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Lateral Force and Moment on Ships

in Oblique Waves

By Pung Nien Hu*

A method for evaluating the exciting force and moment on surface ships as. well as on
fully submerged bodies in obligue waves is developed, based on the assumptions of long__
regular waves and slender bodies. The differential equation, together with the boundary
conditions, for each component of the velocity potential is studied. Momentum theorems
for sleider:body sections are derived and applied to the evaluation of stripwise force

and moment on bodies in the presence of a

free surface. The result is found to be directly

related to the added masses of the body sections. Lateral added masses of body sections

in the presence of a free surface are investigated in detail and numerical values are

" presented for Lewis sections.

In the study of the linearized motion of a body in a
fluid, an important task is to evaluate the exciting force
and moment on the body due to regular waves encoun-
tered. Much work has been. done in recent years for the
case of fully submerged bodies, including the investiga-
tions made by Havelock [1],> Cummins [2], Korvin-
Kroukovsky [3], Korvin-Kroukovsky and Jacobs (4],

. Kaplan [5] and Kaplan and Hu [6, 7]. Havelock ob-
tained the force and moment on a prolate spheroid from
the pressure integration by use of spheroidal harmonics.
Cuminins treated the case of an arbitrary slender body

of revolution and evaluated the force and moment by

applying his extension of Lagally’s theorem to unsteady
flows [8]. Korvin-Kroukovsky and Jacobs evaluated
the force and mornent of a slender body of revolution by
integrating the pressure along the periphery of cross-
section, assuming the flow in the plane of cross section to
be two-dimensional. This method was employed again
by Kaplan, based on a more rational formulation of the
problem, and was further extended by Kaplan and Hu to
the evaluation of stripwise force and moment on slender
bodies of noncircular cross sections, utilizing the tech-
nique of conformal transformation. -

In the case of surface ships, only the vertical force and
pitching moment have so far been treated. Haskind [9]
studies the force and moment on a thin ship. Peters and
Stoker [10] developed a perturbation technique for
evaluating force and moment on ships of Michell type
(thin), or planing type. (flat), or a combination of the
two. Newman [11] further extended the perturbation
technique by using three perturbation parameters and

1 This work was supported by the Bureau of Ships” Fundamental
Hydromechzanics Research Program, under Contract: Nonr 263(24),
and technically administered: by the David Taylor Model Basin.

3.Staff Scientist, Davidson Laboratory, Stevens Institute of
Technology, Hoboken, N. J. -
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investigated higher order terms. All these studies
utilized the same Green’s function satisfying the ap-
propriate boundary condition on the free surface. The
velocity potential was derived from Green’s theorem,
while the force: and moment were found by integration of
pressure over the hull surface. ,

As to the lateral force and moment on ships in waves,
Ursell [12] and Levine and Rodemich [13] have treated
two-dimensional cases. Haskind [14] has solved the
problem of infinite plate and cylinder in oblique waves.
However, the treatment of three-dimensional bodies in
oblique waves is still lacking. The difficulty in problems
of three-dimensional bodies appears to arise from the fact
that the integral equation for the velocity potential
derived from Green’s theorem involves an extremely
complicated kernel function which cannot be solved
exactly in the present state of mathematics. To avoid
this, it is necessary to make further simplifications to or
formulate the problem from a different approach.

Since the restoring force and moment on ships in lateral
motions are small, motions. at low frequencies are of par-
ticular ‘interest. In the present paper, consequently,
only long regular waves are treated. For this case, it is
found that velocity potential attributed to the body-wave
interaction can be determined from two-dimensional
analysis. In addition to the siplification of the problem
thus achieved, the two-dimensional analysis also offers
the advantage that it is possible to treat a large class of
ship forms such as those represented by two or more
parameters (15,16, 17]. 7 o

The evaluation of the force and moment from the pres-
sure integration is not always a simple task because the
nonlinear terms in the pressure expression must be in-
cluded even in the case of slender bodies [18, 19]. Al-
though the extended Lagally’s theorem [8] enables one
to evaluate the force and moment from singularity dis-
tributions, the feasibility of applying the theorem to
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Fig. 1 Co-ordindte system

flows involving bodies on a free ‘surface reiains to be
examined. In the present paper, the stripwise force and
mornent are evaluated by use of momentum theorems

derived in forms appropriate to slender-body sections.

