jitter is still present to disturb the system, otherwise the
system would stay in its wandering state for longer. The frequency plot for the full rate frequency can
be seen in Fig. 6.4. Since the data samples initially fall in the middle of a transition and the transition
samples on a data points, some patterns will result in no phase information, some in lagging and some
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Figure 6.4: Noiseless CDR operation for an initial maximal phase error.

in leading information. The smaller the phase error, the more data patterns can be correctly interpreted.
For this reason wrong updates are still given to the CDR even though the phase error is already getting
corrected.

6.1.2. Frequency Locking
To test the frequency locking of the CDR a PRBS with rise and fall times of 1ps, an amplitude of 0.5V
and a Baud-rate of 12.008GHz was applied to the input. This equates to an 1MHz offset frequency at
the DCO rate or an 8Hz offset at the Baud rate. The DCO starts at an initial frequency of 1.5GHz The
results are presented in Fig. 6.5. The ideal data frequency is shown in green. Fig. 6.5a shows the
DCO frequency and Fig. 6.5b shows the full-rate frequency. Since the frequency error is smaller than
the proportional loop gain, the CDR can immediately compensate for the phase error. The integral path
slowly adjusts to the proper frequency. Cycle slipping does not occur.
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Figure 6.5: CDR operation for an in range frequency error.

The same simulation is run for a data frequency of 12.03GHz. The results are illustrated in Fig.
6.6. In Fig. 6.6a DCO frequency is presented and Fig. 6.6b shows the full-rate frequency. When the
frequency deviation exceeds the proportional path gain, the behaviour of the CDR is radically different
showing cycles of leading and lagging phase information until the desired frequency is reached.

Initially the CDR has no phase error. It cannot run at the high data frequency, and thus begins to
fall behind the input data resulting in an increasing lagging phase. Once the phase error is −0.5UI
a bit is skipped and the CDR will try to align to the next bit. At this point the CDR will interpret the
phase information as leading, −0.5UI equals +0.5UI when a bit is skipped. Instead of increasing the
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frequency now the CDR will decrease its frequency even though the data frequency is still higher. Sub-
sequently the phase error will continue to increase, but this time at a faster rate since the frequency
deviation is higher. An additional −0.5UI is reached and the phase error is zero again. However, the
CDR still runs at a lower frequency and thus the cycle repeats.

Even though both leading and lagging information is interpreted in each cycle, the CDR still slowly
catches up to the data frequency. When the phase information is interpreted correctly, the frequency
deviation from the data frequency is less than when wrong information is misinterpreted. Therefore,
each cycle more correct updates are given to the integral path than wrong updates, slowly the integral
path will increase the frequency of the DCO until the proportional path can compensate for the remain-
ing frequency error. Since the cycle of correct information is always longer than the cycle of wrongful
information, the frequency range is only limited by the DCO range. However, if the offset is extremely
large, the frequency will take longer to settle due to the limited updates in each cycle.
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Figure 6.6: CDR operation for an out of range frequency error.

Both in range and out of range frequency locking simulations are repeated without DCO noise and
input jitter. The results can be seen in Fig. 6.7. In Fig. 6.7a the full rate frequency is plotted for an input
data frequency of 12.08GHz since the proportional path can compensate for the frequency deviation,
no cycle slipping occurs. The DCO will also sometimes lead the data even though the proportional path
has not yet fully compensated for the frequency error.

in Fig. 6.7b the full rate frequency is plotted for an input data frequency of 12.03GHz. The alternating
leading and lagging phase updates due to cycle slipping now become more clearly visible. Since the
frequency deviation becomes less each cycle, the time of each cycle also increases. Finally it can be
seen that as soon as the full rate frequency crosses the input data frequency, the DCO can start to
catch up to the data and no more cycle slipping occurs.
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Figure 6.7: CDR operation for frequency errors without noise.

6.2. Jitter Generation and Tolerance
In order to accurately model the jitter generation, data-dependent effects have to be taken into account;
therefore, a periodic steady-state simulation will not be possible. The CDR is simulated with a PRBS
with 0.5V amplitude and 41.66ps rise and fall time. The simulation is run for 4µs in order to obtain a
good estimate of the jitter.

A phase noise spectrum can be recovered from the zero crossings of the DCO phases and their devi-
ation from the ideal crossings. The result for can be seen in Fig. 6.8. It is also compared to the phase
domain model proposed in Chapter 3. The generated jitter is 486fs instead of the predicted 424fs by
the model. This can be attributed to the nonideal gain in the system and data-dependent effects like
ISI. The high flicker noise corner also contributes to the increased jitter.
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Figure 6.8: Phase noise post layout CDR simulation and Matlab model.

