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Lateral Force and Moment on Ships

in Oblique Waves'

By Puflg Nien Hu2

A method for evaluating the exciting force and moment on surfóce ships as well as on

fully submerged bodies in oblique waves is developed, based on the

regular waves and slender bodies. The differential equation, together with the boundary

conditions, for each component of the velocity potential is studied. Momentum theorems

for sleñderbody sections are derived and applied to the evaluation of stripwise force
and moment on bodies in the presence oreesfac!., The result is found to be directly
related to the added masses of the lIy sections. Lateral added masses of body sections

in the presence of o free surface are investigated in detail and numerical values are

presented for Lewis sections.

IN the study of the linearized motion of a body in a
fluid, an important task is to evaluate the exciting force
and moment on the body due to regular waves encoun-
tered. Much work has been. done in recent years for the
cìse of fully submerged bodies, including the investiga-
tions made by Havelock [1], Cummins [2], Korvin-
Kroukovsky [3], Korvin-Kroukovsky and Jacobs [4],

- Kaplan [5] and Kaplan and Hu [6, 7]. Havelock ob-
tained the force and moment on a prolate spheroid from
the pressure integration by use of spheroidal harmonics.
Cuinmins treated the case of an arbitrary slender body
of revolution and evaluated the force and moment by
applying his extension of Lagally's theorem to unsteady
flows [8]. Korvin-Kroukovsky and Jacobs evaluated
the force and moment of a slender body of revolution by
integrating the pressure along the periphery of cross-
section, assuming the flow in the plane of cross section to
be two-dimensional. This method was employed again
by Kaplan, based on a more rational formulation of the
problem, and was further extended by Kaplan and Hu to
the evaluation of stripwise force and moment on slender
bodies of noncircular cross sections, utilizing the tech-
nique of conformal transformation.

In the case of surface ships, only the vertical force and
pitching moment have so far been treated Haskind [9]
studies the force and moment on a thin ship; Peters and
Stoker [10] developed a perturbation technique for
evaluating force and moment on ships of Michell type
(thin), or planing type. (flat), or a combination of the
two. Newman [11] further extended the perturbation
technique by using three perturbation parameters and
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8 Nümbers in brackets designate References at end of paper.

investigated higher order terms. All these studies
utilized the same Green's function satisfying the ap-
propriate boundary condition on the free surface. The
velocity potential was derived frOm Green's theorem,
while the force and moment were found by integration of
pressure over the hull surface.

As to the lateral fOrce and moment on ships in waves,
Ursell [12] and Levine and Rodemich [13] have treated
two-dimensional cases. Haskind [141 has solved the
problem of infinite plate and cylinder in oblique waves.
However, the treatment of three-dimensional .bodies in
oblique waves is still lacking. The difficulty in problems
of three-dimensional bodies appears to arise from the fact
that the integral equation for the velocity potential
derived - from Green's theorem involves an extremely
complicated kernel fünction which cannot be solved
exactly in the present state of mathematics. To avoid
this, it is necessary to make further simplifications to or
formulate the problem from a different approach.

Since the restoring force and moment on ships in lateral
motions are small, motions. at low frequencies are of par-
ticular interest. In the present paper, consequently,
only long regular waves are treated. For this case, it is
found that velocity potential attributed to the body-wave
interaction can be determined from two-dimensional
analysis. In addition to .the simplification of thè problem
thus achieved, the two-dimensional analysis also offers
the advantage that it is possible to treat a large class of
ship forms such as those represented by two or more
parameters [15,16, 17].

The evaluation of the force and moment from the pres-
sure integration is not always a simple task because the
nonlinear terms in the pressure expression must be in-
eluded even in the case of slender bodies [18, 19]. Al-
though the extended- Lagally's theorém [8] enables one
to evaluate -the force and moment from singularity dis-
tributions, the feasibility of applying the theorem to
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flows involving bodies on a free surface remains to be
examined In the present paper, the stripwise force and
moment are evaluated by use of momentum theorems

derived in forms appropriate to slender-body sections.
It is interesting to note that results thus Obtained are'
directly related to the added masses of ship sections.