It is interesting to note that results thus obtained are
_ directly related to the added masses of ship sections.

By application of the perturbation method, the lateral
added masses of ship sections up to the second order are
studied, and the second-order terms of the added masses
are found to represent the potential energies on the free
surface due to waves generated by the first-order solu-
tions. Numerical values of lateral added masses of Lewis

sections are calculated for both first and second—order
terms.

Fundamental Equations

A Cartesian co-ordinate system is chosen with the axes
fixed relative to the ship, which is restrained to move
only forward at a constant speed U in the z,-direction
on the free surface. The zz-axis is pos1t1ve upward, the

" zraxis to the port; and the origin is placed on the free

surface in the median plane of ship.

The free surface is disturbed by regular waves propa-
gated with speed ¢ in a direction oblique to the forward
motion of the ship at an angle 8 which lies in the range
—7/2<B8< /3/2 asshownin Fig.1. The wave-propaga-
tion speed c.is positive for following seas and negative
for head seas.

The perturbation veloc1ty potential ¢(zy, T2, s, ) of
the motion of the ﬂu1d satisfies:

—_— _— o — Nomenclature —— —

1

A = cross-sectional area of ship below free surface
Aij(5,j = 1,2,3) = added mass, defined by equations (38)
"and (41)
.442 =

added moment. of inertia, defined by equation
(42

As'y Asi” = first and second-order terms of A:j; respectively
Ap', Ap” = first and second-order terms of A, respectively
a = amplitude of regular waves .
ay, a; = coeflicients of Lewis transformation
b = half-beam of ‘ship section
C = submerged surface of ship section
= wave-propagation speed
C”.-,-,» C'.’z = added mass coefficients
1, VU
Ci', Cip” = first and second-order terms of C:; and Ci, Te-
spectlvely
1 =2 _ U = total l:ime derivative
Di ot

Fi(j = 23) = force alqng z; — direction
g = gravitational acceleration
H = draft of ship section
hy', h' = wave heights generated by ¢.’ and ¢4’ TE8peC-
tively
1= (=1
.27 _ ¢ S
k= N = ;i Wave parameter
L = large surface at infinity
M; = moment about z)-axis
m = mass of fluid displacéd by ship section
% = normal pointing into Auid o
n; = cos(™;z;) = direction cosine (j =.1,2,3)
Ny = ToMg.— INae
Pp = presstre
r, 8 = polar co—ordmate in s plane
JUNE, 1962

surface bounded by F, C.and L i in plane of cross
section
surface of control-volume
z1cos B + (U cos B — ¢t
time
forward speed of ship
velocity vector of fluid
components of U .along z» and zs-direction,
respectively
—tkac sin 8
=kac
= pe'*T = hotizontal component of orbital velocity
at 7o = z; = 0
we*T = vertical component of orbital velocity
at z; = z; =0 .
Cartesian co-ordinate
Zz 4 1273 = complex plane.
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p = fluid density.

B = angle between z;-axis and normal t.o crests of
regular waves

t=t+m= complex plane;. on which unit circle is
mapped into a flat plate

O =4+ =red = compléx plane, on which ship

A section is mapped into unit circle
g H area ratlc
A = wave length
. H T
T=3
¢ = perturbation velocity potentla.l

#(b); ¢i(b)
¢:(j = 1:2':3:4.)
[ 2%

abbreviations of ¢(zl, 0) and ¢,(b 0), respec-
tively

normalized velocity potentlal
velocity potential of waves:

" ¢ = velocity potential due to: body-cvave interaction
¥; Yu» = see equations (8) and (16) .
r = control volume

40




]

(a) Laplace equation

o | Do L D _
Oz;? bfczz Oxs? =0 (1)
everywhere in the fluid, _ -
- (b) The linearized boundary condition*
0% 0% 0% o)
— = 92U == # U? — — = 2
5t~ Vaiog T Vome T 90, @
on the free surface (z; = 0), and
(¢) The boundary condition.
% _0, %, 0% . .
"ttty U @

on the surface of ship; where 7 is the normal pointing
into the fluid and #; = cos (#, z,) is the direction cosine.
One may expresss the potential ¢ as

¢(z1, T2, T3, 1) = Ugi(z1, T9; T3)

+ ¢w(xl: Loy Ty, t) + ¢b(x1: T2, x3:f£): (4)

where ¢ represents the potential due to the ‘forward
motion of ship in calm water, ¢, the potential of waves,
and ¢, the body-wave interaction: Obviously, each

potential satisfies the Laplace equation.

