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ABSTRACT 

Due to technical advances and the changing political environment sensor management has become increasingly 
knowledge intensive. Aboard navy ships however, we see a decrease of available knowledge, both quantitative and 
qualitative. This growing discrepancy drives the need for automation of sensor management. Since the goal of sensor 
deployment is to have a complete and accurate operational picture relative to the mission we propose a three-stage sensor 
manager, where sensor task requests are generated based on the uncertainty in the (expected) objects’ attributes. These 
tasks are assigned to available and suited sensors, which in turn are fine-tuned for the task at hand. When trying to 
reduce the uncertainty in the classification solution one must first define how the classification process actually works. 
We discuss why the classification process needs to be automated as well and show how such classification algorithms 
will most likely work in the future. 
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1. INTRODUCTION 
Managing the sensor systems onboard modern naval vessels requires an increasing amount of technical knowledge due 
to the fact that these vessels are equipped with state of the art sensor systems that provide more functionality and more 
accurate information at the cost of more complex control mechanisms. Furthermore, the shift of operational areas to 
littoral waters with often-dense civil traffic and rapidly changing geographical and meteorological conditions demands a 
much more dynamic adaptation of the sensor settings in comparison with the more stable environment of traditional 
operational areas like the Atlantic Ocean. The shrinking of the defense budgets on the other hand give rise to a demand 
for crew reduction, shorter education times and less training opportunities causing a reduction of the synergy created 
within teams of operators and the knowledge and experience of individual operators. 

From these observations can be deduced that sensor management requires an increasing amount of both operational and 
technical knowledge while the available amount of these types of knowledge is decreasing. The consequences of 
incorrect sensor management may however be severe: if sensor systems fail to detect threatening objects, platforms may 
be incapacitated or even neutralized and consequently mission objectives will not be met. Therefore research has to be 
executed to model and capture sensor management related knowledge in order to support the deployment of complex 
sensor systems. 

An additional challenge is presented by the integration of optical sensors like infrared (IR) sensors and High Definition 
(HD) camera’s in Command and Control (C2) systems, as these sensors provide a different type of information in 
comparison with the data provided by ‘traditional’ sensors like radar and Identification Friend or Foe (IFF). The 
available sensors therefore have to be described in terms of the type of information they provide and how this 
information contributes to the compilation of the Operational Picture (OP) as this picture forms basis for decision 
making processes and subsequent actions. The sensor management process now has to deploy the available sensors in 
such a way that the OP is as complete and accurate as possible given the available sensor systems. 

In Section 2 of this paper the purpose of sensor management is explained, related performance indicators are derived and 
sensor management principles are formulated. Section 3 describes how these principles can be used to construct a three-
stage sensor manager and how this sensor manager uses the information compiled in the OP by C2 processes, to deploy 
the sensors. Section 4 explains how optical systems can contribute in the compilation of an OP. In Section 5 conclusions 
are drawn and the required future work is discussed. 
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2. SENSOR MANAGEMENT ISSUES 
As already brought forward in the previous section, sensor management is currently executed by operators, who translate 
the operational requirements of a mission into technical sensor settings while taking operational, environmental and 
political constraints like Rules Of Engagement (ROEs) and Emission Control (EMCON) plans into account. Because 
these technical controls are sensor specific and may be implemented in hardware or are made available by Graphical 
User Interfaces (GUIs), an operator must be familiar with the meaning of each setting and how a change of setting 
affects the performance of the sensor. In the previous section was also mentioned that the operator must be aware of the 
complementary properties of the various sensors and actually has to consider the control of the complete sensor suite as 
opposed to the setting each sensor individually. 

Specifically looking at the use of electro-optical sensor systems during a mission, it can be stated that an operator uses 
the cameras to visually detect and classify objects in the ship’s surrounding. Classification is achieved by comparing the 
information provided by the sensor system to prior knowledge about the expected targets while compensating for the 
environmental influences. Based on the performance of the sensor systems, the range of the object of interest and the 
operational constraints for the mission, the sensor system that will be used to classify the object is selected. 

In order to classify an object by means of electro-optical sensor systems, the operator compares the silhouette as 
presented by the electro-optical sensor system with pictures of the silhouettes of the expected objects. To compare the 
silhouettes, the operator mainly focuses on distinct points of the object while taking his prior-knowledge of the 
capabilities and limitations of the object into account. The object is considered classified when the picture and the 
silhouette match. When no match can be found and the object is assumed to be relevant to the mission, the crew will put 
more effort into the classification of the object by deploying other sensor systems or by maneuvering the platform nearer 
to the object. In order to support the operator in the classification process, the sensor has to provide the most detailed 
picture possible that shows a sufficient number of classification features. The sensor therefore has to be optimized for 
this specific classification task. 