The jitter tolerance cannot be simulated due to the low bit error requirement of 10−12. However with
the jitter from a transient simulation and equation 3.33, the jitter tolerance can be estimated. The CDR is
again simulated for 4µswith a PRBSwith 0.5V amplitude and 41.66ps rise and fall time. The proportional
gain is set to the jitter tolerance path with KDCO of 19.5MHz. The jitter generation increases to 543fs.
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This leads to an expected jitter tolerance of 1UI at 30.66MHz. The estimated −20dB/dec region can
be seen in Fig. 6.9. A true value for the jitter tolerance can only be measured after the CDR has be
fabricated.
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Figure 6.9: Estimated jitter tolerance.

6.3. Power Consumption
The power consumption is presented in Fig. 6.10. The power of the blocks without layout has been
estimated using transistors with layout. However, this does not take parasitics due to routing into
account. The buffer power is estimated using inverters withmaximumwidth. The total power is 8.03mW .
The buffer needs to consume a significant amount of power since many clock phases need to be
provided to eight phase detectors.

PD
2.96mW

Buffer
2.00mW

DCO
2.80mW

DLF
0.27mW

Total
8.03mW

Figure 6.10: Power consumption CDR.

6.4. Comparison Table
The CDR has been compared to other state-of-the-art designs. The results can be seen in Tab. 6.1.
The complete CDR shows competitive efficiency at 0.33pJ/bit . Only [6] shows better efficiency. The
jitter generation is also one of the best, with only [5] having better jitter generation due to linear phase
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detection. The jitter tolerance outperforms all the other CDRs by a large margin. However, this is an
estimate and the true value has to be measured.

This work [5] [6] [7] [36]

PD type BBPD Linear BBPD BBPD BBPD
Oscillator Ring LC LC Ring LC
Data rate (Gb/s) 24 32 56 52 29.1
Power (mW) 8.03 14.7 8 43.1 19.16
Power efficiency (pJ/bit) 0.33 0.46 0.14 0.83 0.66
Jitter (fs) 482 352 574 430* 486
1-UI Jtol (MHz) 30 2 10 0.8 1.8
Technology 40 40 28 28 28

Table 6.1: CDR Comparison table.



7
Conclusion

7.1. Thesis Conclusion
This thesis proposed a PAM-4 CDRwith specifications discussed in Chapter 1. A novel phase detection
method was introduced in Chapter 2, along with a functional design. Chapter 3 presented a linearized
time and phase domain model to determine system parameters, simulated in MATLAB. Chapter 4 cov-
ered the circuit design of individual components, including layout details of the phase detector. Chapter
5 delved into the calibration loop and its behavior. Chapter 6 presented simulations of the complete
system, including phase and frequency locking, jitter generation and tolerance, power consumption
and comparisons to state-of-the-art PAM-4 CDRs.

The proposed BBPD PAM-4 CDR uses a novel phase detection method sampling the middle of a
transition, extracting phase information based on the expected middle voltage. This method ensures
optimal use of all data transitions, optimizing for jitter tolerance and generation. A digital ring oscillator
controlled by a DLF generates the 16 clock phases needed for phase detector operation. Two propor-
tional control paths enable optimization for jitter tolerance and generation. The CDR consumes 8mW
at a data rate of 24Gb/s, for a competitive efficiency at 0.33pJ/bit. Jitter generation is low at 483fs,
while jitter tolerance is very high at 1UI at 30MHZ, due to the high transition density and DCO gain.

7.2. Future Work
7.2.1. Current Design
Since the design has not yet been taped out, several blocks need to be designed to achieve a functional
CDR.

Comparator Calibration Loop
Since the comparators have an offset of more than 1 DAC LSB, a calibration loop has to be implemented
to create a functional layout. This can be done with the use of varactors connected to both sides,
equalizing the capacitance and ensuring a minimal offset voltage.

CTLE
To compensate for channel loss and improve practicality, a CTLE boosting high-frequency components
should be designed and implemented for the current CDR. This amplifier also needs to convert the
incoming differential data to single-ended data and bias the signal.

Layout
In its current form, only the layout of the PD has been done; the DCO, DLF, and buffer still need layout.
An IO ring aswell as a full chip layout also need to be done.
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7.3. Design Improvements
7.3.1. Data Rate
The most limiting aspect of the current CDR is the data rate, as industry CDRs can already handle
data rates in the order of 100GB/s. In the current design, the computation time of the phase detector
causes the most delay and this limits the data rate. If the number of phase detectors is doubled, the
data rate could also be doubled. However, the delay would remain the same length and would there-
fore be doubled if measured in symbols, limiting the maximum DCO gain that can be used further. An
LC-oscillator could be used to limit the phase noise contribution of the DCO and thus allow for a lower
phase detector gain.

The topology of the phase detector could also be improved. The current phase detector consumes
a lot of power and calculation time to convert the register code into an analog voltage. A solution could
be to move the DAC outside of the phase detector as illustrated in Fig. 7.1. Here, one DAC is used
for each transition. The reference voltage is pre-loaded into a capacitor bank, allowing for a low-power,
low-speed DAC. The DAC only needs to provide enough current to compensate for kickback and noise
and can therefore be low power. The delay is also reduced since the phase detector only has to wait
until the input of the comparator is at a high enough voltage.
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Figure 7.1: Proposed Phase detector block diagram.