The potential ¢, satisfies the boundary condition
d1 _ o

624)1 y
2= T - = 5
v on? g ox; ®)
on the free surface, and the boundary condition

g% - (6)

on the surface of the ship. For thin ships, the potential
¢1 may be determined by the well-known Michell’s ap-
proximate method. For slender bodies, Cummins [21]
has developed a method to obtain ¢, in terms of the co-
ordinates fixed in space, based on the concept of impul-
sive flow. In the case that the forward speed of the ship
is small, the free surface can be regarded as a rigid wall

and the potential ¢, is identical with that for a double -

body, consisting of the submergéd position of the body
and its image over the free surface, moving in an infinite
fluid. The standard slender-body theory can then be
applied (see; e.g., Reference [22]).

For regular waves of wave length X and applitude d,,
one has

¢w = acek(n + ilzicos B+ z28in8 + (Ucos 8 — C)tni (7)
where
. 21r:
p=Z=1
: A c?

4+ Newman [11] has stidied. the boundary condition on the free
surface very rigorously and has shown that equation (2) should be
inhorogeneous if the beam-length ratio of the ship is in the same
order as the incident wave perturbation parameter. The present

homogeneous condition, therefore, implies that the beam-length-

ratio of the ship is smaller than the incident wave parameter. This
is consistent with the slender-body treatment in the present study:

a2

is the wave parameter, i = (—1)* and only the real
part of the potential is to be taken. As is suggested by
the form of ¢, one may write

b + ¢ = P22, T5)E™T, (8)
where
T =mzcosf+ (U cos 8 — o), 9)
and the function ¢ satisfies the two-dimensional Héim-
“holtz equation :
—a—zi oY _ k2 cos? B¢, (10)
Ozs?  Oxs? _
the boundary condition
0 ,
| o=y (1)
on the free surface and the boundary condition
2—:2 ny + %—fs n; =0 (12)

on the surface of the ship, where 7 is approximated by
the normal in the z, — 3 plane for slender bodies.

1t is extremely difficult to solve equation (10) sub-
jected to the mixed boundary conditions (11) and (12)
even for very simple cases. Haskind [14] obtained a
solution for an infinitely long plank in terms of series of
Mathieu functions. However, for the case of long waves,
a great simplification may be achieved.

Assuming that the wave length is adequately large
and the linear dimensions of the cross section of ship are
small relative to the wave length, the potential of waves
may be expanded near the body into a Taylor series
afound the z,-axis; i.e., z» = 7; = 0. Neglecting higher
order terms of the wave parameter k beyond the linear,

one has _
¢ = ac[l + k(zs + iz. sin B) Je™*” (13)
or
¢w = (ac — vox2 = wors)e™” (14)
where .
vy = —=tkac sin B,
and ,
" wp = —kac (15)

This shows that for long waves, the wave potential near
the body behaves like that of a uniform flow in the plane
of cross section: One may, consequently, set

V=¥ — vope = Wodbs, ~(16)

wiiere ¥y represents the contribution due to waves and

{ " ac k@ + imsinB) everywhere,

Y : . a7
ac = voTa — Welz near the body.

Since the function ¢ now satisfies the two-dimensional
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Fig. 2 Elementary control volume (shaded)

Laplace equation up to the linear term of k as seen in
equation (10), it follows that the potential ¢, (j = 2, 3)
satisfies:
(@) The equation _
0%, 524’1 _
aﬁl?z + bxs
(b) The boundary condition

(18)

S = ke, - (19)

on the free surface, and
(¢c) the boundary condltlon

on the surface of the ship where # is approxima_ted by the
normal in z» — zp-plane. Evidently; equation (18)_tos

gether with boundary conditions (19) and -and (20) is identical

with the system which describes the vertical and/or

horizontal oscillations of two-dimensional bodies on_a

free surface in calm water. For Lewis sections, Grim

(23} has developed a method to evaluate ¢, by expanding’

it into an infinite series constructed by functions which

" satisfy the boundary condition (19) individually.