The observation that system-specific sensor management is a complex task that requires extensive operational and 
technical knowledge is recognized in literature and various papers can be found that propose methods and algorithms to 
support this task. Strömberg, et al. [1] have conducted a literature survey that presents an overview of relevant principles 
and methods concerning sensor management. Most of the methods reviewed by them provide a technical, sensor-
oriented approach, striving for optimal sensor settings, but leave the translation of the operational requirements into 
technical sensor settings to the operator and therefore do not provide a solution to the identified problem. McIntyre and 
Hintz have compiled a Comprehensive Approach to Sensor management, consisting of three papers [2], [3], [4], that 
describes a survey of modern sensor management systems, a new hierarchical model and goal lattices. In their first 
paper, [2], they present the concept of the sensor management process and recognize sensor management as a process 
that contributes to the realization of the mission goals; how this may be achieved is however not directly clear. 

Interviews with operational experts [5] revealed that two important requirements with respect to the compilation of the 
OP have to be met:  

1. the OP must be complete; 

2. the OP must be accurate. 

This means that the deployment of the sensor systems must be aimed at satisfying these requirements. Bolderheij and 
Van Genderen [6] argue that these requirements can be met by constructing the OP from objects that represent the 
mission-relevant elements in the environment. They state that the OP can be considered complete if each relevant 
element in the environment is represented by at least one (preferably by only one) object in the OP and that the accuracy 
of the OP can be pursued by reducing the uncertainty that belongs to the attributes of the object. To maintain the 
completeness of the OP, sensor systems have to be deployed to search the environment for the presence of these 
elements while the accuracy can be ensured by tracking, classifying and identifying them. To initiate surveillance, the 
expected threat in the operational area is analyzed during the planning stage of a mission, and modeled as expected 
objects that are inserted in the OP. 
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3. A THREE-STAGE SENSOR MANAGER EMBEDDED IN THE C2 PROCESS 
Taking the OP as a starting point, Bolderheij and Van Genderen [6] have developed a sensor manager that distributes 
available sensor resources in order to compile an OP that satisfies the requirements formulated in the previous section. 
This sensor manager first inspects the attributes of each object in the OP with respect to the amount of uncertainty that is 
related to its attributes and assigns sensor tasks to reduce this uncertainty. The sensor manager then selects the most 
appropriate sensor from the set of available sensors and finally tunes the sensor for this specific task. 

In Fig. 1 is shown how the OP acts as the central element among the C2 processes, amongst which the three-stage sensor 
manager is placed. It can be seen as a virtual blackboard on which the C2 processes write their information and/or from 
which they read their information. It may also be implemented as a market place where agents update or retrieve the 
information contained in the object attributes. 
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Fig. 1. The object-centric C2 process with embedded sensor manager 

Generally speaking, the sensor resources are not unlimited available and the allocation has to be prioritized. Therefore a 
prioritizing mechanism was developed that estimates the risk posed by an interaction with an object based on the 
presumed lethality of the object and the probability of occurrence of the interaction. 

In Fig. 1 the three-stage sensor manager is shown in the context of the overall C2 process. Through the sensors placed in 
the lower left corner, a control cycle over those sensors can already be seen. Fig. 2 shows the three-stage sensor manager 
but now directly in the context of a sensor control cycle. The first two stages of sensor management are highlighted in 
Fig. 2 since they both are the main focus for now. 