By application of the perturbation method, the lateral
added masses of ship sections up to the second order are
studied, and the second-order terms of the added masses
are found to represent the potential energies on the free
surface due to waves generated by the first-order soin-
tions. Numerical values of lateral added masses of Lewis
sections are calculated for both flist and second-order
terms.

Fundamental Equations

A Cartesian co-ordinate system is chosen with the axes
fixed relative to the ship, which is restrained to move
only forward at a constant Speed U in the x1direction
on the free surface. The x3-aìis is positive upward, the
xe-axis to the port, and the origin is placed on the free
surface in the median plane of ship.

The free surface is disturbed by regTilar waves propa-
gated with speed c in a direction oblique to the forward
motion of the ship at an angle ß which lies in the range
- ir/2 ß as shown in Fig. 1. The wave-propaga-
tion speed c. is positive for following seas and negative
for head.seas. .

The perturbation velocity potential (x1, .x2, x5, t) of
the motion of the fluid satisfies:

- NomenclatUre

A = cross-sectional area of ship below free surface
A1(i,j = 1,2,3) = added mass, defined by equations (38)

d(41)
A42 added moment of inertia, dèfined by equation

(42)
A1', A" = first and second-order terms f A2, respectively
A42', A42" first and second-order terms of A42. respectively

a = amplitude of regular waves
a1, a2 = coefficients of Lewis transformation

b = half-beam of ship section
C = submerged surface of ship sectioñ

= wave-propagation speed
= added mass coefficients

C42', C42" = first and second-order terms of Ci, and C12, re-
spectively

D ô à .= -- - U - total time derivativeDt òt òz,
F = free sth-face outside ship in plané of cross sectiOn

F(j 2.3) = force along.x - directioñ
g gravitational acceleration

H = draft of ship section
h2 h4 = wave heights generated by and respec-

.ti-ély
i = (-1)V

2ir q
k -i-- -j wave parameter

L large surfcó at infinity
M1 moment about x1-axis
m = ñiass Of fluid displacéd by ship section
ii = normal pointing into fluid
n, cos(,x,) = direction cosme (j = 1,23)
n4 Xifl - Z3112
p = pressüre

r, O = polar co-ordihate in plane

S = sürface bounded by F, Cand L in plafle of cross
section

S' surface of control-volume
T =xicosß±(Ucosßc)t
t = time

U forward speed of ship
U velocity vector of fluid

y, w = components of U . along z2- and x3-direction,
respectively

vo i/cacsinß
w0 = kac

= horizontal component of orbital velocity
at z2 = = O

uioe"T vertical coinponent of orbital velocity
atx2 = z3 =0

Cartesian co-ordinate
z2 ± ix3 = complex plane.
fluid density
angle between x,-axis and normal to crests of

regular waves
= E ± ia complex plane,. on which unit circle is

mapped iñto á fiat plate
Ei + i'71 re8 = complex plane, on which ship

ection is mapped into unit circleA.g = = area ratio
X = wave length

H -.
b

= pertürbation velocity potential
abbreviatiOns of «z1, b, 0) and O), respec-

tively
: . -

'' .: -

= 1,2,3,4) normalized velocity potential '. . -

vèlocity potential of waves
= velocity potential due to body-wave mteraction
= see equations (8) and (16)

r control vOlÙme

«b), b)
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Laplace equation

Ò2 ò2 ò2

òxi2 Xi2 ÒX32

everywhere in the fluid,
The linearized boundary condition4

(2)

on the free surface (x3 = 0), and
(c The boundary condition.

- fli+---22±fli Uni
òn òx1 òXi ÒX3

(-3)

on the surface of ship5 where n is the normal pointing
into the fluid and fl1 cos (n, xj) is the direction cosine.

One may expresss the potential as

(x1, x2, x3, t) = Ui(xi, Xi, x3)
-j- x2, x3, t) -I-. b(Xi, x2, x, t), (4)

where represents the- potential due to the fdrward
motion of ship in calm water, the potential of waves,
and the body-wave interactioñ Obviously, each
potential satisfies the Laplace equation.