Momenium Theorems for Slender-Body Sections

To evaluate the force and moment on a body, one
may utilize the simple but, powerful momentum theoréms,
instead of integrating the pressure, usually a labonous
procedure for bodies having complicated forms. In the
present study, since the flow in the plane of cross section
is by no means exactly two-dimensional, these theorems
have to be expressed in a' form appropriate to the
slender-body treatment.

JUNE, 1962

The momentum theorem states that the resultant force
on the fluid within a control surfaceis equal to the rate of
change of the momentum of the control volume and the
net efflux rate of momentum from the volume. It may
be expressed mathematically as

pn dS' = — gprd‘r' +f (- 0)p0dS’ (1)
s otJ, 5

where S’ is the surface of the control volume 7, # the
normal vector pointing into the volume, and U the
velocity of the fluid.

Choosing a thin strip as the elementary control Volume
bounded by the free surface outside the ship, the sub—
merged surface of the ship, the plane z; = z;, the plane
Ty = 71 + Az, (both planes are parallel to the z, ;-
plane) and a large surface at infinity, one may apply the
theorem given, by equation (21) to the control volume
and obtain '

__Axlf pﬂds—fpﬁ_ds—v pr dS
F+C+ L S Satz: + An
P . -
= ol f 0]
+ Axlf (- 0)pU ds +f (2-0)pU dS
JF+C+ L S

+ (n-0)p0 dS, (22)
Satz + An '

where all quantities except those specifically indicated
are taken in the plane z; = z;, ds is the elementary length
along the contour of mtegratlon dS the elementary area,
F the free surface outside the ship, C the submerged sur-
face of ship, L the large surface at infinity and S the
sufface bounded by F, C and L, Fig. 2.

Assuming that the control volume is-moving with the
body and the perturbation velocity of fluid is small com-
pared with the free-stream velocity — U, one finds that
-0 approximately is equal to = U in the plane 7, = x,
and is equal to U in the plane z; = z; 4 Az,. Thus, by

" the definition of differentiation, one may reduce equation

(22), for the force components in the plane of Cross-sec-
tion to

. D f
C+L DtJg i
+ 1 (”-Upvds (23)
Jric+L

and

Df

_. ds= -2 [ jwas +

L+Lpn3 Dt sp
f @, DMpwds (24)
F+C+1L

where v and w are horizontal and vertical components of
U, respectively, and .
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D_2_, 0
Dt ot bel’

the. pressure” on the free surface being assumed zero.
The first term of the right-hand side in equations (23)
and (24) represents the rate of change of fluid momen-
tum, and the second term represents the momentum
transfer through the boundary.

Similarly, one may express the moinent-of:momentum
theorein for. the moment about .r;-axis, i.e. the roll
moment on the:strip, as

(25)

- p(zan; — Tsna)ds = — D f p(mw — z)dS
cC+1L : ' DiJs" ™~ '

+ f (n- Dplzaw — z0)ds,” (26)
JF+ C+ L

The first term of the right-hand side i equation (26)

'repr'eSents the rate of change of moment of momentum
of the fluid, and the second term represents the moment-
of-momentum transfer through the boundary. '

In deriving the foregoing expressions for momentum
theorems, no assumption other than that of slender body;

has been made, therefore, one may apply those theorems.

to a compressible and ViSCQus fluid as well. 1n the case
of a perfect fluid (incompressible and inviscid), one has,
for example,

wdS = — d o nids (27
L s 03 F+C+1L wds - (27)
by the use of Gauss’s theorem. But
o . .
f omds = — [ édz — f $dzs,  (28)
Jr - b
where b =-b(x,) is the half-beam of ship. 1t follows that

2 [ e [ nds +P o) + ol
2 [ onas = [ 32 mds + T2 60 + o(=B)), (20
where ¢(b) = ¢(zy; b; 0).

On the othef hand,

o (- _ bi _
o, fL ¢ nyds = L >, nads.

(30)

since the large suiface L at infinity is independent of zi.