7.3.2. Variable DCO Gain
The jitter tolerance of the CDR can be greatly improved by modifying the DCO gain. In the current
design, the DCO should be manually tuned in order to reach a higher jitter tolerance, which is not
practical. A second loop could be employed to tune the DCO gain based on the PD outputs, increasing
the gain when all phase detectors provide the same phase information. A block diagram is presented in
Fig. 7.2. This would allow accurate tracking of large input jitter while maintaining the low jitter generation
in normal conditions. Of course, careful design is necessary if a second loop is used, as instability can
easily occur if both loops have the same bandwidth. This could be mitigated by resetting the adjusted
gain to its nominal value once the PDs start to report conflicting information. Another method is to have
the bandwidth of the gain adaptation loop lower than the main CDR loop.
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A
MATLAB Code

clear;
close all;
fig = 1; % Figure multiplier
%% System variables
samp = 1e8; % Amount of time steps
samp_d = 1; % Samples to neglect in PN calculations
f_dat = 12e9; % Data frequency
t_dat = 1/f_dat; % Data period
t_trans_f = 41.667e-12; % Fall time of transistion
t_trans_r = 41.667e-12; % Rise time of data
t_trans_av = t_trans_f/2+t_trans_r/2; % Average transition time
n = 0.75; % Transisiton density

% Frequency vector for phase domain model
f_min = 1e3;
f_step = f_min;
f_max = 1e10;
f = f_min:f_step:f_max;

% Variables for calibration loop
cal_th=255; % Threshold of calibration counter
cal_f = 100; % Calibration frequency (f_dat/f_dal)
calibration = 0; % 1 to turn on calibration loop
lock = 1; % Locked transition in calibration loop

%Simulate feedtrough
Feedtrough = 0.01;

%System parameters
delay=11; %Delay of the system
bits=5; %DAC bits
k_dco = 9e6; %Dco step in frequency (also fbb)
alpha = 1; %Gain of proportional path
rho = 0.001; %Gain of integral path

%volatage comparison
Vcomp_min = 0e-3; % Comparator minimum input difference
Vmax = 0.5; % Data voltage amplitude
comp_matrix = zeros(12,bits); % Matrix for comparison voltages

%Create data and data voltage
data = randi([0 3],1,samp+2); % Data
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datav = data/3*Vmax; % Data voltage

%% Initialize comparison matrix
transition_code([1 2]) = round(0.5*2^bits); % Major
transition_code([3 4]) = round((2/3)*2^bits); % Middle High
transition_code([5 6]) = round((1/3)*2^bits); % Middle Low
transition_code([7 8]) = round((5/6)*2^bits); % Minor High
transition_code([9 10]) = round((3/6)*2^bits); % Minor Middle
transition_code([11 12]) = round((1/6)*2^bits); % Minor Low

for i =1:12
comp_matrix(i,:) = int2bit(transition_code(i),bits,1);

end

%% Inittialize KDCO Table
% Variables
int_bits = 13;
int_bits_ign = 7;
KDCO_PROP = zeros(3,1);
KDCO_INT = zeros(int_bits,1);

% Proportional path
KDCO_PROP(1) = 0; %BBPD = -1
KDCO_PROP(2) = 1.125e6;
KDCO_PROP(3) = 1.125e6+1.125e6;

% Integral path, first bits are not applied to DCO
KDCO_INT(1) = 0;%1.125e3;
KDCO_INT(2) = 0;%2.25e3;
KDCO_INT(3) = 0;%4.5e3;
KDCO_INT(4) = 0;%9e3;
KDCO_INT(5) = 0;%18e3;
KDCO_INT(6) = 0;%36e3;
KDCO_INT(7) = 0;%72e3;
KDCO_INT(8) = 144e3;
KDCO_INT(9) = 288e3;
KDCO_INT(10) = 576e3;
KDCO_INT(11) = 1152e3;
KDCO_INT(12) = 2304e3;
KDCO_INT(13) = 4608e3;

f_base = f_dat/8 - sum(KDCO_INT(int_bits)) - KDCO_PROP(2);
f_base = 8*f_base;
KDCO_INT = 8*KDCO_INT;
KDCO_PROP = 8*KDCO_PROP;

%% Observation variables
Tck_dco = zeros(1,samp); % DCO timestamps
T_error = zeros(1,samp); % Timing errors
Vsamp = zeros(1,samp); % Voltage Samples
Cal_reg = zeros(12,samp); % Register codes
counter = zeros(1,12); % Sample counter
BBPD_out = zeros(1,samp); % PD output
f_obs = zeros(1,samp); % DCO frequency
f_int_obs = zeros(1,samp); % Integral path frequency