The potential satisfies the boundary cofldition

U2+ g
òX12 òx3

on the free surface, and the boundary condition

fli (6)

on the surface of the ship.. For thin ships, the potential
q may be determined by the well-known Michell's ap-.

proximate method For slender bodies, Cuminins [211
has developed a method to obtain in terms of the co-
ordinates fixed in space, based on the concept of impul-
sive flow. In the case that the fórward speed of the ship
is small, the free surface can be regayded as .a rigid wall
and the potential is identical with that for a double
body, consisting of the submerged position of the body
and its image over the free surface, moving in an infinite
fluid. The standard slender-body theory can then be
applied (see, e.g., Reference [221).

For regular waves of wave length X and applitude a,.
one has

k(xa ± i(xj cos ß + 2 Sin ß ± (U cos $ - c)tJ} (7)

where

L
- -X - C2

(1)

Newman [11] has stúdied the boundary condition on the free
surface very rigorously and has shown that equation (2) should be
mhomogeneous if the beam-length ratio of the ship is in the same
order as the. incident wave perturbatión parameter. The present
homogeneous condition therefore iinphes that the beam-length
ratio of the ship is smaller than the incident wave parameter This
is e nsistent with the slender-body treatment in the present tudy

is thè wave parameter, i = (-1)" and only the real
part of the potential is to be taken. As is suggested by
the form of , one may write

, + = i,t'(x2, x3)eikT, (8)

where

T = Xi cos ß ± (U cos ß - c)t, (0)

and -the function 4' satisfies the two-dimensional Helm-
holtz equation

òXi2 òx32
k2 cos2 64', (10)

the boundary condition

òx2
k4i - (il)

on the free surface and the boundary condition

(12)
òx2 òX3

on the surface ot the ship, where n is approximated by
the normal in the z2 - x3 plane for slender b dies.

lt is extremely difficult to solve equation (10) sub-
jected to the. mixed boundary conditions (11) and (12)

even for very simple cases. Haskind [141 obtained a
solution for an infinitely long plank in terms of series of
Mathièu functions, However, for the case of long waves,
a great simplification may be achieved.

Assuming that the wave length is adequately large
and the linear dimensions of the cross section of ship are
small relative to the wave length, the potential of waves
may be expanded near the body into a Taylor series
aróund the xi-axis; i.e., Xi x3 = 0. Neglecting higher
order terms of the wave parameter k beyond the linear,
-one has

= ac[1 ± k(xa ± ix2 sin ß)JeT (13)

or -

= (ac - V9Xi wx3)eikT (14)

where

= -rikac sin 3,

and
- w0=kac (15)

This -shows that for long waves, the wave potential near
the body behaves like that of a uniform flow in the plane
of cross section One may, consequently, st

4' = 4',,, - Vo2 W03, (16)

where 4',,, represents the contributiOn due to waves and

everywhere,
-

- (17)
near the body.

Since the function 4' now satisfies the two-dimeiiisional

- aC;el2 + ix2 sin ß)

4',, =
ac - VoXi - WOX3

JOURNAL OF SHIP RESEARCH
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Fig. 2 1ementary control volume (shaded)

Laplace eqùation up to the linear term of k as seen in
equation (10), it fòllows that the potential (j = 2, 3)
satisfies:

The equation

òx22 ' òx32 (18)

The boundary condition

(19)

on the free surface, and
(c) the boundary condition

(20)òn
on the surface of the ship where n is approximated by the
normal in xz - xrpinne. Evidently; equation ß)o.
gether with boundary conditions (19) and (20) is identical
with the system which describes he vertical and/or
horizontl oscillations of two-dimensional bodies on a
free surface in calm water. For Lewis sections, Grim
[23] has devel1 a method to evaluate by expanding
it into an infinite series constructed by functions which
satisfy the boundary condition (19) individually.