Thus

D D¢ :
Di F+Lp¢n3 S L+Lthn3ds
db
dil:]_

Since the linearized pressure equation

— pU = [p() + o(—=b)] (31)

 Ds . .
=,y - (32)

may be used on the free surface F and on the sutface L
at infinity to bg- consistent with the linearized boundary
condition on the free surface, equation (24) reduces to -

a4

—fzmads= ——prdm‘sds+f.(ﬁ-l7)pwds
c DtJc c '

+ oU-L [50) + o(=b)] (33)
\dxlv
where the line integral along F and. L for the momentum
transfer has been neglected in accordance with the
linearization already made. The other two integrals
may, similarly, be reduced to

—f prads = — Rf bg’bnzds-{-f (#®-Dpvds (34)
c Dt Jc - Je
and

- f p(zan; — Tsma)ds = — b f p ¢(@ms — Tma)ds
Je DtJc . _

+ j; @®-U )'[‘J(:cz’wr — Tw)ds

+ U6 2 (50) = (1)) (5)
T1 X

Obviously, the foregoing theorems, [equations (33) to
(35)], in the present form are also applicable to the case
in which the body moves at small perturbation lateral
velocities in addition to the forward speed.

Force and Moment on Slender-Body Section

The foregoing momentum theorems, [equations (33)
to (35)], may now be applied to the evaluation of force
and moment on ships in obl\ique waves.

The line integral in equafcion (34) rhay be written as

f ona ds = f (U
C C

+ (ac — vox2. — Wols — Vor — Wods)e*TInads  (36)

by the use-of equations (4), (8) and (16).. On the assump-
tion that the ship is symmetrical about its median plane,

it is found that the potentials ¢ and ¢; are both even

functions of x,, while ¢» is odd. Consequently, equation
(36) may be reduced to
0 f 6 nads = —voe®(m + Aw), 37)
¢
where m is the mass of the displaced fluid, and, using the
conventional double index notation for a tensor element,

An, the added mass of the ship section along.z.-direction
due to its motion in that direction, is _deﬁned as’

Agp = P'f paneds, -
. C

‘Similarly, one finds that

(38)

o f 6 nuds = Ul — wee™ A — wee™ m, (39)
C . L .

and
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p f &(Tn; = Tyma)ds = vee™T (mE; — Aw + 24pb%)  (40)
c S
where

Agy = Pf o nds

is the added mass of the ship section along the z;-direction
due to its motion along zdirection (j = 1 ,3).

P f do(Tons = TaMo)ds

(41)

A42 = (42)

is the added moment of inertia of the shipfsection about.

z1-axis due to its motions along z.-direction, and
Iy = ’—f ToTsneds
mJe

is the position of the center of buoyancy which is always
negative in the present co-ordinate system.

Substituting the boundary condition (3) into the line
integral for momentum transfer in.equation (24), one has

f(ﬁ-U)pvds= —ou [2
C

_ nlds
which may fﬁrther be reduced to

(43)

). 5 (44)

- f (- 0)pv ds = pUnge™” 9% mds — Upge™T == dm
C C bfcz da:l

(45).
where the relation
dm
d_itl = P j; ‘ 7:hd8

has been used. Similarly, one finds that

(46)

f (#-U)pw ds = pUwee™T 0dy nds
c i C D:cs :

. U,woeikT f —ds  (47) '
C
and
f (7:0)p(zaw — zw)ds = pUnpet? f < Ox
C . DI,,
s a¢,> mds — Unet? d. (m %), (48)
DI, d l )
where
2 (mzy = — f Zmd€ (49)
‘ da:l 3 P . 3nd

Furthermore, equations (4), (8) and (16) yield

"¢(b) = Ugilxy; b, 0) + [ac = ub .

— vopa(b, 0) — wegs(b, 0) Je™7
| (50)

=b, 0) + [ac + vb — veg2(=b, 0)
— wogs(—b, 0) Je*,

and
o(=b) = Us(z,

JUNE, 1962

. dil:l

which leads to
¢(b) + ¢(=b) = 2Up(b) + 2[ac — woes(b) Je™T
and _ : :
¢(®) — ¢(=b) = —2ue~*T[b + ¢u(b)],
where ¢,(b) is the abbreviation of ¢,(b; 0).

Combining these results, one obtains finally the force
component

dFs (D (4 o DL (O
dor (Azzl) ) 4+ m Di + pUv* j; 5, mds (52)
along the a:z-d;reotlon,'the force component
dFs _ D (Azw* — AnU) + mD_w_
dil?l S— . Dt ,
Dt
+ 20U -2 [Upn(8) + ac e — wg(b)] b
dx, . Q(J
N
+ pUnw* f O¢s nds = pU? ad’l mds (53) 3
6073, c 0z;

along the zg-direction, and the roll moment

d—]lll = 2 *y = 3 DU
Di (Aav™) <m¢'33 4+ —pb ) Dt

— 20U 2 4,(3)
dil:l

s | (54)

about the z;-axis, where

and

w¥ = 'woe“‘T (55)

are the horizontal and vertical orbital velocity com-
ponents, respectlvely, of waves at the origin on the z, —
z-plane; i.e., on the z-axis.