3.1 Stage 1: Constructing a sensor task 

In [5] and [6] the notion of risk was used as a prioritization criterion for the scheduling of sensor tasks. How such tasks 
were made however, was not discussed. Here we will describe how tasks are generated, utilizing the risk calculation 
given by Bolderheij. Each object in the environment has n attributes, nµµ K,1 , e.g., the attributes: position, speed, 
acceleration, class or type, and identity. Risk, denoted R, is calculated as a function of these attributes and our current 
mission, denoted M. In formula this statement translates to: R = ( )Mf n |,,1 µµ K . Of course, some of the attributes have 
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an amount of uncertainty, denoted nσσ K1 . Where the sensor manager previously looked at the risk calculated based on 
the mean values of attributes, we now expand this by sequentially varying the different attributes to compute the 
uncertainty in risk, denoted Rσ . By sequentially varying the uncertainties we can also see how each i-th attribute-
uncertainty, iσ , contributes to the uncertainty in risk, denoted iR,σ . Equation (1) shows how the risk uncertainty is 
calculated when risk is a function of three attributes, R = ( )321 ,, µµµf . The exact formula to calculate risk is of little 
importance here since we only describe the conceptual design. The formulation of risk that we use can be found in [6]. 
Since the computation of risk uses Dynamic Bayesian Networks, the mission variables are embedded in the risk function, 
which explains why the mission is no longer seen in the formulas presented here. 

 

2
3,

2
2,

2
1, RRRR σσσσ ++=      (1.a) 

( ) RfR −+= 32111, ,),( µµσµσ      (1.b) 

( ) RfR −+= 32212, ),(, µσµµσ      (1.c) 

( ) RfR −+= )(,, 33213, σµµµσ      (1.d) 

 

When iR,σ  and/or iσ  exceeds a user-defined threshold, a task is requested to minimize the uncertainty by executing a 
sensor task of type T. Using this methodology we can reason which attribute uncertainty needs to be reduced, by 
choosing the appropriate type of sensor task to perform. And we can also compute the amount of uncertainty that needs 
to be reduced for that attribute, denoted ξ . These thresholds can be determined and fine-tuned in simulations in the 
planning stage of a mission thus enlarging the possibility of mission success. 
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Fig. 2. The three-stage sensor manager placed within the sensor control cycle where uncertainty on object information is 

used to generate sensor function requests and sensor performance determines the sensor allocation. 
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The object’s kinematics and current position define the area A  where the contact is expected to be. The upper bound of 
the risk ( RR σ+ ) defines the priority, Φ , of the task. A due date of the task, ddt is added to ensure that Rσ  does not 
exceed mission dependent thresholds. Based on these definitions a mapping formula, given by equation (2), can be 
constructed. 

 

[ ] [ ]( ) ( )Φ→ ,,,,,,, ddR tATtaskRcontact ξσσµ     (2) 

 

3.2 Stage 2: Assigning a sensor 

When a task is generated it has to be executed by one of the available resources and preferably by the best-suited 
resource. Although this might seem straightforward, it is not. The problem for one multifunction radar has been shown to 
be NP-hard by Thaens in [7]. Adding more resources will certainly not make the problem easier. Of course, when a task 
can only be executed on one resource, the allocation problem is already solved. If this is not the case, the problem 
becomes a multi-criteria scheduling problem of which an overview can be found in T’Kindt and Billaut [8]. 

To find a scheduling methodology we first have to look at the various criteria that are involved in the sensor allocation 
problem. First criterion can be implemented relatively simple for the time being: is the object in range of a sensor given 
the specifications. A model of the sensor and the current environment are needed to determine the detection probability 
of sensor S for the object at which the requested sensor task j is directed, denoted jsP , , and the sensor’s detection 

accuracy, denoted js,ζ . A second criterion is the operator bias for a certain sensor. Such bias is modelled in this 

methodology and is denoted by Tu,ζ . This factor could also be used to disable certain functionalities of sensors, e.g. due 
to malfunctioning or during maintenance. 

A third criterion is the availability, τ , of the sensor for the specific task under consideration. Availability can mean 1) 
that the sensor has nothing to do at the moment or 2) the user has authorized the use of this sensor for that specific task. 
The first is denoted by sτ  and is computed with equation (3). The latter is defined as: 1, =suτ , off: 0, =suτ , or any 
other value 10 , << suτ  to indicate degraded performance of the entire sensor. 
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In equation (3) the time a sensor needs to perform a task is denoted by pt  and the current time is denoted by ct . 
Including these time factors ensures that it becomes increasingly important to execute a task as its deadline approaches. 