%% Noise
sig_dat = 250e-15; % Input jitter std

% DCO noise power
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PN_20dB = -79.77; % dBc per Hz at 1MHz
f_offset = 1e6; % Frequency for the thermal noise
PN_30dB = 9.5; % dBc per Hz at 1KHz
f_offsetf = 1e3; % Frequency for the flicker noise
a = 10^(PN_20dB/10); % Thermal noise
b = 10^(PN_30dB/10); % Flicker noise
pn_osc = 2*(f_offset^2*a)./(f.^2) + 2*(f_offsetf^3*b)./(f.^3);

%DCO noise std
sig_dco = (f_offset/f_dat)*sqrt(10^(PN_20dB/10)/f_dat);

%Flicker noise is not added to time domain model. It is only plotted in the
%phase domain model to show it has negligible influence
%% Time model
Tck_data = (1:samp)*t_dat; %ideal data timings
Tck_data = randn([size(Tck_data)])*sig_dat + Tck_data; %data timings with jitter

% Initialize
t_ck = 0;
reg_lpf_rho = 2^(int_bits-1)+2^(int_bits_ign-1);
reg_lpf = zeros(1,delay);

for count = 1:samp
select = mod(count-1,delay)+1; %select correct control word for given delay
if reg_lpf(select)==-1 %Proportional path frequency

f_prop = KDCO_PROP(1);
elseif reg_lpf(select)==0

f_prop = KDCO_PROP(2);
elseif reg_lpf(select)==1

f_prop = KDCO_PROP(3);
end
f_int = sum(flip(int2bit(reg_lpf_rho,int_bits,1)).*KDCO_INT); % Integral path frequency
f_inst = f_base + f_prop + f_int; % DCO frequency
t_ck = t_ck + 1/f_inst +(sig_dco*randn); %Create new DCO timing
Tck_dco(count) = t_ck; % Record DCO timing

T_error(count) = (Tck_data(count) - Tck_dco(count)); %Record timing error
% Calucalte voltage sample
if (data(count)>=data(count+1)) % Fall transition
Vsamp(count) =

(datav(count)+(datav(count+1)-datav(count))*((0.5*t_trans_f+T_error(count))/t_trans_f));
Vsamp(count) = Vsamp(count)+(datav(count+2)-Vsamp(count))*Feedtrough;
else % Rise Transition
Vsamp(count) =

(datav(count)+(datav(count+1)-datav(count))*((0.5*t_trans_f+T_error(count))/t_trans_r));
Vsamp(count) = Vsamp(count)+(datav(count+2)-Vsamp(count))*Feedtrough;
end

if (data(count)~=data(count+1)) % Caclculate transition type
if (data(count) < data(count+1))
rf = 1;
else
rf = 0;
end

if (data(count)==0&&data(count+1)==3)
trans=1; % Major rise
elseif (data(count)==3&&data(count+1)==0)
trans=2; % Major fall
elseif (data(count)==1&&data(count+1)==3)
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trans=3; % MiddleH rise
elseif (data(count)==3&&data(count+1)==1)
trans=4; % MiddleH fall
elseif (data(count)==0&&data(count+1)==2)
trans=5; % MiddleL rise
elseif (data(count)==2&&data(count+1)==0)
trans=6; % MiddleL fall
elseif (data(count)==2&&data(count+1)==3)
trans=7; % MinorH rise
elseif (data(count)==3&&data(count+1)==2)
trans=8; % MinorH fall
elseif (data(count)==1&&data(count+1)==2)
trans=9; % MinorM rise
elseif (data(count)==2&&data(count+1)==1)
trans=10; % MinorM fall
elseif (data(count)==0&&data(count+1)==1)
trans=11; % MinorL rise
elseif (data(count)==1&&data(count+1)==0)
trans=12; % MinorL fall
else
return
end

else
trans=0;

end

% Calculate BBPD output
if trans==0

BBPD = 0;
elseif abs((bit2int(comp_matrix(trans,:).',bits)*(Vmax/(2^bits)) -

Vsamp(count)))<Vcomp_min % Voltage difference too small for comparator to settle
BBPD = 0;

elseif (bit2int(comp_matrix(trans,:).',bits)*(Vmax/(2^bits)) >=Vsamp(count))&&(rf==1) %
Lower sample rise -> lag
BBPD = 1;

elseif (bit2int(comp_matrix(trans,:).',bits)*(Vmax/(2^bits)) < Vsamp(count))&&(rf==1) %
Higher sample rise -> lead
BBPD = -1;

elseif (bit2int(comp_matrix(trans,:).',bits)*(Vmax/(2^bits)) >=Vsamp(count))&&(rf==0) %
Lower sample fall -> lead
BBPD = -1;

elseif (bit2int(comp_matrix(trans,:).',bits)*(Vmax/(2^bits)) < Vsamp(count))&&(rf==0) %
Higher sample fall -> lag
BBPD = 1;