The foregomg result is quite general,” without any re-
striction on the form of ship sections. Once potentials
¢1, ¢2, and @; have been found, the stripwise force and
moment may be: evaluated readily. The resultant force
and moment on the entire ship may then be obtained by
integration. -

The same analysis may also be used for evaluating the
force and moment on fully submerged bodies. The re-
sult is found to be the same as equations (52) to (54)
except-that the terms containing b are deleted.

For infinitely long cylinders having uniform cross sec-
tions on a free sufface, all line integrals of the momentum
transfer together w1th Ay and db/dx, vanish in equations
(52) to (54), and the time derivative D/Dt reduces to
0/dt. If the body is fully submerged then the term con-
taining b in équation (54) also vanishes.

- It is important to note that the added masses, given by
equations (38), (41) and (42), can no longer represent

45

(51)

De T

* =_-1')oe“.” l_—_':%“\ (7)
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the entire kinetic energy of . the fluid when a free surface
is present since the contour of integration in the expres-

sions of added masses is only a portion of the boundary .

surrounding the fluid.

Asym_pioﬁc Values of Lateral Added Masses

In the expressions of the stripwise force and moment
given in equations (52) to (54), one finds that the lateral
added masses Ay and A of a body section, either on a
free surface or fiilly submerged, can be evaluated up to
the linear term of the wave parameter k& without solving
the problem exactly.

In accordance with the assumptlon of long wave length
in the present analysis, one may, utilizing the small per-
turbation method, write

¢ = &' + ko' 4 K2 4Ll (57)

where the number of primes represents the order of ap-
proximation. Evidently, the solution of ¢; of all order
satisfies the Laplace equation. As to the boundary con-
dition (19), by substituting equation (57) and equatlng
the same order terms, one finds that

o5’ _ O”
>0 0 and | oz,

on the free surfacé;

— & (58)

Furthermore setting

Lid z
22

ADDED MASS COEFFICIENT C!

AREA RATIO O & 2

Fig. 4 Added-mass coefficient C,” versus area ratio o

% = —Ng (59)
on the body section, boundary condition (20) becomes
O¢y”
=2 =0 0
o _ _ (60)

on the surface of the body. Therefore, the first-order
solution ¢’ actually represents. the flow generated by a.
double'body, con51st1ng of the submerged portion of body
section and its image above the free surface, oscillating
laterally in an infinite fluid.

Now, by the use of boundary condition (19), the added
mass

Anm=op f dnods (61)
¢
may be written as ‘

An = —p fc 0w, (62)

thé usual forin of added mass. Writing ¢» in the ex-
pansion (57), equation (62) becomes

Azz——Pf¢'a¢2
oY

— ok ’ ]

p fc(d’z on

JOURNAL OF SHIP RESEARCH
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.But, from Green’s formula, .

SIS
j.;+c<¢2 on ¢2_Em>ds 0 (64)

Theréfore, equation (63) reduces to

1 Ogpy’ 02"
A =—f¢z—d892k ¢ == ds
= P C on P F+C : on

+ pkf.< 2", ¢” a"”)ds (65)
F A
Substitution of boundary conditi‘ons (58) to (60) leads to
Azz = —pf ¢2’ % ds + pkf ¢2,st, (66)
Je on JF

or ) . .
An = An' + kA" . (67)

where

'2’;: ds (68)

An' = iy

is the first-order solution for the added mass A» which
may be taken as half of the added mass of the fully sub-
merged double body consisting of the submerged portion
of the body section and its image above the free surface
in an infinite fluid, since ¢.’ is an even function of z; as
shown by the boundary condition (58), and

=5 f o'ds (69)
F
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is the second-order term of the solution which can Be
"evaluated readlly once the first-order solution ¢,
found. It is seen that A" given in the foregoing expres—

sion is always positive, which shows that the ] presence of
the free surface, to the linear term of the wave parameter
k, always tends to augment the addéd mass. This is
due to the fact that the disturbed free surface carries a
certain amount of potential energy which can be iden-
tified as the second-order term of the added mass. Since
the complete expression of the first-order potential is