Trying to solve the allocation problem, means we have to combine all these factors into one formula. The result is 
equation (4), which computes the effectiveness of a sensor for all tasks of type T that currently need to be allocated, 
denoted sTE ,  where Jj ...1= . 
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The optimization of equation (4) can be done in several ways. Van Norden et.al. [9] discuss the fuzzy Lyapunov 
approach (based on a solution to the job-shop scheduling problem from Margialot and Langholz, [10]) as well as an 
online evolutionary algorithm. Another approach is using hybrid metaheuristics as described in [11] and [12]. Currently, 
the preference is to use the fuzzy Lyapunov approach because this has a good trade-off between performance and 
computation time as can be see in aforementioned references. The formula presented in [9] however is replaced by 
equation (4). 
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The resulting algorithm is based on making buffers for each different task type. By calculating the effectiveness of the 
sensors for each of these buffers, choices can be made in the allocation process. E.g., suppose that a task of type A can be 
executed on either sensor X or sensor Y. Using the effectiveness formula this task will be allocated to sensor X if EA,X > 
EA,Y. Because each task has a certain contribution to the buffer weight it can also be used as a scheduling methodology. 
More details about fuzzy Lyapunov for sensor scheduling can be found in [12]. 

3.3 Stage 3: Tuning the sensor 

Through the objects in our environment, tasks are created and assigned to the most suited sensor at that time. The third 
stage of the sensor manager is setting the sensor optimally for the task at hand given the current environment and the 
mission restrictions. 

For some sensors this is easy: an electro-optical sensor is directed to the contact and zooms according to the distance. For 
a radar system however, calculating the optimal waveform, pulse repetition rate and frequencies is not easy. Because a 
lot of research on this field has already been done we will not further discuss these problems. Rather, we will use the 
existing algorithms. Readers interested in radar parameter control are referred to e.g. [13]. 

3.4 Re-planning issues 

In theory, the combination of these three stages should find the optimal sensor suite deployment in any environment for 
any mission. Dynamics in mission constraints, meteorological conditions combined with unexpected sensor performance 
prevent the system to always find optimal settings. When e.g., one of the sensors fails, all tasks assigned to that sensor 
need to be re-allocated to other and most likely less suited sensors. This means that some sensor tasks need to be 
dropped; in this case, the tasks directed at those objects that pose the lowest risk will be dropped first. Another 
complicating factor is the multi-platform setting is assigning tasks to sensors on different platforms. When that particular 
platform is forced to manoeuvre unexpectedly, the allocation process might have to start over. This becomes complex 
when the sensor suite is made up of sensors that deliver complementary data. In these cases the combination of tasks or 
the splitting of a task in two or more new tasks need to be taken into consideration as well. 

A possible solution for this problem is to define several scenarios for which optimal solutions are calculated in the 
planning phase of a mission, these solutions are then called doctrines. The problem then is to define enough scenarios to 
cope with most situations and few enough to still be able to choose the right one in time. In each scenario, a part of the 
solution space is accurately modelled to enable finding good solutions in reasonable computing time. 

Another solution is to use good exploration heuristics to find promising regions in the solution space. Within those 
regions exploitation heuristics can be used to find a good solution. In essence, this means that the space is not modelled 
in several scenarios but that we have a mechanism to choose from an unlimited set of scenarios. This approach is 
discussed by De Jong et.al. in [11]. The downside of this approach lies in the way the system can communicate with the 
user. Where scenarios are defined, the user can see which of those scenarios is currently active and alter that if desired. 
Explaining to the user what part of the solution space is currently examined is a challenging problem that may only be 
solved by demonstrating the system and gaining trust. 

 

4.  INTEGRATION OF OPTICAL SENSORS 
In the previous section we showed that the uncertainties in the attributes of objects are input for the sensor tasks 
generation process. In case of kinematic information, for which radar systems are mostly deployed, the process accuracy 
can be estimated. But what should the system do about class uncertainty? How can we describe the difference in 
classification accuracy between an IR-sensor and a HD-sensor? This section tries to find the required building blocks to 
answer these questions. 

4.1 Desired contribution electro-optical sensor systems 

Optical sensors can contribute to the compilation of the OP in several ways: trainable optical sensors can improve the 
estimation of the position of an object by providing accurate azimuth and/or elevation angle information. The 
combination of this information with range information from laser range finder equipment or radar range information can 
significantly improve the determination of the 3-D position of the object.  
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Optical sensors are however especially useful in the reduction of the classification uncertainty and images provided by 
these types of sensors can be used (either by an operator or by a computer) to determine the class to which an object 
belongs. 