else
return

end

%% Calibration loop
if (calibration==1) % Check if calibration loop is active

if (mod(count,cal_f)==0)&&(trans~=0)&&(rf==1)&&(trans~=lock) %Update rising transition
counter(1,trans) = counter(1,trans)+BBPD;
if abs(counter(1,trans))>cal_th

comp_matrix(trans,:) = int2bit((bit2int(comp_matrix(trans,:).',bits)-BBPD),bits);
counter(1,trans) = 0;

end
elseif (mod(count,cal_f)==0)&&(trans~=0)&&(rf==0)&&(trans~=lock) %Update falling

transition
counter(1,trans) = counter(1,trans)+BBPD;
if abs(counter(1,trans))>cal_th
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comp_matrix(trans,:) = int2bit((bit2int(comp_matrix(trans,:).',bits)+BBPD),bits);
counter(1,trans) = 0;

end
end

for i=1:12 %Record change of calibration loop
Cal_reg(i,count) = bit2int(comp_matrix(i,:).',bits);

end
end

if select == delay % Update integral path at lower frequency
reg_lpf_rho = reg_lpf_rho + sum(reg_lpf);

end

reg_lpf(select) = (alpha*BBPD); % Update loop filter
BBPD_out(count) = BBPD; % Record BBPD output
f_obs(count) = f_inst; % Record frequency
f_int_obs(count) = f_int; %Record integral path frequency

end

%% Calculate PN from time model
jitter = Tck_dco((samp_d+1):(samp)) - ((samp_d+1):samp)*t_dat; %caluclate jitter
figure(fig)
[psd1,freq] =

pwelch(2*pi*jitter/t_dat,blackmanharris(length(jitter)/8),[],[],1/t_dat,'onesided');
semilogx(freq(10:end),10*log10(psd1(10:end))); grid on;
xlabel('Frequency (Hz)');ylabel('Phase Noise L(f) (dBc/Hz)');
title('One sided phase noise')

%% Phase domain model
%% Calculate KPD
e_BBPD = sum(BBPD_out(samp_d+1:end).*T_error(samp_d+1:end))/(samp-samp_d); % Expected value

BBPD
e_TERR = sum(T_error(samp_d+1:end).*T_error(samp_d+1:end))/(samp-samp_d); % Expected value

Terr
k_exp = -e_BBPD/e_TERR; %Brute force Kpd

sig_terror =
sqrt(sum((T_error(samp_d+1:end)-mean(T_error(samp_d+1:end))).^2)/length(T_error(samp_d+1:end)));
% Std Terr

sig_terror_min = ((1+delay)*alpha*(1/n)*k_dco)/(sqrt(3)*f_dat^2); % Minimal noise for limit
cycling

t_error_margin = sig_terror-sig_terror_min; % Margin
k_calc = sqrt(2/pi)*(n/(sig_terror)); % Linearized model Kpd

%% Quantization Noise BBPD
q = BBPD_out(samp_d+1:end) + k_exp*T_error(samp_d+1:end);
var_q = sum((q-mean(q)).^2)/length(q); %Brute force quantization error
var_q_calc = n-(2/pi)*n^2; % Linearized model

%% DAC Quantization noise linear model
Vspe(5) = Vmax/t_trans_r; % Speed major transition rise
Vspe(6) = Vmax/t_trans_f; % Speed major transition fall
Vspe([3 9]) = (2/3)*(Vmax/t_trans_r); % Speed middle transition rise
Vspe([4 10]) = (2/3)*(Vmax/t_trans_f); % Speed middle transition fall
Vspe([1 7 11]) = (1/3)*(Vmax/t_trans_r); % Speed minor transition rise
Vspe([2 8 12]) = (1/3)*(Vmax/t_trans_f); % Speed minor transition fall
values = (0:2^bits-1)./(2^bits); %Dac voltage
x=zeros(1,16); % Lock offsets due to DAC noise
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n = [5/6 5/6 4/6 4/6 3/6 3/6 3/6 3/6 2/6 2/6 1/6 1/6]; %Vector with middle voltages
for i=1:12

[~,idx]=min(abs(values-n(i)));
x(i) = Vmax*(n(i)- values(idx))/Vspe(i);

end
sig_qdac=std(x);

%% PN Contributions
%quantization nosie
pn_q = var_q./(0.5*f_dat).*(2*pi*f_dat).^2; % Quantization PN brute force
pn_qcalc = var_q_calc./(0.5*f_dat).*(2*pi*f_dat).^2; % Quantization PN linear model
pn_qdac = sig_qdac^2./(0.5*f_dat).*(2*pi*f_dat).^2; % Quantization PN DAC
pn_data = sig_dat^2./(0.5*f_dat).*(2*pi*f_dat).^2; % Data PN