Momentum TheoremS for Slender-Body Sections

To evaluate the force and moment on a body, one
may utilize the simple but powerful momentum theorems,
instead of integrating the pressure, usually a laborious
procedure fOr bodiés having complicated fórms. In the
present study, since the flow in the plane of cioss section
is by no means exactly two-dimensional, these theoÈems
have to be expressed in a' form appropriate to the
slender-body treatment.

The momentum theorem states that the resultant force
on the fluid within a control surface is equal to the rate of'
change of the momentum of the control volume and the
net efflux rate of momentum from the volume. It may
be expressed mathematically as

-f dS' = _jfÜdr+f5,(n.0)pUdS' (21)

where S' is the surface of the control volume r, n the
normal vector pointing into the volume, and U the'
velocity of the fluidi

Choosing a thin strip as the elementary control volume,
bounded by the free surface outside the ship, the sub-
merged surface of the ship, the plane x1 = x1, the plane

= x1 + &r1 (both planes are parallel to the X2 X3--
plane) and a large surface at infinity, one may apply the
theorem given, by equation (21) to th? control volume
and obtain

- x1f pñ ds - f pndS - .f pn dS
P±C+L S 8atxz+xi

=_[&1fPUds]

+ &i f (n- U)pU ds + f (n.. U)pU dS
F+C+L 5

+ f(n. U) pU dS, (22)
Satxi+zi

where all quantities except those specifically indicated
are taken in the plane x1 = x1, da is the elementary length
along the contour of integration, dS the elementary area,
F the free surface outside the ship, C the submerged sur-
face of ship, L the large surface at infinity and S the
siifiace bóunded by F, C and L,, Fig. 2.

Assuming that the control volume is' moving with the
body and the perturbation velocity of fluid is small com-
pared with the free-stream velocity - U, one finds that
n- U approximately is equal to - U in the plane x1 = x1,
and is equal to U in the plane x1 '= x1 ± &i. Thus, by
the definition of differehtiation, one may reduce equation
(22), for the force components in the plane ,of cross-sec-
tion to

r Dr- pn2ds = - - I pudS
JC+L D1j5

(n-U)pvds (23)
F±C+L

and

-f pn3 da = -
C-I-L f5

pw dS +

f(n,U)pwds (24)F+C±L
where y and w are horizontal and vertical omponents of
U, respectively, and
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1_ô_Uô. 25
Dt òt. òx1'

the pressure on the free surface being assumed zero.
The first term of the right-hand side m equations (23)
and (24) represents the rate of change of fluid momen-
tum, and the second term represents the momentum
transfer through the boundary.

Similarly, One may express the moment-of-momentum
theorem for, the moment about x1-axis,. i.e., the roll
moment on the. strip, as

Dr-. x3ni)ds =
J

p(XW - x3v)dS

± f(ft Û)p(x2w - xav)ds, (26)
F+ C+L

The first term of the right-hand side iï equatioh (26)
represents the rate of. change of moment of. momentum
of the fluid, and the second term represents the moment-
of-momèntum transfer through the boundary.

In deriving the foregoing expressions for momentum
theorems, no assumption other than that of slender bodL
has been mde, therefore, one may apply those theorèm
to a compressible and viscous fluid as well. in the case
of a perfect fluid (incompressible and inviscid), one has,
for example,

fp(xnaC+L

fw. dS - f - dS
= f 4 n3ds (27)

S 53 F+C+L
by thé use of Gauss's theorem. ut

where b =' b(xj) is the half-beam of ship. It follows that

-à_f s=fn3ds +- + j,(b], (29)
ÒX1 F FÔX1 dx1

wheré 4,(b) = (x1, b;. O).
On the other hand,

4,dX2
Ib

sfid2,

a r. ra,.1 di= i nds.