The information enhancement may take the shape of an interaction between several C2 processes that use the OP as a 
mean of information exchange. If an object is tracked during a certain time interval e.g. by a mechanical target tracking 
radar or a Track While Scan (TWS) process, the kinematic behaviour of the object can be analysed to determine a 
preliminary object-class like ‘ship’ or ‘aircraft’. This information can subsequently be used to ‘tune’ the detection 
algorithms described by T.Y.C. van Valkenburg-van Haarst et.al., [14]. After ‘detecting’ the object within the image, the 
part of the image that contains the object can be added to the OP-object as an attribute, allowing an operator to quickly 
inspect the visual characteristics of an object or, alternatively, the information can be handed over to an automatic 
classification process. 

4.2 Current use electro-optical sensor systems 

The current use of electro-optical sensor systems on board has many drawbacks. A human operator performs 
classification tasks, based on the expected objects and their silhouettes. This of course demands on a good view of the 
object in question. Section 1 already mentioned the decreasing knowledge, both in quantity and quality, that is available 
on board. Classification however has become increasingly complex due to the different types of mission and the 
advances in technology enabling higher speeds, thus reducing reaction time. This in turn stresses the operator into 
solving the classification problem in short time. 

In order to be able to complete missions successfully, given the reduced the crew sizes and coping with the speeds of 
current and future technology, electro-optical sensor systems need to be integrated into the automatic sensor management 
process and the information provided by them has to be fused in the picture compilation process i.e. they are 
incorporated in the sensor control loop (Fig. 3) described by Bolderheij and Absil [15]. 

Currently, the main contribution of these sensors is desired and expected to be in the classification and identification 
process. 
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Fig. 3. Sensor Control Cycle 

 

In order to find a good classification solution, several sub-processes have to done. Firstly, we need to know about the 
existence of the object. The object has to be distinguished from its surroundings. Before coming to more detailed 
classification labels, the domain (air or surface) has to be determined. Following this line, the lowest classification level 
is the objects’ identity. 
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4.3 Algorithm demands  

For the Royal Netherlands Navy an automatic classification algorithm should be applicable in many different 
environments and for many different object types. The algorithm should be robust and highly reliable for variation in 
aspect angles and distances. Furthermore, the algorithm should be fast and should be able to generate a maximum 
reliable solution in a minimum amount of time depending on the available information. When the amount of information 
increases, the solution should adapt to a more detailed and more reliable classification of the object of interest. Or, when 
conflicting information becomes available, the solution should adapt by going back to more generic descriptions of the 
object. 

The use of prior knowledge is expected to be helpful, but may not result in a system that only performs well on expected 
objects. The system has to be able to deal with unexpected objects. For example by addressing the operators’ attention to 
the unexpected object, which can only be done when the system knows the object is unknown. Furthermore, the model 
has to be adaptive. This means that when more, or other, information becomes available that the solution of the 
classification algorithm will adapt. The solution may change or become more accurate. 

For operational usability, the algorithm cannot be a hierarchical model. When certain information is not available the 
algorithm still has to produce a solution based on the available information. A general sketch of the resulting system is 
shown in Fig. 4. 
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Fig. 4. Model contribution electro-optical sensor systems 

 

4.4 Research results with respect to detection 

In order to be able to classify an object based on electro-optical sensor information it is firstly desired to automatically 
detect the object in the images. To let the electro-optical sensor systems contribute to the automatic sensor management 
process, this research therefore focuses on the automatic detection of objects in a military, maritime environment. Since 
the subsequent goal is to classify the object, a bounding box is to be generated around the detected object. 

Van Valkenburg-van Haarst et.al., [14] analyzed two different approaches for detecting objects in a military, maritime 
environment. Firstly, the position of the horizon is detected in order to pre-classify the object, knowing whether an object 
is a surface object or an air object, and to decrease the computation time of the detection algorithm. Furthermore, when 
surface threats are expected based on the mission, it can be an operational decision not to analyse the entire image but 
only the sea-part of the image. The position of the horizon is determined using gradient filters, which show to be well 
applicable for InfraRed (IR) images as well as for Visible Light (VL) images when the horizon appears as a sharp 
transition in the image [14].  

For the actual object detection Van Valkenburg-van Haarst et.al., [14] analyzed two different approaches. The 
applicability of gradient filters as well as the use of polynomials for background estimation for object detection are 
analysed and tested on IR and VL images. The gradient approach for object detection focuses on the differences in 
intensity and localises areas with high gradients as detections. The polynomial background estimation approach uses the 
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Linear Least Square Estimation (LLSE) in order to fit a line through the measured intensity values. The deviation 
between the fit and the actual measurements is used to detect objects in the image. 