%% Transfer Functions
TF_KPD = k_exp; %Phase detector
TF_DLF = alpha+rho./(1i*2*pi*f*t_dat); %DLF
TF_delay = exp(-1i*2*pi*f*t_dat*(delay)); %Delay
TF_DCO = (k_dco./(1i*2*pi*f*t_dat))*1/(f_dat^2); %DCO
TF_ZOH = sinc(f/f_dat); %Zero order hold
H_ol = TF_KPD.*TF_DLF.*TF_delay.*TF_DCO.*TF_ZOH; %Open Loop
H_cl = H_ol./(1+H_ol); % Closed loop

% Jitter Tolerance
w = 2*pi*f;
h=((1-t_trans_f/t_dat-t_trans_r/t_dat)/2 -(7*sig_terror/(t_dat)));
c=k_dco*n*rho*f_dat*pi^2;
G_jt2 = (sqrt(h^2.*(w).^2+pi^4*k_dco^2*alpha^2))./w; %20dB/dec region
G_jt4 = (sqrt(10121*c^2 - 48800*c*h*w.^2 + 160000*h^2.*w.^4)./(400.*w.^2)); %40dB/dec region
figure(2*fig)
loglog(w,abs(G_jt2))
hold on
loglog(w,abs(G_jt4))
legend('Estimated jitter tolerance -20dB/dec region', 'Estimated jitter tolerance -40dB/dec

region')
hold on
title('Jitter tolerance')
xlabel('Frequency [rad/s]');
ylabel('Jitter amplitude [UIpp]');
yline(1,'HandleVisibility','off')

Jitter_tolerance = f(find(G_jt2<1,1))% Estimated 1UI tolerance

% Noise contributions to output
H_data = H_ol./(1+H_ol);
H_q = H_ol/TF_KPD./(1+H_ol);
H_ndco = 1./(1+H_ol);

pll_osc = (abs(H_ndco)).^2.*(pn_osc);
pll_q = (abs(H_q)).^2.*(pn_q);
pll_qcalc = (abs(H_q)).^2.*(pn_qcalc);
pll_qdac =(abs(H_data)).^2.*(pn_qdac);
pll_data = (abs(H_data)).^2.*(pn_data);
total = pll_osc+pll_qcalc+pll_data+pll_qdac;

figure(fig);
hold on;
semilogx(f,10*log10(pll_osc),'LineWidth',1);
hold on;
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%semilogx(f,10*log10(pll_q),'LineWidth',1);
semilogx(f,10*log10(pll_qdac),'LineWidth',1);
semilogx(f,10*log10(pll_qcalc),'LineWidth',1);
semilogx(f,10*log10(pll_data),'LineWidth',1);
semilogx(f,10*log10(total),'LineWidth',2);
legend('Simulation','DCO Noise','DAC Q Noise','Q Noise', 'Data Noise','Total')
axis([1e3 1e11 -180 -50])

sig_jitter_calc = sqrt(fstep)*sqrt(sum(abs(total(1:end))))/(2*pi*f_dat) % Linear model jitter
sig_jitter = rms(jitter) % Time domain model jitter

%% Bandwidth calculation
mag_cl = (abs(H_cl)).^2;
A=find(mag_cl<0.5);
Bwindex = A(1);
BW = f(Bwindex);

%% Bode Plots
s=tf('s');
TF_KPD = k_exp;
TF_DLF = alpha+rho/(s*t_dat);
TF_delay = exp(-s*t_dat*(delay));
TF_DCO = (k_dco/(s*t_dat))*1/(f_dat^2);
TF_ZOH = 1;%sinc(1i*2*pi*s/f_dat); %not necessary since model fails when ZOH has effect
H_ol = TF_KPD*TF_DLF*TF_delay*TF_DCO*TF_ZOH;
H_cl = H_ol/(1+H_ol);

%Plotting open loop tf
figure(3*fig);
margin(H_ol,f);
title('Open-loop');
p=pole(H_ol);
z=zero(H_ol);
xline(abs(p),'b');
xline(abs(z),'r');
axis([1e4 1e12 -190 -90])

%Plotting closed loop tf
figure(4*fig);
margin(H_cl,f);
title('Closed-loop');
p=pole(H_cl);
z=zero(H_cl);
xline(abs(p),'b');
xline(abs(z),'r');
axis([1e4 1e12 -190 0])

%Plotting comparison voltages
if calibration==1
figure(5*fig)
plot(Cal_reg.')
title('Comparison voltages');
xlabel('Sample')
ylabel('Code')
axis([0 samp 0 2^bits])
end



B
Verilog Code

module register_cal(
i_CKs,
i_enable,
i_rst,

i_major,
i_middleH,
i_middleL,
i_minorH,
i_minorM,
i_minorL,
i_rise,
i_fall,
i_pd,

i_thr,
i_lock,

i_regi0,i_regi1,i_regi2,i_regi3,i_regi4,i_regi5,i_regi6,i_regi7,i_regi8,i_regi9,i_regi10,i_regi11,
o_regi0,o_regi1,o_regi2,o_regi3,o_regi4,o_regi5,o_regi6,o_regi7,o_regi8,o_regi9,o_regi10,o_regi11,