Force and Moment on Slender-Body Section

The f regöing momentum theorems, [equations (33)
to (35)], may now be applied to the evaluation of force

(28) ánd moment on ships in oblique waves.
The line integral .iñ equation (34) may be written as

(30)
òX1 .JL iL òXi

since the large surface L at infinity is independent of Xi.
Thus

Dr C Dp4n3d8 I pn3ds
JJtJF+L JF+L i,t

- pU- [(b) + (b)] (31),
dxj

Since the linearized pressure equation

Dp=pi5,
may be used on the free surface F and on the surface L
at mflmty to be consistent with the hneanzed boundary
condition on the free surface, equation (24) reduces to

f pna ds = f pna ds + f .n. U) p w ds

+ pU- [(b) ±.(bfl (33)
Xi

where the line integral along F and. L for the momentum
transfér has been neglected in accordance with the
linearization already made. Thé other two integrals
may, similarly, be reduced to

- fc pn2ds = ds ± f U) pv ds (34)

and

- f p(xn x3ni)ds = - L (x2n3 - x3n2)ds

+ f U)p(xiw x3v)ds

+ pUb - [(b) q,(b)] (35)
dx1

Obviously, the foregoing theorems, [equations (33) to
(35)], in the present form are also applicable to the case
in which the body moves at small pertirbation lateral
velocities in addition 'to the forward speed,

f2 ds f [U3
+ (ac VOX2; W0X3 wo3)e] n2ds (36)

by the useof equntions (4), (8) and (16). On the assump-
tion that the ship i's symmetriéal .about its median plane,.
it is found that' thé potentials 4 and are both even
functions of Xi, while is odd Consequently, equation
(36) may be reduced to

fc
_voeT(m + An), ()

where m is the mass of the displaced fluid, and, using the
conventional double mdex notation for a tensor element,
A22, the added mass of the. ship seétion along x2-direction
due to its motion iti that direction, is defined as

422 = P.1c4)2nids,
(38)

(32) Similarly, one finds that

UA31
T

woeT A33 woeT m, (39)

and

.44
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p f (x2n3 x3n2)ds = v0e (mia - 442 + 3'pb3) (40)

where

= p f n3ds (41)

is the added mass of the ship sectioii along the x3-direction
due to its motion along xrdirection (j = 1,3).

A42 = p f(xini x3n2)ds (42)

is the added mothent of inertia of the shipsection about
x1-axis due to its motions along x2-direction, and

-
f XX3fldSm c

is the position of the center of buoyañcy which is always
negative in the presènt co-ordinate system.

Substituting the boundary condition (3) into the line
integral for momentum transfer in equation (24), one has

fc
(, U) pv ds - pU fc

2

nids, (44)

which may fúither be reduced to

f(n. U)pv dv = pdvoe' f
C CÔX2.

where the relatión

dm f= p nids
dx1 Ja

has been used. Similarly, one finds that

fnUpwas = uwoef -n1ds
C ,CÒX3.

UwoeikT - PU2 f n1ds
dx1 c Òx3

and

fc (n ü)p(xiw - x3v)ds. pUvoe' f (2

- X: - n
òx2/

s - UvoeikT d
dxi

where

(m2) = - p f xn1d (49)

Furthermore, equations (4), (8) and (16) yield
(b) = b, O) + [ac -- vob

- vg(b, 0) - wo(b, .0) ]e"T
and (50)

= Ui(xi, b, 0) + [ac ± vob - vo(b, 0)
- woa(b, 0)]ekT,

- UvoecT dm
dx

(43)

(45).

which leads to

4(b) ± ./'(b) = 2U1(b) + 2{ac
and

4(b) - .(b) = _2voe_ikT[6 + 2(b)], (51)

where 1(b) is the abbreviation of 0).
Combining these results, one obtains finally the force

corn. onet
dF2 (Av*) ±. + pUti*, f n1ds (2)
dx1 Dt Dt c Òx2

along the x2-direction, the force component

dF3 = D (Auw* - A31U) ±
dx1 . Dt

± 2pU - [Ui1(b) ± ac eT - w*3(b)]
dxj

along the x3.directión, and the roll moment

(A42v*) - (m3 ± *Pb3)

- 2pUv*b - (b)
dxi

dM1
dxi

about the x1-axs, whère

and

+ pUw* f n1ds pU2 f ' n1 ds (53)j
C Ox3. COX3

t

+puv*J - - x3 ò2'
n1ds (54)c\ òx3 Ox2,

Th

= w0e' (55)

are the horizontal and vertical orbitaÏ velocity com-
ponents, respectively, of waves at the oñgin on the X2
x3-plane; i.e., on the xraxis.