¢2’eik7' :

the wave height h' is therefor'e

o= =2

2 (o w1 = i e 0

while the poté'nt;al energy is
poo [ mide =~ g gkernt [ oras
F : F

and one can easily see that the second-order term kAs"
of the added mass given in equation (69) is identical with
twice the amplitude of the first-order potential energy
carried in the elevated free surface: This parallels the
ordinary definition of added mass which represents twice
the kinetic energy of the fluid when the wvelocity is
normalized. However, the added mass A, does not -
represent the entire kmetlc energy of the fluid since the
line integral in equation (62) excludes the contnbutlon
from the free surface, which, as seen in equation (65),
gives an additional term.

a7




f ¢2l2ds

With respect to the added mass A, one may introduce
a potential ¢4 which satisfies the two-dimensional Laplace
equation (18), the boundary condition (19) on the free
surface, and the boundary. condltlon

¢4
on

on the ship section. Then the potential ¢4 represents
the motion of the fluid for a body section oscillating in
roll in the free surface. Again, set

¢ = ¢ + ko." (73)

with the first and second-order solutions ¢i’ and ¢.” sat=
isfying, respectlvely, the boundary condition

= —Nng = —(Izna - Ian‘z) (72)

D¢4 09"
= = ¢ 74
F and S = & (74)
on the free surface, and the boundary condition
0 0" -
_—;’r: = —n and -0 (75)

on the surface of the body, the added mass may now be
written as

= 7 ‘ _—, e— a‘ﬁ
A4z-— pj;‘qbznads : pj;‘+c¢zzm

. _ 0¢,
+pﬁ¢zm ds (76)

which may further be reduced to
An = Ae + ICA42”

A@Z, = _pf ¢2[ aib'l

is’ the first-order solution and
f o' s'ds (79)

the:second-order term. In this case, it can also be shown
that A.ﬂ _Tepresents twice the potentlal énergy

3 g f h'bh/ds . (80)
F

on the free surface where ks’ and h,’ are the wave=heights
generated by the: first order potential ¢.’ and ¢4/, re-
spectively. However; A," may be either positive or
negative, dependmg on the form of the body section, as
1llustrated in Fig: 6 for Lewis sections. on a free surface

(77)

where

ds = p f ¢i'nds  (78)
Jc

I.aieral Added Mdsses of Lewis Sections on a Free Surface

For Lewis sections,‘ i.e., sections which can be mapped

into a unit circle in the ¢, ={, 4 in, plane by conformal
transformation
=¢ + —= +
' §' 1 i’ 1
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@)

where.z = x, 4 ix3, @) and @; are coefficients depending on
the form of section, the first-order solution ¢’ has been
obtained by Landweber and Macagno [15] and Grim
(20} as ,

cos 30
asz. rs
where ¢ = re”. The added mass As’, which is half the
the value for the fully submerged double body, can be
shown to be

cos f
) —_

= (1 — a (82)

Ay = (83)

. g p [(1 = .a)? + 3052

Furthermore, one has

A" = 2‘pj; <¢z"2 %M>0=odr. (84)

from equation (69). Since:
Ty = rcosf ﬂ cos 0 + :—: cos 36 (85)
_ r )

as given in equation (81); it is found, by substituting
equations (82) and (85) into equation (84) that

P m)z(_,;_x_gaa)

On the other hand, equation (78) gives

A = —p f &' (2 + 2dlzs)
_ 2T bxz 3 7Y .
- -”f,‘#z(I_Jr aa) o (87)
Noting that 4

2, =.7sin6 = 2in g — = sin 3¢ (88)
=5 -

as given in equation (81), one obtains

Ao’ = =8[3a:(1 = a1) ¥ 15 a:(4 + 4a1 = 5ai%)
‘ — w5 0%20 — Tay)] (89)
The potential . ¢,’ for Lewis sections was obtained by

Grim [20] who applied a second conformal transformation
—10

¢ = +—- =£f+4 i (90)

to map the unit circle in {,-plane into a horizontal flat
plate in the {-plane and found that '
o' = [ fesin (gi)dg (91)

where
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f(Q) = 2iw f_: [('gié —4) (al 4= .0'10_"3 - 403)

+ (gt — 16)d] cos (qq)dg: (92)