);

//Define Parameters
parameter BITS = 5;
parameter COUNT_BITS = 5;
parameter TH_BITS = 10;
integer i;

//Define Inputs
input i_CKs;
input i_enable;
input i_rst;
input i_major;
input i_middleH;
input i_middleL;
input i_minorH;
input i_minorM;
input i_minorL;
input i_rise;
input i_fall;
input [1:0] i_pd;
input [11:0] i_lock;
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input [BITS-1:0]
i_regi0,i_regi1,i_regi2,i_regi3,i_regi4,i_regi5,i_regi6,i_regi7,i_regi8,i_regi9,i_regi10,i_regi11;

input [TH_BITS-1:0] i_thr;

//Define outputs
output reg [BITS-1:0]

o_regi0,o_regi1,o_regi2,o_regi3,o_regi4,o_regi5,o_regi6,o_regi7,o_regi8,o_regi9,o_regi10,o_regi11;
//Signal registers
reg s_major;
reg s_middleH;
reg s_middleL;
reg s_minorH;
reg s_minorM;
reg s_minorL;
reg s_rise;
reg s_fall;
reg [1:0] s_pd;

//Counters for each register
reg signed [COUNT_BITS-1:0] c_regi[0:11];
// threshold and lock register
reg signed [TH_BITS-1:0] THRESHOLD;
reg [11:0] LOCK;

///////////////////////
// Reset
// Load input register
// Load threshold value
// Reset counters
//////////////////////

always @ (posedge i_rst) begin
o_regi0 <= i_regi0;
o_regi1 <= i_regi1;
o_regi2 <= i_regi2;
o_regi3 <= i_regi3;
o_regi4 <= i_regi4;
o_regi5 <= i_regi5;
o_regi6 <= i_regi6;
o_regi7 <= i_regi7;
o_regi8 <= i_regi8;
o_regi9 <= i_regi9;
o_regi10 <= i_regi10;
o_regi11 <= i_regi11;
THRESHOLD <= i_thr;
LOCK <= i_lock;

for (i=0; i<12; i=i+1) begin
c_regi[i]<= 0;
end

end

// Load input states
always @ (negedge i_CKs && i_enable) begin

s_major <= i_major;
s_middleH <= i_middleH;
s_middleL <= i_middleL;
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s_minorH <= i_minorH;
s_minorM <= i_minorM;
s_minorL <= i_minorL;
s_rise <= i_rise;
s_fall <= i_fall;
s_pd[1:0] <= i_pd[1:0];
end

////////////////////////////
// Check phase information
// Check transition loop
// Check if locked
// Check counter full
// update register or counter
////////////////////////////

always @ (posedge i_CKs && i_enable) begin
if (s_pd==0) begin //PD says SLOWER

if ((s_major && s_rise) && (LOCK[0]==0)) begin
if (c_regi[0] < -THRESHOLD) begin

o_regi0 <= o_regi0+1;
c_regi[0] <= 0;
end

else begin
c_regi[0] <= c_regi[0]-1;
end

end

else if ((s_major && s_fall) && (LOCK[6]==0)) begin
if (c_regi[6] < -THRESHOLD) begin

o_regi6 <= o_regi6-1;
c_regi[6] <= 0;
end

else begin
c_regi[6] <= c_regi[6]-1;
end

end

else if ((s_middleH && s_rise) && (LOCK[1]==0)) begin
if (c_regi[1] < -THRESHOLD) begin

o_regi1 <= o_regi1+1;
c_regi[1] <= 0;
end

else begin
c_regi[1] <= c_regi[1]-1;
end

end

else if ((s_middleH && s_fall) && (LOCK[7]==0)) begin
if (c_regi[7] < -THRESHOLD) begin

o_regi7 <= o_regi7-1;
c_regi[7] <= 0;
end

else begin
c_regi[7] <= c_regi[7]-1;
end

end

else if ((s_middleL && s_rise) && (LOCK[2]==0)) begin
if (c_regi[2] < -THRESHOLD) begin

o_regi2 <= o_regi2+1;
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c_regi[2] <= 0;
end

else begin
c_regi[2] <= c_regi[2]-1;
end

end

else if ((s_middleL && s_fall) && (LOCK[8]==0)) begin
if (c_regi[8] < -THRESHOLD) begin

o_regi8 <= o_regi8-1;
c_regi[8] <= 0;
end

else begin
c_regi[8] <= c_regi[8]-1;
end

end

else if ((s_minorH && s_rise) && (LOCK[3]==0)) begin
if (c_regi[3] < -THRESHOLD) begin

o_regi3 <= o_regi3+1;
c_regi[3] <= 0;
end

else begin
c_regi[3] <= c_regi[3]-1;
end

end

else if ((s_minorH && s_fall) && (LOCK[9]==0)) begin
if (c_regi[9] < -THRESHOLD) begin