The foregoing result is quite generai, without any re-
striction on the form of ship sections. Once potentials

, , and have been fòund, the stripwise force and
moment may be evaluated readily. The resultant force
and moment on the entire ship may then be obtained by
integration.

The saine analysis may also be used for evaluating the
force and moment on fully submerged bodies. The re-
sult is found to be the same as equations (52) to (54)
except. that the terms containing b are deleted.

For infinitely long cylinders having uniform cross .sec
tion on a free surface, äll line integrals of the momentum
transfer together with A31 and db/dx1 vanish in equations
(52) to (54), and the time derivative D/Dt reduces to
0/0g. If the body is fully submerged, then the term con-
taining b in equation (54) also vapishes.

It is important tonote that the added masses, givenby
equations (38), (41) and (42), can no longer represent

JUNE, 1962 45
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Fig. 3 Added-mass coefficient C22' versus area ratio u

5.0

the èntise kinetic energy of. the fluid when, a free surfäce
is present since the contour of integration in the expres-
sions.of added masses is only a poStion of the boundary
surrounding the fluid.

Asymptotic Values of Lateral Added Masses

In the expressions of the striwise force and moment
given in equations (52) to (54), one finds that the lateral
added masses A22 and A of a body section, eithet on a
free surface or fully submerged, can be evaluated up to
the linear term of the wave parameter k without solving
the problem exactly.

In accordance with the assumption of long wave length
in the present analysis, one may, utilizing the small per-
turbatiòn method, write

= ' +. k"; -f- k2" + (57)

where the number óf primes represents the order of ap-
proximation Evidently, the solution of of all order
satisfies the Laplace equation. As tO the boundary con-
dition (19), by substituting equation (57) and equating
the sàme order terms, one finds that

O and = (58)
Òx3 òx3

on the free surface. Furthermore setting

AREA RATIO O

Fig. 4 Added-iass coefficient Cn" versus area ratio u

V.

(60)
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ò2, - n2 (59)

on the body section, boundary condition (20) becomes

o
òn

on the surfäce of the body. Therefore, the frrstorder
solution ' actually represents. the flow generated by a
double body, consisting of the submerged portion of body
section and its image above the free surface, oscillating
laterally in an infinité fluid.

Nw, by the use of boundary condition (19), the added
mass

A22 = p f 4,2n2ds (61)

may be written as
r ò'2= p 2ds, (62)

.ic cm

thé usual forni of added mass. Writing in the ex-
pansion (57), equation (62) becomes

A22= _Pf2'

- pk f (' -" + (63)
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Fig. 5 Addedmass coefficient C4' versus area ratiO

But, from Green's formùla,

f (' - O
òn àn (64)

Theréfore, equation (63) reduces to

A,.,.=

+ Pkf.(2' ò2 ±
"

ds (65)

Substitution of boundary conditiòns (58) to (60) leads to

A2,. = - f ' ds ± pk f '2ds, (66)

or

A,.,. = 422' + kAn" (67)

where

A,.2' = - p fc ds (68)

is the first-order solution for the added mass A,.,. which
may be taken as half of the added mass of the fully sub
merged double body consisting of the submerged portion
of the body section and its image above the free surface
m an mflxute fluid, smce ,.' is aì even function of x,. as
shown by the boundary condition (58), and

At,." = Pf.2'2ds (69)

N

t tu
I-z
w
u
u-
u-
wou
(n
(I)

z
o
woo

AREA RATIO 0 .