For the detection of objects the use of gradient filters shows poor performance. In the IR frequency band, as well as for 
VL images, much false detections occur, large objects are divided in several small objects and when a bounding box is 
generated it is improperly sized in most cases. 

For the initial object detection the use of polynomials shows to perform well. In almost all IR and VL images the 
background estimation results in detection of the object. False detections do occur, but not as many as with the use of 
gradient filters by far. Furthermore, depending on the parameter settings larger objects are not subdivided into multiple 
small objects. However, the use of low-ordered polynomials does lead to improper box-sizes as well. 

4.5 Future research in EO image processing 

Since the main desired contribution of electro-optical sensor systems to the picture compilation process is automatic 
classification and identification, the generation of a properly sized bounding box around objects in the image is an 
important step. Therefore, and based on the results shown in [14], the combination of the polynomial background 
estimation method for the initial detection and the gradient approach for the detection of the actual edges will be 
investigated. Hereby, improvement of the clustering in order to decrease the number of objects that are split into several 
smaller objects, as well as the use of video streams in order to improve the performance with respect to the amount of 
false detections will be taken into consideration. 

Furthermore, many of the parameter settings in both detection approaches are chosen arbitrarily. In order to show the 
applicability of a certain method this is assumed to be acceptable. However, in order to assure that the algorithms will 
work in an operational theatre where the objects and the geographical and meteorological circumstances are highly 
dynamic, the use of adaptive parameter settings is desired. Using adaptive parameter settings, the parameter values used 
will adapt to the meteorological and geographical circumstances as well as to the expected objects. Based on information 
of other sensor systems, as well as prior-knowledge of the environment and the mission, a proper choice of the parameter 
settings will be made. This means that the parameters that are now arbitrarily chosen will automatically be properly set 
by the mission information. 

When the performance of the detection algorithms shows to perform robust and reliable enough to contribute to the 
automatic sensor management process, the classification algorithms will be developed. Currently, the idea is to 
investigate the applicability of the Recognition-By-Components (RBC) theory, which is one of the leading theories on 
how human beings classify objects in their environment. The RBC theory states that object recognition is achieved by 
assembling 3-dimensional geons1. As described by Biederman [16], the perceptual recognition of objects by human 
beings is conceptualized to be a process in which the image is segmented at regions of deep concavity into an 
arrangement of simple geometric components such as blocks, cylinders, wedges and cones. The fundamental assumption 
of the theory is that a modest set of generalized-cone components can be derived from contrasts of five readily detectable 
properties of edges in a two-dimensional image: curvature, collinearity2, symmetry, parallelism and cotermination. The 
detection of these properties is generally invariant over viewing position and image quality and consequently allows 
robust object perception when the image is projected from a novel view position or is degraded. 

Due to the claimed robustness with respect to aspect angle, distance and image degradation the application of the 
recognition-by-components theory for automatic object recognition will be investigated. 

5. CONCLUSIONS AND FUTURE WORK 
The work presented in this paper describes an automated sensor management process where the operational picture is the 
central element. All decisions on sensor deployment are driven by the desire to make that picture as complete and 
accurate as possible relative to the mission at hand. We showed that sensor task requests can be generated automatically 
based on the current operational picture and the mission. Priorities can also be assigned to those requests to support 
planning and scheduling algorithms in allocating tasks to certain sensors. 

                                                 
1 Generalized-cone components 
2 Lying on the same straight line 
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When reducing uncertainty on the classification solution of object, one must be able to estimate the performance of 
electro-optical sensor systems. Furthermore, we showed that the support of or automation of the classification process 
based on images is necessary in the maritime military domain. The first step has been taken by developing algorithms to 
automatically detect the horizon in images so a distinction can be made between the air and surface domain. Also, 
algorithms were discussed that detect objects and find bounding boxes for those objects. 

In the overall concept, the parameters of the mission are extremely important. It tells the system about expected targets, 
resulting in prior probabilities in reasoning processes. We can also set some meteorological default values specific to the 
mission to have a more accurate sensor performance prediction mechanism. In the future, we foresee that these factors 
will influence the parameters of the image processing. One could think of filter sizes dependent on target size and 
distance or specific polynomial orders given weather conditions. 

When the automated classification based on images from electro-optical sensors is achieved, the generic three-stage 
sensor manager can be finished. For each of the objects’ attributes tasks can be requested, and the performance of the 
different sensors can be estimated. Of course, future work then would be to implement these concepts in real systems and 
test them. 
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