o_regi9 <= o_regi9-1;
c_regi[9] <= 0;
end

else begin
c_regi[9] <= c_regi[9]-1;
end

end

else if ((s_minorM && s_rise) && (LOCK[4]==0)) begin
if (c_regi[4] < -THRESHOLD) begin

o_regi4 <= o_regi4+1;
c_regi[4] <= 0;
end

else begin
c_regi[4] <= c_regi[4]-1;
end

end

else if ((s_minorM && s_fall) && (LOCK[10]==0)) begin
if (c_regi[10] < -THRESHOLD) begin

o_regi10 <= o_regi10-1;
c_regi[10] <= 0;
end

else begin
c_regi[10] <= c_regi[10]-1;
end

end

else if ((s_minorL && s_rise) && (LOCK[5]==0)) begin
if (c_regi[5] < -THRESHOLD) begin

o_regi5 <= o_regi5+1;
c_regi[5] <= 0;
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end
else begin

c_regi[5] <= c_regi[5]-1;
end

end

else if ((s_minorL && s_fall) && (LOCK[11]==0)) begin
if (c_regi[11] < -THRESHOLD) begin

o_regi11 <= o_regi11-1;
c_regi[11] <= 0;
end

else begin
c_regi[11] <= c_regi[11]-1;
end

end
end

else if (s_pd==3) begin //PD SAYS FASTER
if ((s_major && s_rise) && (LOCK[0]==0)) begin

if (c_regi[0] > THRESHOLD) begin
o_regi0 <= o_regi0 -1;
c_regi[0] <= 0;
end

else begin
c_regi[0] <= c_regi[0]+1;
end

end

else if ((s_major && s_fall) && (LOCK[6]==0)) begin
if (c_regi[6] > THRESHOLD) begin

o_regi6 <= o_regi6+1;
c_regi[6] <= 0;
end

else begin
c_regi[6] <= c_regi[6]+1;
end

end

else if ((s_middleH && s_rise) && (LOCK[1]==0)) begin
if (c_regi[1] > THRESHOLD) begin

o_regi1 <= o_regi1 -1;
c_regi[1] <= 0;
end

else begin
c_regi[1] <= c_regi[1]+1;
end

end

else if ((s_middleH && s_fall) && (LOCK[7]==0)) begin
if (c_regi[7] > THRESHOLD) begin

o_regi7 <= o_regi7+1;
c_regi[7] <= 0;
end

else begin
c_regi[7] <= c_regi[7]+1;
end

end

else if ((s_middleL && s_rise) && (LOCK[2]==0)) begin
if (c_regi[2] > THRESHOLD) begin

o_regi2 <= o_regi2 -1;
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c_regi[2] <= 0;
end

else begin
c_regi[2] <= c_regi[2]+1;
end

end

else if ((s_middleL && s_fall) && (LOCK[8]==0)) begin
if (c_regi[8] > THRESHOLD) begin

o_regi8 <= o_regi8+1;
c_regi[8] <= 0;
end

else begin
c_regi[8] <= c_regi[8]+1;
end

end

else if ((s_minorH && s_rise) && (LOCK[3]==0)) begin
if (c_regi[3] > THRESHOLD) begin

o_regi3 <= o_regi3 -1;
c_regi[3] <= 0;
end

else begin
c_regi[3] <= c_regi[3]+1;
end

end

else if ((s_minorH && s_fall) && (LOCK[9]==0)) begin
if (c_regi[9] > THRESHOLD) begin

o_regi9 <= o_regi9+1;
c_regi[9] <= 0;
end

else begin
c_regi[9] <= c_regi[9]+1;
end

end

else if ((s_minorM && s_rise) && (LOCK[4]==0)) begin
if (c_regi[4] > THRESHOLD) begin

o_regi4 <= o_regi4 -1;
c_regi[4] <= 0;
end

else begin
c_regi[4] <= c_regi[4]+1;
end

end

else if ((s_minorM && s_fall) && (LOCK[10]==0)) begin
if (c_regi[10] > THRESHOLD) begin

o_regi10 <= o_regi10+1;
c_regi[10] <= 0;
end

else begin
c_regi[10] <= c_regi[10]+1;
end

end

else if ((s_minorL && s_rise) && (LOCK[5]==0)) begin
if (c_regi[5] > THRESHOLD) begin

o_regi5 <= o_regi5 -1;
c_regi[5] <= 0;
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end
else begin

c_regi[5] <= c_regi[5]+1;
end

end

else if ((s_minorL && s_fall) && (LOCK[11]==0)) begin
if (c_regi[11] > THRESHOLD) begin

o_regi11 <= o_regi11+1;
c_regi[11] <= 0;
end

else begin
c_regi[11] <= c_regi[11]+1;
end

end
end

end
endmodule
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