Fig. 6 Addèd-mass coefficiènt C42" versus area ratio g

is the second-order term of the solution which can be
evaluated readily once the first-order solution m,.' is
found It is seen that A,.,." given in the foregomg expres-
sion is always positive, which shows that the presence of
the free surface, to the linear term of the wave parameter
k,. always tends to augment the addéd mass. This is
due to the fact that the disturbed free surface carries a
cèrtain amount of potential energy which can be iden-
tified as the second-order term of the added mass. Since
the complete expression of the first-order potential is

the wave height h' is therefore

h,.' = (,.'eT) j
gôt g

while the poténtial energy is

fF h'2ds = pke2" f 2'2ds, (7.1)

and one cáú easily see that the second.order term k4,."
of the added mass given in equation '(69) is identical with
twice the amplitude of the flrst=-order potential energy
carried in the elevated free surface This parallels the
ordinary defilìition of added mass which represents twice
the kinetic energy of the fluid when the velocity is
normalized. However, the added mass A2,. does not
represent the entire kinetic energy of the fluid since the
lilie integral in equation (62) excludes the contribution
from the free surface, which, as seen in equation (65),
gives an additional term

(70)
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with the first and second-order solutions ' and 4ì" sat
isfying, respectively, the boundary condition

= O and r' (74)
òx3 òx3

on the freesurface, and the boundary condition

and
-4:.=o

(75)

on the surface of the body; the added mass may now be
written as

± k" (73) Furthermore, one has

A42 = p f 2n4s pfF+C

which may further be reduce4 to
A- ' I ¡ A I?

42 - 1142 T IS., 4142

where

A42' = p 1 th0'---d.q p f 4)'n4s (78)Jô òn c
is'the first-order solution and

A42" = p L 4)'4)4'ds (79) Notipg that

thesecond.order term. In this case, it can also be shown
that A4" represents twice the potential energy

Lh2'h41ds (80)

on the free surface where h2' and h4' are the wave-heights
generated by the. first order potential 4)2' and 4)', re-
spectivély. However, A4" may be either positive or
negative, dependmg on the form of the body section, as
illustrated in Fig. 6 for Lewis sectiOns. on a free surfacè.

Lateral Added Masses of Lewis SeCtions on a Free SUace

For Lewis sections, i.e., sections which can be mapped
into a unit circle in th i i + is1 plane by conformal
titisfòrmatiOh

Z i ±f±F3 (81)

± Pf 4)2-ds (76)

(77)

where z x2 + ix3, a1 and a3 are coefficients depending on
the form of section, the first-order solution has been
obtained by Landweber and Macagno [15] and Grim
[20] as

cosO cos3û= (1 aì) - a3. (82)
r r

where = re10. The added mass An', which is half the
the value for the fully submerged double body, can be
shown to be

1122 -A I - p [(1 - ai)2 + 3a32] (83)

2p f ('
òx2) dr (84)

from equation (69). Sjnce

a1 a3

r r3
(85)X2 T cos O + - cos O + cos 38

as given in equation (81), it is found, by substituting
equations (82) and (85) into equation (84), that

A221' = 2P[(1.rai)2(i - -' - - as)

41
1142 -

(1
\3 5

On the other hand, equation (78) gives

f4)s'(x2dxs +

føw(x2 (8')

X3 =.rsinO sinO---sin3O (88)
a1.. a3.
r r3

as given in equatiOn (81), one obtains

442' 8F}ai(1 ai) + ir a3(4 + 4a1 - 5ai2)

a3(20 - (89)

The potential. 4,' for Lewis sections was obtained by
Grim [20] whO applied a second conf ormai transformation

io
r re1° + f + in (90)

r
to map the unit circle in 1-p1ane into a horizontal flat
plate in the r-plane and found that

ff(q)e«-" sin (q)dq (91)

where
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L 2'2ds
With respect to the added mass A42, one may introduce

a potential )4 which satisfies the two dimensional Laplace
equation (18), the boundary condition (19) on the free
surface, apci thé boundary condition

- - n4 = - (x2n3 - X3fl2) (72)

on the ship section. Then the .potentiai ti represents
the motion of the fluid for a body section oscillatmg m
rofl in the free surface. Again, set

3

)]..
(86)

+ a23 (
a1 - 2a(1 - aï)



+ W (E4 - 16) log ±E (94)