Interchangmg the order of integrations in equation
(91), one obtains

if [(¢* = 4)(@1 + mas ~ day) + (¢* = 16)as]

47
gt gt ]
| — — d 93
[(q-+ D +n @@= 4] (&)
where the subscript of the dummy variable has been de-
leted.
On the free surface, 0 0 or =, therefore 4 = 0 and

lE\ > 2 as seen from equation (90), and the potentlal
¢4’ becomes

2l {_(al + a0 — -4d3)

& = =

24 ¢ 16
9 — E’]‘*‘as[gf
24¢

16) log 5= E]} (94)

' Substituting equations (82) and (94) into equation (79),
one finds that

L 3 ® ng P ® /1 — a
Ap' = 2 o e
Ao "”fl <¢2¢ br)aﬁodr - - £ fl < -
Jﬁ) {(“‘ + @ — 4a;) [42 — (@ =4 log"j2—li_ g']
2 + EH
2—¢&| ]

. <1 = % e 3—‘?) dr (95)
¥ ¥

[45 — (&= 1) log

A Gl

+.a; [13_6E + 48 — (8 — 16) log

where

=1 (96)

The foregoing expression can be wntten after integra-
tion, as

Ag’ = — f (@1 + o105 — 4a;) {52(1 = ay)
- <s - ) fas + a1 — @)1+ 2§ ax(day — 2y
+38 a32} -2 & {5w2(1'-— @)
- 2 (82 ~ F) las + ai(1 — ay)]
+ (58 = 7)o — 9 + i 0 4 e
© JUNE; 1962 |

‘The added-mass coéfficients; defined ﬁ's

Co= 22
Pl
(98)
Ca = fAﬂ- _
Plca
with H as the draft of ship, may then be written as
Cy = Cu’ + kHCw"
. , (99)
Cu = Co' + KHC,'
where
O’ = #A“"
' El?Hg
Co” = 1:‘132” |
5 PH
(100)
7
Co" = 1;142”
P
’Introdl_lcing'the ares ratio
¢ = 2%1 (101)

where A is the area of the section below the free surface,
the first and second-ofder terms of the added-mass co-
efficients given by equatlon (100) have been calculated
and plotted versus ¢ in Figs. 3 through 6, taking the
ratio

m

0 (102)

as parameter. The permissible ranges of ¢ have been
evaluated by Landweber and Macagno [15] and are re:
produced in Table 1 for convenience.

Table 1

il

Y

Perinissible Rangés of o

v a

0.6 0.412-0.93

0:8 0.353-0.942
1.0 0.294-0.957
1.4 0.379-0.937
1.8 0.425-0.925
2.5 0.471-0.914
5.0 0.530-0.898

It is obvious that the asymptotic values of lateral

added masses of other ship sections such as the two-
parameter forms developed by Prohaska [16] and the
three-parameter foris of Landwéber and Macagno [17]
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can also be found by the technique utilized in the present
study.

Conclusions

This paper has developed a “strlp method”’ for the
evaluation of the exciting force and moment on slender
bodies, either on a free surface or fully submerged, in long
recrular waves. From the foregoing analysis, certain
general conclusions can be drawn:

1 It is possible to determine, from two-dimensional
analysis, the velocity potential attributable to the body-
wave interaction up to the linear term of the wave
parameter. The differential equation and the boundary
conditions which govern the potential are identical with
those which describe the oscillation of two-dimensional
bodies in the presence of an otherwise undisturbed free
surface.

2 The stripwise force and moment on a body in
oblique waves are directly related to the added masses of
the body section as well as to the momentum transfer
through the boundary which varies from section to
section.

3 The added mass of a body section when a free sur-
face is present can no longer represent the entire kinetic
energy of the fluid in contrast Wlth the case of bodies in
an infinite fluid.

4 The second-order term of the solution for the lateral
added mass of a body section in the presence of a free

* surface represents physically the potential energy on the

free surface due to waves generated by the velocity
potential of the first order. The latter can be obtained
from the oscillation of a double body, consisting of the
submerged portion of the body-section and its image
above the free surface, in an infinite fluid.

The present study has also shown that the application
of momentum theorems to the evaluation of force and
moment on bodies in waves offers the advantage of
possible treatment of the general problem without solving
for the velocity potential explicitly. Furthermore, the
physical interpretation of the result thus obtained can
readily be recognized.
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