Substituting equations (82) and (94) intò equaton (79),
one finds that

442"= pf ('' ôX2)d Pf (1 - a1

+ ajas - 4aa) [4E - (E2 - 4) log 2 ± E
]

W (E 16) log + E

(i . - 3)dr (95)

where

The foregoing expression can be written, after integía-
tion, as

A4,." = - -e- (ai ± a1a3 - 4a3) {7r2(1 - ai)

- (8_ !)[a3 + a1(1 - a1)]+ qa3(4a1 - 3)

±aa2} ---a3 {5ir2(1 - ai)

2 (.i49. - ,r2) [a,. + aj(1 - a1)]

) a,. (4a1 - 3)± ig4 a32} (97)

The added-mass coefficients, defined1 a

C2
p1

Ad,.
C42

- pH8

with H as the draft of ship, may then be written as

Introducing the area ratio

= ¿ (101)

where A' is the area of the section below the free surface,
the first and second.order terms of the added-mass co-
efficients given by equation (100) have been calci.ilated
and plotted i.rersus u in Figs 3 through 6, taking the
ratio

C- .11
22 22 T 22

C'-r- -i 7 I,42 - 42 T 42

I-Y'-'22 -

C"22

n
'-'42

A f
1122.

.pH2

A if
1122

pH3

A
1142

(100)

as arameter.. The permissible ranges of u have been
evaluated by Landweber and Macagno [15] and are' re
produced in Table i for convenience.

Table i Pèrifliuible ROnges of u
7 q

0.6 0.412-0.93
08 0.353-0.942
1.0 0.294-0.957
1.4 0.379-0.937

0.425-0.925
'2.5 0.471-0.914
5.0 0.53OE-0.898

It is obvious that the asymptotic values of lateral
added masses of other ship sections such as the two-
parameter forms developed by Prohaska [161 and the
three.paranietèr fornís of Landwêber and Macagno [17]
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E = r + (96)
H

(102)

f(q)
= 2ir f_2

[(qj - 4) (a1 ± a1a3 4a3)

+ (qj4 - 16)a3] cos (qq)dqj (92)

(91), one obtains
Interchanging the order of integrations in equation

1 p2

= - .1 [(q2 - 4)(aj + a1a3 - 4a3) + (q4 l6)aa]
4ir j2

.r q+E
L+ E)2 +2 (q E)2 ± 2]d (93)

where the subscript f the duinny varIable has been de-
leted.

On the free surface, O O or ir, therefore , O and where
> 2 as seen from equation (90), and the potential

becomes

= =- {(ai ± a1a3 - 4a3)

X [4E (E - 4) log 2E2±E1 r16



can also be found by the technique utilized in the present
study.

Conclusions -

This paper has developed a "strip method" for the
evaluation of the exciting fOrce and moment on slender
bodies, either on a free surface or fully submerged, in long
regular waves. From the foregoing analysis, certain
general conclusiors can be drawn:

i It is possible to determine, from two-dimensional
analysis, the velocity potential attributable to the body-
wave interaction up to the linear term of the wave
parameter. The differential equation and the boundary
conditions which govern the. potential are identical with
those which describe the oscillation of two-dimensional
bodies in the presence of an otherwise undisturbed free
surface.

2 The stripwise force and moment on a body in
oblique waves are directly related to the added masses of
the body section as well as to the momentum transfer
thiough the boundary which varies from section to
section.

3 The added mass of a body section when a free sur-
face is present can no longer represent the entire kinetic
energy of the fluid in contrast with the case of bodies in
an infinite fluid.

4 The second-order term of the solution for the lateral
added mass of a body section in the presence of a free
surface represents physically the potential energy on the
free, surface due to waves generated by the velocity
potential of the first rder. The latter can be obtained
from the oscillation of a double body, consisting of the
submerged portion of the body-section and its image
above the free surface, in an infinite fluid.

The present study has also shown that the application
of momentum theorems to the evaluation of force and
moment on bodies in waves offers the advantage of
possible treatment of the general problem without solving
for the velocity potential explicitly. Furthermore, the
physical interpretation of the result thus obtained can
readily be recognized
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